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ABSTRACT 

 

BIOCHAR EFFECTS ON SOIL MICROBIAL COMMUNITIES AND RESISTANCE OF 

ENZYMES TO STRESS 

Biochar, a product of the pyrolysis of organic material, has received wide attention as a 

means to improve soil fertility and crop productivity, absorb pollutants in soil, and sequester 

carbon to mitigate climate change.  Little information exists on the short- and longer-term effects 

of biochar on soil microbial communities and enzyme activities, relative to other organic 

amendments such as manure. Therefore, the objectives of this study were to determine the short 

and longer terms effects of biochar amendment on soil microbial communities, arbuscular 

mycorrhizal (AM) fungi, and enzyme activities in a semi-arid soil. Secondly, due to the porosity 

and surface area of biochar, enzyme stabilization on biochar was assessed to determine if biochar 

could prohibit the loss of extracellular enzyme activity following a denaturing stress.  

In a field study, a fast pyrolysis biochar (CQuest) derived from oak and hickory 

hardwood was applied to calcareous soil of replicate field plots in fall 2008 at a rate of 22.4 Mg 

ha-1 (dry wt.). Other plots received dairy manure (42 Mg ha-1 dry wt), a combination of biochar 

and manure at the aforementioned rates, or no amendment (control). Plots were annually cropped 

to corn (Zea maize L.).  Surface soils (0-30 cm) were sampled directly under corn plants in late 

June 2009 and early August 2012, one and four years after treatment application, and assayed for 

microbial community fatty acid profiles and six extracellular enzyme activities involved in C, N, 

and P cycling in soil. In addition, AM fungal colonization was assayed in corn roots in 2012.  

Relative to the manure treatment, biochar had no effect on microbial community biomass, 

community structure, extracellular enzyme activities, or root colonization of corn by AM fungi. 
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Manure amendment increased microbial biomass in 2009, when total FAME concentration was 

2.3-fold and 2.6-fold greater in manure and biochar plus manure treatments, respectively, 

compared to non-amended soil. The concentration of the AM fungal FAME biomarker 

(16:1ω5c) was significantly reduced by the manure treatments in 2009 (P=0.014) but not in 

2012. In 2009, principle components analysis (PCA) revealed shifts in the FAME structure of the 

soil microbial community in response to the manure treatments. However, the effects of manure 

on microbial biomass and community structure were short-lived, as no effects were observed in 

2012.  

A laboratory incubation study was conducted to determine whether biochar would 

stabilize extracellular enzymes in soil and prohibit the loss of potential enzyme activity 

following a denaturing stress such as microwaving. Soil was incubated in the presence of biochar 

(0, 1, 2, 5, or 10% by weight) and exposed to increasing levels of microwave stress. Results 

showed that extracellular enzymes responded differently to biochar rate, stress level and their 

interactions. The main effect of stress level was highly significant (P˂0.0001) on the potential 

activities of β-glucosidase, β-D-cellobiosidase, N-acetyl-β-glucosaminidase, and phosphatase 

enzymes. Potential activity of leucine aminopeptidase was significantly affected by biochar rate 

(P=0.016), stress level (P˂0.0001), and their interaction (P=0.0008).  In addition, potential 

activity of β-xylosidase was marginally affected by biochar’s interaction with stress level 

(P=0.066). The potential activity of these two enzymes were reduced after a 36-day incubation in 

the presence of biochar. For β-xylosidase, intermediate application rates (1 and 5 %) of biochar 

prevented a complete loss of this enzyme’s potential activity after soil was exposed to 400 (1% 

biochar treatment) or 1600 (5% biochar treatment) J microwave energy g-1 soil. In conclusion, 

this study demonstrated that land application of biochar may not affect microbial community 
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biomass, potential activities of soil enzymes, or AM fungal biomass in soil, or alter community 

structure, presumably because of the type of biochar employed in this study. Both biochar and 

manure added carbon to soil, but microorganisms were responsive to manure rather than biochar. 

While biochar had no effect on potential activity of soil enzymes in the field study, the 

laboratory incubation study revealed that biochar has the potential to stabilize extracellular 

enzymes and prohibit the loss of potential enzyme activity in soil when exposed to a denaturing 

stress. 
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CHAPTER 1 

INTRODUCTION 

Biochar is a form of black carbon (C) created by thermal degradation of organic material 

(e.g., wood, manure, leaves, etc.) in a low or zero oxygen environments (pyrolysis). It is 

distinguished from charcoal and similar materials by its use as a soil amendment (Lehmann and 

Joseph, 2009). Depending on the temperatures reached during pyrolysis and the initial properties 

of the feedstock used, biochar’s chemical and physical properties may vary (Keech et al., 2005; 

Gundale and DeLuca, 2006). For example, high-temperature pyrolysis (>550°C) produces 

biochars that generally have high surface areas (> 400m2 g-1) (Downie et al., 2009; Keiluweit et 

al., 2010), are highly aromatic and therefore recalcitrant to decomposition (Singh and Cowie 

2008), and are good adsorbents (Mizuta et al., 2004; Lima and Marshall, 2005). Low temperature 

pyrolysis (< 550°C), on the other hand, favors greater recovery of C and nutrients (e.g. N, K, and 

S) that are increasingly lost at higher temperatures (Keiluweit et al., 2010). Low-temperature 

biochars, which have a less-condensed C structure, are expected to have greater reactivity in soils 

than higher temperature biochars (Steinbeiss et al., 2009). Furthermore, when pyrolyzed, plant 

species with many large diameter cells in their stem tissues can lead to greater macropore 

quantities in biochar particles. Larger numbers of macropores can, for example, enhance the 

ability of biochar to adsorb larger molecules such as phenolic compounds (Keech et al., 2005).   

Because of its macromolecular structure which may contain aromatic C,  biochar  is  

more  recalcitrant  to microbial  decomposition  than  uncharred  organic matter  (Baldock  

and  Smernik,  2002).  Biochar is thought to have long mean residence times in soil, ranging 

from 1,000 to 10,000 years, with 5,000 years being a common estimate (Skjemstad et al., 1998; 

Swift, 2001; Krull et al., 2003). However, its recalcitrance and physical nature represent 
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significant obstacles to the quantification of long-term stability (Lehmann, 2007).  Figure 1.1 

shows the concept of pyrolysis of feedstock when biochar is produced and the heat and 

multitude of gaseous components that are captured to produce energy. 

  

 

Figure 1.1 Schematic representation of pyrolysis processes of organic materials to produce 

biochar along with biogases (Lehmann 2007). 

 

Recently, biochar application to soil is being considered as a mechanism for long-term 

storage of C and can play a key role in climate change mitigation by reducing atmospheric CO2 

concentrations (Lehmann et al., 2006). Biochar may also reduce soil greenhouse gas emissions, 

such as nitrous oxide (N2O) or methane (CH4). By trapping these gases in pores (Clough et al., 

2010; Gaunt and Lehmann, 2008), biochar may contribute to the decrease or a slowing of the 

increase in global warming. Biochar is also being examined as a means to improve soil fertility 
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as observed in Terra Preta soils. These soils feature over 70 times more biochar than the 

surrounding soil and have a high level of sustained fertility (Glaser et al., 2001). Biochar 

application has been shown to improve soil fertility by increasing the pH of acid soils (Van 

Zwieten et al., 2010a), increasing water retention (Rondon et al., 2006), reducing nutrient 

leaching (Laird et al., 2010) or adsorbing cations and natural organic matter (Liang et al., 2006).   

While biochar has been studied for its effects on soil chemical and physical properties, 

biochar’s effects on soil microbial communities are understudied. In a one of the few published 

studies, Thies and Rillig (2009) explained that biochar could have a positive effect on microbial 

community biomass by providing a habitat, where bacteria and fungi could escape from 

predators, as well as providing substrates to meet many of their diverse C, energy, and nutrient 

needs.  Also, some research has suggested that changes in soil microbial community composition 

may occur due to biochar as observed in Amazonian Dark Earths (Terra Preta). These soils have 

greater microbial biomass, and in some cases, greater diversity than the surrounding area (Kim et 

al., 2007).    

The effects of biochar on soil fungi and especially mycorrhizal fungi have received 

greater attention. Pioneering studies, conducted primarily in Japan, provided evidence that 

biochar can have positive effects on the abundance of arbuscular mycorrhizal (AM) fungi (Ishii 

and Kadoya, 1994), and Warnock et al. (2007) found that AM and ectomycorrhizal (EM) fungi, 

the most commonly occurring types of mycrorrhizal fungi, were positively affected by biochar. 

However, positive effects are not universal as other have found that biochar can negatively affect 

AM fungi abundance (Gaur and Adholeya, 2000; Birk et al., 2009; Warnock et al., 2010). 

Microbially-produced extracellular enzymes are important for organic matter 

decomposition and nutrient cycling for microbial as well as plant uptake. Some of these enzymes 
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are thought to be short-lived unless they are protected from proteolysis (Burns 1982; Nannipieri 

et al., 2002).  Biochar, with its capacity to absorb a wide range of organic and inorganic 

molecules, may provide a mechanism to protect these enzymes (Bailey et al., 2010; Jin, 2010; 

Lehmann et al., 2011), but in general, there is a poor understanding of the possible effects of 

biochar on these enzymes.  Currently, few studies have been conducted to examine the 

relationship between biochar and soil enzyme activity.  Bailey et al. (2010) studied the effects of 

fast pyrolysis switchgrass biochar on four soil enzymes (β-glucosidase, N-acetyl-β-

glucosaminidase, lipase, and leucine aminopeptidase) to determine if biochar would consistently 

modify soil enzyme activities. Their results showed that biochar had inconsistent and 

unpredictable effects on soil enzymes depending on the enzyme and the method they used. Jin 

(2010) showed that the activity of two C cycling enzymes (β-D-glucosidase and β-D-

cellobiosidase) decreased after biochar addition to soil.    

  My thesis addressed the effects of biochar amendment on soil microbial communities 

and enzymes involved in C, N and P cycling. Furthermore, because biochar has the potential to 

sorb enzymes, my thesis focused on the effect of biochar on enzyme stabilization when soils are 

subsequently exposed to a denaturing stress (i.e., microwave stress). Field and laboratory studies 

were conducted to examine the main objectives of my thesis.  The field study addressed the first 

objective, which was to 1) determine the short- and longer-term effects of biochar amendment on 

soil microbial communities, AM fungi, and enzyme activities. The laboratory study addressed 

the second objective, which was to 2) assess the potential for biochar to stabilize soil enzymes 

and increase enzyme resistance to microwave stress. Because biochar is a carbon source and its 

physical structure provides microbial habitats, I hypothesized that biochar would increase soil 

microbial biomass and shift microbial community structure towards greater relative abundances 
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of AM fungi. I also hypothesized that biochar would decrease extracellular enzyme activities in 

soil because of its ability to absorb these enzymes, but that enzyme activities would be resistant 

to stress disturbance in the future due to the stabilizing effect of biochar. I tested these 

hypotheses by analysis of variance tests with an α level of 0.05.   
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CHAPTER 2 

SHORT AND LONGER- TERM EFFECTS OF BIOCHAR AND MANURE AMENDMENT 

ON SOIL MICROBIAL COMMUNITIES, AM FUNGI, AND ENZYME ACTIVITIES  

INTRODUCTION 

Biochar is a form of black carbon (C) created by thermal degradation of organic material 

(e.g., wood, manure, leaves, etc.) in a low or zero oxygen environment (pyrolysis). It is 

distinguished from charcoal and similar materials by its use as a soil amendment (Lehmann and 

Joseph, 2009). As compared to higher temperatures (> 500oC), when organic material undergoes 

pyrolysis at relatively low temperature (< 550°C), the resulting biochar has a greater recovery of 

C and nutrients (e.g. N, K, and S) that potentially can increase soil fertility when land applied 

(Steinbeiss et al., 2009). Biochars also have reactive surfaces that can sorb and exchange 

nutrients and native organic matter (Liang et al., 2006). Biochar’s ability to enhance soil fertility 

has been demonstrated in tropical soils, where long-term biochar inputs have helpedcreate highly 

fertile soil known as Terra Preta, or Amazonian Dark Earth (Sombroek, 1966; Glaser et al., 

2001).  Yet, the fertility aspects of biochar land application are less understood in temperate 

climates, and especially semi-arid temperate climates. 

Only a few studies have examined the effects of biochar amendment on temperate, semi-

arid soils. Lentz and Ippolito (2012) studied the comparative effects of biochar vs. manure 

amendment on the chemical properties of calcareous soil in semi-arid temperate climate. The 

authors applied either 22.4 Mg ha-1 biochar or 42 Mg ha-1 manure and observed decreases in soil 

extractable Cu, Zn, P, K, Mg, Na, and NO3-N with biochar compared to manure application. 

However, no data were collected on the response of soil microbial communities or enzymes in 

this field study. 
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 Thies and Rillig (2009) hypothesized that biochar could have a positive effect on the 

biomass of microbial communities, by providing a habitat where bacteria and fungi could escape 

from predators as well as find substrates to meet many of their diverse C, energy, and mineral 

nutrient needs.  Also, some research has suggested that changes in soil microbial community 

composition may occur due to biochar as observed in Terra Preta soil. Terra Preta soils have 

greater microbial biomass, and in some cases, greater diversity than the surrounding area (Kim et 

al., 2007).   More specifically, pioneering studies have provided evidence that biochar can have 

positive effects on the abundance of arbuscular mycorrhizal (AM) fungi (Ishii and Kadoya 

1994). In another study, both AM and ectomycorrhizal fungi were positively affected by biochar 

presence (Warnock et al., 2007).  It has also been shown that AM colonization of wheat roots 

increased to 20-40% two years after Eucalyptus wood additions of 0.6-6 Mg ha-1, while the 

colonization rate was 5-20% in controls (Solaiman et al., 2010).  However, positive effects are 

not universal as other have found biochar additions to have negative effects on the abundance of 

AM fungi (Gaur and Adholeya, 2004; Birk et al., 2009; Warnock et al., 2010). 

Equally as important to potential shifts in microbial community structure and function, 

the effect of biochar on extracellular enzymes is not well understood.  Microbially-produced 

extracellular enzymes are important for decomposition of organic matter and cycling of nutrients 

for microbial as well as plant uptake. Biochar, with its capacity to absorb a wide range of organic 

and inorganic molecules, may affect enzymes by sorbing them and/or their substrates (Bailey et 

al., 2010; Jin, 2010; Lehmann et al., 2011).  Currently, limited studies have been conducted to 

examine the relationship between biochar and soil enzyme activity.  Bailey et al. (2010) studied 

the effects of biochar made from fast pyrolysis of switchgrass on four soil enzymes (β-

glucosidase, N-acetyl-β-glucosaminidase, lipase, and leucine aminopeptidase) to determine if 
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biochar would consistently modify soil biological activities. Their results showed that biochar 

had inconsistent and unpredictable effects on soil enzymes. 

It is important that biochar effects on soil biological properties be quantified, as microbial 

communities provide important supporting, regulating and provisioning soil ecosystem services 

(Comerford et al., 2013). In addition, microbial properties and enzyme activities are dynamic and 

highly sensitive to environmental change (Nannipieri et al., 2003), and thus changes in these 

properties might indicate potential long-term effects of biochar on soil nutrient cycling processes. 

Therefore, my objective was to determine the short- and longer-term effects of biochar 

amendment on soil microbial communities, AM fungi, and enzyme activities. My hypothesis was 

that biochar would increase soil microbial biomass and shift microbial community structure 

towards greater relative abundances of AM fungi, and that biochar would decrease extracellular 

enzyme activities in soil because of its ability to sorb these enzymes and/or their substrates. 

MATERIAL AND METHODS 

Study site, soil, and amendments  

A long-term field study was established in fall 2008 near Kimberly, Idaho (42°31′N, 

114°22′ W, elevation of 1190 m) to quantify the effects of a single biochar or manure application 

on crop productivity and soil quality. The soil was a Portneuf silt loam (coarse-silty, mixed 

superactive, mesic Durinodic Xeric Haplocalcids), pH 7.6, containing 20 % clay, 56% silt, 24% 

sand, 1.2% organic carbon, and having an 8.8% calcium carbonate equivalency. For 33 years 

prior to this study, the site was cropped to an alfalfa–corn–bean–grain rotation, and no manure 

had been applied since 1986. Additional details of the study site are described in Lentz and 

Ippolito (2012). 
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Manure and biochar chemical characteristics are presented in Table 1. Dairy cattle (Bos 

species) solid manure was obtained from unconfined piles from a local dairy. The material 

contained little or no straw bedding and comprised 55.3% solids at time of application. The 

biochar material was provided by Dynamotive Energy Systems (West Lorne, Ontario, Canada) 

and was marketed under the name CQuest. It was derived from oak and hickory hardwood 

sawdust and created by fast pyrolysis at 500°C. The biochar had an ash content of 14%, which 

was determined by using ASTM methods for wood charcoal (600°C). The biochar had an 

oxygen:carbon ratio of 0.22, a surface area of 0.75 m2 g-1, and its pH was 6.8. Additional details 

regarding the manure and biochar treatments are provided in Lentz and Ippolito (2012). 

Experimental Design   

  The experimental design was a randomized complete block design with three replicates 

and four treatments (control, biochar, manure, and biochar plus manure). Plots were 4.6 m wide 

and 5.2 m long and included eight planted rows. Each plot was separated by a 1.5 m-wide. Due 

to limited biochar availability, it was not possible to enlarge the plots or add additional blocks. 

Treatments were applied once, in November 2008. Details of the field operations are provided in 

Lentz and Ippolito (2012) but in brief, the field was prepared by growing spring barley 

(Hordeum vulgare L.) in 2008 and moldboard plowing to a 20-cm depth after barley harvest. 

Solid manure was hand-applied to the soil surface on Nov. 21, 2008, at a rate of 42 Mg dry wt 

ha-1. Three days later, biochar was hand-applied to appropriate plots at a rate of 22.4 Mg dry wt 

ha-1, immediately after which all plots were rototilled to a depth of 15 cm. The field was roller 

harrowed on April 21, 2009, and Round-Up ready silage corn (Zea mays L.) (Monsanto, St. 

Louis, MO) was planted annually in May and harvested in October during the 2009-2012 study. 

Corn was managed with standard, conventional methods, which included spring applications of 
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urea N fertilizer and herbicides to control weeds, and sprinkler irrigation every 7 to 14 days to 

meet crop evapotranspiration requirements (Lentz and Ippolito, 2012).  

  

Table 2.1 Selected chemical properties of biochar and manure applied to the experimental plots 

in November 2008. Data are from Lentz and Ippolito (2012). 

Property Units Biochar Manure 

pH  6.8 8.8 

EC dS m-1 0.7 13.4 

Ash % 14 ND† 

Total C % 66.2 26.4 

Total N % 0.32 2.15 

Organic 

N 
% 0.32 2.12 

NO3-N mg kg-1 1.5 80.6 

NH4-N mg kg-1 1.2 220 

K mg kg-1 3400 13500 

Ca mg kg-1 3700 22000 

Mg mg kg-1 1500 8230 

Na mg kg-1 200 3750 

P mg kg-1 300 4080 
†ND: Not Determined   

 

Soil Sampling 

 Soils were sampled in late June 2009 and again in early August 2012. The 2012 sampling 

occurred at the R1/silking stage. In 2009, four cores (0-30 cm deep) were collected from each 

plot and composited into one bag. In 2012, two cores (0-30 cm deep) were collected from one 

plant that was in the 5th row of the plot and 2 meters into the plot. The two cores were collected 

directly under the plant, one core on each side of the plant, in order to collect roots along with 

soil. Samples were stored on ice and transported in ice chests to the laboratory for analysis. Soils 

from 2009 were cryopreserved at -80°C. Soils from 2012 were sorted by hand to remove roots, 
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which were stored at 4°C for staining of AM fungi. Soil from 2012 was then divided and either 

stored at -20°C for microbial community and enzyme analyses or air-dried and stored at room 

temperature for chemical analyses.  

Soil Chemical Analyses 

Soil pH was determined using the method of Thomas (1996) using a 1:1 soil:deionized 

water extract. Total C and N were determined by dry combustion (Nelson and Sommers, 1996; 

Thermo-Finnigan FlashEA1112; CE Elantech Inc., Lakewood, NJ). A 2M KCl extract 

(Mulvaney, 1996) method was used to determine NO3-N and NH4-N content. Inorganic C 

analysis using a modified pressure-calcimeter method (Sherrod et al., 2002) and then total 

organic C was determined by difference between total and inorganic C.  

Soil Enzymes 

Potential soil enzyme activities were analyzed according to the florescence enzyme 

protocols described in Steinweg et al. (2013) and Bell et al. (2013).  The six enzymes assayed 

were three C-cycling enzymes (β-D-cellobiosidase, β-glucosidase, and β-xylosidase), 1 C/N 

cycling enzyme (N-acetyl-β-glucosaminidase), 1 N cycling enzyme (leucine aminopeptidase), 

and 1 P cycling enzyme (phosphatase).  

All assays included appropriate blanks, where soil suspensions were incubated in the 

absence of enzyme substrate. To correct for quenching of fluorescence signals by soil, biochar, 

or manure, standard curves were prepared for each replicate plot soil sample by incubating soil 

suspensions in the presence of increasing concentration of 4-methylumbelliferone (MUB) or 7-

amino-4-methylcoumarin (MUC) standard.  Incubations were conducted at 25ºC. Fluorescence 

measurements of the plates were read on a Tecan Infinite® M200 microplate (Tecan, Mannedorf, 

Switzerland) at 365 nm excitation and 450 nm emission wavelengths.  

Fatty Acid Methyl Ester (FAME) Extractions 
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Fatty acids were extracted from soil samples using the ester-linked FAME method 

(Schutter and Dick, 2000).  In brief, 3 g soil was extracted with 0.2 M methanolic KOH during a 

37°C, 1-h incubation with periodic mixing followed by pH neutralization with 1.0 M acetic acid. 

Hexane was then added to divide the FAMEs into an organic phase, followed by centrifugation 

(480×g for 10 min). The hexane layer was transferred to a clean tube and each tube was placed 

under a gentle stream of N2 to evaporate of hexane. Finally, each sample was redissolved in 

hexane and transferred to a gas chromatograph (GC) vial and 20 μg of internal standards (13:0 

and 19:0) were added before the hexane solvent was completely evaporated.  

Samples were then sent to the University of Delaware, where FAMEs were dissolved in 

1:1 hexane: methyl-tert-butyl ether and analyzed on a HP 6890 Series II gas chromatograph 

(Hewlett-Packard, Palo Alto, Calif.) equipped with a 25 m×0.2 m fused silica capillary column 

(5% diphenyl-95% dimethylpolysiloxane) and a flame ionization detector. FAMEs were 

identified and their relative peak areas determined by the MIS Aerobe method of the MIDI 

system (Microbial ID, Newark, DE). 

AM Fungal Root Colonization 

Arbuscular mycorrhizal fungal colonization of corn roots were quantified in 2012 using 

the magnified gridline intersect method detailed in McGonigle et al. (1990). Fine, fibrous roots 

were hand-picked from soil samples and washed in water to remove all particulates. Root 

staining followed the method outlined by the International Culture Collection of (Vesicular) 

Arbuscular Mycorrhizal Fungi (INVAM) (http://invam.wvu.edu/methods/mycorrhizae/staining-

roots). Roots were placed in rectangular plastic cassettes with 0.9 mm holes, and cleared in hot 

10% KOH to remove cytoplasmic contents from cells. To minimize agitation, we heated KOH in 

a large beaker over a Bunsen burner until boiling, turned off the burner, and immediately added 



16 

 

cassettes for a 10-minutes soak period. Afterwards the roots were washed five times in water and 

then immersed in 2% HCl for 20 minutes. Next, roots were stained with trypan blue, rinsed with 

five changes in water and stored at 4o C. Roots were mounted on glass slides and for each 

sample, 100 intersects were examined under a microscope at 400x magnification for AM fungal 

hyphae, arbuscules, and vesicles. 

Statistical Analysis  

Univariate data were analyzed by one-way analysis of variance (ANOVA) tests for a 

randomized complete block design in SAS (ver. 9.3, SAS Institute, Cary, North Carolina). Mean 

effects were separated using LSD at the =0.05 level. For microbial community analysis, FAME 

data were converted from nmol g-1 soil to relative percent basis. Data were then analyzed by 

principal components analysis (PCA) with the PC-ORD statistical package (MjM software, 

Gleneden Beach, OR, 1999). 

RESULTS 

Soil Chemical Properties 

 Treatment effects on soil chemical properties in 2009 are shown in Table 2.2). Manure 

and biochar + manure treatments increased total N 1.2- and 1.4-fold, respectively, compared to 

the control, while adding biochar alone did not change total N in soil. The biochar + manure 

treatment contained the greatest quantity of organic C (1.86%) as compared to all other 

treatments. When applied individually, biochar or manure increased organic C 1.6- fold, or 1.5-

fold, respectively, over control. Relative to the control, biochar + manure increased extractable P 

6-fold, while manure alone produced a 4-fold increase. Manure and biochar + manure treatments 

more than doubled soil NO3-N levels. Adding biochar alone had no influence on soil extractable 



17 

 

P, NO3-N, or NH4-N. In 2012, nearly four years after treatment applications, soil chemical 

properties were unaffected by biochar, manure, or biochar + manure (Table 2.3). 

 

Table 2.2 Soil chemical properties under corn in June 2009 (0-30 cm depth), after a November 

2008 application of biochar, manure, or biochar plus manure to experimental research plots 

(n=3). 

Treatment Total N 

Organic 

C  pH Ext.P NH4-N NO3-N 

    % %  mg kg -1   

Manure 0.11a† 1.14bc 7.49a 1.67a 2.48a 48.1a 

Biochar 0.09b 1.21b 7.59a 0.37b 1.38a 16.2b 

Biochar + Manure 0.13a 1.86a 7.60a 2.37a 2.47a 49.9a 

Control 0.09b 0.77c 7.60a 0.40b 1.37a 16.3b 

LSD 0.02 0.38 ns‡ 1.19 ns 17.6 

Pr > F 0.0078 0.0023 0.65 0.015 0.11 0.0043 
†Within columns, means followed by different letters are significantly different at α = 0.05.  
‡ns = not significant.              
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Table 2.3 Soil chemical properties under corn in August 2012 (0-30 cm depth), after a 

November 2008 application of biochar, manure, or biochar plus manure to experimental research 

plots (n=3). 

Treatment Total N 

Organic 

C pH Ext.P NH4-N NO3-N 

 % %             mg kg-1 

Manure 0.13a† 0.81a 7.76a 9.67a 1.70a 4.50a 

Biochar  0.12a 0.77a 7.73a 8.33a 1.40a 5.56a 

Biochar + Manure 0.12a 0.81a 7.76a 10.7a 2.10a 4.50a 

Control  0.13a 0.78a 7.80a 8.50a 1.40a 3.40a 

LSD ns‡ ns ns ns ns ns 

Pr > F 0.93 0.13 0.65 0.38 0.23 0.19 
†Within columns, means followed by different letters are significantly different at α = 0.05.  
‡ns = not significant. 

 

Soil Enzymes    

The majority of soil enzyme potential activities were not affected by any of the soil 

amendments in 2009 or 2012 (Tables 2.4 and 2.5). The only enzyme whose potential activity was 

strongly and significantly affected was β-xylosidase in 2009, where manure and biochar + 

manure increased the potential activity of β-xylosidase 4.7-fold and 5.6-fold, respectively, 

compared to control (Fig. 2.1).  By 2012, the effect of manure and biochar + manure on the 

potential activity of β-xylosidase was no longer significant (Fig. 2.2). 
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Table 2.4 Potential soil enzyme activities under corn in June 2009 (0-30 cm depth), after a 

November 2008 application of biochar, manure, or biochar plus manure to experimental research 

plots (n=3). 

 

 

Table 2.5 Potential soil enzyme activities under corn in August 2012 (0-30 cm depth), after a 

November 2008 application of biochar, manure, or biochar plus manure to experimental research 

plots (n=3). 

 

Treatment 

β-

glucosidase 

β-D-

cellobiosidase 

N-acetyl-β-

glucosaminidase Phosphatase 

Leucin 

aminopetidase 

 
                                                 nmol product g-1 dry soil 

Manure 72.3a
†
 44.1a 14.2a 164a 222a 

Biochar 112a 51.0a 17.4a 174a 223a 

Biochar + Manure 117a 48.5a 19.9a 163a 254a 

Control 67.5a 21.3a 10.1a 152a 214a 

LSD ns‡ Ns ns ns Ns 

Pr > F 0.12 0.37 0.47 0.52 0.58 

      
†
 Within columns, means followed by different letters are significantly different at α = 0.05.  

‡ns = not significant. 

 

 

 

Treatment 

β-

glucosidase 

β-D-

cellobiosidase 

N-acetyl-β-

glucosaminidase Phosphatase 

Leucine 

aminopetidase 

                                                     nmol product g-1 dry soil h-1 

Manure 113a
†
 46.2a 26.7a 141a 170a 

Biochar  87.1a 24.2a 15.1a 138a 417a 

Biochar + Manure 112a 35.1a 22.2a 168a 501a 

Control  83.1a 35.4a 23.2a 104a 358a 

LSD ns‡ Ns ns ns Ns 

Pr > F 0.91 0.74 0.80 0.79 0.25 
†
 Within columns, means followed by different letters are significantly different at α = 0.05.  

‡ns = not significant. 
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Figure 2.1 Potential activity of β-xylosidase under corn in June 2009 (0-30 cm depth), 

after a November 2008 application of biochar, manure, or biochar plus manure to 

experimental research plots (n=3). Histogram bars labeled by the same letter are not 

significantly different (α = 0.05). 

 

 

 

Figure 2.2 Potential activity of β-xylosidase under corn in August 2012 (0-30 cm depth), 

after a November 2008 application of biochar, manure, or biochar plus manure to 

experimental research plots (n=3). Histogram bars labeled by the same letter not 

significantly different (α = 0.05). 
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Microbial Community FAME Structure 

  Microbial biomass in 2009, as estimated by total concentration of FAMEs, was 

significantly affected by the amendment applied (Fig. 2.3). Total FAME concentration was 

greater in manure and biochar + manure treatments, which increased microbial FAME biomass 

2.3-fold and 2.6-fold, respectively, as compared to the control. Adding biochar alone, however, 

did not increase microbial biomass. In 2012, no significant difference in total FAME biomass 

was detected among the treatments (Fig 2.4). 

 

 

Figure 2.3 Total FAME concentration under corn in June 2009 (0-30 cm depth), after a 

November 2008 application of biochar, manure, or biochar plus manure to experimental 

research plots (n=3). Histogram bars labeled by the same letter are not significantly 

different (α = 0.05). 
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Figure 2.4 Total FAME concentration under corn in August 2012 (0-30 cm depth), after 

a November 2008 application of biochar, manure, or biochar plus manure to experimental 

research plots (n=3). Histogram bars labeled by the same letter are not significantly 

different (α = 0.05). 

 

 The FAME biomarker for AM fungi (16:1ω5c) was significantly affected by treatments 

in 2009. The concentration of 16:1ω5c was significantly lower in manure and biochar + manure 

treatments than in soil receiving biochar alone or no amendment (Fig. 2.5).  In 2012, all soil 

communities contained similar amount of 16:1ω5c, and there were no significant effects of the 

soil amendments (Fig. 2.6).   
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Figure 2.5 Concentration of FAME biomarker for AM fungi (16:1ω5c) under corn in June 

2009 (0-30 cm depth), after a November 2008 application of biochar, manure, or biochar 

plus manure to experimental research plots (n=3). Histogram bars labeled by the same 

letter are not significantly different (α = 0.05). 

 

 

Figure 2.6 Concentration of FAME biomarker for AM fungi (16:1ω5c) under corn in 

August 2012 (0-30 cm depth), after a November 2008 application of biochar, manure, or 

biochar plus manure to experimental research plots (n=3). Histogram bars labeled by the 

same letter are not significantly different (α = 0.05). 
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In 2009, principle components analysis (PCA) revealed shifts in the FAME structure of 

soil microbial communities in response to soil amendments (Fig. 2.7). Communities separated 

along Principle Component 1 (PC1) according to whether they had received manure (either alone 

or in combination with biochar) or not. Communities from biochar and control soils grouped 

along the negative regions of both PC1 and PC2, and clearly separated from manure and biochar 

+ manure plots. According to multi-response permutation tests for a blocked design, marginally 

significant differences between treatments were found for manure versus biochar (P=0.062), 

manure versus control (P = 0.064), and biochar + manure vs. biochar (P=0.073). The AM fungal 

biomarker, (16:1ω5c), was negatively correlated with PC 1 (r=-0.72) and positively with PC 2 

(r=0.43). In 2012, clear differences in soil microbial community structures due to treatments 

were not as evident as was observed in 2009 (Fig. 2.8). Furthermore, MRBP analysis showed no 

significant differences among treatments (P=0.77).  
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Figure 2.7 Principle components analysis (PCA) of microbial community fatty acid methyl 

esters (FAMEs) under corn in June 2009 (0-30 cm depth), after a November 2008 

application of biochar, manure, or biochar plus manure to experimental research plots 

(n=3). 

 

 

Figure 2.8 Principle component analysis (PCA) of microbial community fatty acid methyl 

esters (FAMEs) under corn in August 2012 (0-30 cm depth), after a November 2008 

application of biochar, manure, or biochar plus manure to experimental research plots 

(n=3). 
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In 2012, the percentage of mycorrhizal colonization in corn roots was analyzed. Data 

were expressed by summing occurrences of hyphae, arbuscules and vesicles. Manure application 

decreased mycorrhizal colonization 27% relative to roots from control plots. Root colonization 

was also lower, at 17%, in biochar + manure application. Biochar did not impact root 

colonization, with levels that were similar to control (Fig 2.9). 

 

 
Figure 2.9 Percent colonization of corn roots by AM fungi in 2012 plots receiving 

manure, biochar, or both, three years after application (n=3). Histogram bars labeled 

by the same letter are not significantly different (α = 0.05). 

 

DISCUSSION 

The purpose of this study was to determine the short and longer-term effects of a biochar 

amendment on soil properties, in comparison to a common organic soil amendment (manure). 

We found that biochar had relatively few effects on soil chemical and microbial properties, 

relative to manure, and that regardless of the treatment, effects were mainly temporary and did 

not extend to three years post-application. In this study, microbial community biomass and 

structure were largely affected by manure in the short-term, but not biochar. Both biochar and 
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manure increased soil organic C levels to similar amounts, and even more so when applied 

together. Increases in organic C were likely the result of biochar and manure C input since those 

compounds contain relatively high amounts of organic C. Similar observations were found by 

Rogovska et al. (2011), Bolan et al. (2012), and Yang et al. (2013). However, the lack of 

microbial biomass response to biochar indicated that little of the biochar C was available for 

microbial degradation. In addition, biochar did not enhance total N, NH4-N, NO3-N, as well as 

available P in soil, indicating that the biochar used and/or the rate at which it was applied, was 

not as effective at improving nutrient availability as was manure (Lentz and Ippolito, 2012).   

 Other researchers have suggested that biochar benefits microbial communities by 

enhancing the physical and chemical characteristics of the soil (Lehmann and Joseph 2009; 

Atkinson et al., 2010; Jindo et al., 2012), providing suitable habitats for microorganisms that 

protect them from predators (Pietikäinen et al., 2000), supplying labile C substrates for 

degradation (Thies and Rillig, 2009; Smith et al., 2010), enhancing the availability of macro-

nutrients such as N and P (Atkinson et al., 2010; Lammirato et al., 2011), or sorbing compounds 

that would otherwise inhibit microbial growth (Kasozi et al.,2010). To date, these mechanisms 

have been poorly studied and are mainly discussed in terms as possible explanations. The results 

of this study show that biochar has no effect on microbial communities compared to manure. An 

inconsistent effect of biochar on microbial communities suggests that biochar effects are likely 

biochar-specific, related to the rate applied to soil, or related to site and soil characteristics. For 

example, others have found no effect of biochar on microbial communities when the biochar 

does not affect the pH of an already neutral or alkaline soil (Meynet et al., 2012), or when 

biochar does not provide enough labile C substrates (high pyrolysis temperature) or nitrogen 
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(hardwood biochar) to stimulate microbes (Bruun et al., 2011; Luo et al., 2011; Novak et al., 

2012).  

The results of this study did not support our hypothesis that biochar amendment would 

negatively affect soil enzyme potential activities. This hypothesis was based on previous studies 

that reported substrate sorption by biochar that may inhibit the enzyme- substrate reaction by 

blocking reaction sites. Biochar sorption capacity is likely affected by the porosity and cation 

exchange capacity of this material (Thies and Rilling, 2009; Jindo et al., 2012). Because of 

different behaviors of biochar in soil, different adsorption behaviors and biological activities may 

be observed due to widely varying pH, surface area, pore size distribution, and charge properties 

(Brewer et al., 2009; Gaskin et al., 2009). In one study where 0 or 2% biochar (w/w) was added 

to three soil types, Bailey et al. (2010) observed varied effects of biochar on soil enzymes and 

attributed this to either stimulation of the microbial activity or blocking or sorption of the 

substrates.  

 The expected benefit of biochar on the AM fungi biomarker (16:1ω5c) in soil was not 

confirmed in this study. Our study differed from a recent study conducted by Ameloot at el. 

(2012), who found a remarkable increase in the 16:1ω5c AM fungal marker in a low temperature 

biochar treatments compared to the control treatment. Similarly, Warnock et al. (2007) reported 

that biochar enhanced AM fungal populations in soil by several mechanisms including: (1) 

changes in chemical and physical properties, (2) indirect effects on mycorrhizae through effects 

on other microbes, (3) plant–fungal signaling interference, (4) sorption of inhibitory chemicals 

on biochar, and (5) protection from fungal grazers.   

  In this study, biochar had neutral effects on soil AM fungal biomass and corn root 

colonization. Greater differences in AM fungal biomass and root colonization were observed 
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with the manure treatment; both were negatively impacted by manure application in 2009.  This 

was likely due to increased soil fertility following manure application. When P and other 

nutrients are abundant (such as when following manure addition), plants rely less on AM fungi to 

supply nutrients and root colonization and AM fungal biomass in soil is reduced (Corbin et al., 

2003; Covacevich et al., 2006; Gryndler et al., 2006).      

CONCLUSIONS 

The aim of this study was to evaluate the effects of biochar on the soil microbial 

community, AM fungi, and potential soil enzyme activities relative to a common organic soil 

amendment (manure). This study demonstrated that additions of a hardwood-derived, fast-

pyrolysis biochar did not affect microbial community biomass, structure, soil enzyme activities, 

AM fungal biomass in soil, or AM fungal colonization of corn roots, in a calcareous soil when 

applied at 22.4 Mg dry wt ha-1.  Therefore, this study demonstrated that biochar additions do not 

always affect soil microbial communities. Land disposal of biochar may be an effective means to 

sequester C, but if growers wish to apply a carbon-based soil amendment to enhance microbial 

growth and activity, manure rather than biochar would likely be more effective in the short-term.   
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CHAPTER 3 

STABILIZING EFFECT OF BIOCHAR ON SOIL EXTRACELLULAR ENZYMES  

AFTER A DENATURING STRESS 

INTRODUCTION 

Extracellular enzymes are the primary means by which soil bacteria and fungi degrade 

insoluble macromolecules, including soil organic matter (SOM) and detritus, into smaller soluble 

molecules that can be microbially assimilated (Dick, 2002). Extracellular enzymes allow 

microbes to access unavailable carbon and nutrients in SOM by catalyzing the first step of 

decomposition and nutrient mineralization, i.e., depolymerization of complex carbon substrates 

too large to enter microbial cells. Plant components such as cellulose, hemicellulose, and lignin, 

and microbial cell wall materials are among the more abundant soil organic compounds that are 

degraded enzymatically. However, extracellular enzymes may be found in different soil 

locations; they may be associated with biotic components such as proliferating and non-

proliferating cells or with dead cells and cell debris, or sorbed to clay minerals or soil colloids 

(Burns, 1982).  Extracellular enzymes associated with humic colloids and clay minerals may 

have a relatively long half-life (compared to enzymes in the soil aqueous phase), with these 

associations likely the best form of protection from the environment (Burns, 1982).  Ladd (1978) 

demonstrated that many enzymes are capable of binding to humic material, giving the enzymes a 

persistence they would not otherwise display in the hostile extracellular environment of the soil.      

Enzyme stabilization may maintain enzymatic activity and also protect against 

proteolysis and other denaturing events (Skujins, 1976; Nannipieri et al., 1996; Nannipieri et al., 

1988). Yet, we are still at the beginning of practical applications to manipulate stabilized 

enzymes for beneficial ecosystem services such as bioremediation, C sequestration, and plant 
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growth promotion. Jastrow et al. (2007), for example, proposed that by modifying the soil 

physicochemical environment, fungal growth and their extracellular enzymes could be promoted 

for C sequestration. Amonette et al. (2009) purposely tested the ability of four alkaline fly ashes 

to stabilize tyrosinase enzymes, finding that enzyme activity was protected in the presence of fly 

ash, although the mechanism of stabilization was not elucidated.  Another material, biochar, with 

its potential capacity to sorb a wide range of organic and inorganic molecules, may affect 

enzymes (and inherently their activity) by sorbing them and/or their substrates (Bailey et al., 

2010; Jin, 2010). In general, however, there is a poor understanding of the possible biochar 

effects on soil extracellular enzymes in biochar-amended soil.  

Currently, there is interest in biochar creation and land application for the purposes of 

biogas production, C sequestration, and increasing soil fertility (Lehmann et al., 2006). Because 

of its porous nature, researchers have speculated that biochar can provide habitats for bacteria 

and fungi (Thies and Rillig, 2009). If biochar can attract soil microbes and sorb extracellular 

enzymes, it is possible that biochar could stabilize enzymes and protect enzymes from 

degradation or denaturation during environmental stress. Biochar could thus be a useful material 

in cases where enzyme stabilization is desired. Therefore, the objective of this study was to 

determine the stabilizing effect of biochar on enzyme activities exposed to a denaturing stress, in 

this case microwaving.  

MATERIAL AND METHODS 

Soil and Biochar 

Biochar-free soil (0-30 cm depth) was collected November 2012 from the border of a 

research field located near Kimberly, Idaho (42°31′N, 114°22′ W, elevation of 1190 m). The soil 

was a Portneuf silt loam (coarse-silty, mixed superactive, mesic Durinodic Xeric Haplocalcids) 
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with 20% clay, 56% silt, and 24% sand, 1.2% organic C, and an 8.8% calcium carbonate 

equivalency. The electrical conductivity (EC) of the soil was 0.50 dS m−1 and its pH was 7.6 

(saturated paste; Thomas, 1996; Rhoades, 1996). Prior to the study, the soil was air-dried and 

passed through a 2-mm mesh sieve.  

Biochar was provided by Dynamotive Energy Systems (West Lorne, Ontario, Canada) 

and was marketed under the name CQuest. It was derived from oak and hickory hardwood 

sawdust and created by fast pyrolysis at 500°C. As described by Lentz and Ippolito (2012), the 

biochar had an ash content of 14%, an oxygen:carbon ratio of 0.22, a surface area of 0.75 m2 g-1, 

and a pH of 6.8. Additional details regarding biochar chemical properties are listed in Table 3.1 

 

Table 3.1. Selected chemical properties of a fast pyrolysis, hardwood-derived biochar (CQuest) 

used in the laboratory incubation study. Data are from Lentz and Ippolito (2012). 

Property Units Biochar 

Surface Area m2 g-1 0.75 

Ph  6.8 

EC dS m-1 0.7 

Ash % 14 

Total C % 66.2 

Total N % 0.32 

Organic N % 0.32 

NO3-N mg kg-1 1.5 

NH4-N mg kg-1 1.2 

K mg kg-1 3400 

Ca mg kg-1 3700 

Mg mg kg-1 1500 

Na mg kg-1 200 

P mg kg-1 300 
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Incubation Experiment 

The incubation experiment was conducted with five biochar treatments (0%, 1%, 2%, 

5%, and 10% biochar in soil, wt:wt), each replicated 20 times in glass scintillation vials. Final 

dry weight of soil plus biochar in each vial was 10.0 g. Soil and biochar were mixed by placing 

the vials on their sides and gently rolling the vials until biochar was mixed thoroughly with soil. 

After mixing, 1.8 ml of distilled water was added to each vial to achieve a moisture content of 

18%, which was equivalent to 60% of the soil’s water holding capacity. All vials were weighed, 

and then they were loosely capped and incubated for 36 days at 25oC. The length of the 

incubation was arbitrarily selected to allow microbial biomass to recover from being air-dried 

and rewetted and to allow enzyme production. Water was added to each vial every two or three 

days to maintain constant water content.   

Microwave irradiation  

Following the incubation period, soils were subjected to microwave (MW) stress using a 

650 Watt household-type MW oven. Microwave (MW) stress was selected because of its 

denaturing ability through heat, as well as moisture reduction. Others have successfully 

employed this strategy to inhibit microbial activity and examine extracellular enzyme stability 

(Knight and Dick, 2004).    The power output of the MW was determined according to Neas and 

Collins (1988), by measuring the rise in temperature of 1000 mL of distilled water (initial 

temperature 21oC) in a 1-L beaker after microwaving at full power for two minutes. The power 

output was calculated as:  

P=Cp KΔT m/t 

where P is the apparent power absorbed by the water sample (J s-1), Cp is the heat capacity of 

water (J ml-1 oK-1), K is a factor (4.184) to convert thermal chemical cal ml-1 oK-1 to watts (J s-1), 
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ΔT (oC) is the difference between final temperature and initial temperature of water, m is the 

mass of the water (g); and t is the duration (s) of MW energy application. Using this equation, 

the MW oven output was calculated as 675 W (J s-1).  

The 20 replicates of each biochar treatment were divided into 5 stress levels and 

microwaved for different lengths of time to achieve microwave energy “stress” levels of 0, 400, 

800, 1600, and 3200 J g-1 soil. Random vials were immediately measured for soil temperature, 

and a subsample of each vial was placed in an oven at 105C for 24 hours for gravimetric water 

content determination. 

Enzyme Assays 

Dehydrogenase activity was measured immediately following the microwave stress 

according to the method of Trevors (1984). As an intracellular enzyme, this enzyme was 

employed as an indicator of microbial activity and its response to microwaving. The potential 

activities of six extracellular enzymes were quantified according to fluorescence enzyme 

protocols as described in Steinweg et al. (2013) and Bell et al.  (2013) The six enzymes included 

three C-cycling enzymes (β-D-cellobiosidase, β-glucosidase, and β-xylosidase), 1 C and N 

cycling enzyme (N-acetyl-β-glucosaminidase), 1 N cycling enzyme (leucine aminopeptidase), 

and 1 P cycling enzyme (phosphatase).  

All assays included appropriate blanks, where soil suspensions were incubated in the 

absence of enzyme substrate. To correct for quenching of fluorescence signals by soil and 

biochar, standard curves were prepared for each sample by incubating soil suspensions in the 

presence of increasing concentration of 4-methylumbelliferone (MUB) or 7-amino-4-

methylcoumarin (MUC) standard.  Incubations were conducted at 25º C. Fluorescence 
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measurements of the plates were read on a Tecan Infinite® M200 microplate (Tecan, Mannedorf, 

Switzerland) at 365 nm excitation and 450 nm emission wavelengths. 

Statistical Analysis  

Statistical analyses of the data were performed with SAS version 9.3 (SAS Institute, 

Cary, North Carolina) using the Proc Mixed procedure. Two-way factorial analysis of variance 

(ANOVA) tests were performed to determine the effect of biochar rate, stress level, and their 

interaction on enzyme activities (=0.05).  

RESULTS 

Stress Effects on Soil Temperature, Moisture, and Microbial Activity  

Microwaving provided stress through heat and loss of soil water, and the effect of 

microwave stress on soil water loss was influenced by biochar treatment. At the lowest stress 

level (400 J g-1 soil), loss of soil water was significantly reduced in soil amended with 10% 

biochar, compared to soil amended with 0%, 1%, or 2% biochar (P=0.012) (Fig. 3.1). The 

attenuation of moisture loss by the 5% biochar treatment was marginally significant (P=0.058) at 

this stress level.  A dramatic loss of soil water occurred when MW energy was 800 J g-1 soil, at 

which more than 80% of the total soil moisture was lost in soil with 0% and 1% biochar (Fig. 

3.1).   Soil moisture content was slightly higher at 2%, 5%, and 10%, biochar but the differences 

were not statistically significant.   At this stress level, soil temperature rose to approximately 

70ºC in all soils.  All soils reached 0% water content when MW irradiation applied was 1600 J   

g-1 soil. Soil temperature reached 100◦C with energy applied at 1600 or 3200 J g-1 soil. 
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Figure 3.1 The effect of microwave energy stress on the moisture content of soil after 36 

days of incubation with either 0, 1, 2, 5, or 10% biochar amendment to soil (wt:wt). Error 

bars represent the standard error of the mean (n=4). 

 

Microbial activity, as indicated by dehydrogenase activity, decreased with increasing 

MW energy up to 800 J g-1 but then increased at higher energy levels (Fig. 3.2). Dehydrogenase 

activity was significantly lower after exposure to 800 J g-1 soil than after exposure to 0, 1600, or 

3200 J g-1. At 3200 J g-1 of microwave energy, dehydrogenase activity was at a level that was 

significantly greater than the other MW energies (P=0.01).      
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Figure 3.2 The effect of microwave energy stress on dehydrogenase activity in soil after 

36 days of incubation with either 0, 1, 2, 5, or 10% biochar amendment to soil (wt:wt). 

Histogram bars labeled with different letters are significantly different (α=0.05) 

 

Extracellular Soil Enzymes 

In this study, extracellular enzyme activities were differentially affected by biochar rate, 

stress level, and their interaction. Main effect of stress level (but not biochar) was highly 

significant (P˂0.0001) on the activities of β-glucosidase, β-D-cellobiosidase, N-acetyl-β-

glucosaminidase, and phosphatase. The potential activity of these enzymes decreased 

dramatically with increasing MW energy, regardless of biochar rate. Potential activities of β-D-

cellobiosidase and N-acetyl-β-glucosaminidase fell below detection limits when MW energy was 

applied at 3200 J g-1, whereas β-glucosidase and phosphatase potential activity were at relatively 

low activity levels (Table 3.2).  
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Table 3.2 The effects of microwave energy stress on the mean (± 1 standard error) of β-

glucosidase (BG), β-D-cellobiosidase (CB) N-acetyl-β-glucosaminidase (NAG), and phosphatase 

(PHOS) potential activity in soil (nmol g-1 soil h-1), averaged across biochar treatments. 

Enzyme 

Microwave energy (J g-1 soil)  

0 400 800 1600 3200 

    

BG 36.0 ± 5.76a 5.70 ± 1.57b 2.76 ± 0.75b 0.27 ± 0.23b 0.15 ± 0.14b 

CB 4.11 ± 0.80a 1.10 ± 0.37a 0.38 ± 0.20a 2.16 ± 0.21a 0.00 ± 0.00a 

NAG 3.69 ± 0.41a 0.80 ± 0.27b 0.37 ± 0.22b 0.41 ± 0.29b 0.00 ± 0.00b 

PHOS 60.0 ± 8.08a 23.6 ± 2.27b 8.98 ± 0.89bc 0.95 ± 0.41c 0.21 ± 0.15c 
†Within rows, means followed by different letters are significantly different at  = 0.05. 

 

In contrast, a different pattern was observed for leucine aminopeptidase potential activity, 

which was significantly affected by biochar rate (P=0.016), stress level (P˂0.0001), and their 

interaction (P=0.0008). Prior to stress exposure, leucine aminopeptidase potential activity was 

significantly reduced in soils receiving 1%, 2% or 5% biochar compared to control soil and soil 

receiving 10% biochar (Fig. 3.3). When soils were exposed to 400 or more J g-1, potential 

activity declined in all soils to the point where no difference among biochar treatments existed. 

Cessation of the potential enzyme activity was observed in all soils when MW energy was 

applied at 1600 or 3200 J g-1 soil.   

 



44 

 

 

Figure 3.3 The effect of microwave energy stress on leucine aminopeptidase potential 

activity in soil after 36 days of incubation with either 0, 1, 2, 5, or 10% biochar 

amendment to soil (wt:wt). Error bars represent the standard error of the mean (n=4). 

 

For β-xylosidase potential activity, the interaction effect of biochar and stress level was 

marginally significant (P=0.066). Without any microwave stress, biochar reduced potential 

activity of this enzyme regardless of application rate (Fig. 3.4). When exposed to a stress of 400 

J g-1, potential activity remained steady in soil receiving 1% biochar, whereas potential activity 

declined in all other treatments. After a stress exposure of 1600 J g-1, β-xylosidase potential 

activity increased in 5% biochar amended soil and was significantly greater than the activities of 

the other soils.  
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Figure 3.4 The effects of microwave energy stress on β-xylosidase activity in soil after 

36 days of incubation with either 0, 1, 2, 5, or 10% biochar amendment to soil (wt:wt). 

Error bars represent the standard error of the mean (n=4). 

 

DISCUSSION 

In this study, dehydrogenase activity, an enzyme that only functions inside the cell, 

decreased with increasing MW irradiation up to 800 J g-1 and then increased with increasing MW 

irradiation up to 3200 J g-1 (Fig 3.2). The measurement of this enzyme was used to confirm that 

the stress applied was strong enough to kill living microbes and denature their intracellular 

enzymes, but not necessary affect stabilized extracellular enzymes. We observed that soil 

temperature rose to approximately 100°C when MW stress applied was ≥ 1600 J g-1, and this 

might have stimulated the abiotic reduction of tetrazolium salt utilized in the assay and 

subsequently affected the colorimetric measurement of dehydrogenase activity. A similar result 

was found by Ciardi (1998) when dehydrogenase activity was measured at high temperature. The 

author found that dehydrogenase activity was still measurable at high temperature, and activity 

was even greater at 200°C that at 150°C in both fresh and air-dried soils.  It is likely that with 
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temperatures of 100°C or more, the measured activities may be mainly driven by abiotic 

reactions such as hydrolysis, oxidation, and reduction that are masked at lower temperature. Such 

results demonstrate the need to develop a new method that can accurately evaluate 

dehydrogenase activity in soil affected by high temperature stress.   

Soil enzymes are active in different soil locations. Burns (1982) named 10 categories of 

soil enzyme location. Enzymes might be associated with biotic components such as proliferating 

and non-proliferating cells (spores, cysts, etc.) or with dead cells and cell debris, or stabilized on 

clay minerals and humic colloids. Possibly stabilized enzyme on soil colloids can maintain their 

activity for extended periods of time (Burns, 1982; Nannipieri et al., 1996; Knight and Dick, 

2004).  In the present study, we tested if stabilized enzymes would be more resistant to 

microwave denaturation after enzymes were incubated in the presence of biochar. The results 

demonstrated that the ability of biochar to stabilize enzymes was dependent on the biochar 

application rate and the enzyme itself.  

After a 36-day incubation period, biochar amendment did not affect potential activities of 

β-glucosidase, β-D-cellobiosidase, N-acetyl-β-glucosaminidase, or phosphatase, suggesting that 

biochar did not sorb these enzymes or their substrates/products during the enzyme assay. This 

contrasts with findings of Bailey et al. (2010) and Jin (2010), who noted reduction of enzyme 

activities in biochar-amended soil. Jin (2010) examined the effect of corn stalk biochar (slow 

pyrolysis at 550ºC) at rate of 0, 1, 12, and 30 Mg ha-1 on potential activity of two carbohydrate 

enzymes (β-D-glucosidase and β-D-cellobiosidase), and found that activities decreased after 

biochar additions to soils. Bailey et al. (2010) tested the effects of fast-pyrolysis biochar 

produced from swithchgrass on the potential activity of purified enzymes, and observed 

decreases in glucosidase potential activity.   In the current study, biochar-induced reduction of 
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enzyme activities occurred only for leucine aminopeptidase and -xylosidase. Leucine 

aminopeptidase is an enzyme that preferentially catalyzes the hydrolysis of leucine residues at 

the N-terminus of peptides and proteins (Rawling and Barrett, 2004; Matsui et al., 2006). Β-

xylosidase is essential for the complete breakdown of xylans (the major hemicellulose 

component in plant cell walls) and is produced by plant, animals and microbes (Poutanen and 

Puls, 1988; Nanmori et al., 1990; Saha, 2002). This study showed that all biochar treatments 

reduced potential activity of xylosidase enzyme in non-stressed soil, whereas intermediate rates 

(1-5%) of biochar amendment reduced the potential activity of leucine aminopeptidase. The 

reductions are likely related to the sorption or masking of enzymes, rather than sorption of 

substrates or products (as the assay corrected for quenching), presumably due to biochar porosity 

and reactive surface area (Thies and Rilling, 2009; Jindo et al., 2012). In contrast, the highest 

biochar application rate (10%) resulted in leucine aminopeptidase potential activity equivalent to 

the control treatment, which suggests that at high enough rates, biochar might stimulate enzyme 

production or protect enzymes from degradation so that higher activities are detected.   

Previous studies have showed that the enzymes in soils are resistant to denaturation by 

heat and other stresses when associated with abiotic fraction such as soil colloids and clay 

minerals (Hayano and Katami, 1977; Deng and Tabatabai, 1997 Miller and Dick, 1995; 

Nannipieri et al., 1996). To date, this is the first study we are aware of that examines the 

potential application of biochar for the purposeful stabilization of extracellular enzymes in soil. 

This study found that biochar had variable effects on soil enzymes in terms of protecting 

enzymes from a denaturing stress. When exposed to microwave stress, leucine aminopeptidase 

potential activity declined with increasing stress levels, although at 800 J g-1, potential activity 

was somewhat (but not significantly) maintained to a greater degree in soil amended with 1% 



48 

 

biochar compared to the other treatments. Interestingly, the 1% biochar treatment also 

maintained -xylosidase potential activity when soil was exposed to 400 J g-1 of microwave 

stress, while a greater concentration of biochar (5%) protected -xylosidase potential activity 

upon exposure to an even greater stress level (800 J g-1). 

Very little is known about the stabilization of extracellular enzymes interacting with 

biochar. It is likely that the size matching between pore size of biochar and the molecular 

diameter of enzymes will play a key role in achieving high enzymatic stability (Klibanov, 1983). 

Many other factors such as the temperature stability range and isoelectric point might also play 

an important role in enzyme stability, especially at high temperature.  Both leucine 

aminopeptidase and -xylosidase are relatively small in size (28-400 kDa and 20-120 kDa, 

respectively) and have a wide temperature stability range (25-100C and 30-95C, respectively) 

(Schomburg et al., 2013). Leucine aminipeptidase also has a high isoelectric point (8.2), meaning 

that this enzyme carries a net positive surface charge in soils below pH of 8.2, including the soil 

employed in this study (pH=7.6). In comparison, β-D-cellobiosidase and β-N-

acetylglucosaminidase have relatively lower ranges of temperature stability (40-80C and 20-

37C, respectively) and lower isoelectric points (3.8 and 4.6, respectively) (Schomburg et al., 

2013). These enzymes would carry net negative surface charge, which might affect their ability 

to be stabilized on biochar. Others have found that enzyme size was important for enzyme 

stabilization on nanostructures such as mesoporous silica (Diaz and Balkus, 1996), but further 

research is necessary to understand the mechanisms of enzyme stabilization on biochar.  

CONCLUSION 

Extracellular enzymes are very important for decomposition of organic material and 

nutrient cycling.  The aim of this study was to determine if biochar added to soil would stabilize 
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soil extracellular enzymes so that enzymes would retain potential activity after a denaturing 

stress. At the rates applied, biochar showed different effects on the enzyme studied. While most 

of the enzymes were not stabilized by biochar, β-xylosidase and leucine aminopeptidase were 

stabilized and protected to some degree from microwave stress by intermediate rates of biochar 

application. This study found that biochar’s ability to stabilize enzymes appears to be enzyme 

specific as well as biochar rate specific. More research is needed to understand the mechanism(s) 

by which biochar stabilizes some extracellular enzymes but not others, and how stabilization is 

affected by different biochars and biochar concentrations in soil.  
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CHAPTER 4 

CONCLUSIONS 

The aim of this thesis work was to investigate the short and longer-term effects of biochar 

on soil microbial community, potential enzyme activity, and AM fungi root colonization in a 

semi-arid soil. It also sought to determine if adding higher rates of biochar would stabilize soil 

extracellular enzymes and increase enzyme resistance to a denaturing stress (i.e., microwaving).  

This study demonstrated that additions of a hardwood-derived, fast-pyrolysis biochar did 

not affect microbial community biomass, structure, soil enzyme activities, AM fungal biomass in 

soil, or AM fungal colonization of corn roots, when applied at 22.4 Mg dry wt ha-1. In contrast to 

most published studies, soil enzyme activities were not depressed in the biochar-amended soil 

relative to control soil. Therefore, this study demonstrated that biochar additions do not always 

affect soil microbial communities. Land disposal of biochar may be an effective means to 

sequester C, but if growers wish to apply a carbon-based soil amendment to enhance microbial 

growth and activity, manure rather than biochar would likely be more effective in the short-term. 

An inconsistent effect of biochar on microbial communities suggests that biochar effects 

are likely biochar-specific, related to the rate applied to soil, or related to site and soil 

characteristics. For example, others have found no effect of biochar on microbial communities 

when the biochar does not affect the pH of an already neutral or alkaline soil (Meynet et al., 

2014), or when biochar does not provide enough labile C substrates (high pyrolysis temperature) 

or nitrogen (hardwood biochar) to stimulate microbes (Bruun et al., 2011; Luo et al., 2011; 

Novak et al., 2012).   

  At the rates applied in incubation study, biochar showed different effects on enzyme 

stabilization and resistance to denaturing stress. While most of the enzymes were not stabilized 
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by biochar, β-xylosidase and leucine aminopeptidase were stabilized and protected to some 

degree from microwave stress by intermediate rates of biochar application (1 and 5%). This 

study found that biochar’s ability to stabilize enzymes is enzyme specific as well as rate specific. 

More research is needed to understand the mechanism(s) by which biochar stabilizes some 

extracellular enzymes but not others, and how stabilization is affected by different biochar 

concentrations in soil.  

 

 

 

 

 

 

 

 

 

 

 


