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ABSTRACT

ELECTRODIFFUSION ON THE SURFACE OF BILAYER MEMBRANES

The cell memebrane is of utmost importance in the transportation of nutrients to the

cell which are needed for survival. The magnitude of this is the inspiration for our study of

the lipid bilayer which forms the cell membrane. In this paper we present a continuum model

of electrodiffusion of lipids on the surface of bilayer membranes. Offering three derivations

of the surface electrodiffusion equation, and proofs for the existence and uniqueness of the

solution. A method for calculating integration constants using slotboom variables is emloyed.

The development of a linear surface finite element method to solve the surface electrodiffusion

equation is presented. Numerical simulations implementing the model are also given. The

stability of the model is analyzed and a stability scheme using Streamline Upwind Petrov-

Galerkin equations is applied. We test our code for robustness using other examples and a

complex mesh. The implementation is validated by comparing with the known solution for

the equations.
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Chapter 1

INTRODUCTION

Although cell membranes have been studied since 1855, introduced by C.Naegeli and

C.Cramer, the present membrane model was not developed until 117 years later. The first

fluid mosaic model (Figure 1.1) of a biological membrane was developed by Singer and

Nicolson. The general model only differs for individual cell membranes by lipid types or lipid

to protein ratios. Since 1972 there have been some changes to the fluid mosaic model. Such as

Figure 1.1: Fluid Mosaic Model

the memebrane having a patchwork mesh such that inside the patches lipid movement occurs

[11], instead of lipids moving freely across the entire cell surface [11]. The cell membrane

is differentially permeable and regulates what enters and exits the cell. To understand the

form and stability of a cell membrane the knowledge of lipid behavior is essential, since the

cell membrane is made of a lipid bilayer with embedded proteins. The lipid bilayer is formed

by the spontaneous self arrangement of phosopholipids, so that their tails are isolated from
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the surrounding aqueous solution. This arrangement leaves their heads free to associate with

other surfaces. In aqueous solutions lipids are able to laterally exchange locations with their

neighbors (Figure 1.2). This movement happens often, in fact millions of times a second

[1]. Another type of movement, that happens much more slowly and not as often, is a lipid

flip-flop (Figure 1.2). This occurs when a lipid crosses the hydrophobic membrane core.

This rare event has many degrees of freedom and multiple time scales which make it very

difficult to understand and model. Despite being the least understood dynamical process

in the membrane, there are currently some simple models using transition path sampling

(TPS) of this biological phenomena [9].

Figure 1.2: Lipid Movements

The lateral exchange resembles a random walk on the membrane surface which is math-

ematically equivalent to lateral diffusion on the membrane surface. Van der Waals, electro-

static, hyrdogen bonds, and noncovalent interactions are some of the forces associated with

lateral diffusion and the formation of the lipid bilayer. These forces motivate the study of

surface diffusion of lipids on membrane surfaces. The first mathematical paper written on

this subject was in 1988 by Gerhard Dziuk [3]. It introduced the use of the Laplace-Beltrami

operator, ∆s, to model diffusion on surfaces.

D∆su = f on Ω (1.1)
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Where u is the concentration of lipids on an arbitrary surface, Ω. D is the diffusion coefficient.

f is the production/destruction of lipids, and ∆s =∇s·∇s where∇s is the tangential gradient

on Ω which represents the net rate at which a lipid moves on the surface. The diffusion

coefficient, D, is the measure of the lipid movment around neighboring lipids and proteins

[6]. Logically then, the bigger the lipid the smaller the difusion coefficient. For diffusion on

spheres, one way to calculate the diffusion coefficient is using the Stokes-Einstein equation

[6]

Dγ = kBT (1.2)

Where T is the temperature in Kelvin and kB is the Boltzmann constant. It is important

to note that the diffusion coefficient relies on the size of the lipid we are studying. For

non-spherical domains there have been many studies on how to calculate this coefficient

using many different techniques including TPS as observed in [9] and through Resonance

Energy Transfer as in [12]. Dziuk’s surface model [3] has been widely accepted and used in

various applications such as hydrogen diffusion on clean metal surfaces, cesium transport,

and stressed epitaxial films [10]. But, is this model accurate enough to model lipids on

the membrane surface? Lipid movement is not only a result of diffusion but also from the

electrostatic force given off by other lipids, protiens, and molecules. This type of movement

inside a domain has been modeled using the drift-diffusion or FokkerPlanck equation (1.4)

which were introduced by Adriaan Fokker and Max Planck in 1931.

∇ ·D (∇u+ qu∇φ)− ∂u

∂t
= f (1.3)

Where u is the concentrati on of lipids in a domain, D is the diffusion coefficient, q is the

charge on the lipid, φ is the electrostatic potential, and f is the production/destruction of

lipids. This equation also has many other applications, such as modeling of nano-structural

defects in fusion materials, chemotaxis of biological populations, stellar dynamics, and two-

dimensional turbulence [10]. But how to model this on a surface? This question is the
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motivation behind the surface electrodiffusion equations.

∇s ·D (∇su+ qu∇sφ)− ∂u

∂t
= f on Ω (1.4)

Where u is the concentration of lipids on the surface Ω, D is the diffusion coefficient, q is

the charge on the lipid, φ is the electrostatic potential, and f is the production/destruction

of lipids on Ω. Although lipid movement is our motivation for this model, it is useful to

note that this equation can be used to model other physical phenomena. To name a few

would include the modeling of surfactants which act as detergents, wetting agents, and

emulsifiers,and the modeling of nano-particles which may be applied in corrosion protection,

crack-resistant electrodes, and antireflective films [13]. This model and variations of this

model have been investigated by scientist using different numerical methods.

The numerical techniques for solving this are generally particle-based and continuum

methods. The most common particle-based methods include Monte Carlo, Brownian dynam-

ics, and Langevin dynamics [8]. These methods follow each individual particle’s trajectories,

which may cause these methods to diverge when applied to large amounts of particles [8].

Continuum methods instead consider the average density distribution of charged particles

using partial differential equations. These methods are also easily modified to better model

physical interactions. Although, both types of methods agree qualitatively well, due to the

possible divergence and computational cost of the particle-based methods it is more efficient

to apply continuum methods [7]. This leads to a hightened interest in the surface finite ele-

ment method. The finite element method (FEM) is a numerical technique for approximating

partial differential equaions (PDE). The idea behind the method is to appoximate the PDE

using ordinary differential equations (ODE) and then numerically integrating them over a

polyhedral mesh. The development of FEM is credited to Alexander Hrennikoff and Richard

Courant in 1941. However, the first surface FEM did not come about until 1988 when Dziuk

introduced the method for solving the surface diffusion problem (1.1) [3]. He concluded that
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since we can paramaterize the triangular elements of the mesh to the reference triangle in R2,

this method is the same as in a 2D plane problem except for the storage of 3D coordinates.

Although the surface electrodiffusion equation is being used to model physical phenom-

ena the model lacks a supportive theoretical background. This paper provides the theoretical

proofs, derivations, and numerical methods needed to make the surface electrodiffusion equa-

tions a strong model for lipid diffusion on membrane surfaces. We offer three derivations of

the surface electrodiffusion equation, and proofs for the existence and uniqueness of the solu-

tion. We introduce a linear surface finite element method to solve the surface electrodiffusion

equation, and provide results for numerical simulations.
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Chapter 2

SURFACE ELECTRODIFFUSION

2.1 Derivation of Surface Electrodiffusion

Here we present three derivations of the surface electrodiffusion equation. For all deriva-

tions let Ω be a compact two dimensional, C3-hypersurface imbedded in R3. Where u is the

concentration of lipids on the surface Ω, D is the diffusion coefficient, q is the charge on the

lipid, φ is the electrostatic potential, and f is the production/destruction of lipids.

2.1.1 Derivation by Energy Minimization

The membrane free energy functional is given by

F =

∫
Ω

(U − TS) ds (2.1)

Where U is the internal energy, T is the temperature in Kelvin, and S is the entropy. This

can be defined for the membrane-lipid system following the derivation given by Zhou in [15]

as

F = kBT

∫
Ω

[u ln(
u

ξ
)] ds+

∫
Ω

−1

2
ε|∇φ|2 + zeuδ(x−XΩ)φ dx (2.2)

Where kB, T, φ are the Boltzmann constant, temperature, and electrostatic potential respec-

tively. The valences of the corresponding lipids is z and e is the elementary charge.

ξ =
1

a2
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is the effective gas pressure of lipids approximated as hard disks with the effective size a.

µ =
δF

δu
= zeφ+ kBT [ln(u(a2))− ln(1− u(a)2)] (2.3)

is the electrochemical potentials, µ , given by the variations of F with respect to u. The

electrochemical potentials correspond to the flux of lipids by

J = −mu∇sµ (2.4)

Where m is the mobility of the lipid. We can then use the mass conservation laws on the

membrane surface to derive the electrodiffusion equations on the surface Ω.

2.1.2 Derivation by Conservation of Mass

By Fick’s Law of Diffusion we know the flux, J , is the net difference over the time

interval, given by

J = D
∂u

∂t

where D is the diffusion coefficient. To obtain the flux for the electrodiffusion equations we

add a term to account for the movement due to the external force (electrostatic potential)

which would result in the lipid having a velocity, us [6]. With this and the flux, J , given in

(2.4) we have the corresponding surface electrodiffusion equations obtained from the mass

conservation on the membrane surface given by

∂u

∂t
+∇s · (uus) + u(∇s · ~n)(us · ~n) = −∇s · J = ∇s · (mu∇sµ) (2.5)

Where ~n are the normal vectors to the surface Ω. Since the mobility, m, is related to the

diffusion coefficient, D, referred to in (1.3), we get

∇s · (mu∇sµ) = ∇s ·D
(
∇su+

kua2∇su

1− a2u
+

1

kBT
uze∇sφ

)
(2.6)
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where k =
a

a0

and a0 is the effective size of the polar lipids [15]. If we consider the steady-

state problem,
∂u

∂t
= 0, and we obtain

∇s ·D
(
∇su+

kua2∇su

1− a2u
+

1

kBT
uze∇sφ

)
= 0 (2.7)

The second term,
kua2∇su

1− a2u
, accounts for the size of the lipid and does not allow for infinite

clustering of lipids on the membrane. In this paper this term is omitted for simplicity,

but is discussed further in the future works section and in [15]. Now we obtain the simple

drift-diffusion equation

∇s ·D
(
∇su+

1

kBT
uze∇sφ

)
= 0 (2.8)

Letting q =
1

kBT
ze we arrive at the desired form of the surface drift-diffusion equation

∇s ·D (∇su+ qu∇sφ) = 0 (2.9)

2.1.3 Derivation by Differential Geometry

The derivation of the electrodiffusion equation using differential geometry was given by

H.A. Stone in [14]. We first consider the concentration of lipids in the absence of diffusion,

reaction, or any flux to the surface on a deforming surface Ω. A concentration balance is

given by

d

dt

∫
Ω

u dΩ = 0 on Ω (2.10)

where
d

dt
is a material derivative. If we bring

d

dt
through the integral we obtain

∫
Ω

du

dt
dΩ + u

dΩ

dt
= 0 on Ω (2.11)

The second term , u
dΩ

dt
, is the deformation of the surface. Since we aren’t considering a

deforming surface, u
dΩ

dt
= 0. However, if a deforming surface is considered, the term may
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be left in and the calculations carried out as in [14]. Since u is defined only on the surface,

Ω,

du

dt
=
∂u

∂t
+ v · ∇su

where

∇s = ∇− (∇·~n)~n

is the surface gradient, ~n is the normal vector to Ω and v is the velocity of lipids. Making

these substitutions into equation (2.11) we obtain

∂u

∂t
+∇s · (vu) = 0 (2.12)

Decomposing v into components along the surface, vs, and normal to the surface, (v · ~n)~n

∂u

∂t
+∇s(uvs) + u(∇s · ~n)(v · ~n) = 0 (2.13)

Where the third term , u(∇s · ~n)(v · ~n), is a sourcelike contribution accounting for variation

in surfactant concentration resulting from local changes in interfacial area [14]. Since we are

working on a static membrane, u(∇s · ~n)(v · ~n) = 0, and vs = 0. Now with the addition of

drift-diffusion on the right hand side we obtain the desired equation.

∂u

∂t
= ∇s · (D∇su+Dqu∇sφ) + f (2.14)

2.1.4 Biological Definition

We have derived the follwing drift-diffusion equation

∇s·D (∇su+ qu∇sφ)− ∂u

∂t
= f on Ω (2.15)

Now breaking down each component:
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1.
∂u

∂t
is the change in the lipid concentration over time.

2. D∇su term accounts for the diffusion flux of lipids on the surface as discussed in the

introduction

3. Dqu∇sφ is the drift flux that accounts for the movement of the lipid due to the charge

given off by the electrostatic potential, φ

4. f is the source term or the production/destruction of lipids. This could be caused by

the ”flip-flop” movement discussed in the introduction or by endo/exocytosis

Combining each term gives us the movement of lipids on the surface of the cell membrane

in an aqueous solution.

2.1.5 Surface Gradient

If we are able to extend the surface Ω then let d be some oriented distance function

defined on some open set U ⊆ R3, then Ω may be written as

Ω = {x ∈ U |d(x) = 0} (2.16)

where ∇d 6= 0 and ∂Ω = ∅ [3]. Then the tangential gradient on Ω can be written as

∇su = ∇u− (∇u·~n)~n ∈ R3 (2.17)

For u ∈ C1(Ω) , where ∇ is the three-dimensional gradient and ~n is the normal vector to Ω.

For smooth Ω we may assume that there is a strip

U = {x ∈ R3| dist(x,Ω) < δ}

about Ω where

x = a(x) + d(x)~n (2.18)
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is unique [3]. Where a(x) ∈ Ω and |d(x)| = dist(x,Ω). So we may uniquely extend a function

u defined on Ω to U by

û = u(x− d(x)~n) , x ∈ U (2.19)

If we are unable to extend the surface, Ω to U then let c(t) be a curve defined on the

same Riemannian manifold as that defined by Ω. Then c(t) = Ω(u(t), v(t)) where u(t), v(t)

are tangent vectors to the surface Ω then by taking the derivative of c(t) we obtain

c′(t) =
∂Ω

∂u

du

dt
+
∂Ω

∂v

dv

dt
(2.20)

If s(t) represents the arc length of the curve then

s(t) =

∫ b

a

|c′(t)| dt (2.21)

and

ds

dt
= |c′(t)| (2.22)

Which means

ds

dt

2

= |c′(t)|2

=

(
∂Ω

∂u

du

dt
+
∂Ω

∂v

dv

dt

)2

=

(
∂Ω

∂u

du

dt

)2

+ 2

(
∂Ω

∂u

du

dt
· ∂Ω

∂v

dv

dt

)
+

(
∂Ω

∂v

dv

dt

)2

11



If we let

g1,1 =

(
∂Ω

∂u

)2

g2,2 =

(
∂Ω

∂v

)2

g1,2 =

(
∂Ω

∂u
· ∂Ω

∂v

)
g2,1 =

(
∂Ω

∂v
· ∂Ω

∂u

)

Then the metric tensor g is given by

g =

g1,1 g1,2

g2,1 g2,2

 (2.23)

Note that this matrix is symmetric, since g2,1 = g1,2. Using this we can compute g for any

paramaterized surface [15]. Then we have the following definitions

∇su =
1
√
g

∂

∂xi
ui
√
g

∆su = ∇s · ∇su =
1√
|g|

∂

∂xi
(
√
|g|giju)

2.2 Uniqueness Constraints

For enclosed membrane surfaces the electrodiffusion equation does not have boundary

conditions, but is subject to the constraint of mass conservation

∫
Ω

u ds = T (2.24)

Where T is the given total quantity of charged lipids on the surface Ω. In this paper we

study the steady-state electrodiffusion equation which implies
∂u

∂t
= 0 and we assume there
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is no source term, f = 0, so the equation becomes

∇s·D(∇su+ qu∇sφ) = 0 (2.25)

Note that if the mass conservation constraint is neglected the result is the trivial solution

u = 0. To avoid this we introduce a decomposistion (2.26) that will result in a physical

solution.

u = ũ+ ū (2.26)

where

ū =
T∫

Ω
ds

(2.27)

is the average concentraion of u on the surface Ω and ũ is the nontrivial variation of u to be

solved. Implementing this decomposition gives us

∇s·D(∇s(ũ+ ū) + q(ũ+ ū)∇sφ) = 0 (2.28)

Reducing the equation to the simplest form gives us the following

∇s·D(∇sũ+ qũ∇sφ) = −Dqū∇2
sφ (2.29)

Since u = ũ + ū ⇒
∫

Ω
u ds =

∫
Ω
ũ ds +

∫
Ω
ū ds and by letting

∫
Ω
ds = A, where A is

some constant, then by definition of ū ⇒
∫

Ω
u ds =

∫
Ω
ū ds and we also have the constraint

∫
Ω

ũ ds = 0 (2.30)
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Now the problem we have to solve is

∇s·D(∇sũ+ qũ∇sφ) = −Dqū∇2
sφ (2.31)∫

Ω

ũ ds = 0

Theorem 2.2.1. (Continuous Problem) There exists a unique solution in H1(Ω) to

∇s·D(∇sũ+ qũ∇sφ) = −Dqū∇2
sφ (2.32)∫

Ω

ũ ds = 0

for any smooth φ such that
∫

Ω
∇2
sφ = 0

Proof. If we introduce the slotboom variables D̂ = De−qφ , û = ũeqφ we can write (2.32) as

∇s· D̂(∇sû) = −Dqū∇2
sφ (2.33)∫

Ω

ûe−qφ ds = 0

Since D̂ > 0 this problem is elliptic, and we can write it in a bilinear form,

a(û, v) =

∫
Ω

D̂∇sû · ∇sv ds.

Consider the space

V := {v ∈ H1(Ω)|
∫

Ω

ve−qφ ds = 0}

Then V is closed under addition in H1 since for v1 ∈ V and v2 ∈ V ⇒
∫

Ω
v1e
−qφ ds = 0 and∫

Ω
v2e
−qφ ds = 0 and v1 + v2 ∈ H1 since H1 is closed and

∫
Ω

(v1 + v2)e−qφ ds =

∫
Ω

v1e
−qφ ds+

∫
Ω

v2e
−qφ ds = 0 + 0 = 0 (2.34)
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So, V is a Hilbert space with respect to the inner product of H1, and if we let

f = ∇2
sφ

then the weak form of the right hand side can be written as

−ūDq
∫

Ω

∇2
sφv ds = −ūDq

∫
Ω

fv ds (2.35)

where v ∈ V . Let v = 1 then

−ūDq
∫

Ω

f ds = 0

since ∫
Ω

∇2
sφ ds = 0

Thus, by the Lax - Milgram Theorem we know there exists a unique weak solution u ∈ V

to (2.32).

To numerically compute the solution to (2.32) we implement a linear surface finite

element scheme.
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Chapter 3

LINEAR SURFACE FINITE ELEMENT METHOD

To implement the surface finite element method we put equation (2.32) in its weak form

by applying the surface divergence theorem.

Theorem 3.0.2. (Surface Divergence Theorem) Let f : S → R3 be a vector field defined on

the smooth surface, S ⊂ R3. Then,

∫
S

(∇s · f)v ds =

∫
∂S

(f · ~m)v da−
∫
S

f · ∇sv ds (3.1)

Where ~m is the normal to the boundary, ∂S, and v ∈ H1
0 (Ω).

We define the soblev space H1
0 (Ω) and the norm on this space that will be used through

out the paper.

Definition 3.0.1. H1
0 (Ω) is the Sobolev space defined as

H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω, v = 0 on ΓD} (3.2)

where ΓD is the Dirichlet boundary condition.[5]

Note that the norm on this space is as follows

Definition 3.0.2. H1
0 (Ω) is the completion of C1

0(Ω) with respect to the norm

‖ u ‖H1
0
=

∫
Ω

| u | ds (3.3)

for u ∈ C1(Ω) [5]
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3.1 Weak Form

Now letting f = D(∇sũ + qũ∇sφ) and applying Theorem 3.0.2 the electrodiffusion

equation can be written in the weak form as

∫
Ω

∇s·(D∇sũ+Dqũ∇sφ)v ds =

∫
∂Ω

((D∇sũ+Dqũ∇sφ)·~m)v da−
∫

Ω

(D∇sũ+Dqũ∇sφ)·∇sv ds

Since we know ∫
Ω

∇s · (D∇sũ+Dqũ∇sφ)v ds =

∫
Ω

−Dqū∇2
sφv ds

we can make this substitution to get

∫
∂Ω

((D∇sũ+Dqũ∇sφ) · ~m)v da−
∫

Ω

(D∇sũ+Dqũ∇sφ) · ∇sv ds =

∫
Ω

−Dqū∇2
sφv ds

In this paper we will consider the surface, Ω, with ∂Ω = ∅ thus,

∫
∂Ω

((D∇sũ+Dqũ∇sφ) · ~m)v da = 0

So we have the weak form as

∫
Ω

(D∇sũ+Dqũ∇sφ) · ∇sv ds =

∫
Ω

−Dqū∇2
sφv ds (3.4)

If we apply Theorem 3.0.2 to the right hand side of this equation we obtain

∫
Ω

(D∇sũ+Dqũ∇sφ) · ∇sv ds = −Dqū
∫

Ω

∇sφ· ∇sv ds

17



Now the complete weak form is

∫
Ω

(D∇sũ · ∇sv +Dqũ∇sφ · ∇sv) ds = −Dqū
∫

Ω

∇sφ· ∇sv ds (3.5)∫
Ω

ũ ds = 0

where all v ∈ H1
0 (Ω).
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3.2 Linear Surface Finite Element Method

First we approximate Ω by a polyhedral surface Ωh which is the union of triangular

faces. Let Tj = {Pj} be the set of triangular faces as in Figure 3.1, and Pj = {pk(x, y, z)}

be the corresponding set of vertices.

Figure 3.1: Sphere with Triangle Mesh

Thus,

Ω ≈ Ωh =
N∑
j

Tj (3.6)

The same conclusions as in Theorem 2.2.1 hold and will proved

Theorem 3.2.1. (Discrete Problem) For every fh ∈ L2(Ωh) with
∫

Ωh
fh dsh = 0 there exists

a unique weak solution uh ∈ H1(Ωh) of

∇sh·D (∇shũ+ qũ∇shφ) = −Dqū∇2
sh
φ (3.7)∫

Ωh

ũ ds = 0

on Ωh.
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Proof. If we introduce the slotboom variables D̂ = De−qφ , û = ũeqφ we can write (3.12) as

∇sh· D̂(∇shû) = −Dqū∇2
sh
φ (3.8)∫

Ωh

ûe−qφ ds = 0

Since D̂ > 0 this problem is elliptic, and we can write it in a bilinear form,

a(û, v) =

∫
Ωh

D̂∇shû · ∇shv ds.

Consider the space

V := {v ∈ H1(Ωh)|
∫

Ωh

ve−qφ ds = 0}

Then V is closed under addition in H1 since for v1 ∈ V and v2 ∈ V −→
∫

Ωh
v1e
−qφ ds = 0

and
∫

Ωh
v2e
−qφ ds = 0 and v1 + v2 ∈ H1 since H1 is closed and

∫
Ωh

(v1 + v2)e−qφ ds =

∫
Ωh

v1e
−qφ ds+

∫
Ωh

v2e
−qφ ds = 0 + 0 = 0 (3.9)

So, V is a Hilbert space with respect to the inner product of H1, and if we let

f = ∇2
sh
φ

then the weak form of the right hand side can be written as

−ūDq
∫

Ωh

∇2
sh
φv ds = −ūDq

∫
Ωh

fv ds (3.10)

where v ∈ V . Let v = 1 then

−ūDq
∫

Ωh

f ds = 0

since ∫
Ωh

∇2
sh
φ ds = 0
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Thus, by the Lax - Milgram Theorem we know there exists a unique weak solution uh ∈ V

to (3.12).

If we take {v1, v2, ..., vN} to be the piecewise linear functions in H1
0 (Ω) which are globally

continuous, regular, and

vi(pk) =

 1 : pk ∈ Tj

0 : pk /∈ Tj

where k = 1, 2, 3 and i = 1, ..., N then

ũj(pk) =
N∑
i

ũivi(pk) (3.11)

At this point we will assume vi is always a function of pk and denote it as vi. Substituting

this into the weak form we obtain

∫
Ω

(D∇s

N∑
i

ũivi +Dq
N∑
i

ũivi∇sφ) · ∇sv ds = −Dqū
∫

Ω

∇sφ· ∇sv ds

Letting Ω be represented as its decomposition of triangular faces Tj gives us

∑
j

∫
Tj

(D
∑
i

ũi∇svi· ∇svj +Dq
∑
i

ũivi∇sφ· ∇svj) ds = −Dqū
∑
j

∫
Tj

∇sφ· ∇svj ds

factoring the ui out give us

∑
j

∫
Tj

(D
∑
i

∇svi· ∇svj +Dq
∑
i

vi∇sφ· ∇svj) ds ũi = −Dqū
∑
j

∫
Tj

∇sφ· ∇svj ds

and by rearranging the sums

∑
j

∑
i

∫
Tj

(D∇svi· ∇svj +Dqvi∇sφ· ∇svj) ds ũi = −Dqū
∑
j

∫
Tj

∇sφ· ∇svj ds (3.12)
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We now we have an equation in the form (A+B)ũ = b where

Aj,i = D

∫
Tj

∇svi· ∇svj ds (3.13)

Bj,i = Dq

∫
Tj

vi∇sφ· ∇svj ds (3.14)

bj = −Dqū
∫
Tj

∇sφ· ∇svj ds (3.15)

To preform the integration needed for each entry of A,B and b we use a gaussian quadrature

method on the surface. This requires an effective way of evaluating the basis functions vi.

To do this we move to the reference element.
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3.3 Reference Element

The reference element refers to the triangle with vertices at

p1 = (0, 0, 0), p2 = (1, 0, 0), p3 = (0, 1, 0) (3.16)

p
1

p
2

p
3

Figure 3.2: Reference Triangle

To distinguish between reference triangle elements and physical triangle elements. We

will denote the reference elements with coordinates (ξ, η, ζ) and physical elements with co-

ordinates (x, y, z). Also note the cooresponding node indicies will be labled in a counter-

clockwise order. Since our reference triangle lies on the xy − plane we can treat it in two

dimensions with the following local basis functions

N1 = 1− ξ − η, N2 = ξ, N3 = η (3.17)

with surface gradients

∇sN1 =


−1

−1

0

 , ∇sN2 =


1

0

0

 , ∇sN3 =


0

1

0

 , (3.18)
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This leads to the following affine transformation, denoted as F (ξ, η, ζ), that will take our

reference nodes and transform them to the physical nodes
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Figure 3.3: Transformation where ζ1 = ζ2 = ζ3 = 0
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
x

y

z

 =


x2 − x1 x3 − x1 n1

y2 − y1 y3 − y1 n2

z2 − z1 z3 − z1 n3


︸ ︷︷ ︸

M


ξ

η

ζ

+


x1

y1

z1


︸ ︷︷ ︸

F(ξ,η,ζ)

(3.19)

where nk are the entries of the normal vector to the triangle Tj and (x1, y1, z1) are the

coordinates of the first node on the physical triangle. Now we are able to easliy evaluate the

basis functions vi for each physical triangle.

vi(pk) = Ni ◦ F−1(pk) (3.20)

To find the surface gradients of ∇svi we use the transformation matrix, M , and applying

the chain rule gives us

∇svi = M−T (∇sNi ◦ F−1(pk)) (3.21)

Note that since ∇sNi is constant we do not need to evaluate ∇sNi at F−1(pk) leaving us

with the simple expression

∇svi = M−T (∇sNi) (3.22)

3.4 Quadrature

We can now numerically integrate using a 4-point Gauss Quadrature scheme. Which

consists in replacing the integrals with a finite sum as follows

Aj,i = D

∫
Tj

∇svi· ∇svj ds ≈
4∑
l=1

ωl∇svi(hl)· ∇svj(hl) (3.23)

Bj,i = Dq

∫
Tj

vi∇sφ· ∇svj ds ≈
4∑
l=1

ωlvi∇sφ(hl)· ∇svj(hl) (3.24)
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bj = −Dqū
∫
Tj

∇sφ· ∇svj ds ≈ −ū
4∑
l=1

ωl∇sφ(hl)· ∇svj(hl) (3.25)

Where ωl are the weights and hl are the nodes of the quadrature formula. Note that since

∇svj are constant there is no need for evaluation at hl, and this quadrature scheme becomes

very simple. For the 4-point gauss quadrature hl and ωl are as follows

hl ωl
(1/3,1/3,0) -0.28125
(1/5,1/5,0) .26041667
(3/5,1/5,0) .26041667
(1/5,3/5,0) .26041667

We can now calculate each entry in A,B, and b and we can numerically solve the system

(A+B)ũ = b by using a linear solver such at the BiConjugate Gradient Method. This results

in a family of solutions all differing by a constant. Thus to arrive at the correct solution we

must implement a constraint.

3.5 Integration Constant

By implementing the Slotboom variables [8]

D̂ = De−qφ , û = ũeqφ (3.26)

the electrodiffusion equation can be transformed to

∇s · (D̂∇sû)− ∂(ûe−qφ)

∂t
= −Dqū∇2

sφ (3.27)

Since we are considering the steady state problem ∂(ûe−qφ)
∂t

= 0 and we are left with the

equation

∇s · (D̂∇sû) = −Dqū∇2
sφ (3.28)
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With the constraint ∫
Ω

ũ ds = 0 (3.29)

We know the analytical solution to this problem is ũeqφ. Now by adding any constant C

to this solution, we also get a solution. So if we make the substitution ũeqφ + C = û and

factoring out eqφ to get the desired solution form

(ũ+ Ce−qφ)eqφ

We get the following constraint

∫
Ω

(ũ+ Ce−qφ) ds = 0

Solving for C we obtain

C =
−
∫

Ω
ũ ds∫

Ω
e−qφ ds

(3.30)

And we get the following unique solution

u = ũ+ Ce−qφ + ū (3.31)

3.6 Numerical Convergence

Because φ can be large the linear solver can diverge. The solution then can not be

obtained. To solve this problem we have implemented a matrix hacking technique, this

guarantees the convergence of the linear solver. To implement this we set a row in the

stiffness matrix, A+B, equal to zero except at position, (k, j), which is an arbitrary chosen
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position

A+B =



...
...

...
...

ak−1,j−1 + bk−1,j−1 ak−1,j + bk−1,j ak−1,j+1 + bk−1,j+1 ak−1,j+2 + bk−1,j+2 . . .

0 1 0 0 . . .

ak+1,j−1 + bk+1,j−1 ak+1,j + bk+1,j ak+1,j+1 + bk+1,j+1 ak+1,j+2 + bk+1,j+2 . . .

...
...

...
...


and set the kth position in f equal to m, some constant.

f =



...

fk−1

m

fk+1

...


To get accurate results one should pick m close to the anticipated solution.
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Chapter 4

NUMERICAL SIMULATIONS

In this section we numerically implement the electrodiffusion equations presented above.

To test our code we also use three other examples with simple solutions to test for error

convergence. We use the Coulomb potential, φ =
q

|x− x0|
, where x0 = (0, 0, 1.5). After

we reach a sufficient error threshhold we run the code on a test mesh, to check our code

for robustness. Numerically we are interested in the stability of our model, so we have

implemented a stability scheme to provide better stability of our model. The coding of the

model was done in C++, using the BiConguate Gradient Method and a 4-point Gaussian

Quadrature.

4.1 Numerical Examples with Polynomial Solutions

We have implemented the electrodiffusion equations presented above, denoted as Example 1.

We also look at three other polynomial examples , u = xy, u = zy, u = xyz, as well to test

for error convergence. All tests were ran on the unit sphere centered at the orgin with

q = −0.1. In all cases we get second order convergence, which is diplayed below in Figure

4.1. and Table 4.1.
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Figure 4.1: Error Convergence for All Examples wtih q = −0.1

Table 4.1: Errors for all Test Problems where RC is the Rate of Convergence

#ofNodes Example 1 RC u = xy RC u = zy RC u = xyz RC
245 5.12E-04 0.0047 0.0033 0.0029
984 9.73E-05 2.40 9.00E-04 2.38 8.67E-04 1.93 9.65E-04 1.59
3963 2.51E-05 1.95 2.57E-04 1.81 2.29E-04 1.92 2.90E-04 1.73
15910 6.29E-06 2.00 7.40E-05 1.80 6.45E-05 1.83 7.68E-05 1.92

30



−1

−0.5

0

0.5

1

−0.5
0

0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

 

 

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Figure 4.2: Solution for u = xy
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Figure 4.3: Solution for u = zy
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Figure 4.4: Solution for u = xyz
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4.2 Numerical Examples with Exponential Solutions

We are interested in what happens as the charge, q, changes in our electrostatic potential.

These results can be found in Figure 4.5 and Table 4.2. The errors do go up for larger q

which is to be expected, but we still get second order convergence for all q values. The

largest error occurs closest to the potential, which is seen in Figure 4.3.
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Figure 4.5: Errors for Example 1 with different q values

Table 4.2: Errors for Example 1 with different q where RC is the Rate of Convergence

#ofNodes q = −0.1 RC q = −1 RC q = −10 RC q = 0.1 RC q = 1 RC q = 10 RC

245 5.12E-04 1.40E-03 0.0325 3.28E-04 3.86E-04 5.83E-04

984 9.73E-05 2.40 3.27E-04 2.10 1.07E-02 1.60 9.96E-05 1.72 9.74E-05 1.99 1.44E-04 2.02

3963 2.51E-05 1.95 8.23E-05 1.99 3.10E-03 1.79 2.37E-05 2.07 2.39E-05 2.02 3.55E-05 2.02

15910 6.29E-06 2.00 2.04E-05 2.01 7.70E-04 2.01 5.85E-06 2.02 5.94E-06 2.01 8.79E-06 2.01

32



−1
−0.5

0
0.5

1

−0.5

0

0.5

−0.5

0

0.5

 

 

1

2

3

4

5

6

7

8

x 10
−5

Figure 4.6: Largest error occurs close to φ at z = 1.5 with 3963 nodes

33



To check the robustness of the code, we solved the equation on a surface with varying

curvature as given in Figure 4.7. The errors of the numerical solutions follow in Figure 4.8

and Table 4.3.

Figure 4.7: Mesh of surface with varying curvature
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Figure 4.8: Errors for Example 1 on surface with varying curvature

Table 4.3: Errors for Example 1 with different q on surface with varying curvature where
RC is the Rate of Convergence

#ofNodes q = −0.1 RC q = −1 RC q = −10 RC q = 0.1 RC q = 1 RC q = 10 RC

216 4.74E-04 4.71E-04 0.0315 2.17E-04 2.76E-04 3.10E-04

1094 7.98E-05 2.57 1.12E-04 2.07 1.30E-03 4.60 6.56E-05 1.73 6.77E-05 2.03 7.59E-05 2.03

4761 1.72E-05 2.21 2.63E-05 2.10 3.14E-04 2.05 1.62E-05 2.01 1.58E-05 2.10 1.75E-05 2.12

19473 4.14E-06 2.06 6.38E-05 2.04 7.69E-05 2.03 4.03E-06 2.01 3.86E-06 2.03 4.23E-06 2.04
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4.3 Stabilization

For large q values the electrodiffusion equation becomes drift dominated which can result

in areas of negative concentration shown in Figure 4.9. This is not physical, so to avoid this
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Figure 4.9: q = −10 results in negative concentration near φ

we add a stabilizing term using Streamline Upwind Petrov-Galerkin (SUPG) equations for

stability. These equations are as follows, which are discussed more in [2]

vsupg = σb · ∇sv (4.1)

σ =
emax
2b

ψ(Pe) (4.2)
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b = −D∇sφ (4.3)

ψ(Pe) =

 1 , 0.33‖b‖2emax
2D

> 1

0.33‖b‖2emax
2D

, otherwise
(4.4)

Where emax is the longest triangle edge. Adding these to the weak form, we have the equation

∫
Ω

(D∇sũ · ∇sv +Dqũ∇sφ · ∇sv) ds+
∫

Ω
(D∇sũ · ∇svsupg +Dqũ∇sφ · ∇svsupg) ds =

−Dqū
∫

Ω
∇sφ· ∇sv ds−Dqū

∫
Ω
∇sφ· ∇svsupg ds∫

Ω
ũ ds = 0

(4.5)

Implementing this, we have the error results found in Figure 4.10 and Table 4.4 which

compares the stabilization problem with the original problem.

Table 4.4: Errors for Example 1 with and without Stabilization where RC is the Rate of
Convergence

#ofNodes q = −0.1 RC q = −1 RC q = −10 RC q = 0.1 RC q = 1 RC q = 10 RC

W/O Stab.

245 5.12E-04 1.40E-03 0.0325 3.28E-04 3.86E-04 5.83E-04

984 9.73E-05 2.40 3.27E-04 2.10 1.07E-02 1.60 9.96E-05 1.72 9.74E-05 1.99 1.44E-04 2.02

3963 2.51E-05 1.95 8.23E-05 1.99 3.10E-03 1.79 2.37E-05 2.07 2.39E-05 2.02 3.55E-05 2.02

15910 6.29E-06 2.00 2.04E-05 2.01 7.70E-04 2.01 5.85E-06 2.02 5.94E-06 2.01 8.79E-06 2.01

With Stab.

245 4.63E-04 0.0122 0.1129 2.55E-04 5.39E-04 0.0292

984 8.17E-05 2.50 0.002 2.61 0.0786 5.22 7.99E-05 1.67 1.34E-04 2.01 0.0069 2.08

3963 2.17E-05 1.91 5.69E-04 1.81 0.0258 1.61 1.90E-05 2.07 3.50E-05 1.93 0.0019 1.86

15910 5.49E-06 1.99 1.62E-04 1.81 0.0072 1.84 4.71E-06 2.01 9.76E-06 1.84 5.78E-04 1.72
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Figure 4.10: Errors for Example 1 with Stabilization

The errors increase as q increases, but stay relatively small for smaller q. For larger q

such as q = 100 the linear solver for the original problem did not converge, but with the

added stabilization term the linear solver does converge. We tested the stabilization problem

for rubustness as well by running the Test Mesh presented above. The results are found in

Figure 4.11 and Table 4.5

Table 4.5: Errors for Example 1 with Stabilization ran on Test Mesh where RC is the Rate
of Convergence

#ofNodes q = −0.1 RC q = −1 RC q = −10 RC q = 0.1 RC q = 1 RC q = 10 RC

216 8.16E-04 0.0085 0.0536 2.26E-04 4.09E-04 0.017

1094 1.11E-04 2.88 0.0012 2.82 0.005 3.42 7.17E-05 1.65 9.23E-05 2.15 0.003 2.50

4761 2.30E-05 2.27 2.29E-04 2.39 0.0015 1.74 1.79E-05 2.01 2.14E-05 2.11 6.90E-04 2.12

19473 5.46E-06 2.07 5.17E-05 2.15 3.42E-04 2.13 4.43E-06 2.01 5.07E-06 2.08 1.52E-04 2.18
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Figure 4.11: Example 1 with Stabilization ran on Test Mesh
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Chapter 5

CONCLUSIONS

5.1 Future Work

One draw back to the electrodiffusion equation that I have presented is that it allows

for infinite concentration of lipids on the memebrane surface. This result is not physical,

since lipids have a finite size [15]. The next step in my research will be to implement the

addition of a term that will omit this concentration problem. The new equation will be

∇s·D
(
∇su+

ua2∇su

1− a2u
+ qu∇sφ

)
= 0 (5.1)

where a is the effective size of the lipid. In addition to this, the equation I have presented

assumes that φ is given. We can in fact calculate φ by using the Poisson equation

−∇ · (ε∇φ) =
∑
i

qiδ(xi) +
∑
j

qjρj (5.2)

where qi is the charge at xi, and ρj is the concentration of distributed charges with valence

qj [15]. This charge distribution can be described as an interface condition on Ω = Ωs ∪Ωm

as seen in Figure 5.1. By coupling this with equation 5.1 we obtain

∇s·D
(
∇su+

ua3∇su

1− a3u
+ qu∇sφ

)
= 0

φm = φs , εm
∂φm
∂n

= εs
∂φs
∂n

+ uq

(5.3)

where εs and εm are dielectric permittivity constants. This can be obtained by using varia-

tions of the free energy functional, F , as in equation 2.2, with respect to φ. This is further

discussed in [8]. This model can be even better if we allow for multiple types of lipids on the
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ǫm = 2

Ωs, ǫs = 80

Ωmemb

Ωs, ǫs = 80

Ωm

Sb

St

∂Ω

Figure 5.1: 2D cross section of the computational model. The domain Ωmemb is the bilayer
membrane modeled as a dielectric continuum without atomistic details. Distribution of lipids
on membrane surfaces St and Sb follows the surface electrodiffusion equation. Mobile ions are
distributed in the aqueous solution exterior and interior to the vesicle. Atomistic structure
of the MARCKS peptide is retained and singular charges are distributed in Ωm . ∂Ω is the
boundary of the computational domain.

surface of the membrane. This is accomplished through a system of equations where each

component consists of solving the electrodiffusion equation for each type of lipid. We will

then investigate the stability of the model by implementing an exponential fitting scheme

like that discussed in [4]. Although this equation has a lower bound on the solution for the

continuous problem there lacks a proof for a lower bound on the discrete solution to equation

5.3. This will also be a necessary task in the implementation of this model.

The equation I have given in this paper is posed on a nice smooth static surface, however

cell membranes are very pliable and are constantly changing shape. It is very necessary then

to consider a deforming surface with a membrane velocity. This will require an additional

term to account for the surface deformation. One way to do this is presented by Holmes in

[6] and discussed briefly in section 2.1.3.
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One of the greatest biological phenomena is the flip-flop movement of lipids on a bilayer

membrane. It is difficult to understand how and why a hydrophilic lipid head flips over a

hydrophobic bilayer. Not only is it difficult to understand, but even more difficult to model.

This effect has many degrees of freedom which make it hard, maybe even impossible, to

model. Although this task is a difficult one, over time we hope to implement a model that

will effectively describe this physical phenomenon.

5.2 Summary

The modeling of the cell membrane is an essential task that will not only improve our

knowledge of the cell itself but allow us to apply the knowledge to enhance the delivery

of nutrients needed to the cell. The electrodiffusion equations presented are a strong the-

oretically proven model for the movement of lipids on bilayer membrane surfaces. With

the existence and uniqueness of solutions this model is well defined as well as usable. The

surface linear finite element method offers a strong numerical solution to the electrodiffusion

equations with the use of the decomposition, and the matrix hacking technique. We have

developed a working C++ code that numerically solves electrodiffusion on surfaces, and

produces excellent results. This model produces a physical solution, even in the presence of

a large electropotential, where other models and numerical techniques fail. This model is a

good base that allows for many other advanced models to be built from it and opens up the

possibiliy for further research in this area.
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