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ABSTRACT

AUTOMATED METHODS FOR QUANTIFYING THE TORTUOSITY OF

MICROVASCULAR NETWORKS

Networks of microscopic blood vessels can be studied for changes in morphology

that correlate with biological abnormalities. Tortuosity, or vessel twistiness, is one

of these morphological properties, and it can be surprisingly difficult to quantify.

The purpose of this thesis is to present the development, testing, and analysis of

new automated methods to measure and quantify the tortuosity of microvascular

networks. We will explain necessary automated image processing techniques and

background information before presenting our new metrics for measuring network

tortuosity. Experiments using the methods will be presented, including a full analysis

of the results. We will use the results from these experiments to justify our final

conclusions and recommendations regarding the performance of the methods.
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Chapter 1

INTRODUCTION

The quantification of various morphological properties of blood vessels and vessel

networks has in recent decades become of vast importance in the medical and bio-

logical sciences. While tortuosity is of primary interest in this thesis, characteristics

such as vascular density, length, and branching have also been studied extensively, as

researchers and physicians become increasingly aware that these features can provide

insight into various biological and pathological processes. Abnormalities in these fea-

tures can be indicators of disease, while variation between experimental groups can

signify underlying biological differences. Vessel tortuosity, which can be thought of as

a measure of “twistiness,” in particular has earned much attention in the biological

community over the past three decades.

It has long been known, for example, that increased tortuosity and density

of retinal vasculature is an indicator for diseases such as hypertension, diabetes,

arteriosclerosis, retinopathy of prematurity, plus disease, and other retinopathies

[8, 9, 13, 15, 17, 18, 20, 23, 28, 30]. Increased tortuosity of the larger arteries such as

the femoral artery or aorta has been shown to correlate with athlerosclerotic changes

and hypertension [11, 16, 24], while tortuosity changes in capillaries have been used

to diagnose rheumatic diseases [21]. The tortuosity of vascular networks within can-

cers and other tumors can provide great insight into tumor growth and treatment

options [4, 10], and biological changes associated with aging are often manifested in

vascular tortuosity [6, 29]. Furthermore, recent research has concentrated on features

of microvascular networks in the brain as indicators of neurological diseases [12, 22].
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It is these microvascular networks that are indeed the focus of this thesis, and more

will be explained regarding their features and significance.

Much of the literature regarding vascular tortuosity is concerned with not only

how tortuosity correlates with the aforementioned biological changes, but how best

to quantify vascular tortuosity, as there is no universally agreed-upon method. Tor-

tuosity, it turns out, can be surprisingly difficult to measure and quantify. This is

often the case with morphological properties of vasculature in general; while various

properties are usually quite tangible and often easily seen with the eye, it can be

difficult for a human to precisely and objectively quantify such features. Moreover,

while the human eye can often detect that two images differ in some way, it is often

less clear how to define and measure those differences. These difficulties are increased

considerably when one wishes to quantify features of a network of microvessels, as

opposed to those of a single large vessel such as the aorta.

As an illustration, consider the images of microvascular networks presented in

Figure 1.1. Even untrained observers will usually agree that the two images exhibit

significant differences. What exact morphological properties of the vessels contribute

to this disparity? Is it mainly due to a difference in vessel density, thickness, or

perhaps the number of branch points? Is there any difference in the length of the

vessel segments? Most importantly for us, is there a difference in tortuosity? If so,

how would we measure that difference?

Figure 1.1: Two example images of microvascular networks.
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It seems there are several features that contribute simultaneously to the overall

effect, and it becomes unclear how best to accurately measure the difference between

the two images. The fact is, the human eye takes in many features, including vessel

density, thickness, branching, and tortuosity, at the same time. This information

is then processed by the brain in lightning speed to reach an almost instantaneous

conclusion about the two images. This process is remarkable in many ways, but it is

highly subjective and imprecise. The eye is easily distracted by features of the images

that have nothing to do with the morphology of the vessels, such as differences in

lighting, image contrast, sharpness, background features, and noise. Since the image

on the left has darker-colored vessels, this may inadvertently affect our interpretation

of their shape. Our eyes are not very good at separating out one individual feature,

such as tortuosity, for objective evaluation. Furthermore, while it may be possible

to make some qualitative statements about the vascular networks based on visual

perception alone, it would be nearly impossible to assign a concrete quantitative

value to our conclusions.

This example was meant to illustrate some of the difficulties associated with vi-

sually comparing differences between images of vascular networks. How much more

complicated do things become when the goal is to quantify a great many images, to

contrast differences between two groups in an experiment, for example? To appreciate

this challenge, consider the set of twelve images shown in Figure 1.2. Is is possible,

using visual perception alone, to make concrete statements about the tortuosity dif-

ferences among the images? Can the images be ranked or classified in some way,

based on their tortuosity? Now imagine performing this task for dozens or hundreds

of images. Assuming a person is able to do this to his or her own satisfaction, this

classification is highly subjective; it is likely that a different individual may draw

markedly different conclusions. Furthermore, it is completely unclear what this clas-

sification quantifies. Since tortuosity differences can reveal important information
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about biological properties, it is therefore necessary to obtain well-defined metrics to

quantify and categorize this property of microvascular networks.

Figure 1.2: Twelve example images of microvascular networks.

Once precise metrics are defined, the next obvious problem is how to best obtain

the necessary measurements. If the goal is to measure features of a large number of

images, it becomes highly desirable to automate as much of this process as possible

using computerized techniques. This not only speeds up the process tremendously,

but ensures that human error is largely eliminated from the process of obtaining

measurements.

Finally, once metrics have been established, algorithms have been implemented,

and data has been collected, processed, and organized, the question remains: does

the quantification serve the intended purpose? In other words, does it measure what

we want it to measure, and is it robust enough to be useful in a large number of

situations? We will provide a detailed assessment of whether the research explained

in this thesis was successful, but at this point we feel confident that these goals were

largely achieved.
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Chapter 2

OVERVIEW OF THE PROBLEM

2.1 Goals and Desired Outcomes

The primary focus of this research project was to quantify the tortuosity of

microvascular networks in and around the brain region known as the paraventricular

nucleus (PVN) of the hypothalamus in mice. As summarized by Frahm, Schow, and

Tobet in [12], the PVN is involved in many critical biological functions. These include

hunger, stress responses, energy balance, cardiovascular and neuroendocrine function,

and nervous system regulation. Neurons within the PVN contain many important

chemical messenger molecules known as neuropeptides, which are known to influence

various crucial life-sustaining functions as well as specific behaviors. Additionally,

receptors for various critical hormones and neurotransmitters are concentrated within

the PVN [12].

Currently, analysis of the PVN has been limited to the clustering of neurons that

characterizes this region, rather than the vasculature within the PVN [12]. However,

new research has brought to light important and revealing links between the nervous

and vascular systems, referred to as the neurovascular unit. Quaegebeur, et al., for

example, authored a 2011 paper explaining how “neurovascular crosstalk,” or commu-

nication between the neurons and vasculature, plays an integral role in the function of

both systems. The study suggests that, as blood vessels provide oxygen and nutrients

to sustain proper neuronal function, reduction in neuronal access to microvessels may

result in abnormalities in the neurons and hence neurological disorders [22].
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Frahm, Schow, and Tobet are therefore engaged in an ongoing project to char-

acterize the dense vasculature in and around the PVN, and to discover how changes

in vascular morphology correlate with disease. It is hoped that these advances may

reveal important insights into neurological diseases such as major depressive disorder,

and how prenatal stress can cause hypertension and other problems in offspring. In

order to facilitate these goals, large numbers of images of the vasculature in the PVN

must be examined for morphological differences [12].

Our main goal was therefore to provide tortuosity metrics that could indicate

biological differences between groups of animals used in these studies. For example,

it is desirable to establish measurable differences between a group of experimentally

treated animals and a control group. Often the samples collected from these groups

will be visibly different from each other, but quantifiable validation is needed to

confirm these observations. Furthermore, it is necessary for the process of collecting

measurements to be automated as much as possible due to the large number of samples

collected.

In a study conducted by Frahm, Schow, and Tobet and described in the paper

“The Vasculature Within the Paraventricular Nucleus of the Hypothalamus in Mice

Varies as a Function of Development, Subnuclear Location and GABA Signaling,”

(see [12]), total vessel length and branch point counts were used to quantify differ-

ences in the PVN and surrounding brain tissue between two groups of mice. One

group (designated the “KO” group) was genetically modified so as to “knock out,”

or inhibit, the development of gamma aminobutyric acid (GABA) receptors in the

PVN, specifically GABAB. GABA is the chief inhibitory neurotransmitter in adults,

although in early life, GABA plays an important role in the formation of various

structures in the brain, including neurons. A normal, healthy animal has a dense

concentration of GABAB receptors within the PVN, and mice lacking these receptors

are known to exhibit neuronal changes. Since disruption in GABA signaling during
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development can have long-term consequences for both physical and mental health,

it is important to gain insight into the mechanisms behind these changes [12].

In the study, the experimental KO group was compared against a control “wild

type” (WT) group, and sample images of microvasculature were collected through-

out the PVN and surrounding cortex at various stages of development. To quan-

tify differences between the experimental and control groups, branch points were

counted manually in the sample images, and total vessel length was obtained using

the commercially-available Angiogenesis Tube Formation module in the Metamorph

software suite. Total vessel length is a property that can be used as a measure of

vascular density. The conclusion was that the KO group had decreased vessel length

in the PVN and cortex as compared to the WT group, as well as decreased vessel

branching in the mid PVN region. This is important since these changes may indicate

links between the PVN neurons and vasculature [12].

Although these quantification methods did provide statistically significant results

that indicate a clear change in vessel morphology as a result of inhibited GABAB

signaling, vessel tortuosity was not measured for this study. At the time, there were

no methods immediately available to the researchers to measure or quantify this

property.

Frahm, Schow, and Tobet are currently engaged in another study of vascular

changes in the PVN, which examines the action of glucocorticoids on prenatal devel-

opment and the resulting long-term implications for the offspring. It is known, for

example, that prenatal stress is linked to hypertension in the offspring later in life,

although the mechanisms behind this process are not fully understood (see [19]). It

has also been found that links exist between neuronal function in the PVN and the

regulation of blood pressure (see [26]). Therefore, Frahm, Schow, and Tobet wish to

study how the vasculature of the PVN relates to this phenomenon as well as other

diseases that correlate with prenatal stress.
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In one experiment conducted by the research team, pregnant mice were injected

with dexamethasone, a synthetic glucocorticoid steroid, to test whether this treatment

would lead to changes in vascular density and tortuosity within the PVN of the

offspring. A control group of pregnant mice were injected with an inert vehicle.

Exposure to dexamethasone creates a situation in the body that simulates cases of

prenatal stress in which glucocorticoid levels are elevated. In both groups, the brains

of the offspring were prepared, viewed, and imaged to look for vascular changes within

the PVN.

Experiments such as this create changes in the vascular morphology of the PVN.

While some of these changes can be measured using total vessel length and branch

point counts, the researchers involved wanted to measure tortuosity differences as

well. It was their desire, therefore, to develop one or more quantitative metrics to

measure vascular tortuosity, in which an index could describe the composite tortuosity

of all the vessels within an image. It was further desired to automate the measure-

ment techniques to minimize human labor, and to then apply the metrics to the

images obtained from this and other experiments. It was hoped that these methods

could measure average tortuosity differences between groups of animals used in these

studies, and therefore provide biological insights that would otherwise be hidden.

2.2 Description of the Images

The images used throughout this project were obtained from Frahm, Schow, and

Tobet, and were 2-dimensional light-illuminated photomicrographs of regions in the

PVN and the surrounding cortex. Please refer to [12] for more information on the

exact methods and preparations used to prepare samples and create the images. The

images from the GABA study, which were used for testing and validation purposes

throughout this project, were taken using a 40× objective, and represented brain
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regions of size 300µm × 224µm. These images were originally stored as 1600 × 1200

pixel RGB images in TIFF format. The images from the dexamethasone study were

taken using a 10× objective, and were originally 1600×1200 pixels, but were cropped

to a region of interest resulting in an image of size 616×960 pixels. Images were then

converted to grayscale and light corrected using Image J prior to further processing,

thus reducing problems caused by uneven illumination throughout the images.

Some key points should be noted concerning the limitations of the images used.

First, we note that microvascular networks in the brain are fully 3-dimensional struc-

tures, while the prepared samples are thin slices of these structures. Furthermore,

since each brain slice is thicker than one vessel width, each image represents a 2-

dimensional projection of the 3-dimensional structures within each slice. There are

also inherent limitations with the depth-of-focus of the microscope, so that some

vessels may appear out of focus, or may simply not be visible. Given the methods

necessary to obtain lasting, durable samples of the brain regions, the extremely small

size of the microvessels, and the fact that the vasculature differs in size throughout

the anatomy of the PVN, it was deemed impractical and not cost-effective to prepare

and analyze 3-dimensional representations of the PVN.

Therefore, vessels that appear to end in the images may actually continue outside

the plane of focus or outside the slice. Other vessels may run perpendicular to the

slice, so that we see only their cross-sectional area, and they appear as roughly circular

shapes or tiny disconnected segments. Additionally, it can sometimes be difficult for

even human eyes to distinguish true branch points from vessel “cross-overs,” defined

as points where two vessels overlap in the image and appear to intersect each other.

These cross-over points are the result of the 2-dimensional projection effect discussed

earlier. Examples of these features can be readily seen upon inspection of the images

in Figure 1.2. These limitations do introduce unavoidable errors into the analysis,
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although for cost-effective analysis this error is deemed acceptable, and we can indeed

still determine a great deal about the properties of the vascular networks.

2.3 Comparison to Other Studies

To the best of our knowledge, there is little or no information in the literature on

how best to quantify the tortuosity of similar microvascular networks in 2-dimensional

images. Several well-established methods exist for quantifying the 2- or 3-dimensional

tortuosity and other features of major arteries (see [11, 16, 23, 24], for example).

However, characterizing these properties for a single large vessel is quite a different

problem than ours, for multiple obvious reasons.

Figure 2.1: Vasculature of the human retina (left) vs. microvessels within the PVN
of a mouse (right). Eye fundus image from: J.M. Graff and E.M. Stone; “Unilateral
Retinitis Pigmentosa: Visual field changes in a 31 year old woman;” EyeRounds.org

As mentioned in Chapter 1, there is a great wealth of information concerning the

quantification of properties (especially tortuosity) of retinal vasculature. However,

retinal vessel networks are fundamentally dissimilar to the microvasculature of the

PVN and other brain regions, as can be seen in Figure 2.1. The retinal vessels are

less dense and have more clearly defined beginning and ending points. They exist

mainly in the fairly 2-dimensional “shell” of the eye fundus, so that the image better

captures the true structure of the network. Indeed, it is easy to capture an entire
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vessel as it travels outward from the optic nerve, as opposed to the disjointed vessel

pieces that tend to occur in the PVN images. Additionally, the retinal vessels have a

clean, tree-like structure, extending radially from the optic disc, and branching occurs

in a somewhat predictable manner. There are far fewer cross-overs, at least of the

larger vessels, and vessels have a more consistent and predictable shape. The notion

of tortuosity, even, seems much clearer in the retinal vessels, which twist and turn in a

gentle, sinusoidal pattern. Compare all these features to the messier, “spaghetti-like”

quality of the PVN vasculature, and it is not hard to imagine the difficulties that

might occur.

Additionally, many of the techniques outlined in the literature are not completely

automated. Many papers describe manual extraction of the vessel midline by tracing,

as in [3, 8, 13, 18], or involve manually determining end points of vessel segments in the

image, as in [1, 3, 13, 8, 18]. Even in those manuscripts in which completely automated

vessel extraction is described, the focus tends to be on determining properties of

individual vessels, rather than an entire vessel network.

Another area of intense interest in recent literature has been properties of vascular

networks based on 3-dimensional reconstructions obtained through MRA or other

scans. This is the case in the work of Elizabeth Bullit et al. [4, 5, 6], and while

these methods no doubt provide greatly improved biological insight, for the reasons

outlined earlier, 2-dimensional imaging was deemed the best choice for this project.
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Chapter 3

VESSEL EXTRACTION AND SEGMENTATION

3.1 Digital Image Representation

In order to take desired measurements from images, a series of digital image

processing, vessel-extraction, and segmentation algorithms must be applied. This

chapter outlines these steps in detail, and for the benefit of those unfamiliar with

computer representations of digital images, we present here an overview of this topic.

A digital image is created when a sensor records a discrete representation of

intensity information in response to a continuous signal. Since the images used in this

study were taken using a light-illuminated microscope and a digital camera, the signal

is visible light, and the sensor is the camera. The sensor discretizes the continuous

signal into a rectangular mesh of units known as pixels that record intensity, or color,

information.

This rectangular mesh is typically stored in computer memory as a matrix of

numerical values, where each value corresponds to an intensity level. In the case of a

grayscale image, a 2-dimensional matrix of size m×n contains integer values ranging

from 0 (black) to 255 (white), with values between these two extremes representing

various shades of gray. An even simpler case is a binary image, in which pixels are

designated as either “on,” given by 1, or “off,” given by 0. We typically take the

“turned-on” pixels to be the foreground, or area of interest, in the image, while the

background of zeros is ignored.

Color images can be represented in various formats, but RGB is common, and

RGB is the format in which the images used in this study were originally stored. An
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RGB image has 3 color channels : red, green, and blue, which additively form other

colors in the visible spectrum. Each channel is stored in its own m × n matrix, so

that the data structure containing the entire image is a 3-dimensional matrix of size

m×n×3. Integer values in each plane of the matrix represent intensity levels for the

corresponding color channel. Since we convert images to grayscale prior to further

processing, we will not further discuss RGB images. Conversion to grayscale can be

accomplished using freely-available scripts or commercial image-processing software.

Throughout this paper we will use the following convention: given a 2-dimensional

matrix A of size m×n representing a digital image, we designate by A(1, 1) the entry

at the upper-left corner of the matrix, which corresponds to the pixel at the upper-left

corner of the image. Then the pixel in the ith row, jth column of the image, measured

from the upper-left corner, corresponds to A(i, j).

Images used in this project had typically been previously light-corrected using

Image J at the time they were recieved from the research team. This step may

mitigate processing issues caused by uneven illumination, but experimentation with

“raw” images that had not been so altered also yielded good results. All subsequent

processing was done using algorithms written in Matlab. It should be noted that we

did not use the Matlab Image Processing Toolbox, making it necessary to generate

code for several basic image processing algorithms. We will therefore briefly outline

some of these algorithms within this chapter, as the ones we used may give slightly

different results than algorithms in the Image Processing Toolbox.

3.2 Thresholding

Thresholding is an operation performed on the individual pixels of an image to

isolate the foreground “pixels of interest” from the background. In our case, we are

interested in isolating the darker-colored vessels in an image while discarding the
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features of the surrounding lighter-colored brain tissue. In a grayscale representation

of a vessel network, the pixel values of the vessels will therefore be closer to 0 than the

pixel values corresponding to the background. Thresholding works on the assumption

that the foreground pixels in a grayscale image have significantly different pixel values

than the surrounding background, and can therefore be isolated by use of a threshold

value. For the simplest case, the threshold value T is chosen by the user, and we

perform the steps shown in Algorithm 1.

Algorithm 1 Simplest Thresholding Algorithm

1: for all i, j do
2: if A(i, j) > T then
3: A(i, j)← 0
4: else
5: A(i, j)← 1
6: end if
7: end for

This can, of course, be done quite easily in Matlab. However, choosing the

threshold value T is not always a trivial matter, and often requires fine-tuning with

a human eye. Additionally, when batch-processing dozens or hundreds of images,

it is highly unlikely that the same threshold value will work for all images in the

batch. Moreover, many images exhibit significant contrast differences among regions

within the image, so that a single image may require multiple threshold values across

different regions. One partial solution is to have a human manually threshold all

images in the batch, using commercially-available image processing software to select

regions and appropriate threshold values. This is, of course, very labor-intensive, and

we wish to avoid this as much as possible.

Another partial solution is the use of iterative thresholding algorithms with sub-

divided processing, which proved useful for many of the images used in this project.

In this algorithm, the image matrix is first subdivided into k × l sub-matrices, and

each sub-matrix Bk,l is processed individually to find an optimum threshold value.
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The values k and l should be chosen to match the nature of the images; for example,

if it is known that most images in a batch exhibit a purely vertical contrast gradient,

we might choose k = 3, l = 1. For more general-purpose applications, we could choose

k = l = 3. If k or l is too large, the thresholded image will contain artifacts on the

edges of the sub-matrices and within sub-matrices where there are few foreground

pixels.

For each sub-matrix Bk,l we next apply an iterative process to determine an opti-

mum threshold value based on the image histogram. This is a plot of the pixel values

in an image vs. their frequency in the image, which can provide insight into the dis-

tribution of foreground and background pixels. Optimally for thresholding purposes,

the histogram is bimodal, so that there is a clear difference between foreground and

background. In this case, the theoretically best threshold value occurs at the lowest

point between the two spikes in the histogram. Otherwise, when the division between

foreground and background is less clear, the iterative method will minimize the error

of incorrectly categorizing pixels. While there are more sophisticated iterative meth-

ods that will accomplish these goals, the method used for this project is a simpler

version given in Algorithm 2.

Algorithm 2 Iterative Thresholding Algorithm

1: {p1, ...pN} ← N pixels sampled at corners of matrix Bk,l

2: T ← mean{p1, ...pN}
3: while true do
4: m1 ← mean{Bk,l(i, j) : Bk,l(i, j) > T}
5: m2 ← mean{Bk,l(i, j) : Bk,l(i, j) ≤ T}
6: Tnew ← 1

2
(m1 +m2)

7: if T 6= Tnew then
8: T ← Tnew
9: else

10: break
11: end if
12: end while
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A threshold value T is thus determined for each sub-matrix Bk,l, thresholding is

performed on each Bk,l to obtain a binary sub-matrix, and these binary sub-matrices

are reassembled to create a binary representation of the original image.

This method proved very useful for many of the images used, such as the sample

shown in Figure 3.1. However, thresholding of biological images is notoriously dif-

ficult, and some images with poor contrast or uneven lighting still required manual

thresholding. Automatic thresholding was always tried first, and a human inspected

the output for quality to determine which images needed manual thresholding.

Figure 3.1: Sample image of microvasculature before and after automatic threshold-
ing.

3.3 Morphological Processing

Once an image is thresholded, morphological operations can be performed to

further improve the image for processing. A morphological operation on a binary

image is a process that alters the shape of features within the image by changing

certain pixels from foreground to background or vise versa. The two most basic

morphological operations are dilations and erosions. As noted by Chris Solomon and

Toby Breckon in [25], most morphological operations can be reduced to a sequence

of dilations and erosions.

The notion of connectedness is at the heart of morphological operations. The

definition of connectedness that is most relevant to our project is this: we define fore-

ground pixels p1 and p2 to be connected if the 3×3 neighborhood of pixels centered at
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p1 contains p2. This definition of connectedness is often called 8-connectedness, since

we look at the “8-neighborhood” of pixels surrounding each foreground pixel. For

future reference, we will designate by N8(pi) the 8-neighborhood centered at a pixel

pi. There is also the notion of “4-connectedness,” in which we consider foreground

pixels p1 and p2 to be connected only if p2 is either immediately above, below, to the

left, or to the right of p2. We will similarly designate the 4-neighborhood centered at

pi by N4(pi) [7, 25].

An object in a binary image is a collection of connected foreground pixels. The

effect of dilation is to expand the edges of the objects in the binary image. This

results in a thickening of the foreground objects, and a closing-off of small “holes”

in the foreground. Erosion, on the other hand, “eats away” at the edges of the

foreground. This thins the foreground objects, and may delete small objects entirely.

This is a desirable effect if we want to reduce background noise in the thresholded

image, for example [7, 25].

In both dilation and erosion, a structuring element is used to modify pixels in the

image. A structuring element is a (typically small) matrix of ones and zeros whose

elements can be thought of as binary pixels. Generally, the size and shape of the

structuring element should be chosen based on the size and shape of the foreground

structures in the image, the definition of connectedness that is used, and the effect

that is desired. For our purposes, we will consider a structuring element S to be an

r× r matrix where r is odd. The center element c is defined by c = S( r+1
2
, r+1

2
), and

the remaining elements of S are called the neighborhood of c. In general, the value of

c can be either 0 or 1, but for our purposes we will take it to be 1. So, for example,
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a 3× 3 structuring element that represents 4-connectedness is given by

S =


0 1 0

1 1 1

0 1 0

 .

In both dilation and erosion, we typically begin by padding the original m × n

image matrix A with a border of zeros on the edges to accommodate the structuring

element; the width of this border is equal to r−1
2

. This “pad” is removed after the

algorithm completes. We will designate this new padded matrix Ã. For each pixel

Ã(i, j), i ∈ [ r−1
2

+ 1, r−1
2

+ m], j ∈ [ r−1
2

+ 1, r−1
2

+ n], we define Ni,j to be the r × r

matrix representing the neighborhood centered at Ã(i, j). Let G = S ◦ Ni,j denote

the Hadamard, or component-wise, product of the structuring element S and the

neighborhood matrix Ni,j. Then our algorithms for dilation and erosion are given by

Algorithms 3 and 4.

Algorithm 3 Morphological Dilation

1: B ← Ã . Copy Ã into B
2: for all i ∈ [ r−1

2
+ 1, r−1

2
+m], j ∈ [ r−1

2
+ 1, r−1

2
+ n] do

3: if Ã(i, j) = 0 then . Current pixel is background pixel
4: G← S ◦Ni,j . Compute Hadamard product G
5: s←

∑
1<p<r
1<q<r

G(p, q) . Sum all entries of G

6: if s > 0 then
7: B(i, j)← 1 . Change current pixel to foreground pixel
8: end if
9: end if

10: end for
11: Ã← B . Replace Ã with modified matrix

The basic idea behind dilation is therefore to process all background pixels

Ã(i, j) = 0, checking the entries of Ni,j that correspond to ones in the matrix S.

If any of these entries is a 1, we change Ã(i, j) to a 1. Likewise, in erosion, we con-
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Algorithm 4 Morphological Erosion

1: B ← Ã . Copy Ã into B
2: σ ←

∑
1<p<r
1<q<r

S(p, q) . Sum all entries of structuring element S

3: for all i ∈ [ r−1
2

+ 1, r−1
2

+m], j ∈ [ r−1
2

+ 1, r−1
2

+ n] do

4: if Ã(i, j) = 1 then . Current pixel is foreground pixel
5: G← S ◦Ni,j . Compute Hadamard product G
6: s←

∑
1<p<r
1<q<r

G(p, q) . Sum all entries of G

7: if s < σ then
8: B(i, j)← 0 . Change current pixel to background pixel
9: end if

10: end if
11: end for
12: Ã← B . Replace Ã with modified matrix

sider only the foreground pixels Ã(i, j) = 1. We then look for zeros in the entries

of Ni,j that correspond to ones in the matrix S and change Ã(i, j) to a 0 if any are

found.

We can combine multiple erosions and dilations together in a sequence to achieve

a desired effect. Note that while erosion and dilation seem to be “opposite” oper-

ations, applying one after the other, even with the same structuring element, will

not restore the original image, since objects that are completely removed by erosion

cannot be recovered by dilation, and holes that are completely filled by dilation will

not be remade by erosion [25]. Dilation followed by erosion is known as morpholog-

ical closing, while the inverse operation of erosion followed by dilation is known as

opening.

The majority of images used in this project underwent a dilate→ erode→ erode

sequence to remove small holes and small background objects. Resulting images were

quality-checked and the processes were adjusted as needed for different batches of

images. An example of the results of this process can be seen in Figure 3.2, in which
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a 9× 9 structuring element with a roughly circular pattern of ones in the center was

applied on each step.

Figure 3.2: A thresholded image with considerable noise before (left) and after a
dilate → erode → erode sequence with a 9× 9 structuring element.

3.4 Midline Extraction

In order to measure features such as vessel length and tortuosity, vessel midlines

must be isolated. We are, of course, working under the assumption that the length

of the vessel midline is a good way to measure the length of the vessel. As previously

mentioned, in much of the literature, especially those papers written more than a

decade ago, vessel midline extraction was accomplished by manually tracing the ves-

sels. More modern papers describe various computerized techniques to accomplish

this procedure, and for the project at hand we used skeletonization.

Skeletonization can be thought of as the process of reducing a binary object to

its most basic features, resulting in a pixel-wide “skeleton,” while maintaining the

8-connectedness of the pixels within the object. There are various algorithms avail-

able for the implementation of skeletonization; the one employed in this project was

skeletonization via an iterative process of morphological erosions known as thinning.

The algorithm was based on the Zhang-Suen Parallel Thinning Algorithm (see [31]),

with some slight modifications to better suite the nature of the images.
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In this algorithm, we make multiple passes through the image, on each pass

finding pixels on the edges of the foreground objects. There are two sub-iterations on

each pass, in which a decision is made whether to delete or preserve each edge pixel

based on a set of criteria. Define P1 to be the current edge pixel, and P2, ..., P9 to be

the pixels in N8(P1), with enumeration beginning with the pixel immediately above

P1 and moving clockwise around P1.

Let β denote the number of occurrences of 0 → 1 patterns in the sequence

P2, P3, ..., P9, P2. On the first sub-iteration, we delete P1 if all of the following apply:

1. β = 1

2. 4 ≤
9∑
i=2

Pi ≤ 7

3. P2P4P6 = 0

4. P4P6P8 = 0

After the first sub-iteration is complete, the prescribed changes are made, and the

second sub-iteration begins on the modified binary image. The conditions for deletion

on the second sub-iteration are almost identical, with changes only made to conditions

3 and 4. P1 will be deleted on the second sub-iteration if P1 meets all of the following:

1. β = 1

2. 4 ≤
9∑
i=2

Pi ≤ 7

3. P2P4P8 = 0

4. P2P6P8 = 0

After both sub-iterations are complete, the process repeats, with iterations terminat-

ing when no new deletions are performed. Note that this algorithm differs from the
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Zhang-Suen algorithm in the definition of condition 2, as this change was found to

give better results in our particular application (see [31]).

The main drawback of most skeletonization algorithms is that the resulting skele-

tons tend to be highly sensitive to small perturbations in the morphology of the orig-

inal object. This often results in undesirable “spurs” in the skeleton, which are short

skeleton segments that stick out of the main skeleton and can appear in seemingly

random places. To mitigate this effect, following skeletonization we implement a “de-

spurring” algorithm. The premise is simple: we locate all end points on the skeleton

and follow each spur back to the branch point from which it originates, counting

pixels as we go (note that we will discuss end point and branch point identification

in the next section). If the spur contains fewer pixels than a certain threshold value,

we remove it. This process is then repeated on the modified image, since many spurs

may themselves have their own smaller spurs, and two passes are needed to remove

them completely. This method is far from perfect, as larger spurs may be left behind,

and some smaller true vessel branches may be deleted, but it tends to produce rea-

sonable results for a majority of images. The skeletonization process is illustrated in

Figure 3.3.

3.5 Branch and End Point Identification

Identifying branch and end points in the skeletonized image is a fundamental

step in the vessel extraction and segmentation process. Not only is this identification

necessary for despurring as previously described, but it is also needed to divide the

vessel network into segments for the length and tortuosity computations that will be

described later. Additionally, since branch points in the skeletonized image typically

correspond to actual branch points or cross-over points in the vessel network, branch
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(a) Original grayscale image. (b) Thresholded image.

(c) Image after skeletonization; note the
unwanted spurs.

(d) Image after despurring algorithm.

Figure 3.3: The skeletonization process. Binary images have been color-inverted for
improved visibility.

point counting can be a useful metric for obtaining information about vessel network

morphology.

Locating branch points and end points in a binary skeleton involves iterat-

ing through all foreground pixels in the image and examining the surrounding 8-

neighborhoodN8 of each pixel. As in the skeletonization example, denote by P2, ..., P9

the pixels in N8(P1), ordered clockwise with P2 being the pixel immediately above P1.

Denote again by β the number of 0 → 1 patterns in the sequence P2, P3, ..., P9, P2.

Then a pixel P1 is an end point if either of the following apply:

1.
9∑
i=2

Pi = 1

2. 1 <
9∑
i=2

Pi ≤ 3 and β = 1.
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Note that in the second condition, if
9∑
i=2

Pi = 3, then the point is a spur of length =

1. On the other hand, we define P1 to be a branch point if either of the following are

met:

1.
9∑
i=2

Pi > 2 and β ≥ 3

2.
9∑
i=2

Pi ≥ 5 and β = 2 and there exists a 1 → 1 → 1 pattern in the sequence

P2, P3, ..., P9, P2.

Here, if the second condition is met, then the point is part of a 4×4 block of foreground

pixels that are each considered to be a branch point.

Once branch points are identified, we can pare down the count to eliminate

adjacent branch points and therefore obtain a more accurate count of true branch and

cross-over points in the vascular network. This is accomplished by scanning through

the branch points identified by the previous algorithm and deleting any branch points

in the surrounding 8-neighborhood of each branch point before moving on to the next

pixel.

3.6 Vessel Segmentation

In order to measure features such as tortuosity, we need to next divide the vessel

network into individual vessel segments. Once we locate branch and end points, the

skeletonized vessels connecting these points are the segments. Define a nodal point

as either a branch point bi or end point ei in the skeletonized image. Then a vessel

segment is a contiguous arc of 8-connected pixels, with nodal points as beginning and

ending points, and containing no nodal points other than these.

Note that if a segment has the same beginning and ending point bi, we call it a

loop. For our purposes, we do not consider isolated loops which contain no branch

points, i.e. the loop must branch off from another segment if it is to be recognized.
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It also does not make sense to talk about a loop beginning and ending at one of the

end points ei. When isolated loops do occur in the skeletonized images, they tend

to be artifacts of the image processing rather than being representative of the actual

vessel network, and they tend to be very small compared to the overall image. These

features can thus be ignored without introducing much error. If a large isolated loop

was discovered in a skeletonized image, we could manually add a tiny spur to the

loop, which would allow the structure to be recognized by the algorithms.

We can isolate the individual segments by performing the steps shown in Algo-

rithm 5, which has here been simplified considerably, but still retains basic features.

Algorithm 5 Vessel Segment Isolation

1: for all (branch points bi and end points ej) do
2: Find starting points sk of segments originating from bi or ej
3: for all sk do
4: if (sk not previously processed) then
5: Start a new segment, following sk back until we find another bl or el
6: Record segment information in appropriate data structures.
7: end if
8: end for
9: end for

In this algorithm, we perform the operation of following segments back to their

ending points by inspecting N8(p) of the current pixel p for other unprocessed pixels.

An unprocessed pixel q ∈ N8(p) is the next pixel in the segment if one of the following

is true:

1. q ∈ N4(p)

2. The 2 adjacent neighbor pixels q−, q+ ∈ N8(p)\{p} are both zero.

When we find the next pixel in the segment, we mark the current pixel as pro-

cessed and update our variables so that the found pixel becomes the current pixel. We

designate the nodal points on either end of each segment as the “starting” and “end-

ing” points, based on the order in which they were found and added to the segment.
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As the algorithm progresses, we record segment information in data structures. Each

segment is given an integer designation 1, 2, 3, ...,M , where M is the total number of

segments in the image, and we store each pixel’s position in each segment, measured

from the starting point of the segment. We also record each pixel’s arc length dis-

tance from the starting point. The arc length li−1,i between any two adjacent pixels

A(xi−1, yi−1) and A(xi, yi) is defined to be their Euclidean distance, given by

li−1,i =

√
(xi − xi−1)

2 + (yi − yi−1)
2.

The arc length L of an actual vessel segment whose midline is represented by k + 1

pixels A(x0, y0), A(x1, y1), ..., A(xk, yk) can therefore be approximated by

L ≈
k∑
i=1

li−1,i =
k∑
i=1

√
(xi − xi−1)

2 + (yi − yi−1)
2, (3.1)

where L is given in pixels. Since images used in any one study will all represent

anatomical areas of the same dimensions, it is safe to leave this length measurement

in pixels. If, however, we wanted to compare images representing areas of differing

dimensions, it would become necessary to scale the length values by an appropriate

factor to obtain length in microns.

By recording not only each segment’s total arc length, but also the progressive arc

length between the starting point and each subsequent pixel in the segment, we are

able to easily divide each segment into smaller sub-segments at a later time if desired.

As we will explain later, to compute tortuosity it became necessary to further divide

the image into sub-segments based on some maximum length threshold. By storing

the above mentioned information at the time of original segmentation, we can refer

to the already-constructed data structures to perform the sub-segmentation process.
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Once the process of isolating segments and recording arc lengths is completed,

we can obtain three possibly useful measures of the microvascular morphology of an

image:

1. The total arc length of all segments,

2. The total number of segments between nodal points,

3. The average arc length γ of the segments between nodal points.

Total length is one of the quantities used by Frahm, Schow and Tobet in the work

already described in Chapter 2, and this measure did indeed prove useful in their

study [12]. Clearly, total length is one way to measure of the density of the vessel

network. The number of segments also appears to be an indicator of density; it is

directly related to the number of branch points in the image, which is an indicator of

density. The average arc length quantity γ will become important later in this thesis.
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Chapter 4

TORTUOSITY METRICS

4.1 Background and Motivation

Tortuosity is an intrinsic morphological characteristic of all blood vessels, and

vessels within the PVN region of the brain are naturally quite tortuous. While there

is no universally agreed-upon definition of tortuosity, it can be thought of as a mea-

sure of how sinuous and twisted a vessel appears. This is a property that is easily

seen, but proves somewhat difficult to quantify with a reliable metric. As outlined

in Chapter 2, the quantification of tortuosity in the microvasculature of the PVN,

and the determination of whether this was a useful measure for revealing differences

between groups in the studies, was one of the primary goals of this project.

A tortuosity metric for a curve ν is defined to be a real-valued function τ that

takes ν as an input. The value τ(ν) therefore gives an indicator of how tortuous a

curve appears, with the hope that τ(ν) corresponds to observers’ notions of tortuosity.

In the literature, there are a variety of different metrics for measuring tortuosity in

both 2 and 3 dimensions; each has its own advantages and disadvantages.

Before discussing the metrics tested in this project, we present in the next section

an overview, in chronological order, of some major contributions to the quantification

of vascular tortuosity. Since it would be unwieldy to present all major developments

in this area of research, we present here developments concerning the 2-dimensional

tortuosity metrics that have been most widely used and studied, and the papers that

are of greatest relevance to this thesis.
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4.2 A Literature Review

4.2.1 The Pioneering Work of Lotmar, Freiburghaus, and Bracher

It seems Lotmar, Freiburghaus, and Bracher were the first to assign quantitative

values to vascular tortuosity in their 1979 paper, “Measurement of Vessel Tortuosity

on Fundus Photographs” [18]. They manually subdivided retinal vessels into a series

of circular arcs with roughly constant curvature, then measured the chord length ci

and arrow height hi of each arc, where ci is defined to be the line segment connecting

the end points of the arc, and hi is the length of a line segment perpendicular to

this first segment and connecting the first segment to the arc. Tortuosity τ was then

computed by approximating what they called the relative length variation:

τ =
∆c

c
≈ 8

3

∑
i

(
hi
ci

)2

. (4.1)

While the exact computation proposed by Lotmar et al. did not become a popu-

lar tortuosity metric, the idea behind their computation is the foundation for other

metrics which have been in use for nearly three decades.

4.2.2 The Distance Factor Metric

The metric that is by far in widest use today is known as the distance factor

metric, DF , which is indeed similar to Equation 4.1. It was first described by David

Williams in his 1982 paper, “Quantification of Arteriolar Tortuosity in Two Nor-

motensive Age Groups,” in which Williams computed the tortuosity of retinal arteries

and used the data to make biological comparisons between two human age groups

[29]. The distance factor metric today remains one of the most straight-forward and

reliable tortuosity metrics. The idea is simple: let L denote the arc length of a vessel

ν, which can be thought of as the length of the vessel midline, and let C denote
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the chord length measured as the distance between the end points of the vessel (see

Figure 4.1). Note that the vessel can be of arbitrary shape. Then the distance factor

metric for tortuosity is given by

τ(ν) =
L

C
− 1, (4.2)

where the−1 is added so a perfectly straight vessel will have τ(ν) = 0. The DF metric

is based on the assumption that a non-tortuous vessel will be close to a straight line,

while a tortuous vessel will have an arc length significantly longer than its chord

length.

Figure 4.1: Example illustrating distance factor metric. The thick curve represents
a vessel midline, and its arc length L is the length of the curve. The length of the
thinner line segment connecting the end points gives the chord length C.

4.2.3 Metrics Based on Curvature

Smedby et al. in 1993 were the first to describe metrics based on the mathemat-

ical concept of curvature, which is the derivative of the tangent direction of a curve

with respect to the arc length [24]. In calculus and differential geometry, the unsigned

curvature |κ| of a function y = f(x) is given by

|κ| = |y′′|
(1 + y′2)

3
2

, (4.3)
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and the total curvature TC of y = f(x) is then the integral of |κ| with respect to arc

length s,

TC =

∫
|κ|ds =

∫
|y′′|

(1 + y′2)
3
2

ds =

∫
|y′′|

1 + y′2
dx. (4.4)

Smedby et al. proposed that the total curvature quantity can be used as a tor-

tuosity metric, with discrete approximations given by symmetric difference quotients

and summations. The authors test this metric against the distance factor metric

DF , along with several other methods described in the paper, including a scaled

TC value, and the number of curvature changes of the vessel midline. The authors

conclude that, of the methods tested, the TC and DF methods were the most true

to observers’ perceptions of tortuosity, and that of these two the DF method was

certainly the simpler and more easily explainable method [24].

Indeed, one of the main drawbacks of the TC metric and other similar metrics

is their computational difficulty, and the fact that the computations are based on

abstract mathematical formulas that may require extensive mathematical training

to fully understand. It is, for example, very difficult to explain the TC metric in

a simple, intuitive fashion. Since it is often the case that physicians and biologists,

who most need to use and understand these metrics, typically do not have extensive

mathematical backgrounds, the TC metric loses some of its desirability.

4.2.4 A Defect of the Distance Factor Metric

In 1995, Capowski, Kylstra, and Freedman pointed out a major flaw of the dis-

tance factor metric, in that a vessel that curves gently in a large bend will often exhibit

a higher DF τ value than a vessel with many smaller bends [8]. This phenomenon

can be observed by examining the curves f(x) =
√

1− x2 and g(x) = 0.25 sin (5x)

on the interval [−1, 1], plotted in Figure 4.2. Most people would agree that a vessel

having a midline represented by g(x) would appear more tortuous than one whose
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midline was given by f(x). Since f(x) is a semicircle of radius 1, its arc length on

[−1, 1] is just π ≈ 3.14, so that by the DF metric, τ(f) = π
2
− 1 ≈ 0.57. For g(x), we

can compute arc length on [−1, 1] by the standard formula from calculus:

L =

∫ 1

−1

√
1 + g′(x)2 dx ≈ 2.60,

so that, contrary to our instincts about observable tortuosity, τ(g) ≈ 0.30 < τ(f).

Capowski et al. do suggest a metric that presents a fix to this problem, but it is very

specialized for the particular problem of the diagnosis of plus disease using retinal

vascular tortuosity, relying heavily on the particular frequencies with which retinal

vessels tend to oscillate [8].

Figure 4.2: Plots of f(x) =
√

1− x2 and g(x) = 0.25 sin (5x) on [−1, 1].

4.2.5 Network Tortuosity

Until the 1998 publication of the paper “Quantification of the Morphological

Features of a Full Microvascular Network” by Bidiwala et al., the literature discussed

only quantifying properties of individual vessels, rather than vessel networks [3]. The

problem of assigning quantitative values to describe the composite features of multiple

vessels in a network is rather a different problem than describing features of one vessel.
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Measuring the tortuosity, for example, of any one vessel segment in a network is not

necessarily representative of the overall appearance of the network. A network may

contain both very tortuous and very non-tortuous vessels, but it is the overall effect

that needs to be measured [3].

Bidiwala et al. used manual tracing of microvessels in the latissimus dorsi muscle

of mice to quantify features of the vessel networks. They used the distance factor

method DF to measure tortuosity of individual vessels, and a weighted additivity

metric to gauge the tortuosity of vessel networks, given by

τ(Network) =

∑
i

τ(νi)Li∑
i

Li
, (4.5)

where Li is the arc length of the ith vessel segment νi in the network. The authors

report general success of this metric, although they admit that the results were likely

adversely affected by errors introduced in the vessel extraction process. It should be

noted that the images used in Bidiwala’s study were of significantly different quality

than our images, with much more background noise (interested readers may refer to

[3]).

4.2.6 Theoretical Considerations

In their 1999 paper “Measurement and Classification of Retinal Vascular Tortu-

osity,” Hart et al. test several metrics against each other and define some desirable

theoretical properties of a tortuosity metric [14]. The authors suggest that an ideal

tortuosity metric should have the following properties, based on human observers’

notion of tortuosity:

1. Invariance to translation and rotation, so that tortuosity does not depend on a

curve’s location or orientation.
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2. Multiplicative response to scaling, so that if ν is scaled (i.e. dilated) by a factor

α, then we have τ(αν) = φ(α)τ(ν) for some function φ, where φ(α) = 1 in the

ideal case of invariance to scaling.

3. Compositionality, which is defined to be the property that if a curve ν is com-

posed of two arcs ν1 and ν2 with τ(ν1) ≤ τ(ν2), then τ(ν1) ≤ τ(ν) ≤ τ(ν2).

While not all tortuosity metrics meet these properties, Hart et al. use these prop-

erties as guidelines for defining, characterizing, and evaluating a variety of metrics,

including the DF metric and total curvature TC, and several closely related to TC.

Both the DF and TC metrics exhibit translational and rotational invariance. The

DF metric exhibits invariance to scaling, while the TC metric exhibits multiplicative

scaling. Both metrics lack the compositionality property. It should be noted, how-

ever, that the use of the weighted additivity technique for quantifying networks of

vessels basically forces the compositionality property. Hart et al. do discuss network

tortuosity, and they use the weighted additivity formula 4.5 with each of the metrics

tested to determine tortuosity of vessel networks [14].

Tests were performed to see if the various metrics matched observers’ classifica-

tion of retinal vessels and vessel networks as being either tortuous or non-tortuous.

The end determination was that TC performed poorly overall, and although they did

not find significant evidence to make a strong recommendation for any one metric, the

metric that performed best was “total squared curvature,” which is the same formula

as TC (Equation 4.4), but with the integrand squared [14].

Their determination was that the DF metric worked very well for networks

when vessel segments were automatically extracted. Their assessment (which matches

intuition when one considers the aforementioned drawback associated with the DF

metric) was that the DF method works better on shorter vessel segments. Since
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automatically extracted vessel segments tended to be shorter than those that are

manually extracted, the DF method proved to be a good choice in this scenario [14].

4.3 The Implemented Metrics

For our project, we needed a tortuosity metric that could be applied to the specific

problem of detecting morphological differences in the microvasculature within the

PVN between groups of mice. In most of the literature, the goals are quite different.

For instance, in the retinal vasculature studies, determining a grading system for

tortuosity is important, since the severity of retinal disease tends to be an increasing

function of vascular tortuosity (see [30], for example). The same is true when arterial

tortuosity is used as an indicator for atherosclerosis [24]. Microvasculature within the

PVN, however, tends to be naturally sinuous and twisted; tortuosity is not necessarily

an indicator of disease. Increases or decreases in tortuosity that come as a result

of experimental procedures are of interest to us; our main objective is to see if a

particular procedure invokes any change in the vascular morphology. If changes are

indicated, they will need further study to determine their causes and implications.

The two basic tortuosity metrics used in this study were the DF metric given

by 4.2, and a novel metric which we designate the convex hull metric for tortuosity,

or CH. Due to the computational challenges associated with the metrics based on

curvature, we did not implement any of these methods as of the writing of this thesis.

We will in this section present a detailed overview of the metrics used, beginning with

their definitions for measuring individual vessels and moving on to their extension to

vessel networks. The DF metric for individual vessels has already been thoroughly

explained, so we will skip the preliminary introduction of this metric, and instead

focus our attention on the new CH metric.
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4.3.1 The Convex Hull Metric

In mathematics, a set U ⊆ Rn is convex if, given any two points x, y ∈ U , the

line segment connecting x and y is contained entirely in U . The convex hull V of a

set Ω ⊆ Rn is defined by

V =
⋂
α

Uα

where Uα ⊆ Rn is any convex set such that Ω ⊆ Uα. Since any intersection of convex

sets is itself convex, the convex hull is a convex set [27].

For our problem, we consider only 2-dimensional convex hulls; we therefore may

take n to be 2. Intuitively, a 2-dimensional convex hull of a finite set of points Ω ⊆ R2

is the smallest convex polygon that entirely contains Ω. This is often explained

through the “rubber band analogy:” if each point in Ω is represented by a nail driven

halfway into a piece of plywood representing the plane, then the convex hull of the set

of points can be seen by stretching a rubber band around all the nails and observing

the polygon that is formed. The convex hull area, H, is the area contained inside the

rubber band. For an illustrative example, see Figure 4.3, where convex hulls for two

sets of points have been computed, and the resulting convex hull areas are shaded.

(a) Convex hull area (shaded) of a set of
points arranged in a sinusoidal shape.

(b) Convex hull area (shaded) of a set of
scattered points.

Figure 4.3: Examples of convex hull areas.
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The convex hull (CH) metric for computing the tortuosity τ of an individual

vessel or vessel segment ν is defined by

τ(ν) =
H

C2
, (4.6)

where H is the convex hull area of the discrete digital representation of the vessel

midline, and C is the chord length of the vessel. In other words, we compute the

convex hull area of the pixels that constitute the vessel, and then divide this area

by the square of the distance between the end points of the vessel, thus obtaining

a dimensionless quantity. These quantities are illustrated in Figure 4.4. Note that

since typically H << C2, the convex hull metric usually gives small values between

0 and 1.

Figure 4.4: Illustration of convex hull metric. The thick curve represents a vessel
midline. Its convex hull area is shaded blue, and the large shaded square represents
the area of the square of the chord length. In the convex hull metric, the smaller
shaded area is divided by the larger area of the square.

What happens when the points representing the vessel segment are collinear, i.e.

the vessel segment is perfectly straight? The convex hull of a finite set of collinear

points is defined to be a straight line segment containing the points, and its area is
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therefore 0. Thus the tortuosity of a perfectly straight vessel will be 0 by the CH

metric.

The computation of convex hulls is a standard problem in computational geome-

try, and there is a wealth of freely-available code for computing convex hulls. For our

implementation, we used the standard Matlab convhull function. Initial implemen-

tation of this project was performed using Matlab version 7.8.0, release R2009a; in

this release and in several previous versions, convhull itself uses the program Qhull,

which is freely-distributed open-source convex hull code [2].

Since Qhull does not compute 2-dimensional convex hulls of collinear points, and

attempts to do so will generate an error message, we developed an error-handling

technique to address this issue. To construct a 2-dimensional convex hull, Qhull

selects 3 initial points to use as an initial simplex (i.e. a triangle, when working in 2

dimensions). If the 3 points lie in one dimension, the algorithm fails. To remedy this

problem, it was necessary to invoke the Qhull arguments Qs and QJ when calling the

convhull function. Qs is useful when the set of points are not collinear, but merely

close to collinear; this forces Qhull to search all points in the set to form the initial

simplex. QJ is used as a last resort, when the points are truly collinear. In this case,

Qhull “joggles” the points slightly, based on an error tolerance, to force the set to be

2-dimensional [2].

While this does inevitably introduce error into the computations, since a perfectly

straight vessel will now have a computed convex hull area greater than 0, it was

determined that this error was acceptable for our purposes. Take, for example, the

set of collinear points shown in Figure 4.5. Using the method described above, Qhull

computed their convex hull area to be H ≈ 5.01×10−9. Furthermore, when we divide

by the square of the chord length, the tortuosity of the line segment connecting these

points will be τ ≈ 2.51× 10−11, which for our purposes is extremely negligible.
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Since more recent versions of Matlab no longer support Qhull-specific parameters

in the convhull function, a future update of the algorithms for the CH metric will

include a different error-handling mechanism, which is yet to be determined.

Figure 4.5: A set of collinear points in the plane. Use of the Qhull parameter QJ
allows computation of a tortuosity value near 0 for a line segment connecting these
points.

The CH metric is admittedly very similar to the DF metric. Both metrics

are based on ratios of geometric dimensions associated with a curve. Like the DF

metric, the CH metric exhibits rotational and translational invariance and invariance

to scaling, but lacks the compositionality property discussed in the previous section.

Additionally, the CH metric also tends to give larger values for curves with a large,

gentle bend than for curves composed of many smaller bends. The logic behind

choosing the CH metric as an alternative to the DF metric was that the convex hull

area for a set of pixels tends to be very stable with respect to small perturbations in the

location of the pixels. Arc length, on the other hand, can change more dramatically

if a few pixels are perturbed, which may increase sensitivity to errors introduced by

the image processing and skeletonization processes.

One obvious flaw of the CH metric is that we can draw many different curves of

varying visible tortuosity that all have the same convex hull area and the same chord

length. The solution to this problem, as we will see, will be the same as the solution to

the previously noted problems with the DF metric: proper segmentation of the vessels

into small enough pieces. For both the DF and CH metrics, it was hypothesized that
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we would get more accurate results by dividing the image into segments small enough

to obtain roughly constant curvature throughout each segment.

4.3.2 Extension to Vascular Networks

For both the DF and CH metrics, we extend the metric to entire vessel networks

using two different weighted additivity methods. The first of these, which we will

designate Method 1, is the same that was used by both Bidiwala and Hart, in which

the individual vessels in a network are weighted according to their arc lengths [3, 14].

The second, Method 2, involves using vessel chord lengths as the weights, rather than

arc lengths. To the best of our knowledge, Method 2 does not appear in the literature.

Admittedly, Method 2 may seem counterintuitive, since vessels with higher tortuosity

tend to have smaller chord lengths; therefore vessels with higher tortuosity are often

weighted less than vessels with low tortuosity. As we shall see, however, Method 2

stood up quite well in our experiments.

To clarify our definitions of the two methods, consider a vessel network that has

been divided into M segments, ν1, ..., νM . Then the tortuosity τ1 of the network using

Method 1 will be given by

τ1(Network) =

M∑
i=1

τ(νi)Li

M∑
i=1

Li

, (4.7)

while for Method 2 the computation will be

τ2(Network) =

M∑
i=1

τ(νi)Ci

M∑
i=1

Ci

, (4.8)

where Li and Ci are the arc lengths and chord lengths, respectively, of segment νi.
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We will, throughout the remainder of this thesis, denote by DF1 and DF2 the

distance factor metric applied to networks using Method 1 and Method 2, respectively,

and similarly CH1 and CH2 will denote the corresponding convex hull metrics. The

formulas for the 4 network tortuosity metrics are therefore given by:

τDF1 =

M∑
i=1

(
L2

i

Ci
− Li

)
M∑
i=1

Li

, (4.9)

τDF2 =

M∑
i=1

(Li − Ci)

M∑
i=1

Ci

, (4.10)

τCH1 =

M∑
i=1

HiLi

C2
i

M∑
i=1

Li

, (4.11)

and

τCH2 =

M∑
i=1

Hi

Ci

M∑
i=1

Ci

, (4.12)

where Li and Ci are defined as before, and Hi is the convex hull area for the ith

segment. Now that the metrics have been thoroughly defined, we will in Chapter 5

move on to a discussion of their performance as tested in a series of experiments.
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Chapter 5

PERFORMANCE AND RESULTS

In this chapter we will evaluate each metric’s capacity to quantify tortuosity in

the images of microvascular networks that are of interest to this thesis. This will be

accomplished by analyzing a series of experiments in which we applied the metrics

to the images described in Chapter 2. While it should be clear from the previous

discussion that the DF1 metric has been used for many years to quantify network

tortuosity, it has never (as far as we know) been applied to images resembling those

used in this project. The DF2 metric, on the other hand, is a previously untested

variant of the DF1 metric, and the CH metrics are completely novel.

When evaluating the usefulness of the metrics, there are two basic considera-

tions. The first is whether the metrics provide a measure that matches our notions

of tortuosity based on visual perception, and the second is whether the metrics are

successful at indicating significant differences between groups of images. Note that it

is possible for a metric to indicate a clear difference between sets of images, and yet

not provide a grading scale that matches our visual perceptions of tortuosity.

5.1 Refined Segmentation of Networks

Given that we must divide a vessel network into many small vessel segments

in order to apply any of our metrics, the next logical question is how to define a

vessel segment. In many papers on the subject, vessels and vessel networks have been

manually divided into roughly equal segments or segments with roughly constant

curvature. This is, of course, extremely labor-intensive, and was absolutely out of
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the question for this project, given the large number of images that needed to be

processed. An automated segmentation technique was therefore necessary.

There is no discussion in the literature, as far as we know, regarding the effect

of varying segment arc lengths on the computation of tortuosity, either for individual

vessels or for networks. Hart et al. did touch on this issue in their discussion of how

the performance of the DF metric was improved when shorter segments were used,

but this phenomenon was never fully explored [14]. It seems rather surprising to

us, given the high sensitivity of the DF metric and similar methods to variations in

segment length, that this has not been investigated further. One of the focal points

of this project therefore became to analyze the effect of varying segment lengths on

the composite network tortuosity.

As discussed in Section 3.6, we initially segmented a skeletonized image of a

vascular network by defining a segment to be any length of uninterrupted vessel

connecting two nodal points in the skeletonized image. In order to apply the metrics,

however, we first had to deal with the presence of closed loops in the images. A closed

loop occurs when a segment begins and ends at the same point; the chord length is

therefore 0, resulting in division by 0 when applying either the DF or CH metrics.

The solution to this problem was to divide each closed loop into two segments of

roughly equal length before beginning the tortuosity computation.

Our first preliminary tests with the metrics therefore used the convention that

segments were defined as lengths between nodal points, except in the above noted

case of closed loops. We also specified a minimum length threshold, Lmin, which for

most of the experimentation was set to Lmin = 5, so that segments with arc length

L < Lmin were ignored for computing tortuosity. Initial experimentation using this

segmentation method served to highlight the necessity for more refined segmenta-

tion. Images that, on average, contained longer segments inevitably exhibited higher

tortuosity values than images containing shorter, rapidly twisting segments. This,
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of course, is counterintuitive to the notion of tortuosity. To illustrate this problem,

consider the images of vessel networks shown in Figure 5.1. Computing the τ values

for these two images using this segmentation method yielded the results shown in

Table 5.1, which have been rounded to 4 decimal places.

(a) Image A: a network with apparent low
tortuosity.

(b) Image B: a network with apparent high
tortuosity.

Figure 5.1: Two microvascular networks with visibly disparate tortuosity.

Table 5.1: Tortuosity values τ computed using the 4 basic metrics, with segments
defined by curves between nodal points, for the vessel networks shown in Figure 5.1.

Image A Image B
DF1 0.5195 0.3524
DF2 0.4055 0.2863
CH1 0.1999 0.1462
CH2 0.1571 0.1179

As one can see, the tortuosity values τ for all four metrics are greater for Image A

than for the clearly more tortuous Image B. The cause of this is clear to us: the average

segment length between nodal points, γ, is much higher in the less tortuous image.

Indeed, since increased tortuousity tends to increase the number of cross-over points

in an image, it is often the case that more tortuous images contain shorter segments

between nodal points. Shorter segments viewed by themselves tend to appear less

tortuous, with fewer bends, than longer segments. In fact, not only do they appear

more linear, but the metrics measure them as being more linear. This is true even

when the overall network containing the shorter segments exhibits greater tortuosity.
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Using the methods outlined in Section 3.6, we can compute the average segment

length between nodal points, γ, for each image. For Image A, γ ≈ 204.8 pixels

(measured as described in Section 3.6), while for Image B, γ ≈ 123.4 pixels. This sig-

nificant disparity in segment lengths creates a situation where the network tortuosity

is being computed in a fundamentally different manner for each image. This example

illustrates the necessity for more refined segmentation techniques.

In Section 3.6 it was discussed that the information for the vessel segmentation is

stored in a manner that allows us to easily divide segments into smaller sub-segments

based on a maximum length threshold Lmax. This feature was added to the algorithms

in response to the above problem, allowing a user to manually select Lmax for a set

of images. If a segment ν between nodal points has arc length L > Lmax, then we

divide the segment into a set of smaller sub-segments {νi}, each having arc length

Li ≤ Lmax. With this convention, we can think of the values shown in Table 5.1 as

being computed using Lmax =∞.

To fully clarify the sub-segmentation process, let p0, p1, ..., pe denote the pixels

in the segment, such that p0 denotes the segment starting point and pe denotes the

ending point. Let L(pi) denote the computed approximate arc length between p0 and

pi. We then locate the smallest j such that L(pj) > Lmax, and pixel pj−1 becomes the

ending point for the first sub-segment. We repeat this process, on each iteration using

the updated pj as the starting point for the new segment, until we reach pe. The last

sub-segment is therefore typically shorter than the others; this is unavoidable when

using this method.

Recomputing the metrics using various values for Lmax yields the results plotted

in Figure 5.2, where the τ values for the two images have been computed as a function

of Lmax for each metric. As one can see, the CH metrics with various Lmax < ∞

now consistently give larger τ values for Figure 5.1(b), which seems to better match

what the human eye can see in the images. Results for the DF metrics are less good;
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for some Lmax values, the size of the τ values are still reversed. This example serves

to illustrate a fact that was repeated in many experiments: for certain images, the

DF metrics are less consistent than the CH metrics in making a distinction between

two visually different images. However, when the disparity in apparent tortuosity is

extremely large (larger than in this example), the DF metrics seem to do a better job

distinguishing tortuosity differences. Additionally, as we shall see in a later section,

the DF metrics are generally successful at making distinctions in average tortuosity

differences between sets containing multiple images, which is more the goal of this

project.

(a) DF1 (b) DF2

(c) CH1 (d) CH2

Figure 5.2: Plots of Lmax vs. τ for each of the 4 metrics, computed for the images
shown in Figure 5.1. The solid line represents values for Image A; the dashed line
gives data for Image B.

The reader will notice that, for the case of Image B at least, τ is an increasing

function of Lmax. It is easy to infer that this is a result of the “local linearity” property
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of smooth curves; i.e. if you zoom in close enough on small portion of a smooth curve,

it will look like a straight line. This is essentially the same effect that is presumed

to cause the problem with comparing the two images in the first place, since shorter

segments inevitably appear more linear. This effect results in smaller τ values for

smaller segments, so that the overall network τ value is decreased when we choose a

smaller Lmax value.

As for Image A, the toruosity curves plotted in Figure 5.2 seem to be mostly

monotonic, but there is an apparent aberration in all 4 metrics at Lmax = 100. This

phenomenon, in which there is a sudden “spike” in tortuosity at one particular Lmax

value, was observed many times in many images, and even occurs in average tortuosity

computations across multiple images. At this time we do not fully understand why

this occurs, except that it is a response to some geometric property in the images,

and it seems to depend somewhat on the value of γ. We also know that, overall, the

DF2 and CH2 metrics seem less sensitive to this phenomenon.

From this example, it should be clear that dividing an image into smaller sub-

segments is preferable to using the original segments between nodal points; this cer-

tainly seemed to work for the CH metrics, at least. An obvious question, then, is

what value of Lmax will give optimum results for a set of images? This question is

difficult to answer, and at this time we do not have a complete solution. Testing

the validity of τ values for a particular image set is subjective and highly reliant on

observers’ intuition of tortuosity. Therefore, finding the optimum maximum length

threshold Lmax for a set of images is a problem that is unlikely to have an analytic,

mathematically provable solution. Furthermore, assuming that we can obtain the

optimum Lmax value for a set of images, we cannot expect to apply this same Lmax

value to a different set and obtain good results, since there can be a great deal of

variation between image sets. In the next section we will take a second look at the

issue of finding a good Lmax value.
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5.2 An Experiment

Our main goal in this project was to detect average tortuosity differences between

sets containing multiple images, not necessarily between individual images. When

comparing two sets of images, we compute tortuosity values for each image in each set

and then take averages over each set. We can then determine whether the difference

is statistically significant by using a t-test to obtain a p-value.

To test the validity of the metrics and their ability to serve our purposes, we

created a set of 20 images with very high visible tortuosity (designated the “tortuous”

group), and a second set of 20 images with very low visible tortuosity (designated

the “non-tortuous” group). These images were selected from a sample of 124 images;

they were a mix of images from various mice and from various PVN regions as well

as the cortex, and all represented the same anatomical dimensions. The images

were chosen by a human selector based only on their outstanding visible tortuosity

or lack thereof; an attempt was made to ignore features such as vessel density or

average length between nodal points. A sample of some of the images from each set

is provided in Figure 5.3.

(a) Images from the “tortuous” group.

(b) Images from the “non-tortuous” group.

Figure 5.3: A sampling of images from the tortuous and non-tortuous groups. Images
were selected for each group based on their apparent visible tortuosity.
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Images were processed according to the methods described in Chapter 3. Tortuos-

ity values τ were computed for all images using the DF1, DF2, CH1, and CH2 met-

rics. Each metric was computed using various maximum length thresholds: Lmax =

30, 40, 50, 75, 100, 125, and 150. A minimum length threshold Lmin = 5 was main-

tained for each computation. Upon completion of the computations, the images were

separated into the two sets, and averages were taken of the τ values in each set.

The average τ values obtained for each set using the various metrics are plotted as

functions of Lmax in Figure 5.4.

(a) DF1 (b) DF2

(c) CH1 (d) CH2

Figure 5.4: Average τ values for the tortuous (dashed line) and non-tortuous (solid
line) sets computed using each of the 4 metrics, plotted as a function of Lmax.

Clearly, all four metrics consistently give “correct” results, in that the average

τ values for the visibly tortuous images are higher than those for the visibly non-

tortuous images; this is true across all Lmax values for each metric. To determine
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whether the average τ values for each group suggested a statistically significant dif-

ference between the groups, we performed a 2-tailed t-test to obtain p-values for the

difference in mean for each computation. The t-test results for each metric are shown

in Table 5.2, displayed to 4 significant digits.

Table 5.2: P-values indicating the statistical significance of the difference in mean τ
values between the tortuous and non-tortuous sets.

Lmax DF1 DF2 CH1 CH2
30 2.504× 10−2 4.010× 10−2 4.591× 10−11 2.520× 10−11

40 2.632× 10−3 4.685× 10−3 1.145× 10−13 6.830× 10−14

50 5.754× 10−4 7.793× 10−4 3.698× 10−13 1.594× 10−13

75 3.377× 10−5 3.640× 10−5 1.190× 10−11 3.310× 10−12

100 1.036× 10−4 8.891× 10−6 5.379× 10−10 1.362× 10−12

125 3.534× 10−1 1.022× 10−4 4.858× 10−1 1.111× 10−8

150 1.371× 10−1 6.387× 10−5 3.947× 10−1 3.350× 10−8

Using the convention that a p-value < 0.05 is an indicator of a statistically

significant difference, one can see that when we fix Lmax ≤ 100, we obtain statistically

significant results using all 4 of the metrics. Thus, all 4 metrics were successful

in making a distinction between the two visibly different sets. This supports the

hypothesis that the metrics match our intuitive definition of tortuosity.

These results also further support the hypothesis that the results are highly

dependent on our choice for Lmax. When Lmax ≥ 125, the DF1 and CH1 metrics

do not indicate statistically significant differences between the sets. At the other

exteme, when Lmax = 30, the p-values for the DF1 and DF2 metrics start to become

larger again. It seems that the best choice for Lmax is somewhere between these two

extremes, at least for these image sets.

Further examining Table 5.2, we see that the CH2 metric consistently gives the

smallest p-values. The CH metrics in general give far smaller p-values than the DF

metrics. This may suggest that the CH metrics are better (in this case, at least) at

making a clear distinction between the two sets.
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5.3 Application to the GABA Study

With the validity of the metrics partially confirmed, we now turn to their ap-

plication to an actual experimental data set. Our earlier experiment indicated that

the metrics performed well when tortuosity differences between two sets of images

were very pronounced. The images used for this first experiment were hand-picked

to represent extremes in the tortuosity spectrum. It is usually the case, however,

that average tortuosity differences between experimental and control groups are not

as visually apparent. If the metrics indicate statistically significant differences be-

tween groups containing more subtle visual differences, this is a good measure of

their robustness.

In the GABA study conducted by Frahm, Schow, and Tobet, it was determined

that mice whose GABAB receptors were eliminated exhibited decreased vascular den-

sity and branching within the PVN as compared to the wild type (WT) group [12].

The reader may observe this phenomenon in the sample images provided in Figure 5.5.

It seemed to the researchers involved (and perhaps the reader, as well) that the ex-

perimental KO group also had decreased tortuosity as compared to the WT group,

but at the time of submission of the results for publication, they did not have an

effective means to measure this property.

An experiment was therefore performed using bilateral images of the mid-PVN

region of 8 mice from the WT group and 9 mice from the KO group, for a total of 16

WT images and 18 KO images (see Chapter 2 for more details regarding the images).

Images were processed in the usual way described in Chapter 3. We then computed

τ values for each image using all 4 metrics, with Lmax = 30, 40, 50, 75, 100, 125, and

150. Averages were computed over the images in each group, and these average τ

values were plotted against the Lmax values as before, to obtain the graphs shown in

Figure 5.6.
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(a) Images from the WT group.

(b) Images from the KO group.

Figure 5.5: A sampling of images from the WT and KO groups.

As one can see, the metrics overall seem to indicate that the WT group indeed

exhibits higher tortuosity than the KO group. The reader will also notice that the

τ values obtained in this experiment are overall higher than the values obtained in

the previous tortuous vs. non-tortuous experiment; indeed, the majority of images

used in this experiment exhibited higher visible tortuosity than any of the sample

images used in our previous experiment. This is likely due to the age of the animals

from which the samples were taken; older animals tend to have denser, more tortuous

vessels within the PVN.

There is an obvious anomaly in the CH1 metric for the KO group when Lmax =

100, and for the WT group when Lmax = 125. The expected monotonicity of the

curve is disturbed here, and the average τ value for the KO group is greater than

for the WT group at Lmax = 100. This anomaly is somewhat mirrored in the DF1

metric, where we can see a similar, but less pronounced, departure from monotonicity

in the KO group when Lmax = 100. This phenomenon seems to be the same one that

was noted in our experiment with the two images in Section 5.1.

Define γ̄ to be the average γ value over all images in a set. Then we note that

γ̄ ≈ 108.7 pixels for the WT group, and γ̄ ≈ 119.4 pixels for the KO group. Choosing

Lmax = 100, then, is not likely to be small enough to eliminate problems caused by

52



(a) DF1 (b) DF2

(c) CH1 (d) CH2

Figure 5.6: Average τ values for the WT (solid line) and KO (dashed line) sets
computed using each of the 4 metrics, plotted as a function of Lmax.

differences in segment lengths between the two sets. This reinforces our hypothesis

that Lmax must be sufficiently small to ensure proper performance of the metrics.

It should be further noted, however, that the DF2 and CH2 metrics here seem

robust to whatever phenomenon is causing the noted aberration. This suggests that

the phenomenon is likely related to the arc lengths of the segments, rather than the

chord lengths, since these two metrics use chord lengths to weigh individual vessel

segments. This fact also serves to promote the desirability of the DF2 and CH2

metrics over the other two.

If we assume that the τ values computed using Lmax < 100 represent valid

tortuosity data for the WT and KO groups, the next question is whether the results

indicate a statistically significant difference between the two groups. We again used a
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2-tailed t-test to determine whether the difference in mean τ values between the two

groups could be considered statistically significant; p-values from this test, rounded

to 4 decimal places, are shown in Table 5.3.

Table 5.3: P-values indicating the statistical significance of the difference in mean τ
values between the KO and WT groups.

Lmax DF1 DF2 CH1 CH2
30 0.0166 0.0238 0.0124 0.0163
40 0.0131 0.0183 0.0106 0.0127
50 0.0044 0.0073 0.0059 0.0076
75 0.0020 0.0055 0.0012 0.0054

As expected, the p-values obtained for these two groups were not as small as those

obtained for the previous experiment with the tortuous vs. non-tortuous groups,

but all p-values suggest a statistically significant tortuosity difference between the

two groups. The smallest p-values this time come from the CH1 metric, and the

measured difference across all metrics is generally more significant when Lmax = 50 or

75. Fixing Lmax < 50, however, results in increased p-values (and therefore decreased

statistically significant difference) for all 4 metrics. This was also observed in the

tortuous vs. non-tortuous experiment.

Along with highlighting some important properties of the metrics and the neces-

sity for a good choice of Lmax, the results seem to confirm that there was indeed a

measurable decrease in vascular tortuosity for the KO group as compared to the WT

group. This was a difference that could be seen by human eyes, but that was far more

subtle than in the case of the tortuous vs. non-tortuous experiment. These results

indicate that the metrics are indeed capable of discerning more subtle differences

between sets of images.
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5.4 Application to the Dexamethasone Study

For our final experiment presented here, we apply the metrics to the images

obtained from the dexamethasone study described in Chapter 2. The experiment

was conducted using a total of 68 PVN images from the experimental (DEX) group,

whose mothers received a dexamethasone injection, and 50 from the control (VEH)

group, whose mothers received a vehicle injection (see Chapter 2 for more details).

A sample of the images from the DEX and VEH groups can be seen in Figure 5.7;

the reader will notice that these images are of different dimensions and scale than the

other images presented in this thesis. While it is clear that overall these images are

the most visibly tortuous of any we have presented thus far, most human observers

will agree that the DEX images seem more tortuous on average. The images were

processed as usual, and τ values were computed as in the previous two experiments.

It should also be noted that the average arc lengths between nodal points for these

images were much smaller than for the previous experiments: γ̄ ≈ 40.2 pixels for

the DEX group, and γ̄ ≈ 46.2 pixels for the VEH group. This difference between

the groups, in fact, was found to be quite statistically significant (p-value ≈ 0.0001).

Plots of the results of our experiment are shown in Figure 5.8.

(a) Images from the VEH group.

(b) Images from the DEX group.

Figure 5.7: A sampling of images from the VEH and DEX groups.
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(a) DF1 (b) DF2

(c) CH1 (d) CH2

Figure 5.8: Average τ values for the DEX (solid line) and VEH (dashed line) sets
computed using each of the 4 metrics, plotted as a function of Lmax.

The reader will immediately notice that the aberration that occurred in the

GABA study with the DF1 and CH1 metrics is repeated in this experiment, but this

time at Lmax = 75. A sudden and seemingly discrepant spike is seen in the τ values

for the DEX group at this one data point in both the DF1 and CH1 metrics; this

phenomenon is again much more pronounced in the CH1 metric. Additionally, the τ

values obtained from the CH1 metric overall seem inconsistent and unpredictable as

compared to the results from the other metrics.

We note too, that the τ values for Lmax = 150 seem to be reversed for each

metric as compared to the τ values computed using smaller Lmax. This is also likely

due to the very small lengths between nodal points in these images. Once again, the

DF2 and CH2 metrics seem to give the most consistent, robust results. Overall, all
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four metrics gave higher τ values than we have seen in the previous two experiments,

which was to be expected.

As in the previous two experiments, p-values were computed (once again using

a 2-tailed t-test) for the various τ values to determine the statistical significance of

the measured differences between the sets. These p-values are shown in Table 5.4; we

have again computed these only for the smaller values of Lmax. Note the especially

bad p-value for the CH2 metric when Lmax = 40. In the plots we can see that

this corresponds to a point where the two tortuosity curves are reversed in absolute

value. Furthermore, we can see that the DF1 and CH1 metrics in general yield

higher p-values, which is consistent with the perturbed shape of the graphs observed

in Figure 5.8. Between the DF2 and CH2 metrics, which measured statistically

significant differences across all 4 Lmax values, the DF2 metric this time yields slightly

smaller p-values. The best Lmax values this time seem to be the smaller values; this

should not be surprising when one considers the very small γ values in these images.

Table 5.4: P-values indicating the statistical significance of the difference in mean τ
values between the VEH and DEX groups.

Lmax DF1 DF2 CH1 CH2
30 0.0003 1.94× 10−5 0.0027 3.17× 10−5

40 0.1050 0.0002 0.7830 0.0011
50 0.0017 0.0006 0.0322 0.0018
75 0.1709 0.0111 0.1688 0.0366

5.5 Discussion

Based on the results from the described experiments, we feel we can draw some

important conclusions. First, the DF1 and CH1 metrics seem far too unpredictable

to really be of use to us. The CH1 metric most noticeably is apparently quite

sensitive to geometric properties that seem to be causing the observed perturbations

in the metric. While we are still not certain of the exact mechanism behind this
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phenomenon, the results from these metrics seem to be untrustworthy. Especially

with the CH1 metric, performance seems to rely heavily on the maximum length

threshold value Lmax, and small changes in Lmax may cause wild perturbations in the

τ values obtained using this metric. A similar, though less pronounced, effect was

observed in the DF1 metric.

In Section 4.3.2, we mentioned that it may seem counterintuitive to assign weights

to the vessels according to chord lengths, since this will cause more tortuous vessels

to be weighted less than vessels that are closer to straight lines. Weighting vessels

according to arc length therefore seems to be the more logical choice. Previous

researchers must have drawn this conclusion as well, as we could find no evidence

that network tortuosity has ever before been computed using chord lengths as weights.

However, it has been clearly demonstrated that this method, which is used in the DF2

and CH2 metrics, gives more consistent results than the arc length weighting method,

when observed over various Lmax values.

While the reasons for these observations are not completely understood at this

time, we can make a few educated guesses. Since we are comparing the metrics over

varying maximum arc length thresholds, the use of a metric that relies heavily on

arc lengths within the computation is likely to magnify tortuosity differences among

various Lmax values. We have demonstrated that the reliability of the metrics depends

largely on an appropriate choice of Lmax; by choosing a metric that does not itself

rely heavily on arc lengths of individual segments, we reduce this variability. Upon

examination of formulas 4.9, 4.10, 4.11, and 4.12, it becomes clear that the DF2

metric relies minimally on arc length, while for the CH2 metric, arc length does not

even enter into the compuation.

Between these two metrics, in fact, our preference at this time is in favor of

the CH2 metric. We feel that both the DF2 and CH2 metrics provide accurate

tortuosity computations and are quite robust in their ability to discern differences
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between sets of visibly different images. However, we have seen that the CH2 metric

often gives better results when applied to individual images, and the CH2 metric did

a much better job of making a clear distinction between the image sets in the first

experiment.

The issue of how to make an appropriate choice of Lmax is still not completely

solved, but we do have some recommendations, based on all the available information

at this time. First, different sets of images will require different Lmax values. Secondly,

it seems that we need to choose Lmax ≤ γ̄ where γ̄ is the average of all γ values over the

images in a set. If we choose Lmax too small, however, then the individual segments

become close to linear in shape, and the overall morphology of the images are lost.

Additionally, it may be wise to take an average over a few different Lmax values to

“smooth out” perturbations between different Lmax values. Our suggestion, therefore,

given 2 or more image sets each containing one or more images, is to obtain tortuosity

values for each image using the following procedure:

1. Determine γ̄j for each set j. Let γ̄∗ = min{γ̄j}.

2. Choose a range of Lmax values, {Lmax1 , ..., LmaxN
} ⊂ [0.5γ̄∗, γ̄∗].

3. Compute the network tortuosity τi,k of the kth image, using CH2, for each

Lmaxi
.

4. Compute the “smoothed” network tortuosity for the kth image: τk = 1
N

N∑
i=1

τi,k.

We acknowledge that this will result in different tortuosity scales for different

experiments. If this is unacceptable, and a uniform tortuosity scale is desired that

can be applied across multiple images (assuming the images are of the same level of

magnification), then the above procedure can be modified so that it is not dependent

on γ̄∗. This might be accomplished by choosing other upper and lower bounds for the

Lmax values that can apply across all images. Based on the results from the previous
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experiments, good results can be obtained using the CH2 metric across a fairly wide

range of Lmax values.
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Chapter 6

CONCLUDING REMARKS

After considering the results of the experiments, we feel we have largely es-

tablished the validity of the recommended techniques and have made considerable

progress toward the goals outlined in Chapter 2. There are still many questions to be

answered concerning some of the results presented here, but in general it seems that

we have succeeded in our efforts to quantify tortuosity of microvascular networks and

to automate the measurement process.

Further testing of the metrics may be desired, but at this time we feel we have

presented considerable evidence to support our conclusions that the DF2 and CH2

metrics are robust and accurate. The CH2 metric, in particular, shows much promise.

Since the CH2 metric can be applied to simple 2-dimensional images of microvascular

networks, we have established there may be little need for expensive and potentially

difficult 3-dimensional imaging of these networks, thus providing a solution that is

highly cost-effective and practical. Implementation of the metric is also not difficult,

especially considering the wide availability of free convex hull code. Additionally,

barring some initial image processing to obtain a thresholded image, the process

is completely automated, and requires minimal human interaction. It is therefore

our sincere hope that the scientific and medical communities may benefit from this

research, and that the CH2 metric might become a useful tool in the identification

of microvascular changes in medical and biological studies.
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