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ABSTRACT

METHODOLOGY IN AIR POLLUTION EPIDEMIOLOGY FOR LARGE-SCALE

EXPOSURE PREDICTION AND ENVIRONMENTAL TRIALS WITH NON-COMPLIANCE

Exposure to airborne pollutants, both long- and short-term, can lead to harmful respiratory,

cardiovascular, and cardiometabolic outcomes. Multiple challenges arise in the study of relation-

ships between ambient air pollution and health outcomes. For example, in large observational

cohort studies, individual measurements are not feasible so researchers use small sets of pollutant

concentration measurements to predict subject-level exposures. As a second example, inconsistent

compliance of subjects to their assigned treatments can affect results from randomized controlled

trials of environmental interventions. In this dissertation, we present methods to address these

challenges.

We develop a penalized regression model that can predict particulate matter exposures in space

and time, including penalties to discourage overfitting and encourage smoothness in time. This

model is more accurate than spatial-only and spatiotemporal universal kriging (UK) models when

the exposures are missing in a regular (semi-daily) pattern. Our penalized regression model is also

faster than both UK models, allowing the use of bootstrap methods to account for measurement

error bias and monitor site selection in a two-stage health model.

We introduce methods to estimate causal effects in a longitudinal setting by latent “at-the-time”

principal strata. We implement an array of linear mixed models on data subsets, each with weights

derived from principal scores. In addition, we estimate the same stratified causal effects with a

Bayesian mixture model. The weighted linear mixed models outperform the Bayesian mixture

model and an existing single-measure principal scores method in all simulation scenarios, and are

the only method to produce a significant estimate for a causal effect of treatment assignment by

strata when applied to a Honduran cookstove intervention study.
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Finally, we extend the “at-the-time” longitudinal principal stratification framework to a setting

where continous exposure measurements are the post-treatment variable by which the latent strata

are defined. We categorize the continuous exposures to a binary variable in order to use our pre-

vious method of weighted linear mixed models. We also extend an existing Bayesian approach

to the longitudinal setting, which does not require categorization of the exposures. The previous

weighted linear mixed model and single-measure principal scores methods are negatively biased

when applied to simulated samples, while the Bayesian approach produces the lowest RMSE and

bias near zero. The Bayesian approach, when applied to the same Honduran cookstove intervention

study as before, does not find a significant estimate for the causal effect of treatment assignment

by strata.
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Chapter 1

Introduction

Ambient air pollution, both outdoor and indoor, is a global health burden, leading to loss of

life and health through respiratory, cardiovascular, and cardiometabolic pathways (Chuang et al.,

2011; He et al., 2022; Mann et al., 2021; Murray et al., 2020; U.S. Environmental Protection

Agency, 2019). Ideally, to analyze the causal effects of air pollution on health researchers would

perform a randomized controlled trial (RCT), but there are clear ethical concerns with randomly

assigning subjects to different exposure levels and measuring health outcomes. Even beyond the

ethical concerns, such a study would need to be prohibitively large in sample size and in length

of time in order to capture the chronic and/or rare effects of exposure to pollutant concentrations

over time. Instead, a researcher in air pollution epidemiology may use a large-scale (national or

larger) observational set of PM measurements and healthcare data. Or they may perform an RCT

in a small sample and in a particular context for an intervention to improve household air quality,

but subjects may all be assigned the same treatment by the end of the study, and some do not

comply to their assigned treatment. Analysis of these examples requires the researcher to address

measurement error and non-compliance.

1.1 Exposure Prediction for Large Cohort Studies

To investigate the relationships between ambient air pollution and health outcomes, we must

measure and often also estimate subjects’ exposures to pollutant concentrations at personal or ag-

gregate levels. Consider the example of a large spatial and temporal set of exposure and health

measurements, where subjects’ exposure levels are not measured directly, but must be predicted

from observed concentrations at monitoring sites in the region. We would then use the predicted

subject-level exposures in an analysis associating subject exposures and health outcomes, the sec-

ond stage of an overall two-stage method for investigating the relationships of ambient air pollution

exposure and health. Prediction models for the exposure may incorporate spatial variables, satellite

1



data, and both spatial and temporal correlation structures. Uncertainty due to measurement error

from the monitoring devices and monitoring site selection in the exposure prediction model induces

a complex form of measurement error for the overall two-stage health effects model. Szpiro and

Paciorek (2013) address this issue and correct for measurement error with a design-based nonpara-

metric bootstrap. Predicting in space and time can lead to a complicated model, which is likely to

have a high cost in computation time that worsens with the size of the dataset. High computational

cost in the exposure prediction model can render bootstrap measurement error correction methods

infeasible due to limited time and resources. Thus, a fast enough exposure prediction model for

bootstrap measurement error correction may be a better choice for a two-stage model than a slower

and possibly more accurate prediction model. In Chapter 2, we develop a method to quickly predict

subject-level exposure to PM in space and time at a large scale for application to epidemiological

two-stage health effects studies. The contents of Chapter 2 are published in the Journal of Agri-

cultural, Biological, and Environmental Statistics (JABES) with the title Spatiotemporal Exposure

Prediction with Penalized Regression (Ryder and Keller, 2023).

1.2 Causal Inference in the Presence of Non-Compliance

The large cohort analyses mentioned above are typically observational, where no subjects are

randomly assigned their exposure level, and it is difficult or impossible to interpret causality.

Causal effect estimates, rather than measures of just the overall exposure-response relationship,

are important for use in policy decisions. When an unmeasured shared cause of both exposure and

outcome is present, interventions or regulations to lower the exposure (which does not affect the

outcome) can be a waste of resources or even harmful. Take the toy example of ice cream sales

and shark attacks, which have strong positive correlation but no causal relationship. Regulating ice

cream sales would be ineffective to lower shark attack rates, but would hurt the businesses affected.

For the case at hand, the causal effect of particulate matter exposure on health outcomes is crucial

knowledge for setting air quality standards which not only protect health in the general population

but also do not needlessly hamper the industries that the standards restrict.
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To achieve inference that is “causal” we rely on carefully made assumptions and often employ

techniques to parse total effects into more specific components, such as direct and indirect effects

or the effects partitioned by principal strata (Frangakis and Rubin, 2002; Robins and Greenland,

1992). In Chapters 3 and 4, we deal with a longitudinal RCT for the intervention of a ventilated

“improved” cookstove in rural Honduran households (Young et al., 2019). Subjects in the trial

did not always comply with their assigned treatment, some using their original stove after being

given the improved one and others using the improved stove before they were assigned it. This

non-compliance obfuscates the true efficacy of the treatment in a typical intent-to-treat analysis

of the study data. We use a principal stratification framework, and the assumptions it requires, to

estimate the effect of treatment specifically on the subjects who would comply with their assigned

treatment. In Chapter 3, we apply a principal stratification framework to perform causal analysis

of an intervention in a longitudinal randomized controlled trial. In Chapter 4 we extend the longi-

tudinal principal stratification framework to use a continuous post-treatment variable to define the

latent strata.
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Chapter 2

Spatiotemporal Exposure Prediction with Penalized

Regression

2.1 Introduction

Long- and short-term exposures to total particulate matter (PM) are causally related to adverse

respiratory and cardiovascular health outcomes (U.S. Environmental Protection Agency, 2019),

and PM contributes to 4.7% of disability-adjusted-life-years (DALYs) in all ages (95% uncertainty

interval 3.8 to 5.5) (Murray et al., 2020). PM is categorized by size, typically into ranges 10 µm

or 2.5 µm and smaller, denoted as PM10 and PM2.5 respectively. PM is itself a mixture of many

different components, such as nitrates, sulfates, organic matter, metals, and soil dust. The health

effects of each component can vary, with sulfate (SO2−
4 ) identified as one that is associated with

respiratory and cardiovascular health effects (U.S. Environmental Protection Agency, 2019).

Epidemiological studies investigating relationships between air pollution and adverse health

outcomes rely on the prediction of ambient PM concentrations for subjects across space and/or

time. PM is subject to widespread regulatory monitoring in many countries and these measure-

ments can be used to develop prediction models. In the United States (US), regulatory monitors

are often placed preferentially in urban centers or near known sources and vary in both method

and frequency of measurements. PM and its components, which are measured at a subset of mon-

itors, are subject to seasonal trends that can lead to large and highly variable measurements in

some regions of the US, making accurate predictions of ambient concentrations challenging. Other

characteristics that can make predicting concentrations difficult include: differences in instrument

tolerances or protocols, extreme events such as wildfires or dust storms, and the overall size of the

dataset. Thus, predicting a spatiotemporal exposure surface requires efficient use of both spatial

and temporal information and can benefit from computationally efficient methods. The structure
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of monitoring data for specific components is similar to total PM, although components are often

measured with more sparsity in space and time.

There are a variety of spatial or spatiotemporal models that may be used to predict ambi-

ent pollutant concentrations. These include land-use regression (Beelen et al., 2013; Hoek et al.,

2008), universal kriging (Sampson et al., 2013; Xu et al., 2019), penalized regression (Bergen and

Szpiro, 2015; Keet et al., 2018; Paciorek et al., 2009), Gaussian Processes (GP) (Datta et al., 2016;

Pati et al., 2011), Gaussian Markov Random Fields with Stochastic Partial Differential Equations

(INLA-SPDE) (Cameletti et al., 2013), quantile methods (Reich et al., 2011), spectral approaches

(Reich et al., 2014), convolutional neural networks (Di et al., 2016), and models using determin-

istic atmospheric chemistry simulation output (Berrocal et al., 2010, 2012; Wang et al., 2016) and

satellite measurements (Berrocal et al., 2020; Young et al., 2016). Different modeling approaches

can also be combined into ensemble models (Di et al., 2019, 2020).

In a review of spatiotemporal exposure modeling approaches, Berrocal et al. (2020) compared

the performance of common methods using daily PM2.5 measurements across the US. They found

that universal kriging (UK), when fit separately to each day of data, outperformed all other tested

models, including neural networks, random forests, and inverse distance weighting. The density of

PM2.5 monitoring is sufficient that a large number of observations are available each day, allowing

the empirical Best Linear Unbiased Predictor from a kriging model to perform well (Schaben-

berger and Gotway, 2004). However, fitting UK separately on each day of measurements ignores

temporal information, which provides an opportunity for improvement. A spatiotemporal model

developed by Lindström et al. (2014) extends universal kriging by combining a smooth temporal

trend with spatially varying coefficients. This more flexible and complex model is implemented in

the SpatioTemporal package in R.

One weakness of more complicated models is poor scaling in computation time. For both UK

and the SpatioTemporal (ST) model, the computational burden lies in an iterative optimiza-

tion technique to estimate covariance parameters (e.g. sill or range). High computation time can

prohibit the use of bootstrap-based predictive variance estimates or measurement error corrections.
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These bootstrap approaches can capture uncertainty from monitoring site selection in addition to

the uncertainty from parameter estimation that is found in prediction variances (Bergen et al., 2016;

Keller and Peng, 2019; Szpiro and Paciorek, 2013). In this paper we propose a penalized regres-

sion model that penalizes overfitting and smoothes over predictions at adjacent timepoints. The

proposed model is computationally fast and thereby feasible for bootstrapping while also provid-

ing accurate predictions over time and space.

Our motivation for fitting a spatiotemporal surface comes from ambient air pollution exposures,

so we approach model description and performance with respect to this application, but the method

could be applied to other contexts. In Section 2.2, we introduce our model and its methods of

fitting. In Section 2.3, we evaluate the method in a set of simulations under a variety of conditions

and compare against the predictive accuracy of UK and ST. In Section 2.4, we apply the method to

daily measurements of total PM2.5, total PM10, sulfate, and silicon concentrations from 2017 and

in Section 2.5 we provide a discussion.

2.2 Model

We propose a penalized regression model where, in addition to the typical overfitting penalty,

there is a penalty that smoothes over adjacent timepoints. By smoothing temporally, our method

can take advantage of data from the previous and following days where spatial-only methods can-

not. Furthermore, unlike the SpatioTemporal model, this penalization approach does not

require the assumption of a specific smooth time trend or temporal covariance function. With our

approach we aim to match or improve on the predictive accuracy of other common methods while

being computationally faster.
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Figure 2.1: Average logged concentrations in 2017 of PM2.5, PM10, sulfate, and silicon at monitoring site

locations in the Eastern United States.
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2.2.1 Penalized Regression Model

The objective function for our model is:

minimize
βt∈Rp for 1≤t≤T

n∑

i=1

T∑

t=1

Iit
(
xit − r⊤

itβt

)2
+

T∑

t=1

g1(λ1,βt) + λ2

n∑

i=1

T∑

t=2

g2(r
⊤
itβt, r

⊤
i(t−1)βt−1).

(2.1)

The first term in (2.1) is quadratic loss and uses the indicator value Iit to only include time

points (t) and locations (i) where xit exists, e.g. where an ambient air pollutant concentration was

measured. There are n total unique sites (locations) and T total dates (time points) where we could

have observed xit. The vector rit contains p spatiotemporal covariates (Section 2.2.2) for date t

and site i, including an intercept, while βt is a p-vector of model coefficients for each date. We

center and scale the covariates in rit by time point. The second term, g1, discourages overfitting,

and may be an L2, L1, or Elastic Net penalty. We use an L2 penalty here, i.e. g1(λ1,βt) = β⊤
t Γ1βt,

where Γ1 is a p × p diagonal matrix comprised of only the values λ1 and 0. This matrix allows

penalization of all or specific model predictors using the value λ1, and always excludes the intercept

from penalization. See Section B.1 in the Appendix for specific construction.

The third term in (2.1) is g2(r
⊤
itβt, r

⊤
i(t−1)βt−1) = (r⊤

itβt − r⊤
i(t−1)βt−1)

2. This term smoothes

over predictions that are adjacent in time by penalizing their differences and makes our model

similar to trend-fitting or fused lasso (Petersen and Witten, 2019). Every prediction is smoothed to

its immediate temporal neighbors, even if the observation at that time and place is missing. When

λ2 > 0, our model must predict using information across consecutive time points, but without the

complication of spatiotemporal interaction and increased parameterization.

To make a spatiotemporal exposure surface, we must be able to predict exposure levels at any

location and on any day in the spatiotemporal domain. The vector β̂ = (β̂⊤
1 , β̂

⊤
2 , . . . , β̂

⊤
T )

⊤ that

minimizes the objective function (2.1) includes p model coefficients for every date in the temporal

domain. We can then predict an exposure level at any date and at any location for which we have

the same covariate information used to fit the model, and can aggregate the resulting predictions to

any desired spatial unit.
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2.2.2 Spatial and Temporal Covariates

All spatial information for the model is provided through a set of spatial predictors included in

rit. For the sake of flexibility and simplicity, we use Thin Plate Regression Splines (TPRS) (Wood,

2003). By fitting TPRS to site locations, we have a set of predictors that can vary in quantity

through specification of degrees of freedom, i.e. the number of basis functions produced, and do

not require manual tuning of knot placement. TPRS are also scaleable to a large number of site

locations and provide covariate values at any location we want to predict. With this predictive

flexibility comes the cost of the extra parameterization and computation time of adding a possibly

large set of predictors to the model. We can also provide spatiotemporal covariates to the model.

For our analysis of ambient pollutant concentrations in Section 2.4, we use just atmospheric chem-

ical model output and meteorological data, but other variables such as land use measures could be

included if desired.

2.2.3 Parameter Estimation

We rewrite the objective function (2.1) in matrix notation for simplicity:

min
β

[
(x−Robsβ)

⊤(x−Robsβ) + β⊤Λ1β + λ2β
⊤R⊤D⊤DRβ

]
. (2.2)

The first sum in Equation (2.2) is standard least squares loss which we write as the inner

product of the difference in predicted and observed exposure vectors. To do this, we combine the

covariate vectors (rit) for every observed time point at a site i in a row-wise manner to create a

block-diagonal matrix. The n resulting block-diagonal matrices are stacked to form the matrix Robs

(see Section B.1 in the Appendix). Then the vector Robsβ is the set of fitted values. The second

sum in (2.2) is an L2 penalty on the full coefficient vector β. We create a set of T Γ1 matrices (as

in Equation (2.1)) and stack them to form the block diagonal matrix Λ1.

To allow the temporal smoothing of predictions at unobserved date and site combinations, a

“full” R matrix can be made by including covariate values for all site and date combinations,
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instead of for just those that were observed. The third sum in (2.2) is then written as the inner

product of the vector DRβ, where D is a diagonal block matrix and each of its n blocks is a first-

order difference matrix. Every row in a block of the D matrix contains just zeroes and the pair

of values -1 or 1 where the vector Rβ contains two predictions “adjacent” in time. The specific

arrangements of all objects listed here are provided in Section B.1 of the Appendix.

When using an L2 penalty for the overfitting term in the objective from Equation (2.2), a closed

form solution for β exists. Since the matrix R⊤
obsRobs + Λ1 + λ2R

⊤D⊤DR is positive definite

for sufficiently large λ1 and λ2, we can find its inverse to produce:

β̂ =
(
R⊤

obsRobs +Λ1 + λ2R
⊤D⊤DR

)−1
R⊤

obsx. (2.3)

The closed form solution is fast to compute when taking advantage of the sparseness of the

matrices R, Robs, and D. If instead of the L2 penalty, we use a non-convex overfitting penalty,

or if we were to add further penalty terms, the optimization problem may no longer have a closed

form solution. A general optimization strategy, such as Alternating Direction Method of Multipli-

ers (ADMM) (Boyd et al., 2010) is then required, which increases computational cost.

2.2.4 Selection of Penalty Values

We select the penalty parameters λ1 and λ2 using 10-fold cross validation (CV), which pro-

vides an estimate of out-of-sample Root Mean Squared Error (RMSE). When cross-validating to

select λ1 and λ2, we can use a coarse grid, e.g. every combination of 5 values for each penalty a

factor of 102 apart. If a basin in the cross-validated RMSE values is identified, we can resume the

search on a finer grid, e.g. combinations of values a factor of 10 apart, and repeat until we con-

verge upon an approximately optimal fit. Using all combinations of values for the two penalties

is comprehensive but slow. The alternative is to select λ1 first, by setting λ2 = 0 and choosing the

λ1 value that provides the lowest cross-validated RMSE. Then we repeat the process for values of

λ2 while setting λ1 to the previously selected value. This sequential method of selecting the two
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penalties sacrifices some predictive accuracy if the chosen values differ from what is selected by

jointly searching over every combination of values, but it requires considerably fewer model fits.

In Section 2.4 we find that the two methods select the same set of penalty values when modeling

ambient PM2.5 concentrations.

2.3 Simulation

2.3.1 Setup

For a variety of simulated data conditions, we compare our method to universal kriging and

the SpatioTemporal model. Since the motivating application for our method is PM and its

components, we create data sets with some characteristics matching the concentrations modeled in

Section 2.4. Specifically, the simulated data have periodic (every three or six days) measurement by

some proportion of “monitoring sites” and are correlated with a spatiotemporal observed covariate.

We simulate exposure data spatially over a [0,1] x [0,1] square using a 64 x 64 grid of points

and temporally over a set of 60 time points. The model for simulated mean exposures at any grid

points s and time point t is

µ(s, t) = µ0(s, t) +Z1(s, t) +Z2(s, t), (2.4)

where µ0(s, t) is a baseline spatiotemporal surface that is considered an observed covariate, and

is unchanged for every simulated sample. All three spatiotemporal surfaces µ0(s, t), Z1(s, t),

and Z2(s, t) are Gaussian processes generated with a Gneiting-style non-separable spatiotemporal

covariance function (Gneiting, 2002). We use the R package RandomFields to simulate the

processes using the specific covariance structure

C(h, u) =
1

(ψ(u) + 1)
φ

(
h

(ψ(u) + 1)1/2

)
, (2.5)
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for spatial distance h and change in time u (Schlather et al., 2015). We use an Exponential covari-

ance function for φ(), with a range and sill both equal to 1 (i.e. φ(w) = e−w). For ψ() we use

fractional Brownian motion, a generalized random walk that depends on a Hurst index (H). Setting

1/2 < H < 1 produces walks with positive correlation between increments, while for 0 < H < 1/2

increments are negatively correlated and the trend will alternate more often in shorter time spans.

We generate µ0(s, t) using H = 0.25, allowing for some day-to-day fluctuation, and fix H = 0.95

for Z1(s, t), resulting in a more consistent long-term trend. The Hurst index for Z2(s, t) we vary

across simulations to be H = 0.5 (standard Brownian motion with independent increments) or H =

0.05 (high daily fluctuation).

From the 4,096 grid points, we randomly select 500 training and 1000 testing locations as

“monitors” and assign them simulated mean values for each of the 60 time points. To represent

measurement error in the training set, we add the error term ǫt ∼ N(0, Iσ2) to each set of “monitor

locations” for each time point. Thus the training data follow the model Y (s, t) = µ(s, t) + ǫt.

To evaluate predictive accuracy, we compare each model’s predictions for the testing data with the

“true” simulated mean values µ(s, t) at the testing data time-locations.

We simulate while adjusting three settings: the error standard deviation (σ = 0.5 or 1.5), the

temporal relation of Z2(s, t) (H = 0.5 or 0.05), and the amount of temporal missingness in the

training data. As previously mentioned, some AQS monitors record values every third or every

sixth day. These monitors generally follow synchronized schedules, so that each monitor observed

every third day will record a measurements on the same schedule, leaving periods when only

monitors on a daily schedule are observed. We then control the daily missingness in our training

data by the proportion of monitoring locations that are observed daily, every third, or every sixth

day, each matching the schedule of others in its scheme. For the sake of comparison, we perform

another simulation study using the same proportions of sites by observation frequency, but stagger

the observation schedules so that on any given day there may be sites that record daily, every third

day, and every sixth day. In this alternative set of simulations, we repeat all settings adjustments

as in the original, so that the only difference is that the non-daily schedules of monitoring sites
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are evenly distributed across their possible starting dates. We report the results of this secondary

simulation study in Figure B.1 of the Supplementary Material in the Appendix.

Under each distinct set of data conditions, we take 100 different seeded samples of training and

testing data. The testing data are predicted from the training data using our model from Equation

(2.1), UK, and ST. Each model uses the spatiotemporal covariate µ0(s, t), unchanged from sam-

ple to sample, as a predictor. To fit our penalized regression model, the number of TPRS basis

functions used as additional spatial covariates are selected via 10-fold cross-validation from the

possible values 5, 10, 20, 50, 100, or 175. The penalities λ1 and λ2 are also chosen via 10-fold CV

from the sets of possible values 0.1, 1, 10, 50, 100, 200, 300, 400, 500, and 0.001, 0.01, 0.1, 1, 10,

50, 100 respectively. Here we select λ1 first before selecting λ2, as mentioned in Section 2.2.4. We

use UK per Berrocal et al. (2020), with a median set of exponential covariance parameter values

from maximum likelihood fits at each time point. The SpatioTemporal model we fit with a

single basis function and an exponential covariance structure with nugget for both the β-fields and

the residual process ν (Lindström et al., 2014).

2.3.2 Results

We report the Root Mean Square Error (RMSE) values for each set of 100 simulated samples

and fits as boxplots in Figure 2.2. There are results for the three tested models: penalized regres-

sion, universal kriging, and SpatioTemporal, as well as for penalized regression with only the

L2 penalty (λ2 = 0), which is exactly ridge regression. We provide exact median RMSE values

and squared correlations between predictions and observations (R2) in Table B.1 in the Appendix.

Our model provides lower or matching RMSE values to universal kriging (UK) and ridge

regression (denoted by λ2 = 0) in every scenario, demonstrating good general predictive ac-

curacy for a spatiotemporal model and the usefulness of the time-smoothing penalty λ2. The

SpatioTemporal (ST) model produces the lowest RMSE values of all models in each of the

data scenarios except those when all locations are only observed every third or every sixth day,
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where instead our penalized regression model outperforms all others. When none of the monitors

are observed daily, our penalized regression model will disregard the completely missing dates

and fit every third day as if it were daily (see Section 2.5 for discussion on interpolation in this

scenario). Here we see that despite requiring greater than forty times the computation time (see

Section 2.3.3), the ST model is more affected than our penalized smoother when there are time

points without any observations. If monitors on an every third day and every sixth day schedule

are measured in a staggered fashion, i.e. each day had some monitors of each frequency (daily,

every third, and every sixth) and every date has a similar number of observations, then we do not

see our model gain a predictive advantage over ST (see Supplementary Material Figure B.1 for the

“staggered” simulation results). So it is when dates are completely unobserved that our model is

able to outperform ST.

The results in Figure 2.2 highlight additional trends across different simulation settings. As

non-spatial error (σ) increases, the fit of each model worsens. Similarly, more fluctuation from

day-to-day (H = 0.05) reduces predictive accuracy for every model, and it should be noted that the

ridge regression fits (λ2 = 0) lose more accuracy than our model with its time-smoothing penalty

(λ2 > 0). UK and both penalized regression models have larger error when monitors are observed

in all three frequencies (daily, every third day, and every sixth day) than if every monitor is ob-

served only every third or sixth day. Since UK is a spatial-only model and fit onto the data from

each day separately, having some days with only a few measured locations can pose a serious issue

for prediction.
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Figure 2.2: Boxplots of RMSE values from each model on 100 replicate samples for each simulation sce-

nario. In order, the boxplots correspond to universal kriging (UK), our penalized regression model without

its temporal smoothing penalty (λ2 = 0), our model with the penalty (PR), and the SpatioTemporal

(ST) model. Note that H is the Hurst index for Z2(s, t), which results in a more variable temporal trend

as H approaches zero, and that σ is the standard deviation of non-spatial error added to the training data.

The selected monitoring locations are observed daily, every third day, or every sixth day, according to the

proportions listed on the x-axis.
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2.3.3 Computation Times

In Equation (2.3), we see that a sparse pT x pT matrix must be inverted to estimate β. To

use UK, we must first invert an nT by nT matrix (or T n x n matrices) to estimate covariance

parameters. Thus, our model scales better in computation time than UK with increasing site lo-

cations n. Figure 2.3 shows median computation times for sets of 10 replicate samples of each

specified size (Ntrain = 500, 1000, 1500, or 2000) and compares our penalized regression model

with UK. These values are also reported in Table B.2 in the Supplementary Material. Each of the

fits were computed on the RMACC Summit Supercomputer, with a Intel Xeon E5-2680 v3 pro-

cessor at 2.50GHz, using a memory cap of 50 GB of RAM. We see in Figure 2.3 that the need for

cross-validating over penalty values and amounts of TPRS basis functions slows our model down

to a speed similar to UK for some smaller sample sizes. However, as Ntrain increases, our method

is faster. We include the median computation times for the one-time fit of sample training data that

occurs after selecting penalty values and the number of TPRS basis functions to include as pre-

dictors. When using non-parametric bootstrap to correct measurement error, we would reuse the

same model predictors and penalty values so that only a single fit would be run on each resampling,

which would require much less time than re-fitting the UK model.

The SpatioTemporal model uses an optimisation algorithm to produce maximum likeli-

hood estimates for its parameters in both space and time, which takes considerable time. The

median computation time of the ST model to fit the sample sets with Ntrain = 500 is 3.02 hours

(181.2 minutes) and is 91.44 hours (5,486.5 minutes) when Ntrain = 2,000. Thus, if resources are

limited and the number of training site locations is high, ST becomes infeasible when the other

models would not.
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Figure 2.3: Median computation times from 10 replicate simulated data sets with increasing numbers of

monitoring locations. For the “PR CV + Fit” time, we used the penalized regression model to select over

penalty values and number of TPRS basis functions, then fit the resulting best model (“PR Fit”). The

universal kriging fitting time includes estimation of covariance parameters (“UK Cov + Fit”).

2.4 Analysis of Ambient Air Quality

2.4.1 Monitoring Data

We demonstrate our method from Section 2.2 by predicting daily ambient total PM2.5, total

PM10, sulfate (SO2−
4 ), and silicon (Si) concentrations for the eastern portion of the contiguous

United States in 2017 (Figure 2.1). By including only the eastern US, we limit our analysis to

monitors that are spatially dense and a region with a similar set of ambient pollution sources. Sul-

fate is a component of PM that is by itself associated with respiratory and cardiovascular health

effects, while silicon is a component that is less studied (U.S. Environmental Protection Agency,

2019). Both species are observed less frequently than total PM, and by different methods of mea-

surement. We use Air Quality System monitoring data obtained September 18, 2019 to provide

observed daily measurements of PM2.5 and PM10 with temporal and geographical metadata. Sim-

ilarly, we use AQS monitoring data obtained October 16, 2019 for concentrations of sulfate and

silicon at the PM2.5 size. In addition, we use total PM2.5 concentrations (obtained June 22, 2021)
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as well as sulfate and silicon PM2.5 concentrations (obtained January 14, 2022) from a different

monitoring network, the Interagency Monitoring of Protected Visual Environments (IMPROVE)

program (Malm et al., 1994). The locations measured by IMPROVE are largely rural, while the

AQS data come from mostly urban areas.

Nearly all sulfate and silicon concentrations are observed on every third or every sixth day.

Total PM2.5 and PM10 are measured by some monitors more often than every three days. See Table

2.1 for the distribution of monitoring sites for each pollutant that record values one sixth of the year

or less or between one sixth and one third of the year. Figure B.2 in the Supplementary Material

depicts the by-date monitoring frequency for each pollutant.

2.4.2 Spatiotemporal Predictors

We fit the data using our model from Equation (2.3) with TPRS as well as exactly one or two

other types of predictors. The Community Multiscale Air Quality Modeling System (CMAQ) is

a mathematical model that uses atmospheric dispersion and emissions to estimate air quality lev-

els, providing a rich though uncalibrated spatiotemporal predictor for our model (Reff, A. et al.,

2020). The EPA provides daily predictions of PM2.5 from CMAQ on a 12 km grid across the

United States. We use data acquired June 30, 2020 and match each monitor site with the closest

grid centroid. For an additional spatiotemporal predictor we use a grid of estimated 3-hour average

surface temperature values from the North American Regional Reanalysis (NARR) obtained on

July 9, 2021 (Mesinger et al., 2006). We again match each monitoring site location to the closest

grid point and estimate daily average temperature values for each site.

2.4.3 Data Filtering and Transformation

Before estimating a spatiotemporal surface, we pre-process both the PM2.5 and PM10 concen-

tration data in the following ways. We use only the Federal Reference Method (FRM) monitors,

which use 24-hour gravimetric measurements (i.e. based on weighing mass accumulated on a fil-
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Table 2.1: Summary statistics for ambient pollutant concentrations in 2017 after log tranformation, along

with the distribution of monitoring sites by frequency of observation. The monitoring sites are split into

groups that were observed for 61 days (one sixth of a year) or less, observed between 61 and 122 days (one

third of a year), or observed between 123 and 365 days.

Number of monitoring sites by days observed

Pollutant N Mean SD Min Q1 Median Q3 Max 0-61 days 62-122 days 123-365 days

log(PM2.5) 69,693 1.88 0.568 -2.78 1.55 1.93 2.28 4.47 85 (15.3%) 402 (72.2%) 70 (12.6%)

log(PM10) 11,383 2.60 0.633 0 2.20 2.64 3.00 6.16 137 (81.5%) 26 (15.5%) 5 (3.0%)

log(SO2−
4 ) 9,160 -0.30 0.860 -10.82 -0.68 -0.24 0.19 2.61 130 (80.7%) 29 (18.0%) 2 (1.2%)

log(Si) 8,868 -3.48 1.351 -10.82 -4.07 -3.35 -2.73 1.31 132 (82.0%) 29 (18.0%) 0 (0%)

ter) and are the basis of assessing compliance with the National Ambient Air Quality Standards.

We remove concentrations of value zero, which are likely invalid measurements. If monitors are

collocated, we remove all but one measurement per day at that site. We keep the measurement

with the lowest “parameter occurrence code”, which should be the earliest registered monitor at

that site. Finally, to account for the skewedness of PM concentrations, we natural-log transform

the observed concentrations and CMAQ values. See Table 2.1 for the summary statistics of the log-

transformed PM2.5 and PM10 data and Figure 2.1 for their average log-transformed concentrations

by monitor location in 2017.

Similar filtering is performed on the sulfate and silicon concentrations, although the compo-

nents are measured with different approaches. The sulfate concentrations are measured via ion

chromatography or pulsed fluorescence, while all silicon concentrations are calculated using X-ray

fluorescence. As with PM, we remove the values at zero, natural-log transform all concentrations,

and use only one measurement at a site per day, with preference to the older or non-IMPROVE

monitors. We replace negative values (21 sulfate and 78 silicon measurements) with the lowest

observed positive value before being log-tranformed. See Table 2.1 and Figure 2.1 for summary

statistics and the average spatial distribution over 2017.
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2.4.4 Model Fits

To predict each pollutant, we fit the model from Equation (2.1) with daily average tempera-

tures and TPRS basis functions as predictors. To predict PM2.5 we use logged CMAQ values as an

additional predictor. Since CMAQ is itself a multisource, deterministic estimate of PM2.5, which

we have transformed to the same scale as our observations, we exclude its coefficients from the

over-fitting penalization Γ1. In contrast, we penalize the temperature and TPRS coefficients be-

cause we expect them to explain variation in pollution levels, but they are not direct predictions

of pollution levels. As described in Section 2.2.4, we fix λ2 = 0 and select the penalty λ1 by

lowest cross-validated RMSE, then select a λ2 value with λ1 fixed at the previously chosen value.

Reusing this penalty selection process, we calculate cross-validated RMSE with each amount of

TPRS basis functions from a chosen set of values (e.g. 100, 200, or 300 for PM2.5). Our best

model fit is the predictor and penalty set with lowest overall cross-validated RMSE. In the case of

PM2.5, we verify the accuracy of selecting penalties one at a time by also fitting models for every

combination of λ1 and λ2 values (e.g. all combinations of the values 0.01, 0.1, 1, 10, and 100) and

find that the same penalties are selected by either method. To compare with our model, we also

fit UK and the ST model with 10-fold cross validation, using the same procedures as in Section 2.3.

2.4.5 Results

After selection through 10-fold CV on the PM2.5 data, the model from Equation (2.3) is fit

with 200 TPRS basis functions and the penalty values of λ1 = 30 and λ2 = 0.01. Our penalized

regression approach is matched by UK and outperformed by ST when estimating PM2.5. Table

2.2 shows that the cross-validated RMSE over all dates and sites for our model (2.184 µg/m3) lies

between that of UK (2.389 µg/m3) and ST (1.973 µg/m3). For UK, the cross-validated RMSE

over the yearly average predictions and observations for every site is lower than ST or penalized

regression (0.875 µg/m3 vs. 0.899 and 0.917 respectively). UK likely performs well on an annual

average due to its excellent use of spatial structure but blindness to temporal structure. We can see
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similar behavior in Table 2.3, where we report summary statistics for daily cross-validated RMSE

across all sites. UK has a lower daily CV RMSE on average than our model, but median daily CV

RMSE for UK is higher than for penalized regression. The SpatioTemporal model has lower

mean and median daily CV RMSE than the other two models.

For PM10 we select with cross validation 50 TPRS basis functions and the penalty values

λ1 = 15 and λ2 = 0.5. The ST model has lower overall CV RMSE (9.275 µg/m3) than our

model (9.569 µg/m3) and UK (13.503 µg/m3), but our penalized regression model produces the

lowest annual average cross validated RMSE (4.375 µg/m3 vs. 4.446 for ST and 4.746 for UK).

The ST model also has the lowest daily average and median CV RMSE values of any model for

PM10. Our model has lower overall, annual average, daily mean, and daily median cross validated

RMSE values than universal kriging (Tables 2.2 and 2.3). From Figure 2.1, we see that the PM10

data have fewer observations and fewer unique locations than PM2.5. There are 40 days of the year

having two or fewer observed concentrations, which are not predicted by any model due to the

lack of data. See Section 2.5 for a discussion of possible interpolation work-arounds for this issue.

With fewer observed sites each day and greater variance (Table 2.1), UK may not have enough

spatial information on each day to outperform our model.

On the sulfate concentrations, we choose via cross validation 45 TPRS basis functions and the

penalty values λ1 = 15 and λ2 = 0.001. Our penalized regression model demonstrates the best

predictive accuracy in overall cross validated RMSE (0.456 µg/m3 vs. 0.535 for ST and 0.771

for UK), annual average CV RMSE (0.193 µg/m3 vs. 0.223 for ST and 0.279 for UK), and both

the daily average and daily median. (Tables 2.2 and 2.3). From Table 2.1 we see that nearly all

monitors that measure sulfate and silicon record concentrations every third day or less frequently.

So in Table 2.3 we see that only 173 days of 2017 are being predicted on by our model and ST. UK

predicts on 124 days of the year since it requires that a cross validation fold contain at least two

observations on a given date to create a distance matrix and estimate covariance parameters. The

temporal missingness in sulfate leads to the same outcome as in Section 2.3, where our penalized

smoother is able to retain the greater accuracy than its competitors. Figure B.3 in the Supple-
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Table 2.2: Cross-validated RMSE and R2 values across all dates and sites (“Overall”) and from by-site an-

nual average predictions and observations (“Annual Average”). We fit penalized regression (PR) per Equa-

tion (2.3) using daily average temperature values and some number of TPRS basis functions (see Section

2.4.5) as predictors. For PM2.5 we also added logged CMAQ values as predictors.

Overall Annual Average

Pollutant Model RMSE R2 RMSE R2

PM2.5

PR 2.184 0.731 0.917 0.629

ST 1.973 0.780 0.899 0.634

UK 2.389 0.677 0.875 0.651

PM10

PR 9.569 0.311 4.375 0.260

ST 9.275 0.350 4.446 0.235

UK 13.503 0.009 4.746 0.130

SO2−
4

PR 0.456 0.530 0.193 0.627

ST 0.535 0.373 0.223 0.592

UK 0.771 0.057 0.279 0.434

Si

PR 0.119 0.455 0.038 0.508

ST 0.137 0.308 0.047 0.309

UK 0.138 0.308 0.041 0.472

mentary Material depicts the observations and predictions over time for sulfate concentrations at

four randomly chosen monitoring sites. In East Baton Rouge, LA, where observed concentrations

are more variable than at the other sites shown, our model fits more closely than the ST model.

It may be that the smooth time trend applied to the ST model makes following highly variable

observations difficult.

For the silicon concentrations we cross-validate and select 55 TPRS basis functions with the

penalties λ1 = 5 and λ2 = 0.001. Similar to sulfate, our model performs well under temporal

missingness, producing the lowest overall CV RMSE (0.119 µg/m3 vs. 0.137 for ST and 0.138

for UK) and lowest annual average CV RMSE (0.038 µg/m3 vs. 0.047 for ST and 0.041 for UK)

(Table 2.2). In daily CV RMSE, the average of our model lies above UK and below ST, while the

median of our model is higher than both that of ST and of UK (Table 2.3).
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Table 2.3: Summary statistics for daily cross-validated RMSE values across all monitoring sites. We fit

penalized regression (PR) per Equation (2.3) using daily average temperature values and some number of

TPRS basis functions (see Section 2.4.5) as predictors. For PM2.5 we also added logged CMAQ values as

predictors.

Pollutant Model T Mean SD Min Q1 Median Q3 Max

PM2.5

PR 365 2.339 0.912 1.076 1.719 2.145 2.740 7.166

ST 365 2.117 0.838 0.951 1.572 1.951 2.43 6.2

UK 365 2.329 0.844 1.021 1.776 2.187 2.588 6.249

PM10

PR 325 11.768 8.463 1.641 6.380 9.234 15.029 59.477

ST 325 11.211 8.162 1.072 6.354 8.974 13.088 57.135

UK 325 15.380 8.248 2.215 10.239 13.127 18.169 61.267

SO2−
4

PR 173 0.420 0.279 0.069 0.264 0.374 0.519 3.007

ST 173 0.464 0.269 0.102 0.316 0.420 0.523 2.760

UK 124 0.712 0.287 0.163 0.533 0.676 0.845 1.942

Si

PR 122 0.079 0.085 0.012 0.030 0.049 0.087 0.441

ST 122 0.084 0.106 0.010 0.026 0.046 0.087 0.502

UK 122 0.076 0.088 0.009 0.026 0.044 0.080 0.464

2.5 Discussion

We have presented a penalized regression model for spatiotemporal prediction that penalizes

overfitting and smoothes over predictions at adjacent timepoints. Using spatiotemporal covariates

and TPRS basis functions as predictors, we predict daily values anywhere on a spatial domain.

In Section 2.3, we demonstrate in simulations that our smoothing method solving Equation (2.1)

can outperform day-by-day universal kriging under a variety of data conditions and outperform

the SpatioTemporal model when observations are less frequent than daily. When the data

increase in spatial locations, we see that our model is faster than the each-day application of UK

while the ST model is more than forty times slower than either. In Section 2.4, we find that

our model performs with cross-validated predictive accuracy close to that of day-by-day UK and

worse than that of the ST model on total PM2.5 and PM10 concentrations. But on sulfate and silicon

concentrations, our penalized regression model achieves the best accuracy of the models in all but

two metrics, where it performs similarly.

23



Our model proposed in Equation (2.1) has spatiotemporal predictive accuracy for PM2.5 con-

centrations that is on par with UK, a method shown to be more accurate than the several other

approaches tested in Berrocal et al. (2020). Since UK is an excellent spatial model, it is difficult

to outperform when, for each time point, there is a nearly spatially complete set of observations

with a strong spatial signal. In Section 2.3, both increasing non-spatial error (lowering the signal

to noise ratio) and increasing daily fluctuation in the latent Gaussian processes (H = 0.05) in our

simulations results in a larger drop in accuracy for UK than for our model. When concentrations

are observed less frequently at some sites, as in the case of PM10, sulfate, and silicon, there are

dates when only a few measurements are available and UK drops in accuracy behind our model.

For sulfate and silicon, our model is more accurate than the more complex and computationally ex-

pensive SpatioTemporal model, showing that we have developed a useful prediction method

for less-studied ambient air pollutants.

In both the simulations (Section 2.3) and the ambient concentrations analysis (Section 2.4),

our model provides predictions only on dates where at least one measurement is observed. If a

timepoint t∗ is never observed in the data, there will be no p-vector of coefficients βt∗ estimated

via Equation (2.3). Furthermore, our model is treating any two dates with no observations between

them as “adjacent in time”. In the case of the silicon concentrations in Section 2.4, all monitor-

ing sites recorded measurements every third day, so our model penalized the differences between

predictions three days apart, ignoring the two days in between them. We can define any interval

of time in our data as “adjacency” by altering the matrix D so that values at a desired amount of

time apart are differenced. To obtain predictions for a date that is never observed, we may use

some form of interpolation, such as simply averaging between predictions at each site before and

after the missing date. Alternatively, we could average the coefficients βt∗−1 and βt∗+1 and use the

interpolated β̂t∗ to predict values over the unobserved date.

The selection of penalty values and predictor sets for our model is time-consuming and can

require manual tuning. In our simulations and applications to observed ambient concentrations,

we use a faster sequential method described in Section 2.2.4 to select penalty values and repeat
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for each set of TPRS basis functions. This sequential method only requires the manual input of

candidate value sets for the penalties and amounts of TPRS basis functions. After the penalties and

number of TPRS basis functions for our model are chosen, to predict a spatiotemporal surface we

need to calculate the inverse of a sparse pT x pT matrix only once. To perform measurement error

correction with non-parametric bootstrapping, we may reuse the same chosen penalty values and

TPRS basis functions on each bootstrapped sample, making the computation very feasible. This

is important because a non-parametric bootstrap measurement error correction can account for site

selection, in addition to parameter estimation.

Extensions to the model, such as predicting multiple pollutants at once, may be possible

through clever application of new penalty terms. Although, if a non-convex penalty is used, the

closed form solution from Equation (2.3) would no longer apply. Generalized optimization tech-

niques, such as ADMM (Boyd et al., 2010) should be able to utilize the sparse structure of the

matrices and produce an accurate β estimate relatively fast, but not as fast as Equation (2.3).

The penalized regression model proposed in this study showed spatiotemporal predictive ability

that is competitive with both universal kriging applied daily and the SpatioTemporal model.

When the data are missing observations for whole time points, our model achieves better predic-

tive accuracy than either of the other models. The proposed model is also unlike more complicated

counterparts in that it can be used with bootstrap-based measurement error correction for epidemi-

ological health effects models.
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Chapter 3

Principal Stratification in Longitudinal Trials with

Treatment Crossover for Application to Indoor Air

Pollution Interventions

3.1 Introduction

Exposure to household air pollution is a global health burden, contributing through respiratory

and cardiovascular diseases to 3.6% of disability-adjusted-life-years (DALYs) in all ages (95%

uncertainty interval 2.7 to 4.6) (Murray et al., 2020). As of 2010, 41 % of the world’s population

burns primarily solid fuels such as wood and charcoal for cooking in their households (Bonjour

et al., 2013). The emissions of these cookstoves and their contribution to household air pollution

have motivated randomized controlled interventions of cleaner, better ventilated, or better filtered

stoves. We address one such randomized controlled trial (RCT) with a stepped-wedge design for

a biomass-burning cookstove intervention in Honduras (Young et al., 2019). With already estab-

lished links between traditional biomass-burning cookstoves and cardiovascular diseases (Baum-

gartner et al., 2011; Clark et al., 2013; McCracken et al., 2007), Young et al. (2019) aimed to

investigate the relationships of indoor air pollution and broader cardiometabolic health. As an in-

tervention, the researchers installed improved biomass cookstoves (called the Justa stove) in rural

Honduran households, which were designed to have reduced indoor emissions. We aim to estimate

the causal effect of the cookstove intervention on percent of glycated hemoglobin (HbA1c) for the

primary cook in the household.

Other RCTs that have analyzed the intent-to-treat (ITT) effects of cookstove interventions on

household air pollution health burdens have often produced mixed or even null results. Improved

cookstove interventions performed in Guatemala, Nepal, Mexico, India, and Peru each failed to

find significant ITT effects, likely due to low compliance to treatment that resulted in household
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air pollution exposures that were not sufficiently reduced (Clasen et al., 2022; Romieu et al., 2009;

Smith et al., 2011; Tielsch et al., 2016). Non-compliance is common in human subjects research,

with participants taking no treatment when assigned or taking a treatment other than their own.

Presence of “non-compliers” leads to attenuation in the estimate of an ITT effect, since some who

are not ultimately treated will be analyzed as part of the treatment group and vice versa. Com-

pliance can be particularly difficult in environmental studies which are typically unblinded and

during which treatment adherence is only monitored at a few time points (e.g. quarterly). To mea-

sure the efficacy of a cookstove intervention on household air pollution related health outcomes,

we endeavor to find an alternative to the ITT effect which does not suffer the same attenuation

from non-compliance.

We consider principal effects, such as an average causal effect for only those who would always

comply with their assigned treatment (i.e. compliers). Frangakis and Rubin (2002) explain that

principal effects are in fact causal effects, and introduce the method of principal stratification to

identify them. Hidden principal strata are defined by the potential outcomes (under each of the

treatments being compared) of a post-treatment variable, such as compliance, and are unaffected

by the observed treatment itself. The earlier method developed by Frangakis and Rubin (2002)

as well as other non-parametric (Ding and Lu, 2017), Bayesian (Hackstadt et al., 2014; Jin and

Rubin, 2008; Peng et al., 2015), and two-stage (Woo et al., 2023) principal stratification methods

have been applied to parallel-group RCTs with a single outcome measure, where each subject

is assigned to a group that receives only the treatment or control and the subject’s outcome is

summarized in a single value. For parallel-group RCTs such as the CLEAN AIR study (Woo

et al., 2023) and PREACH study (Peng et al., 2015), the latent principal strata are defined by the

post-treatment variable of reduction in indoor particulate matter (PM) and individuals’ estimated

probabilities of stratum membership are used to estimate stratum-specific average causal effects.

In contrast, Hackstadt et al. (2014) impute the potential PM and potential outcome values first,

from which they calculate stratum-specific average causal effects.
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Environmental trials with human subjects may often follow non-parallel group designs, as rea-

sons such as ethical concerns prevent researchers from withholding treatment from any subjects.

Instead they may use a longitudinal crossover design, where subjects are repeatedly measured and

all eventually receive the treatment. In this setting an ITT estimate still suffers from attenuation,

but principal stratification methods such as the one introduced in Ding and Lu (2017) cannot be

directly applied to the full data. Parallel group or not, few principal stratification methods have

been applied to measurements over time in a longitudinal study. Frangakis et al. (2004) work with

a time-to-event outcome and both treatment and compliance that vary in time. Subjects’ treatment

exposure is influenced by their distance from a clinic, which leads to assumptions of multilevel

monotonicity and compound exclusion restriction. Dai et al. (2012) use a hidden Markov model

with a time-to-event outcome, having subjects transition through “principal states” and estimating

a cumulative risk ratio and discrete hazard ratio by state. We do not have a time-to-event out-

come and are more comparable to Lin et al. (2008) and Lin et al. (2009), who have developed

a Bayesian and hidden markov approach using “compliance superclasses”, which summarize the

varying compliance classes of subjects over time into strata such as “decreasing compliers” or

“high compliers”. These superclasses still contain mixed compliance, so the issue of attenuation

may persist and interpretation of the intervention’s effect can be difficult for policy implementation.

We propose two methods applicable to longitudinal settings that estimate “at-the-time” com-

pliance class causal effects. That is, after imputing the latent principal stratum for each subject

and timepoint, we estimate an average causal effect for subjects who were in the same compliance

class “at-the-time”. In Section 3.2 we review principal strata and describe a set of assumptions, a

method of principal scores, and covariate-adjusted estimands all adapted from Ding and Lu (2017)

to a longitudinal setting. In Section 3.3 we introduce our extension of principal scores to a weighted

linear mixed model and describe a Bayesian approach to principal stratification for a longitudinal

study. We test model performance with simulated samples in Section 3.4 and apply the models to

the motivating study, a Honduran cookstove intervention (Young et al., 2019), in Section 3.6. We

discuss the paper’s conclusions, method limitations, and next steps in Section 3.7.
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3.2 Principal Stratification with Principal Scores in a Longitu-

dinal Setting

We summarize the setup, weight formulation, and estimands from Ding and Lu (2017), adding

the dimension of time t where applicable to extend their work to a longitudinal setting. We can

apply this estimation strategy on repeated measures, ignoring their correlation. In Section 3.3 we

introduce two models which implement principal stratification for a crossover design and include

a participant-specific effect.

3.2.1 Notation and Setting

Consider a randomized trial comparing a treatment to control, i.e. an experiment in which

the assignment of subject i ∈ {1, . . . , n} to one of two study arms is random. Here we refer

to a treatment and intervention (i.e. installation of a ventilated cookstove) interchangeably. In

a parallel study, each arm would receive only treatment or only control over the duration of the

study, while a crossover design would assign each arm both control and treatment over the course

of the time points t ∈ {1, . . . , T}. For the stepped-wedge crossover design, researchers start with

assigning each arm the control then begin assigning treatment to one arm before the other (Brown

and Lilford, 2006). We consider the case with only two study arms for simplicity, although the

methods we introduce could be applied without adjustment to a crossover study with more than

two arms. We denote Zit as the assignment of treatment (1) or control (0) to subject i at time t

and Zi as a vector of length T with the treatment assignments for subject i over all time points.

A subject’s treatment assignments over time will follow one of only two possible patterns (z1 or

z2) determined by their study arm. We define Yit as the continuous or binary outcome value for

subject i at time t and define the post-treatment variable Sit as the actual treatment usage (Sit = 0

if subject i did not take the treatment at time t and Sit = 1 if they did). Let xi denote covariates that

are measured only pre-randomization. We use a potential outcomes framework, signifying Sit(z)

as the potential treatment used and Yit(z) the potential response value for subject i at time t under

the assignment of treatment (z = 1) or not (z = 0). The vectors Yi(zk) and Si(zk) are the sets of
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potential response values and potential actual treatments used for all timepoints of subject i under

the treatment patterns k = 1 or 2.

3.2.2 Principal Strata

We define four principal strata for the subjects’ compliance behavior at time t, defined by

the potential outcomes Sit(0) and Sit(1). These principal strata are the same as developed by

Frangakis and Rubin (2002), now also indexed by time. If subject i at time t is a complier (c),

then Sit(0) = 0 and Sit(1) = 1. An always-taker (a) has Sit(0) = Sit(1) = 1 and a never-

taker (n) has Sit(0) = Sit(1) = 0. Finally, a defier (d) would do the opposite of what they are

assigned, i.e. Sit(0) = 1 and Sit(1) = 0. We denote a subject’s latent principal stratum at time t as

Uit ∈ {c, n, a, d} and the vector of their principal strata over time as Ui. Strata may change over

time, as practically we may see a subject comply, take treatment when unassigned, and neglect to

take treatment when assigned, all in the same experiment. In addition, strata for a subject may

change in time while their behavior does not, e.g. a complier assigned to treatment becoming

an always taker assigned to treatment. We estimate average causal effects for each stratum “at-

the-time”, i.e. across observations at any time from any subject that belong to a specific stratum.

These average causal effects (ACEs) can be calculated as ACEu = E{Yit(1) − Yit(0) | Uit = u}

for u = {c, n, a, d}.

3.2.3 Assumptions

We make the following assumptions to ensure identifiability of the causal effects.

Assumption 1: Stable Unit Treatment Value (Rubin, 1980) — we assume there is only a single

version of treatment i.e. that the potential outcomes Sit(0), Sit(1), Yit(0), and Yit(1) may be

written as single values. Further, we assume no interference between subjects, so that the potential

outcome of a subject is not affected by the treatment assignment of a different subject.

Assumption 2: Randomization — i.e. Zi ⊥⊥ {Si(z1),Si(z2),Yi(z1),Yi(z2),Ui,xi} for any i

and the two treatment assignment patterns z1 and z2. Since the assigments Zi in a crossover design

are randomized to be either z1 or z2, they are independent at all timepoints of the potential actual
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treatments Si(·), the potential outcomes Yi(·), the pre-randomization covariates xi, and the latent

principal strata Ui, which determine compliance behavior.

Assumption 3: Monotonicity — i.e. S(1)it ≥ S(0)it for all i and t. When S is binary, this means

that a subject would not at any time be a defier (S(1)it = 0 and S(0)it = 1), leaving the just three

of the strata: compliers, always-takers, and never-takers.

Assumption 4: General Principal Ignorability (GPI) — i.e. Yit(z) ⊥⊥ Uit |xi for z = 0 and z = 1.

The distribution of potential outcomes for Yit under treatment and control are the same across the

latent principal strata when controlling for xi. More specifically, for z = 0 and z = 1:

E{Yit(z) | Uit = c, xi} = E{Yit(z) | Uit = n, xi} = E{Yit(z) | Uit = a, xi}.

3.2.4 Non-parametric estimation for a single outcome measure

We rely on the assumptions in Section 3.2.3 and principal scores eu(xi) = Pr(Ui = u | xi) for

u ∈ {c, n, a} to identify and estimate average causal effects. Here we review the method developed

in Ding and Lu (2017) to calculate these principal scores and use them to create weighted samples.

We retain the index in time t where applicable even though the method of Ding and Lu (2017) does

not explicitly account for repeated measures.

First we note that under the assumption of monotonicity in Section 3.2.3, the observed data

can be categorized so that Zit = 0 and Sit = 0 indicate that subject i is either a never-taker or

complier at time t. Similarly, (Zit = 1, Sit = 1) is the behavior of an always-taker or com-

plier, while (Zit = 1, Sit = 0) must be a never-taker and (Zit = 0, Sit = 1) must be an

always-taker. Then to form principal scores we make use of the probabilities of Sit by assign-

ment, p1 = Pr(Sit = 1 | Zit = 1) and p0 = Pr(Sit = 1 | Zit = 0), as well as those conditional on

the covariates xi, p1(xi) = Pr(Sit = 1 | Zit = 1,xi) and p0(xi) = Pr(Sit = 1 | Zit = 0,xi). Thus

the principal scores as a function of the covariates xi are ec(xi) = p1(xi) − p0(xi) for compliers,

en(xi) = 1 − p1(xi) for never-takers, and ea(xi) = p0(xi) for always-takers. As done by Ding

and Lu (2017), we estimate p1(xi) and p0(xi) by modeling Pr(U | X) as a three-level multinomial
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logistic model and using maximum likelihood estimation via the EM algorithm. The overall pro-

portions of the strata in the data are πc = p1−p0, πn = 1−p1, and πa = p0. Note that the principal

scores and stratum proportions are without respect to time t, so the resulting weights applied to the

data will not change across timepoints within the same subject.

Combining the principal scores and proportions we produce the weights

w1,c(xi) =
ec(xi)

ec(xi) + ea(xi)
/

πc
πc + πa

, w0,c(xi) =
ec(xi)

ec(xi) + en(xi)
/

πc
πc + πn

,

w1,a(xi) =
ea(xi)

ec(xi) + ea(xi)
/

πa
πc + πa

, and w0,n(xi) =
en(xi)

ec(xi) + en(xi)
/

πn
πc + πn

. (3.1)

Then the complier average causal effect (CACE), never-taker average causal effect (NACE),

and always-taker average causal effect (AACE) may be estimated

CACE = E {w1,c(xi)Yit | Zit = 1, Sit = 1} − E {w0,c(xi)Yit | Zit = 0, Sit = 0}

NACE = E{Yit | Zit = 1, Sit = 0} − E {w0,n(xi)Yit | Zit = 0, Sit = 0} (3.2)

AACE = E {w1,a(xi)Yit | Zit = 1, Sit = 1} − E{Yit | Zit = 0, Sit = 1}

Ding and Lu (2017) formulate an asymptotically more efficient estimator using covariate ad-

justment. For simplicity, we present only the CACE version of the estimator here. We first es-

timate the coefficient β1,c from weighted least squares regression of Y on X using only data

with (Zit = 1, Sit = 1) and the weights w1,c(X). This estimate written explicitly is β̂1,c =
(
X⊤WX

)−1
X⊤WY, on the subsetted data with with w1,c(X) the diagonal of W. Similarly we

estimate β0,c using only data with (Zit = 0, Sit = 0) and the weights w0,c(X). Then the estimand

for the complier average causal effect is as follows:
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CACE = E
{
w1,c(xi)

(
Yit − β̂T

1,cxi

)
| Zit = 1, Sit = 1

}

− E
{
w0,c(xi)

(
Yit − β̂T

0,cxi

)
| Zit = 0, Sit = 0

}
(3.3)

+
(
β̂1,c − β̂0,c

)T

E {wz,c(xi)xi | Zit = Sit = z} ,

where in the third term, z = 0 and 1 so that wz,c(xi) is w1,c(xi) when Zit = Sit = 1 and is w0,c(xi)

when Zit = Sit = 0. The covariate-adjusted estimators for the NACE and AACE are provided in

Section C.1 of the Supplementary Material. To measure uncertainty for the estimands in Equations

(3.2) or (3.3) we create bootstrap samples and construct 95% confidence intervals from the sample

estimate quantiles. Resampling is done by participant rather than by observation.

We can employ this covariate-adjusted principal scores (CAPS) method for estimating average

causal effects by strata in a longitudinal setting, but there are limits to its application. The estimand

in Equation (3.3) does not account for any trend in time, such as seasonality. Using repeated

measurements when weights and effect estimates are ignorant of time and individual will result

in bias from any existing temporal trends. We can prevent this bias by restricting to a single time

point where the study arms are not assigned to the same treatment, but such a reduction in the

data set would reduce the power of the analysis. Balancing between temporal bias and sample

size, we may include more than one timepoint in the data set and add the time index as categorical

variables in the covariate adjustment. In a stepped-wedge study, where all participants are assigned

the control at first and all are assigned the treatment at the end, we cannot adjust for every time

point in the subsetted datasets since, for example, there are no observations where Z = 0 during

the last time point. We would like to extend this principal scores method from Ding and Lu (2017)

to a longitudinal setting with more explicit consideration of time and repeated measures.
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3.3 Longitudinal Principal Stratification Methods with Ran-

dom Effects

We present two methods for estimating the effect of treatment using principal stratification

when compliance is defined “at-the-time” and while accounting for repeated measures. In the

first we create the principal score weights and estimate causal effects by subsetting the data and

applying a weighted linear mixed model. In the second we extend a Bayesian approach from Peng

et al. (2015), a model with mixture by latent stratum membership and accounting for repeated

measures in the outcome model. Each method builds on an existing model and applies them to a

previously not well-studied context. Both methods can be applied to a longitudinal crossover or

parallel-group study which satisfies the principal stratification and model assumptions.

3.3.1 Linear Mixed Subset Model Weighted Via Principal Scores

We now extend the causal framework developed by Ding and Lu (2017) to account for repeated

measures. Our approach uses the same principal score weights from Equation (3.1), but instead

of Equations (3.2) or (3.3), we estimate each average causal effect as a coefficient from a prin-

cipal score weighted linear mixed (PS-WLM) model on subsets of the data grouped by possible

stratum. The data is subsetted in the same way as in Section 3.2.4 to obtain β̂1,c and β̂0,c. For ex-

ample, we estimate the complier average causal effect via a PS-WLM model using only data with

(Zit = 0, Sit = 0) or (Zit = 1, Sit = 1), which represent be all possible “at-the-time” compliers.

Similarly, we estimate the AACE with data such that (Zit = 0, Sit = 1) or (Zit = 1, Sit = 1) and

the NACE with data such that (Zit = 0, Sit = 0) or (Zit = 1, Sit = 0). The assumed model fit to

each subset is

(Yit | Uit = u, Zit = z,xi, νi, wz,u) ∼ N(αt + x⊤
i β + zβ′ + νi, wz,u(xi)σ

2). (3.4)

The conditional mean of Yit includes a fixed effect by time point, the dot product of the pre-

randomization covariates xi with their respective coefficients β, the true effect of treatment as-
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signment β′, and a random intercept by subject νi
iid
∼ N(0, σν). For the example of the complier

average causal effect (i.e. Uit = c), the weight wz,u(xi) takes the value w1,c(xi) when Zit = 1

or w0,c(xi) when Zit = 0. Similarly, wz,u(xi) = 1 or w0,n(xi) for the never-taker subset, and

wz,u(xi) = w1,a(xi) or 1 for the always-taker subset. Our estimate for the average causal effect

of treatment assignment within a stratum Uit = u is β̂′. We measure the uncertainty of the fixed

effect β̂′ with a Wald confidence interval, and in just the first simulation scenario of Section 3.4.2,

we also use the much slower parametric bootstrap.

The covariate-adjusted estimands in Equation (3.3) cannot make use of all time points in a data

set without suffering bias from trends in time. Our linear mixed model weighted with principal

scores can make use of all time points and account for repeated measures with random effects.

The principal score weights from Equation (3.1) form a pseudo population by strata when applied

to the data subsets, from which we estimate average causal effects. Instead of using differences

in means or residual means as in Section 3.2.4, we estimate these effects with a weighted linear

mixed model.

Here we point out that our assumed model bears similarity to that of Lin et al. (2008) and

(2009), although the estimation approaches are not alike and ultimately we are concerned with a

different estimand. Because we are targeting causal effects for compliance at-the-time, we make

the strong assumption that treatment does not affect subsequent time points, while Lin et. al.

account for cumulative effects within their model. They develop compliance “superclasses”, la-

tent strata for participants over all timepoints in a study, and thereby summarize the time-varying

compliance classes. Instead of estimating an average causal effect for those who are compliers,

they consider “high compliers”, who are probable to be complying over time. With some non-

compliance still present in the estimate, attenuation is still possible and the full efficacy of the

treatment on those who use it could remain unknown, weakening the interpretation of results for

policy implementation. For further discussion of our limited treatment effect time assumption and

its implications, see Section 3.7.

35



3.3.2 Principal Stratification in Bayesian Framework

Alternative to the principal scores approach, we also use a Bayesian mixture model (BM) to

estimate average causal effects by latent strata “at-the-time”. Our model follows that of Peng et al.

(2015), where the outcome Yit has a normal distribution with mean µzu and standard deviation

σ2
u. We define Yit as the difference in outcome for subject i at time t from the overall average

and prepare the indices z ∈ {0, 1} and u ∈ {c, n, a}. Building further on Peng et al. (2015),

we consider the latent principal stratum by subject and time, Uit = u, as a multinomial random

variable with the density

f (Uit | qi) ∝ π
1{Uit=c}
ic π

1{Uit=a}
ia π

1{Uit=n}
in , where πiu =

exp
(
q⊤
i γu

)
∑

u′ exp
(
q⊤
i γu′

) .

Note that q⊤
i is some set of covariates, γu are their coefficients and

∑
u′ is the sum over

u′ ∈ {c, n, a}. Similar to the principal scores approach, the probabilities πiu rely on compli-

ance information from Zit and Sit, so that when for example Zit = 0 and Sit = 1, then πia = 1 and

πin = πic = 0.

The model for the outcome is

(Yit | Zit = z, Uit = u) ∼ N
(
αt + µzu + x⊤

i β + νi, σ
2
u

)
,

and we estimate the average causal effect for a stratum u as E [Yit(1)− Yit(0) | Uit = u] = µ1u −

µ0u. The random effect is distributed νi
iid
∼ N (0, σ2

ν), and we use a normal prior distribution for

each of γu, σ2
u, β and µzu. We use the probabilistic programming language Stan via the R package

rstan to perform Markov chain Monte Carlo with the NUTS algorithm (Stan Development Team,

2023a,b), and do not need conjugate priors. We list the prior values for each parameter in Table

C.1 of the Supplementary Material.
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3.4 Simulation

3.4.1 Setup

To compare our proposed methods of estimating the “at-the-time” stratified causal effects, we

perform a simulation study under several data scenarios. We create a stepped-wedge design similar

to the motivating study we analyze in Section 3.6. Participants are randomized to one of two study

arms and are each measured for six time points (t = 1, 2, 3, 4, 5, 6), with participants in one arm

first receiving treatment at the third time point and in the other arm receiving it first at the fifth time

point. Thus, both arms begin under the control and both are receiving treatment by the fifth time

point.

To generate the latent principal stratum for each subject and time point, Uit, we first draw the

starting quantities of stratum members from a multinomial distribution with the probabilities 2/3,

1/6, and 1/6 for compliers, always-takers, and never-takers respectively. Once we have randomized

an initial stratum for each participant by the drawn quantities, we use a Markov chain to produce

strata at each time point for each participant. The transition matrix for this Markov chain is sym-

metric with the values 0.6 in its diagonal and 0.2 in its off-diagonal. The stratum Uit is then used

to determine Sit, the value of the actual treatment for participant i and time t.

The model for the simulated outcomes is as follows,

Yit = x⊤
i β + β′Sit + sin(t) + νi + ǫit.

Here β′ = −0.5 is the true at-the-time effect of received treatment (Sit) on the outcome, ǫit
iid
∼

N(0, 1) is the error across all measurements, and νi
iid
∼ N(0, σ2

ν) is participant-specific effect over

repeated measures. We generate five covariates to include in xi (g1, g2, g3, g4, and g5) that are

constant in time. These covariates are each distributed independently across subjects, with g1 and

g5 distributed Bern(0.5) and g2, g3, and g4 distributed N(0, 1). We fix the five coefficient values

in β to 0.5, 0.5, 1, 1, and 0.25, respectively for the five covariates in xi. Finally, we include

seasonality across the time points via the term sin(t).
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We use the covariate-adjusted principal score (CAPS) estimands from Section 3.2.4, the es-

timated coefficient from the principal score weighted linear mixed (PS-WLM) model in Section

3.3.1, and the posterior mean from the Bayesian mixture (BM) model in Section 3.3.2 to estimate

average causal effects on a simulated sample. For each dataset and method we fit two models: one

for all six time points and one for just the third and fourth time points (when both treatment assign-

ments are present). We measure uncertainty in the CAPS method using 95% bootstrap confidence

intervals from 1,000 samples and apply the method to all six time points using the strategy de-

scribed in the final paragraph of Section 3.2.4. For the BM model we use the quantiles of posterior

samples to contruct 95% credible intervals.

In order to measure model performance beyond the primary setting, we use three variations

on the simulation to show the sensitivity of each model to increases in misspecification of X,

in participant-error variance σ2
ν , and in data missingness. For the basic simulation scenario, we

use a participant error variance of σ2
ν = 0.25, no missingness, and no misspecification in X. To

create misspecification of X, we remove the covariate g5, both covariates g5 and g4, or the three

covariates g5, g4, and g3 from X to perform the model fits. For example, we remove g5 and the

models are provided with four covariates in X when five covariates were used to in the outcome

generating function. In the missingness study we remove a proportion of all observations from

each sample at random. For every scenario in the studies we create 500 replicate samples of

300 participants each. To measure model performance for a certain average causal effect (CACE,

NACE, or AACE), we use root mean square error (RMSE), bias, power, and coverage.

3.4.2 Results

Basic Setting

Boxplots of model estimates from 500 replicate samples under the basic settings of no miss-

ingness, no misspecification, and σ2
ν = 0.25 are depicted in Figure 3.1, with the true complier

average causal effect −0.5 marked by a dotted line. The RMSE, bias, power, and coverage of the

simulation fits are reported in Table 3.1. In addition to the Wald 95% confidence intervals used to
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Table 3.1: Model fitting results of 500 simulated samples under the basic setting (no missingness, no mis-

specification, static random effect variance σ2
ν). The models used are a Bayesian mixture (BM) model,

principal score weighted linear mixed (PS-WLM) model, and covariate-adjusted principal score (CAPS)

method.

σ2
ν Model Time Points Used RMSE Bias Power Coverage

0.25 BM 123456 0.137 -0.019 0.236 1.000

0.25 BM 34 0.178 0.036 0.014 1.000

0.25 PS-WLM 123456 0.115 0.005 0.992 0.940

0.25 PS-WLM 34 0.125 0.007 0.986 0.936

0.25 CAPS 123456 0.922 0.909 0.734 0.000

0.25 CAPS 34 0.128 0.010 0.960 0.956

form Table 3.1, we construct parametric bootstrap 95% confidence intervals and find that the two

methods differ less than a percent in overall coverage and power for the 500 simulated samples.

The PS-WLM model on the full dataset (all time points) has the lowest RMSE and highest power

of any model. Both the PS-WLM and BM models produce lower RMSE and higher power on the

full dataset than on just phases 3 and 4. The CAPS method for the full dataset is strongly biased

from the seasonality term sin(t), but the method remains competitive with the other two models

on the subset to phases 3 and 4. The BM model has only slightly larger bias and RMSE than the

PS-WLM model, but has very low power and perfect coverage, indicating its credible intervals

(quantiles of the posterior samples) are very large. Poor sampling of the posterior distribution may

be due to small effect size, low sample size, and/or non-informative priors.

Increasing Participant Error Variance

We next test model tolerances to the size of random effect variance by simulating with increas-

ing values of σ2
ν . The results of this study are listed in Table 3.2, with the σ2

ν = 0.25 case previously

listed in Table 3.1. The PS-WLM model has the lowest RMSE and highest power of any model

for each level of σ2
ν , and the BM model is second best at each level. RMSE tends to increase as

σ2
ν increases for all the models on the subset to phases 3 and 4, while those on the full dataset

remain nearly unchanged. Similarly, power for each model decreases as σ2
ν increases, but more

dramatically for the those on only two time points.
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Figure 3.1: Boxplots of estimates for the complier average causal effect (CACE) in 500 replicate samples

from the basic simulation setting. The models used are a Bayesian mixture (BM) model, principal score

weighted linear mixed (PS-WLM) model, and covariate-adjusted principal score (CAPS) method.

Increasing Misspecification of X

For a study on misspecification of X, we provide only two, three, or four covariates in X to the

models being fit when in truth all five covariates were used to generate the outcome. The results

of this study are reported in Table 3.3, and the results when correctly specified in X are reported

in Table 3.1. As we provide fewer covariates in X to the models, power decreases and RMSE

increases for every method, while bias and coverage do not follow any obvious trends. The models

using the full dataset do not increase in RMSE as much as those only using phases 3 and 4, and

the power of the PS-WLM model with all six phases decreases very little compared to any other

method.

Increasing Missingness at Random

To test robustness of each model to missingness completely at random, we remove at random

increasing proportions of data from the replicate samples. The results of this study are reported

in Table 3.4 and the results when no data is missing are reported in Table 3.1. As missingness
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Table 3.2: Model fitting results of 500 simulated samples with increasing participant error variance σ2
ν . The

models used are a Bayesian mixture (BM) model, principal score weighted linear mixed (PS-WLM) model,

and covariate-adjusted principal score (CAPS) method.

σ2
ν Model Time Points Used RMSE Bias Power Coverage

1.0 BM 123456 0.141 -0.022 0.216 1.000

1.0 BM 34 0.218 0.043 0.008 1.000

1.0 PS-WLM 123456 0.124 0.004 0.982 0.936

1.0 PS-WLM 34 0.168 0.010 0.836 0.932

1.0 CAPS 34 0.176 0.012 0.736 0.954

2.25 BM 123456 0.144 -0.022 0.204 1.000

2.25 BM 34 0.255 0.050 0.008 1.000

2.25 PS-WLM 123456 0.127 0.004 0.976 0.942

2.25 PS-WLM 34 0.220 0.014 0.598 0.942

2.25 CAPS 34 0.233 0.015 0.482 0.964

4.0 BM 123456 0.143 -0.023 0.190 1.000

4.0 BM 34 0.285 0.056 0.004 1.000

4.0 PS-WLM 123456 0.128 0.0033 0.970 0.940

4.0 PS-WLM 34 0.275 0.017 0.402 0.948

4.0 CAPS 34 0.295 0.017 0.304 0.966

Table 3.3: Model fitting results for simulation study with increasing misspecification of X. The models

used are a Bayesian mixture (BM) model, principal score weighted linear mixed (PS-WLM) model, and

covariate-adjusted principal score (CAPS) method.

Covariates Provided Model Time Points Used RMSE Bias Power Coverage

g1, g2, g3, and g4

BM 123456 0.134 -0.023 0.226 1.000

BM 34 0.173 0.042 0.018 1.000

PS-WLM 123456 0.116 0.004 0.990 0.938

PS-WLM 34 0.126 0.007 0.978 0.928

CAPS 34 0.129 0.010 0.962 0.946

g1, g2, and g3

BM 123456 0.144 -0.023 0.098 1.000

BM 34 0.216 0.051 0.004 1.000

PS-WLM 123456 0.124 0.003 0.978 0.944

PS-WLM 34 0.185 0.006 0.764 0.940

CAPS 34 0.191 0.008 0.732 0.952

g1 and g2

BM 123456 0.155 -0.017 0.032 1.000

BM 34 0.247 0.057 0.004 1.000

PS-WLM 123456 0.127 0.001 0.970 0.944

PS-WLM 34 0.232 -0.002 0.622 0.934

CAPS 34 0.240 -0.002 0.590 0.936
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Table 3.4: Model fitting results for simulation study with increasing missingness at random. The models

used are a Bayesian mixture (BM) model, principal score weighted linear mixed (PS-WLM) model, and

covariate-adjusted principal score (CAPS) method.

Proportion Missing Model Time Points Used RMSE Bias Power Coverage

0.2 BM 123456 0.145 -0.026 0.156 1.000

0.2 BM 34 0.197 0.042 0.016 1.000

0.2 PS-WLM 123456 0.126 0.003 0.982 0.936

0.2 PS-WLM 34 0.137 0.004 0.958 0.932

0.2 CAPS 34 0.144 0.009 0.878 0.958

0.4 BM 123456 0.162 -0.042 0.118 1.000

0.4 BM 34 0.199 0.043 0.008 1.000

0.4 PS-WLM 123456 0.140 0.006 0.930 0.958

0.4 PS-WLM 34 0.150 0.008 0.886 0.940

0.4 CAPS 34 0.159 0.017 0.694 0.974

0.6 BM 123456 0.194 -0.056 0.062 1.000

0.6 BM 34 0.241 0.063 0.008 0.998

0.6 PS-WLM 123456 0.173 0.015 0.802 0.952

0.6 PS-WLM 34 0.196 0.013 0.736 0.936

0.6 CAPS 34 0.202 0.031 0.338 0.990

at random increases, RMSE and bias increase, both with a roughly constant rate for all models.

At the same time, power decreases, although not as much for the PS-WLM models than for the

others. Increasing coverage and decreasing power for the CAPS method may indicate its bootstrap

confidence intervals are lengthening as the missingness increases.

3.5 Additional Simulation with Latent Strata Dependent on Co-

variates xi

3.5.1 Setup

We perform an additional simulation study, altering the construction of the latent strata Uit

to depend on two covariates in xi. In Section 3.4.1, we drew the intial quantities of members in

each stratum from a multinomial distribution with probabilities 2/3, 1/6, and 1/6 for compliers

always-takers, and never-takers respectively. According to these generated quantities, we desig-

nated subjects in the first time point to the different strata at random. As a result, the strata Uit and
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the treatment use Sit were each independent of the subjects’ covariates xi. Each of the models pre-

sented in Sections 3.2.4, 3.3.1, and 3.3.2 is specified to account for a relationship between X and

Uit, via the principal scores (CAPS and PS-WLM) or as part of the mixture model (BM). In this

section, we create simulated samples to test model performance when the latent principal strata are

dependent X, and to test sensitivity to misspecification of the covariates X in the model fits under

these conditions.

To construct the principal strata Uit with dependency on X, we draw from a multinomial dis-

tribution by subject for each time point, with the probabilities of membership to the different

strata determined by the covariates g1 and g4. Specifically, the probability of being a complier

at-the-time for subject i is pc,i = expit(0.1, 0.7)(γ0 + γg4,i) + 0.2g1,i, where expit(0.1, 0.7)() is the

expit function (expit(a) = 1/(1 + e−(a))) truncated so that any value lower than 0.1 is replaced

with 0.1 and any value higher than 0.7 replaced with 0.7. We fix the values γ0 = logit(0.4) and

γ = 1
3
(logit(0.7) − γ0), where the logit function is defined logit(p) = ln(p/(1 − p)). With these

fixed values for γ0 and γ, the range of -3 to 3 for the standard normally distributed covariate x4 is

converted by the typical expit function to the the range of 0.1 and 0.7. Then by the empirical rule,

99% of the values which x4 may take on will fall in the range 0.1 to 0.7, and the rest are truncated

by the expit(0.1, 0.7) function. The probabilities of being a never-taker or always-taker at-the-time

are split equally from 1− pc,i, so that pn,i = pa,i = (1− pc,i)/2. Thus, we draw the stratum Uit for

subject i from the same multinomial distribution for all six time points, defined by the probabilities

pc,i for compliers, pn,i for never-takers, and pa,i for always-takers.

We create simulated samples with the same model and parameter values as in Section 3.4.1,

only modifying the method of generating the latent strata Uit which determine treatment use Sit.

We apply the same three models (CAPS, PS-WLM, and BM) on the same data subsets (all six time

points or just time points 3 and 4). To test sensitivity of the models to misspecification in X, we

again remove the covariate g5, both covariates g5 and g4, or the three covariates g5, g4, and g3

from X to perform the model fits.
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3.5.2 Results

We report the results from the additional simulation study in Table 3.5. The first row of model

results in the table (g1, g2, g3, g4, and g5) corresponds to the basic setting simulated samples and

results in Table 3.1. When we have added dependency between Uit and X in the basic setting, we

find that the RMSEs for all models are lower except for the BM model on the subset of time points

3 and 4. Same as in Section 3.4.2, when we remove the binary fifth covariate g5, the RMSE of

the BM model on the subset of only time points 3 and 4 decreases and all model RMSEs remain

nearly unchanged. When we remove g5 and the normally distributed fourth covariate g4 (which we

used along with g1 to generate Uit), the RMSEs of all models increase, especially those using the

subset of only time points 3 and 4. In the final row of model results (g1 and g2), all model RMSEs

again increase, although the RMSE of the PS-WLM model on all time points increases by only

0.03 (2.5%). The power of each model in the stages of misspecification of X corresponds with the

trends in RMSE, i.e. power decreases when RMSE increases and vice versa. Power and RMSE

across most models and stages of misspecification when the samples have dependent principal

strata on X are better (power is higher, RMSE is lower) than when X and Uit are independent.

Bias and coverage of the models do not show obvious trends in Table 3.5.

In general, the model results in Table 3.5 have slightly lower RMSE and slightly higher power

than the corresponding results in Tables 3.1 and 3.3. There is a relatively large increase in RMSE

and decrease in power when we remove both covariates g5 and g4 compared with only removing

g5, but there is a similarly large reduction in model performance in Table 3.3 as well, likely due to

the fact that g5 is a binary covariate and has less of an effect on the outcome than g4, which comes

from a standard normal distribution. The model RMSEs in Table 3.5 drop slightly more than in

Table 3.3 across the two scenarios, indicating some impact of misspecifying the relationship be-

tween X and Uit. Overall, this additional simulation study shows that each model can account and

even benefit from dependency of the covariates X on Uit, and misspecification of this dependency

only leads to relatively small drops in the model performances.
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Table 3.5: Model fitting results for additional simulation study with latent principal strata that are dependent

on the covariates g1 and g4. We provide only the listed covariates (of five) in the first column to each model

fit, increasing the misspecification of X by removing covariates. We fit the Bayesian mixture (BM) model,

principal score weighted linear mixed (PS-WLM) model, and covariate-adjusted principal score (CAPS)

method.

Covariates Provided Model Time Points Used RMSE Bias Power Coverage

g1, g2, g3, g4, and g5

BM 123456 0.128 -0.028 0.250 1.000

BM 34 0.179 0.026 0.010 1.000

PS-WLM 123456 0.111 0.002 0.996 0.944

PS-WLM 34 0.117 0.005 0.992 0.950

CAPS 34 0.120 0.005 0.984 0.952

g1, g2, g3, and g4

BM 123456 0.129 -0.031 0.266 1.000

BM 34 0.171 0.023 0.010 1.000

PS-WLM 123456 0.111 0.002 0.996 0.944

PS-WLM 34 0.117 0.004 0.992 0.950

CAPS 34 0.121 0.004 0.982 0.948

g1, g2, and g3

BM 123456 0.145 -0.036 0.134 1.000

BM 34 0.223 0.036 0.008 1.000

PS-WLM 123456 0.120 0.001 0.994 0.952

PS-WLM 34 0.170 0.000 0.852 0.940

CAPS 34 0.178 0.000 0.810 0.938

g1 and g2

BM 123456 0.157 -0.027 0.054 1.000

BM 34 0.247 0.035 0.008 1.000

PS-WLM 123456 0.123 0.000 0.992 0.942

PS-WLM 34 0.212 -0.004 0.690 0.948

CAPS 34 0.225 -0.003 0.644 0.944
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Figure 3.2: Percent glycated hemoglobin (HbA1c) of 230 primary cooks measured across six study phases,

with the assigned stoves (Traditional or Justa) for study arms 1 and 2 listed below the plot. Using a stepped

wedge design, primary cooks are randomized to a study arm and receive the Justa stove before phase 3 or

phase 5.

3.6 Analysis of Honduran Stepped-Wedge Cookstove Trial

We now apply our principal stratification models to the study that motivated this work, a ran-

domized controlled trial of a biomass burning cookstove intervention in rural Honduras (Young

et al., 2019). Researchers replaced existing cookstoves with ventilated (Justa) biomass cookstoves

in every household according to a stepped-wedge design. Stove use, health outcomes, and other

covariates were collected for 230 primary cooks (all women) over 6 study visits in a span of 3

years (roughly every 6 months). Between the second and third study visits (phases), participants

were randomly assigned to a study arm and the household either received the Justa cookstove be-

fore phase 3 (Arm 1) or before phase 5 (Arm 2), so that every household eventually received the
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intervention, but in a staggered fashion (Figure 3.2). In our analysis, we will estimate the strat-

ified average causal effects of stove assignment (traditional or Justa) on the outcome, percent of

glycated hemoglobin (HbA1c) that is depicted in Figure 3.2.

3.6.1 Setup and Filtering

From the data, we take Z, the assigned cookstove at each phase, which was predetermined

when the participant was assigned to a study arm. The outcome Y is HbA1c and to create S,

the actual cookstove usage, we consider that a household i at time t may use the traditional stove

(Sit = 0) or the improved (Justa) stove (Sit = 1). The existing traditional stoves in the households

were destroyed when the Justa stove was installed, but the study did not prevent participants from

making and using another traditional stove in addition to the newly installed Justa. In these cases,

we define the usage of both stoves in a phase the same as when they were not receiving the in-

tervention, i.e. Sit = 0. Here we note that an Exclusion Restriction (ER), the assumption in this

context that Yit(z = 1, s) = Yit(z = 0, s) = Yit(s) for s = 0 or 1 (Angrist et al., 1996), is likely vi-

olated. Specifically, when under z = 0 a household does not have access to a Justa stove, but under

z = 1 they do. Then the value Yit(z = 1, s = 0) may differ from the value Yit(z = 0, s = 0), since

the household would use both the Justa and traditional stove in the (z = 1, s = 0) case, but only the

traditional stove(s) in the (z = 0, s = 0) case. A violation of ER prevents the use of instrumental

variable analysis in our example and indicates a need for models without this assumption, such as

those discussed in Sections 3.2 and 3.3 (Greenland, 2000).

We filter the study observations to complete cases, removing any observations that are missing

Zit (n = 28), Sit (n = 126), Yit (n = 168), or some part of xi (n = 6) for n = 175 total removed

and n = 1, 211 remaining. Defining Z and S by stove assignment and stove use as we have above,

we may categorize all study observations by their possible stratum membership(s) at-the-time.

There are 6 at-the-time always-takers (Zit = 0, Sit = 1) , 375 at-the-time never-takers (Zit = 1,

Sit = 0), 205 possible compliers or always-takers (Zit = 1, Sit = 1), and 625 possible compliers

or never-takers (Zit = 0, Sit = 0).
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3.6.2 Covariates Chosen/Sensitivity Checks

An important assumption of principal scores for principal stratification is that the covariates in

X are balanced, specifically that Assumption 4 is satisified with respect to X. For any function of

the covariates h(X), we can check for violations of the balancing conditions below, which follow

from Assumption 4 and Equation (3.2):

E {w1,c(xi)h(xi) | Zit = 1, Sit = 1} = E {w0,c(xi)h(xi) | Zit = 0, Sit = 0} ,

E{h(xi) | Zit = 1, Sit = 0} = E {w0,n(xi)h(xi) | Zit = 0, Sit = 0} , (3.5)

E {w1,a(xi)h(xi) | Zit = 1, Sit = 1} = E{h(xi) | Zit = 0, Sit = 1}.

We estimate the average differences for each of the balancing conditions and use bootstrapped

standard errors to produce standardized t-statistics for each covariate. We select the binary pre-

randomization covariates of whether or not the primary cook is over 40 years of age, has a BMI

over 25, has metabolic syndrome, or has electricity available in their household, and also the

continuous pre-randomization covariate of peripheral systolic blood pressure. The standardized t-

statistic for untransformed peripheral systolic blood pressure is large (> |2|), so we apply a natural

log transformation and find that all covariates are then balanced. We report the values used to

establish covariance balance in Table C.2 in the Appendix.

3.6.3 Results

We apply the covariate-adjusted estimands from Section 3.2.4 and the principal score weighted

linear mixed model from Section 3.3.1 to estimate average causal effects from the Honduran cook-

stove study data. We fit the PS-WLM model on both the full dataset and the subset of just the third

and fourth phases, in each case including the indicator variable(s) for phase in the outcome model

(the fixed effects by time point αt). We fit the CAPS estimands to just the subset of phases 3 and

4, without accounting for phase at all and calculating confidence intervals as the quantiles of 1,000

bootstrap samples. We exclude the Bayesian mixture model from the analysis due to concerns with
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Table 3.6: Estimates and confidence intervals of the principal score weighted linear mixed (PS-WLM) and

covariate-adjusted principal score (CAPS) methods on the Honduran cookstove study data.

CI Bounds

ACE Model Phases Used Estimate Lower Upper

CACE

PS-WLM 123456 -0.150 -0.219 -0.082

PS-WLM 34 -0.171 -0.430 0.088

CAPS 34 -0.121 -0.750 0.306

NACE

PS-WLM 123456 -0.114 -0.180 -0.047

PS-WLM 34 -0.070 -0.295 0.155

CAPS 34 -0.082 -0.404 0.590

AACE

PS-WLM 123456 -0.419 -1.284 0.447

PS-WLM 34 -0.233 -0.516 0.050

CAPS 34 0.222 -0.339 1.027

correctly sampling the posterior when it appears that the effect magnitude and sample size are even

smaller than those used in the simulations (-0.5 and 300 respectively). Similarly, we do not fit the

CAPS estimands on the full dataset, as it would likely result in strong bias.

The estimates and confidence intervals of the models for each average causal effect are listed in

Table 3.6. All estimates of the complier average causal effect are negative, indicating a reduction

in HbA1c for compliers when assigned the Justa stove. Each of the never-taker and two of the three

always-taker estimates are also negative. Only the complier and never-taker average causal effect

estimates from the PS-WLM on all six time points are significant. A significant never-taker effect

is not surprising when participants may be receiving partial treatment (using both Justa stove and

traditional stove) but considered untreated (see Section 4.6.1). The point estimates of all methods

are relatively close for the complier and never-taker average causal effects. The always-taker effect

estimates are more variable, likely due to the small amount of possible always-taker observations

in the study (17% of observations)

3.7 Discussion

Non-compliance to treatment assignment is a prevalent issue in randomized controlled trials

measuring the effect of indoor cookstove-related air pollution on respiratory or cardiometabolic
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health. To combat attenuation in effect estimates from mixed compliance, we have turned to the

method of principal stratification and aim to estimate stratum-specific average causal effects, in-

stead of the overall intent-to-treat effect. Cookstove intervention studies such as the one used in

Section 3.6 often rely on repeated measures and may assign the improved cookstove intervention

to both study arms, but in a staggered manner. We applied the existing method of principal stratifi-

cation using principal scores developed by Ding and Lu (2017) in a longitudinal setting, but faced

bias from temporal trends when ignoring the repeated measures structure. We introduced two ex-

tensions of principal stratification to a longitudinal setting that each include random effects. We

used principal scores to weight a linear mixed model on the data subsetted to only possible mem-

bers of a certain stratum. The estimated coefficient for assignment to the improved stove in this

model is then an estimate of the average causal effect for that stratum. In the second method, we

used a Bayesian mixture model to estimate averages effects of differing assignments with respect

to the latent strata.

We generated simulated samples in three sensitivity analyses and under an additional simu-

lation model to test the performance of the covariate-adjusted principal score (CAPS) estimands

from Ding and Lu (2017), the principal score weighted linear mixed (PS-WLM) model, and the

Bayesian mixture (BM) model. In every setting, the PS-WLM model on the full data set produced

the lowest RMSE and highest power. The BM and PS-WLM models using the full data set (all six

time points) were more robust than any model using only time points 3 and 4 to increasing random

intercept variance and to the removal of covariates in X from the fits, while uniform random miss-

ingness worsened the fit of every model similarly. When including dependence between X and Uit

in the simulation model, the fits of each model were slightly improved and removal of the covari-

ate g4 (which was affecting Uit) led to a relatively large decrease in model performances. The BM

model had competitive RMSE and bias across all simulation settings, but yielded credible intervals

that were too large and had low power and near-perfect coverage as a result. Uncertainty in the

posterior distribution may be carried over from uncertainty in the imputation of the latent strata,

while the frequentist principal scores methods translate possible stratum membership through con-
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tinuously valued weights. In our motivating application (Section 3.6), the PS-WLM model for the

full data set found the complier and never-taker average causal effects to be significant, and no

other model found significant effects.

It is clear from the performance of the PS-WLM model that the principal scores weights in

Equation (3.1) are effective in providing useful information on stratum membership with regard to

the covariates X. The weights for a subject do not change in time, however, as they are formu-

lated using only pre-randomization covariates in X. We also cannot calculate the weights across

subjects for each time point separately, since in a stepped-wedge design, subjects all receive the

same assignment for the starting time points and ending time points. The probabilities and prin-

cipal scores derived in Section 3.2.4 would be too numerically extreme to allow calculation of the

weights in Equation (3.1). Thus, extensions to time-varying or cumulative principal scores weights

would require reconsideration of the weight formulas themselves.

An important characteristic to each of the models we have developed is that they estimate

average causal effects for “at-the-time” principal strata, i.e., the average effects from assignment

when belonging to a certain principal stratum for the current period of time. These results translate

more directly to the efficacy of an intervention than those based off, for example, the percentage

of compliance behavior of a subject over time. Specifically, the intervention’s effect in the same

time period it is taken can be measured by the complier average causal effect, or the difference in

outcome due to assignment of treatment when the subject would comply with their assignment.

This ease of interpretation, however, does require the additional assumption. Both the PS-WLM

and the Bayesian model require the strong assumption that the effect of intervention is restricted

to the same time point in which it occurred. In other words, neither model accounts for a carryover

effect of intervention to the following time point. Clearly there are many situations where this

assumption would be violated, and the resulting average causal effect estimates from either model

would be inaccurate and sensitive to the ordering of the study design. We can account for lagged

effects in our model, possibly following the example of Lin et al. (2009), but would lose the simple

interpretation of “at-the-time” compliance. Instead of a single effect of intervention, we would be
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estimating an accumulation over lags, which adds considerable complication. Moreover, the task

of establishing the presence of lagged causal effects in a dataset is not trivial. Simply including

lag terms (such as Si(t−1)) to the weighted linear mixed model introduces the trouble of temporal

confounding, since in the stepped-wedge design Si(t−1) = 1 is more likely at later time points.

Implementation of lagged effects in model structure is a potential future work for longitudinal

principal stratification methods. The PS-WLM model could include a random effects structure

of higher complexity, and already has the advantage of much lower computational time than the

methods reliant on posterior sampling or bootstrapping. Both the PS-WLM and Bayesian models

presented in this study provide relevant extensions of principal stratification to a longitudinal set-

ting, and are forward steps in handling the issue of mixed compliance in enviromental intervention

trials.
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Chapter 4

Principal Stratification Defined by a Continuous

Exposure in a Longitudinal Setting

4.1 Introduction

In this chapter we are once again interested in assessing the causal effect of an environmental

intervention on measures of health. We approach this problem using principal stratification meth-

ods, but now we consider principal strata that are based on a continuous intermediate variable.

This work is motivated by the study of an improved cookstove intervention and the health out-

comes of Honduran woman in the longitudinal trial introduced in Chapter 3 (Young et al., 2019).

The underlying rationale for the intervention is that we expect a ventilated stove to reduce indoor

air pollution compared to an open cooking fire, and this pollution reduction to then improve a

subject’s health (Figure 4.1). Previously in Chapter 3, we used a subject’s assignment to the im-

proved or traditional cookstove to define potential outcomes (potential value under assignment of

treatment or control, respectively). The subject’s actual stove usage, revealing their compliance

to treatment assignment, was the binary post-treatment variable we used to form principal strata.

While stove use is highly correlated with exposure in this study (Witinok-Huber et al., 2022), it

does not fully capture exposure differences between and within subjects. It is possible that expo-

sure levels may not decrease, or only decrease by a small amount, when using the improved stove.

Furthermore, from an epidemiological perspective, it is important to know the specific relationship

between indoor exposure to particulate matter (PM) and health outcomes. The total effect of the

stove intervention on the health outcome, may also include a direct effect from the stove assign-

ment itself. In this chapter, we consider continuous exposure to indoor particulate matter (PM) as

the continuously-valued post-treatment variable defining principal strata.
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SZ Y
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X

Q

Figure 4.1: Directed acyclic graph of the assignment (Z), treatment usage(S), exposure (PM), outcome

(Y ), outcome-related covariates (X) and exposure-related covariates (Q) of the study setting. The covariate

sets X and Q may be comprised of some of the same covariates.

We consider two different ways of estimating principal causal effects using longitudinal ex-

posures. Firstly, by categorizing exposure simply as lowered or not, we can apply the PS-WLM

model developed in Section 3.3.1. Second, we extend a Bayesian approach from Hackstadt et al.

(2014) that also estimates causal effects dependent on a threshold L for exposure reduction, but

does not require conversion of continuous exposure values to binary. We apply this approach to a

longitudinal setting while accounting for repeated measures.

The remainder of this chapter is outlined as follows. We first introduce the notation and setting

in Section 4.2, then in Section 4.3, we extend the PS-WLM model from Section 3.3.1 to using

continuous post-treatment variable for defining the principal strata. We introduce and extend the

Bayesian approach from Hackstadt et al. (2014) to a longitudinal setting in Section 4.4. In Section

4.5 we perform a simulation study to compare model performances on simulated samples, and

in Section 4.6 we analyze the cookstove intervention study from Young et al. (2019) with the

Bayesian approach. Finally, we provide a discussion in Section 4.7.

4.2 Notation and Setting

We adopt the same notation and setting as in Section 3.2.1, with the addition of the post-

treatment exposure variable PM. ConsiderN subjects measured over T time points with a stepped-
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wedge crossover design, where both study arms begin with control and are eventually assigned

treatment, but one arm receives treatment before the other (Brown and Lilford, 2006). For subject

i = 1, . . . , N at time t = 1, . . . , T , we denote Zit as assignment to treatment (Zit = 1) or control

(Zit = 0) and the vectors z1 and z2 as the predetermined vectors of assignment for subjects in

study arm 1 and study arm 2, respectively. When a subject i actually uses the treatment at time t

we denote Sit = 1 and Sit = 0 if they use control. The observed outcome value we write as Yit

and the exposure as PMit. We consider two sets of possibly overlapping sets of pre-randomization

covariates: xi are related to the outcome and qi are related to the exposure (PM). Both xi and

qi may be related to the latent principal strata Uit and thereby to the actual treatment use Sit. We

depict a directed acyclic graph including all the observed variables mentioned above in Figure 4.1.

Note that both the treatment assignment Z and actual treatment use S may have direct effects on

the outcome Y , such as in an unblinded study.

We define the potential outcome values under control and under treatment as Yit(0) and Yit(1),

respectively. Similarly, Sit(0) and Sit(1) are the potential treatment-use values and PMit(0) and

PMit(1) are the potential exposure values under control and treatment, respectively. Finally, the

vectors Yi(zk), Si(zk), and PMi(zk) are the sets of potential outcome values, potential actual

treatments, and potential exposure values used for all timepoints of subject i under the treatment

patterns k = 1 or 2.

4.3 Principal Score Weighted Linear Mixed Model with Com-

pliance Defined by a Continuous Exposure

4.3.1 Conversion of Continuous Exposure to Binary Variable

To estimate the stratified causal relationships between exposure and outcome, we would like

to implement the model from Section 3.3.1. Previously in the PS-WLM framework, a subject was

a complier “at-the-time” when their potential stove usage matched their assigned stove, i.e. that

Sit(1) = 1 and Sit(0) = 0. Always-takers had Sit(1) = Sit(0) = 1, never-takers had Sit(1) =
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Sit(0) = 0, and defiers had Sit(1) = 0 and Sit(0) = 1. As there are infinite potential values that

the exposure PM may take, there are infinite principal strata that could be defined by it. To use

the PS-WLM model with only four possible latent strata, we first convert the continous exposures

PMit to a binary measure of “lowered” or “not lowered” exposure with respect to a numerical

threshold L. The resulting variable PML
it is equal to 1 when PMit < L and is equal to 0 otherwise.

The variable PML
it may not reflect all observations that are causally lowered due to treatment

assignment, as unmeasured covariates and exogenous temporal factors may also be affecting the

exposure. To control for some of the variability in PMit unexplained by the treatment, we fit a

preliminary model:

PMit = αt + q⊤
itα+ βSSit + ηi + ǫ′it, (4.1)

where qit are relevant covariates for PMit, which do not have to be measured pre-randomization,

and α are their model coefficients. We assume ǫ′it
iid
∼ N(0, σ′) and ηi

iid
∼ N(0, ση) is a random inter-

cept by subject. The fixed effect αt is meant to capture variation by each time point t that is not cap-

tured in qit. Since we control for treatment assignment Sit, the estimated coefficients for each time

point α̂t, for the model coefficients α̂, and participant-specific random intercepts η̂i are explaining

variability that is not due to treatment. Then the Best Linear Unbiased Predictor (BLUP) for subject

i at time t under control (Sit = 0) is α̂t+q⊤
itα̂+ η̂i. We create a set of residual exposures by remov-

ing the predictions under control from each observation
(
P̂M

adj

it = PMit − (α̂t + q⊤
itα̂+ η̂i)

)
, so

that we are left with a mixture of variation which is explained by use of treatment and variation

which is not explained by the time point and participant-specific effects. We then convert the resid-

ual exposure values to a binary variable PML
it, that signifies when a subject’s exposure is lowered

(P̂M
adj

it < L→ PML
it = 1) or not lowered (P̂M

adj

it ≥ L→ PML
it = 0).

4.3.2 Model Fitting

Once we have defined a binary exposure variable, we can apply the PS-WLM model from

Section 3.3.1 with the only modification that in the place of actual treatment use Sit we use PML
it.
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In other words, Zit = 1 means subject i is assigned to have a lowered exposure at time t and

PML
it reveals whether they complied to this assignment. When using PML

it as the post-treatment

to define principal strata, we would consider subject i at time t to be a complier at-the-time if

PML
it(1) = 1 and PML

it(0) = 0, a never-taker if PML
it(1) = PML

it(0) = 0, an always-taker if

PML
it(1) = PML

it(0) = 1, and a defier if PML
it(1) = 0 and PML

it(0) = 1.

The assumptions listed in Section 3.2.3 must still apply. Each is untestable, but we specifically

address the assumption of monotonicity (Assumption 3), which requires that the data do not contain

members of the defier stratum. Using the assumption of General Principal Ignorability (GPI), the

potential exposures of a defier would only occur in response to the treatment assignment, not due

to some other factor. Then our assumption of monotonicity in this context is that there are no

time points when a subject would have lowered exposure because they are assigned the control and

have raised exposure because they are assigned treatment. We consider this behavior, responding

to treatment with higher exposure than to control, to be unrealistic and we assume monotonicity

for the PS-WLM model as a result.

While an attractive extension of methods developed in Section 3.3.1, this approach has potential

drawbacks. The conversion of a continuous valued exposure to a binary variable by some threshold

is a possible source of bias. Unexplained variation in the exposure measurements could mean that

even at a time when a subject’s exposure is causally lowered by the treatment, their observed

exposure measurement may still be higher than observed measurements under control. Even if this

variation is non-differential, the distribution of all exposures lowered causally by treatment and

distribution of all exposures not casually lowered by treatment can overlap. Then any reasonable

threshold L would lie in the ranges of both distributions such that the higher measurements of

causally lowered exposures were above L, thus mislabelled. The resulting binary variable then

identifies only casually lowered exposures which are low with respect to their full distribution.

These right-truncated exposures, correspond to outcome values influenced only by relatively low

exposures and lead to estimates that are biased to the left.
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4.4 Extension of the Bayesian Approach in Hackstadt et al.

(2014) to a Longitudinal Setting

As an alternative to the PS-WLM method, we consider an extension to a Bayesian approach

developed by Hackstadt et al. (2014), involving the estimation of all potential values for the ex-

posure and outcome. In this framework we first estimate the counterfactual exposures (PMit(0),

PMit(1)) and counterfactual outcome values (Yit(0), Yit(1)), then compute the difference in poten-

tial exposure values PMit(1) − PMit(0) for every subject i and time t. On these differences we

use a threshold value L to define strata and estimate average causal effects from the differences in

potential outcomes (Yit(1)− Yit(0)) in each strata.

4.4.1 Assumed Model

For this approach, we make Assumptions 1 (SUTVA) and 2 (Randomization) from Section

3.2.3. We do not make Assumption 3 and allow subjects to be defiers at-the-time, although the

principal strata in this model are not the same as in Chapter 3. We replace Assumption 4 with the

assumption of “ignorability of treatment”, so that conditional on the observed covariates, there is

no unmeasured confounding between the treatment and potential values for PM and Y .

We assume the following models for potential exposures and potential outcomes that are each

taken from Hackstadt et al. (2014) except now with the addition of a random intercept νi or ηi and

the index of time t. For the potential outcomes Yit(0) and Yit(1) we use the model:



Yit(0)

Yit(1)


 ∼ N






αt + x⊤

i β + βPMPMit (0) + νi

αt + x⊤
i β + βz + (βPM + βz×PM) PMit (1) + νi


 ,



ξ2 0

0 ξ2





 . (4.2)

And for the potential exposures PMit(0) and PMit(1) we use the model:




PMit(0)

PMit(1)


 ∼ N






αt + q⊤

i γ + ηi

αt + q⊤
i γ + ηi + δ1


 ,



σ2
0 ρσ0σ1

ρσ0σ1 σ2
1





 . (4.3)
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The p covariates xi are pre-randomization predictors of the outcome Y with coefficients β, and

the r covariates qi are pre-randomization predictors of the exposure PM with coefficients γ. The

fixed effect αt incorporates a temporal trend by time point. We consider the effect of treatment

assignment on the exposure PM as δ1, while the relationship between assignment Z and outcome

Y we assume to have a direct effect βz and an effect modified by PM: (βPM + βz×PM) PMit. The

random intercepts by subject are normally distributed so that νi
iid
∼ N(0, σν) and ηi

iid
∼ N(0, ση).

Note that ρ is a fixed value for the unknown correlation between PMit(0) and PMit(1), which will

never be observed simultaneously. Here we set ρ = 0.1.

4.4.2 Causal Effects Estimates

The post-treatment variable that we would use to define principal strata, the exposure PM, is

continuously valued, meaning there are infinite latent strata that could be defined by the potential

outcomes PM(0) and PM(1). To deal with this, Hackstadt et al. (2014) define causal effect esti-

mates by grouping observations by their difference in potential exposure PM(1)−PM(0), and we

adopt the same strategy here. Dependent on a numerical threshold L we define a complier average

causal effect,

CACEL = E {Yit(1)− Yit(0) | PMit(1)− PMit(0) < L} , (4.4)

and thereby consider a participant to be a complier “at-the-time” for an observation where their

exposure would reduce (with respect to L) when assigned the treatment.

Unlike in Chapter 3, we do not estimate always- and never-taker effects in this framework. An

always-taker would be defined for PMit(1) < L and PMit(0) < L simultaneously, and a never-

taker would have PMit(1) ≥ L and PMit(0) ≥ L. Instead of these separate strata, we capture

the effect of treatment assignment on all subjects whose potential exposure would be unchanged

according to the threshold L at-the-time. The unchanged average causal effect (UACE) is:

UACEL = E {Yit(1)− Yit(0) | |PMit(1)− PMit(0)| ≤ |L|} . (4.5)
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An always- or never-taker would fit in this grouping, having both raised or both lowered potential

exposures level and resulting in no difference in the potential values.

Also unlike Chapter 3, we do not require the assumption of monotonicity for our extension of

the method from Hackstadt et al. (2014). A difference in potential exposures that is positive and not

within the threshold of “unchanged” (PM(1) − PM(0) > |L|) is behavior of a defier at-the-time.

We denote the defier average causal effect (DACE) as:

DACEL = E {Yit(1)− Yit(0) | PMit(1)− PMit(0) > |L|} . (4.6)

4.4.3 Bayesian Analysis and Priors

To estimate the causal effects, we need to impute all missing potential exposures and outcomes.

For example, under treatment assignment (Zit = 1), PMit(0) and Yit(0) are unknown and must

be estimated. In addition to the missing potential values, we must estimate the model parameters

from Equations (4.2) and (4.3), including θ =
(
γ⊤, σ0, σ1, δ1, ση,β

⊤, βz, βPM, βz×PM, ξ, σν
)

and

the vectors of random intercepts for all subjects, ν and η. The quantity of potential values and

parameters to be estimated simultaneously motivates us to use a Bayesian approach. We estimate

the average causal effects in (4.4), (4.5), and (4.6) as posterior means, using the probabilistic pro-

gramming language Stan via the R package rstan to perform Hamiltonian Monte Carlo posterior

sampling with the NUTS algorithm (Stan Development Team, 2023a,b).

We implement the same prior distributions as Hackstadt et al. (2014) and use the following

hyperparameter values across all simulation and environmental intervention model fits. The inde-

pendent error variance ξ2 has an inverse gamma prior with shape αξ = 0.01 and scale βξ = 0.01.

For potential exposure standard deviations σ0 and σ1 we use zero-mean log-normal prior distribu-

tions, both with a standard deviation of 5. The normally distributed random intercepts νi and ηi

depend on the variances σν and ση, which have normal distrubutions each with the prior mean 1

and prior standard deviation 1. For all other parameters (γ1, . . . , γr, δ1, β1, . . . , βp, βz, βPM, and
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βz×PM), we use less informative independent normal priors, each with mean zero and standard

deviation 20.

4.5 Simulation

4.5.1 Setup

We create simulated samples with similarity to the data from the motivating cookstove inter-

vention study, using them to test the performance of the models proposed in Section 4.3 and 4.4.

The assumed model for the simulated outcome Yit is the same as that of Section 3.4 with the addi-

tion of an exposure term PMit. Simulated participants are randomized to one of two study arms in

a stepped-wedge design and are measured for six time points (t = 1, 2, 3, 4, 5, 6). Both study arms

are assigned control until the first study arm is assigned the treatment at the third time point, and

the second arm is assigned treatment at the fith time point. We generate a latent principal stratum

Uit for every participant at every time point. For the first time point, we draw starting quantities

of strata from a multinomial distribution with probabilities of 2/3 for compliers, 1/6 for always-

takers, and 1/6 for never-takers. Then we use a Markov chain to generate latent strata for each of

the following time points by subject. The transition matrix for the chain is symmetric with 0.6 in

its diagonal entries and 0.2 in the off-diagonal entries. From Uit the subject’s behavior at each time

point, Sit, is determined. The assumed model for simulated outcomes including PM as a mediator

is as follows:

Yit = x⊤
i β + β1Sit + β2PMit + sin(t) + νi + ǫit (4.7)

where PMit = β3Sit + (0.5)cos(2t) + ηi + ǫ′it. (4.8)

Here β1 = −0.1 is the direct at-the-time effect of received treatment (Sit) on the outcome, while

β2 ·β3 = 0.5 ·(−0.5) = 0.25 is the at-the-time effect of Sit on the outcome that is mediated by PM.

The participant-specific random effects νi and ηi are both i.i.d. N(0, 0.5), while the error terms ǫit

and ǫ′it are both i.i.d. N(0, 1). We use the same five covariates in xi as described in Section 3.4.1,
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which are constant in time. The five coefficient values in β are again fixed as 0.5, 0.5, 1, 1, and

0.25, respectively. Finally, we include a time trend for the outcome via the term sin(t) and a trend

in time with shorter periods for the exposure with the term (0.5)cos(2t). Note that the simulation

model does not include covariates qit specifically related to the exposure PMit or dependency of

covariates X on the latent strata Uit. In Chapter 3, we conducted an additional simulation study

with dependency of Uit on X, and found similar trends in the model results to the main simulation

study.

We create 200 replicate samples each with 300 participants and estimate complier average

causal effects (CACEL) for thresholds L from every sample in four ways. We fit the longitudinal

models from Sections 4.3 and 4.4 to the full simulated samples, and fit both the unmodified ap-

proach (without random intercepts or the fixed effect αt) from Hackstadt et al. (2014) and the prin-

cipal scores (PS) estimands from Equation (3.2) on single exposure and outcome measurements.

To reduce the repeated measures to single measures, we first compute the averages of exposure for

every subject during the first two time points when all participants are assigned control (PM
12

i ).

Next we compute averages during time points 3 and 4 for each subject (PM
34

i ), when the first

study arm is receiving treatment and the second arm is still assigned control. The difference in

averages (DA) (PM
34

i −PM
12

i = PMDA
i ) is then the exposure of interest for the PS estimands and

non-longitudinal Bayesian approach. Similarly, we compute Y
34

i − Y
12

i = Y DA
i for each subject.

Before using the PS-WLM model and PS estimands, we convert PMit and PMDA
i respectively to

binary exposure variables using a threshold L, considering subject i exposed if their exposure is

less than L and unexposed otherwise. For each of the four model variants, we apply all possible

threshold values ranging from L = −5 to L = 1 by increments of 0.05. For the principal scores

methods, some of these thresholds values result in an extreme case of the binary exposure variable

PML
it, having very few of a value (1 or 0) or none at all. These extreme exposure variables can then

lead to numerically unstable weights so that we are unable to produce an estimate. For this reason,

we only report a subset of the thresholds between -5 and 1 for the estimates in Figure 4.2. Finally,
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Table 4.1: Selected model fit results from 200 simulated samples. For each model type, we include the best

fits with respect to RMSE and to bias, which may be obtained under different thresholds L. We also include

the PS-WLM fits when using treatment use (Sit) to define principal strata instead of the exposure PML
it.

Power and coverage are measured for 95% confidence intervals.

Model Criteria L RMSE Bias Power Coverage

Bayesian

Longitudinal
Lowest RMSE -0.35 0.053 0.0164 1.000 0.920

Least Bias 0.05 0.059 0.0033 1.000 0.930

Bayesian

Single Measure
Lowest RMSE -0.50 0.070 0.0177 1.000 0.925

Least Bias 0.40 0.089 0.0001 0.995 0.885

PS-WLM
(Longitudinal)

Lowest RMSE -0.35 0.585 -0.5782 1.000 0.000

Least Bias -0.40 0.585 -0.5774 1.000 0.000

(Treatment Use) 0.122 0.0050 0.785 0.955

PS
(Single Measure)

Lowest RMSE 0.00 0.816 -0.5444 0.384 0.939

Least Bias 0.00 0.816 -0.5444 0.384 0.939

we also find the CACE estimates for all samples by applying the PS-WLM model with potental

actual treatment use (Sit(0) and Sit(1)) defining the principal strata, the same as in Chapter 3.

4.5.2 Results

The results from model fits on the 200 simulated samples are reported in Figures 4.2 and

4.3 for the principal scores (PS-WLM and PS) methods and Bayesian approach from Section 4.4

respectively. The Bayesian approach has high power, high coverage, and low bias for thresholds L

near 0. The longitudinal (including random effects) version of the Bayesian model produces lower

RMSE and higher power than the summarized single measure version (on Y DA and PMDA). The

thresholds L which correspond to the best performances in RMSE and bias for each model are

reported in Table 4.1. The Bayesian models both have lower RMSE and higher power than any

of the principal scores-based methods. The application of PS-WLM when using actual treatment

Sit (same as in Chapter 3), is more accurate than the principal scores methods that use the actual

exposure PMit, which are both negatively biased. The PS-WLM model performs better than the

PS estimands in RMSE and bias, but has lower coverage and higher power, indicating its Wald

confidence intervals are shifted away from the true effect by biased estimates.
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We attribute the negative bias in the principal scores methods to the issue of overlapping expo-

sure distributions under the causal effects of treatment and control, which we discussed in Section

4.3. The average causal effect of the treatment on exposure level may be small relative to the over-

all variation of the exposure. In this case, consider all observed exposures (in subject and time)

which have been causally lowered by the treatment. The distribution of measurements for these

exposures, and the distribution of measurements for the exposures not causally lowered by treat-

ment are overlapping. This overlap means that although the exposure of subject i at time t with

Zit = 1 may belong to the distribution of exposures causally lowered by treatment, their measure-

ment PMit is not lower than L and PML
it = 0. Then subject i is considered a never-taker at time

t and is not included in the estimation of CACEL for the PS-WLM and PS methods. Similarly,

when the exposure of a subject with Zit = 0 belongs to the distribution of exposures not causally

lowered by treatment but PML
it = 1, they are considered an always-taker and excluded from the

calculation of CACEL. Assuming a negative true effect of treatment on exposure, the observations

excluded by stratum membership belong to the right tail of the treated distribution (Sit = 1) and

the left tail of the untreated distribution (Sit = 0). This systematic removal of observations from

the estimation for CACEL results in a strong negative bias for the longitudinal and single measure

principal scores models which rely on PML
it, as seen in Table 4.1 and Figure 4.2.

4.6 Re-Analysis of Honduran Stepped-Wedge Cookstove Trial

Once again, our motivating study is the Honduran randomized controlled cookstove interven-

tion from Young et al. (2019), who used a stepped-wedge design to provide improved (Justa) stoves

to 230 households and measured stove use, exposure to PM, health outcomes, and other covari-

ates from primary cooks over six study visits in three years. Between the second and third study

visits (phases), researchers randomly assigned participants to a study arm and the household ei-

ther received the Justa cookstove before phase 3 (Arm 1) or before phase 5 (Arm 2), so that every

household eventually received the intervention, but in a staggered fashion (Figure 3.2). For our

analysis, we again estimate the stratified average causal effects of stove assigment (traditional or

64



0

1

2

3

−2 −1 0 1

R
M

S
E

−2.0

−1.5

−1.0

−0.5

0.0

−2 −1 0 1

B
ia

s

PS

PS−WLM

0.00

0.25

0.50

0.75

1.00

−2 −1 0 1

L

P
o
w

e
r 

(f
o
r 

9
5
%

 C
o
n
fi
d
e
n
c
e
 I
n
te

rv
a
ls

)

0.00

0.25

0.50

0.75

1.00

−2 −1 0 1

L

C
o
ve

ra
g
e
 (

fo
r 

9
5
%

 C
o
n
fi
d
e
n
c
e
 I
n
te

rv
a
ls

)

PS

PS−WLM

Figure 4.2: Results from the PS-WLM model and PS estimands estimates on 200 simulated samples, mea-

suring RMSE, bias, power, and coverage with respect to the true total effect of stove assignment on the

outcome (-0.35). For each sample, the model was fit using several thresholds L (on the x-axis) to define the

binary exposure variable PML
it. Not all thresholds could be used on any given sample without leading to

numerically extreme weights, so each point in the plot is a summary of estimates from between 100 and 200

samples.

Justa) on the outcome, percent of glycated hemoglobin (HbA1c), that is depicted in Figure 3.2.

As a post-treatment variable to define the principal strata, we no longer use the subject’s stove use

Sit, but instead use their personal 24 hour time-weighted average exposure to PM. We apply the

Bayesian approach from Hackstadt et al. (2014) and its extension from Section 4.4 to the study

data, estimating a complier average causal effect of stove assignment on HbA1c.
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Figure 4.3: Results from model fits on 200 simulated samples using the method developed in Section

4.4 (Longitudinal) and the unmodified method from Hackstadt et al. (2014) (Single Measure), measuring

RMSE, bias, power, and coverage with respect to the true total effect of stove assignment on the outcome

(-0.35). For each sample, the model was fit using several thresholds L (on the x-axis) to define the complier

average causal effect CACEL = E {Yit(1)− Yit(0) | PMit(1)− PMit(0) < L}.

4.6.1 Setup and Filtering

For subject i at phase t we define Zit as the assigned cookstove, Yit as the outcome HbA1c,

and PMit as log-transformed 24 hour time-weighted average PM2.5 (micrograms per cubic meter)

measured by a personal monitor (Figure 4.4). We use the same outcome covariates in X as in

Section 2.4. These are the binary covariates of whether or not the primary cook is over 40 years

of age, has a BMI over 25, has metabolic syndrome, or has electricity available in their household,

and also the log-transformed continuous measurements of peripheral systolic blood pressure, all

measured pre-randomization. For covariates Q related to the exposure PMit, we use the binary
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covariates of whether electricity is available in the household and whether kerosene is used as a

source of light. We restrict the study observations to complete cases, removing any observations

that are missing Zit (n = 28), PMit (n = 178), Yit (n = 168), or some part of xi or qi (n = 6) for

215 total removed and n = 1, 171 observations remaining.
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Figure 4.4: Personal PM2.5 measurements (µg/m3) from of 230 primary cooks measured across six study

phases, with the assigned stoves (Traditional or Justa) for study arms 1 and 2 listed below the plot. The

measurements are time-weighted averages and log-transformed.

4.6.2 Results

We report the confidence bands and estimates for CACEL by the longitudinal and single mea-

sure Bayesian approaches in Figure 4.5. We find no significant estimate from either model among
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the thresholds L = −5 to L = 2 by increments of 0.05. For the same thresholds, we found no

significant DACEL or UACEL estimates.

Recall that in Section 3.6.3, we reported significant complier (-0.15 with 95% confidence

interval -0.22 to -0.08) and never-taker (-0.11 with 95% confidence interval -0.18 to -0.05) ef-

fects from the same data with the PS-WLM model using stove use (Sit) to define the princi-

pal strata. The effects CACE = E {Yit(1)− Yit(0) | Sit(1) = 1, Sit(0) = 0} and CACEL =

E {Yit(1)− Yit(0) | PMit(1)− PMit(0) < L} are the same except for two cases. First, consider a

subject at time t who would use the stove assigned to them but would not experience a difference

less than L in exposure when using the improved stove. If we assume PM has the largest effect

of any variable on the outcome, the potential outcomes values of these subjects would have little

to no difference. Since these observations would be included in the estimation of CACE, but not

in CACEL, we would expect to see more attenuation in the former. Second, consider a subject at

time t who would not comply with their stove assignment, but would experience a difference less

than L in exposure when using the improved stove. The potential reduction in PMit means that

the potential outcomes of these subjects would differ. These observations would contribute to the

estimation of CACEL but not to CACE.

Reasons for the discrepancy between the estimates here and in Section 3.6.3 may include mea-

surement error or inconsistencies in the individual PM2.5 exposures (Figure 4.4), or a strong direct

effect of stove assignment on the outcome HbA1c that is due to the unblindedness of the study and

not mediated by PM exposure.

In Figure 4.6, we depict the estimated differences in potential values for the exposure and

outcome, where posterior means from the Bayesian model in Section 4.4 are used in place of

the unobserved counterfactuals. The points are plotted with lines indicating no difference for each

axis. The threshold L can be represented by a vertical line, with points to its right having PML
it = 0

and points to its left having PML
it = 1. For comparison, consider the threshold values from the

x-axis of Figure 4.5 as they would be drawn in Figure 4.6. If PM has a reducing causal effect on

the outcome Y , then more negative differences in the exposures potential values should correspond
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with more negative differences in potential outcomes. This would be indicated by a greater relative

concentration of points in the lower left quadrant of the plot defined by the intersecting lines.

In Figure 4.6, there are more points and some strong negative differences of potential outcome

values in lower left quadrant, but the trend is not obvious and there are also positive outliers in

Yit(1)− Yit(0) on the left hand side of the plot.
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Figure 4.5: Estimated complier average causal effect (CACEL =
E {Yit(1)− Yit(0) | PMit(1)− PMit(0) < L}) on the Honduran cookstove intervention data using

the Bayesian approach from Section 4.4 (Longitudinal) and the unmodified approach from Hackstadt et al.

(2014) (Single Measure).

4.7 Discussion

In an effort to study the relationship between indoor air pollution and health outcomes within a

longitudinal controlled trial, we have explored the applications and extensions of several methods.

We were again motivated by the Honduran cookstove intervention that we analyzed in Section 3.6

(Young et al., 2019). Instead of use of treatment, we were interested in the actual (PM2.5) exposures

that the subject experienced and how the exposure impacted health outcomes. To estimate this
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Figure 4.6: Scatter plot of estimated differences in exposure potential values PMit(1) − PMit(0) (µg/m3)

by differences in potential outcome values Yit(1)− Yit(0) (percent glycated hemoglobin). The unobserved

counterfactuals are estimated as posterior means from the Bayesian model in Section 4.4. We include lines

for differences of 0 in potential outcomes and potential exposures.

effect in a principal stratification framework, we used the potential exposure values as the post-

treatment variable to define the latent strata. To apply the PS-WLM model developed in Section

3.3.1 and the PS estimands in Equation (3.2), we must first convert the continuous exposures to

a binary variable defined by some numerical threshold L. We also extend the Bayesian approach

from Hackstadt et al. (2014) to a longitudinal setting by including two random intercepts and

a fixed effect by time point in the assumed outcome and exposure models. In the simulation

study of Section 4.5, we find that the longitudinal and single measure (without random intercepts

or αt) Bayesian models outperform the PS-WLM and PS methods in every metric and across

all thresholds L, as the principal scores models both exhibit negative bias. We posit that this

negative bias is due to overlapping distributions of causally lowered and not casually lowered
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exposures, leading to truncation in both distributions by the binary exposure variable. Finally, the

two Bayesian model variants, when applied to the motivating cookstove intervention study data

did not yield a significant effect of any kind across all thresholds L.

The simulations make clear that the Bayesian approach should be chosen over the negatively

biased principal scores methods. In Table 4.1 we report the results of the PS-WLM model fit on

simulated samples with actual treatment use defining the principal strata, as in Chapter 3. These

results show that the PS-WLM model will perform better and without strong bias when using

actual treatment use (if it is available), although the Bayesian approaches are still superior at certain

thresholds L.

The Bayesian approaches are reliant on the choice of covariates xi and qi to predict well the

exposure and outcome counterfactuals. Poor predictors of the exposure and outcome could dimin-

ish the accuracy of the estimated counterfactual exposures and outcomes, impacting the estimated

causal effects. Other possible areas of sensitivity in the Bayesian approach include choices of

priors and the fixed value ρ. These choices can be altered and tested in an additional simulation

study for example, but must be measured while also checking threshold values L, making for a

complicated comparison scheme. With their original model, Hackstadt et al. (2014) performed a

sensitivity analysis for different fixed values of ρ and found results to be robust to different choices.

In this work we have explored the application of several principal stratification methods to a

longitudinal crossover study when using a continous exposure measurement to define the latent

strata. These same methods can be applied to parallel group designs, like the Household Air Pollu-

tion Intervention Network (HAPIN) and other large randomized controlled cookstove interventions

(Clasen et al., 2022).
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Chapter 5

Conclusion

We have developed and presented methods in three areas. The first was a penalized regression

model to predict PM exposures in space and time that was faster than spatial-only and spatiotem-

poral universal kriging methods, and more accurate when measurements were missing at regular

intervals. The second methodological area was the extension of principal stratification to a longitu-

dinal setting. We developed a weighted linear mixed model (PS-WLM) which relied on principal

scores to estimate causal effects by strata, as well as a Bayesian mixture (BM) model to perform

the same task. The PS-WLM model outperformed the BM and original principal scores method

(CAPS) from Ding and Lu (2017) in every simulation scenario, and was the only model to produce

a significant effect estimate from the Honduran cookstove intervention study. The third area of

contribution was the implementation of principal stratification methods when using a continuous

measure of PM exposure as the post-treatment variable to define principal strata. We found that the

PS-WLM model is biased when applied with continuous exposure measurements that have been

categorized. We extended a Bayesian principal stratification approach from Hackstadt et al. (2014)

to the longitudinal setting, and found that it performed better than the PS-WLM model when using

categorized exposure PML
it or actual treatment use Sit to define principal strata.

5.1 Estimation of CACE from Chapter 3 vs. CACEL from

Chapter 4

The causal effects targeted in Chapters 3 and 4 are similar, but distinct, quantities. In Chapter 3,

we estimate the at-the-time complier average causal effect (CACE) of treatment assignment on the

outcome. We define the principal stratum of compliers at-the-time as subjects at time points when

they would use their assigned stove (Sit(1) = 1 and Sit(0) = 0). In Chapter 4, we estimate at-the-

time complier average causal effects for a threshold valueL (CACEL), where compliers at-the-time
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are subjects at times when PMit(1) − PMit(0) < L. With these two definitions of compliers, the

estimates for CACE and CACEL may be calculated from differing groups of subjects and time

points. For example, a subject i and time t may have PMit(1) − PMit(0) < L, but Sit(0) =

Sit(1) = 0.

An additional cause for disparity between CACE and CACEL is that the Bayesian model from

Section 4.4 takes a fundamentally different approach to estimating a complier effect than the prin-

cipal scores methods from Sections 3.2.4 and 3.3.1. Instead of applying weights to observations

to create a pseudo population for estimating average effects, the Bayesian approach estimates all

missing potential exposures and outcomes and is able to estimate differences in potential values

at an individual level. This is an advantage when using a continuous exposure variable to define

principal strata, since the individual differences in potential exposures contain more information

than the observed exposures that have been converted to a binary variable.

5.2 Future Work

Each of the methods that we developed were tested on simulated samples. Simulation allows

us to measure the models’ performance with respect to the true effects built in to the generative

process. There are many choices that we make in the generation of simulated samples, balancing

the complication of the process. If we add too many changing parameters, interpretation of the

model fits for the samples may become difficult, but if we over-simplify the generative process, the

model fits are perfectly specified and uninteresting. In Chapter 3, we generated simulated samples

which met the assumptions listed in Section 3.2.3. In addition to producing the method of principal

scores for principal stratification, Ding and Lu (2017) developed methods of testing the sensitivity

to certain violations of the general principal ignorability and monotonicity assumptions (3 and 4

in Section 3.2.3). An additional simulation study, involving samples with violated assumptions,

could explore the importance of these assumptions and robustness of the models to their violation.

In Chapter 4, the inclusion of an intermediary exposure variable (PMit) in the simulated samples

meant that we did not guarantee all the assumptions from Section 3.2.3 to be satisified. In addition,
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the Bayesian approach from Section 4.4 relied on fewer assumptions than the PS-WLM model

from Section 3.3.1. Thus, an investigation of the consequences in these models from violations in

their assumptions is warranted.

We performed an additional simulation study in Section 3.5 where the latent principal strata

Uit were dependent on X, which each of the models (CAPS, PS-WLM, and BM) were built to

account for. The results of this simulation study confirmed the models’ ability to handle such

dependency, but only for one construction of the relationship between X and Uit. Different forms

of a dependency between X and Uit, when added to the simulation studies in both Chapters 3 and

4, would be of interest.

In Chapter 4, we simulated samples without covariates qit by subject or time that influenced the

exposure value PMit. The PS-WLM and Bayesian methods from this chapter are built to handle

covariates for the exposure, so the simulated samples were over-simplified in this respect. The

addition of covariates related to the exposure PMit to the simulation study is a possible future

work.
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Appendix A

Data and Computing Acknowledgements

A.1 For Chapter 2

The Air Quality System data used in this work is publicly available from the Environmental

Protection Agency website: https://www.epa.gov/outdoor-air-quality-data/download-daily-data.

Similarly, the IMPROVE observations can be accessed at the website:

http://vista.cira.colostate.edu/Improve/. R code for the simulations and ambient air pollution anal-

ysis in Chapter 2 is available through the publisher, The Journal of Agricultural, Biological, and

Environmental Statistics.

IMPROVE is a collaborative association of state, tribal, and federal agencies, and international

partners. The U.S. Environmental Protection Agency is the primary funding source, with contract-

ing and research support from the National Park Service. The Air Quality Group at the University

of California, Davis is the central analytical laboratory, with ion analysis provided by Research

Triangle Institute, and carbon analysis provided by Desert Research Institute.

A.2 For Honduran Cookstove Study from Young et al. (2019)

The research in Honduras was funded by the National Institute of Environmental Health Sci-

ences of the National Institutes of Health under award number ES022269.

A.3 Overall

This work utilized resources from the University of Colorado Boulder Research Computing

Group, which is supported by the National Science Foundation (awards ACI-1532235 and ACI-

1532236), the University of Colorado Boulder, and Colorado State University.

84



Appendix B

Supplementary Material for Chapter 2

B.1 Objects

The observed data, indexed by site i and date t are stored in the vector x. The model coefficients

βkt, indexed by covariate k and time t are stored in vectors βt and collated into the stacked vector

β. These vectors are written as

x =




x11
...

x1T

x21
...

xnT




, βt =




β0t
...

β(p−1)t



, and β =




β1

β2

...

βT



.

The penalty matrix Λ1 applies the scalar penalty λ1 to all model coefficients in β except those of

the intercept and any other variables we choose not to penalize. We have penalty matrix blocks

(excluding the intercept β0) written as

Γ1
p×p

=




0 0 0 · · ·

0 λ1 0 · · ·

0 0 λ1
...

. . .
. . .



, so that Λ1

pT×pT
=




Γ1

p×p
0 0 · · ·

0 Γ1

p×p
0 · · ·

...
. . .

. . .



.

The covariates used to fit the model, indexed by site i and time t are stored in vectors rit and

collated into the matrix R along with p× 1 zero vectors 0 as shown below. To produce the matrix

Robs we need only remove the rows containing rit for combinations of date t and site i where no
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measurement was observed.

rit =




r0it
...

r(p−1)it




and R
nT×pT

=




r⊤11 0⊤ 0⊤ · · ·

0⊤ r⊤12 0⊤ · · ·

0⊤ 0⊤ . . .

...
...

r⊤1T

r⊤21 0⊤ 0⊤ · · ·

0⊤ r⊤22 0⊤

0⊤ 0⊤ . . .

...
...

r⊤nT




.

The difference matrix D shown below treats each sequential pair of predictions as adjacent in time.

If observations are missing at timepoints, sequential predictions in the from the model may not be

adjacent in time, so we may adjust D by removing rows which would compare non-adjacent dates.

Furthermore, we can define “adjacency” by any number of days between observations. To make

D we have difference matrix blocks

d
(T−1)×T

=




−1 1 0 · · ·

0 −1 1 · · ·

...
. . .

. . .



, so that D

n(T−1)×nT
=




d
(T−1)×T

0 0 · · ·

0 d
(T−1)×T

0 · · ·

...
. . .

. . .



.
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Table B.1: Median RMSE and R2 values from 100 simulated test samples for our penalized regression

model (Pen. Reg.), our model without its time smoothing penalty (λ2 = 0), universal kriging (UK), and

the SpatioTemporal model (ST). Note that H is the Hurst Index for Z2(s, t) and that the proportions

of locations observed only every third day or only every sixth day (instead of daily) are pthird and psixth,

respectively. Lastly, σ is the standard deviation of the non-spatial error ǫt.

Pen. Reg. λ2 = 0 UK ST

σ H pthird psixth RMSE R2 RMSE R2 RMSE R2 RMSE R2

0.5 0.05 0.333 0.167 0.381 0.895 0.383 0.895 0.605 0.786 0.347 0.911

0.5 0.05 0.667 0.167 0.463 0.843 0.467 0.838 0.906 0.481 0.383 0.892

0.5 0.05 0.667 0.333 0.360 0.912 0.360 0.911 0.399 0.883 0.699 0.665

0.5 0.50 0.333 0.167 0.371 0.874 0.380 0.869 0.415 0.844 0.319 0.906

0.5 0.50 0.667 0.167 0.436 0.846 0.463 0.824 0.477 0.821 0.339 0.902

0.5 0.50 0.667 0.333 0.354 0.901 0.360 0.898 0.401 0.875 0.462 0.822

1.5 0.05 0.333 0.167 0.519 0.811 0.523 0.810 0.665 0.640 0.453 0.856

1.5 0.05 0.667 0.167 0.605 0.744 0.615 0.732 1.004 0.400 0.510 0.815

1.5 0.05 0.667 0.333 0.493 0.836 0.496 0.834 0.666 0.695 0.724 0.626

1.5 0.50 0.333 0.167 0.499 0.783 0.517 0.761 0.642 0.660 0.397 0.857

1.5 0.50 0.667 0.167 0.550 0.747 0.610 0.683 0.693 0.605 0.433 0.840

1.5 0.50 0.667 0.333 0.478 0.809 0.491 0.793 0.659 0.662 0.509 0.774

Finally, we obtain the time-smoothing penalty term from Equation (3) via

Rβ =




r⊤11β1

r⊤12β2

...

r⊤1TβT

r⊤21β1

...

r⊤nTβT




and DRβ =




r⊤12β2 − r⊤11β1

r⊤13β3 − r⊤12β2

...

r⊤1TβT − r⊤1(T−1)βT−1

r⊤22β2 − r⊤21β1

...

r⊤nTβT − r⊤n(T−1)βT−1




.
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Figure B.1: Performance of spatiotemporal predictive models under staggered infrequent measurement

structure. Selected monitoring locations are observed daily, every third day, or every sixth day, according

to the proportions listed on the x-axis. If a location is observed infrequently, the dates of observation are

not synchronized, i.e. on any given date some locations of each schedule (daily, every third, and every

sixth) are observed. Shown are boxplots of RMSE values from each model on 100 replicate samples for

each simulation scenario. In order, the boxplots correspond to universal kriging (UK), our penalized re-

gression model without its temporal smoothing penalty (λ2 = 0), our model with the penalty (PR), and

the SpatioTemporal (ST) model. Note that H is the Hurst index for Z2(s, t), which results in a more

variable temporal trend as H approaches zero, and that σ is the standard deviation of non-spatial error added

to the training data.
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Table B.2: Median computation times from 10 replicate simulated data sets with Ntrain monitoring loca-

tions. For the “CV + Fit” time, our penalized regression model (Pen. Reg.) selects over penalty values and

number of TPRS basis functions, then fits the resulting best model (“Fit”). The universal kriging (UK) and

SpatioTemporal (ST) model fitting times include estimation of covariance parameters (“Cov + Fit”).

Pen. Reg. UK ST

Ntrain CV + Fit Fit Cov + Fit Cov + Fit

500 4.2 mins 0.2 mins 7.1 mins 181.1 mins

1000 8.0 mins 0.6 mins 19.1 mins 833.2 mins

1500 13.9 mins 0.9 mins 32.5 mins 2608.6 mins

2000 22.9 mins 1.8 mins 53.6 mins 5486.5 mins
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Figure B.2: Calendar heatmaps of the number of uniquely situated PM2.5, PM10, sulfate, and silicon mea-

surements recorded per day in 2017 across the eastern United States.
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Figure B.3: Observed sulfate concentrations (Obs) over time at four randomly selected monitoring loca-

tions. We include predictions from our penalized regression model (PR), the SpatioTemporal model

(ST), and universal kriging (UK). We also report the RMSE values of all models at each site.
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Appendix C

Supplementary Material for Chapter 3

C.1 Never-Taker and Always-Taker Covariate-Adjusted Esti-

mands

We present the never-taker and always-taker average causal effect (NACE and AACE) esti-

mators with covariate-adjustment. The complier average causal effect (CACE) covariate-adjusted

estimator is written in Equation (3) of the main text.

NACE = E
{(
Yit − βT

1,nxi

)
| Zit = 1, Sit = 0

}

− E
{
w0,n(xi)

(
Yit − βT

0,nxi

)
| Zit = 0, Sit = 0

}
(C.1)

+ (β1,n − β0,n)
TE {wz,n(xi)xi | Zit = z, Sit = 0}

AACE = E
{
w1,a(xi)

(
Yit − βT

1,axi

)
| Zit = 1, Sit = 1

}

− E
{(
Yit − βT

0,axi

)
| Zit = 0, Sit = 1

}
(C.2)

+ (β1,a − β0,a)
TE {wz,a(xi)xi | Zit = z, Sit = 1} .

Here z = 0 and 1 in the third terms of both Equations (C.1) and (C.2). Then wz,n(xi) =

w0,n(xi) when Zit = 0 and wz,n(xi) = 1 when Zit = 1. Similarly, wz,a(xi) = 1 when Zit = 0 or

wz,a(xi) = w1,a(xi) when Zit = 1
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Table C.1: The prior values of the Bayesian model used for all simulation fits. Each prior followed a normal

distribution.

Parameter Prior Mean Prior Standard Deviation

µzu 0 1

σu 4 1

β 0 1

γu 0 1

σν 1 1

Table C.2: The “t-statistics” calculated from the estimated differences described in Equation 5 with 200

bootstrap samples to approximate standard error (rounded to three decimal places). Each covariate is binary

except peripheral systolic blood pressure which we natural log-transform.

Covariate CACE NACE AACE

Age > 40 0.433 0.433 0.126

Electricity -0.505 -0.167 0.059

log(Peripheral Systolic Blood Pressure) -0.352 0.198 0.052

Metabolic Syndrome 0.000 0.271 0.113

BMI > 25 0.251 0.740 0.079
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