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Kinetic Limitations on the Use of Redundancy
in Robotic Manipulators

Anthony A. Maciejewski, Member, IEEE

Abstract—The kinematic specification of motion for redundant ma-
nipulators has relied primarily on a formulation that decomposes joint
velocity solutions into a pseudoinverse p and a h g
solution component. While such a formulation is c ptually app
ing, since it treats the redundant degrees of freedom as independent
from those required to maintain a desired end effector trajectory, it has
been shown to be physically inaccurate when applied to the kinetic
behavior of redundant manipulators. In this work, the Kinetic behavior
of the homogeneous solution component is analyzed in order to specify
realistic limitations on the use of redundancy. It is shown that the
equations that govern these limitations are related to the conditions for
guaranteeing stability of the local torque minimization formulation.

I. INTRODUCTION

HE vast majority of efforts to utilize redundancy in robotic

manipulators have been focused on the resolution of redun-
dancy at the kinematic level. The kinematics of manipulators is
frequently represented by

x=Jb (1)

where X is an m-dimensional vector specifying the end effector
velocity, 6 is an n-dimensional vector denoting the joint veloci-
ties, and J is the m by n Jacobian matrix. For redundant
manipulators n > m so that the general solution to (1) is
typically presented in the form

b=J%+(I-J*))¢ (2)

where * denotes the pseudoinverse, (I — J*J) is a projection
operator onto the null space of J, and ¢ is an arbitrary vector in
6 space. The second term in (2) is the homogeneous solution to
(1) since it results in no end effector velocity and will be denoted
here by 6. This homogeneous solution is frequently used to
optimize some secondary criterion under the constraint of the
specified end effector velocity by choosing ¢ to be the gradient
of some function of 6 [13]. Alternative formulations for instan-
taneously optimizing a secondary criterion by augmenting the
Jacobian matrix have also been presented [1], [5]. Some of the
secondary criteria that have been applied include joint range
availability [12], singularity avoidance [16], [18], various mea-
sures of dexterity [6], [7], [10], [19], [20], and obstacle avoid-
ance [14], [18]. The homogeneous solution can also be used to
optimize secondary criteria defined in Cartesian space, either to
impose a priority to the manipulation variables [17] or to avoid
obstacles [14], by using

b= [H(I-T"D)]" (%, - %) (3)
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where the subscript 2 refers to the secondary criterion. The
overall solution is then given by substituting (3) into (2) to
obtain

6 =T+ [L(I-J* )] (%, - KLJ*%)  (4)

which has been simplified by taking advantage of the fact that
the projection operator is Hermetian and idempotent [14].

In all of the above techniques, the specified end effector
trajectory is the implicit primary criterion. Unfortunately, the
specification of an arbitrary homogeneous joint velocity may
result in unrealistic demands on manipulator performance. These
difficulties were first illustrated in [11] where the dynamic
performance of a redundant manipulator showed significant end
effector tracking errors when a secondary criterion was imposed.
A more dramatic difficulty with using homogeneous solutions is
the instability illustrated in [8] when redundancy is resolved at
the acceleration level to instantaneously minimize joint torque.
In this case, the joint acceleration is related to the end effector
acceleration by differentiating (1) to obtain

%= J6 +J8 )
where once again the general solution is expressed in the form
6 =J%(%—J6)+ (I-J*1)é. (6)

The dynamic equations of a manipulator can be written in closed
form as

r=Hb+c+g (7

where 7 is the vector of joint torques, H is the inertia matrix, ¢
is a vector of torques due to Coriolis and centrifugal effects, and

g is the gravity vector. The elements of the vector ¢ can be
written in quadratic form, so that

c;=067Co (8)

where the C; are matrices of Coriolis and centrifugal coeffi-
cients. If 7 is used to denote the torque due to the minimum
norm acceleration, then 7 can be obtained by substituting the
first term of (6), i.e., the pseudoinverse solution, into (7), which
results in

F=HI"(x-J8) +c+g. 9)
It has been shown [8] that one can sacrifice the minimum norm

acceleration in order to locally minimize the norm of the torque
by using a solution of the form

(10)

which uses a homogeneous acceleration term in a manner analo-
gous to that of (4). The value of this minimum torque can be

6=J%(%-J6)y - [H(I-J*I)] 7
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obtained by substituting (10) into (7) and then using (9) to obtain
Tuin = 7 — H[H(I - J*J)] " 7. (11)

Unfortunately, because this is only a local minimization tech-
nique, it has been shown that the joint acceleration given by (10)
can induce large joint velocities that may require physically
unrealizable joint torques in order to maintain the desired end
effector trajectory.

In this work, in order to place realistic limitations on the use
of redundancy, the kinetic effects of a homogeneous solution will
be analyzed. It will be shown that an arbitrary homogeneous
solution cannot be used without potentially affecting the primary
constraint of a desired end effector trajectory. In addition,
conditions for identifying the instability of the torque minimiza-
tion technique will be presented. It will be shown that these
conditions are only a function of a manipulator’s configuration
and thus can be used to determine desirable regions of operation.

II. KiNeTic EFFECTS OF A HOMOGENEOUS SOLUTION

In order to explicitly consider the kinetic effects of a homoge-
neous velocity, only the case where ¥ = x = 0, that is, the
desired end effector trajectory requires the hand to remain
stationary at a given position and orientation, will be considered.
This case occurs in practice whenever a reconfiguration of the
manipulator is required to avoid a moving obstacle or as the
result of a residual homogeneous velocity after the desired end
effector trajectory is completed. Under these conditions, there
will in general be an acceleration at the end effector due to the
rate of change of J as given by (5). The resulting joint angle
acceleration required to maintain the desired configuration of the
end effector is given by (6), which if one assumes that there is to
be no acceleration along the homogeneous solution results in

(12)
If the discussion is restricted to manipulators with a single
degree of redundancy, then the acceleration given by (12) will
result in a constant magnitude of homogeneous velocity which
will trace a curve in joint space that corresponds to all the
possible manipulator configurations that can be reached without
moving the end effector. The joint acceleration given by (12) has
a simple physical interpretation in that it is inversely related to
the radius of curvature of this homogeneous solution space

curve. In particular, if the radius of curvature is denoted by p,
then (12) can be written as

§ = —JrJjb,.

16,117
p

6=~

? (13)

where 7 is a unit vector directed from the homogeneous solution
curve toward the center of curvature. The two important points
to note about this acceleration are that, first, its magnitude is
proportional to the square of the magnitude of the homogeneous
joint velocity, and second, that its direction is independent of not
only the magnitude of § # but also of the direction of 6, around
the homogeneous solution curve. Therefore, the direction of the
joint acceleration required to maintain the desired end effector
trajectory is a function of only the manipulator configuration.
The torque required to maintain a constant homogeneous joint
velocity is given by (9), which when one includes the constraint
that the end effector remain stationary, i.e., ¥ = 0, results in

(14)

F=-HJ J6+c+g.

If one neglects the velocity-independent gravity term and rewrites
the joint angle acceleration term using the equality of (12) and
(13), the following equation results:

16,17

F=-H F+c. (15)
0

The constant representing the magnitude of the homogeneous
velocity squared can now be factored from both of the remaining
terms, which results in

~

~ ) 2 —HF ’
T=0ul*|— +c
p

(16)

where the elements of ¢’ are given by

A
c; =v,Cu,

(17)
where v, is a unit vector along éH. In the case of a single
degree of redundancy, v, corresponds to the nth output singular
vector specifying the null space of J. Clearly, the torque given
by (16) must be physically achievable in order to maintain the
desired end effector trajectory. Now consider the case where an
acceleration along the homogeneous solution is allowed. Such an
acceleration, denoted by 6, and given by the second term in
(6), will affect the torque requirements in two ways: directly,
through the inertial torque required to achieve the acceleration,
and indirectly, through the increase or decrease of the homoge-
neous velocity. When using the instantaneous torque minimiza-
tion formulation, the direct effect of 8, is used to decrease the
torque requirements by applying the acceleration given by (10).
In this case the homogeneous acceleration term, which is repre-
sented by the second term in (10), can be obtained by substitut-
ing (16) for 7, which results in

. . +
0y =161 [H(1-J* )] ¢

HF
t= [— —c’].
)

(18)

where

(19)

While this homogeneous acceleration term will minimize the
instantaneous torque requirement, it tells us nothing about the
indirect effect on future torque requirements. In order to obtain
this information one must look at the direction of the homoge-
neous acceleration relative to the homogeneous velocity. Mathe-
matically, if

vl >0 (20)

then the homogeneous acceleration term will increase the magni-
tude of the homogeneous velocity and subsequently increase the
torque requirements. This, in effect, amounts to a positive
feedback system and results in the instability of local torque
minimization noted in [8]. Note that for systems with a single
degree of redundancy the angle between v, and 8, in (20) will
be either 0° or 180°.

In order to guarantee global stability when using the local
torque minimization formulation, the homogeneous acceleration
must not be applied when (20) is true. It is possible to identify
regions of stability and instability for this formulation by evalu-
ating the conditions for which (20) holds. Substituting (18) into
the left-hand side of (20) results in

vl = oI 64 2[H(I - J*0)] 1.

(21)
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It is easy to show (see the Appendix) that

T
+ vu, H

[H(I- 7)) T (22)
so that (21) becomes
.. . vTH
w0y = 64)? 5t (23)
nH H vZszn

Since only the sign of v,{é',, is of concern, (23) can be simplified
to

sign (v,,TBH) = sign (v,THt) (24)
since H is positive definite. There are two important observa-
tions concerning (24) that should be pointed out. First, the
magnitude of the homogeneous joint velocity does not in any
way affect the sign of v18,,. Second, the vector Hr is indepen-
dent of the direction of the homogeneous velocity, being solely a
function of the manipulator configuration. As a result of the
second point, it is possible to determine regions of operation for
which the Jocal torque minimization method is inherently stable
or unstable. The following section will present a specific exam-
ple.

In addition to providing conditions for the stability of the
instantangous torque minimization formulation, the above dis-
cussion also pertains to the use of homogeneous solutions for
realizing other secondary criteria. The torque requirements of a
homogeneous velocity given by (16) along with the condition
expressed by (20) identify when and to what degree a desired
homogeneous joint velocity solution can be induced without
resulting in unrealistic torque requirements. In particular, if the
torque required to maintain a desired homogeneous velocity is
approaching its physical limitation, (20) can be used to deter-
mine whether the magnitude of the homogeneous velocity should
be reduced immediately or whether the manipulator should wait
for a configuration where both the torque and velocity can be
reduced simultaneously.

III. A Two-DIMENSIONAL EXAMPLE

The issues presented in the previous section will be illustrated
for the planar three-degree-of-freedom manipulator depicted in
Fig. 1. The links are all identical and are modeled as thin
uniform rods with lengths of 1 m and masses of 10 kg. The
homogeneous splution curves for this manipulator, which have
been previously presented [3], [9], are shown in Fig. 2. These
curves are plotted for end effector positions ranging from x =
1.01 m for the outermost curve to x = 3.00 m, which corre-
sponds to the point at the origin. These curves are related to the
homogeneous joint velocity 6, in that 6,; is tangent to the curve
corresponding to the current end effector position. These curves
are generated by selecting the desired end effector position,
specifying a homogeneous joint velocity of 1 rad/s, and then
applying the acceleration given by (12). An alternative technique
for generating these curves is presented in [10]. An important
observation concerning these curves is the wide variation in the
radius of curvature. This is particularly noticeable for the homo-
geneous solution curve that goes through the three internal
singular configurations labeled S, to S;. Near these singular
configurations the radius of curvature approaches zero, resulting
in accelerations (and torques) that approach infinity in order to
maintain a constant end effector position. The other sections of
this curve, however, are nearly linear and thus require virtually

Fig. 1. Geometry of the planar three-link manipulator used in the examples

All three link lengths are equal to 1 m.

.83

3

Fig. 2. A parallel projection of the homogeneous solution curves for the
manipulator in Fig. 1 plotted in 3D 6 space. The curves are plotted for end
effector positions ranging from x = 1.01 m for the outermost curve to
x = 3.00 m, the full reach of the manipulator for which the curve js simply
the point at the origin, at a spacing of 0.25-m intervals. In all cases y = 0.
The three different internal singular configurations that occur at a distance of
one link length from the base are shown at points §,, S,, and S;. The axes
in this figure are all of length 90°.

no acceleration in order to maintain the desired end effector
position. Another view of these homogeneous solution curves is
presented in Fig. 3 where the viewing direction is along the
vector 87 = [3 2 1]. This view is chosen because it tends to
more accurately reflect the shape of these curves, particularly at
reaches farther from the base, since these curves tend to lie in a
plane with a surface normal of [3 2 1]. This orientation is due
to using equal link lengths that results in a 3:2: 1 ratio in the
columns of J when the manipulator is fully extended. A further
discussion on some of the properties of these curves can be
found in [4], [15].

In Fig. 4 are shown plots of the acceleration, inertial torque,
and total torque required to maintain a homogeneous velocity of
1 rad/s when the end effector is commanded to be at a position
2.00 m from the base. Since the norm of the joint velocity is
unity, the norm of the joint acceleration is also equal to the
inverse of the radius of curvature of the homogeneous solution
curve. The maximum and minimum accelerations denoted A to
D can be shown to correspond with the maximum and minimum
radiuses of curvature for the curve in Fig. 3. From these plots it
is clear that while the inertial torques due to the radius of
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Sz

Fig. 3. Another view of the homogeneous solution curves from Fig. 2. The
viewing direction is along the vector [3 2 1], which is the normal to the
plane in which most of these curves approximately lie. The four points A,
B, C, and D correspond to the points of minimum and maximum radius of
curvature for an end effector position of x = 2.00 m.

Torque
i 15.0

—Inertial
... Total

Acceleration
1.0
rad/s?
0.0
A B C D A

Fig. 4. Graphs of the acceleration, inertial torque, and total torque re-
quired to maintain a homogeneous velocity of 1 rad/s around the homoge-
neous solution curve for x = 2.00 m.

curvature are the dominant characteristic in determining the
overall torque requirements, the Coriolis and centripetal torques
do play a significant role, typically mediating the effect of the
inertial torques, and therefore cannot be ignored. It is important
to note once again that the total torque required to maintain the
homogeneous velocity, 7 given by (16), is independent of the
direction of that velocity. In other words, in terms of Fig. 3, 7 is
independent of whether the velocity is clockwise or counter-
clockwise. .

The direction of the homogeneous acceleration 8, required to
reduce the magnitude of the joint torques can be obtained by
evaluating (18). The plot in Fig. 5 graphically depicts the sign of
0y by illustrating whether it will require a clockwise or counter-
clockwise acceleration around the homogeneous solution curve.
This plot determines whether 6, can be used to reduce the
magnitude of the homogeneous velocity while simultaneously
reducing the joint torque. Note that this is identical to the
conditions guaranteeing stability for the local torque minimiza-
tion scheme. If the manipulator is in a configuration where the

Fig. 5. A plot of the homogeneous solution curves illustrating the direction
of the homogeneous acceleration required to reduce the joint torque due to a
homogeneous velocity. The manipulator configuration denoted by point E
illustrates an inherently stable point where any homogeneous velocity can be
reduced while simultaneously reducing the joint torque. Point F illustrates
an inherently unstable point.

homogeneous velocity is in the same direction as the acceleration
given by Fig. 5, then the local torque minimization scheme
should not be applied.

The data plotted in Fig. 5 can also be used to identify possibly
desirable regions of operation. In particular, those configurations
that are the boundary between clockwise and counterclockwise
0y can be classified as inherently stable or unstable depending
on the direction of the transition. As an example, consider the
manipulator configuration labeled E in Fig. S. Regardless of the
direction of the homogeneous joint velocity, the homogeneous
acceleration can always reduce this velocity while simultane-
ously minimizing the joint torque thus resulting in an inherently
stable configuration. The manipulator configuration labeled F,
however, is inherently unstable because, regardless of the direc-
tion of the homogeneous velocity, reducing the joint torque will
always result in a homogeneous acceleration that increases the
homogeneous velocity. In some respects it is useful to think of
point E being in a valley and point F being on the top of a
ridge although the analogy is not perfect.

IV. SiMULATION RESULTS

To illustrate the characteristics of stable and unstable config-
urations, simulations were performed in which the manipulator
was put into the desired configuration, given an initial homoge-
neous joint velocity of 1 rad/s, and then commanded to maintain
a stationary end effector position. Each simulation was per-
formed twice, once for a homogeneous velocity in the clockwise
direction and then again in the counterclockwise direction. In
both cases results are shown for the pseudoinverse formulation,
given by (12), as a basis of comparison to the torque minimiza-
tion formulation, which includes (18).

The results for the stable configuration, denoted by E, are
presented in Fig. 6. As anticipated for this configuration, both
the joint velocity norm and joint torque norm can be reduced
simultaneously, regardless of the direction of the homogeneous
velocity. This characteristic of stable configurations makes them
ideal for decelerating a homogeneous velocity when approaching
the desired homogencous space solution for a specific secondary
criterion. While the local minimum torque solution cannot in
general be used to bring the homogeneous solution to zero
velocity, it can be reduced to a point where the nonminimum
torque solution is still well within physically achievable limits.
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Fig. 6. Simulation results showing the joint velocity norm and torque norm
for the manipulator starting in an inherently stable configuration (E).
Simulations are performed for an initial homogeneous velocity norm of 1
rad/s, once in the clockwise direction and once in the counterclockwise
direction. The results are presented for both the torque minimization formu-
lation and the pseudoinverse formulation (no homogeneous acceleration).

For the homogeneous velocity in the counterclockwise direction
there is a small hump in the velocity norm that denotes a change
in sign of (20). Clearly this hump could be removed by not
applying the homogeneous acceleration under these conditions as
discussed above.

The results for the unstable configuration, denoted as F, are
presented in Fig. 7. From these results one can see that the local
torque minimization scheme does initially result in a decrease of
the torque required to maintain the desired end effector position.
However, this decrease is short lived due to the buildup of the
homogeneous velocity that eventually results in physically un-
achievable torque requirements. It is important to note that these
characteristics are not dependent on the end effector trajectory
that has brought the manipulator into the unstable configuration.
It should also be pointed out that these unstable configurations
are not inherently undesirable. In particular, if the torque mini-
mization formulation is only applied for limited periods of time,
one can ‘‘shave’’ the peaks from the torque curve while waiting
for a stable configuration in which to remove the induced
homogeneous velocity.

There are two final points that should be addressed concerning
the characteristics of homogeneous space solutions. The first is
that stable configurations are in no way correlated with globally
optimal minimum torque solutions. The second point relates to
the fact that, unless the secondary criterion induces a large
homogeneous velocity, the kinetic requirements of the primary
constraint of a specified end effector trajectory will tend to
dominate the dynamic behavior of the manipulator. This will
usually be true until the manipulator starts to approach the end
of its gross motion trajectory where the desired end effector
velocity is reduced. It is at this point that consideration of the
kientic effects of any residual homogeneous velocity is critical
since they will tend to dominate the behavior of the manipulator.

CCW F e a CW

Pseudoinverse

Torque Minimization

Fig. 7. Simulation results showing the joint velocity norm and torque norm
for the manipulator starting in an inherently unstable configuration (F).
Simulations are performed for an initial homogeneous velocity norm of 1
rad/s, once in the clockwise direction and once in the counterclockwise
direction. The results are presented for both the torque minimization formu-
lation and the pseudoinverse formulation (no homogeneous acceleration).

This is particularly true of those tasks that require fine manipula-
tion after gross motion as is typical of most assembly operations.

V. CONCLUSIONS

The kinematic specification of motion for redundant manipula-
tors has relied primarily on a formulation that treats the redun-
dant degrees of freedom as independent from those required to
maintain a desired end effector trajectory. While such a formula-
tion is conceptually appealing, it has been shown to be physi-
cally inaccurate when applied to the kinetic behavior of redun-
dant manipulators. In this work, the kinetic effects of homoge-
neous solutions have been analyzed with emphasis on placing
realistic limitations on how redundancy can be utilized without
adversely affecting the primary goal of a desired end effector
trajectory. It has been shown that it is possible to identify
manipulator configurations that possess the desirable characteris-
tic of being able to either remove or impart a homogeneous
velocity while simultaneously reducing the torque requirements
on the manipulator. The conditions that govern these configura-
tions have also been shown to be directly related to the condi-
tions for guaranteeing global stability for the local torque mini-
mization formulation.

APPENDIX
T
v, H

H I - J+J + TO ———
SIMPLIFICATION OF [ H( )] WIH?,

If one restricts the degree of redundancy to a single dimen-
sion, then for full row rank J the projection operator can be

described by the vector outer product
(I-J%J) =vpl (A1)

where v, is a unit véctor in the null space of J. Under these
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conditions the following equality holds:
[H(I-J*0)]" = [Hop!]". (A2)

It is well known [2] that for any matrix A that has the full-rank
factorization

A = BC (A3)
its pseudoinverse is given by
At= Cx(B*AC*)” ' B* (A4)

where * denotes the complex conjugate transpose. By substitut-
ing

B = Hy, (A5)
and

C=T (A6)

into (A4), one obtains

+ T 1!
[Hu,,v,ﬂ = (UZ) [(an)THv,,vnT(v,,T) ] (HU,,)T (A7)
which upon performing the transposes becomes

+ _
[Hvwl]" = v [vIH HOW 0] WIHT.  (AS)
By using the fact that v, is a unit vector and H is symmetric,
this simplifies to

vuTH

+
[Hv,,v,{] = vnTTzun

(A9)

where the denominator is guaranteed to be nonzero since H is
strictly positive definite. Substituting this result into (A2) results
in the desired equality.
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