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Canonical Coordinates and the Geometry of
Inference, Rate, and Capacity

Louis L. Scharf Fellow, IEEE,and Clifford T. Mullis

Abstract—Canonical correlations measure cosines of principal +o X
angles between random vectors. These cosines multiplicatively de- source m
compose concentration ellipses for second-order filtering and addi- / o
tively decompose information rate for the Gaussian channel. More- n y
over, they establish a geometrical connection between error covari-
ance, error rate, information rate, and principal angles. There is a Fig. 1. Source of message and measurement in standard coordinates.
limit to how small these angles can be made, and this limit deter-
mines channel capacity. . R;)/(Z T
Index Terms—Canonical coordinates, canonical correlations, ,I/n > > ol
channel capacity, filtering, information rate. source
/ > -
/n v R GT oV
I. INTRODUCTION v

HE STANDARD view of estimation theory and communi- Fig. 2. Source of message and measurement in canonical coordinates.
cationis illustrated in Fig. 1. The-dimensional message
x and then-dimensional measuremeniare components of the  In the canonical coordinate system, the Gauss—Markov the-
source vectog. We think ofx as Mother Nature's message an@rem decomposes the MMSE estimator of the message into a

y as Father Nature's measurement. In the Shannon picture {ignsform coderanequalizer filterfor estimating canonical co-
the measuremertis a “noisy” version of the message ordinates, and &ransform decoderThe error covariances for

The problems we consider in the context of Fig. 1 are &€ canonical coordinates are determined by cosines of principal
follows. angles. These cosines also decompose the information rate into a

« How accurately can the message be estimated from 4" of canonical rates, each of which measures the rate at which
measurement? a canonical coordinate of the measurement carries information

« What s the linear dependence between message and nfbout a canonical coordinate of the message. Capacity is deter-
surement? mined by the maximum canonical rates that can be achieved,

« What is the rate as which the measurement carries inféf2d these are determined by the maximum direction cosines or
mation about the message? minimum principal angles that can be achieved.

« Whatis the capacity of the measurement to carry informa- 1 NiS Paper is a companion to [2]. Our aim is to further ex-
tion about the message? plore the algebraic, geometric, and statistical properties of the
Our aim in this paper is to answer these questions by showi @annon expenmgnt [1]. Since completing th,'s paper, we have
how thecosinedor principal anglesbetween the message an covered a relatively obscure paper by Gelfand and Yaglom

the measurement determiegor covarianceinformation rate 3], which contains some of our results.
andcapacity These cosines are just thanonical correlations
between theanonical coordinatesf the message and the mea-
surement. This suggests that the systencarfonical coordi-  We begin our development by defining the source vegtor
natesis the appropriate coordinate system for analyzing tlmnsisting of the messageand the measuremegpt

Gaussian channel. As a preview of our results, we offer Fig. 2,

Il. GEOMETRY AND CANONICAL COORDINATES

which is a redrawing of Fig. 1 in coordinatasandv. The trick z = [X} e R™™, Q)
will be to determine the transformatiollsand G that makeu y
andv canonical. We will assume that andy have zero means, in which case the

second-order characterizationzfs determined by the covari-
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elements of the cross-covariance matiix, as inner products
in the Hilbert space of second-order random variables:

(Ryy)i; = E[z;y;] - inner product betweep; andy;. (3)

If x andy are now replaced by their corresponding “white”
or “unit” vectors, then the whitened source vector is

—1/2
(= [ﬂ _ {Rxg R%/Q} {ﬂ 4) c0s 0 =k,

Fig. 3. Geometry of canonical coordinates.
whereRor/’RooRon/? = I, andRYRE/? = R,,. The

covariance matrix for this whitened vector is ccT — R;,}/QRWR;Z}RWR;,;T/Q or, equivalently, of
R =8| |2 w1 = I C the matrix Ro2/*CCTRL/? = R, R., R, R,., as the
< v EN T et o1 following calculation shows:

_ —1/2 —T/2
C=R;}/*R,,R,/ ®) KK = FTCGGTCTF = F'CCTF. (11)

whereC is called thecoherencematrix. The elements of the Tese eigenvalues are invariant to the choice of a square root for
coherence matrix are cosines in the Hilbert space of seconﬁi;w'

order random variables: The eigenvaluek(i) are invariant to block-diagonal transfor-

cosine of angle between unit variance mation ofR.....:

random variableg; and v;. T
5 [ [T 8] e

(6) )
This language is evocative, but until we resolve the coherence 0 Ty [Ryr Ryy 0 T3

matrix into an appropriate coordinate system, we have no cQR-act, the squared canonical coordinates make up a complete,

crete picture for the underlying geometry. In order to develgp maximal, set of invariants for the covariance mafitx.
this picture, we now determine the singular value decompoginger the transformation group

tion (SVD) of the coherence matrix, namely
_ _|Ty O
C=FKG” and K=F'CG 7= {T = [ 0 TJ , de(T) # 0} (13)

- - r - with group actionR.. — TR..T7. That is, any function of
F'F=FF =Im) and G'G=GG" =1I(n). (7) R... thatisinvariant under the transformati@R... T is a func-
tion of KK7.

The canonical correlations measure the correlation between
the canonical message coordinates and the canonical measure-
wo {u} _ {FT 0 } {u} ment coordinates. Thatis, as illustrated in Figk:@) is just the

(C)ij = Elpivy]

We then use the orthogonal matridsndG to transform the
unit source vectog into thecanonicalsource vectow

0o GT||v cosine of the angle between the canonical message coordinate
u; and the canonical measurement coordinate

v v

_[F" 0o R/’ 0 X 8) .
1o GF 0 Ry, |yl k(i) = (K)ii
) . ) . cosine of angle between
The covariance matrix for the canonical source vector is = Efuvi] : canonical coordinates; andv;. (14)
Ryw=FE H“} [u® VT]} — {KIT Iﬂ (9) The angle between; andv; plays the same role as a principal
v angle between two linear subspaces. That is, letfiv} and

where the cross-covariance matkkis the diagonal matrix of (N) representn- andn-dimensional orthogonal subspaces of

singular values determined from the SVD: IR™*", the cosines of the principal angles betwda) and
(N) arek(i), which are the diagonal singular values in the SVD
[K(r) 0], m<n of the matrixM*N [6]:
K= [K(T)} o MTN = FKGT. (15)
0 ? —_—

This is the deterministic analog of
K(r) =diagk(1) --- k(r)]; 7 =min(m,n). (10
(r) = diagik(1) ()] (- A0 Ry Ro12] = O FKGY (1)
The matrix K is called thecanonical correlation matrix _
of canonical correlationsk(i), and the matrix KK? is thereby justifying our interpretation that the canonical corre-
called the squared canonical correlation matrix of squardation k(i) measures the cosine of thith principal angle be-
canonical correlationg?(4) [4], [5]. These squared canonicaltween the message and the measuremept Stated yet an-

correlations are eigenvalues of the squared coherence matixer way, the canonical correlatiohs are the cosines of the
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xo > - °X Raca; 0 X T T :|
=F X e
_1 R
yR yxRxx Q. =Ry, — Ry,;R;lexy (20)
e. o - —oy This factorization produces the modg),. R} for the channel

(a) filter, the covariance matriQ,,,, for the channel noise, and the
following decomposition of d¢R ... ]:

xo - -0 ¢, defR..] = defR,,|def{Q,,]. (21)
l R._R. In Fig. 4(b), the composite source vector is transformed into the
AR filtering errore, and the measuremexnt The error has covari-
ance matrixQ...., and it is uncorrelated with the measurement
yo - © Y y. The filtering model for the source vector is
e I R, R [x
Fig. 4. Source models. (a) Channel model. (b) Filtering model. [ ;} = {0 wf vy } [y} (22)

canonical angles between the linear subspaces spanned byafifkthe corresponding block Cholesky factorization of the co-
canonical message and measurement coordinﬁef‘Tﬁ and variance matrixR.. is

v = GTy. These cosines are invariant to nonsingular trans- Q 0 I _R.R-1
formation ofx by T;x andy by T»y. This is consistent with o R.|~T [0 T }
our interpretation of canonical correlations as cosines of prin- - v
cipal angles between the message and the measurement: only X [Rm RW} [ 711 0}
the principal angles matter, not the internal coordinate systems. i Rye Ryy | [-RyyRye I
We may now redraw Fig. 1as Fig. 2toillustrate the canonical | Q== 0 | _ E [ |:eac:| el yT]:|
coordinates of the message and the measurement. The connec{ 0 R, | y ¥
tion betweerg, the standard coordinates of the source, and Quzz = Rew — Ry Ry Rye. (23)

the canonical coordinates of the source, is
This factorization produces the mod%LcyRy—y1 for the Wiener

W — [u} _ [FT 0 } [RQJ}/Q 0 } [X} (17) filter, Q. for the error covariance matrix, and the following

v 0 G" 0 R, decomposition of déR...|:
and the corresponding connection between their second-order defR...] = de{Q..] defR.,,]
descriptions is - w det[ny]
r = TT — vyl 24

12 In this decomposition, dB&....] and defR.,, ] depend only on

% {Rw‘ 0 } {F 0 } autocorrelation, and d€}...]/de{R....] depends on cross-cor-
relation. We will shortly interpret the inverse of this latter quan-

tity as processing gain.

Now let us see how this picture develops in canonical coordi-
nates. The composite canonical source of Fig. 2 has two equiv-
alent representations. The first is the channel, or signal-plus-

lll. FILTERING noise, model of Fig. 5(a), and the second is the filtering model

The source of Fig. 1 has two equivalent representations. ToleFig. 5(b). In Fig. 5(a), the canonical channel noigehas
firstis the channel, or signal-plus-noise, model of Fig. 4(a), andrrelationl — KZ'K, and it is uncorrelated with the canonical
the second is the filtering model of Fig. 4(b). In panel Fig. 4(alnessagea:. The channel model for the canonical source vector
the channel noise, has correlatiorQ,,,, and it is uncorrelated is

(18)

with the message. The channel model for the source vector is I
ja| 0 u (25)
X I 0 X v |KY I|]|e,
=Bl 0] e
y YT Ve €y and the corresponding block Cholesky factorization of the co-
and the corresponding block Cholesky factorization of the c§arance matrb® .., is
variance matrixR.. ; is [ I K} B [ I 0} [I 0 } [I K}
KT 1| |KT 1 I
Rzzz |:RJ}J} ny:| 0 be 0
R, Ry, {I 0 }:EH“} [u” ef]}
I 0] [R.. 0 ][I RIIR,, 0 Qu e
TIRRE I 0 Qul|O0 I Q.. =1-K'K. (26)
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Fig. 5. Canonical source models. (a) Canonical channel model, (b) Canonical y0—>—o—‘~—o—;—o y
filtering model. v b Vv

Fig. 6. Source models in canonical coordinates. (a) Channel model. (b)

This factorization produces the modKI” for the canonical Filtering model.

channel filter, the covariance matr},, = I — KTK for the
canonical channel noise, and the following decompositions of

det[wa] and demm«] S(i)Ill.lfr(z:e [ transmitter 4?7 receiver destination
defR.,,,] = defl - KYK] and
def{R..] = de{R..| defl — KTK]de{R,,]. (27) (@) Doise

In Fig. 5(b), the canonical source vector is transformed into tl
canonical filtering erroe,, and the canonical measurement . .

. T .. transmatter receiver
The error has covariance matilix KK* , and it is uncorrelated §Y) A A

: . : i x | FR, |u v | K u RGF X
with the measurement. The filtering model for the canonical Sxfr(;e o - e > destination
source vector is
eV
e.| I -K||u
SR HE DI
and the corresponding block Cholesky factorization of the ¢ (b) %e
variance matrixR .., is ’
noise
Qu. 0] I —-K I K I 0 source
0O I/, |0 I K' 1T|]|-K¥ o
Qu. O B e. T - Fig. 7. Shannon's picture. (a) Standard. (b) Canonical.
[0 1) =E|| V] oo V]
Q.. =T1-KK7. (29) In canonical coordinates, the Wiener filter and error covari-
ance matrix may be written as
This factorization produces the mod® for the canonical
Wiener filter andQ,,, = I — KK7 for the canonical error R.,R,} = R;QQFKGTR;;/Q and

We may summarize by illustrating the channel and filtering

models for the source vectarin canonical coordinates. Thesel_he concentration elliose for the filtering errars has volume
models, which are illustrated in Fig. 6, show that the canon- P 9 »

ical correlation matrixiK, which may be interpreted as a di_proportional to deQ.,], and the concentration ellipse for the

agonal equalizer filter, determines the canonical channel fil{g[eSSagx has volume proportional to q#t,,]. Their ratio

) . measures theelative volumesf these concentration ellipses,
K7 and the channel noise covariante- K”K, as well as P

the canonical Wiener filtekKC and the error covariance matrixand this ratio, which depends only on the canonical correlations
T — KKZ. With these insights, the standard Shannon pictu(r)é direction cosines, is the same as it is in the canonical coordi-
[1] of Fig. 7(a) may be redrawn as the canonical Shannon pf?:@te system:
ture of Fig. 7(b) to show that the transmitter consists of the de{Q..]
whitening transform codeF? R,,../2, and the receiver consists WRW]
of the canonical Wiener filteK followed by the coloring trans- v .
form decodeR~,’F. The canonical Shannon pictureasto- “ - #2) = defQuu] (31)
=1

maticallya spread-spectrum picture.

= defI - KK7]

N det[R'uxu,] '
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A physical interpretation is that the canonical coordinate tranghis ratio takes the value 0 iff there is linear dependence among
formation replaces the original composite source by a paraltBk z;; it takes the value 1 iffR.. is diagonal, meaning the
combination of uncorrelated sources, each of whose error candom variables; are all mutually uncorrelated and therefore
variance isl —k?. The error covariance for the parallel combinaerthogonal. From the second identity of (27), this ratio may be
tionisdiagl—k?,...,1—k2],and the determinant][§(1—4?). written as

In a very real sense, the inverse of the ratio in (31) determines defR..]  defR,.] defR,,]
“processing gain,” and it depends only on direction cosines:  T[(R..)s;  [[(Ras)ii IR,

defR..] 1 This c_iecomposition of the Hadamard ratio bears comment.

= el Q..] = ML=k (32) The first term measures the Ilnear_ dependenogong the
e =1 v random variables{z;}{*, and the third term measures the

As processing gain is invariant to nonsingular transformatiofijear dependencamongthe random variableqy; }7; the
this is also processing gain for the original experiment. middle term measures linear dependeheaveerthe random

Example: Signal Plus Nois&he interpretation of canonical variables{xz;}7* and{y; }7. It does so by measuring the error
coordinates is illuminating when the composite source isc@variancel — KK* when estimating the canonical message
signal-plus-noise source. In this case, the measurementvggtor FZR;./?x from the canonical measurement vector
y = x +n andExn? = 0. Then, the composite correlationGZ Ry /%y This error covariance ddt— KK7] is also the
matrix is canonical decomposition of d€}....]/def{R....].

def(I - KK%)

(40)

PG

wa wa

R =Ry RuwtRunl’

(33) V. RATE AND CAPACITY

Shannon [1] defines the information rate of the source of
For reasons to become clear, we will define the “signal-to-noi§égy. 1 three ways, each of which brings its own interpretations.

ratio” matrix as i) R= H,— H,,: message entropi, minus equivoca-
tion H,,;
_nT/2p-1nl/2 - @y . )
S=R,."R, R (34) i) R=H,— H,,: measurement entropy,, minus noise

) . . . entropyH,|,;
Then, with a little algebra, the error covariance matrix m ylz
en, with a little algebra, the error covariance mat ay be i) R= H,+H,— H.: message entropy, plus measure-

written as ment entropyH, minus shared entropi..
Q.2 = Ruz — Reo(Raw + Rn) 'R For the Gaussian source of Fig. 1, entropy is
= (R} +R;)™ H. = Ellog f(2)]
_1 _m+n. 1.
— [R;g/za +S)R;£/2} (35) = —— log(2re) + ; logde(R...] (41)
and these rate formulas become
and the “squared” canonical correlation matrix as )

T _Rp-1/2 -1 —7/2 1 1
CC = Reo"Roo(Rew + Run)  ReoRos R = - logde(R,,] — -~ log de{Qu.];
=(I+SH) . (36) 2 2
ii)
This latter identity tells us that the eigenvalues of the SNR ma-
trix S—call them~?—are related to the squared canonical co- R= llogdet[Ryy] — llog de{Q,,;
2 2 '

ordinates as

2_ K s W )
f=—1— or ki=-—". 37 1 1
R k2 1447 37) R= 3 logdefR,...] + 3 logdefR,,]
This means that the relative volume of concentration ellipses is _ llogdel{Rw].
5 2z
defQ..] _ 1 (38) Using the determinantal identities of Section Ill, we may write
defR..] [[i_,(1+~2) equivocation, noise entropgindinformation rateas
and the processing gainJ§;_, (1 + +7). The processing gain ) m 1
is 2" when~; = 1 for all <. Hy, = B log(2me) + 3 log def{Q.]
m 1
IV. LINEAR DEPENDENCE =5 log(2me) + 5108 defR..] — &;

The standard measure of linear dependence for the compositsi)

random vector is the Hadamard ratio inside the inequalit n 1
quaity ulr = 5 log(2me) + 5 log defQ,,]
defR..] 1
0< =———== <1, (39) _ P oo M _ R
Hi(R‘ 2)ii 2 log(2me) + 2 log det[Ryy]] R;
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iii) These circulant matrices have DFT representations

R,.=VS..V7 and R,, =VS,,.V7

1 1w
R=—=logdefl - KK”] = —= Y " log(1 — #2(4)).
5 log def = -5 2 log( @) R,, = VS,.VZ and R,, = V(S,,+S,.)VH (46)

=1
That s, the rate at which the measuremebtings information in which'Vis the DFT matrix, and,, andS,, are diagonal
about the message is just the sum of the rates at which thdine spectrunmatrices:

canonical measurement coordinates carry information about the 1 s
canonical message coordinates: V=ak V= ﬁW" 3 Wa=em
- See = diag(S,, (7)) and S, = diagS,,(¢))
R=>"R; (42) n-1 ‘ n-1 ‘
im1 Sex(d) = > ()W, and Spn(i) = q(k)W, ¥
rate at which canonical k=0 k=0
1 1 i P _
R =2 1log measurement coordinate (43) i=0,1,...,n—1. (47)

1—k2(3)  carries information about

canonical message coordinate The coherence matrix in this case is also circulant, and the

o ) ] i _canonical correlation matrix consists of ratios that might
A physical interpretation of this result is that the transformatioggsely be called voltage ratios.

to canonical coordinates transforms the Gaussian channel into

a parallel combination of independent Gaussian channels, each C=VKV"

of which has rateRk;. The total rate is the sum, and as rate is K — diagl( Sy (1) )1/2] (48)
invariant to linear transformations, this is the rate of the original Suz (1) + Spn(?)

channel.

In summary, rate is determined solely by squared canonidd}e direction cosines and direction sines are power ratios
correlations:? (7). However, thek? (i) are just direction cosines 2/ Srz(t) _ Saa(8)/Snn(4)
between the linear vector spaces spanned by the canonical mes- (0 = Spw() + Spn(d) 14 Spu(4)/Spn (%)
sage and measurement coordinates, or direction cosines for the o, (1) 1
principal angles betweexnandy. This fundamental decompo- 1—k(i) = Sa(i) + Spn(i) “1+8 @)/ Sm(i)
sition illustrates the geometry of rate and the fundamental role o " reALm (49)

played by canonical coordinates in its computation and interpre-

tation. It also raises the question of just how small the principdhese formulas are special cases of those in (37), and they
angles can be or, equivalently, how large the direction cosingsow the connection between canonical correlation and
can be. This is the capacity question. We can define capacitysignal-to-noise ratio. The error covariance matrix for esti-

be matingu from v is
C = max E; - KKT — diag| ()
Ro,€5 ' _ 950 @) + Sun @)
S = set of admissible message covariances (44) 1
. = diag[ - - } (50)
but we can only calculate it for concrete channels. We turn to 14 8.:(0)/Snn(4)
this question in the following section, where we evaluate raig q the rate at whick carries information about is
and capacity for the circulant Gaussian channel. 1
R=—7log defI — KK7]
VI. CIRCULANT GAUSSIAN CHANNEL n—1
The circulant Gaussian channel is an example that allows us 9 ; og[1 + S (1)/ Snn (0] (51)

to compute canonical correlations and direction cosines and to ) o ) )
derive Shannon's celebrated capacity theorem in the bargain. Lethe question that now arises is “what is the maximum rate (or

the measurement = x + n be the sum of the messageand channel capacity) at which the measurement can bring informa-
the channel noisa. Assume thaR,,, andR,,,, are circulant: tion about the message?” To answer this question, we maximize

the rateR? under the constraint that the average signal power is

[ 78; 7’(7?(8)1) SO P and the average noise powerNs
R’I"I‘ = ' . ' . = RZT ot
: RO maxR UC. Y S,.(i)=nP and
Lr(n —1) r(1) r(0)J =0
roa0)  qln—1) - q(1)] —
q(1 q(0 Z Spn (i) = nN. (52)
Rnn = ( ) ( ) . . = Rgn =0
[ g(n - 1) N q(i) q(IO) | The maximizing choices for the spectral line powsgs () are

R,,=R,;; and R,, =R,; +R,,. (45) Sex(i) + Spn(i) = P+ N. (53)
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These are, of course, the spread-spectrum solutions that equalize
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TABLE |

the signal-plus-noise power across the band. The corresponding SUMMARY OF FORMULAS FORINFERENCE ANDCOMMUNICATION.

capacity is
n—1
1 P+N
== log —— 4
R PPN 9

and the corresponding error covariance matix for estimating

from v is

[ Spn(d)
I-KK? = LAY
dlag{P n N} (55)
When the noise is white, meanirg,,,(¢) = N, then the ca-
pacity is

n, P+ N
C = —log 56
2 TN 56)
and the corresponding error covariance matrix is
I-KK” =di . 57
Iag[ P N} (57)

Under this capacity condition, each canonical measurement
ordinate carries information at the same réat¢2) log[(P +
N)/N], all direction cosine®/(P+ N ) are equal, and all error
variancesV/(P + N) are equal.

When only certain DFT frequencies can be used, thés

name formula

error covariance R%ZF(I — KKT)FTRL/2

(standard coordinates)
error covariance I-KKT
(canonical coordinates)

ratio of concentration volumes det(I - KKT)

det(I - KKT) S2E

linear dependence (Ryy)ii

det[Ro
(Rez)si

information rate —1 log det[I - KKT]

and under this capacity condition, the coherence spectrum, error
spectrum, and signal-plus-noise spectra are flat.

. P . N
K = i 1— K] = ———
=y IR =50y

Sea(€®) + Spn(e?®) = P+ N. (63)

These formulas illustrate the fundamental role played by canon-
ical coordinates in the computation and interpretation of rate and
€8pacity, and they illustrate the geometry underlying the spec-
tral formulas of [7].

VII. CONCLUSION

replaced by (the dimension of the resulting message), and the Evidently, the canonical coordinate system is the right system

capacity formula is

P+N
N

which is Shannon's capacity formula.
The asymptotic versions of these formulas are straightf

ward. For the error covariance matiix- KK, we have

ngbg (58)

n 1/n
T » do
li I-KK7* it = 1—-|K Joy2y 2
nggo<g< >> | a-isEnpg
_/7T Spn(e??) dé
S r Sea(ei®)+S,,(c90) 27
(59)
where| K (¢/9)|? is the squared coherence spectrum.
j Say ()
K(®)2 = — .
O = ()5, )
Spx(e??)
=5 4 Sy Y
For the rate, we have
1
lim [ —— logdeflI - KK”
n5&< o, 108 det 1)
_1/30 1 9
“2 ) TR (@) 2
1T S0 (e7) + Snn(e??) db

If the usable part of the channel has bandwitith and the noise
power is constant on this band, then the capacity is
WP+ N
C=—
2r N

(62)

for analyzing second-order filtering and communication over
the Gaussian channel. In this coordinate system, concentration
ellipses are multiplicatively decomposed, and the information
rate is additively decomposed into a sum of canonical rates, each

&f which measures the rate at which a canonical measurement

coordinate carries information about a canonical message co-
ordinate. Furthermore, each canonical rate depends only on the
direction cosine between a canonical message coordinate and its
corresponding canonical measurement coordinate. In the canon-
ical coordinate system, the question of capacity is clarified, and
its computation is simplified. In a related paper [2], canonical
coordinates are used to solve the rate distortion problem for uni-
form rounding quantizers.

After all is said and done, the diagonal error covariance ma-
trix I — KK* determines all performance measures of interest
for second-order inference and Gaussian communication. These
measures are summarized in Table 1.
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