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ABSTRACT 

 

 

 

EXAMINING THE RELATIONSHIP BETWEEN SENSORY PROCESSING AND 

ATTENTION IN INDIVIDUALS WITH AUTISM SPECTRUM DISORDERS  

 

 

Attention is a crucial element of our goal-directed, purposeful response to sensory 

information in our social and physical environments. Individuals with autism spectrum disorders 

(ASD) have significant deficits in sensory processing and attention. However, there is limited 

research examining the relationship between attention and sensory processing in individuals with 

autism spectrum disorders (ASD). The purpose of this dissertation was to examine the 

relationship between attention and sensory processing in individuals with autism spectrum 

disorders (ASD) and neurotypical individuals. Specifically, the objective was to examine if 

consciously directing attention to incoming information would result in more typical neural 

processing in individuals with ASD. To answer this question, study 1 was designed to understand 

how attention and distraction impacted sensory processing in neurotypical individuals. Studies 2 

and 3 examined neural measures of sensory processing in individuals with ASD as compared to 

age-matched neurotypical controls during passive and active attentional states.  

 In Study 1, electroencephalography (EEG) data were recorded while 60 adults (18-35 

years) heard random presentations of 4 auditory stimuli at 2 frequencies (1 and 3 kHz) each at 2 

intensities (50 and 70 dB). Participants were randomly divided into 2 viewing conditions; one 

group watched a silent movie and the other viewed a fixation point during the recording. All 

participants completed 2 attention conditions, the passive condition involved only listening to the 

stimuli, followed by the active condition, wherein participants were instructed to press a button 
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to the 1 kHz 50 dB tone. Amplitude and latency measures were obtained for the N1, P2, N2, and 

P3 components for each of the auditory stimuli. The ANOVAs revealed a significant main effect 

of attention condition for the N1, P2, N2, and P3 amplitudes. There were also significant 

attention-by-viewing condition interaction effects at the P3 component. Results indicated that 

actively directing attention to the tones impacts auditory processing at all components. 

Additionally, manipulation of attention by changing the viewing environment significantly 

interacted with sensory processing, such that movie viewing resulted in larger P3 amplitudes 

compared with fixation viewing.  Thus, viewing environment or distraction impacts sensory 

processing.     

In study 2, we examined the effect of attention on auditory filtering using the sensory 

gating paradigm in individuals with ASD. EEG data were recorded during 2 attention conditions 

from 24 adults with ASD and 24 neurotypical individuals during the sensory gating paradigm. 

During the passive condition, participants were presented with single and paired clicks. For the 

active condition, participants made a motor response following the single click but not the paired 

click. Attending to the clicks resulted in larger P50 and N1 amplitudes, and reduced gating for all 

participants. Although, the ASD group had P50 and N1 gating during both attention conditions, 

they had significantly longer N1 latencies to the Click 1 during both the attention conditions, 

suggesting a delayed orienting response. However, click 2 latencies were delayed only in the 

passive condition and not the active condition for the ASD group compared to the neurotypical 

group. This finding suggests of attention-based amelioration of processing speed in individuals 

with ASD. Individuals with ASD also had significantly more deficits on behavioral measures of 

social responsivity, attention, sensory and perceptual processing. Additionally, neural measures 

of gating were associated with several behavioral measures of sensory processing as measured 
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by self-report questionnaires and a performance-based measure of attention, such that efficient 

neural processing was associated with more typical sensory processing and attention.  

 In study 3, we examined the effect of attention on auditory discrimination in individuals 

with ASD. EEG data were recorded from 24 individuals with ASD and 24 neurotypical 

individuals, while they heard random presentations of 4 auditory stimuli at 2 different 

frequencies (1 and 3 kHz) each at 2 different intensities (50 and 70 dB). All participants 

completed two attention conditions; the passive condition involved only listening to the stimuli, 

followed by the active condition, wherein participants were instructed to press a button to the 1 

kHz 50 dB tone. Attention impacted N2, and P3 amplitudes, and P2 and N2 latencies. The ASD 

group had significantly longer N1, N2, and P3 latencies, suggesting delayed processing. N2 and 

P3 latency delays in the ASD group were present during the passive but not active condition, 

implying an attention-based amelioration of processing delay. Behavioral measures of sensory 

processing and attention correlated with neural measures of auditory processing.  

Thus, through the series of studies, we found that actively directing attention to the tones 

impacts auditory processing, and may result in more typical processing in ASD. The study 

findings also suggest that sensory processing deficits observed in ASD may be associated with 

underlying deficits of attention. Study findings have significant implications related to 

understanding auditory discrimination in individuals with ASD and examining the impact of 

attention on sensory processing. Additionally, these results can help practitioners understand the 

neural basis of behavioral manifestations of ASD, especially those atypical behaviors that occur 

in response to sensory experiences in everyday activities. 
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CHAPTER 1 – REVIEW OF LITERATURE 

 

 

 

Our perception of everyday stimuli heavily relies on the amount of attention we devote to 

given sensory information.  Our attention is also highly flexible, and constantly changing, 

sometimes consciously but mostly through unconscious mechanisms.  When we focus our 

attention to a sensory stimulus, we can increase our perceptual sensitivity towards the object of 

our attention, while also simultaneously inhibiting or filtering out unimportant information.  The 

manner in which the brain processes sensory stimuli and integrates that information with 

previously created templates and with novel environmental conditions is very complex.  In 

addition, how other cognitive processes, such as attention influence the ongoing influx of 

multiple and sometime complex sensory stimuli are only recently beginning to be understood.   

Attention 

Although attention is a commonly used word in our everyday language, it has multiple 

meanings.  We are able to pay attention, concentrate or become distracted.  We are sometimes 

conscious of our own attention and are often able to observe attention in others.  Attention is a 

crucial element of our goal-directed, purposeful response to sensory information in our social 

and physical environment.  Attention is understood as a “broad cognitive concept that includes a 

set of mechanisms that determine how particular sensory input, perceptual objects, trains of 

thought, or courses of action are selected for further processing from an array of concurrent 

possible stimuli, objects, thoughts and action” (Talsma, Senkowski, Soto-Faraco, & Woldorff, 

2010, p. 2).  Attention is highly flexible and dynamically adjusts every moment depending on 

our goals, to focus on locations, visual features, or objects.  Attention can be oriented reflexively 
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based on internal goals and desires of the observer (endogenous attention) or on our response to 

salient events in the environment (exogenous attention; Smith & Schenk, 2012).   

Attention is a foundational element of human cognitive activity.  Specifically, attention 1) 

increases the probability of learning, 2) improves detection of faint stimuli 3) reduces 

background noise (Carrasco, Penpeci-Talgar, & Eckstein, 2000), 4) improves feature 

discrimination (Lee, Itti, Koch, & Braun, 1999), and 5) affects stimulus appearance (Fuller, Liu, 

& Corrasco, 2006).  Thus, attention filters out irrelevant stimuli and enables neural resources to 

focus on relevant information (Zhang et al., 2011).  According to the information processing 

models of attention, information enters the sensory system and is then sent into memory via an 

attentional mechanism that operates independent of the sensory systems (Smith & Schenk, 

2012).  Thus, attention is conceived as a modular (anatomical and functional independence), 

domain-general higher-order cognitive function (Smith & Schenk, 2012). 

Neural networks and brain structures involved in attention.  Given the broad 

conceptualization of attention, researchers have attempted to organize attentional processes into a 

working taxonomy.  Recent advances in neuroimaging have allowed scientists to understand the 

functional organization of the brain and the underlying networks regulating attention.  Recent 

research has focused on applying principles of Graph Theory in neuroscience to examine neural 

networks related to functional connectivity of spatially distributed yet constantly communicating 

regions of the brain (Van Den Heuvel, & Pol, 2010).  Functional connectivity has been defined 

as “the temporal dependency of neuronal activation patterns of anatomically separated brain 

regions” (Van Den Heuvel, & Pol, 2010, p. 519).  Examining the integrative organization of 

functional neural networks can provide insights about large-scale neuronal communication, 

which can shed light on the relationship between functional connectivity and human behavior.  
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This knowledge can help researchers understand neuropathology and examine where and how 

this organization may be altered in neurological disorders like ASD (Bullmore, & Sporns, 2009).  

Most of the cognitive networks examined relate to a specific domain function such as memory, 

but attentional networks involve a mental function that is domain general (Fernandez-Duque, & 

Posner, 2001).  Thus, we can pay attention to stimuli from the visual domain, the auditory 

domain, to the meaning of stimuli, etc. This domain generality allows attention the ability to 

influence and impact all areas of the brain.  Neuroscientists examining attention related to 

different sensory inputs have identified different regions of the brain, however it is believed that 

the source of these influences is limited to a small number of functionally connected brain 

regions called networks (Fernandez-Duque, & Posner, 2001).  

Attention networks proposed by Petersen and Posner. The classic neuroscience-based 

model by Posner and Petersen (1990) characterized attention in terms of three processes: 1) 

orienting to sensory stimuli, 2) detection of signals, and 3) maintenance of a vigilant state.  

Petersen and Posner (2012) showed support for their previously proposed tripartite organization 

of attention given recent advances in neuroscience.  This model now includes the following 

functions, 1) alerting, 2) orienting, and 3) executive control (Petersen & Posner, 2012).  Petersen 

and Posner (2012) have described the brain networks involved in each of these different forms of 

attention.  Petersen and Posner (2012) categorized the attention system into the following three 

networks.  The orienting network focusses on prioritizing sensory input by selecting specific 

modalities or locations.  The alerting network focusses on brainstem arousal systems and is 

concerned with sustained vigilance.  If a warning signal is presented prior to a target event, a 

phasic change in alertness ensues.  This state allows preparation for target detection and 

increases the speed of target detection.  The executive network is related to target detection and 
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focal attention.  Greene et al. (2007) reported that these three networks are represented in each 

hemisphere separately and are largely comparable across both the hemispheres. 

The orienting network. Orientation to a given sensory input can be driven from 

endogenous cues (voluntarily) or exogenous cues (environment).  Imaging research revealed that 

both these cues activate similar areas in the frontal and parietal cortex.  Functional magnetic 

resonance imaging (fMRI) studies have found that orienting activates the precentral gyrus of the 

frontal lobe and areas in the parietal lobe (Corbetta, 1998; Petersen & Posner, 2012).  The 

cholinergic system arising in the basal forebrain is involved in the orienting network (Marocco & 

Davidson, 1998).   

The alerting network. This network involves the ability to achieve and maintain an alert 

state.  Warning tasks and continuous performance tasks are commonly used to examine this 

network.  The reaction to an auditory warning signal has a strong exogenous component.  

Attentional processing is similar during continuous performance tasks that present either rare or 

frequent target stimuli.  A vigilant state increases activation in the right fronto-parietal system 

(Pardo, Fox & Raichle, 1990; Petersen & Posner, 2012).  The norepinephrine system arising in 

the locus coeruleus of the midbrain plays an important role in the alerting network (Marocco & 

Davidson, 1998). 

The executive network. Executive attention involves effortful control or coordination, 

specifically, task switching, inhibitory control, conflict resolution, error monitoring, and 

allocation of attentional resources (Posner & Rothbart, 1998).  The areas of the brain that are part 

of the executive attention network involve the anterior cingulate cortex, supplementary motor 

area, the orbitofrontal cortex, the dorsolateral prefrontal cortex, and portions of the basal ganglia, 

and the thalamus.  The role of the anterior cingulate cortex has been widely investigated, 
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revealing its involvement in both emotional and cognitive self-regulation (Petersen & Posner, 

2012).  The mesocortical dopamine system is thought to be involved in the neuromodulation of 

the anterior cingulate cortex and the lateral prefrontal cortex (Marocco & Davidson, 1998).   

Based on functional magnetic resonance imaging (fMRI) studies, Corbetta and Shulman (2002) 

proposed the concept of two anatomically and functionally distinct attention systems composed 

of several brain regions.  Numerous studies have shown that dorsal and ventral attention 

networks are supramodal attention systems, i.e., they function similarly across sensory 

modalities.   

 Dorsal and ventral attention networks. The dorsal attention network is assumed to 

mediate top-down voluntary allocation of attention, while the ventral attention system is 

proposed to be involved in detecting unattended or unexpected stimuli and triggering attention 

shifts (Corbetta & Shulman, 2002).  The dorsal attention network is also responsible for 1) 

controlling spatial orienting by modulating the saliency of distractor stimuli according to task 

demands (Ptak & Schnider, 2010), 2) generating and maintaining endogenous signals related to 

current task demands (Corbetta, Kincade, Ollinger, McAvoy, & Shulman, 2000), and 3) linking 

stimuli to responses (Rushworth, Paus, & Sipila, 2001).  Whereas, the ventral system is activated 

during 1) stimulus-driven attentional control (Corbetta & Shulman, 2002), 2) abrupt changes in 

sensory stimuli (Downar, Crawley, Mikulis, & Davis, 2000), and 3) at the end of a completed 

trial (Shulman et al., 2002).  While several researchers have supported the functional roles of 

these networks, issues concerning their functional organization, and the interaction of the two 

networks remain debated.  

The dorsal network comprises of the intraparietal sulcus and the frontal eye fields, and is 

organized bilaterally (Corbetta & Shulman, 2002).  However, studies using concurrent 
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transcranial magnetic stimulation (TMS) and fMRI over left and right regions of the dorsal 

network have challenged the view of strictly symmetrical functions of both hemispheres (Ruff, et 

al, 2006; Ruff, et al, 2008).  The ventral network comprises of the temporo-parietal junction 

(TPJ), and the ventral frontal cortex (Corbetta & Shulman, 2002).  The ventral system is 

proposed to be lateralized to the right hemisphere (Corbetta & Shulman, 2002; Shulman et al., 

2010).  However, there are some inconsistencies in the literature regarding the specific role and 

lateralization of the TPJ.  DiQuattro and Geng, (2011) demonstrated that the left TPJ is also 

involved in attention processes, and some others have shown bilateral TPJ activation during 

attentional tasks (Geng & Mangun 2011).  Doricchi, Macci, Silvetti, and Macaluso (2009) 

demonstrated differences between left and right TPJ function such that the left TPJ responded 

during both bottom-up and top-down processing, while the right TPJ showed higher activity 

during bottom-up processing.   

Although there are inconsistencies in the areas involved and lateralization of the 

networks, there is considerable consensus in the existence and general function of the two 

networks.  Using fMRI, researchers have shown that the ventral and dorsal attention networks 

are distinguishable even during task-free conditions (Fox, Corbetta, Snyder, Vincent, & Raichle, 

2006).  A study by Umarova et al. (2009) also found white matter structural connectivity within 

the ventral and dorsal systems.  The dorsal network has been found to inhibit activity in the 

ventral areas such as the TPJ during top-down guided attentional tasks (Shulman, Astafiev, 

McAvoy, d'Avossa, & Corbetta, 2007) and when no informative stimuli were present (DiQuattro 

& Geng, 2011).  Thus, the dorsal network filters information sent to the ventral system allowing 

for efficient attentional regulation.  Similarly, the ventral attention network dampened activity in 

the dorsal attention network to enable covert shifts of attention (Weissman & Prado, 2012).  Fox 
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et al. (2006) have suggested that the right posterior middle frontal gyrus may allow for functional 

information transfer between the two systems, while Eckert et al. (2009) suggest that this 

interaction transfer occurs through the anterior insula. 

Studies by Kincade, Abrams, Astafiev, Shulman, and Corbetta (2005) and Chica, 

Bartolomeo, and Valero-Cabré (2011) found that the right intraparietal sulcus (dorsal network) 

was involved in both top-down and bottom-up attention processing, while the right TPJ (ventral 

network) was associated with orienting of bottom-up but not top-down attention.  These studies 

favor the notion of a single attention orienting network, which consists of the dorsal fronto-

parietal system and the TPJ. 

 Frontoparietal control network. The fronto-parietal cortex is considered to be a 

domain-general attention control center (Scolari, Seidl-Rathkopf, & Kastner, 2015).  This 

attention network, called the fronto-parietal control network is assumed to allow flexible 

coupling with either the dorsal or ventral attention networks based on exogenous versus 

endogenous goals (Spreng, Stevens, Chamberlain, Gilmore, & Schacter, 2010).  This network is 

composed of the dorsolateral prefrontal cortex, middle frontal gyrus, anterior insula, dorsal 

anterior cingulate cortex, precuneus, and anterior inferior parietal lobule, and is anatomically 

interposed between the default mode network (see below for details) and dorsal attention 

networks (Vincent, Kahn, Snyder, Raichle, & Buckner, 2008).  Several researchers have argued 

that this network is the mediator between the attention systems (Spreng et al., 2010; Vincent et 

al., 2008).  However, others believe that attention control occurs within the dorsal system 

(Corbetta & Shulman, 2002). 

 Default mode network. Benedek et al. (2016) examined brain regions responsible for 

maintaining an internal focus of attention (such as during imagination or mental simulations).  
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The study showed that internal attention involved increased activation of the right anterior 

inferior parietal lobule (aIPL) and bilateral lingual gyrus compared to externally directed 

attention.  These areas are associated with the parietal core of the fronto-parietal control network.  

These researchers also proposed that the right aIPL may be involved in the active suppression of 

sensory information processing during internally directed attention (Benedek et al., 2016).  

Internally directed attention has been commonly associated with the default mode network 

(Spreng et al., 2010).  Brain regions implicated in this network include the medial prefrontal 

cortex, the posterior cingulate, the medial temporal lobes, and the posterior inferior parietal 

cortex (Raichle, 2015).   

Additionally, researchers have found that the default mode network may be involved 

during increased attention demands (Popa, Popescu, & Paré, 2009).  In contrast, others have 

found reduced activation of the default mode network during internally directed attention 

(Benedek et al., 2016).  Researchers have shown differences in brain activation between a visuo-

spatial attention task and an autobiographical planning task, wherein the former task engaged the 

dorsal attention network and the latter engaged the default mode network, and both tasks 

additionally activated the fronto-parietal control network (Spreng et al., 2010).  Others have also 

found that increases in the dorsal attention network are accompanied by decreases in the default 

mode network and vice-versa (Fox, Zhang, Snyder, & Raichle, 2009).  

Thus, there are still big gaps in our knowledge of the relationship between the default 

mode network, the dorsal and ventral attention networks, and the fronto-parietal control network.  

Presence of activity in the dorsal and ventral attention networks during attention-based tasks is 

ubiquitous across neuroimaging studies.  Researchers have also shown that some areas of the 

frontal cortex serve as mediators for crosstalk between the two systems.  However, there are still 
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gaps in literature determining the interactions that allow attentional systems to coordinate, for 

example, an orienting response.   

Knowledge about the brain networks involved in attention along with the theories of 

attention suggest that attention is closely linked to our abilities to process sensory information.  

One’s attention abilities impacts one’s sensory processing abilities as well. Sensory processing is 

defined differently by different disciplines. For neuroscientists, sensory processing may deal 

with the neural mechanisms of information processing down to the neuron mechanisms, while 

for the discipline of occupational therapy (OT), it may include both neural and behavioral 

aspects of information processing.    

Sensory Processing from an OT Perspective 

Sensory processing refers to the way that sensory information is processed in the brain 

and perceived for the purpose of enabling an individual’s experience of sensation and subsequent 

meaningful engagement with the environment (Kandel, Schwartz, & Jessell, 2000).  Sensory 

processing is an encompassing mechanism which includes the reception, modulation, integration, 

and organization of incoming sensory stimuli and the behavioral response to the sensory 

information.  These processes are fundamental to perception, learning, and functional abilities in 

behavioral, emotional, motoric, and cognitive domains.  Sensory systems include the tactile, 

auditory, visual, gustatory, olfactory, proprioceptive, and vestibular systems.  Occupational 

therapists have developed several theories of sensory processing and often use these theories to 

guide behavioral interventions to address sensory processing difficulties (Dunn, 2001).  Several 

researchers have shown that difficulties with processing sensory information can lead to 

difficulties in meaningful engagement in everyday occupations (Ashburner, Ziviani, & Rodger, 

2008; Baker, Lane, Angley, & Young, 2008; Dunn, 2001; Zingerevich & LaVesser, 2008).  
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Occupational therapists Johnson-Ecker and Parham (1999) refer to sensory processing as 

“brain’s handling of sensory information for the purpose of enabling a person’s engagement in 

occupations” (p. 495). The profession of OT is concerned with “helping people across the 

lifespan participate in the things they want and need to do through the therapeutic use of 

everyday activities (occupations)” (AOTA, 2017). Thus, numerous OT researchers (e.g., Dunn, 

2001) have examined how sensory processing challenges affect everyday occupations. The 

discipline of OT has generated, and continues to generate, a wide knowledge-base about how 

individuals process sensory information and how this processing affects an individual’s ability to 

meaningfully engage with the environment, not only during the typical course of a day but also 

how it might interfere with living a satisfying life (Dunn, 2001). Some studies have associated 

sensory processing with cognitive, behavioral, emotional, and psychosocial performance 

(Baranek, Foster, & Berkson, 1997; Parham, 1998; Kinnealey & Fuiek, 1999). OT research 

examining sensory processing has also shown how to support people with sensory processing 

deficits to be successful in their daily lives (e.g., Dunn, 2001). Occupational therapists (e.g., 

Dunn, 2001) have used a variety of measures, such as criterion measures, direct assessment of 

performance, open-ended interviews, surveys, parent-, teacher- and self-report questionnaires, 

and observations to characterize sensory processing.  Inter-disciplinary teams, including OT 

researchers have also taken advantage of psychophysiological methods to investigate brain-

behavior relationships examining attention and sensory processing as it impacts everyday 

behaviors (Brown, Tollefson, Dunn, Cromwell, & Filion, 2001; McIntosh, Miller, Shyu, & 

Dunn, 1999; Schaff & Davies, 2010). 

The mechanisms of sensory processing are intertwined with several other neural 

functions. Most OT theories of sensory processing depend on assumptions about the underlying 
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brain processes associated with sensory processing. However, most of the research done by 

occupational therapists on this topic is based on behavioral measures that do not directly measure 

neural processing within the brain. Neuroscience literature is often incorporated to support these 

assumptions. Neuroscientists have reported on the brain’s methods for mediating its own sensory 

input, with an emphasis on the role of attention (Kandel et al., 2000). Some OT researchers (e.g., 

Dunn, 2001) have also incorporated cognitive mechanisms such as attention as important 

constructs in understanding sensory processing. By studying the contributions and relationships 

of neural functions such as attention on sensory processing, we may be able to gain insights on 

the role of sensory processing in various clinical conditions.    

Relationship between Sensory Processing and Attention.  

 The first step of sensory processing is the detection of incoming sensory stimuli in the 

CNS.  Sensory stimuli are processed within multiple regions of the CNS.  Depending on the 

stimuli, different processes such as facilitation, sensitization, habituation, suppression, inhibition, 

and summation can occur causing changes in the ongoing neuronal activity (Miller & Lane, 

2000).  Ayres noted that some children with sensory processing dysfunction fail to register 

incoming sensory input which leads to difficulties in modulating sensory information (Ayres, 

1979).  This failure to register is associated with difficulty in detection of sensory input.  

Registration of sensory stimuli has been alluded to as the complex process by which the CNS 

pays attention to or notices environmental information.   

 Relationship between attention and sensory processing from interdisciplinary 

psychophysiological studies. Several studies have shown that sensory processing abilities, as 

measured by psychophysiological measures, are dependent on attentional control (Talsma et al., 

2010).  McIntosh et al. (1999), examining sensory processing in pre-school children, and Brown 
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et al. (2001), examining adults, found that distinct patterns of noticing and habituation coincided 

with behavioral measures of sensory processing. Using positron emission tomography, 

researchers have demonstrated that spatial attention leads to stronger activation in the brain area 

responsible for processing the stimulus on the attended side compared to the unattended side 

(Corbetta, Miezin, Dobmeyer, Shulman, & Petersen, 1990; Heinze, et al., 1994; Hillyard, Vogel, 

& Luck, 1998).  Additionally, blood flow in cortical areas processing characteristics that are the 

focus of attention (such as color, shape, velocity) was increased compared to when these 

characteristics were ignored (Corbetta et al., 1990).  Researchers examining visual attention have 

shown that attention affects activity of brain areas that process stimulus characteristics, such as 

color, motion, form etc.  A classic study by Motter (1993, 1994) demonstrated the effect of 

attention on neuronal behavior.  Two conditions were compared: an attended condition, in which 

the monkey focused attention on a visual stimulus within the receptive field, and an unattended 

condition, wherein the monkey focused attention elsewhere in the presence of the same visual 

stimulus.  The results of this experiment indicated that when attention was directed towards the 

given stimulus, there was an increase in the firing rate of neurons that respond to the attended 

stimulus.   

Using implanted electrodes in rhesus monkeys, Reynolds and Desimone (2003) also 

showed that attention increases the activity in brain regions processing the attended location 

compared to visual stimuli at an unattended location.  Such an enhancement of neural 

representation is thought to be due to an amplification of the intensity or magnitude of the 

attended stimulus, or due to the suppression of other irrelevant stimuli or environmental noise.  

Thus, attention appears to increase the gain of the stimulus for efficient processing (Borji & Itti, 
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2014).  The aim of this increase in stimulus gain is an enhanced probability for that stimulus or 

event to be acted upon (Borji & Itti, 2014). 

Theories Describing the Relationship between Attention and Sensory Processing 

 Sensory gain control theory. Researchers examining the effect of selective attention on 

stimulus-driven neural activity have suggested that sensory pathways can be modulated in 

amplitude based on attentional mechanisms.  Hillyard et al. (1998) put forth the sensory gain 

control theory based on previous research by Corbetta and colleagues (1998).  The researchers 

propose that “feature-specific increases in regional cerebral blood-flow may involve a ‘sensory 

enhancement’ whereby incoming visual information in attended sensory pathways would trigger 

stronger and more selective neuronal responses with a higher signal-to-noise ratio than in 

unattended pathways” (p. 1257; Hillyard et al., 1998).  Thus, attention modulates sensory 

processing through an ‘amplification’ of neuronal activity within sensory processing areas of 

attended stimuli compared to unattended stimuli (Posner & DeHaene, 1994).  For instance, 

attending to motion and ignoring color would result in an amplification of activity within motion 

processing areas of the brain. 

 Biased competition model of attention. With respect to visual attention, several 

researchers have proposed that there is competition for neural resources (Desimone & Duncan, 

1995).  Specifically, attending to a feature such as velocity may cause a ‘bias signal’ to be sent 

from higher cortical areas governing attention to the sensory areas specialized for motion 

processing.  This bias signal might increase the baseline firing rate of neural activity without 

necessarily modulating sensory-evoked neural responses.  Accordingly, neurophysiological 

researchers have put forth the “biased competition hypothesis” of the neural basis of attention.  

Attentional selection occurs by biasing an underlying competitive interaction between multiple 
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stimuli in the sensory receptive field toward one stimulus or another, such that behaviorally 

relevant stimuli are processed in the cortex whereas irrelevant stimuli are filtered out (Reynolds 

& Desimone, 1999).  According to this hypothesis, attention appears as a nonlinear property that 

results from a top-down biasing effect that influences the competitive and cooperative 

interactions that work both within cortical areas and between cortical areas (Deco & Rolls, 

2005).   

 Early and late selection theory of attention. The early selection view hypothesizes that 

focused attention can effectively prevent early perceptual processing of irrelevant distractors 

(Treisman, 1969), while the late selection view suggests that attention can only affect later post 

perceptual processes such as memory or response selection (Duncan, 1980).  Researchers have 

found evidence supporting both these views and there is an on-going debate between the early 

versus late selection views of attention.  To find a resolution to this debate, Lavie (2010) 

proposed the load theory of attention. 

 Load theory of attention. The load theory proposes two mechanisms of selective 

attention.  The first includes a passive mechanism wherein irrelevant distractors are not 

perceived due to insufficient capacity of their processing under conditions of high perceptual 

load (Lavie, 1995, 2010).  The second mechanism occurs during conditions of low perceptual 

load whereby an active mechanism rejects irrelevant distractors even when these are perceived.  

This second mechanism depends on higher cognitive functions to actively maintain processing 

priorities to ensure that low-priority stimuli do not drain resources.  According to this theory, 

high perceptual load is hypothesized to reduce distractor interference while increasing cognitive 

control load is expected to increase distractor interference (Lavie, Hirst, De Fockert, & Viding, 

2004).  Thus, early selection is predicted for situations of high perceptual load, whereas late 
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selection is predicted for situations of low perceptual load (Lavie & Tsal, 1994).  Lavoie, Hine, 

and Thornton (2008) compared different distraction tasks which included movie watching, 

reading, solving math, doing nothing eyes open, and doing nothing eyes closed while auditory 

stimuli were presented.  The authors found that although the amplitude and latencies of event-

related potentials (ERPs) were not affected, pre-stimulus activity (signal-to-noise analysis) was 

significantly different for the distraction conditions (Lavoie et al., 2008). 

Although most of the above mentioned the research examining sensory processing is 

based on neurotypical functioning, researchers have examined sensory processing in clinical 

conditions as well. This dissertation examines sensory processing in one such condition, namely 

autism spectrum disorders. 

Autism Spectrum Disorders (ASD) 

 ASD are neurodevelopmental disorders characterized by persistent deficits in social 

communication and social interaction as well as restricted, repetitive patterns of behavior, 

interests, or activities.  The Diagnostic Statistical Manual-5 (DSM-5) lists five criteria for the 

diagnosis of ASD (DSM-5: American Psychiatric Association, 2013).  The first criterion 

includes persistent deficits in social communication and social interaction across multiple 

contexts.  This characteristic could include deficits in social-emotional reciprocity, in nonverbal 

communicative behaviors, and in developing, maintaining, and understanding relationships.  The 

second criterion states a child must have restricted, repetitive patterns of behavior, interests or 

activities, which can consist of: 1) stereotyped or repetitive motor movements, use of objects, or 

speech, 2) insistence on sameness, rigidity of routines, ritualized pattern of verbal or nonverbal 

behavior, 3) highly restricted, fixated interests that are abnormal in intensity or focus, 4) hyper- 

or hypo-reactivity to sensory input or unusual interest in sensory aspects of the environment.  
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Lastly, these symptoms must be present in an early developmental period, cause clinically 

significant impairment in social, occupational or other areas of functioning, and are not better 

explained by other intellectual or developmental disabilities (DSM-5: American Psychiatric 

Association, 2013).  ASD is commonly classified based on the level of intellectual dysfunction.  

Children functioning in the average or above average range of intelligence are often called high-

functioning ASD.   

 There is strong evidence establishing neuropathological dysfunction in individuals with 

ASD, which has its origin in abnormal brain development early in prenatal life (Courchesne, 

2004).  Although ASD is typically diagnosed around 3 years of age, there is compelling evidence 

suggesting abnormality in early development and behavior.  In a longitudinal study examining 

early signs in infants with a high-risk of developing ASD, Zwaigenbaum et al. (2005) found that 

infants who were later diagnosed with ASD could be distinguished from a comparison group of 

low-risk infants based on the following characteristics: 1) atypical patterns in eye contact and 

sensory oriented behaviors, 2) prolonged latency to disengage visual attention, 3) marked 

passivity and decreased activity level, and 4) delayed expressive and receptive language.   

 Deficits in sensory processing, which includes hyper- or hypo-reactivity to sensory input 

are part of the diagnostic criteria for children with ASD in the DSM-5 (American Psychiatric 

Association, 2013).  Previous studies suggest that 42% to 95% of the children with ASD exhibit 

sensory processing disorders based on behavioral measures (e.g., Baranek, 2002; Liss, Saulnier, 

Fein, & Kinsbourne, 2006; Tomchek & Dunn, 2007; Walting, Deitz, & White, 2001).  

Additionally, several studies suggest auditory brain processing deficits in children with ASD 

(Lincoln, Courchesne, Harms, & Allen, 1995).  However, there is limited evidence identifying 
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specific neuropathology underlying sensory processing dysfunction and connecting the neural 

processing to behavioral manifestations in children with ASD, which warrants further study. 

 Attention difficulties in ASD. Deficits in joint attention and social attention, are 

considered a hallmark characteristic of the core manifestation in ASD.  Despite limited research 

examining attention in individuals with ASD, some researchers have found significant attention 

deficits in individuals with ASD using both behavioral and neuroimaging methods (Christakou et 

al., 2013; Corbett, Constantine, Hendren, Rocke, & Ozonoff, 2009; Geurts, Verte, Oosterlaan, 

Roeyers, & Sergeant, 2004).  Evidence suggests that an early disruption in basic attention 

regulation (such as atypical orienting patterns) may be responsible for development of later 

deficits in social attention.  Impairments in visual attention and orienting have been consistently 

reported even during infancy in individuals with ASD (Zwaigenbaum et al., 2005).  Researchers 

examining ERPs have also shown that the attention-related late positivity (LPC) is compromised 

in individuals with ASD during attention orienting compared to neurotypical controls (Townsend 

et al., 2001).  Using both behavioral measures of target detection and auditory ERP amplitudes, 

researchers have found that individuals with ASD have impairments in focusing their attention to 

target stimuli (Teder-Sälejärvi, Pierce, Courchesne, & Hillyard, 2005).   

 In a sample of ninety-one children with Asperger’s syndrome, Sturm, Fernell, and 

Gillberg (2004) found that 95% of the participants had attentional problems using behavioral 

reports from clinicians.  Using the Continuous Performance Test, researchers have documented 

deficits in sustained attention (Garretson, Fein, & Waterhouse, 1990). Using a comprehensive 

battery of behavioral measures, Corbett et al. (2009) found that children with ASD (7-12 years) 

had significant deficits in vigilance, and cognitive flexibility/switching.  Deficits in shifting and 

disengaging attention are also commonly observed among individuals with ASD.  Researchers 
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found that individuals with ASD take longer to disengage from a central target to orient toward a 

peripheral event when compared to neurotypical controls (Elsabbagh et al., 2009). 

 Neural basis of attention deficits in ASD. During a task of visual spatial attention in 

adults with ASD using electroencephalography (EEG; Belmonte, 2000) and fMRI (Belmonte & 

Yurgelun-Todd, 2003), attended and unattended sensory inputs evoked equally abnormal large 

activations in the ASD group compared to the control group. Additionally, there was a reduction 

in activation for brain regions serving integrative functions in the ASD group.  In another study, 

integrative regions in the prefrontal and medial temporal cortices showed abnormally low 

activations compared to stronger activations in parietal cortex during suppression of distractors 

in individuals with ASD compared to neurotypical controls (Belmonte & Baren-Cohen, 2004).  

Researchers have found anatomic hypoplasia and reduction in number of Purkinje cells in the 

cerebellum, which have been associated with selective attention and orienting difficulties (Allen 

& Courchesne, 2003; Harris, Courchesne, Townsend, Carper, & Lord, 1999).  Structural 

abnormalities in the inferior parietal lobe have been shown to correlate with attentional deficits 

observed in both ASD and attention-deficit hyperactivity disorder (ADHD; Brieber et al., 2007).  

Although several studies have implicated deficits in the attention networks in ASD, others have 

found intact organization of the task-positive network a.k.a. dorsal attention network, involved in 

performance of externally directed cognitively demanding tasks (Kennedy & Courchesne, 2008).  

It is noteworthy, that most of the imaging studies have examined the end result of the pathology 

of ASD rather than the etiological changes taking place during neural development.   

Sensory processing in ASD. For the most part, since sensory organs in individuals with 

ASD are known to function normally, the deficits of under- and over-responsive processing may 

reflect modulatory mechanisms of information processing in cortical networks. Assessing 
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behavioral indicators, Tomchek and Dunn (2007) reported that children with ASD had 

differences in 92% of the sensory behaviors compared to typically developing controls.  Under-

responsivity (86%) and deficits in auditory filtering (78%) were the most consistent issues in 

children with ASD compared to controls (Tomchek & Dunn, 2007).  Researchers examining 

sensory processing subtypes in ASD have found distinct profiles (Lane, Young, Baker, & 

Angley, 2010).  Based on a model-cluster analysis, three distinct sensory processing subtypes 

were reported: 1) Sensory-based inattentive seeking – this profile correlates with deficits in 

attention and milder sensory processing deficits, 2) Sensory modulation with movement 

sensitivity – this subtype is characterized by deficits across all sensory domains, with both under- 

and over-responsivity.  This was the only group to experience atypical performance in movement 

sensitivity coupled with an extremely low score in low energy/weak domain (weak muscles, poor 

endurance), 3) Sensory modulation with taste/smell sensitivity – this profile is characterized with 

deficits across all sensory domains except low energy and movement sensitivity, and with an 

extreme dysfunction in taste/smell sensitivity.  Other researchers have reported similar profile 

patterns (Ben-Sasson, et al., 2009; Miller et al., 2007).   

 Auditory processing in ASD. Children with ASD often have more auditory processing 

difficulties compared to significantly better visual-spatial processing (Gomot, Giard, Adrien, 

Barthelemy, & Bruneau, 2002; O’Connor, 2012).  Moreover, sensitivity to auditory stimuli in 

infancy was considered to be a powerful discriminator between children with autism and those 

without later in childhood (Dahlgren & Gillberg, 1989).  Researchers have found both, 

hypersensitivity (Lucker, 2013) and hypo-reactivity (Guiraud et al., 2011) to auditory stimuli in 

ASD.  Hyper-reactivity in the auditory system (i.e., hyperacusis) can cause abnormal sensitivity 

to sounds of low or moderate intensity and/or phonophobia which causes discomfort to certain 
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sounds (Gomes, Pedroso, & Wagner, 2008).  Hypo-reactivity may manifest as a diminished 

response to name call, which has been found to be a behavioral red flag according to 

Courchesne, Redcay, Morgan, and Kennedy (2005).  Electrophysiological evidence suggests that 

children with ASD have impaired automatic detection of change in auditory stimulation.  

Children with ASD have been noted to have significant impairment in auditory discrimination 

and respond less to changes in environmental sounds than typically developing peers, with the 

exception of when they are involved in actively attending to a stimulus (Dunn, Gomes, & Gravel, 

2008). 

Theories describing attention and sensory processing in ASD. Although numerous 

theories have attempted to explain the constellation of seemingly unrelated symptoms of ASD 

and match them with observed neuroanatomical deficits, there is no consensus on a unifying 

theory.  In the past, autism research was dominated by theories identifying dysfunction in 

individual brain regions, such as the amygdala (Baron-Cohen et al., 2000), prefrontal cortex 

(Courchesne et al., 2011), superior temporal sulcus (Redcay, 2008), or the fusiform gyrus (van 

Kooten et al., 2008).  However, these localizing studies were fraught with inconsistencies in 

study findings and the inability to explain the spectrum of ASD.  Recent conceptualizations have 

adopted a systems-level approach, and proposed that ASD may be explained by abnormalities in 

the mirror neuron system, and the connections between the limbic, and autonomic systems 

(Oberman & Ramachandran, 2007). 

Mirror neuron theory. This theory proposes dysfunction in the fronto-parietal mirror 

neuron networks in individuals with ASD (Oberman et al., 2005).  Mirror neurons are visuo-

motor neurons that fire both when voluntarily performing a task, and observing a goal-directed 

action (Perkins, Stokes, McGillivray, & Bittar, 2010).  Mirror neurons play a crucial part during 
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development and allow children to learn numerous skills such as language, emotional empathy, 

play behavior, and the ability to infer the goals of others for predicting their behavior (Brang & 

Ramachandran, 2010).  Since these are some of the abilities compromised in ASD, dysfunction 

in mirror neuron system explains at least in part, the neurological basis for this condition 

(Oberman et al., 2005).  Several studies have shown evidence of mirror neuron dysfunction in 

ASD using fMRI, TMS, electroencephalography (EEG), and magnetoencephalography (MEG; 

Hamilton, 2013).  However, certain deficits including sensory sensitivities, and unpredictable 

emotional outbursts have not been explained by mirror neuron dysfunction.  To explain some of 

these inconsistencies, Ramachandran and Oberman (2006) proposed the salience landscape 

theory. 

Salience landscape theory. According to this theory, in neurotypical children, 

information from the brain’s sensory areas are relayed to the amygdala, which is the gateway to 

the emotion-regulating limbic system.  Using input from stored knowledge, the amygdala 

determines how the child should respond to incoming information.  Information from the 

amygdala is sent to the rest of the limbic system and the autonomic nervous system.  The 

autonomic activity, in turn, feeds back into the limbic system.  Thus, the amygdala creates a 

salience landscape of the environment.  Ramachandran and Oberman (2006) propose that 

children with ASD have a distorted salience landscape, either due to altered connections between 

the cortical areas that process sensory stimuli and the amygdala or between the limbic system, 

and the frontal lobes that regulate resulting behavior.  These abnormal circuitries can explain 

unexpected autonomic arousal in children with ASD to otherwise trivial stimuli.  This hypothesis 

can also explain avoidance of eye contact, sensory processing disturbances, and self-injurious 

behavior (Ramachandran & Oberman, 2006).   



22 

 

These researchers also propose that temporal lobe epilepsies, commonly occurring in 

children with ASD may cause disturbances in the ventro-dorsal pathway, which carries 

information from the visual cortices to the TPJ (Brang & Ramachandran, 2010).  This pathway is 

rich in mirror neurons, especially those involved in emotional empathy.  Additionally, 

researchers suggest accompanying dysgenesis or agenesis of the olfactory bulbs and projection 

zones of the brain, which can cause dysregulation of oxytocin and vasopressin functioning, 

resulting in emotional disturbances (Brang & Ramachandran, 2010).  In summary, the 

researchers propose a combination of temporal lobe epilepsies, olfactory bulb dysgenesis, mirror 

neuron system deficits, and hypothalamic/autonomic dysregulation as probable causes of ASD 

(Brang & Ramachandran, 2010). Dysfunction in sensory processing (due to distorted salience 

landscapes) and attention (TPJ involvement) can be explained using this theory.  However, while 

the salience landscape theory and its updates explain a wide range of symptoms in individuals 

with ASD, it lacks the rigor of empirical research.  Additionally, this theory proposes a set of 

different neuropathology’s to explain the spectrum, whose etiologies are not clearly connected.  

Another theory that aimed to explain the spectrum of symptoms using a single common 

pathology was proposed by Markram, Rinaldi, and Markram (2007) using the valproic acid 

animal model of ASD. 

The intense world theory. This theory proposes a unifying model of neuropathology of 

hyper-functioning local neural microcircuits.  These hyper-functional microcircuits are assumed 

to become autonomous and memory-trapped resulting in the core cognitive consequences of 

hyper-perception, hyper-attention, hyper-memory mediated by the neocortex, and hyper-

emotionality mediated by the limbic system (Markram & Markram, 2010).  The authors have 

used these four dimensions to explain the full spectrum of symptoms in ASD, depending on the 
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severity of the microcircuit pathology in different brain regions.  On a perceptual level, the 

excessive functioning of local neuronal circuits may lead to an intensely perceived world, which 

may become stressful and aversive if the amygdala and the limbic system are also affected 

(Markram & Markram, 2010).  The strengths of this theory lie in its ability to explain the 

disorder from molecular, cellular, and circuit changes to affective-cognitive behavioral levels.   

The local hyper-reactivity in the neocortex and amygdala can account for sensory sensitivity, and 

aversion to everyday sensory stimuli observed in ASD.  Additionally, hyper-functioning 

microcircuits in the neocortex may lead to increased perception of fragments of the sensory 

environment, causing hyper-focusing on details and difficulties in shifting attention (Markram & 

Markram, 2010).  A strength of this theory is that this model helps to explain weak central 

coherence theory (Happé & Frith, 2006), and the enhanced perceptual functioning theory 

(Mottron, Dawson, Soulieres, Hubert, & Burack, 2006), which state that individuals with ASD 

have enhanced detailed-focused processing and impaired gestalt processing. 

Under-connectivity theory. Researchers using fMRI in individuals with ASD 

established that signs and symptoms of ASD were attributable to dysfunction in several 

recognizable neural regions.  Thus, ASD was classified as a disorder of distributed neural 

systems resulting in deficits in higher order functioning (Minshew & Keller, 2010).  More recent 

research focused on functional connectivity using fMRI, which revealed that ASD is a disorder 

of underconnectivity among brain regions participating in long-range cortical networks.  

However, there is still considerable heterogeneity in network disturbances or the extent of brain 

regions affected.  A common finding across studies using fMRI was that of fronto-parietal 

underconnectivity.  This white matter dysfunction is thought to be associated with attention 

deficits in ASD (Velazquez et al., 2009).  Along with reduced long-range connectivity, 
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researchers have found increased local connectivity of posterior regions such as parietal-occipital 

circuitry.  This local over-connectivity is assumed to account for the enhanced visuo-spatial 

abilities in individuals with ASD.  There is mixed evidence regarding functional connectivity in 

the default mode network in ASD and its implications.  Some researchers have found reduced 

connectivity in the default network, suggesting a lack of introspective and self-reflective thinking 

(Kennedy & Courschesne, 2008).   

Several fMRI studies have demonstrated that long-range connections between brain 

regions are under-developed in ASD (Just, Cherkassky, Keller, Kana, & Minshew, 2007; 

Mottron et al., 2006).  Under-connectivity has been demonstrated between fronto-temporal and 

occipital lobes (Castelli, Frith, Happé, & Frith, 2002), superior temporal and inferior frontal 

lobes (Just et al., 2007), parietal and frontal lobes (Just et al., 2007), as well as amygdala and 

parahippocampal gyrus (Welchew et al., 2005).  Thus, researchers proposed the Under-

Connectivity Theory which states that ASD is associated with hypo-connectivity of integrative 

circuitry, resulting in impairments of complex information processing at neural and cognitive 

levels (Just, Keller, Malave, Kana, & Varma, 2012).  Based on this unifying theory, most of the 

co-occurring deficits in ASD such as attention, sensory processing, social and emotional 

functioning can be explained (Just et al., 2012).  Although, Herbert and colleagues examining 

white-matter connectivity found that while long-range fibers were not affected in ASD, the more 

short- and middle-range connections were increased (Herbert et al., 2004).  The under-

connectivity theory also suggests that functional connectivity among posterior regions may be 

higher in ASD than controls because of the decrease in fronto-posterior connectivity.  This local 

over-connectivity with long-range under-connectivity explains savant skills and enhanced 

perceptual functions along with impairments in executive control and attention (Just et al., 2007). 
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Belmonte et al. (2004) stated that similar to individuals with ASD who have difficulty in 

central coherence, the field of autism research has had difficulty in synthesizing fragmented 

research theories into an identifiable pattern.  The three major theories reviewed, the ‘Salience 

landscape theory’, ‘Intense world theory’, and the ‘Underconnectivity theory’ have several 

similar assumptions.  A common key feature is the recognition of a systems-level impairment 

affecting functional connectivity and communication between multiple brain regions.  

Additionally, each of these theories has been able to explain the spectrum of symptoms in ASD 

ranging from impairments in socio-emotional functioning to sensory sensitivities, and deficits in 

executive functioning.  Moreover, findings of abnormal neural connectivity have been integrated 

with neurophysiology and behavior to provide a coherent explanation of the underlying 

pathology of ASD.  However, most of the assumptions in these theories have not yet been 

empirically validated.  The etiology of ASD and abnormal connectivity is still debated and 

ranges from heredity and genetics to environmental factors.  Additionally, correlations between 

brain irregularities and symptoms do not necessarily translate directly into cause and effect 

relationships.  Thus, more research is required to test the theoretical assumptions and understand 

cause and effect relationships. 

Impact of Attention and Sensory Processing Issues on Everyday Behaviors  

Sensory processing deficits result in the inability to discriminate, modulate, coordinate, 

and organize incoming sensory information adaptively (Lane, Miller, & Hanft, 2000).  

According to some authors, attentional processes are subsumed within the neurological ability to 

integrate sensory information.  More recently researchers have begun to focus on attention and 

arousal deficits in ASD with the notion that these deficits may precede social symptoms and 

represent the earliest signs of ASD in infants at risk of developing ASD (Elison et al., 2013; 
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Elsabbagh et al., 2013; Zwaigenbaum et al., 2005).  Ben-Sasson et al. (2007) suggested that co-

occurrence of sensory under- and over-responsive behaviors in ASD may result from abnormal 

arousal regulation.  Additionally, Liss et al. (2006) and Allen and Courchesne (2001) proposed 

that both sensory and behavioral under- and over-responsivity may be linked to the child’s 

attention deficit.  Liss et al. (2006) suggested that the over-focused attention style in ASD may 

be the result of hyperarousal.  Others have hypothesized that atypical behavioral regulation in 

everyday activities may result from early impairment in shifting and disengaging attention 

(Keehn, Muller, Townsend, 2013).  To summarize, several researchers have posited that 

impairments in sensory processing, and social and behavioral regulation in individuals with ASD 

may be associated with a common underlying neurophysiological mechanism of attention.   

In the auditory domain, researchers examining attention and sensory processing using 

neurophysiological measures suggest that processing of attended stimuli is either normal or 

increased in ASD, while processing of unattended stimuli is usually decreased (Orekhova & 

Stroganova, 2014).  In a review of findings of mismatch negativity, Orekhova and Stroganova 

(2014) found that individuals with ASD are usually able to detect changes in the stimuli 

presentation when these stimuli are the focus of their attention.  However, in the presence of 

distractors or in the case of unattended stimuli, processing issues arise.  When competition for 

attention is higher, detection of change and associated cognitive processing are reduced in ASD 

compared to typical controls.  Thus, sensory processing appeared to be dependent on the context 

of stimulus presentation, which suggests deficits in early orienting and attentional mechanisms. 

Preliminary Research Examining Sensory Processing and Attention in ASD 

 The Brainwaves Research Lab has conducted several studies to examine attention and 

sensory processing in neurotypical and clinical populations using both behavioral and 
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neuropsychological measures, such as EEG and ERPs.  EEG is a non-invasive technique that can 

measure electrical activity of the brain by means of electrodes positioned on the scalp.  These 

metallic sensors detect very small (10-50 microvolts) and continuous voltage changes across the 

scalp, which are then amplified and digitized.  EEG has been widely used for understanding 

neurophysiological functioning, and behavior related to sensory processing skills of children and 

adults with and without disabilities.  EEG/ERP technologies provide precise temporal resolution 

from milliseconds to fractions of milliseconds.  Hence, they are ideal measures of evaluating 

brain responses, because important aspects of sensory processing occur within a few hundred 

milliseconds.  The Brainwaves Research Lab had focused on two auditory ERP paradigms, 

sensory gating and sensory registration.  

  

 

 

 

 

 

 

Sensory gating literature. Previous research in our lab manipulated attention during a 

sensory gating paradigm.  The sensory gating paradigm consists of repeated presentations of 

paired-click stimuli.  During my master’s, I examined sensory gating in children with high-

functioning ASD (HFA) as compared to age- and gender-matched typically-developing (TD) 

peers.  The results indicated that children with HFA have significantly poorer gating compared to 

the control group (See Figure 1; Dungan, Crasta, Davies, & Gavin, 2015). Participants completed 

Figure 1. Grand-averaged ERP waveforms 

of the sensory gating paradigm in children 

with HFA and TD peers.  
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two sensory gating paradigms, one wherein their attention was directed towards a silent movie, 

and the other wherein their attention was directed to the click stimuli.  In this second paradigm, 

paired clicks were interspersed with single click stimuli.  In the focused attention condition 

participants were asked to press a button to the single click (Gavin, Bulwan, & Davies, 2011).  In 

the focused attention condition, this study demonstrated a difference in early brain processing to 

the auditory stimuli that required a motor response compared to the auditory stimuli that were 

asked to be ignored, with all other parameters remaining constant.  While the passive attention 

condition (no motor response required) activates the orienting network, it is assumed that the 

focused attention condition (motor response required) activates the alerting system.   

Additionally, adults and children had larger N1 amplitudes for the focused attention 

paradigm compared to the gating with movie watching condition.  Thus, the effects of attention 

manipulation and distraction were evident in processing of auditory click stimuli.  Understanding 

the neurological mechanisms underlying how the brain processes information in light of attention 

manipulations and distractions in neurotypical and clinical populations can shed light on the 

different attention theories and the attentional networks. 

 Another study in our lab examining sensory processing in children with SPD found 

contrasting results related to cognitive processing of auditory information in active versus 

passive attention conditions.  Compared to typically developing peers, children with SPD had 

reduced cognitive processing to simple auditory stimuli while they watched a silent movie.  In 

contrast, children with SPD had increased cognitive processing for the same paradigm when they 

stared at a fixed symbol on a computer screen as compared to the typically-developing control 

group.  The other parameters of the two studies were the same and hence this difference in 

cognitive processing was attributed to the methodological difference of movie watching versus 
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staring at a fixed symbol.  The authors inferred that the increase in cognitive processing in 

children that were not distracted by the movie, could be due to more resource allocation for 

processing the auditory stimuli (Gavin et al., 2011).   

 These findings are in line with the load theory of attention (Lavie et al., 2004).  The early 

selection view of attention suggests that perceptual processing capacity is limited.  Thus, 

individuals who are fully engaged in a perceptual task are unable to perceive unattended 

distractors due to insufficient capacity for their processing.  This view also suggests that early 

perceptual processing of irrelevant distractors is reduced while one is actively focusing attention 

to a given sensory stimulus.  EEG research on children often involves the use of a silent movie 

while auditory EEG paradigms are being presented.  According to the attention theories 

mentioned previously, if a participant is actively engaged in watching a movie, processing of the 

auditory stimuli is significantly reduced, while the absence of a movie would allow for 

unobstructed processing of the stimuli.   

Sensory registration literature. For my master’s thesis, I also examined the ability to 

discriminate between different auditory stimuli using the sensory registration EEG paradigm in 

children with and without HFA.  This paradigm utilizes four auditory tones which are presented 

at different frequencies (1 kHz or 3 kHz) and intensities (50 dB or 70 dB).  Results indicated that 

children with HFA had significantly smaller P300 ERP amplitudes to all the four tones.  The 

P300 is an ERP component that occurs around 300 ms post-stimulus onset and is associated with 

cognitive processing of the stimuli.  Smaller P300s in the HFA group compared to the TD group 

suggest increased difficulty discriminating between stimuli (See Figure 2; Crasta, 2015).  
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Attention measured by Test of Everyday Attention for Children (TEA-Ch). The 

TEA-Ch is a standardized and well-normed assessment that provides raw- and age-corrected 

scaled-scores for each of its nine subtests.  The subtests measure three attention subgroups, 

namely selective, sustained, and attention control/shift which correspond to Petersen and 

Posner’s (2012) attention networks (Manly et al., 1999).  In a study examining attention abilities 

in children with high-functioning ASD (n=27) and age- and gender-matched typically-

developing controls, we found that children with ASD had significant deficits in selective, 

sustained, and control/shift attention compared to typically-developing controls (Crasta, 2015).   

Sensory processing measured by the Sensory Profile. The Short Sensory Profile is a 

parent-report, norm-referenced screening tool frequently utilized by occupational therapists 

(Dunn, 1999).  The seven subscales assess auditory filtering, low energy-weak, under-

responsive-seeks sensation, sensitivity to movement, tactile, taste-smell, and visual-auditory.  

Responses are scored on a 5-point Likert scale, with higher scores indicating more functional and 

adaptive behaviors.  Adaptive behavior is defined as purposeful, goal-directed behavior in 

Figure 2. Grand-averaged ERP waveforms 

of the sensory registration paradigm in 

children with HFA and TD peers. 
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response to sensory information (Ayres & Robbins, 2005). We examined sensory processing in 

27 children with high-functioning ASD as compared to age- and gender-matched typically-

developing peers using the Short Sensory Profile.  The results indicated that children with high-

functioning ASD had significantly more sensory processing issues in all domains except 

movement sensitivity compared to the control group.   

Modified Approach towards Understanding Attention and Sensory Processing in ASD  

 Using information from attention theories, OT theories and research, ASD research, and 

my master’s research, I propose a more comprehensive model for understanding ASD.  OT 

research has shown that there is a relationship between sensory processing and effective 

participation (Dunn, 2014; Miller et al., 2007).  This revised model, suggests that active 

attentional processes are essential for efficient sensory processing (See Figure 3 below). The 

premise for this dissertation stems from the assumption that attention deficits in ASD may 

prevent automatic neural attentional allocation to relevant sensory information.  The neurological 

theories explaining ASD have clearly demonstrated impairments in integration of sensory 

information across brain regions.  Thus, I hypothesize that for efficient sensory processing in 

individuals with ASD, active attentional processes are required.  Active allocation of attention to 

relevant sensory information may result in enhanced neural processing of sensory information.  

Thus, while passive processes are sufficient in neurotypical individuals, due to deficits in neural 

connectivity, individuals with ASD may require to actively focus or attend to sensory stimuli to 

efficiently process sensory information.  Due to deficits in gating, passive processing may be 

impacted by distractors, which may hamper the stream of sensory processing.  According to the 

Intense World Theory, passive processing may result in hyper-focusing, leading to sensory 

overload.  Anecdotal reports of sensory overload in individuals with ASD have been documented 
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by several researchers (for review see Pellicano, 2013).  According to the proposed model, active 

attentional regulation of sensory information may bolster neural processes and aid in effective 

gating and information processing, leading to effective participation.  This dissertation 

empirically tests this model and examines the mediating role of attention on sensory processing.  

 Since auditory processing is the most commonly reported sensory processing deficit in 

ASD (Tomchek & Dunn, 2007), this dissertation research focused on auditory processing, and 

the impact of attention during auditory processing. This dissertation research hypothesizes that 

integration of attention in understanding sensory processing provides a holistic explanation of the 

neurophysiological and behavioral mechanisms at play in individuals with ASD.   

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3. Proposed model depicting the relationship 

between attention and sensory processing.  
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Through the following three studies, we aimed to empirically examine the impact of 

attention on auditory processing using established EEG paradigms, namely the sensory gating 

paradigm and the sensory registration paradigm (See Table 1). The first study involved 

examining the feasibility of the task demands which involves performing either passive or active 

tasks in the presence of a distractor (movie-watching). This first study was conducted in 

neurotypical individuals.  The second and third study examined sensory gating and sensory 

registration respectively in 24 individuals with ASD and a control group of 24 age- matched 

neurotypical controls.  Thus, overall the three studies provide information about different stages 

of information processing.  Using behavioral measures of sensory processing and attention along 

with ERP measures, we explored brain-behavior relationships in ASD and controls. 

Table 1. Paradigms involved in the dissertation studies.  

Study 1 Study 2 Study 3 

Neurotypical (n = 60)  ASD (n=24) and neurotypical 

(n=24) 

ASD (n=24) and neurotypical 

(n=24) 

Group 1: 

Movie  

Group 2:  

No Movie 

  

Registration (Passive) No movie – Gating (Passive) No movie – Registration 

(Passive) 

Registration (Active) No Movie – Gating (Active) No Movie – Registration 

(Active) 

 

   



34 

 

CHAPTER 2 – STUDY 1 

 

 

 

Attentional demands and environmental distraction differentially affect the sensory 

registration of the frequency and loudness of tones measured with ERPs 

Attention is a crucial element of our goal-directed, purposeful response to sensory 

information in our social and physical environment.  Attention is understood as a “broad 

cognitive concept that includes a set of mechanisms that determine how particular sensory input, 

perceptual objects, trains of thought, or courses of action are selected for further processing from 

an array of concurrent possible stimuli, objects, thoughts and action” (Talsma, Senkowski, Soto-

Faraco, & Woldorff, 2010, p. 2).  According to the feature-integration theory of attention, 

without focused attention, stimulus features cannot be related to one another (Treisman & 

Gelade, 1980).  Thus, attention is necessary for the accurate perception and integration of 

information. Studies have shown that sensory processing abilities are dependent on attentional 

control (Corbetta, Miezin, Dobmeyer, Shulman, & Petersen, 1990; Talsma et al., 2010).  How 

selective attention and distraction impact sensory processing, in the visual and auditory domain 

has gained considerable interest in recent years. Several theories have been posited to provide a 

framework to understand the influence of attention on visual processing (Borji & Itti, 2014; 

Corbetta et al., 1990; Hillyard, Vogel, & Luck, 1998; Lavie, 2010; Reynolds & Desimone, 

2003).  

The perceptual load theory of selective attention, one of the most prominent theoretical 

framework, proposed two mechanisms of selective attention (Lavie, 2010).  The first includes a 

passive mechanism wherein irrelevant distractors are not perceived due to insufficient capacity 

of their processing under conditions of high perceptual load (Lavie, 2010).  The second 



35 

 

mechanism occurs during conditions of low perceptual load whereby an active mechanism 

rejects irrelevant distractors even when these are perceived.  This second mechanism depends on 

higher cognitive functions to actively maintain processing priorities to ensure that low-priority 

stimuli do not drain resources.  According to this theory, high perceptual load is hypothesized to 

reduce distractor interference while increasing the cognitive demand (i.e., cognitive load) of a 

task is expected to increase distractor interference (Lavie, Hirst, De Fockert, & Viding, 2004). A 

fundamental aspect of this theory, regardless of the attention mechanism involved, is that it 

proposes that our perceptual system has limited processing capacity, and implies that the 

perceptual demand of the relevant task that we are engaged with determines our success in 

ignoring irrelevant information.  

Using EEG and event-related potentials (ERPs), researchers have examined the effect of 

attention and distraction on auditory processing (Herrmann & Knight, 2001). The initial ERP 

components recorded in response to a stimulus are often described as reflections of automatic 

processing of sensory characteristics, while later components are associated with cognitive 

processing of the stimulus (Polich, 1993; Stern et al., 2001). More specifically, the P1 and N1 are 

greatly influenced by parameters of the stimulus such as intensity and frequency, and reflect 

exogenous processes which are modulated by physical stimulus attributes but not by cognitive 

processing (Rugg & Coles, 1995). In contrast, the P3 is known to reflect cognitive processing 

and has been shown to be larger when participants are told to respond to a stimulus than when 

they are told to ignore the stimulus (Stern et al., 2001). However, attending to tones can enhance 

the N1 amplitude (Hillyard, Hink, Schwent & Picton, 1973). Thus, the N1 is thought to represent 

the orienting of attention towards task-relevant stimuli (Luck, Heinze, Mangun & Hillyard, 

1990).  
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Fewer researchers have studied the effects of attention on the P2 and N2 components. 

The P2 represents stimulus classification and leads to the N2-P3 response (Crowley & Colrain, 

2004). García-Larrea, Lukaszewicz and Mauguiére (1992) noted that P2 occurred in response to 

non-targets in an auditory oddball, in order to assess if the stimulus was a target. Based on P2’s 

stimulus classification, if the stimulus was a target, then there would be a P3, else the P3 would 

not be elicited. Thus, P2 is proposed to be involved in protection against needlessly processing 

irrelevant stimuli, which may lead to protection from processing distractors (García-Larrea et al., 

1992). The N2 component, was previously measured in association with the P3, and referred to 

as the N2-P3 complex. Recent research has shown that the N2 is functionally distinct from the 

P3 with regards to cognitive processing (Folstein & Van Petten, 2008) and is associated with a 

general alerting system (Suwazono, Machado & Knight, 2002). The N2 to auditory stimuli has 

been shown to be larger during difficult than easy discrimination tasks (Senkowski & Herrmann, 

2002).  

Researchers examining attention effects at the P3 component have found a discernible P3 

during passive listening states, albeit smaller in amplitude compared to the active attention states 

(Polich, 1987).  The P3 is elicited when subjects attend to a stimulus and when they discriminate 

stimulus features (Polich & Bondurant, 1997). The P3 amplitude reflects the probability and task 

relevance of a stimulus while the P3 latency reflects the duration of stimulus evaluation 

(Donchin & Coles, 1988). Additionally, researchers have found that the P3 amplitude may 

decrease and latency increase with increased level of difficulty and distractibility introduced.  

Robust intensity discrimination has been found in N1, P2, N2 and P3 auditory ERP components, 

such that loud tones generate larger amplitudes and shorter latencies than soft tones (Harris et al., 

2007; Martin & Boothyord, 2000). With regards to frequency discrimination, low-frequency 
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sounds produce larger amplitudes than high-frequency sounds at the same intensity (Wunderlich 

& Cone-Wesson, 2001).  Specifically, the researchers found that N1 amplitude and latency 

decreased as frequency increased, while P2 amplitude, but not latency, decreased as frequency 

increased (Wunderlich & Cone-Wesson, 2001). Thus, stimulus characteristics such as intensity 

and frequency are expected to impact the amplitude and latency of ERP components following 

the presentation of auditory stimuli.   

 The auditory paradigm used in the present study has been modified from two studies 

involving children with autism (Bruneau, Garreau, Roux, & Lelord, 1987; Lincoln, Courchesne, 

Harms & Allen, 1995) and was previously used in our lab (Davies, Chang & Gavin 2010). This 

paradigm utilizes auditory tones which are presented at different frequencies and intensities. 

Four simple auditory stimuli differing in either the pure tone composition (1 kHz or 3 kHz 

frequency) or the presentation loudness (50 dB or 70 dB intensity) were used in a manner 

replicating the procedures used by Lincoln et al. (1995). The term registration is used to describe 

the neurological phenomenon that occurs in response to the presentation of the different auditory 

stimuli in neurotypical individuals. More specifically, distinct brain responses are elicited for 

each of the different auditory stimuli. Accordingly, each tone is uniquely “registered” in the 

brain and results in an identifiable and dependable ERP waveform. Hence, this paradigm is 

termed as the sensory registration paradigm. Davies et al. (2010) investigated the brain 

responses of adults using the sensory registration paradigm and demonstrated that adults have a 

very organized or systematic brain response to changes in the frequency and intensity of the four 

auditory tones presented in the sensory registration paradigm.  

  Researchers have found that the ERPs generated from tasks that had a distraction 

element still contained at least one ERP component time-locked to the task-relevant tasks 
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(Escera, Alho, Schröger, & Winkler, 2000).  For example, researchers have shown that working 

memory and task-related processes may be reflected in ERP components that are time-locked to 

auditory or visual stimuli in a paradigm that also includes a distraction protocol (Berti, 2008; 

Roeber, Berti, Widmann, & Schröger, 2005).  To examine the effects of attention and distraction 

without the confounding effects of other executive functions, a simpler discrimination-based 

paradigm was used in the present study.  We chose watching a silent movie as the distraction 

stimulus since several researchers use silent movies during auditory ERP paradigms.  However, 

the effect of movie viewing on auditory processing and discrimination is unclear.  Additionally, 

since attention is not modality specific and because strong cross-modal links exist between 

vision and audition, it is very likely that the visual viewing condition would influence auditory 

processing (Kanwisher & Wojciulik, 2000).  Manipulation of the environment to change a 

participant’s attention, such as adding a distractor element to a task, has been shown to affect 

sensory processing as measured by ERP component amplitude (Roeber et al., 2005). 

Additionally, as discussed above, manipulation on the participant’s internal state of attention by 

requiring a response to a particular stimulus has also shown to influence sensory processing.   

In the present study, participants were presented with two attention conditions, a passive 

condition, wherein participants were asked to only listen to the stimuli, and an active condition, 

wherein participants were asked to respond with a button press to a target stimulus. Thus, the 

design of the present study manipulates both the environment by the presence or absence of a 

distractor and the participant’s internal attentional state by whether or not a response to a target 

stimulus is required. The aim of the present study was to examine the effects of attention 

(passive versus active) with and without a visual distractor during a simple auditory detection 
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task. An additional aim was to replicate the effects of stimulus characteristics of intensity and 

frequency on amplitude and latency of ERP components.   

Research Questions:  

1. How does manipulating stimulus characteristics impact auditory processing? 

Hypothesis: Robust intensity and frequency discrimination will be observed at the N1, P2, N2 

and P3 components regardless of attention and viewing conditions. Loud tones and low 

frequency tones will have larger amplitudes and shorter latencies than soft tones and high 

frequency tones.    

2. How does manipulating the environment impact auditory processing? 

Hypothesis: Participants in the movie-viewing group will have smaller N1, P2, N2, and P3 

amplitudes and longer latencies than participants who view a fixation point.  

3. How does manipulating the participant’s internal attention state impact auditory 

processing? 

Hypothesis: During the active condition, participants will have smaller N1, P2, and N2 

amplitudes, and larger P3 amplitudes compared to the passive condition.   

Methods 

 Participants were 60 neurotypical individuals, ages 18 – 35 years (M = 24.66, SD = 3.9; 

31 females and 29 males) recruited via convenience sampling.  All participants were screened 

using a self-report screening questionnaire developed in our lab to ensure that they are free of 

neurological injuries, disabilities, and family histories of psychological disorders.  All the 

procedures performed in the research involving human participants were in accordance with the 

ethical standards of the institutional review committee at the local university and with the 1964 

Helsinki declaration and its later amendments. All participants signed a written informed consent 
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prior to the study. Participants were randomly assigned to the movie-viewing or fixation viewing 

group (viewing condition).  Participants in the movie viewing condition watched a silent 

animated movie (Shaun the Sheep), while the fixation viewing group stared at a star symbol on a 

computer screen.  Both groups were presented the passive condition followed by the active 

condition described in detail below.   

EEG/ERP data recording. EEG data were collected in a sound attenuated and 

electrically shielded room.  Once the EEG cap, and electrodes were applied, the participant was 

given a brief training on strategies to reduce artifacts resulting from eye blinks, and other muscle 

activity. All EEG data were collected using the BioSemi ActiveTwo EEG/ERP Acquisition 

System (BioSemi, Wg-Plein 129, 1054 SC Amsterdam, Netherlands). This system included 64 

Ag/AgCl sintered scalp electrodes. The electrodes were located in accordance with the modified 

10–10 system (Klem, Lüders, Jasper, & Elger, 1999; Oostenveld & Praamstra, 2001). EEG was 

recorded with the Common Mode Sense active electrode as the reference and the Driven Right 

Leg passive electrode as the ground (http://www.biosemi.com/faq/cms&drl.htm). 

Electrooculograms (EOGs) were recorded from individual electrodes placed on the left and right 

outer canthus for horizontal movements and on the left supraorbital and infraobital region for 

vertical movements. Two more individual electrodes were placed on the left and right earlobes 

and used as the offline reference. For the sensory registration paradigm, tones were administered 

in both ears through the ER-3A inserted earphones (Etymotic Research) using E-Prime Software 

(Psychological Software Tools, Pittsburgh, PA, USA).  Data were sampled at a rate of 2048 Hz 

with a bandwidth of 0 to 417 Hz.     

Sensory Registration EEG paradigm. The four auditory stimuli (50 ms in duration with 

10 ms ramping of intensity up at onset and down at offset) consisted of pure tones, two with 
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frequencies at 1 kHz and two at 3 kHz, and each frequency was presented at either one of two 

intensity levels, 50 dB sound pressure level (SPL) or 70 dB SPL. For each attention condition, 

the stimuli were presented in two blocks of 160 trials each, with a total of 80 trials of each tone 

in pseudo-random order with a two-second inter-stimulus interval. Each block lasted about five 

minutes with short breaks of about 1 minute between blocks. 

Passive attention condition. Participants were instructed to stare at the fixation point or 

watch the movie while they heard the auditory stimuli.  No motor response was required.   

Active attention condition. Participants were instructed to respond with a button press to 

the low frequency soft tone (1 kHz, 50 dB SPL stimuli) and ignore the other 3 auditory stimuli.  

The participants were instructed to stare at the fixation point or watch the movie while they 

listened to the tones and pressed the button.  Based on previous research, the low frequency soft 

tone was chosen as the target tone since it has the smallest ERP amplitude compared to the other 

tones in the passive condition (Crasta, 2015; also See Figure 4), which allows us to determine the 

influence of focused attention.  At the start of the paradigm, participants went through a brief 

practice session with feedback.  During the session, no feedback was provided.   

ERP waveform and component analysis. Averaged ERPs for each participant were 

composed from the running EEG data using Brain Vision Analyzer 2.0.  First, the four EOG 

channels were converted to a vertical and a horizontal bipolar EOG.  Then data were filtered 

with a bandpass of .23 – 30 Hz with a 12 dB/octave rolloff using casual phase-shift free 

butterworth filter settings.  Following this, the EEG data were segmented about each of the four 

auditory stimuli with duration of 200 ms pre-stimulus onset to 800 ms post-stimulus onset.  

Baseline correction was performed on each segment using EEG data 200 ms prior to stimulus 

onset.  Next, an eye regression technique designed to remove eye movement from trials was 
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performed (Segalowitz, 1996).  Following this, the artifact rejection technique built into the 

Brain Vision Analyzer software that eliminates segments with deviations greater than + 100 µV 

on any of the EEG channels or the bipolar EOG channels was performed.  The segments retained 

after eye regression and artifact rejection were averaged to create the averaged ERP.  Of the 64 

channels, the central-midline site Cz was analyzed based on previous studies using auditory 

paradigms (Davies et al., 2010; Lincoln et al., 1995).  Peak amplitudes for the N1, P2, N2, and 

P3 were identified using the Matlab software, PeakPicker program (Gavin, 2009).  The window 

for determining the peaks is based on previous published research (Davies et al. 2010; Lincoln et 

al., 1995) and visual inspection of the grand average waveforms for the participants.  The N1 

component was scored between 65 and 150 ms. The P2 component was scored between 130 and 

325 ms after the stimulus onset.  The N2 component was scored between 185 and 400 ms after 

the stimulus onset and the P3 component was scored between 250 and 500 ms after stimulus 

onset 

Data analysis. To determine if brain processing of auditory stimuli differed significantly 

between the two groups with different viewing conditions across the two different attention 

conditions, amplitudes of the N1, P2, N2, and P3 components were analyzed using a 2 x 2 x 2 x 

2 repeated measures analysis of variance (ANOVA).  The between subject’s factor was viewing 

condition (2 levels: movie and fixation).  The three within factors were Attention (Passive and 

Active), Frequency (2 levels: 1 kHz and 3 kHz), and Intensity (2 levels: high and low). Testwise 

alpha was set at 0.0063 for the apriori hypotheses (ANOVAs), with Bonferroni correction for the 

4 ERP components and two ANOVAs examining amplitude and latency measures for each ERP 

component, (.05/8 = .0063).  Effect sizes for η2 are interpreted as follows, .04 – small, .25 – 

medium, and .64 – large (Ferguson, 2009). A posteriori Tukey’s honestly significantly difference 
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(HSD) post-hoc t tests were calculated to examine interaction effects (Kirk, 1968, p. 265-269).  

All statistical analyses were performed using the Statistical Package for Social Sciences (SPSS), 

version 24.0 

Results 

 The grand-averaged ERP waveforms for the four auditory stimuli are shown separately 

for the two viewing groups and attention conditions at site Cz in Figure 4. The means and 

standard deviations of the N1, P2, N2, and P2 amplitudes are reported in Table 2. Visual 

inspection of the ERP components indicates that the loud tones (70 dB) have larger amplitudes 

than the soft tones (50 dB) at the early N1 and P2 components. Additionally, the active condition 

appears to have larger amplitudes at the mid-latency N2 and P3 components (see Figure 4).   

Table 2. Means and standard deviations for the ERP components for the sensory registration 

paradigm.  

 Viewing group 

 Movie Fixation 

Stimulus Passive Active Passive Active 

1 kHz 50 dB SPL Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

N1 -7.66 (3.09) -7.48 (2.56) -6.61 (2.03) -7.39 (2.4) 

P2 3.85 (2.71) 2.03 (2.91) 4.27 (2.61) 2.17 (2.73) 

N2 -2.67 (2.33) -2.00 (3.20) -1.79 (2.13) -1.07 (2.49) 

P3 1.27 (1.86) 3.18 (3.36) 1.00 (1.64) 4.88 (4.15) 

1 kHz 70 dB SPL     

N1 -10.51 (3.26) -9.5 (3.29) -9.07 (2.61) -8.7 (2.63) 

P2 8.07 (2.65) 4.73 (3.11) 7.24 (3.47) 5.14 (3.48) 

N2 -2.95 (2.65) -1.85 (2.97) -1.72 (2.41) -.73 (3.44) 

P3 2.11 (2.33) 2.47 (3.12) 1.51 (2.77) 4.31 (3.99) 

3 kHz 50 dB SPL     

N1 -7.47 (3.02) -6.57 (3.04) -6.68 (2.21) -6.29 (2.43) 

P2 3.66 (2.27) 4.06 (3.12) 4.01 (2.68) 5.63 (2.46) 
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N2 -2.97 (1.93) -1.63 (3.21) -2.1 (2.59) -1.19 (3.34) 

P3 1.47 (1.52) 1.67 (2.74) .57 (2.53) 2.75 (2.93) 

3 kHz 70 dB SPL     

N1 -10.35 (3.39) -8.58 (3.85) -8.91 (2.51) -8.19 (2.72) 

P2 7.58 (2.89) 6.67 (3.21) 6.65 (3.16) 7.59 (3.06) 

N2 -3.14 (2.14) 1.07 (2.72) -1.52 (2.28) 1.78 (3.38) 

P3 2.31 (2.36) 4.92 (2.79) 2.31 (2.75) 6.04 (3.65) 

 

For the active condition, we examined the response times to determine if the viewing 

environment (i.e., distraction) affected the behavior of the participants.  Analysis of the 

behavioral data revealed that the means of the response times for the active condition for both 

viewing conditions (fixation viewing: M = 581.53, SD = 98.98 and movie viewing: M = 601.62, 

SD = 79.05) were not significantly different, t (58) = .86, p = .39. To answer the research 

questions, group differences in amplitude and latency measures of N1, P2, N2, and P3 

components were separately analyzed using repeated measures ANOVAs.   

 

Figure 4. Grand averages of the ERPs at site Cz. A. Movie viewing group during the passive 

condition. B. Fixation viewing group during the passive condition. C. Movie viewing group 

during the active condition. D. Fixation viewing group during the active condition. Positive 

voltage is up.  

+1μV  I 
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Stimulus Characteristics: Intensity and Frequency Discrimination 

For N1 amplitude, the main effects of intensity, F (1, 58) = 190.17, p < .0005, η2 = .77 and 

frequency, F (1, 58) = 8.64, p = .005, η2 = .13 were significant. As expected, high intensity loud 

tones had larger N1 amplitudes than the soft tones across attention and viewing conditions. Low 

frequency tones had larger N1 amplitudes than high frequency tones across attention and 

viewing conditions. For N1 latency, the ANOVA revealed a main effect for intensity, F (1, 58) = 

6.63, p = .013, η2 = .10 with a small to medium effect size but was not significant at the alpha 

level set for this study. Loud tones, M (SE) = 99.46 ms (.88), had shorter N1 latencies than the 

soft tones, M (SE) = 101.44 ms (1.11), across attention and viewing conditions. 

For P2 amplitude, significant main effects for intensity, F (1, 58) = 206.78, p < .0005, η2 = 

.78 and frequency, F (1, 58) = 31.06, p < .0005, η2 = .35, were revealed. As expected, loud tones 

had larger P2 amplitudes than the soft tones across attention and viewing conditions. 

Unexpectedly, high frequency tones had larger P2 amplitudes than low frequency tones across 

attention and viewing conditions. The P2 latency revealed a significant main effect for intensity, 

F (1, 58) = 13.41, p = .001, η2 = .19, such that loud tones (M (SE) = 198.03 ms (2.43)) had shorter 

P2 latencies than the soft tones (M (SE) = 207.19 ms (2.76)) across attention and viewing 

conditions.  A significant main effect for frequency, F (1, 58) = 20.63, p < .0005, η2 = .26 revealed 

that the low frequency tones (M (SE) = 196.90 ms (2.62)) had shorter latencies than the high 

frequency tones (M (SE) = 208.32 ms (2.59)) across attention and viewing conditions. 

For N2 amplitude, main effects for intensity, F (1, 58) = 19.62, p < .0005, η2 = .25, and 

frequency, F (1, 58) = 12.41, p < .0005, η2 = .18, were significant.  Contrary to our hypothesis, soft 

tones had larger N2 amplitudes than the loud tones across attention and viewing conditions.  Low 

frequency tones had larger N2 amplitudes than high frequency tones across attention and 
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viewing conditions. The ANOVA evaluating N2 latency revealed a significant main effect of 

frequency, F (1, 58) = 13.67, p < .0005, η2 = .19, such that the low frequency tones (M (SE) = 

285.29 ms (2.88)) had shorter latencies than the high frequency tones (M (SE) = 300.05 ms 

(3.96)) across attention and viewing conditions.    

For P3 amplitude, significant main effect for intensity, F (1, 58) = 27.47, p < .0005, η2 = 

.32 was revealed. As expected, high intensity loud tones had larger P3 amplitudes than the soft 

tones across attention and viewing conditions. The main effect for frequency was not significant. 

The P3 latency ANOVA revealed no significant main effects for intensity or frequency.  

Environmental Manipulation: Movie-viewing versus Fixation-viewing 

 For the N1 amplitude, there was no significant main effect of viewing condition, F (1, 58) 

= 1.51, p = .22, η2 = .03. In addition, the attention by viewing interaction effect, F (1, 58) = 6.49, p 

= .014, η2 = .11, though close with a small to medium effect size, did not meet the significance 

level for the study. The N1 latency main effect of viewing condition, F (1, 58) = 4.24, p = .04, η2 = 

.07, was not significant with the testwise alpha set for this study. For the P2 amplitude, no 

significant main effect of viewing condition was found, F (1, 58) = .20, p = .66, η2 = .003. There 

was an attention by viewing interaction effect, F (1, 58) = 4.37, p = .041, η2 = .11, which did not 

meet the significance level for the study. There was no effect of viewing condition on P2 

latency, F (1, 58) = .71, p = .40, η2 = .012.   

For the N2 amplitude, while the movie-viewing group had larger N2 amplitudes than the 

fixation group, the main effect of viewing condition, F (1, 58) = 4.16, p = .046, η2 = .07, was not 

significant at the alpha level set for the study. N2 latency was not significantly different between 

viewing conditions, F (1, 58) = 1.24, p = .27, η2 = .02.  For the P3 amplitude, there was no main 

effect of viewing condition. However, there was an attention by viewing interaction effect, F (1, 
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58) = 9.86, p = .003, η2 = .15. A posteriori tests indicated that there was no difference in P3 

amplitudes between the two attention conditions for the movie viewing group (q (1, 58) = 2.27, p > 

.01). However, for the fixation-viewing group, P3 amplitudes were significantly larger in the 

active condition compared to the passive condition (q (1, 58) = 5.61, p < .01; See Figure 4). The P3 

latency revealed a significant attention condition by viewing condition interaction effect, F (1, 58) 

= 9.98, p = .003, η2 = .15. A posteriori tests indicated that there was no significant difference 

between the latencies of the active and passive condition for the movie viewing (q (1, 58) = 2.18, p 

> .01) or the fixation viewing group (q (1, 58) = 1.26, p > .01). However, the means indicate that 

for the fixation viewing group, the passive condition had shorter P3 latencies than the active 

condition, while for the movie viewing group, the active condition had shorter latencies than the 

passive condition (See Figure 5). 

Attentional State Manipulation: Passive versus Active Attention 

The N1 amplitude revealed significant main effect of attention condition, F (1, 58) = 

13.71, p < .0005, η2 = .19. N1 amplitudes had significantly larger amplitudes in the passive 

Figure 5. Plot of interaction effects of attention condition and viewing environments for 

both P3 amplitude and latency as measured at site Cz.  
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condition compared to the active condition across all tones regardless of the viewing group. N1 

latency also revealed a significant main effect of attention condition, F (1, 58) = 12.51, p = .001, η2 

= .18, such that the active condition (M (SE) = 99.03 (1.08)) had shorter latencies than the 

passive condition (M (SE) = 101.87 (.93)) across all tones and viewing conditions. 

For N1 amplitude, there was also a significant attention by frequency interaction, F (1, 58) = 8.85, 

p = .004, η2 = .13, and an attention by intensity interaction, F (1, 58) = 11.61, p = .001, η2 = .17.  A 

posteriori tests indicated that the low frequency tones had significantly larger amplitudes than 

the high frequency tones in the active condition (q (1, 58) = 3.8, p < .01), but not in the passive 

condition (q (1, 58) = .48, p > .01). A posteriori tests examining the attention by intensity 

interaction revealed that the loud tones had significantly larger amplitudes than the soft tones 

during the passive condition (q (1, 58) = 11.67, p < .01) as well as the active condition (q (1, 58) = 

8.13, p < .01).  

For the P2 amplitude, a significant main effect of attention condition, F (1, 58) = 14.31, p 

< .0005, η2 = .20 revealed that the amplitudes were significantly larger in the passive condition 

compared to the active condition across all tones regardless of the viewing group. Similarly, P2 

latency revealed a significant main effect of attention condition, F (1, 58) = 13.25, p = .001, η2 = 

.19, such that the passive condition (M (SE) = 198.09 ms (2.49)) had shorter latencies than the 

active condition (M (SE) = 207.13 ms (2.7)) across all tones and viewing conditions. 

For the P2 amplitude, there was also a significant attention by frequency interaction, F (1, 58) = 

52.12, p < .0005, η2 = .47, and an attention by intensity interaction, F (1, 58) = 9.24, p = .004, η2 = 

.14. A posteriori tests indicated that the low frequency tones were significantly smaller than the 

high frequency tones in the active condition (q (1, 58) = 8.05, p < .01), but not in the passive 

condition (q (1, 58) = 1.25, p > .01 A posteriori tests examining the attention by intensity 
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interaction revealed that the loud tones were significantly larger than the soft tones during the 

passive condition (q (1, 58) = 10.77, p < .01) as well as the active condition (q (1, 58) = 8.0, p < .01). 

P2 latency also revealed a significant attention by frequency interaction effect, F (1, 58) = 18.6, p < 

.0005, η2 = .24. A posteriori tests revealed that there was no significant difference between P2 

latencies for the low and high frequency tones for the passive condition (q (1, 58) = .82, p > .01). 

However, for the active condition, the low frequency tones had a significantly shorter latency 

than the high frequency tones (q (1, 58) = 5.65, p < .01).  

The N2 amplitude revealed a significant main effect of attention condition, F (1, 58) = 

37.31, p < .0005, η2 = .39. N2 amplitudes had significantly larger amplitudes in the passive 

condition compared to the active condition across all tones regardless of the viewing group. For 

N2 latency, the main effect of attention was not significant, F (1, 58) = 3.77, p = .057, η2 = .06 

based on the testwise alpha set for this study. 

For the N2 amplitude, there was also a significant attention by frequency interaction, F (1, 

58) = 13.03, p = .001, η2 = .18, and an attention by intensity interaction, F (1, 58) = 17.93, p < .0005, 

η2 = .24. A posteriori tests indicated that the low frequency tones had significantly larger 

amplitudes than the high frequency tones in the active condition (q (1, 58) = 4.38, p < .01), but not 

in the passive condition (q (1, 58) = .47, p > .01). A posteriori tests examining the attention by 

intensity interaction revealed that the soft tones had significantly larger amplitudes than the loud 

tones during the active condition (q (1, 58) = 4.74, p < .01) but not during the passive condition (q 

(1, 58) = .15, p > .01). The N2 latency also revealed a significant attention by frequency interaction 

effect, F (1, 58) = 24.96, p < .0005, η2 = .30. A posteriori tests revealed that there was no 

significant difference between N2 latencies for the low and high frequency tones for the passive 
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condition (q (1, 58) = .79, p > .01). However, for the active condition, the low frequency tones had 

a significantly shorter latency than the high frequency tones (q (1, 58) = 6.26, p < .01). 

The P3 amplitude revealed significant main effects of attention condition, F (1, 58) = 

54.71, p < .0005, η2 = .49. P3 amplitudes were significantly larger in the active condition 

compared to the passive condition across all tones regardless of the viewing group. The P3 

latency revealed a significant attention by frequency interaction effect, F (1, 58) = 12.42, p = .001, 

η2 = .18. A posteriori tests revealed that there were not significant differences between P3 

latencies for the low and high frequency tones for the passive condition (q (1, 58) = 1.36, p > .01) 

or the active condition (q (1, 58) = 2.82, p > .01). The means indicated that for the active condition, 

the low frequency tones had a shorter latency than the high frequency tones, while the opposite 

effect was observed for the passive condition.  

Discussion 

 The purpose of this study was to examine the effects of focused attention and visual 

distraction on auditory neural processing using the sensory registration paradigm. This auditory 

ERP paradigm allowed us to demonstrate differences in processing auditory intensities and 

frequencies across mid-latency ERP components based on environmental and internal attention 

demands. Each ERP component reflects a functionally discrete stage of neural processing, and 

understanding how these components are differentially impacted by attention demands can 

provide insight into understanding neural sensory processing. The grand averaged ERP 

waveforms of all conditions depicted the expected pattern following auditory stimuli, i.e. N1-P2-

N2-P3 (Polich, 1993). Answering research question 1, robust intensity discrimination was found 

at the N1, P2, N2, and P3 components across all conditions, although the N2 was not in the 

expected direction, with soft tones eliciting larger N2 amplitudes than loud tones. Frequency 
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discrimination was observed at the N1, P2, and N2 components but not at the P3 component. 

Supporting hypothesis 1, these results confirmed that manipulating stimulus characteristics do 

influence mid-latency phases of sensory processing i.e., N1, P2, N2, and P3 ERP components. 

Answering research question 2, manipulation of the environment resulted in no significant main 

effects, however, there were interactions effects of viewing (movie versus fixation) and attention 

(passive versus active) conditions for the N1, P2, and P3 components. However, except the P3 

component, other interaction effects were not significant at the alpha level set for this study. 

Answering research question 3, there were significant differences between the active and passive 

attention conditions for all the ERP components, demonstrating that altering the participant’s 

internal attentional state by requiring the participant to actively respond to stimuli, also 

influences the mid-latency phases of sensory processing. 

Effects of stimulus characteristics on auditory ERPs. The expected finding of larger 

N1, P2, and P3 amplitudes to loud tones compared to soft tones obtained is the present study has 

been shown numerous times in the literature (Adler & Adler, 1991; Crowley & Colrain, 2004; 

Paiva et al., 2016; Picton, Hillyard, Krausz, & Galambos, 1974; Polich & Kok, 1995; Ponton, 

Eggermont, Kwong & Don, 2000). Intensity discrimination did not differ between viewing 

conditions or attention conditions, which further supports the robust nature of intensity effects at 

the ERP components. Researchers have suggested that the intensity dependence of the N1 and P2 

components reflects low central seratonergic neurotransmission, which “sets the tone” and 

adjusts levels of sensory processing (Hegerl & Juckel, 1993). In contrast to the other ERP 

components, the N2 amplitude was larger for the soft tones compared to the loud tones. This 

could be because the target tone was the soft tone. Szmalec et al. (2008) suggested that an N2 

amplification is observed in trials with high perceptual overlap, when the target cannot be easily 
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discriminated. A larger N2 amplitude to the target tone in the present study could therefore be 

attributed to the difficulty in discerning the target tone from the other tones. However, more 

research is required to understand this effect.  

In terms of frequency discrimination, researchers have found that N1and P2 amplitudes 

decrease as frequency increases (Wunderlich & Cone-Wesson, 2001). This finding can be 

explained by results from a study using fMRI which showed that a larger area of the transverse 

temporal gyrus was activated for the 1 kHz tone compared to a 4 kHz tone (Strainer et al., 1997). 

We found a similar effect in our study across the viewing and attention conditions. Additionally, 

the target tone consisted of a low frequency stimulus, which could contribute to the higher 

amplitude of the low frequency tone. The P3 is considered to be relatively immune to the effects 

of stimulus characteristics such as frequency and pitch (Polich, 2007). In line with this theory, 

we found no discrimination of frequencies at the P3 component. 

Effect of viewing environment on auditory ERPs. There were no significant effects of 

viewing environment at the N1, P2 and N2 components. This is consistent with previous studies 

(Lavoie, Hine & Thornton, 2008, Yadon et al., 2015). The significant attention and viewing 

interactions effects at P3 amplitude indicate that P3 amplitudes were larger in the fixation 

viewing group than the movie viewing group. Theoretically, the P300 amplitude is elicited in 

tasks requiring the maintenance of working memory (Polich, 2007). A larger P3 in the fixation 

condition may suggest more efficient working memory processes towards stimuli processing 

compared to the movie viewing condition. The P3 latency interaction effect revealed that for the 

movie group, the passive condition had shorter latency than the active condition, while for the 

fixation viewing group, the active condition had shorter latency than the passive condition.  
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Effect of Attention on Auditory ERPs 

 N1 component. The N1 represents a sensory filter which is activated by auditory events 

and represents stimulus encoding (Näätänen & Picton, 1987). The N1 amplitude was 

significantly larger for the passive condition compared to the active condition for both the 

viewing conditions. A larger N1 for the passive condition can be attributed to a greater attention 

shift required during this condition compared to active condition. Due to the nature of the active 

condition, participants sustained attention to all auditory stimuli since they were anticipating a 

tone. Researchers have shown that expectations which induce prediction processes result in 

decreased N1 amplitudes (Lange, 2013). N1 latencies were shorter for the active condition 

compared to the passive condition, which is consistent with most existing literature (Folyi, Feher, 

& Horvath, 2012; Mondor & Zatorre, 1995). Interestingly, we found that frequency 

discrimination was greater during the active condition compared to the passive condition across 

viewing conditions. This is consistent with literature which states that stimuli presented during 

attended states are detected faster and discriminated more accurately than stimuli presented 

during unattended states (Mondor & Zatorre, 1995).  

 P2 component. The P2 component is assumed to represent at least partially an 

exogenous response following stimuli and is believed to play a role in stimulus classification 

(Crowley & Colrain, 2004). In the present study, the P2 amplitude was smaller for the active 

condition compared to the passive across viewing conditions. This is consistent with previous 

findings (Tong, Melara & Rao, 2009). In a review of the P2 component, Crowley and Colrain 

(2004) noted that an increase in the level of attentiveness results in larger N1 amplitudes but 

smaller P2 amplitudes (Crowley & Colrain, 2004). Additionally, P2 latencies were longer for the 
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active condition compared to the passive condition in the present study. This is consistent with 

previous research (Morris, Steinmetzger & Tøndering, 2016). 

 N2 component. The auditory N2 is considered to reflect attentional allocation (Tomé, 

Barbosa, Nowak & Marques-Teixeira, 2014), and cognitive processes associated with stimulus 

evaluation (Michalewski, Prasher & Starr, 1986). In the present study, N2 amplitudes were larger 

for the passive condition compared to the active condition regardless of the viewing condition. 

Smaller N2 amplitudes in the active condition could be due to better attention allocation during 

the active condition compared to the passive condition. Nieuwenhuis, Yeung and Cohen (2004) 

found that the N2 component is reduced when stimuli can be easily discriminated during an 

auditory go/no-go task. Our findings have indicated better stimulus discrimination at the N1 and 

P2 components during the active condition compared to the passive condition. This ability to 

better discriminate the auditory stimuli during the active condition could have led to smaller N2 

amplitudes compared to the passive condition. Consistent with the N1 and P2 components, we 

also found interactions effects between attention condition and intensity, and frequency, such 

that low frequency tones were better discriminated from high frequency tones during the active 

condition than the passive condition.  

Interestingly, the attention by intensity interaction revealed that the soft tones had larger 

amplitudes than the loud tones during the active condition. This contrasts with the N1 and P2 

components, wherein the loud tones had larger amplitudes. This reversal could be explained by 

the fact that the target tone for the active condition consisted of a low intensity stimulus. Since 

the N2 is involved in cognitive processing, we can assume that the target tone had greater 

processing than the non-targets at the N2 component. Previous research has also shown that 

target stimuli elicit a larger N2 amplitude compared to non-targets in the auditory modality 



55 

 

(Folstein & Van Petten, 2008). For our active condition, low frequency tones had shorter 

latencies than the high frequency tones, suggesting more efficient processing of the target 

frequency.  

P3 component. The P3 or the P300 component is perhaps the most extensively studied 

ERP component with reliable consensus that the P3 occurs when an individual consciously 

detects an informative task-relevant stimulus (Huang, Chen & Zhang, 2015). In accordance with 

existing literature, our study elicited larger P3 amplitudes for the active condition compared to 

the passive condition regardless of viewing condition. In addition, for the active condition, low 

frequency tones had shorter P3 latencies than the high frequency tones, which suggests that the 

low frequency target tones were processed faster than the non-target tones (Polich, 2007). 

 Impact of attention on intensity versus frequency. In this study, we found differential 

effects of attention on processing of intensity versus frequency. We found robust intensity 

dependency in all components, i.e., N1-P2-N2-P3, such that high intensity tones generated larger 

amplitudes than soft tones regardless of the viewing and attention condition, except the N2 

component had larger amplitude for soft tones than loud tones. In contrast, we found that there 

was no frequency discrimination during the passive condition regardless of the viewing 

condition. Harris, Mills, and Dubno (2007) used 500 and 3000 Hz stimuli and found that the 

young adults (ages 18 – 30) showed no difference between the N1 and P2 across the two 

frequencies during a passive listening task. However, they did find the expected robust intensity 

discrimination at the N1 and P2 components (Harris et al., 2007). In contrast to these previous 

studies, during the active condition, we found significant frequency discrimination at the N1, P2, 

and N2 components. This is consistent with studies examining mismatch negativity, wherein the 

amplitude of N1 and P2 decreased as frequency increased (Wunderlich & Cone-Wesson, 2001). 
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To summarize, this suggests that intensity discrimination is more robust than frequency 

discrimination during passive attention states. A study by Dimitrijevic et al. (2009) also 

demonstrated that intensity and frequency discrimination employ distinct neural processes. 

However, when actively directing attention to stimuli, frequency discrimination is evident in the 

mid-latency ERP components.  

 Viewing environments during auditory paradigms. During the past decade, 

researchers have increased the use of playing a silent/close-captioned movie during auditory 

EEG paradigms. Several researchers studying auditory processing in children with and without 

disabilities use a movie to help participants remain engaged throughout the EEG testing (Carroll 

& Seeley, 2013). Often, results from studies with a movie have been compared to results with 

studies without a movie, without considering the effects of the movie viewing on overall 

processing. The results of this study indicated that movie viewing significantly interacts with 

attentional states during an auditory paradigm, such that movie viewing results in use of 

additional neural resources demonstrated by larger amplitudes compared to participants viewing 

a fixation point. This finding has implications not only from a theoretical and methodological 

standpoint but also has implications for research in clinical populations with attention deficits.  

Theoretically, watching a movie during an auditory paradigm can be considered a low 

perceptual load, such that an active mechanism is involved in processing the distraction (Lavie, 

2010). Thus, in accordance with the load theory of attention, we found that the movie viewing 

group had smaller P3 amplitudes than the fixation viewing group. Additionally, supporting the 

“sensory gain theory”, attention led to enhanced stimulus discrimination ((Hillyard et al., 1998). 

These attention effects seem to echo the work of Carrasco, Ling and Read (2004) that 

demonstrated that attention alters stimulus appearance by increasing visual contrast sensitivity 
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and spatial resolution (sensory gain). Methodologically, researchers must consider the impact of 

the perceptual load (movie viewing) while comparing results of study paradigms that use a 

movie versus studies that use a fixation during an auditory paradigm to accurately interpretation 

of sensory processing. Clinically, there has been growing interest in using auditory ERPs as 

objective biomarkers of neuropsychiatric conditions. Understanding the impact of attention on 

auditory processing is crucial especially in people with diagnostic conditions that may have 

exhibit attention deficits. 

Conclusion 

The results from this study have shown that attention and distraction significantly impact 

auditory processing at the N1, P2, N2, and P3 ERP components. Intensity discrimination was 

significant at all components across attention and viewing conditions. Frequency discrimination 

was significant only during the active condition at the N1, P2, and N2 components. The results 

indicate that actively directing attention to the tones impacts auditory processing at all 

components, and that discrimination is more robust during active than passive tasks that 

influence attentional states. Additionally, movie viewing and fixation viewing differentially 

impacts auditory processing.  Findings from this study have significant implications related to 

theoretical, methodological, and clinical applications of ERP research examining the impact of 

attention on auditory processing. 
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CHAPTER 3 – STUDY 2 

 

 

 

Examining the effect of attention on sensory gating in adults with autism spectrum 

disorders 

The capacity of the human brain to process information is limited.  To deal with this, 

certain stimuli or aspects of stimuli are prioritized at the expense of dealing less efficiently with 

other stimuli (a.k.a., selective attention).  Additionally, irrelevant information is filtered out (i.e., 

sensory gating), to prevent sensory overload of higher cognitive functions.  Sensory gating in the 

auditory modality has been extensively examined using the paired-click paradigm (Adler et al., 

1982; Freedman et al., 1996; Dalecki et al., 2016).  For the sensory gating 

electroencephalography (EEG) paradigm, the participant listens to repeated presentations of a 

pair of identical click sounds, presented within a short period from each other.  In the resulting 

averaged event-related potential (ERP), the P50 component presents as a positive deflection that 

occurs around 50 - 65 milliseconds (ms) after stimulus presentation.  The P50 develops as a 

neural orienting response to the first click while simultaneously activating inhibitory pathways 

(Freedman, Adler, & Waldo, 1987). The reduction in amplitude of the P50 to the second click 

(a.k.a., test click) compared to the first click (a.k.a., conditioning click) represents gating, which 

is also described as suppression. One explanation for the gating mechanism is that when the 

second click is presented immediately thereafter, the active inhibitory pathways are believed to 

suppress the P50 potential in response to the second click stimulus (Freedman et al., 1987).   

 Deficits in sensory gating have been associated with difficulties in organizing sensory 

information, and with the development of severe behavioral aberrations (Freedman, Waldo, 

Bickford-Wimer, & Nagamoto, 1991).  The P50 ERP component has been widely used to 
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evaluate sensory gating in people with schizophrenia (Clementz, Geyer, & Braff, 1998; 

Freedman et al., 1996).  Due to the pervasive and quantifiable nature of gating, impaired P50 

suppression is considered an endophenotype for schizophrenia (Calkins et al., 2007).  Some 

researchers have proposed that gating deficits observed in schizophrenia could be due to two 

mechanisms; 1) less consistent complete responses or reduced responsiveness to the first click 

leading to smaller amplitudes to click 1, and 2) reduced gating of click 2 (Jansen, Hu, & Boutros, 

2010).  Thus, the reduced responsiveness to the conditioning click (i.e., click 1) in schizophrenia 

suggests deficits in orientation to a novel stimulus and basic attentiveness.  Studies have found 

that P50 (Wan, Friedman, Boutros, & Crawford, 2008) and N1 gating (Lijffijt et al., 2009) have 

been associated with behavioral measures of attention. 

Attention is understood as a “broad cognitive concept that includes a set of mechanisms 

that determine how particular sensory input, perceptual objects, trains of thought, or courses of 

action are selected for further processing from an array of concurrent possible stimuli, objects, 

thoughts and action” (Talsma, Senkowski, Soto-Faraco, & Woldorff, 2010, p. 2).  The P50 

component was initially thought to be unaffected by attentional modulations (Adler et al., 1982; 

Jerger, Biggins, & Fein, 1992).  The early latency (around 40-60 ms) of the P50 component was 

thought to reflect sensory processing of the stimulus, while the mid-latency ERPs (such as the 

N1 and P2) were thought to reflect endogenous components such as attention (Boutros, 

Korzyukov, Jansen, Feingold, & Bell, 2004).  However, recent research has brought this notion 

into question.  There have been mixed results regarding the influence of attention on sensory 

gating abilities in neurotypical individuals.  Some studies have shown that although directing 

attention towards the clicks (button press to high intensity pairs) resulted in greater amplitude of 

the N1, there was no effect of attention on P50 gating (White & Yee, 1997).   
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Dalecki, Green, Johnstone, and Croft (2016) examined the influence of attention versus 

non-attention states on a modified P50 gating paradigm.  The authors designed the paired-click 

paradigm with the addition of randomly interspersed louder clicks in certain pairs.  In the 

attention condition, the researchers asked participants (healthy controls and individuals with 

schizophrenia) to respond with a button press only to the pairs with the louder click.  In the non-

attention condition participants were instructed to ignore the auditory stimuli.  In both 

conditions, participants watched a silent movie during the EEG recording.  The findings from 

this study revealed that the control group of healthy adults had enhanced P50 suppression during 

the attention condition compared to the non-attention condition.  However, the attention 

condition did not affect gating in individuals with schizophrenia (Dalecki et al., 2016).   

Others have found that directing attention towards the clicks resulted in attenuation of P50 gating 

(Guterman, Josiassen, Bashore, 1992; Yee et al., 2010).   

Yee et al. (2010) found that while schizophrenia patients had significant deficits in P50 

suppression during standard gating testing compared to healthy controls, the group difference 

was not significant when attention was directed towards either the first or the second click.  

Thus, schizophrenia patients exhibited substantial improvements in gating when voluntary 

attention was directed towards the stimuli (Yee et al., 2010).  Additionally, Hutchison et al. 

(2013) examined sensory gating in 40-month-old infants and found that P50 suppression deficits 

significantly predicted attention symptoms three years later.  The authors concluded that 

attentional dysfunction may relate to altered neural sensory gating. 

The changes in P50 gating due to attentional states indicate that this early component 

captures not only pre-attentive sensory aspects but is also influenced by attentional states.  

However, the impact of an individual’s attention state on sensory gating during the EEG 
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recording is still unclear.  Understanding the influence of attention on sensory gating is crucial 

since gating abnormalities may be associated with deficits in attention rather than deficits in 

sensory processing (Rosburg et al., 2009).  Abnormalities in P50 gating have now been 

demonstrated in several clinical groups besides schizophrenia such as attention deficit 

hyperactivity disorders (Olincy et al., 2000), sensory processing disorders (Davies, Chang & 

Gavin, 2009) and autism spectrum disorders (ASD; Orekhova et al., 2008).  Sensory processing 

deficits, which include hyper- or hypo-reactivity to sensory input are part of the diagnostic 

criteria for children with ASD in The Diagnostic and Statistical Manual of Mental Disorders 

(5th ed.; DSM–5; American Psychiatric Association, 2013).  Auditory processing is one of the 

most commonly reported sensory processing impairment in ASD.  Research examining brain-

behavior relationships has shown that behavioral deficits in auditory processing have been 

associated with impairments in neural inhibition and filtering of sensory input (Orekhova et al., 

2008).  Additionally, individuals with ASD are known to have deficits in attention (Allen & 

Courchesne, 2001).  However, controversy exists in the identification of specific neuropathology 

underlying dysfunction in sensory processing and attention, which warrants further study of 

brain-behavior relationships.  

 Researchers examining gating deficits in ASD have found mixed results.  While some 

studies have shown that children with ASD have significant deficits in P50 and N1 suppression 

(Crasta, LaGasse, Gavin, & Davies, 2016; Madsen et al., 2015) and sensorimotor gating 

(McAlonan et al., 2002; Perry, Minassian, Lopez, Maron & Lincoln, 2007) compared to 

neurotypical peers, others have found no difference in gating abilities in ASD and controls 

(Kemner et al., 2002; Magnée, Oranje, van Engeland, Kahn, & Kemner, 2009).  Some of the 

inconsistencies in the study findings may be related to differences in the methods employed to 
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study gating, such as the presence of a silent movie versus starring at a fixation point, and the 

individual’s attention state.   

Neural and behavioral attention mechanisms may work differently towards suppression, 

inhibition, and filtering information in individuals with ASD and neurotypical controls.  When 

no instructions have been given towards the direction of attention, individuals without attention 

deficits, such as neurotypical controls, usually have stronger gating compared to clinical 

populations who show reduced gating.  Thus, since individuals with ASD have impaired 

attention, the attention-based enhancement on P50 suppression (as seen in the study by Yee et 

al., 2011) may explain underlying mechanisms of gating dysfunction, which may be attributed to 

attention deficits.  The purpose of this study was to investigate whether attentional manipulations 

would produce differences in sensory gating (P50 and N1 amplitude and suppression) in 

neurotypical controls and individuals with ASD.  Since research have shown that individuals 

with ASD have delayed N1 latencies to auditory stimuli (Edgar et al., 2015), a second objective 

was to also examine auditory latencies in individuals with ASD.  Additionally, behavioral 

measures assessing sensory processing, perceptual processing, attention, and social responsivity 

were included to not only to validate the group differences but also to examine brain-behavior 

relationships.  

Research Questions 

1. How does active versus passive attentional states affect sensory gating? 

Hypothesis: All participants will have more robust gating during the passive condition compared 

to the active condition. All participants will have shorter latencies in the active compared to the 

passive condition.   
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2. Do individuals with ASD have deficits in sensory gating at the P50 and N1 component 

compared to neurotypical controls during the passive or active condition?  

Hypothesis: Individuals with ASD will have less robust sensory gating during the passive 

condition but not active compared to the neurotypical group. Individuals with ASD will have 

longer P50 and N1 latencies to the click stimuli compared to neurotypical individuals.  

3. Are there group differences between neurotypical individuals and individuals with ASD on 

behavioral measures of attention and sensory processing? 

Hypothesis: The ASD group will have significantly more deficits on behavioral measures of 

attention and sensory processing compared to neurotypical individuals. 

4. How do behavioral measures of attention and sensory processing relate to neural measures of 

sensory gating?  

Hypothesis: Across all participants, more typical scores on the behavioral assessments will be 

associated with more robust gating.  

Methods 

 Participants. This study included a total of 48 participants recruited via convenience 

sampling.  Twenty-four participants (M = 23.31 years, SD = 3.77; 17 males, 7 females) had a 

confirmed diagnosis of high-functioning ASD.  The control group consisted of twenty-four age-

matched neurotypical individuals (M = 23.7 years, SD = 3.51; 12 males, 12 females).  There was 

no group difference in age (t (46) = .41, p = .69).  The diagnosis of ASD was confirmed using the 

ADOS-2 (Rutter, DiLavore, Risi, Gotham, & Bishop, 2012) administered by the primary author 

prior to initiating the EEG portion of the study. All participants with ASD met the cut-off criteria 

for ASD based on the ADOS. All participants in the control group were screened using a 

questionnaire designed by our lab to ensure via self-report that they are free of neurological 
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injuries, disabilities, and family histories of psychological disorders.  All the procedures 

performed in the research involving human participants were in accordance with the ethical 

standards of the institutional review committee at the local university and with the 1964 Helsinki 

declaration and its later amendments. All participants signed a written informed consent prior to 

the study. 

Procedures. Once the EEG cap, and electrodes were applied, the participant was given a 

brief training on strategies to reduce artifacts resulting from eye blinks, and other muscle 

activity.  EEG data were collected in a sound-attenuated and electrically shielded room during 

the sensory gating paradigm.  Participants in both groups completed two conditions of the 

sensory gating paradigm followed by behavioral testing of attention.  The EEG, and the 

behavioral testing took around 1 hour each.   

Sensory gating EEG paradigm. The sensory gating paradigm was presented using E-

Prime software (Psychological Software Tools, Pittsburg, PA) running on a laptop computer.  A 

modified sensory gating paradigm was used which consists of presentations of 80 pairs of click 

stimuli and 40 pseudo-randomly interspersed single clicks.  The click stimuli were binaurally 

presented through the ER-3A inserted earphones (Etymotic Research). The stimuli were 

presented at 85 dB SPL. Each click had a 3 ms duration.  The paired click stimuli were presented 

with a 500 ms stimulus onset asynchrony (SOA), and an 8 second inter-trial-interval between 

pairs.  The single clicks were presented with an inter-trial-interval of 8 seconds. The study 

consisted of two conditions:   

The passive condition. In this condition, participants were asked to watch at a fixation 

point (star symbol) on a computer screen while they were being presented with click sounds.   
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The active condition. In this condition, participants were asked to selectively respond to 

single clicks with a button press and ignore the paired-clicks while watching at a fixation point 

(star symbol) on a computer screen.   

EEG/ERP data recording. All EEG data were collected using the BioSemi ActiveTwo 

EEG/ERP Acquisition System (BioSemi, Wg-Plein 129, 1054 SC Amsterdam, Netherlands). 

This system included 64 Ag/AgCl sintered scalp electrodes. The electrodes were located in 

accordance with the modified 10–10 system (Klem, Lüders, Jasper, & Elger, 1999; Oostenveld 

& Praamstra, 2001). EEG was recorded with the Common Mode Sense active electrode as the 

reference and the Driven Right Leg passive electrode as the ground 

(http://www.biosemi.com/faq/cms&drl.htm). Electrooculograms (EOGs) were recorded from 

individual electrodes placed on the left and right outer canthus for horizontal movements and on 

the left supraorbital and infraobital region for vertical movements. Two more individual 

electrodes were placed on the left and right earlobes and used as the offline reference.  Data were 

sampled at a rate of 2048 Hz with a bandwidth of 0 to 417 Hz.   

Electrophysiological Data Reduction. Brain Vision Analyzer software (Brain Products 

GmbH, München, Germany) was used to conduct all offline EEG analyses.  Baseline-to-peak 

measures for the P50 and N1 component were obtained based on previously established 

procedures (e.g., Boutros et al., 2004; Davies et al., 2009).  Averaged ERPs were composed from 

the running EEG data.  First, the four EOG channels were converted to a vertical and a 

horizontal bipolar EOG.  For the P50 component, data were filtered offline from the continuous 

EEG with a band pass setting of 10 to 75 Hz with a 24 dB/octave rolloff using casual phase-shift 

free butterworth filter settings (Chang, Gavin, & Davies, 2012).  Time-frequency analysis of 

evoked power indicated that this filter setting best captures the gamma activity of the P50 
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response (See Figure 6). Following this, data were segmented time-locked to the stimulus onset 

into epochs representing either the click 1 (conditioning) or click 2 (test) with a duration of 100 

ms pre-stimulus onset to 200 ms post-stimulus onset. 

  For the N1 component, data were filtered offline from the continuous EEG with a band 

pass setting of .1 to 30 Hz with a 12 dB rolloff using casual phase-shift free butterworth filter 

settings (Boutros et al., 2004; Lijffijt et al., 2009).  Following this, data were segmented time-

locked to the stimulus onset into epochs representing either click 1 or click 2 with a duration of 

100 ms pre-stimulus onset to 500 ms post-stimulus onset.  Baseline correction relative to a 

baseline of -100 ms to 0 ms was performed.  Next, specific for processing the N1 component, an 

eye regression technique designed to remove eye movement artifacts from each segment was 

performed (Segalowitz, 1996).  Baseline correction was performed again relative to a baseline of 

-100 ms to 0 ms for the non-rejected segments.  For P50 and N1 data reduction, segments with 

voltage deviations greater than ±100 microvolts (μV) on any of the EEG channels or the bipolar 

Figure 6. Time-frequency analysis of evoked power for neurotypical participants and 

participants with ASD. As seen in the figure, a filter setting of 10 – 75 Hz best captures the 

P50 gamma response. 
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EOG channels were eliminated after final baseline correction.  Segments were then averaged to 

create averaged ERP waveforms separately for the click 1 and 2 in order to measure the P50, and 

N1 components for each participant.   

 The P50 peak was identified as the most positive peak between 40 and 80 ms after the 

stimulus onset.  The N1 peak was identified as the most negative peak between 70 and 180 ms 

after the stimulus onset.  The test/conditioning (T/C) ratio and difference scores were computed 

to quantify gating abilities.  A T/C ratio approaching 0 is indicative of robust gating and the T/C 

ratio approaching 1 indicates less gating (Cromwell, Mears, Wan, & Boutros, 2008).  Difference 

scores were calculated by subtracting P50 amplitude of Click 2 from the P50 amplitude of Click 

1, and N1 amplitude of click 2 from the N1 amplitude click 1.  For the P50 component, a large 

positive difference score indicates better gating than a small score.  For the N1 (a negative ERP 

component), a large negative difference score indicates better gating compared to a small score.  

Of the 64 channels, the central site Cz was analyzed, to maintain consistency with previous 

research.  

Behavioral Measures. To validate group differences and assess the relationship between 

neural measures of sensory processing and behavioral measures of attention and sensory 

processing, the Test of Everyday Attention (TEA) was administered to all participants.  

Additionally, participants were asked to fill out the Adolescence and Adults Sensory Profile, the 

Sensory Gating Inventory.  Participants with ASD also filled out the Social Responsiveness 

Scale-2, which is a measure of ASD severity.   

Social responsiveness scale – 2 (SRS-2). The SRS-2 Adult form is a 65-item self-report 

rating scale measuring deficits in social behavior associated with Autism Spectrum disorder, as 

outlined in the Diagnostic and Statistical Manual of Mental Disorders. Items are scored on a 4-
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point Likert scale, ranging from 1 “not true”, 2 “sometimes true”, 3 “often true” to 4 “almost 

always true”.  Results are reported as T-scores for the treatment subscales: Social Awareness (8 

items), Social Cognition (12 items), Social Communication (22 items), Social Motivation (11 

items), and Restricted Interests and Repetitive behavior (12 items) and the overall total score. T-

scores of 76 or higher are considered severe suggesting that an individual has clinically 

significant deficits in social functioning that interfere with interactions with others.  Scores that 

fall between 66 and 75 are considered moderate, signaling some clinically significant social 

deficits.  The mild range includes T-scores of 60 to 65, which indicate mild to moderate 

deficiencies in social behavior. T-scores of 59 and below indicate an individual probably does 

not have social difficulties indicative of a possible ASD diagnosis (Constantino & Gruber, 2012; 

Frazier et al., 2014).  The scale takes approximately 15 minutes to complete.  The scale has 

strong internal consistency (.94 - .96) across gender, age, and clinical subgroups within the 

spectrum. The adult form appears to have less predictive validity compared to the school-age 

forms, with a specificity level of .60 and a sensitivity of .86. No concurrent validity data were 

reported for the Adult Form. Confirmatory factor analysis demonstrated good fit for the two-

symptom clusters measuring social communication and interaction domain and the restricted 

interested and repetitive behavior domain (Bruni, 2014; Mandell et al., 2012).   

Sensory gating inventory (SGI). The SGI is a measure of perceptual anomalies related 

to sensory gating.  Participants respond with a 6-point Likert ratings (from 0 “never true” to 5 

“always true”) to the 36 item self-report questionnaire.  The questionnaire yields 4 factors: 

Perceptual Modulation (16 items), Distractibility (8 items), Over-Inclusion (7 items), and 

Fatigue-Stress Vulnerability (5 items).  An overall SGI score is also obtained by computing the 

sum of all the Likert responses (Hetrick, Erickson & Smith, 2012).  A higher score indicates 
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more deficiencies.  The scale has moderate to strong internal consistency reliability (Cronbach’s 

alpha ranging from .75 to .92), with convergent validity coefficients ranging from .53 - .79. The 

authors report discriminant validity as well (Hetrick et al., 2012).  

Adolescent/Adult sensory profile (AASP).  The AASP is a self-report questionnaire 

consisting of 60 items that relate to everyday sensory experiences.  The AASP is validated for 

individuals 11 or older.  Each item is scored on a 5-point Likert scale indicating how frequently 

the behavior is performed (from 1 “almost never” to 5 “almost always”).  The 60 items are 

organized into six categories of taste or smell, movement, visual, touch, activity level, and 

auditory sensitivities.  The questionnaire takes about 10-15 minutes to complete. The AASP 

scores are categorized into 4 quadrants based on Dunn’s (1997) model of sensory processing, 

which classifies sensory behaviors based on neurological thresholds (high or low) and behavioral 

responses (passive or active).  Neurological thresholds refer to the amount of stimuli needed for 

the nervous system to respond to sensory stimuli, and behavioral responses relate to the way in 

which a person responds to their sensory thresholds.  The four quadrants are, 1) Low registration 

(passive behavioral responses with a high neurological threshold), 2) Sensation seeking (active 

behavioral responses with a high neurological threshold), 3) Sensory sensitivity (passive 

behavioral responses with a low neurological threshold and, 4) Sensation avoiding: refers to 

active behavioral responses with a low neurological threshold. Quadrant scores are classified as 

“much less than most people” (-2 SD from mean), “less than most people”, “similar to most 

people”, “more than most people”, and “much more than most people” (+2 SD from mean). 

Extreme sensory processing is defined as scores falling in either “much less than most people” or 

“much more than most people”. The AASP has reported item reliability (r = .64 - .78) and 

construct validity (Brown & Dunn, 2002). 
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Test of everyday attention. TEA is a standardized and normed clinical battery that has 

been validated for ages 18 to 80 years.  The TEA is based largely on everyday materials with 

real-life scenarios to ensure that participants find it relevant to their problems of adjustment in 

everyday life.  The eight subtests, with a four-factor structure, correspond to the attentional 

model presented by Petersen and Posner (2012).  Subtests assess selective, sustained attention, 

attentional switching, and divided attention.  The TEA takes around 45-50 minutes to complete. 

Higher scores indicate better attention abilities.  For this study, raw scores were used in the 

analysis since all participants were within the same age-range for the standardized scores, and 

raw scores preserved individual variability.  The reliability of the subtests of the TEA range from 

good to excellent for clinical populations and healthy controls (r = .34 – 64; Ward, Ridgeway & 

Nimmo-Smith, 1994).  

 Statistical analyses.  Group differences on the behavioral assessments were conducted 

using independent samples t tests.  Discriminant analyses were performed to identify which 

assessment would best distinguish between neurotypical individuals and individuals with ASD. 

Group differences on the P50 and N1 ERP component amplitudes and latencies were examined 

using a 2 (Group) x 2 (Attention) x 2 (Clicks) repeated measures ANOVA.  The main effect of 

clicks was used to determine whether there was a statistically significant difference between 

click 1 and click 2 representing gating.  The main effect of attention used to determine the impact 

of attention on processing.  The clicks by group by condition interaction was used to determine 

whether the effect of attention on gating differed between the control group and the group of 

individuals with ASD.  A posteriori tests were conducted to examine the interaction effects. A 

posteriori Tukey’s honestly significantly difference (HSD) post-hoc t tests (reported as q values) 

were calculated to examine interaction effects (Kirk, 1968, p. 265-269).  Testwise alpha was set 
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at 0.013 for the apriori hypotheses (ANOVAs), with Bonferroni correction for the 2 ERP 

components and two ANOVAs examining amplitude and latency measures for each ERP 

component, (.05/4 = .013).  Effect sizes for η2 are interpreted as follows, .04 – small, .25 – 

medium, and .64 – large (Ferguson, 2009).  Effect sizes for Cohen’s d can be interpreted as 

follows, .41 – small, 1.15 – moderate, 2.7 – strong (Ferguson, 2009).  Pearson product-moment 

correlations were used to identify the relationship between gating and the behavioral assessments 

of attention, sensory processing, perceptual processing, and social responsivity.  All statistical 

analyses were performed using the Statistical Package for Social Sciences (SPSS) for Windows 

software, 24.0 version.     

Results 

Analysis of Behavioral Measures Validating Group Differences 

Social Responsiveness Scale 2. The means and standard deviation of the 5 treatment 

subscales and the total score of the SRS 2 are shown in Table 3.  All neurotypical individuals 

scored within normal limits on the SRS 2 based on the T score.  Six individuals with ASD scored 

within normal limits, three scored in the mild range, six scored in the moderate range, and seven 

scored in the severe range.  Independent samples t tests revealed significant group differences in 

all domains.  Specifically, individuals with ASD had significantly higher scores in the Social 

Awareness subscale, Social Cognition, Social Communication, Social Motivation, Restricted and 

Repetitive behaviors, and the SRS 2 total score.  

Sensory Gating Inventory. The means and standard deviation and t tests of the 4 factors 

and the total score of the SGI are shown in Table 3.  The SGI scores were compared between 

groups using independent samples t tests.  The ASD group had significantly higher scores than 
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the neurotypical group on all domains, namely Perceptual modulation, Over-inclusion, 

Distractibility, the effects of Fatigue and Stress, and the SGI total score.  

Adolescent/Adult Sensory Profile. The means and standard deviations of the four 

sensory quadrants are shown in Table 3. The ASD participants had more sensory issues in all the 

four domains compared to neurotypical peers.  Specifically, the ASD group had significantly 

higher scores in the Low registration quadrant, Sensation seeking, Sensory sensitivity, and 

Sensation avoiding.  Analysis of each sensory domain indicated that the ASD group had 

significantly higher scores than the neurotypical group, in Auditory processing (t (46) = 4.46, p < 

.0005, d = 1.29), Activity level (t (46) = 4.79, p < .0005, d = 1.38), Touch processing (t (46) = 3.0, p 

= .004, d = .87), and Visual processing (t (35.6) = 2.45, p = .02, d = .7).  There were no group 

differences in the Taste/Smell processing (t (46) = .86, p = .4, d = .25), and the Movement 

processing domains (t (46) = .23, p = .82, d = .07).  For participants with ASD, for the low 

registration category, 29.2% met the criteria for extreme sensory processing deficits (±2 SD from 

mean), 33.3% met this criterion for the sensory sensitivity quadrant, 37.5% met this criterion for 

the sensation avoiding quadrant, and 4.2% met the criteria for the sensation seeking quadrant.  Of 

all the ASD participants, 62.5 % reported extreme levels of sensory processing on at least one 

sensory quadrant.  None of the participants in the neurotypical group reported quadrant scores 

that met the criteria for the extreme sensory processing category. 
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Table 3. Means and standard deviations for the behavioral assessments along with group 

comparisons using t tests.  

Behavioral assessments & domains Neurotypical ASD    

 M (SD) M (SD) t p d 

SRS 2      

Social Awareness 6.46 (2.7) 10.79 (4.31) 4.16 < .0005 1.2 

Social Cognition 6.29 (3.4) 14.5 (6.9) 5.24 < .0005 1.5 

Social Communication 10.58 (7.5) 29.67 (11.5) 6.81 < .0005 2.0 

Social Motivation 8.42 (4.2) 17.88 (6.2) 6.16 < .0005 1.8 

Restricted & Repetitive Behaviors 6.17 (4.1) 19 (8.19) 6.79 < .0005 2.0 

Total Raw Score 37.92 (18.4) 91.83 (33.5) 6.54 < .0005 2.0 

SGI      

Perceptual Modulation 15 (10.3) 39.42 (20.4) 5.24 < .0005 1.5 

Over-Inclusion 11.08 (7.9) 22.67 (7.7) 5.11 < .0005 1.5 

Distractibility 14.21 (7.8) 25.29 (8.9) 4.58 < .0005 1.3 

Fatigue and Stress Vulnerability 8.88 (4.5) 13.46 (7.8) 2.49 .018 .71 

Total score 49.17 (26.8) 100.8 (40.4) 5.22 < .0005 1.5 

AASP      

Quadrant 1: Low Registration 29.92 (5.6) 39.38 (8.7) 4.46 < .0005 1.3 

Quadrant 2: Sensation Seeking 50.46 (7.1) 41.21 (8.8) 4.0 < .0005 1.2 

Quadrant 3: Sensory Sensitivity 31.83 (5.7) 40.96 (11.8) 3.40 .002 1.0 

Quadrant 4: Sensation Avoiding 34.13 (6.2) 46.08 (11.9) 4.35 < .0005 1.3 

TEA      

Map Search 1 minute 61.88 (9.3) 51.96 (11.7) 3.24 .002 .94 

Map Search 2 minutes 78.48 (1.3) 76.33 (3.2) 3.0 .005 .88 

Elevator Count 6.96 (.2) 6.92 (.3) .59 .56 .16 

Elevator Count Distraction 9.52 (.8) 8.38 (2.2) 2.41 .022 .69 

Visual Elevator: Raw Accuracy  8.63 (.9) 8.25 (1.4) 1.07 .29 .32 

Visual Elevator: Timing Score 2.92 (.4) 3.5 (.7) 3.53 .001 1.0 

Elevator Counting with Reversal 7.79 (1.9) 6.83 (2.7) 1.39 .17 .41 

Telephone Search 2.39 (.5) 2.87 (.9) 2.35 .025 .66 

Telephone Search while Counting .52 (.9) 1.86 (3.4) 1.86 .07 .54 

Lottery 9.46 (.9) 8.13 (2.3) 2.36 .026 .76 

Analysis of Neural Measures of Gating 

The grand-averaged ERP waveform shows P50 gating in neurotypical group and ASD 

group during the passive condition, and less robust gating during the active condition (See Figure 
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7). The means and standard deviations of the P50 and N1 amplitudes and latencies are shown in 

Table 4.  

Table 4. Means and standard deviations for the P50 and N1 ERP amplitude and latencies.  

  Neurotypical ASD 

  Passive Active Passive Active 

  M (SD) M (SD) M (SD) M (SD) 

Amplitude 

P50 Click 1 3.8 (1.66) 3.89 (1.77) 3.28 (1.5) 3.23 (1.13) 

P50 Click 2 1.57 (.84) 2.15 (1.06) 1.46 (.86) 2.21 (1.0) 

N1 Click 1 -7.55 (2.29) -6.36 (2.46) -8.12 (5.03) -7.69 (4.57) 

N1 Click 2 -3.5 (2.23) -6.49 (2.79) -3.15 (2.84) -6.44 (4.07) 

Latency 

P50 Click 1 63.37 (6.1) 60.6 (3.36) 65.12 (7.75) 66.10 (9.0) 

P50 Click 2 61.58 (4.96) 59.85 (5.93) 64.16 (9.93) 63.03 (11.7) 

N1 Click 1 99.81 (10.3) 98.69 (10.9) 109.78 (11.9) 110.6 (11.9) 

N1 Click 2 91.51 (13.6) 101.97 (22.2) 102.95 (20.5) 105.6 (17.7) 

 

 

 

Figure 7. Grand averages of the ERPs at site Cz. A. ERP for the neurotypical group during the 

passive condition. B. ERP for the ASD group during the passive condition. C. ERP for the 

neurotypical group during the active condition. D. ERP for the ASD group during the active 

condition. Positive voltage is up.  

+1μV  I 



75 

 

P50 Component  

The P50 amplitude ANOVA indicated a main effect of attention, (F (1, 46) = 10.28, p = 

.002, η2 = .18).  P50 amplitudes in the active condition were significantly larger than the passive 

condition, for both clicks across both groups.  There was also a significant main effect of clicks, 

(F (1, 46) = 105.73, p < .0005, η2 = .70) such that the first click had significantly larger P50 

amplitudes than the second click across attention conditions for all participants.  This indicates 

gating at the P50 component on average for both groups.  There was a significant attention by 

clicks interaction effect, (F (1, 46) = 10.82, p = .002, η2 = .19). A posteriori tests indicated that 

there was no difference in click 1 between the active and passive condition (q (1, 46) = .09, p > 

.05), however, click 2 was significantly larger in the active condition compared to the passive 

condition, (q (1, 46) = 4.77, p < .01).  There was no main effect of group, (F (1, 46) = 1.09, p = .30, 

η2 = .02), indicating that there was no statistically significant difference at the P50 component 

between the neurotypical group and the ASD group.  

The T/C ratio for the passive condition for the neurotypical group (M = .48, SD = .32) 

and the ASD group (M = .50, SD = .33) indicated gating at the P50 component.  The means for 

the T/C ratio for the active condition for the neurotypical group (M = .57, SD = .25) and the ASD 

group (M = .74, SD = .40) indicated less gating at the P50 component compared to the passive 

condition for both groups. An independent samples t test examining the P50 T/C Ratio revealed 

no significant group differences for the passive (t (46) = .24, p = .81) and active (t (46) = 1.79, p = 

.08) condition. However, using P50 difference scores, although no group differences were found 

for the passive condition (t (46) = .97, p = .34); significant group differences were found for the 

active condition (t (46) = 2.14, p = .03).  This indicates that the ASD group (M = 1.02, SD = 1.1) 

had less gating than the neurotypical group (M = 1.74, SD = 1.21) for the active condition. 
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A paired samples t test examining differences in T/C ratios between the active and 

passive condition for the neurotypical group revealed no significant difference (t (23) = 1.1, p = 

.28), suggesting gating during both conditions.  However, the paired samples t test examining 

differences in T/C ratios between the active (M = .74, SD = .4) and passive condition (M = 50, 

SD = .33) for the ASD group revealed a significant difference (t (23) = 2.9, p = .007), suggesting 

significantly less gating at the P50 component during the active condition compared to the 

passive condition.  For the passive condition, none of the neurotypical participants had a T/C 

ratio at or above 1, while 4.2 % (n = 1) of the ASD group had a T/C ratio at or above 1.  For the 

active condition, 4.2 % (n = 1) of the neurotypical group had a T/C ratio at or above 1, while 

20.8% (n = 5) of the ASD group had a T/C ratio at or above 1.    

The P50 latency ANOVA showed no significant main effects or interaction effects.  The 

between-subject group effect indicated a small effect although not significant, (F (1, 46) = 3.59, p 

= .06, η2 = .07), such that the ASD group had delayed latencies (M (SE) = 64.61 (1.2)) compared 

to the neurotypical group (M (SE) = 61.35 (1.2)).  

N1 Component 

The N1 amplitude ANOVA indicated a main effect of attention, (F (1, 46) = 21.23, p < 

.0005, η2 = .32).  N1 amplitudes in the active condition were significantly larger than the passive 

condition, for both clicks across both groups. There was also a significant main effect of clicks, 

(F (1, 46) = 44.75, p < .0005, η2 = .50) such that the first click had significantly larger N1 

amplitudes than the second click across attention conditions across both groups. This indicates 

gating at the N1 component. There was a significant attention by clicks interaction effect, (F (1, 

46) = 57.95, p < .0005, η2 = .56). A posteriori tests indicated that there was no difference in click 

1 between the active and passive condition (q (1, 46) = 2.58, p > .05), however, click 2 was 
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significantly larger in the active condition compared to the passive condition, (q (1, 46) = 10.58, p 

< .01). There was no main effect of group, (F (1, 46) = .19, p = .66, η2 = .004), indicating that there 

was no statistically significant difference at the N1 component between the neurotypical group 

and the ASD group.  

The T/C ratio for the passive condition for the neurotypical group (M = .46, SD = .26) 

and the ASD group (M = .40, SD = .45) indicated gating at the N1 component for both groups, 

and no significant group differences were found for the passive (t (46) = .60, p = .55) and active (t 

(46) = 1.38, p = .17) condition. The means for the T/C ratio for the active condition for the 

neurotypical group (M = 1.01, SD = .34) and the ASD group (M = .88, SD = .58) indicated less 

gating at the N1 component compared to the passive condition for both groups. A paired samples 

t test examining differences in T/C ratios between the active and passive condition for the 

neurotypical group revealed significant difference between the two conditions (t (21) = 7.05, p < 

.0005), suggesting less gating during the active condition compared to the passive. Similarly, the 

paired samples t test examining differences in T/C ratios between the active and passive 

condition for the ASD group revealed a significant difference (t (22) = 3.4, p = .003), suggesting 

significantly less gating at the N1 component during the active condition compared to the passive 

condition. For the neurotypical group, 41.7% (n = 10) had a T/C ratio at or above 1, while for the 

ASD group, 20.8% (n=5) had a T/C ratio at or above 1. As expected for the passive condition, 

none of the neurotypical participants had a T/C ratio at or above 1, while 4.2% (n=1) of the ASD 

group had a T/C ratio at or above 1 during the passive condition.      

The N1 latency ANOVA, showed a significant main effect of click (F (1, 46) = 5.06, p = 

.03, η2 = .10), such that Click 2 had significantly shorter N1 latencies than Click 1 across 

attention conditions for all participants. There was also a significant group difference (F (1, 46) = 
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8.92, p = .005, η2 = .16), such that the ASD group had significantly longer N1 latencies than the 

neurotypical group. Post-hoc tests revealed that, for the ASD group, Click 1 had significantly 

longer latencies than the neurotypical peers during the passive (t (46) = 3.1, p = .003), and active 

condition (t (46) = 2.28, p = .027). For the active condition, ASD group had longer latencies than 

the neurotypical group for Click 1 (t (46) = 3.62, p = .001) but not Click 2 (t (46) = .63, p = .53). 

This suggests a delay in orienting to the first click stimuli for the ASD group compared to 

neurotypical group, regardless of the attention manipulation. However, there appears to be an 

attention-based reduction in the latency delay for Click 2 in the ASD group.   

Brain-behavior relationships. To answer research question 3, the relationship between 

sensory gating as assessed by the T/C ratio with the behavioral measures of attention, sensory 

processing, and social responsivity were examined using Pearson’s correlations. Additionally, 

since there were significant group differences in N1 latency, this measure was used to examine 

brain-behavior relationships. There was a significant correlation between the P50 T/C ratio of the 

active condition and the total TEA score (r (48) = -.36, p = .012), such that better attention 

abilities were associated with more robust gating during the passive condition. Click 1 N1 

latency of the passive condition was positively associated with 3 domains of the AASP, namely 

low registration (r (47) = .33, p = .024), sensory sensitivity, (r (47) = .33, p = .023), and sensation 

avoiding (r (47) = .3, p = .04), such that a longer latency was associated with more sensory 

processing issues. Additionally, click 1 N1 latency of the passive condition also positively 

correlated with the SRS -2 (r (47) = .43, p = .003), such that delayed processing was associated 

with greater social difficulties. The association between Click 1 N1 latency and the SGI total 

score also approached significance (r (48) = .29, p = .05), suggesting that delayed processing may 

be associated with more deficits on behavioral sensory gating deficits.  
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Discussion 

 The paired-click sensory gating paradigm has been widely used to assess neural filtering 

of redundant information in neurotypical individuals as well as several clinical groups. The 

purpose of this study was to examine sensory gating in young adults with high functioning ASD 

as compared to neurotypical controls, and to examine the impact of attention on sensory gating in 

both these groups. As per hypothesis 1, directing attention towards the click stimuli during the 

active condition led to less gating at the P50 and N1 component compared to the passive 

condition for all participants. Specifically, click 2 had greater P50 and N1 amplitudes during the 

active condition compared to the passive condition, indicating reduced filtering or suppression. 

However, contrary to our hypothesis 2, there was no difference in gating between the ASD group 

and the neurotypical group at the P50 and N1 amplitudes during both the passive and active 

attention conditions. However, using P50 difference scores, the ASD group had reduced gating 

in the active condition compared to neurotypical peers. The ASD group had significantly longer 

N1 latencies to click 1 during the passive and active conditions compared to the neurotypical 

group. Additionally, the ASD group had significantly delayed click 2 N1 latencies in the passive 

condition but not the active condition.  

Analysis of the behavioral data suggested that compared to neurotypical controls, the 

ASD group had significantly more deficits in social responsivity as measured by the SRS 2, 

sensory processing as measured by the SGI and AASP, and attention as measured by the TEA. 

Additionally, as per hypothesis 3, several behavioral measures were associated with N1 latency, 

such that faster processing was associated with better sensory processing, and social 

responsivity. P50 gating correlated with attention, such that more typical gating was associated 

with more typical attention abilities.  
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Attention Impacts P50 and N1 Gating  

Traditionally. although the P50 and N1 component have been considered as pre-attentive, 

automatic, and unaffected by attentional manipulations (Boutros et al., 2004), more recent 

research has led to a consensus that focused attention can impact these early ERP components 

(Jones et al., 2016). In our study, we found that both, the neurotypical group and the ASD group 

had less gating at the P50 and N1 component during the active condition compared to the passive 

condition. Specifically, click 2 had significantly larger P50 and N1 amplitudes during the active 

condition compared to the passive condition. Several researchers have found that focusing 

attention to the click stimuli results in reduced suppression (Guterman et al., 1992; Rosburg, 

Trautner, Elger, & Kurthen, 2009; Yee et al., 2010). White and Yee (1997), and Rosburg et al. 

(2009) found that directing attention towards the clicks resulted in reduced suppression at the N1 

component but not the P50. Contrary to the findings mentioned above, we found reduced 

suppression in the active attention condition at both the P50 and the N1 component.      

Gating in Individuals with ASD  

Research regarding gating in young adults with ASD has been mixed. In our study, we 

found no difference between the ASD and control group. Individuals with ASD had gating as 

measured by the T/C ratio at the P50 and N1 component during the passive condition. However, 

individuals with ASD had less gating in the active condition than the neurotypical group as 

measured by difference scores. This difference was not statistically significant using T/C ratios. 

Hence, this finding must be interpreted with caution. Additionally, for the ASD group, the 

number of non-gaters (T/C ratio >.99) at the P50 and N1 component remained the same in the 

passive and active condition. However, for the neurotypical group, there were more instances of 

failure to gate in the active condition than the passive condition at both the P50 and N1 
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component. This implies that self-directed attention differentially impacts information filtering in 

the ASD group compared to the neurotypical group. Specifically, the impact of self-directed 

attention is stronger in the neurotypical group, especially for the N1 component. Orekhova et al. 

(2008) showed that P50 suppression improved with age in individuals with ASD. Similarly, no 

P50 suppression deficits were found in a study with adult males with ASD (Magnee et al., 2009). 

Although some studies have shown gating deficits in children with ASD (Madsen et al., 2015; 

Orekhova et al., 2008), studies examining adults with ASD have reported typical P50 and N1 

suppression. Individuals with ASD had larger standard deviations for the P50 and N1 amplitudes 

than neurotypical participants, indicating more variability in the ASD group, however, this 

difference was not statistically significant. This is an expected finding due to the nature of the 

spectrum of symptoms in ASD. Moreover, this could be a possible reason for the inconsistencies 

in the gating literature in ASD populations. Our results showed that gating abilities are 

associated with attention abilities as measured by a performance-based behavioral assessment of 

attention, the TEA. Including measures of attention and examining the relationship between 

gating and attention may provide valuable insights into understanding the inconsistencies in the 

neural measures of gating.  

An interesting finding in this study was that compared to the control group, individuals 

with ASD had significantly longer Click 1 N1 latencies during both attention conditions and 

longer Click 2 N1 latencies in the passive but not active condition.  Since the Click 1 is an 

orienting stimulus, a longer latency suggests a delayed orienting response. Similar findings of 

delayed latencies of the early component, M100 (corresponding to N1 in EEG) were found in a 

magnetoencephalography (MEG) study of auditory processing in children with ASD (Edgar et 

al., 2015). Longer N1 latencies are linked to decreased neural synchrony or temporal jitter within 
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the auditory pathway (Harris et al., 2007). In the active condition, a lack of group difference in 

Click 2 suggests improved processing speed for the ASD group relative to the passive condition.  

In the auditory domain, researchers examining attention and sensory processing using 

neurophysiological measures suggest that processing of attended stimuli is either normal or 

increased in ASD, while processing of unattended stimuli is usually decreased (Orekhova & 

Stroganova, 2014). Thus, more typical N1 latencies in the active but not passive condition in the 

ASD group suggest an attention-based enhancement of sensory processing. Further research is 

required to validate this finding.  

Sensory Processing in ASD  

Our results indicated that our sample of young adults with ASD had significantly more 

sensory processing deficits than the control group. Specifically, the ASD group had significantly 

lower scores on all four sensory quadrants. Sensory processing deficits are part of the diagnostic 

criteria for ASD (DSM–5; American Psychiatric Association, 2013). In line with our findings, 

researchers have found that sensory deficits persist into adulthood in ASD (Billstedt, Gillberg, & 

Gillberg, 2007; Crane, Goddard, & Pring, 2009). In a study of 18 adults with ASD (18-65 years), 

and an age- gender- and IQ-matched control group, Crane et al. (2009) found significant sensory 

deficits in the four quadrants of the AASP compared to the control group. Additionally, 94.4% of 

the ASD participants reported extreme levels of sensory processing on at least one sensory 

quadrant (Crane et al., 2004). In our study, 62.5% of the ASD sample reported with extreme 

sensory processing on at least one sensory quadrant. Our findings are contrary to the findings of 

Kern et al. (2007), who reported that abnormal sensory processing in ASD tends to dissipate with 

increasing age. However, in the study by Kern et al., most questionnaires were completed by the 

caregivers, which could result in underestimation of the sensory challenges faced by the adults.   
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Attention in ASD 

In our study, individuals with ASD had significant deficits in attention as measured by 

the TEA. Of the 8 subtests, individuals with ASD had significantly lower scores on Map search 

(1 and 2 minutes), visual elevator distraction, visual elevator timing score, telephone search, and 

lottery. The Map search and telephone search tasks assess visual selective attention, while the 

visual elevator task assess attentional switching, and lottery assesses divided attention. These 

subtypes of attention were categorized based on Petersen and Posner (2012). Of the 24 

participants with ASD in this sample, ten participants (41.7%) reported a dual-diagnoses of 

attention-deficit hyperactivity disorder (ADHD), and eight (33%) reported being diagnosed with 

a learning disorder as a child. This is an expected finding since ADHD is one of the most 

common comorbid conditions with ASD (Matson, Rieske, & Williams, 2013). Moreover, several 

researchers have shown that children with ASD have significant deficits in all the three subtypes 

of attention, selective, sustained, and shifting (Allen & Courchesne, 2011).  

An attention model of autism was proposed by Gold and Gold (1975), which has been 

supported by recent research (Williams, Minshew & Goldstein, 2015). However, there is a lack 

of research examining attention in adults with ASD. Minshew, Goldstein, and Siegel (1997) 

proposed the complex information processing model of ASD which suggests that individuals 

with ASD do not have deficits in a specific modality or cognitive domain, but rather present with 

a generalized deficit involving multiple modalities and domains that are supported by distributed 

cortical networks responsible for higher order functions (Minshew, Muenz, Goldstein & Payton, 

1992; Williams et al., 2015). Based on the model, the researchers suggested intact or superior 

simple attention abilities, but deficits in complex memory, concept formation and reasoning. It is 
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possible that the tasks of the TEA simulate these complex skills, since most of these subtests 

measure everyday functioning which can be complex.   

Social Responsivity in ASD 

The Social responsiveness scale is a widely-used tool to assist in the diagnosis of ASD, 

and has been shown to be highly associated with ASD symptoms (Chan, Smith, Hong, 

Greenberg, & Mailick, 2017). Persistence of deficits in social responsivity in adults has been 

extensively documented (Billstedt et al., 2007). Thus, our finding of significantly more social 

deficits in the ASD group compared to the neurotypical group validates our study sample of 

ASD participants. Moreover, the ASD group had significantly higher scores in all sub-categories 

of the SRS 2, namely, social awareness, social cognition, social communication, social 

motivation, and restricted interests and repetitive behavior.   

Sensory Gating Phenomenology  

The SGI was developed to assess the perceptual and attentional phenomenology 

associated with sensory gating deficits, commonly observed in Schizophrenia (Hetrick et al., 

2012). In our study, young adults with ASD had significantly more deficits on all four factors, 

namely perceptual modulation, distractibility, over-inclusion, and fatigue-stress vulnerability 

compared to the neurotypical control group. To our knowledge, the SGI has not been used in 

young adults with ASD before. However, research using several other self-report sensory and 

perceptual inventories have demonstrated that children and adults with ASD have more 

pervasive and frequent perceptual anomalies than neurotypical individuals (Crane et al., 2009; 

Baranek et al., 2014).  
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Brain-Behavior Relationships in ASD 

Gating abilities at the N1 component were associated with better attention skills, better 

social responsivity, and better sensory registration. Gating abilities at the P50 component were 

associated with better attention abilities. Researchers have found similar relationships, such that 

deficits in gating were associated with difficulties in sensory processing, perceptual, and severe 

behavioral deficits (Croft, Lee, Bertolot, & Gruzelier, 2001; Freedman et al., 1991, Hutchison et 

al., 2013, Potter, Summerfelt, Gold, & Buchanan, 2006). In a sample of 60 neurotypical 

individuals, researchers found that gating was associated with several measures of cognitive 

functioning, such as fluid intelligence and working memory (Jones, Hills, Dick, Jones, & Bright, 

2016). In a review of gating in schizophrenia, researchers found that P50 suppression was 

associated with measures of attention (Potter et al., 2006). Similarly, Wan et al. (2007) found that 

sensory gating positively correlated with performance on the Attention Network Test and a 

Stroop task, indicating better alerting, less conflict between stimuli, and greater accuracy.  

Moreover, Croft et al. (2001) found that sensory gating was associated with perceptual deficits. 

Additionally, sensory gating abnormalities have been shown to correlate with positive symptoms 

in schizophrenia (Potter et al., 2006). In our study, we found a significant correlation between 

gating at the SRS 2 total score. In the current sample, although the ASD group did not 

demonstrate significant gating deficits, the correlation between gating and autism severity as 

measured by the SRS 2 warrants further investigation. Contrary to some previous research in 

schizophrenia, we found no significant relationship between gating at the P50 or N1 component 

with the SGI total score or the 4 factors (Micoulaud-Franchi et al., 2014). This could be due to 

the difference in the clinical group, and the lack of gating deficits in ASD compared to the 

schizophrenia sample. To summarize, gating at the P50 and N1 component is strongly associated 
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with measures of attention, sensory processing, and social responsivity. Further research 

investigating the potential use of gating as an objective measure of attention and sensory 

processing is warranted.   

One of the study limitations is that while the ASD group and the neurotypical controls 

were matched on age, they were not matched on gender. However, there were no gender 

differences in either groups on gating ERP measures or the TEA. For the neurotypical 

participants, significant gender differences were only found for the SRS-2 scale, such that 

females had better social responsivity than males. However, for the ASD group, there were no 

gender differences for the SRS-2 scale. For the ASD group, females had significantly higher 

scores on the SGI total score and the AASP total score compared to males. However, this finding 

must be interpreted with caution since out of 24 participants with ASD, 17 were males. To 

summarize, the gender differences in the ASD group and neurotypical group do not seem likely 

to confound any of the study findings. A second possible limitation is that nearly half of our 

ASD participants had a comorbid diagnosis of ADHD. Since ADHD is one of the most 

commonly occurring comorbid diagnosis, we believe that this validates our sample as being 

representative of the general ASD population.  
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CHAPTER 4 – STUDY 3 

 

 

 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by 

persistent deficits in social communication and social interaction as well as restricted, repetitive 

patterns of behavior, interests, or activities (DSM-5: American Psychiatric Association, 2013). 

Deficits in sensory processing, which includes hyper- or hypo-reactivity to sensory input are part 

of the diagnostic criteria for children with ASD (DSM-5: American Psychiatric Association, 

2013). There has been growing interest in understanding the neurophysiological processes 

underlying sensory processing in ASD and more specifically, understanding auditory processing 

(Orekhova et al., 2009). Researchers have documented atypical development of the central 

auditory system in children with ASD (Yoshimura et al., 2016).  

Using electrophysiological measures such as electroencephalography (EEG) and event-

related potentials (ERPs), several researchers have shown differences in neural processing of 

auditory information in individuals with ASD as compared to neurotypical individuals (Ludlow 

et al., 2014). Researchers have shown that ERP measures of auditory processing are related to 

behavioral measures of sensory processing, such that higher sensory sensitivities are associated 

with reduced neural activation of auditory stimuli (Ludlow et al., 2014). ERPs provide a non-

invasive and accurate neural measure of the timing and stages of auditory processing (Luck, 

2005). An ERP waveform to an auditory stimulus consists of N1, P2, N2, and P3 components 

(Polich, 1993). Each of these responses reflect different stages of sensory processing, orienting, 

attention, and cognitive processing of the stimulus (Luck, 2005).  

The N1 component, occurring around 100 ms post-stimulus onset, is thought to reflect 

automatic catching of attention to auditory stimulus (Näätänen & Picton, 1987). Research 
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examining the auditory N1 response in ASD has been highly variable (Bomba & Pang, 2004). 

Some researchers have found smaller N1 amplitudes in children with ASD (Bruneau et al., 1999; 

Orekhova et al., 2009) while Oades et al. (1988) reported that the N1 component was larger and 

had a shorter latency in 5-7 year olds with ASD compared to neurotypical controls. Several 

studies have reported delays in auditory response in individuals with ASD, at the N1 and the N2 

time-period (around 100-200 ms post-stimulus onset; Edgar et al., 2015; Gandal et al., 2010). 

Others have demonstrated the absence of significant differences in the N1 component between 

ASD and neurotypical controls (Dunn et al., 2008; Ferri et al., 2003). Although, Brandwein et al. 

(2014) showed that the N1 ERP component significantly predicted autistic symptom severity, 

and was associated with behavioral measures of sensory processing.  

With regards to the P2 amplitude, a positive ERP component around 200 ms post-

stimulus onset, several researchers have failed to find a significant difference between ASD and 

neurotypical controls (Salmond et al., 2007; Whitehouse & Bishop, 2008). Several studies have 

consistently reported that individuals with ASD have attenuated N2 amplitudes to pure tones, 

paired clicks, and speech stimuli (Donkers et al., 2013; Jansson-Verkasalo et al., 2003, 2005). 

The N2 is a negative ERP occurring around 200 ms post-stimulus onset (Folstein & Van Petten, 

2008). Researchers suggest that smaller N2 amplitudes imply increased difficulty in automatic 

stimulus discrimination and deficits in sound encoding (Jansson-Verkasalo et al., 2003, 2005). 

Donkers et al. (2013) reported that smaller N2 amplitudes in children (4-12 years) with ASD to 

standard auditory tones in an oddball paradigm were associated with greater sensory seeking 

behaviors. Several researchers have reported attenuated P3 amplitudes in ASD compared to 

controls (Donkers et al., 2015). The P3 is a positive ERP occurring around 300 ms post-stimulus 

onset (Polich, 1993).  Lepisto et al. (2005) reported that children with ASD had deficits in sound 
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encoding, discrimination of duration changes, and involuntary orienting to sound changes as 

reflected by smaller P3a ERP components than controls. Others have shown no group differences 

in the auditory P3 amplitude and latency in adults with ASD and healthy controls (Andersson et 

al., 2013).  

While there are inconsistencies in the literature regarding specific ERP dysfunction, some 

of the differences in findings can be attributed to differences in participant characteristics (e.g., 

age, level of functioning) and experimental parameters (inter-stimulus interval, tone 

characteristics, active versus passive tasks). Specifically, instructions regarding the direction of 

attention towards or away from the auditory stimulus may play an important role in 

understanding the study findings. Studies have shown that sensory processing abilities are 

dependent on attentional control (Talsma et al., 2010). Researchers have also argued that atypical 

responses to auditory information in children with auditory processing disorders may be due to 

underlying deficits in attention (Moore et al., 2010). Attention is a crucial element for goal-

directed, purposeful response to sensory information in our social and physical environment. 

Attention is understood as a “broad cognitive concept that includes a set of mechanisms that 

determine how particular sensory input, perceptual objects, trains of thought, or courses of action 

are selected for further processing from an array of concurrent possible stimuli, objects, thoughts 

and action” (Talsma et al., 2010, p. 2).  

Impairments in orienting (Zwaigenbaum et al., 2005), sustained attention (Christakou et 

al., 2013), vigilance, cognitive flexibility/switching (Corbett et al., 2009), shifting and 

disengaging attention (Elsabbagh et al., 2009) have been consistently reported in individuals with 

ASD. According to the feature-integration theory of attention, without focused attention, 

stimulus features cannot be related to one another (Treisman & Gelade, 1980). Thus, deficits in 
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attention may be one of the possible causes of behavioral under-responsiveness to auditory 

information in ASD.  

The sensory registration paradigm used in this study utilizes auditory tones which are 

presented at different frequencies and intensities. Four simple auditory stimuli differing in either 

the pure tone composition (1 kHz or 3 kHz frequency) or the presentation loudness (50 dB or 70 

dB intensity) were used in a manner replicating the procedures used by Lincoln et al. (1995). 

Strong intensity discrimination has been found in N1, P2, N2 and P3 auditory ERP components, 

such that loud tones have larger amplitudes and shorter latencies than soft tones (Harris et al., 

2007; Martin & Boothyord, 2000). With regards to frequency discrimination, low-frequency 

sounds generate larger N1 and P2 amplitudes than high-frequency sounds at the same intensity 

(Wunderlich & Cone-Wesson, 2001). Although there are inconsistencies in findings, most 

research seems to agree that individuals with ASD have enhanced pitch perception, however 

with impaired processing of acoustic change when complex stimulus paradigms are used 

(O’Connor et al., 2012).  

The aim of the present study is to examine the effects of attention (passive versus active) 

in a simple auditory detection task in neurotypical individuals and individuals with ASD. The 

paradigm in this study consisted of two conditions. In the passive condition, the participants were 

asked to listen to the tones while staring at a fixation point. In the active condition, the 

participants were asked to respond with a button press to the low frequency soft tone (1 kHz, 50 

dB) and ignore the other tones while staring at a fixation point. Additionally, we examined 

intensity and frequency discrimination between groups. To examine brain-behavior relationships 

of attention and sensory processing, a self-report measure of sensory processing and a 

performance-based measure of attention were also used.  
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Research Questions:  

1. How do stimulus characteristics impact auditory processing? 

Hypothesis: Robust intensity and frequency discrimination will be observed at the N1, P2, N2, 

and P3 components for both groups regardless of attention condition.  Loud tones and low 

frequency tones will have larger amplitudes and shorter latencies than soft tones and high frequency 

tones.    

2. How does active versus passive attentional states affect sensory registration? 

Hypothesis: During the active condition, participants will have smaller N1, P2, and N2 amplitudes, and 

larger P3 amplitudes compared to the passive condition.   

3. Are there differences in N1, P2, N2, and P3 amplitude and latency measures in individuals 

with ASD as compared to neurotypical individuals? 

Hypothesis: Participants with ASD will have smaller N1, P2, N2, and P3 amplitudes and longer 

latencies compared to neurotypical controls. However, these differences will be more prominent 

in the passive compared to the active attention condition.  

4.   Are there group differences between neurotypical individuals and individuals with ASD on 

behavioral measures of attention and sensory processing? 

Hypothesis: Individuals with ASD will have significantly more deficits in attention and sensory 

processing compared to neurotypical individuals.  

5. How do behavioral measures of attention and sensory processing relate to neural measures of 

attention and sensory processing?  

Hypothesis: Individuals with better attention or sensory processing scores on the behavioral 

assessments will have faster N1 latencies of the target tone during the active attention condition.  
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Methods 

 This study included a total of 48 participants recruited via convenience sampling. 

Twenty-four participants (M = 23.31 years, SD = 3.77; 17 males, 7 females) had a confirmed 

diagnosis of high-functioning ASD. The control group consisted of twenty-four age-matched 

neurotypical individuals (M = 23.7 years, SD = 3.51; 12 males, 12 females). There was no group 

difference in age (t (46) = .41, p = .69). The diagnosis of ASD was confirmed using the ADOS-2 

administered by author JEC prior to the initiation of the study (Rutter et al., 2012). All control 

participants were screened using a self-report screening questionnaire developed in our lab to 

ensure that they were free of neurological injuries, disabilities, and family histories of 

psychological disorders. All the procedures performed in the research involving human 

participants were in accordance with the ethical standards of the institutional review committee 

at the local university and with the 1964 Helsinki declaration and its later amendments. All 

participants signed a written informed consent prior to the study. 

Procedures. Once the EEG cap, and electrodes are applied, the participant were given a 

brief training on strategies to reduce artifacts resulting from eye blinks, and other muscle 

activity. Participants in both groups completed a series of two attention conditions during the 

EEG recording followed by behavioral testing of attention. Both groups were presented the 

passive condition first followed by the active condition described in detail below. Participants 

also completed a second EEG task but these data are not reported here. The EEG recording and 

the behavioral assessment lasted approximately 45 minutes each.   

Sensory registration EEG paradigm. EEG data were collected in a sound-attenuated 

electrically shielded room. For the sensory registration paradigm, the four auditory stimuli (50 

ms in duration with a 10 ms rise/fall time) consisted of pure tones, two with frequencies at 1000 
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Hz and two at 3000 Hz, and each frequency was presented at either one of two intensity levels, 

50 dB sound pressure level (SPL) or 70 dB SPL. For each attention condition, the stimuli were 

presented in two blocks of 160 trials each, with a total of 80 trials of each tone in pseudo-random 

order with a two-second inter-stimulus interval. Each block lasted about five minutes with short 

breaks of about 1 minute between blocks. For the sensory registration paradigm, tones were 

administered in both ears through the ER-3A inserted earphones (Etymotic Research) using E-

Prime Software (Psychological Software Tools, Pittsburgh, PA, USA).  

Passive attention condition. Participants were instructed to stare at the fixation point 

while they heard the auditory stimuli. No motor response was required.  

Active attention condition. Participants were instructed to respond with a button press to 

the low frequency soft tone (1 kHz, 50 dB SPL stimuli) and ignore the other 3 auditory stimuli. 

The participants were instructed to stare at the fixation point while they listened to the tones and 

pressed the button. The low frequency soft tone was chosen as the target tone since it produces 

ERP components with the smallest amplitudes compared to the other tones in the passive 

condition (See figure 8), which allowed us to determine the influence of focused attention. At the 

start of the paradigm, participants went through a one-minute practice session with feedback. 

During the session, no feedback was provided. 

EEG/ERP data recording. All EEG data were collected using the BioSemi ActiveTwo 

EEG/ERP Acquisition System (BioSemi, Wg-Plein 129, 1054 SC Amsterdam, Netherlands). 

This system included 64 Ag/AgCl sintered scalp electrodes. The electrodes were located in 

accordance with the modified 10–10 system (Klem, Lüders, Jasper, & Elger, 1999; Oostenveld 

& Praamstra, 2001). EEG was recorded with the Common Mode Sense active electrode as the 

reference and the Driven Right Leg passive electrode as the ground 
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(http://www.biosemi.com/faq/cms&drl.htm). Electrooculograms (EOGs) were recorded from 

individual electrodes placed on the left and right outer canthus for horizontal movements and on 

the left supraorbital and infraobital region for vertical movements. Two more individual 

electrodes were placed on the left and right earlobes and used as the offline reference. For the 

sensory registration paradigm, tones were administered in both ears through the ER-3A inserted 

earphones (Etymotic Research) using E-Prime Software (Psychological Software Tools, 

Pittsburgh, PA, USA).  Data were sampled at a rate of 2048 Hz with a bandwidth of 0 to 417 Hz.   

ERP waveform and component analysis. Averaged ERPs were composed from the 

running EEG data using Brain Vision Analyzer 2.0.  First, the four EOG channels were converted to 

a vertical and a horizontal bipolar EOG. Then data were filtered with a bandpass of .1 – 30 Hz 

with a 12 dB/octave rolloff using casual phase-shift free butterworth filter settings. Following 

this, the EEG data were segmented about each of the four auditory stimuli with duration of 200 

ms pre-stimulus onset to 800 ms post-stimulus onset. Baseline correction was performed on each 

segment using EEG data 200 ms prior to stimulus onset. Next, an eye regression technique 

designed to remove eye movement from trials was performed (Segalowitz, 1996). Following 

this, an artifact rejection technique that eliminates segments with deviations greater than + 100 

µV on any of the EEG channels or the bipolar EOG channels was performed. The segments 

retained after artifact rejection were averaged. Of the 64 channels, the central sites Cz was 

analyzed based on previous studies using the sensory registration paradigm (Bomba & Pang, 

2004; Davies et al., 2010). Peak amplitudes for the N1, P2, N2, and P3 were identified using the 

Matlab software, PeakPicker program (Gavin, 2009). The window for determining the peaks was 

based on previous published research (Bomba & Pang, 2004; Davies et al., 2010) and visual 

inspection of the grand average waveforms for the participants. The N1 component was scored 
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between 80 and 200 ms after the stimulus onset. The P2 was scored between 130 and 300 ms; 

however, 6 peaks of participants with ASD and 1 peak of a neurotypical participant were scored 

between 300-340 ms. The N2 was scored between 175 and 475 ms.  The P3 was scored between 

250 and 550 ms; however, 2 peaks of neurotypical participants were scored between 230-250ms.  

Behavioral Measures  

 To assess the relationship between neural measures of sensory processing and behavioral 

measures of attention and sensory processing, the Test of Everyday Attention (TEA) was 

administered to all participants. Additionally, participants were asked to fill out the 

Adolescent/Adult Sensory Profile.  

Adolescent/Adult sensory profile (AASP). The AASP is a self-report questionnaire 

consisting of 60 items that relate to everyday sensory experiences. The AASP is validated for 

individuals 11 or older. Each item is scored on a 5-point Likert scale indicating how frequently 

the behavior is performed (from 1 “almost never” to 5 “almost always”). The 60 items are 

organized into six categories of taste or smell, movement, visual, touch, activity level, and 

auditory sensitivities. The questionnaire takes about 10-15 minutes to complete. The AASP 

scores are categorized into 4 quadrants based on Dunn’s (1997) model of sensory processing, 

which classifies sensory behaviors based on neurological thresholds (high or low) and behavioral 

responses (passive or active). Neurological thresholds refer to the amount of stimuli needed for 

the nervous system to respond to sensory stimuli, and behavioral responses relate to the way in 

which a person responds to their sensory thresholds. The four quadrants are:  

1. Low registration: refers to passive behavioral responses with a high neurological threshold. 

These items identify behaviors such as missing stimuli or responding slowly. Ex: “I don’t 

smell things that other people say they smell”. 
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2. Sensation seeking: refers to active behavioral responses with a high neurological threshold, 

i.e., actively pursuing sensory input. Ex: “I like how it feels to get my hair cut” 

3. Sensory sensitivity: refers to passive behavioral responses with a low neurological threshold, 

i.e., experiencing discomfort with regular sensory stimuli. Ex: “I startle easily to unexpected 

or loud noises”. 

4. Sensation avoiding: refers to active behavioral responses with a low neurological threshold, 

i.e., deliberately reducing exposure to sensory stimuli. Ex: “I only eat familiar foods”. 

Quadrant scores are classified as “much less than most people” (-2 SD from mean), “less 

than most people”, “similar to most people”, “more than most people”, and “much more than 

most people” (+2 SD from mean). Extreme sensory processing is defined as scores falling in 

either “much less than most people” or “much more than most people”. The AASP has good 

reliability (r = .64 - .78) and validity (Brown & Dunn, 2002). 

Test of everyday attention. TEA is a standardized and normed clinical battery that has 

been validated for ages 18 to 80 years. The TEA is based largely on everyday materials with 

real-life scenarios to ensure that participants find it relevant to their problems of adjustment in 

everyday life. The TEA is developed based on an imaginary trip to Philadelphia in the US. 

Participants are required to perform various simulated daily activities with familiar materials in 

the scenarios of each subtest, such as searching for restaurants on a map. Eight subtests with a 

four-factor structure correspond to the attentional model presented by Petersen and Posner 

(2012). Subtests assess selective, sustained attention, attentional switching, and divided attention. 

The TEA takes around 45-50 minutes to complete. Higher scores indicate better attention 

abilities. For this study, raw scores were used in the analysis since all participants were within 

the same age-range for the standardized scores, and raw scores preserved individual variability. 
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The reliability of the subtests of the TEA range from good to excellent for clinical populations 

and healthy controls (r = .34 – 64; Ward et al., 1994).  

Data analysis  

To determine if brain processing of auditory stimuli differed significantly between the 

two groups across the different attention conditions, baseline-to-peak amplitudes of the N1, P2, 

N2, and P3 components were analyzed using a 2 (Group) x 2 (Condition) x 2 (Intensity) x 2 

(Frequency) repeated measures analysis of variance (ANOVA). The between subject’s factor 

was group, neurotypical controls and ASD group. The three within factors were attention (2 

levels: Passive and Active), Frequency (2 levels: 1 kHz and 3 kHz), and Intensity (2 levels: high 

and low). Group differences on the behavioral assessments were examined using independent 

samples t tests. Pearson’s product moment correlation analyses were used to assess the 

relationship between ERP components and behavioral measures of attention and sensory 

processing. A posteriori Tukey’s honestly significantly difference (HSD) post-hoc t tests were 

calculated to examine interaction effects (Kirk, 1968, p. 265-269). Testwise alpha was set at 

0.0125 for the apriori hypotheses (ANOVAs), with Bonferroni correction for the 4 ERP 

components, (.05/4 = .0125). Effect sizes for η2 are interpreted as follows, .04 – small, .25 – 

medium, and .64 – large (Ferguson, 2009). Effect sizes for Cohen’s d can be interpreted as 

follows, .41 – small, 1.15 – moderate, 2.7 – strong (Ferguson, 2009). All statistical analyses were 

performed using the Statistical Package for Social Sciences (SPSS), version 24.0.   

Results 

The number of correct responses during the active condition were not significantly 

different between neurotypical participants (M (SD) = 77.96 (3.93)) and the participants with 

ASD (M (SD) = 75.87 (5.65)), t (46) = 1.48, p = .15. Similarly, the means of the response times 
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for the active condition for the neurotypical participants (M (SD) = 579.3 (102.6)) and the 

participants with ASD (M (SD) = 601.8 (113)) were not significantly different, t (46) = .72, p = 

.48. The grand-averaged ERP waveforms for the four auditory stimuli are shown separately for 

the two groups and attention conditions at site Cz in Figure 8. The means and standard deviations 

of the N1, P2, N2, and P2 amplitudes and latencies are reported in Table 5. Visual inspection of 

the ERP components indicates that the loud tones (70 dB) have larger amplitudes than the soft 

tones (50 dB) at the early N1 and P2 components. Additionally, the active condition appears to 

have larger amplitudes at the mid-latency N2 and P3 components. 

 

 

Table 5. Means and standard deviations for the ERP component amplitudes for the sensory 

registration paradigm 

 Neurotypical ASD 

Stimulus Passive Active Passive Active 

1 kHz 50 dB SPL Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

N1 amplitude -6.24 (1.9) -6.88 (2.2) -7.29 (2.78) -7.45 (2.25) 

N1 latency 100.7 (8.7) 100.8 (10.0) 104.2 (11) 102.9 (8.7) 

Figure 8. Grand average ERP waveforms for the sensory registration paradigm. a. ERP 

waveform for the passive condition for the neurotypical group. b. ERP waveform for the 

active condition for the neurotypical group. c. ERP waveform for the passive condition for 

the ASD group. d. ERP waveform for the passive condition for the neurotypical group. 

Positive voltage is up.  

+1μV  I 



99 

 

P2 amplitude 4.02 (2.64) 2.4 (2.8) 3.98 (4.15) 2.67 (3.03) 

P2 latency 209.9 (32.6) 199.1 (40.6) 206.5 (28.4) 212.3 (39.3) 

N2 amplitude -1.79 (2.28) -.68 (2.36) -3.54 (2.82) -2.03 (2.68) 

N2 latency 261.6 (50.1) 382.8 (70.5) 311.7 (41.1) 280.5 (48.7) 

P3 amplitude 1.06 (1.72) 5.1 (4.21) 2.52 (.78) 4.15 (4.19) 

P3 latency 382.8 (70.5) 354.3 (57.6) 397.3 (58.9) 377 (73.7) 

1 kHz 70 dB SPL     

N1 amplitude -8.87 (2.62) -8.42 (2.4) -10.56 (3.49) -9.9 (2.98) 

N1 latency 97.4 (8.2) 95.3 (6.7) 104.6 (7.2) 103.3 (8) 

P2 amplitude 6.86 (3.49) 5.04 (3.83) 7.02 (4.79) 4.76 (5.32) 

P2 latency 187.9 (22.3) 193.2 (31.5)  197.9 (30.9) 195.9 (35.5) 

N2 amplitude -1.86 (2.53) -.76 (3.5) -3.94 (2.81) -1.38 (3.41) 

N2 latency 293.9 (42.4) 277.7 (48.3) 319.3 (46.6) 265.6 (61.5) 

P3 amplitude 1.59 (3.05) 4.09 (4) .8 (2.59) 3.53 (3.58) 

P3 latency 367.8 (62.4) 340.6 (26.5) 399.4 (70.9) 359.9 (65.8)  

3 kHz 50 dB SPL     

N1 amplitude -6.77 (2.26) -6.2 (2.54) -7.1 (2.88) -6.4 (2.51) 

N1 latency 102.4 (10.1) 101.6 (9.9) 107.8 (11.2) 116.7 (30.1) 

P2 amplitude 3.84 (2.8) 5.34 (2.57) 4.6 (3.76) 4.74 (3.43) 

P2 latency 199.9 (28.8) 223.8 (41.3) 305.6 (30.5) 232.4 (37.3) 

N2 amplitude -1.95 (2.79) -1.13 (3.57) -3.04 (2.32) -2.33 (2.88) 

N2 latency 299.1 (38.5) 339.1 (70.8) 314.2 (37.8) 316.9 (66.5) 

P3 amplitude .62 (2.74) 2.77 (2.96) .75 (2.36) 1.6 (2.96) 

P3 latency 347.5 (45.4) 427.1 (100.8) 381.9 (50.2) 403.5 (97.8) 

3 kHz 70 dB SPL     

N1 amplitude -9.06 (2.39) -8.11 (2.71) -9.47 (3.6) -9.27 (3.23) 

N1 latency 100 (9.9) 97.5 (8.6) 107.3 (11.9) 104.6 (11) 

P2 amplitude 6.24 (3.24) 7.12 (3.09) 7.44 (4.93) 7.44 (5.26) 

P2 latency 200.9 (24) 218.3 (39.5) 209 (29.7) 225.4 (51.2) 

N2 amplitude -1.67 (2.27) 2.05 (3.41) -2.03 (3.31) 1.07 (4.6) 

N2 latency 285.9 (33.3) 294.2 (73.2) 312 (44.1) 297.6 (91) 
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P3 amplitude 2.19 (3.01) 6.58 (3.74) 2.93 (2.71) 4.7 (4.2) 

P3 latency 360.8 (67.4) 363.6 (79.1) 387.9 (49.8) 366 (75.5) 

 

Stimulus characteristics: intensity and frequency discrimination. For N1 amplitude, 

intensity, F (1, 46) = 157.73, p < .0005, η2 = .77, and frequency, F (1, 46) = 15.62, p = .025, η2 = .11, 

main effects were significant. As expected, high intensity loud tones had larger N1 amplitudes 

than the soft tones across attention conditions for both groups. Low frequency tones had larger 

N1 amplitudes than high frequency tones across attention conditions for both groups. Similarly, 

for N1 latency, intensity, F (1, 46) = 8.66, p = .005, η2 = .15, and frequency, F (1, 45) = 10.02, p = 

.003, η2 = .18, main effects were significant. Loud tones had shorter N1 latencies than the soft 

tones across attention conditions for both groups. Low frequency tones had shorter latencies than 

the high frequency tones across both attention conditions for both groups. 

 For P2 amplitude, main effects of intensity, F (1, 46) = 73.98, p < .0005, η2 = .62 and 

frequency, F (1, 46) = 25.15, p < .0005, η2 = .36 were significant. As expected, high intensity loud 

tones had larger P2 amplitudes than the soft tones across attention conditions for both groups. 

High frequency tones had larger P2 amplitudes than low frequency tones across attention 

conditions for both groups. Similarly, for P2 latency, the main effect of intensity was 

significant, F (1, 46) = 6.05, p = .018, η2 = .12, such that loud tones had shorter P2 latencies than 

the soft tones across attention conditions for both groups. Similarly, the main effect of frequency 

was also significant, F (1, 46) = 18.69, p < .0005, η2 = .29, such that the low frequency tones had 

shorter latencies than the high frequency tones across attention conditions for both groups. 

 For N2 amplitude, intensity, F (1, 46) = 17.69, p < .0005, η2 = .28, and frequency, F (1, 46) = 

13.75, p = .001, η2 = .23, main effects were significant. Unexpectedly, soft tones had larger N2 

amplitudes than the loud tones across attention conditions for both groups. Additionally, low 
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frequency tones had larger N2 amplitudes than high frequency tones across attention conditions 

for both groups. For N2 latency, intensity effect was not significant, but the frequency effect was 

significant, F (1, 45) = 7.77, p = .008, η2 = .15, such that the low frequency tones had shorter 

latencies than the high frequency tones across attention conditions for both groups.  

 For P3 amplitude, the main effect for intensity was significant, F (1, 46) = 21.66, p < 

.0005, η2 = .32. As expected, high intensity loud tones had larger P3 amplitudes than the soft 

tones across attention conditions for both groups. The main effect for frequency was not 

significant, F (1, 46) = .35, p = .56, η2 = .007. Frequency and intensity main effects were not 

significant for P3 latency.  

Effects of attention condition: passive versus active. For N1 amplitude, the main 

effect for attention was not significant, F (1, 46) = 2.97, p = .09, η2 = .06. Similarly, for N1 

latency, the main effect for attention was not significant, F (1, 46) = .004, p =.95, η2 = .00. For P2 

amplitude, although the main effect for attention was not significant, F (1, 46) = 3.85, p = .05, η2 = 

.08, there was a significant attention by frequency interaction, F (1, 46) = 23.5, p < .0005, η2 = .34. 

A posteriori tests indicated that the low frequency tones had significantly smaller P2 amplitudes 

than the high frequency tones in the active condition (q (1, 46) = 6.97, p < .01), but not in the 

passive condition (q (1, 46) = .36, p > .01). This indicates that frequency discrimination was 

significantly better in the active compared to the passive condition at the P2 component. P2 

latency revealed a significant main effect for attention condition, F (1, 46) = 11.64, p = .001, η2 = 

.20, such that the passive condition had shorter latencies than the active condition across all tones 

and for both groups. There was a significant attention by frequency interaction effect for P2 

latency, F (1, 46) = 17.19, p < .0005, η2 = .27. A posteriori tests revealed that there was no 

significant difference between P2 latencies for the low and high frequency tones for the passive 
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condition (q (1, 46) = .75, p > .01). However, for the active condition, the low frequency tones had 

a significantly shorter latency than the high frequency tones (q (1, 46) = 5.6, p < .01). Thus, the 

task requiring attention resulted in faster brain responses for the P2 component for low frequency 

tones than high frequency tones only in the active condition, not the passive condition, 

demonstrating better frequency discrimination in the active condition. 

The N2 amplitude revealed a significant main effect for attention condition, F (1, 46) = 

34.96, p < .0005, η2 = .43, such that N2 amplitudes were significantly larger in the passive 

condition compared to the active condition across all tones for both groups. There was an 

attention by intensity interaction, F (1, 46) = 11.66, p = .001, η2 = .21. A posteriori tests revealed 

that the soft tones had significantly larger N2 amplitudes than the loud tones during the active 

condition (q (1, 46) = 3.62, p < .01) but not during the passive condition (q (1, 46) = .57, p > .01). 

This indicates that intensity discrimination was also significantly better during the active 

condition compared to the passive condition at the N2 component.  

The N2 latency revealed a significant main effect for attention, F (1, 45) = 8.76, p = .005, 

η2 = .16, such that active condition had significantly shorter latencies than the passive condition. 

There was a significant attention by frequency interaction effect, F (1, 45) = 24.23, p < .0005, η2 = 

.35. A posteriori tests revealed that there was no significant difference between N2 latencies for 

the low and high frequency tones for the passive condition (q (1, 45) = .73, p > .01). However, for 

the active condition, the low frequency tones had a significantly shorter latency than the high 

frequency tones (q (1, 45) = 5.09, p < .01). This result is similar to what was revealed for the P2 

component latency.  

The P3 amplitude revealed a significant main effect for attention condition, F (1, 46) = 

60.74, p < .0005, η2 = .57. P3 amplitudes were significantly larger in the active condition 
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compared to the passive condition across all tones for both groups. For P3 latency, the main 

effect of attention was not significant, F (1, 42) = .21, p = .65, η2 = .005. However, there was a 

significant attention by frequency interaction effect, F (1, 42) = 11.27, p = .002, η2 = .21. A 

posteriori tests revealed no significant difference between P3 latencies for the low and high 

frequency tones for the passive condition (q (1, 42) = 1.69, p > .01) or the active condition (q (1, 42) 

= 2.51, p > .01). 

Group differences: individuals with ASD and neurotypical peers. There was no main 

effect for group at the N1 amplitude, F (1, 46) = 1.67, p = .20, η2 = .04. However, for N1 latency, 

the main effect for group was significant, F (1, 45) = 9.75, p = .003, η2 = .18, such that individuals 

with ASD (M (SE) = 106.43 (1.58)) had significantly longer N1 latencies across all tones 

compared to the neurotypical participants (M (SE) = 99.39 (1.6)). This effect was present in both 

the passive and active attention conditions. There was a significant frequency by group 

interaction effect, F (1, 45) = 6.21, p = .016, η2 = .12. A posteriori tests revealed significant group 

difference for the high frequency tones (q (1, 45) = 3.76, p > .01), with the ASD group having 

significantly longer N1 latencies than the neurotypical group. There was no group difference for 

the low frequency tones (q (1, 45) = 1.87, p > .01).  

There was no main effect for group at P2 amplitude, F (1, 46) = .04, p = .85, η2 = .001, and 

at P2 latency, F (1, 46) = 1.04, p = .31, η2 = .02. The main effect for group at the N2 amplitude 

had a small effect but was not significant, F (1, 46) = 3.71, p = .06, η2 = .08, the ASD group had 

larger N2 amplitudes than the neurotypical group. For N2 latency, the main effect for group was 

not significant, F (1, 45) = 1.14, p = .29, η2 = .03. However, there was an attention by group 

interaction effect, F (1, 45) = 4.41, p = .04, η2 = .09. A post-hoc ANOVA for the passive condition, 

revealed a significant main effect for group, such that the N2 latency was significantly longer in 
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the ASD group than the neurotypical group, F (1, 45) = 5.21, p = .027, η2 = .1. However, in the 

ANOVA for the active condition, the main effect for group was not significant F (1, 45) = .07, p = 

.78, η2 = .002, suggesting that latency delay in the ASD group was present only during the 

passive condition.  

For the P3 amplitude, there was no main effect for group, F (1, 46) = 1.03, p = .32, η2 = 

.02. For P3 latency, the main effect for group had a small effect, but was not significant, F (1, 42) 

= 3.84, p = .057, η2 = .08. The means for the P3 latency of the neurotypical participants (M (SE) 

= 361.69 (7.37)) were shorter than the means for the participants with ASD (M (SE) = 381.67 

(7.04)). Although the attention by group interaction effect was not significant, post-hoc 

ANOVAs for each attention condition were conducted. As expected, there was a significant 

group effect for the P3 latency in the passive condition, F (1, 46) = 5.67, p = .02, η2 = .11, such that 

the ASD group has longer P3 latencies than the neurotypical group. However, this effect was not 

significant for the P3 latency in the active condition, F (1, 42) = .57, p = .45, η2 = .01.  

Test of Everyday Attention (TEA). The 10 scores obtained from the six subtests along 

with the total score were compared between the groups using independent samples t tests. The 

total score was significantly lower for individuals with ASD compared to neurotypical peers, (t 

(46) = 3.9, p < .005, d = 1.13). See table 6 for means and standard deviations and t test 

comparisons for the subtests. Significant group differences were found for four of the eight TEA 

subtests. To summarize, individuals with ASD had significant deficits in attention compared to 

neurotypical peers.  

Adolescent/Adult sensory profile. The means and standard deviations of the four 

sensory quadrants are shown in Table 6. Individuals with ASD had significantly more sensory 

issues in all the four domains compared to neurotypical peers. Specifically, the ASD group had 
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significantly higher scores in the Low registration quadrant, Sensation seeking, Sensory 

sensitivity, and Sensation avoiding. Analysis of each sensory domain indicated that individuals 

with ASD had significantly higher scores than the neurotypical group, in Auditory processing (t 

(46) = 4.46, p < .0005, d = 1.29), Activity level (t (46) = 4.79, p < .0005, d = 1.38), Touch 

processing (t (46) = 3.0, p = .004, d = .87), and Visual processing (t (35.6) = 2.45, p = .02, d = .7). 

There were no group differences in the Taste/Smell processing (t (46) = .86, p = .4, d = .25), and 

the Movement processing domains (t (46) = .23, p = .82, d = .07). For participants with ASD, for 

the low registration category, 29.2% met the criteria for extreme sensory processing deficits (±2 

SD from mean), 33.3% met this criterion for the sensory sensitivity quadrant, 37.5% met this 

criterion for the sensation avoiding quadrant, and 4.2% met the criteria for the sensation seeking 

quadrant. Of all the ASD participants, 62.5 % reported extreme levels of sensory processing on 

at least one sensory quadrant. None of the participants in the neurotypical group reported 

quadrant scores that met the criteria for the extreme sensory processing category. 

Table 6. Means and standard deviations for the behavioral assessments along with 

group comparisons using t tests.  

 

Behavioral assessment & domains Neurotypical ASD    

 M (SD) Mean (SD) t  p  d 

AASP      

Quadrant 1: Low Registration 29.92 (5.6) 39.38 (8.7) 4.46 < .0005 1.3 

Quadrant 2: Sensation Seeking 50.46 (7.1) 41.21 (8.8) 4.0 < .0005 1.2 

Quadrant 3: Sensory Sensitivity 31.83 (5.7) 40.96 (11.8) 3.40 .002 1.0 

Quadrant 4: Sensation Avoiding 34.13 (6.2) 46.08 (11.9) 4.35 < .0005 1.3 

TEA      

Map Search 1 minute 61.88 (9.3) 51.96 (11.7) 3.24 .002 .94 

Map Search 2 minutes 78.48 (1.3) 76.33 (3.2) 3.0 .005 .88 

Elevator Count 6.96 (.2) 6.92 (.3) .59 .56 .16 

Elevator Count Distraction 9.52 (.8) 8.38 (2.2) 2.41 .022 .69 

Visual Elevator: Raw Accuracy  8.63 (.9) 8.25 (1.4) 1.07 .29 .32 

Visual Elevator: Timing Score 2.92 (.4) 3.5 (.7) 3.53 .001 1.0 
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Elevator Counting with Reversal 7.79 (1.9) 6.83 (2.7) 1.39 .17 .41 

Telephone Search 2.39 (.5) 2.87 (.9) 2.35 .025 .66 

Telephone Search while Counting .52 (.9) 1.86 (3.4) 1.86 .07 .54 

Lottery 9.46 (.9) 8.13 (2.6) 2.36 .026 .76 

 

Brain-behavior relationships. There was a moderate negative relationship between the 

N1 latency of the target tone in the active condition and the sensory sensitivity quadrant (r (48) = -

.32, p = .028), and low registration quadrant (r (48) = -.31, p = .03), indicating that a shorter 

latency was associated with more typical sensory processing. Additionally, there was a 

significant relationship between N1 latency for the target tone in the active condition and the 

total score of the TEA (r (48) = -.35, p = .016), such that a shorter latency correlated with higher 

attention scores.  

Discussion 

 The purpose of this study was to examine the impact of attention on auditory registration 

and discrimination in young adults with ASD and a neurotypical control group. Answering 

research question 1 examining the effect of stimulus characteristics, our results indicated that 

intensity discrimination was evident at all the components, while frequency discrimination was 

present at the N1, P2 and N2 components. Additionally, intensity discrimination was more robust 

than frequency discrimination. However, there were significant attention by frequency 

interactions effects, such that frequency discrimination was more robust during the active 

attention condition compared to the passive condition. Answering research question 2 examining 

the effect of active and passive attention states on sensory registration, we found that directing 

attention to the tones resulted in amplitude and latency differences at the P2, N2, and P3 mid-

latency components. Answering research question 3 examining group differences on ERP 

measures, there were no group differences in amplitudes of the ERP components, namely N1-P2-
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N2-P3 following the auditory stimuli. However, there were significant latency differences at the 

N1, N2, and P3 components, such that the responses of individuals with ASD were significantly 

delayed responses compared to the neurotypical group. For N1 latency, the ASD group displayed 

a delayed response in both the passive and active conditions. Moreover, latency differences at the 

N2 and P3 components were present during the passive condition and not the active condition. 

This implies that latency delays in the ASD group were offset when participants were asked to 

direct their attention to the tones. Answering research question 4 examining group differences on 

behavioral measures of sensory processing and attention, we found that that the ASD group had 

significantly more deficits in sensory processing and attention. Finally, answering research 

question 5, analysis of the behavioral data suggested that compared to neurotypical controls, 

individuals with ASD had significantly more deficits in sensory processing as measured by the 

AASP, and attention as measured by the TEA. Additionally, these behavioral measures were 

associated with ERP components, such that shorter latencies were associated with more typical 

sensory processing as measured by the AASP and attention as measured by the TEA.  

Stimulus Characteristics Impacting Auditory Processing 

N1 component. The N1 has been associated with both stimulus-specific and stimulus-

nonspecific components, and is described as an “initial orienting response to acoustic stimuli” 

(Näätänen & Picton, 1987). Consistent with literature, both N1 amplitude and latency measures 

showed strong frequency and intensity discrimination. The N1 amplitudes were larger and 

latencies shorter for the low frequency tones than high frequency tones for both groups. This is 

consistent with literature indicating that N1 amplitude decreases as frequency increases 

(Wunderlich & Cone-Wesson, 2001). This finding can be attributed to greater activation of the 

area of the transverse temporal gyrus to a 1 kHz tone compared to a 4 kHz tone measured using 
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fMRI (Strainer et al., 1997). In terms of intensity discrimination, N1 amplitudes were larger and 

latencies shorter for the loud tones than the soft tones. This finding of intensity dependence has 

been extensively documented in the literature (Ponton et al., 2000).  

P2 component. The P2 component represents an exogenous response, which is sensitive 

to stimulus intensity and frequency changes (Crowley & Colrain, 2004). P2 amplitudes were 

smaller and latencies shorter for the low frequency tones compared to the high frequency tones. 

Similar to the N1 component and existing literature, loud tones had larger P2 amplitudes and 

shorter latencies than the soft tones (Crowley & Colrain, 2004; Paiva et al., 2016).  

N2 component. Frequency and intensity effects were also observed at the N2 component, 

such that the N2 amplitude was larger and latency shorter for the low frequency stimuli than the 

high frequency stimuli. However, the N2 amplitude was larger with longer latencies for the soft 

tone compared to the loud tone. Post-hoc analyses revealed that this effect was significant for the 

active condition but not the passive condition. Since the low frequency soft tone was the target 

tone, larger amplitude for the low frequency tones and soft tones imply greater processing of the 

target tone compared to the non-target tones. This finding supports the function of the N2 

reflecting attention allocation and discrimination (Folstein & Van Petten, 2008).  

P3 component. Intensity effects were also observed at the P3 component, such that the 

loud tones had larger amplitudes and shorter latencies than the soft tones. This is also consistent 

with literature demonstrating intensity-sensitivity of the P3 component (Polich & Kok, 1995). 

There were no frequency effects at the P3, which aligns with existing research (Polich & Kok, 

1995).  
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Attention Impacts Auditory Processing 

N1 component. The N1 represents a sensory filter which is activated by auditory events 

and represents stimulus encoding (Näätänen & Picton, 1987). In this study, we failed to show an 

attention effect at the N1 component. The means indicate that the passive condition had larger 

amplitudes than the active condition for all the tones except the target tone (1 kHz 50 dB). 

Additionally, the small effect size for the attention main effect for N1 amplitude (η2 = .06), 

implies that the lack of attention effect could be a power issue.  

P2 component. There was an interaction effect of attention condition and frequency for 

both, P2 amplitude and latency measures, revealing better frequency discrimination between the 

1 kHz and 3 kHz tones during the active condition compared to the passive condition. This is 

consistent with literature which states that stimuli presented during attended states are detected 

faster and discriminated more accurately than stimuli presented during unattended states 

(Mondor & Zatorre, 1995). Additionally, consistent with previous research, P2 latencies were 

shorter for the passive condition compared to the active condition (Morris et al., 2016). 

N2 component. The N2 component is associated with auditory discrimination, 

recognition, perception, and discrimination (Picton, 2010). Attention significantly impacted the 

N2 amplitude, such that the passive condition had larger N2 amplitudes than the active condition. 

Smaller N2 amplitudes in the active attention condition could be due to better attention allocation 

during the active condition compared to the passive condition. Researchers have found that the 

N2 component is reduced when stimuli can be easily discriminated during an auditory go/no-go 

task (Nieuwenhuis et al., 2004). At the N1 and P2 components, stimulus discrimination was 

better during the active condition compared to the passive condition. This ability to better 

discriminate the auditory stimuli during the active condition could have led to smaller N2 
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amplitudes compared to the passive condition. Consistent with the N1 and P2 components, we 

also found interactions effects between attention condition and frequency, such that low 

frequency tones were better discriminated from high frequency tones during the active condition 

than the passive condition. 

P3 component. The P3 or the P300 component is perhaps the most extensively studied 

ERP component with reliable consensus that the P3 is attention-dependent, and occurs when an 

individual consciously detects an informative task-relevant stimulus (Huang et al., 2015). 

Attention significantly impacted auditory processing of the P3 amplitude, such that the active 

condition had larger P3 amplitudes than the passive condition. This is in accordance with 

existing literature (Huang et al., 2015). 

Neural Processing in individuals with ASD 

N1 component. Individuals with ASD had longer N1 latencies across all tones and 

attention conditions compared to neurotypical individuals. Longer latencies suggest delayed 

processing, slower transmission of information in neural pathways, and a delayed orienting 

response. Several studies have reported longer N1 latencies to auditory stimuli in individuals 

with ASD (Bruneau et al., 1999; Jeste & Nelson, 2009; Gandal et al., 2010). Gandal and 

colleagues (2010) showed that children with ASD, and valproic acid- (VPA) exposed mice 

demonstrated significant latency delay in the N1/M100 response. Using 

magnetoencephalography (MEG), researchers found that the M100 (corresponds to N1 in EEG) 

latency delays in children with ASD provided accurate ASD classification (Roberts et al., 2010). 

Longer N1 latencies are linked to decreased neural synchrony or temporal jitter within the 

auditory pathway (Harris et al., 2007). Additionally, N1 latencies decrease with aging at Cz, 

which could imply a maturational lag in auditory processing in the ASD participants (Tomé et 
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al., 2015). There have been mixed results examining N1 amplitude differences in ASD, with 

some showing no difference and others showing amplitude increases and decreases (for review 

see Bomba & Pang, 2004). In our study, we failed to find a difference in N1 amplitudes between 

the ASD group and the neurotypical controls.  

P2 component. The P2 amplitude and latency was not significantly different between the 

neurotypical and ASD group. Similar studies of no P2 amplitude differences in children with 

ASD have been reported previously (Lincoln et al., 1995).  

N2 component. There was a significant attention condition by group interaction effect 

for N2 latency, such that individuals with ASD had delayed N2 latencies compared to 

neurotypical peers during the passive condition but not the active condition. This suggests that 

directing attention to the auditory stimuli may have led to an improvement in processing speed in 

the ASD group. Researchers have proposed that auditory processing deficits may stem from 

underlying attention deficits (Marco et al., 2011; Moore et al., 2010). In the auditory domain, 

researchers examining attention and sensory processing using neurophysiological measures 

suggest that processing of attended stimuli is either normal or increased in ASD, while 

processing of unattended stimuli is usually decreased (Orekhova & Stroganova, 2014). In a 

review of findings of mismatch negativity, Orekhova and Stroganova (2014) found that 

individuals with ASD are usually able to detect changes in the stimuli presentation when these 

stimuli are the focus of their attention. However, in the presence of distractors or in the case of 

unattended stimuli, processing issues arise. When competition for attention is higher, detection 

of change and associated cognitive processing are reduced in ASD compared to typical controls. 

Collectively these results demonstrate that auditory processing appears to be dependent on the 
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context of stimulus presentation and that individuals with ASD have delayed and reduced neural 

processing which may reflect deficits in early orienting and attentional mechanisms. 

P3 component. While there were no group differences of the P3 amplitude, there were 

significant latency differences. Similar to the N2 latency results, P3 latencies were significantly 

delayed in the passive condition but not in the active condition. This further supports the 

hypothesis of an attention-based improvement in processing speeds at mid-latency components. 

Similar results of longer P3 latencies to auditory stimuli in children with ASD have been 

documented before (Oades et al., 1988; Čeponienė et al., 2003). However, our findings are 

contrary to some studies failing to find a group difference in P3 latencies (Andersson, et al., 

2013; Kohls et al., 2011). With regards to P3 amplitude, studies have found similar results, with 

no P3 abnormalities in the visual or auditory domain in adults with ASD (Hoeksma et al., 2006). 

In the study by Hoeksma et al. (2006), the group of children with ASD had significantly reduced 

P3 amplitudes, while the adolescents with ASD had “normal” P3 amplitude responses. 

Additionally, the authors found significant deficits in behavioral measures of selective attention 

in the adolescents with ASD (Hoeksma et al., 2006).  

Sensory Processing in ASD 

Our results indicated that our sample of young adults with ASD had significantly more 

sensory processing deficits than the control group. Specifically, the ASD group had significantly 

higher scores on all four sensory quadrants. Sensory processing deficits are part of the diagnostic 

criteria for ASD (DSM–5; American Psychiatric Association, 2013). In line with our findings, 

researchers have found that sensory deficits persist into adulthood in ASD (Billstedt et al., 2007; 

Crane et al., 2009). In a study of 18 adults with ASD (18-65 years), and an age- gender- and IQ-

matched control group, Crane et al. (2009) found significant sensory deficits in the four 
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quadrants of the AASP compared to the control group. Additionally, 94.4% of the ASD 

participants reported extreme levels of sensory processing on at least one sensory quadrant. Our 

findings are contrary to the findings of Kern et al. (2007), who reported that abnormal sensory 

processing in ASD tends to dissipate with increasing age. However, in the study by Kern et al., 

most questionnaires were completed by the caregivers, which could result in underestimation of 

the sensory challenges faced by the adults.  

Attention in ASD  

In our study, individuals with ASD had significant deficits in attention as measured by 

the TEA. Of the eight subtests, individuals with ASD had significantly lower scores on Map 

search (1 and 2 minutes), visual elevator distraction, visual elevator timing score, telephone 

search, and lottery. The Map search and telephone search tasks assess visual selective attention, 

while the visual elevator task assess attentional switching, and the lottery task assesses sustained 

attention. These three subtypes of attention were categorized by Petersen and Posner (2012). 

Several researchers have shown that children with ASD have significant deficits in all the three 

subtypes of attention, selective, sustained, and shifting (Allen & Courchesne, 2001). It must be 

noted that of the 24 participants with ASD in this sample, ten participants (41.7%) reported a 

dual-diagnoses of attention-deficit hyperactivity disorder (ADHD), and eight (33%) reported 

being diagnosed with a learning disorder as a child. ADHD is one of the most common comorbid 

conditions with ASD (Matson et al., 2013).  

An attention model of autism was proposed by Gold and Gold (1975), which has been 

supported by recent research (Williams et al., 2015). However, there is a lack of research 

examining attention in adults with ASD. The complex information processing model suggests 

that individuals with ASD do not have deficits in a specific modality or cognitive domain, but 
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rather present with a generalized deficit involving multiple modalities and domains that are 

supported by distributed cortical networks responsible for higher order functions (Minshew et al., 

1992; Williams et al., 2015). Based on this model, the researchers suggested intact or superior 

simple attention abilities, but deficits in complex memory, concept formation and reasoning. It is 

possible that the tasks of the TEA simulate these complex skills, since most of these subtests 

mimic everyday functioning which can be complex.  

Brain-Behavior Relationships of Attention and Sensory Processing  

N1 latency was associated with sensory processing domains, such that faster processing 

was related to more typical sensory processing as measured by the ASSP. Additionally, N1 

latency of the target tone was also associated with attention, implying that faster processing was 

related to better attention abilities as measured by the TEA. Since the N1 component is 

considered a both a measure of neural sensory orientation and initial attention, we would expect 

this relationship between its latency and behavioral measures of sensory processing and attention 

(Näätänen & Picton, 1987). Moore et al. (2010) proposed that auditory processing deficits in 

children with auditory processing disorders were due to underlying deficits in attention.  

There is a relative lack of research examining the relationship between neural and 

behavioral measures of sensory processing in ASD. Ludlow et al. (2014) found a significant 

relationship between the MMN (mismatch negativity) in children with ASD and sensory 

sensitivity of the AASP. The authors proposed that the expression of sensory behaviors in ASD 

may result in impaired psychophysiological mechanisms underlying automatic language 

processing (Ludlow et al., 2014). Thus, our study finding of a relationship between N1 latency 

with a self-report measure of sensory processing suggests that sensory processing deficits 

observed in individuals with ASD may be associated with underlying deficits in neural 
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processing. Researchers have proposed that sensory processing challenges in ASD may cause 

core symptoms in ASD including social and emotional communication (Marco et al., 2011). The 

relationship of sensory processing to ASD symptomatology must be studied beyond the 

traditional correlational research studies to further examine causation.  

Latency Delays in ASD  

While several studies have documented latency delays to auditory ERPs in ASD, the 

underlying neural mechanism is still unknown. Recent studies have proposed that latency delays 

may be related to disturbances of white-matter integrity, specifically, poorly myelinated acoustic 

radiations and associated auditory processing pathways (Gandal et al., 2010; Stufflebeam et al., 

2008). Researchers have even proposed using delayed auditory responses as translational 

biomarkers of ASD (Gandal et al., 2010; Roberts et al., 2010). Maziade et al. (2000) showed that 

delayed early auditory-evoked responses were not only evident in individuals with ASD, but also 

in a sample of unaffected first-degree relatives of individuals with ASD. In our study, we found 

significant latency delays in the N1, N2, and P3 components. Although the latency delay in the 

N1 component was evident in both the active and the passive condition, the N2 and P3 latency 

delays were only present in the passive condition. This potentially implies that directing attention 

to the auditory stimuli may ameliorate latency differences during auditory processing. 

Additionally, this suggests that latency delays in ASD may reflect an underlying neural 

attentional deficit. Since the N1 is often considered pre-attentive, the impact of attention at the 

N2 and P3 components, which are exogenous attention-dependent components, suggests that 

conscious allocation of attention may result in more typical auditory processing. This finding of 

an attention-based amelioration of auditory processing neural delay needs to be further 

investigated.  
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Age Effects in ASD  

When mature, high-functioning young adults with ASD continue to present with deficits 

in neural and behavioral measures of attention and sensory processing, one might also expect to 

find equal or worse deficits in younger and lower functioning individuals with ASD. The 

implication of the present study is that young adults with ASD experience deficits in both 

behavioral attention and sensory processing performance and well as neural measures of 

attention and auditory processing. Most research in ASD has focused on children, and there is 

limited research examining the pervasiveness of deficits in young adults with ASD. A study 

examining outcomes in young adults with ASD found that at the mean age of 24 years, 46% of 

the sample reported poor outcome while the rest reported good-to-fair outcome (Eaves & Ho, 

2008). Researchers have argued that services for adults with ASD do not appear to have kept 

pace with the increases in services for children (Eaves & Ho, 2008).  

One of the study limitations is that while the ASD group and the neurotypical controls 

were matched on age, they were not matched on gender. However, there were no gender 

differences in either groups on ERP measures or the TEA. For the ASD group, females had 

significantly higher scores on the AASP total score compared to males. However, this finding 

must be interpreted with caution since out of 24 participants with ASD, 17 were males. To 

summarize, the gender differences in the ASD group and neurotypical group do not seem likely 

to confound any of the study findings. A second possible limitation is that nearly half of our 

ASD participants had a comorbid diagnosis of ADHD. Since ADHD is one of the most 

commonly occurring comorbid diagnosis, we believe that this validates our sample as being 

representative of the general ASD population.  
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Conclusion 

Results of this study have shown that young adults with ASD have delayed N1, N2, and P3 

latencies to auditory processing compared to neurotypical peers. Amplitude measures of the N1, 

P2, N2, and P3 ERP components were not significantly different between individuals with ASD 

and neurotypical controls. Additionally, N2 and P3 latency delays in the ASD group were 

present during the passive listening condition, and were not present during the active attention 

condition, when participants were asked to focus their attention to the tones, suggesting that 

focused attention may assist in ameliorating delayed neural sensory processing. Neural measures 

of auditory processing were associated with behavioral measures of attention and sensory 

processing. These findings suggest that attention significantly impacts auditory processing in 

ASD. Further research is required to validate the findings of an attention-based improvement of 

neural processing in ASD.  
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CHAPTER 5 – DISCUSSION 

 

 

 

Overall Goal of the Dissertation 

 The primary goal of this dissertation was to examine the relationship between attention 

and sensory processing in individuals with autism spectrum disorders and neurotypical 

individuals. Specifically, the objective was to examine if consciously directing attention to 

incoming information would result in more typical neural processing in individuals with ASD. 

To answer this question, the first step was to find evidence that directing attention to stimuli 

compared to passive processing resulted in detectable changes in neural processing. Thus, study 

1 was designed to understand how distraction and attention impacted sensory processing in 

neurotypical individuals. The next step was to identify if the target population of young adults 

with ASD had significant deficits in neural measures of sensory processing during passive 

attentional states. Thus, study 2 and 3 examined neural measures of sensory processing in 

individuals with ASD as compared to age-matched neurotypical controls during passive 

attentional states. Study 2 examined filtering of information while study 3 examined the 

registration and discrimination of auditory stimuli.  

The third step was to examine if directing attention to stimuli resulted in more typical 

sensory processing in individuals with ASD by offsetting the deficits observed during the passive 

condition. Thus, study 2 and 3 involved an active attention condition wherein participants were 

asked to respond with a button press to a target stimulus. This ensured that participants were 

actively directing their attention to the auditory stimuli during the active condition. Finally, to 

examine the relationship between neural measures of sensory processing and behavioral 
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measures of sensory processing and attention, study 2 and 3 involved specific research questions 

that examined these brain-behavior relationships.  

 These series of studies used EEG/ERP methodology to examine brain processing since 

this method provides a direct measure of the brain’s response to sensory information with 

identifiable transitions across the temporal processing stream, with each ERP component 

reflecting successive and distinct phases of processing (Luck, 2005). The high temporal 

resolution of EEG allows examination of the impact of attention at the different phases, namely 

the early cortical sensory orientation phase (reflected by the P50 and N1), sensory registration 

phase (N1 and N2), sensory-perceptual processing phase (P2), and later cognitive stages of 

processing (P3; Naatanen & Picton 1987).   

Summary of Findings 

 The results from Study 1 showed that directing attention to click stimuli resulted in 

increased amplitudes of the ERP components throughout the stream of processing. Attention 

effects were observed even at the N1 component, which occurs around 100 ms post-stimulus 

onset, and which has been historically been considered as pre-attentive. Additionally, the 

viewing environment impacted sensory processing; specifically watching a silent movie during 

the EEG paradigms resulted in an increased effort to process stimuli, as demonstrated by larger 

amplitudes and longer latencies of the mid-latency ERP components compared to a viewing 

environment of watching a fixation point. Although frequency and intensity discrimination were 

evident in the passive condition, these discrimination effects were more robust during the active 

condition. Thus, study 1 provided evidence indicating that attention, both internal attentional 

states and environmental distraction, impacts neural processing and these effects can be 

measured by changes in the amplitude and latency of ERP components.  
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 Contrary to our hypothesis, results from study 2 demonstrated that young adults with 

ASD had gating at the P50 and N1 components during the passive condition, and were 

comparable to gating in neurotypical individuals. However, individuals with ASD had 

significantly delayed click 1 responses at the N1 component during both the active and passive 

attention conditions. However, N1 click 2 responses were delayed only during the passive 

condition and no group differences were found in the active condition. Thus, study 2 findings 

provided preliminary evidence supporting an attention-based amelioration of neural sensory 

processing. Supporting our hypothesis, all participants showed less robust gating during the 

active condition compared to the passive condition. This lack of suppression was an expected 

finding, since participants were focusing their attention to Click 2 during the active condition. 

Thus, these results suggest that directing attention to click stimuli could impact neural processing 

as early as 50 ms post-stimulus onset. As expected, individuals with ASD had significantly more 

deficits than neurotypical controls on behavioral measures of attention, sensory processing, and 

social responsivity. These behavioral measures positively correlated with each other, such that 

better attention was associated with better sensory processing, and both these were associated 

with better social responsivity. Moreover, with a decent sample size of 48 participants, there 

were significant relationships between neural measures of gating and behavioral measures of 

attention, sensory processing, and social responsivity. Thus, efficient filtering of information at 

100 ms was associated with better every day functioning.  

 Results from study 3 indicated that individuals with ASD had significantly delayed 

processing of click stimuli during the sensory registration paradigm at the N1, N2, and P3 

components. As hypothesized, the latency delay observed at the N2 and P3 components were 

only present during the passive condition and not during the active condition. Thus, directing 
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attention towards the stimuli resulted in more typical processing in individuals with ASD. It is 

worth noting that, for the sensory registration paradigm this attention-based improvement was 

not present at the N1 component. There are a few possible explanations for this finding in the 

sensory registration paradigm. Since the N1 is an early pre-attentive component, the effects of 

consciously directing attention may not influence N1 latency in individuals with ASD since there 

is an existing processing delay. However, attention can impact processing at the mid-latency 

exogenous attention-dependent components, which demonstrated more typical processing in our 

study. Another possible explanation is that the neural generators of N1, which are more wide-

spread may not be optimally functioning in individuals with ASD and areas with specialized 

auditory cognitive functions may be compensating for this early deficit. As in study 2, behavioral 

measures of attention and sensory processing were associated with neural measures of sensory 

registration.  

Theoretical Implications  

The dissertation findings provide evidence to support several theoretical concepts 

proposed by researchers examining attention, sensory processing, and autism spectrum disorders. 

Additionally, these results also provide preliminary evidence supporting the model proposed in 

Chapter 1. (See Figure 3 below).  

Attention theories. The finding of larger P3 amplitudes and smaller N1, P2, and N2 

amplitudes during the active condition, when participants were required to press a button to a 

target tone, imply that actively directing attention to stimuli results in neural changes while 

processing auditory stimuli. These results support the “sensory gain control” theory which 

suggests that sensory pathways can be modulated by increased intensity of brain activity based 

on attentional mechanisms (Hillyard et al., 1998). The sensory gain theory also suggests that 
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attention modulates sensory processing through an ‘amplification’ of neuronal activity within 

sensory processing areas of attended stimuli compared to unattended stimuli (Posner & 

DeHaene, 1994). Similarly, these findings align with the assumptions of the “biased competition 

model of attention” which states that attention is as a nonlinear property that results from a top-

down biasing effect (Deco & Rolls, 2005). Thus, the findings from this dissertation align with 

the theoretical assumptions of the sensory gain theory and the biased competition model. 

However, these findings contrast with the “late selection theory” of attention which suggests that 

attention can only affect later post perceptual processes such as memory or response selection 

(Duncan, 1980).  

The finding of significant interaction effects between the viewing environments and 

attention condition, suggest that distraction leads to an additional load on neural processing. Our 

study findings support the “load theory of attention” which states that in conditions of low 

perceptual load, an active mechanism rejects irrelevant distractors to actively maintain 

processing priorities (Lavie, 2010). However, in the absence of distraction, passive processes are 

sufficient for perceptual processing. This is evident in the neurotypical group as seen in findings 

from studies 2 and 3. However, the ASD group may have deficits in neural connectivity such that 

they require active strategies for efficient sensory processing even in the absence of distractors. 

The results also indicated better intensity and frequency discrimination during the active 

condition compared to the passive condition, in both neurotypical individuals and individuals 

with ASD. These attention effects also seem to echo the work of Carrasco, Ling and Read (2004) 

that demonstrated that attention alters stimuli appearance by increasing neuronal contrast 

sensitivity of visual stimuli. These authors suggested that “attention changes the strength of a 

stimulus by enhancing its effective contrast or salience” (Carrasco et al., 2004, p.5).  
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Autism theories. Evidence of abnormal neural activity in ASD is ubiquitous. Several 

theories have tried to explain the spectrum of ASD, albeit failing to provide a unifying solution. 

Bridging neurological findings with observable behavioral phenotypes is crucial to succeed in 

deciphering the neurobiology of ASD. There is growing literature expanding on brain-behavior 

relationships in ASD, however, more work is required to establish these relationships.    

Functional connectivity theories of ASD. The long-range underconnectivity theory 

states that fronto-parietal underconnectivity can lead to deficits in higher order functioning 

(Minshew & Keller, 2010). The deficits observed in behavioral measures of sensory processing, 

along with the delayed processing of auditory information align with this theory. Researchers 

have shown that attention networks involve several distributed regions of the brain, including the 

fronto-parietal control systems. Additionally, researchers have shown that sensory processing 

requires multiple brain regions and shares some brain regions such as the insula, which is also 

involved in the attention system (Menon & Uddin, 2010). Others have proposed that since 

sensory processing is dependent on rapid information transfer between distinct cortical and 

subcortical regions, disruptions in long-range connectivity play a causal role in sensory 

processing dysfunction (Marco et al., 2011). Since we have data from 64 channels of the EEG 

system, using source localization techniques, we can examine how different brain regions and 

networks are at play in individuals with ASD compared to neurotypical controls. Using source-

localization analyses, brain regions implicated in early auditory processing, namely the superior 

temporal gyrus, can be analyzed. Additionally, it would be worthwhile to examine regions of the 

fronto-parietal network as well. Brock, Brown, Boucher and Rippon (2002) proposed that 

underconnectivity between brain regions might be reflected in a lack of EEG phase synchrony of 

the gamma band (30-80 Hz). Using time-frequency analysis, phase synchronization and evoked 
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power can be examined in the paradigms used in this study. Time-frequency analysis will 

provide a holistic understanding and a confirmation of ERP findings observed in this study. 

A proposed model of ASD. A key finding of this study was the attention-based 

improvement in neural auditory processing. The findings from this dissertation indicated that 

when attention is directed to auditory stimuli it can modulate or change sensory processing at 

early stages soon after an auditory stimulus enters the stream of processing to the more cognitive 

stages of processing. This is compared to when the participant hears the same stimuli but are not 

directed to attend to the stimuli.  This finding supports the model that was proposed to 

understand the relationship between sensory processing and attention in ASD (See figure 3). 

Specifically, it was hypothesized that sensory processing is dependent on attention abilities at the 

neural level, which in turn impacts participation in daily activities. Recent research has attempted 

to decipher this relationship. Research has proposed that aberrant sensory processing contributes 

to ASD symptoms (Brandwein et al., 2015). Moreover, others have hypothesized that sensory 

processing deficits in ASD may be related to underlying attention deficits (Marco et al., 2011).  
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To our knowledge, this is the first study to examine how attention deficits can lead to 

sensory processing deficits which are associated with social challenges in ASD. The Social 

Responsiveness Scale – 2 (SRS 2) measures social reciprocity and has often been used to 

examine ASD severity. The relationship between the neural processing of auditory stimuli (as 

measured by ERPs) and the SRS 2 indicate that neural sensory processing is associated with 

social challenges observed in ASD, and relate to ASD severity. Gold and Gold (1975) proposed 

an attentional model in ASD postulating that increased and/or decreased sensitivity and attention 

to novel stimuli resulted in ASD symptoms. However, most of the research examining this 

theory has focused on social and joint attention.  

Figure 3. Proposed model depicting the relationship 

between attention and sensory processing.  
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ASD as a disorder of attention. Attentional deficits have been documented in infants at-

risk for ASD (Elsabbagh et al., 2009; Zwaigenbaum et al., 2005), and may be one of the earliest 

features that distinguish infants who later receive an ASD diagnosis (Zwaigenbaum et al., 2005). 

Moreover, non-social attentional strengths (e.g., visual search) and weaknesses (e.g., novelty 

detection) in ASD and their psychophysiological correlates have also been linked with increased 

ASD symptomatology (Belmonte et al., 2010; Gomot et al., 2008; Keehn et al., 2010). Keehn, 

Müller, and Townsend (2013) posited that “early deficits in disengaging attention result in 

cascade of impairments and ultimately contribute to the emergence of the ASD phenotype” 

(p.165). While attention has traditionally been considered as a secondary deficit in ASD, there is 

overwhelming research indicating that attention plays a significant role in ASD symptomatology 

throughout the course of this neurodevelopmental spectrum disorder (Courschesne et al., 2005; 

Elsabbagh et al., 2013; Keehn et al., 2010; Gold & Gold, 1975; Minshew & Keller, 2010). Gold 

and Gold (1975) stated that “using attentional mechanisms as our fulcrum, we may be able to 

understand the global nature of autism and appreciate the clinical manifestations of this disease” 

(p. 76).  

Methodological Implications  

 This study used two separate attention conditions (passive and active) to examine the 

impact of attention on sensory processing. Several studies examining auditory processing in 

ASD have used a silent movie to facilitate participant engagement through the EEG recording 

(Carroll & Seeley, 2013). Additionally, the results of studies using a movie versus those using a 

blank screen or a fixation point are often compared without concern of the viewing environment.  

 Use of a movie during EEG studies. The results of this dissertation indicated that movie 

viewing significantly interacts with attentional states during an auditory paradigm, such that 
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movie viewing results in use of additional neural resources or larger amplitudes compared to 

participants viewing a fixation point. Thus, researchers should consider the methodology used in 

the paradigm while comparing study findings. We found robust distraction effects of movie 

viewing in a population of neurotypical young adults. These effects may be even more 

pronounced in younger populations and in clinical conditions with attention deficits. While the 

use of a silent movie in children and clinical populations allows for easier data collection efforts, 

one must consider the impact of this added visual distraction on auditory processing.  

 Phases of processing. The results of this study revealed that attention states differentially 

impact ERP components across the temporal domain following the onset of auditory stimuli. 

These differences suggest that the corresponding neural generators likely play different roles 

during stimulus detection and perception. Often researchers focus on single ERP components 

which results in a reductionist approach. For a holistic understanding, researchers must focus on 

the entire stream of processing, incorporating the N1-P2-N2-P3 components elicited during an 

auditory paradigm. Additionally, understanding the differential impact of study manipulations on 

these ERP components provides valuable insight into the underlying neurophysiology.   

Clinical Implications  

 The findings from this dissertation indicated that young adults with ASD had significant 

deficits in neural measures of auditory processing, and that when attention was directed towards 

the auditory stimuli, we found more typical performance in the ASD group as compared to an 

age-matched group of neurotypical individuals. Data from behavioral measures indicated that 

individuals with ASD had significantly more deficits in attention, sensory processing, and social 

reciprocity as compared to neurotypical peers. Additionally, the relationship between neural 
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measures of sensory processing and behavioral measures of attention suggested that sensory 

processing deficits observed in ASD may be associated with deficits of attention.  

 OT theory and practice. Results from this dissertation can help therapists, researchers, 

and parents understand the underlying neurological mechanisms impacting auditory processing 

in ASD. Future research examining brain-behavior relationships of sensory processing in clinical 

conditions may provide valuable insight into advancing not only theory but also practice. Using 

behavioral measures, Stein, Foran and Cermak (2011) explain how parents of children with ASD 

often experience decreased quality of life. The authors mention that since ASD etiology remains 

unknown, parents often “question whether they are responsible for their child’s disorder, 

producing feelings of confusion and guilt” (Stein et al., 2011; p. 116). Firstly, further 

understanding of the abnormal neurological functioning underlying some of the behavioral 

manifestations of ASD may reduce these feelings of guilt and provide guidance to parents and 

therapists to understand the child’s processing challenges. Consistent with previous literature, the 

results from this dissertation showed that young adults with high-functioning ASD had 

significantly delayed neural responses to simple auditory stimuli in a controlled laboratory 

environment. These abnormal neural responses may be further amplified in real-life contexts 

wherein individuals deal with a multitude of sensory information, in lower-functioning 

individuals, and in younger individuals with ASD. An understanding that abnormal behaviors 

observed in ASD may be due to deficits at the neural level, some of which occur prior to 

conscious processing, may help therapists recognize the underlying difficulties resulting in 

abnormal behavior. Additionally, in my personal experience as an OT, better understanding the 

neural functioning underlying some of the behavior problems in ASD, provides a different lens 

of viewing ASD behavior.  
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 Secondly, ASD has traditionally been viewed as a socio-behavioral condition rather than 

a cognitive condition (Gold & Gold, 1975). Although previous research has shown that there are 

neuroanatomical abnormalities in individuals with ASD (for e.g. Belmonte & Baren-Cohen, 

2004; Belmonte & Yurgelun-Todd, 2003), the findings from this dissertation demonstrated direct 

brain and behavior associations in adults with ASD. By directly manipulating attention (i.e. 

requiring a behavioral response), we observed that attention changed the way the brain processed 

auditory stimuli. Furthermore, the findings from this dissertation demonstrated that individuals 

with ASD have significant deficits in attention, both at the neural and behavioral levels. Several 

researchers have suggested that behavioral manifestations of ASD may be related to a 

neurobehavioral driven distractibility or attention deficit (Marco et al., 2011). Allen and 

Courchesne (2001) suggested that sensory hyper-reactivity and restricted and repetitive 

behaviors in ASD may be associated with deficits in attention. As stated earlier in the discussion, 

several researchers view ASD as a disorder of attention. Marco et al. (2011) suggested that the 

multidirectional flow of information processing which is required for efficient sensory 

processing is impaired in individuals with ASD, and that this disruption in brain connectivity 

underlies the individuals’ inability to meaningfully attend to and interact with the environment. 

A goal of future research would be examining if attention deficits aid in early identification of 

children with ASD. A review by Rogers (2009) demonstrated that, contrary to popular belief, 

early social functioning may not be the best tool for identifying ASD in infants at-risk for ASD. 

If attentional deficits are one of the first characteristics that can be used to distinguish infants 

who are later diagnosed with ASD, incorporating attentional measures in diagnostic tools may 

result in an earlier diagnosis, ultimately leading to successful early interventions (Elison et al., 

2013; Elsabbagh et al., 2013; Keehn et al., 2013). 
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Lastly, the novel finding of an attention-based improvement in neural measures of 

auditory processing in ASD suggests that actively directing attention towards sensory stimuli 

may ameliorate some of the neural delay. This information can help both practitioners and 

researchers understand that attention and cognition may be important aspects of ASD assessment 

and intervention. Based on this finding, one goal of future research would be to examine if this 

finding of an attention-based improvement is replicable with other sensory modalities or with 

multi-sensory integration, and in individuals across the spectrum. Moreover, if attention is a 

primary impairment in ASD, the development of attention-based interventions may improve 

socio-behavioral functioning as well. For example, Posner and Rothbart (2005) have proposed 

that early attentional interventions may be a vital tool for promoting cognitive and social 

development, and that training attention also generalizes to aspects of intelligence. Similarly, 

Koegel, Shirotova, and Koegel (2009) demonstrated that use of individualized orienting cues 

during intervention resulted in an increase in word-use in three children with ASD.   

Furthermore, a study examining attentional training interventions in 42 typically-

developing infants (11-months old) demonstrated improvements not only in attention but also in 

play behavior, such that the infants engaged in more spontaneous looking behaviors towards 

novel objects, with more attentional shifts from object to person (Wass, Porayska-Pomsta, & 

Johnson, 2011). Future research examining what types of attentional manipulations might be 

most effective for improving sensory processing and meaningful engagement with the 

environment in children with ASD is warranted. An additional goal for future research would be 

to examine how an attention manipulation impacts processing at the neural level and affects 

everyday performance in ASD. When we can identify how attention impacts both neural and 
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behavioral functioning, we may be able to develop effective interventions for this vulnerable 

population.  

 Biomarker development. Clinical diagnosis of ASD is currently made based on 

behavioral signs and symptoms which may be highly subjective and often require tremendous 

amounts of clinical expertise. On the other hand, biomarkers (genetic, neuroanatomical, or 

psychophysiological) can be measured objectively and systematically. Biomarkers may prove 

invaluable in sub-grouping this incredibly heterogeneous spectrum, and assisting in developing 

targeted, customized therapeutic interventions that are tailored to the individual’s specific 

strengths and challenges. Several researchers have proposed the use of neurophysiological 

indices of sensory processing as biomarkers of the clinical phenotype of ASD (Brandwein et al., 

2015; Gandal et al., 2010). Brandwein and colleagues (2015) found the auditory N1 component 

to be the strongest neurophysiological predictor of autistic symptom severity. Researchers have 

even proposed using delayed auditory N1 responses as a translational biomarker of ASD (Gandal 

et al., 2010; Roberts et al., 2010). Maziade et al. (2000) showed that delayed early auditory-

evoked responses were not only evident in individuals with ASD, but also in a sample of 

unaffected first-degree relatives of individuals with ASD.  

Sensory gating deficits are considered an endophenotype in schizophrenia (Calkins et al., 

2007). However, results from this dissertation and other similar studies suggest that sensory 

gating deficits may not be present across the lifespan and across the spectrum in ASD. However, 

it appears that auditory processing delays measured by early ERPs such as the N1 and N2 

components may serve as potential candidates for a larger biomarker study. Although there is 

much ground to be covered in terms of identifying the right biomarkers of ASD, the hope is that 
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combining robust neurophysiological indices of basic sensory processing with well-established 

clinical measures of ASD, will help get us closer to the goal.  

Limitations and Future Directions 

 While this dissertation has several strengths, there were also a few limitations that must 

be acknowledged. The study included a sample of young adults with high functioning ASD. 

Since ASD is a wide spectrum, the generalizability of the study findings to individuals across the 

spectrum must be done cautiously. Moreover, there are limited studies with adults with ASD. 

Most of the existing research in ASD is with children, and comparing these findings with adults 

is not be ideal. A second limitation is in terms of the statistical methods used to examine brain-

behavior relationships. While simple correlational analyses with a decent sample size provide 

valuable directions towards the existence of brain-behavior relationships, they do not provide 

causal information. With a larger sample size, future research could include elaborated modelling 

methods such as structural equation modelling linking ERP measures to performance-based 

observable behaviors. Modelling out these brain-behavior relationships of attention and sensory 

processing will provide us with more accurate causal pathways and help in identifying how 

attention impacts sensory processing.  

 Another unexpected finding in this study was the absence of gating deficits in individuals 

with ASD. Using the same sensory gating paradigm, we found that children with ASD (ages 6 – 

12 years) had significantly reduced gating compared to typically-developing peers (Crasta et al., 

2015). Since this is not a longitudinal study, we cannot assume that gating improves with age. 

ASD is a neurodevelopmental disorder, but research has been restricted to school-aged years. 

Longitudinal research examining maturation of neural functions is very crucial to understand 
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how the brain processing may change allowing individuals to cope and deal with everyday 

functioning.  

Relation to the Occupation and Rehabilitation Science Framework  

The International Classification of Functioning, Disability, and Health (ICF), a model 

proposed by the World Health Organization is often used to examine health and well-being 

through impairment of body function and structure, activity limitation, and participation 

restriction through contextual factors of the environment and personal factors (WHO, 2002).  In 

the ICF, health is described as an interaction between the changes in body function and structure, 

what a person with a health condition can do in a standard environment as well as what they 

actually do in their usual environment.  Utilizing the biopsychosocial model, the ICF explains 

disability as a dysfunction at one or more of levels of body function and structure impairments, 

activity limitations and participation restrictions through the contextual factors of the external 

environment and internal personal factors. Thus, “disability is characterized as the outcome or 

result of a complex relationship between an individual’s health condition and personal factors, 

and of the external factors that represent the circumstances in which the individual lives” (WHO, 

2001, p. 17). This also means that problems with performance arise when there is a mismatch 

between one’s functioning levels and one’s environmental contexts. For example, Dunn (2001) 

stated that “sensory processing patterns are a reflection of who we are: these patterns are not a 

pathology that needs fixing” (p. 641). Dunn (2001) proposed that intervention must address the 

interference that sensory processing challenges cause to our desired life and that hinder current 

performance. Research examining sensory processing can provide insight on ways to narrow this 

gap between current and desired performance, thereby affording a satisfying life (Dunn, 2001).  
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The discipline of rehabilitation science places significant emphasis on function, focusing 

on the mechanisms by which disability develops and the factors influencing it. Occupational 

science is committed to enhancing the understanding of occupation in context (Yerxa, 1990). 

Rehabilitation science strives to develop a better understanding of the causes and factors 

contributing to disability to enable contribution towards improved and efficient treatments and 

technology for those with disabling conditions (Brandt & Pope, 1997).  Rehabilitation science 

views functional restoration of pathological and physiological impairments as the end goal of the 

therapeutic process.  While occupational science views meaningful engagement in occupation as 

the end goal of the therapeutic process. Baum (2011) emphasized the significance of the different 

levels of research in rehabilitation and occupational therapy.  Baum stated that “science must be 

developed at all levels if we are to have knowledge to translate findings that will inform 

interventions to improve participation, health, and well-being” (p.172).   

Findings from this dissertation have shed light on neural and behavioral aspects of 

sensory processing and attention dysfunction in individuals with ASD.  These findings also 

provide insight into brain-behavior relationships in neurotypical individuals and those with ASD.  

Additionally, these results can help practitioners understand the neural basis of some of the 

behavioral manifestations of ASD, especially those atypical behaviors that occur in response to 

sensory experiences in everyday activities. Researchers have shown that sensory processing is 

vital to occupational performance. Dunn (2001) stated that OT knowledge provides a unique 

contribution to sensory processing research in that OT attaches understanding and meaning to 

sensory experiences. While most disciplines only allude to daily life applications, OT research 

bridging brain-behavior relationships can serve as a translator and stand in the space between 

abstract concepts and clinical applications, communication with other disciplines what each 
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group has to add to the knowledge-base and ultimately advance both science and practice (Dunn, 

2001).  

In this dissertation, the behavioral measures of sensory processing, attention, and social 

responsiveness provided information about areas of performance that may lead to occupational 

dysfunction in ASD. Additionally, using EEG, this dissertation provided insight on deficits at the 

neural level of processing. Understanding the neural mechanisms of performance areas 

impacting occupational performance may lead researchers to develop interventions that 

ameliorate this dysfunction to improve everyday performance and participation. Findings from 

this dissertation have shown that neural sensory processing is associated with behavioral 

performance areas of attention and sensory processing. Bridging basic research at the neural 

mechanism level to research examining behavioral performance is an important step to 

holistically understand a clinical condition. Thus, I believe that this dissertation aligns with the 

philosophy of occupation science and rehabilitation science. 

Conclusion 

 The goal of this dissertation was to examine how attention impacts sensory processing in 

neurotypical individuals and individuals with ASD. The dissertation findings revealed that 

attention modulates early neural auditory processing, and that directing attention towards sensory 

stimuli results in more efficient processing in individuals with ASD compared to passive 

processing. These findings support a model of ASD wherein attention is a vital element to 

understanding ASD symptomatology. However, interpreting “the attentional model” as a unitary 

explanation for the entire spectrum of ASD would be deceptive. Rather, one aim of future 

research understanding the role of attention in ASD is to assess if neurophysiological measures 

of attention can be used as biomarkers to aid in early diagnosis for ASD, and to examine whether 
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early interventions emphasizing attention can improve occupational performance and 

participation in individuals with ASD.   
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