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Abstract

Microphysics and dynamics retrievals from dual-polarization radar for

very short-term forecasting

Nowcasting is primarily a description of the near-future forecasted atmospheric state,

therefore relying heavily on observations. Besides routine meteorological observations (pres-

sure, temperature, humidity, wind), dual-polarization weather radar provides a large amount

of useful information due to the frequent-update (∼5 min) and high-resolution (∼500 m)

three-dimensional sampling of the atmosphere. However, the atmospheric state variables are

not readily invertible from radar remote observations, resulting in complexity in the numer-

ical model data assimilation. This problem is normally dealt with by defining observation

operators to simulate the radar variables from the model state vector.

In this work the dual-polarization radar based retrievals are developed in order to demon-

strate their potential for microphysics and dynamics retrievals. In particular the analysis of

radar observations in convective storms and in stratiform ice clouds revealed that specific

dual-polarization signatures can be successfully related to important dynamic properties such

as vertical air motions, both in convective precipitation (strong updrafts, several m s−1 ) and

in stratiform precipitation (large areas of weak updrafts, tenths of m s−1 , associated with

mid-tropospheric mesoscale forcing).

Given the relevance of polarimetric signatures to dynamics retrievals, an improved hy-

drometeor classification method is developed based on a learn-from-data approach. In this

technique, the traditional bin-based classification is replaced with a semi-supervised ap-

proach which combines cluster analysis, spatial contiguity, and statistical inference to assign

the most likely class to a set of identified connected regions. The hydrometeor classification
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and relevant dual-polarization signatures establish a starting point to explore new means

to improve the analysis of precipitation and near-surface winds, and their subsequent now-

casting. In particular the relevance of a well-known dual-polarization feature associated

with deep convection (vertical columns of differential reflectivity) is illustrated by including

the microphysics and dynamics-related information into a simple method for the analysis of

surface winds.

The goal of a physically consistent analysis is further pursued considering the Variational

Doppler Radar Analysis System (VDRAS), an advanced four-dimensional data assimilation

system based on a cloud-scale model, specifically designed for ingesting Doppler weather

radar observations. The typical application using single-polarization observations from long-

range S-band or C-band radars is here extended to high frequency (X-band), short range

radars and dual-polarization observations. The combination of the hydrometeor classification

and dual-polarization rainwater estimation allows to successfully assimilating the X-band

observations, otherwise prone to relevant errors when using the reflectivity-based observation

operator widely employed in numerical models. The feasibility of X-band data assimilation

to contribute building a consistent analysis for nowcasting is demonstrated over the Dalls-

Fort Worth test bed, where a dense network of dual-polarization X-band radars is being

deployed. Eventually, a novel method for the nowcasting of precipitation and winds is built

upon the VDRAS analysis, in an attempt to combine the robustness and consistency of data

assimilation and the efficacy of extrapolation techniques for very short-term forecasting.
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CHAPTER 1

Introduction

According to the Word Meteorological Organization (WMO) nowcasting is defined as a

“description of current weather parameters and 0-2 hours description of forecasted weather

parameters”. The U.S. National Weather Service specifies zero to three hours, though up to

six hours are often used in many instances. The nowcasting and the subsequent very short-

term (up to 12 hours) forecasting ranges have well distinguished challenges, as compared

to more traditional short-range (12-72 hours) and medium-range (72-240 hours) weather

forecast, which are normally completely realized in the frame of numerical modeling.

Although nowcasting refers to the general state of the weather, particular emphasis has

historically been devoted to nowcasting of precipitation. This is justified by the large impact

for public safety of thunderstorms, floods and hurricanes. However, high-impact weather

also includes strong winds (often associated with thunderstorms, tornadoes) and icing. In

particular the nowcasting of winds has recently become the object of relevant investigation

[8]. In addition to the benefits of timely warnings for potential hazards related to strong

winds, the nowcasting of winds is gaining increasing interest for application in the wind

energy industry, aviation and numerical dispersion modeling.

Since nowcasting is primarily a description of the current atmospheric state, observations

play a fundamental role to derive an analysis resolving the small scales of the variables of

interest. As a matter of fact the simplest nowcasting method can be considered the Eulerian

persistence, where the future state (time t = t0 + dt) of an atmospheric-related variable Ψ

(e.g. the precipitation or the radar reflectivity) is assumed to be the same as that provided

by the observations at time t0:
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(1) Ψ̂(t0 + dt,x) = Ψ(t0,x)

Application of Eulerian persistence to the nowcasting of severe storms has obvious lim-

itations, since rarely are thunderstorms stationary. Indeed storm cells often move with

mid-tropospheric winds. Lagrangian persistence is then in general more appropriate, being

likely the most effective and intuitive approach for the 0-30 minutes range forecasting of

precipitation. It is intuitive, as basically relying on the same integral we all attempt to

mentally solve when crossing a busy street and seizing the speed of an approaching car.

Mathematically:

(2) Ψ̂(t0 + dt,x) = Ψ(t0,x - u)

where u represents an estimate of the displacement (motion) vector. So the problem reduces

to the calculation of the motion vectors, which is often accomplished through image process-

ing of a sequence of past radar (or satellite) maps. The motion vectors are fixed through the

forecasting period (
∂u

∂t
= 0). Although in some instances the convective storms are fairly

regularly advected for long time periods, in most cases the complex evolution of the storms

and the interactions with the surrounding environment limit the validity of the extrapolation

to no more than 20-30 minutes.

1.1. Problem statement

Numerical Weather Prediction (NWP) models resolve the larger and slower evolving

scales of the atmosphere dynamics and are in general not able to beat the extrapolation-

based techniques during the first 2-3 hours. Fig. 1.1 shows a schematic representation of the
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forecast skill of extrapolation techniques and NWP models for increasing lead times. The

theoretical limit (solid line) results from the chaotic nature of the atmosphere. The downward

trend reflects the fact that in a dynamical system highly sensitive to initial conditions like

the atmosphere, the unavoidable errors in the observations will grow with time into the

forecast. In the late sixties Lorenz [9] predicted the finite limit of atmospheric predictability

to be about two weeks.

Figure 1.1: Qualitative representation of the forecast skill for extrapolation methods (dashed
line) and NWP models (dotted line). The solid line indicates the theoretical limit of pre-
dictability. Adapted from [1].

The marked negative slope of the line representing extrapolation is a consequence of the

lack of atmospheric physics in the method, which causes a rapid loss of the valuable initial

information (observations). In the ∼0.5-3 hours forecast range the extrapolation methods

have lost much of their skill, but are in general still more accurate than NWP models. The

3



assimilation in NWP models of dense and frequent observations as those provided by weather

radar offers the possibility to improve the forecast skill, especially at very short-range.

1.2. Research objectives

The main scientific objective of this research is to explore the potential of dual-polarization

observations from radars operating at different frequencies (S, C, and X band) for improv-

ing the short-term forecasting of precipitation and winds. Within this general goal, specific

research objectives are devised:

(a) characterization of dual-polarization radar microphysical signatures relevant to the

precipitation system dynamics;

(b) development of a hydrometeor classification algorithm applicable to both conven-

tional long range systems (S and C band), and more attenuation-prone X-band

radars;

(c) use of dual-polarization radar observations for assimilation into numerical models;

(d) development of a hybrid nowcasting technique based on data assimilation and ex-

trapolation methods.

1.3. Organization of the dissertation

The dissertation is organized as follows. Chapter 2 introduces the radar data assimila-

tion concepts, with a specific illustration of a popular variational assimilation scheme for

weather radar observations. The overview is accompanied by a real case application with

C-band and X-band data, and evaluation of the 0-3 hours forecast performance. For this

and other similar stratiform precipitation events, the dual-polarization observations in the

ice region of the clouds are analyzed in detail in Chapter 3, with emphasis on ice growth

mechanisms and the correlation with precipitation intensity near the ground. In Chapter
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4 the development of a novel hydrometeor classification scheme applicable to radars oper-

ating at attenuating frequencies is illustrated. Chapter 5 focuses on deep convection and

the relevance of a specific dual-polarization signature (columns of Zdr ) for improving the

analysis of surface winds. A more sophisticated method for the meteorological analysis of

convective storms, with special emphasis on the low-level wind field, is examined in Chapter

6. In this chapter a four-dimensional data assimilation system is employed to elaborate a

physically consistent analysis, based on dual-polarization observations over the Dallas-Fort

Worth testbed including X-band systems. Chapter 7 focuses on a possible realization of a

hybrid nowcasting system which relies on both the outcomes of data assimilation for the

analysis and on a simple parametric model for the subsequent short-term forecast. Finally

Chapter 8 summarizes the main results of the thesis work and illustrates the expected future

developments.
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CHAPTER 2

Background: data assimilation for short-term

forecasting

Data assimilation is the technique by which observations are combined with a numer-

ical model (with their respective errors) in order to provide an improved analysis of the

atmospheric state at a given time. Although the origin of data assimilation for atmospheric

models can be dated back to the 1950s [10], the use of weather radar data in numerical

models is only a relatively new field of research.

During the last twenty years the techniques for radar data assimilation have consistently

progressed, going from direct insertion of single-Doppler wind retrievals to the much more

sophisticated Ensemble Kalman Filter (EnKF) initialization [11]. Most of the recent research

on radar data assimilation however have focused on variational techniques [7, 8, 12, 13].

Variational data assimilation looks for an accurate analysis of the state of the atmosphere

through the iterative minimization of a prescribed cost (or penalty) function. Differences

between the analysis and the observations, and between the analysis and the first guess are

penalized (damped) according to their perceived error. The most common implementation

is the three-dimensional variational assimilation (3D-Var). In 3D-Var all observations in a

given time window (t0−dt to t0+dt, where t0 is the analysis time) are treated if they were all

taken at time t0. Given a first guess (background) the variational minimization searches for

the analysis that minimizes the penalty measuring the deviations from the observations and

from the background state at t0. Fig. 2.1 illustrates the basic steps of the 3D-Var analysis,

while further discussion on the cost function and its minimization is reported in section 2.1.
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Figure 2.1: A flow diagram illustrating the 3D-Var analysis steps for radar data assimilation.
Adapted from [2].

In 4D-Var (time is the fourth dimension) the model trajectory that best fits the available

observations over a period of time (t0 − dt to t0) is calculated. The minimization process is

realized evaluating the gradient of a cost function with the adjoint model [10]. In this way

4D-Var searches for an optimal initial state of the model which minimizes the discrepancies

between the model forecast and the observational data distributed over the assimilation

window. The difference between 3D-Var and 4D-Var data assimilation is therefore the use

of a numerical atmospheric model as a constraint in the latter.

The disadvantage of 4D-Var respect to 3D-Var is the increased computational cost, im-

plied by the additional iteration of the numerical model and its adjoint over the assimilation
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time window. Huang et al. [14] for example reported an increased computational time for

the HIRLAM model between 7 and 30 times depending on the physics schemes. A common

practical approach to avoid the computational intensive 4D-Var but still manage to take ad-

vantage of the observations at correct times is to run 3D-Var in a frequent-updating cycling

mode. This is further illustrated with a real case experiment in section 2.2.

2.1. WRF 3D-Var

The Weather Research and Forecasting (WRF) model [15] is a non-hydrostatic, community-

supported NWP model mainly developed by the National Center for Atmospheric Research

(NCAR). In this study the Advanced Research WRF (ARW) solver with associated data as-

similation package (WRF-Var) is used (version 3.4). In particular the WRF 3D-Var system

[16, 17] is adopted for the assimilation of both surface and radar observations.

The current WRF 3D-Var implementation, as most variational assimilation systems,

provides an analysis x = xa through the minimization of the prescribed cost function J(x):

(3) J(x) = Jb + Jo =
1

2
(x − xb)

TB−1(x − xb) +
1

2
(y − yo)

TO−1(y − yo)

where:

x = analysis state vector

xb = background vector

B = background error covariance matrix

yo = observation vector

y = H(x)

O = observation error covariance matrix

H is the (possibly non linear) forward observation operator and maps the model space

8



to the observation space. Eq. (3) simply states that the analysis xa is the atmospheric

state resulting from the minimization of its distance from the background and from the

observations, weighted by their respective errors.

The background error covariance matrix B can be estimated from differences between

the forecast and observations. However, in practice the “NMC method” [18] has been widely

used to estimate the model error statistics. The method considers the difference between two

different forecasts (e.g. +24 h and +12 h) valid at the same time. Specifically, the matrix

B is obtained from:

(4) B ≈ E{[xf (24h) − xf (12h)][xf (24h) − xf (12h)]T}

where the climatological estimate in (4) is typically realized considering a period of time

of at least several weeks. If n are the degrees of freedom of the model state vector x, the

calculation of the Jb term in (3) requires ∼ O(n2) calculations. For a typical model domain

with NX=NY=200 and NZ=50 grid points and 10 variables, n is of the order of 107, so the

required 1014 calculations prevents a direct solution for the background term. In order to

reduce the complexity of the problem a common solution is the introduction of the control

variable transform, i.e. the definition of a control variable v such that x′ = Uv, where

x′ = x−xb is the analysis increment. The proper choice of the control variables ensures that

the covariance between these variables is minimum, and UUT closely matches the full error

covariance matrix B. The matrix U is normally implemented with three distinct operations:

x′ = UpUhUvv. The horizontal (Uh) and vertical (Uv) transform are performed using

recursive filters and empirical orthogonal function (EOF) decomposition respectively (see [16]

for more details). The term Up represents the physical variable transform for conversion of

the control variables (stream function ψ, unbalanced part of velocity potential χu, unbalanced
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part of temperature T u, relative humidity q, unbalanced part of surface pressure psu
) to the

model variables (u, v, T, ps, q), taking into account the statistical balances. With this choice

of control variables, the off-diagonal elements of the background error matrix are very small.

After introducing the innovation vector (y′
o = yo−H(xb)) and the tangent linear operator

H, with elements hi,j =
∂Hi

∂xj
, the control variable transform allows to rewrite (3) in terms

of analysis increments:

(5) J(v) = Jb + Jo =
1

2
vTv +

1

2
(y′

o − HUv)TO−1(y′
o − HUv)

The observation operator (H in eq. (3)) for the reflectivity (Zh) and radial velocity (Vr)

are [7]:

(6) Zh,i = 43.1 + 17.5 log(ρ qr,i)

(7) Vr,i = u
x− xi
ri

+ v
y − yi
ri

+ (w − Vt)
z − zi
ri

where Zh is expressed in dBZ and the rainwater mixing ratio qr in g kg−1, ri is the distance

between a model grid point (x, y, z) and the ith radar location (xi, yi, zi), Vt is the terminal

fall velocity of the precipitation (expressed as a function of the rainwater mixing ratio [7]).

The observation operator for the radial velocity is merely a spatial interpolation of the model

wind vector components. On the other hand the reflectivity is not a model state variable

and need to be calculated from the rainwater mixing ratio using eq. (6), obtained assuming

a Marshall-Palmer drop size distribution.

For the minimization of the cost function in the analysis control variable space (5) the

conjugate gradient method is utilized.

10



2.2. A 3D-Var assimilation experiment over northwestern Italy:

widespread precipitation

The WRF 3D-Var assimilation system is used in the simulation of an intense and wide-

spread precipitation event occurred in northwestern Italy at the end of April 2009. A frontal

trough extending over the eastern Mediterranean Sea approached the western Alps on April

26. On April 27 the trough deepened over the central Mediterranean and a low-level pressure

minimum formed in the Gulf of Genova. A moist Southerly flow established in the mid and

upper troposphere (Fig. 2.2) while Easterly winds interested the lower levels. This configu-

ration led to large rainfall accumulation both in the northern part of the region and in the

southwestern sector as a consequence of the low-level Easterly flow.

With the aim of assessing the value for the assimilation of the Doppler radar observations

collected by systems operating at different frequencies, the radars managed by Arpa Piemonte

(Environmental Protection Agency of Piemonte) are considered. Arpa Piemonte operates a

dual-polarization radar network composed of two operational C-band systems [19] and one

research transportable X-band radar in North-western Italy. The measurements collected by

the ARX (ARpa X-band) radar and from one of the C-band systems, the Bric della Croce

radar (hereafter Bric), are used for these assimilation experiments (fig. 2.3).

The Bric radar is located at 736 m MSL on the top of the Torino hill. The X-band was

deployed since 2008 at different locations for specific measurement campaigns. In 2009 (data

analyzed in this chapter) the radar was deployed in Carmagnola, 235 m MSL, 16 km South

of Torino. The main technical characteristics of the systems are listed in Table 4.3. The

radars are dual-polarized, but the current version of WRF 3D-Var only allows assimilation

of Doppler radial winds and reflectivity. The polarimetic capabilities are however exploited
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Figure 2.2: WRF control run forecast valid at 01:00 UTC over the outer domain (Fig. 2.3).

in the processing of the raw observations, in particular for clutter removal and attenuation

correction.

Two nested domains are defined for the model run (Fig. 2.3), with grid resolution of

10.8 km for the outer domain and 3.6 km for the inner domain. In addition to Doppler

radar, surface observations are also assimilated. While the Automatic Weather Stations

(AWS) managed by Arpa Piemonte (red dots in Fig. 2.3) provide data with 30 minutes-

frequency, the SYNOP messages (yellow triangles) are only available every three hours. The
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Table 2.1: Radar characteristics.

C-band X-band

Bric dellaCroce ARX

Antenna diameter 4.2 m 1.8 m
Antenna beam width 0.93◦ 1.29◦

Antenna gain 45 dB 43 dB
Polarization type Simultaneous HV Simultaneous HV
Operating frequency 5.640 GHz 9.375 GHz
Transmitter peak power 250 kW 70 kW
Pulse width 0.5, 2.0 µs 0.5, 1.0, 2.0 µs
PRF 250-1200 Hz 250-2400 Hz
Range resolution 340 m 125 m
Receiver dynamic range 95 dB 95 dB
MDS -110 dB -110 dB
Range 170 km 50 km

Volume scan

Number of sweeps 11 10
Elevations -0.1◦ to 28.5◦ 4.0◦ to 35.0◦, 90◦

Pulse length 0.5 µs 0.5 µs
PRF 883/662 Hz 2400/1600 Hz
Sensitivity at 50 km 2 dBZ 4 dBZ
Scan frequency 5 minutes 5 minutes

surface observations (temperature, dew point temperature, wind direction and intensity) are

therefore assimilated every three-hours, while the radar observations are assimilated every

one hour.

Table 2.2 summarizes the assimilation experiments performed, with and without assim-

ilation of radar data. The radar used in the assimilation are the Bric della Croce C-band

radar, with 170 km operational range, and the X-band radar with 50 km range (Fig. 2.3). In

particular, experiments using either the C-band or the X-band radar and using only Doppler

radial velocity, only reflectivity or both have been considered.

Since the radar data have a much higher resolution than the model grid, the PPI mea-

surements are averaged over Cartesian grid cells with dimension comparable with that of the

model (super-observations). In this assimilation experiment two different aggregation sizes
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Figure 2.3: WRF two-nested domains over northern Italy with shaded disks indicating the
radar range: C-band (white disk, 170 km range) and X-band (blue disk, 50 km range).
The yellow triangles mark the locations of the synop stations, while the red dots the AWS
regional network.

have been considered, approximately 3 km and 9 km (radar res in Table 2.2). The adjoint of

eq. (6), i.e. conversion from Zh to qr, is applied before averaging the raw radar observations

to avoid introducing a bias in the aggregated data. With the perturbation approaching the

radar domain from south-west, the number of available observations for the assimilation in-

creases substantially in the late evening of April 26 (fig. 2.4). The coarser aggregation size

(9 km) implies a number of assimilated observations approximately one order of magnitude

lower respect to the experiments with 3 km aggregation.
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Table 2.2: Experiment design.

Experiment GTS+AWS C-band radar X-band radar radar res

Doppler Zh Doppler Zh 3-km 9-km

SFC X - - - - - -
SFC ZV C3 X X X - - X -
SFC ZV X3 X - - X X X -
SFC ZV CX3 X X X X X X -
SFC V C9 X X - - - - X
SFC V CX9 X X - X - - X
SFC ZV CX9 X X X X X - X
ZV CX9 - X X X X - X

GTS and AWS data are assimilated at 3-h intervals, while radar observations at 1-h intervals.

Figure 2.4: Number of observations assimilated in experiments using super-observations with
3 km resolution (SFC ZV CX3, black line) and 9 km resolution (SFC ZV CX9, red line).
The y-axis is in logarithmic units.

The unambiguous velocity for the Doppler measurements is respectively 23.5 and 38.4

m s−1 for the C-band and the X-band radar. The Doppler data are initially processed in
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the polar domain, de-aliased based on the histogram method [20] and using VAD (Velocity

Azimuth Display) winds together with contiguity constraints. The data are susequently

interpolated to the Cartesian space. Doppler-based filtering was not applied on the C-

band radar, relying on a post-processing fuzzy logic scheme adapted from [4] to classify

meteorological and non-meteorological echoes [21]. The observations identified as clutter are

removed and the resulting missing values are filled in through bilinear interpolation during

the subsequent super-observations processing.

Assuming that the radar observations are uncorrelated in space and time, the observation

error covariance matrix O in (3) is assumed to be diagonal, with elements given by:

(8) ǫ(Vr) = 0.5 + σ(Vr) m s−1; ǫ(Zh) = 2.0 + σ(Zh) dB

where σ represents the standard deviation calculated over neighboring locations and the addi-

tive constants represent the radar measurement accuracy. In the WRF 3D-Var assimilation

process the observations whose innovations (obs-background) are larger than a maximum

value defined as a multiple (5 is used for both Vr and Zh for all experiments) of the ob-

servation error are rejected. The additive constants in (8) are therefore important to avoid

rejection of observations whose local variability is small.

Since in the current version of the WRF 3D-Var (ver. 3.4) a simple warm-rain process

is implemented to bridge water hydrometeors and other variables during reflectivity assim-

ilation [22], the reflectivity super-observations are only assimilated below the freezing level.

On the other hand the Doppler super-observations are assimilated everywhere.

Using the “NMC method” [18] as elucidated in section 2.1, the background error covari-

ance matrix has been calculated after running the model for one month before the simulation.
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The WRF model is initialized at 18:00 UTC 26 April using the 0.5◦ resolution GFS

(Global Forecast System) analysis. The 1-h forecast valid at 19:00 UTC is used as a first-

guess (background) for the assimilation of radar observations and from the resulting analysis

a new forecast is started. This 1-h cycle is repeated until 03:00 UTC 27 April. At synoptic

hours 21:00, 00:00, 03:00 UTC a 6-h forecast is run for subsequent validation.

Figure 2.5: PPI of observed Doppler velocity (left) and reflectivity (right) at 03:00 UTC for
C-band (2.0◦ elevation). Data are shown on a reduced 100 km-range.

Fig. 2.5 shows an example of the raw radar PPI of Doppler velocity and reflectivity.

The Doppler field is affected by some aliased velocities (around x=+50, y=-100 km) and

clutter (patches with near 0 m s−1 velocity in the northwestern sector). After processing

including de-aliasing, clutter removal and averaging, the Doppler super-observations with

3 km-resolution look like in Fig. 2.6 (panel b)). Panel a) shows the height of the super-

observations for the considered PPI, while in panel c) and d) the background and analysis

wind vectors are plotted over the corresponding radial component of the velocity. The

background field (here provided by a WRF 1-h forecast) is characterized by North-easterly

winds at low levels, near the radar. The analysis shows how the resulting wind field is in
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Figure 2.6: a) Height of the radar observations on the 2.0◦ elevation PPI as in Fig. 2.5. b)
Doppler radial velocity super-observations (3 km resolution) after de-aliasing. c) and d) show
the background and analysis radial velocities with wind vectors, on the smaller rectangular
area of panel a) and b). In panel c) the open circles represent observations not assimilated
due to excessive difference from the background.
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better agreement with the radar observations, indicating an Easterly flow in the lowest levels,

below approximately 2000 m.

Figure 2.7: Cost function and gradient for WRF variational assimilation with 1-h time
frequency (experiment SFC ZV CX3). The colored lines refer to different assimilation times
(dd-HH in legend).

The performance of the analysis process can be monitored looking at the cost function

minimization. In the WRF implementation, the iteration is stopped when the gradient of the

cost function drops below a pre-determined value. Fig. 2.7 presents the cost function value

(left) and its gradient (right) as the iteration progresses during the minimization. Different

colors refer to the hourly analyses and the initial magnitude of the cost function is greatly

determined by the number of valid available observations. After 22 UTC (blue color) the

model domain is increasingly covered with radar echoes from precipitation and the cost

function reduces by a factor of two or more after about 30 iterations. The gradient of the
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cost function rapidly decreases during the first iterations, indicating the effectiveness of the

minimization.

Figure 2.8: RMSE (left) and bias (right) of radial velocities from different forecast experi-
ments verified against C-band radar observations.

2.2.1. Verification. In order to verify the impact of the assimilation a comparison

with observations for the “long” 6-h forecasts starting at synoptic hours is performed. The

verification is realized over the WRF inner domain (Fig. 2.3). Fig. 2.8 (left) shows the

radial winds verification for the model 6-h forecast starting at 00:00 UTC 27 April, using

the C-band observations as reference. The RMSE at the initial time (analysis) is reduced by

about 40% with respect to the control run for all experiments with assimilation of C-band

radar data (exp. SFC V C9, SFC V C3, and SFC ZV C9). However, the assimilation of

Doppler observations with 9 km resolution showed the best impact for the forecast up to

about 3 hours lead time, while consideration of higher resolution super-observations (3 km,

experiment SFC V C3) actually led to an increase of the RMSE during the forecast. The

assimilation of the X-band observations of radial winds is also beneficial for the forecast (red
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line in fig. 2.8), but not as much as the C-band data, likely due to the smaller coverage (50

km) of the smaller X-band system compared to the C-band (170 km). The improvement

respect to the control run gradually decreases and eventually vanishes after about 4 hours

in the forecast. On the other hand the assimilation of surface observations only (exp. SFC)

statistically has little effect on the upper air radial winds. The assimilation of the radar

data, in particular from the C-band system, also allowed to minimize the bias (fig. 2.8, right

panel). When the X-band data are used for the verification (not shown) the qualitative

results are similar, although somehow noisier for the smaller extent of the radar coverage.

(a) T (b) u (c) v

Figure 2.9: RMSE of 2M temperature and 10M wind components (u, v) from different
forecast experiments verified against surface observations.

The model forecast verification against the surface observations of temperature and winds

is presented in Fig. 2.9. The temperature observations are 275 (Fig. 2.3), but only a smaller

portion of the surface stations (153 observation locations) have the 10-meter wind sensor

(direction and velocity).

As for the radar upper-air radial winds, at the analysis time there is a recognizable

improvement for both temperature and wind, although much less relevant than in the verifi-

cation with radar winds. In addition, the better performance only lasts for about 30 minutes
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and 1-2 hours respectively for temperature and wind. The experiment including the assim-

ilation of reflectivity (SFC ZV XC9) appears to be the most problematic when looking at

the surface observations of wind and temperature. In Fig. 2.9 an increase in the RMSE

is evident for temperature between 01:00 and 02:00 UTC. The wind RMSE, especially the

u-component, also increases shortly after the initial time.

(a) Rain-gauges 21-00UTC (b) 00-03UTC (c) 03-06UTC

Figure 2.10: Observed rainfall accumulation for three consecutive 3-hourly intervals. The
dots represent the locations of the rain-gauges. The overplotted contours of topography
(levels 500, 1000, 1500 m) indicate the higher mountains in the western and norther sector.

For the verification of the surface precipitation a very dense network of rain-gauge obser-

vations is available (583 tipping-bucket rain-gauges, including the AWS and synoptic stations

over the inner domain in Fig. 2.3, as well as additional measurements from other regional

networks). Short-term forecasting of rainfall accumulation is indeed the primary motivation

for the assimilation of radar observations. For the case being considered the warm-front

passage helped produce continuous rain for most of the day, with 24 hour average accumu-

lation of 76 mm over the plains, and peak values up to 140 mm. In the northern mountains,

values above 200 mm were recorded. In the following discussion we focus on the period

between 21:00 UTC 26 April and 06:00 UTC 27 April. The rainfall accumulation in the
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3-hourly intervals 21-00, 00-03 and 03-06 UTC is analysed in detail, considering respectively

the forecasts starting at 21, 00 and 03 UTC.

In Fig. 2.10 the observed rainfall accumulation is shown. The dots in the images repre-

sent the observation locations and the spatial interpolation is conducted using the Inverse

Distance Weighting (IDW) method. The precipitation initially affected the coast-line, near

the city of Genova (21-00 UTC), later spreaded over the Po valley (00-03 UTC) and finally

concentrated near the mountains in two separate areas, one in the pre-Alpine northern region

and one in South-western Apennine region.

(a) CNTRL 21-00UTC (b) 00-03UTC (c) 03-06UTC

Figure 2.11: Model forecasted rainfall accumulations for the control run. The circle indicates
the range of the C-band radar.

Figures 2.11 and 2.12 report the rainfall accumulation predicted by the control run and

by three different experiments including assimilation of the radar observations for the same

three consecutive intervals as in Fig. 2.10. To measure the skill of the precipitation forecasts

two widely used statistical parameters are considered: the bias and the Threat Score (TS),

also denoted Critical Succes Index (CSI), defined in Appendix A.
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For a perfect forecast (C = F = O) both the bias and the TS have a value of 1.

The evaluation of the bias and TS is applied to the observation sites. A summary of the

precipitation forecast statistics is presented in figures 2.13, 2.14 and 2.15.

The rainfall accumulation predicted by the control run in the 21-00 UTC period (Fig.

2.11) is in good agreement with the observations, except for a general light overestimation.

After midnight the control run, as a consequence of the forecasted advancement of the

trough with its associated moist South-westerly flow, shows a tendency to place the major

rainfall area across the central Alps, in the North-eastern part of the model domain. This

is in contrast with the observations, in particular for the 00-03 UTC period when the most

intense precipitation is recorded over the plains.

The rainfall accumulations resulting from three experiments with assimilation of radar

data are reported in Fig. 2.12. All experiments include both radars but differ for the reso-

lution and variables considered, specifically from top to bottom in the figure: assimilation

of radial winds and reflectivity at 3-km resolution (panels a-c), assimilation of radial winds

and reflectivity at 9-km resolution (panels d-f), assimilation of radial winds only at 9-km

resolution (panels g-i). The rainfall accumulations are calculated from the +0 to +3 hours

forecasts, e.g. forecast starting at 00 UTC for the 00-03 UTC accumulation. The 3-km

resolution experiment (top row) shows an improved localization of the rainfall amounts with

respect to the control run between 00 and 03 UTC, but an appreciable negative bias during

the first period (21-00 UTC), when the predicted precipitation on the coast-line does not ex-

ceed 15 mm. For the same period a similar assimilation experiment with a coarser resolution

(9-km, middle row in Fig. 2.12) actually gives a better result, with very small placement

error and negligible bias. In general the 9-km resolution super-observation provides better

performances in the assimilation. It is possible that the 3-km super-observations, being even
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(a) 21-00UTC (b) 00-03UTC (c) 03-06UTC

(d) 21-00UTC (e) 00-03UTC (f) 03-06UTC

(g) 21-00UTC (h) 00-03UTC (i) 03-06UTC

Figure 2.12: Model forecasted rainfall accumulation with assimilation of both surface ob-
servations and radar data for three different experiments. Top row: SFC ZV CX3 , middle:
SFC ZV CX9 , bottom: SFC V CX9. The circle indicates the range of the C-band radar.
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finer than the model grid (3.6 km), may introduce some small scale noise that increases the

model spin-up.

Figure 2.13: Assimilation statistics for rainfall > 5 mm (0-3 hours forecast).

The bias and TS are calculated for two different rainfall thresholds, 5 and 12 mm (figs.

2.13 and 2.14). For the 5 mm thresholds the assimilation of the radar data shows no im-

provement during the first time period (21-00 UTC), likely due to the relative scarcity of the

observations. After 00 UTC the impact on the skill of the rainfall forecast increases with the

assimilation of the radar data, in particular when the 9-km resolution super-observations are

considered. However, the most remarkable impact of the radar can be observed for the 12
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Figure 2.14: Assimilation statistics for 3-h rainfall accumulation > 12 mm (0-3 hours fore-
cast).

mm threshold (Fig. 2.14). In particular for the 00-03 UTC interval, with maximum rain-

fall intensity over the plains, the Threat Score jumps from 0.09 to 0.68 for the experiments

with assimilation of reflectivity and radial winds from both radars. The underestimation

present in the control run is also considerably reduced, with the bias going from 0.21 to

0.77. During the same time interval the assimilation experiments including the X-band data

show a perceptible improvement, even though the X-band radar range is completely within

the C-band domain (Fig. 2.3). The TS for the experiments with the C-band radar at 3-km

resolution (SFC ZV C3) is 0.50 and increases to 0.62 when the X-band data are assimilated
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as well (SFC ZV CX3). The X-band radar is located on the plains at 235 m height, while

the C-band is over a hill at 736 m height. It seems likely that the better sampling of the

lowest atmospheric layers by the X-band, in addition to the complementary radial winds

from a different observation point, contributes to a better description of the moist flow and

the resulting rainfall field.

Figure 2.15: As in figure 2.13 and 2.14, same legend, but for 3 to 6 hours rainfall accumulation
forecast.

Finally Fig. 2.15 presents a summary statistics for the longer range forecast (+3 to

+6 hours, e.g. the rainfall in the 03-06 UTC interval is evaluated considering the forecast

starting at 00 UTC). The impact of the radar observations is reduced in this case, although

still noticeable both in terms of the reduced bias and increased TS. The assimilation of

surface observations alone instead has in general a negligible impact on the rainfall forecast.
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For the case study analysed the positive impact of the assimilation of radar observations,

in particular the radial winds, has been shown. The reflectivity observations have a not

well defined impact. In particular there is a small additional positive impact on the rainfall

forecast (when reflectivity is assimilated together with radial winds), but a negative impact

on the surface observations of temperature, indicating the complexity in dealing with the

balances involving latent heat transfers. It is worth noting that Sugimoto et al. [12] in

an OSSE (Observing System Simulation Experiments) have obtained an improvement not

only for the rainfall fields, but also for the un-observed fields of wind, thermodynamics,

and microphysics. In their OSSE however, a cloud analysis was introduced to modify the

background before performing a 3DVAR minimization procedure.

2.2.2. Discussion. Given the supposed central role of the improved dynamics for the

more accurate rainfall forecast in the case studied, an analysis of the un-observed upper-air

horizontal winds (as opposed to the radial winds as in Fig. 2.8) may help to shed more

light on the impact of the Doppler winds assimilation. In [12] a limited ability of the WRF

3D-Var sytem in retrieving the un-observed tangential wind component in a single-Doppler

assimilation experiment was demonstrated. On the other hand the use of multiple radars

improved significantly the retrieval of the tangential wind component.

Using a VAD (Velocity Azimuth Display) technique it is possible to use the observed

radial velocity to retrieve the areal mean vertical profile of the horizontal wind above the

radar. Since these retrievals were not considered in the assimilation, they can be used to

verify the performance of the upper-air wind analysis and forecast. The algorithm proposed

by Tabary et al. [23], based on the azimuthal derivative of the observed radial velocities, is

used to compute the wind vectors presented in Fig. 2.16, panel b). In the same figure the

vertical profiles predicted from the control run at 00 UTC (a) and the experiment SFC V C9,
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(a) CNTRL (b) VAD radar (c) SFC V C9

Figure 2.16: Wind profiles from the control run (a), X-band observation-based VAD (Velocity
Azimuth Display) retrievals (b) and SFC V C9 assimilation experiment. Wind vectors are
represented by wind barbs: each short barb represents 5 knots, each long barb 10 knots,
pennants are 50 knot.

assimilation of radial winds from the C-band radar (c), are also plotted. The VAD in panel b)

is retrieved from the X-band observations, which are not used in the assimilation experiment

SFC V C9.

The control run basically predicts a regular clockwise wind rotation with height (wind

veering) associated with the warm front at the X-band radar location (Fig. 2.16a). This

monotonic wind veering contrast with the VAD retrievals, which show a stronger wind shear

until approximately 3000 m (wind from the South-West as opposed to the South-easterly
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flow in the control run) and then a backing of the wind (counter-clockwise rotation) up to

6000 m. At higher levels the wind veers again and sets from the South in good agreement

with the control run. The radial winds assimilation run yields an analysis (00 UTC) closer

to the observations, reproducing the alternate veering-backing revealed by the VAD. Most

noticeably, this type of wind pattern is maintained reasonably well in the forecast for about

2-3 hours.

(a) wind direction (b) wind speed

Figure 2.17: Verification against VAD wind profile retrievals from the X-band.

An objective verification of the wind direction and velocity is presented in Fig. 2.17.

While the assimilation of surface observations alone has substantially no impact on the

upper-level winds, the improvement brought by the assimilation of the radial winds is clear

in the first hours of the forecast, although limitedly to the wind direction. It is very likely

that the improved horizontal wind field (direction) in the mid-tropospheric levels plays a

role in the more accurate rainfall forecast, also considering the possible interaction of the

moist flow with the Alps, whose top heights reach 4800 m in the region. For this winter-type
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events the precipitation mainly forms at mid-levels (through the cold rain Bergeron process,

see discussion in Chapter 3), so it is very important to get a good wind analysis for this

layer. Radar radial winds have shown to provide a clear positive impact with this respect.

The fact that the positive impact is limited to 2-3 hours in the forecast is at least partially

ascribable to the lack of radar observations over most of the WRF outer domain. In fact a

wind velocity of 15 m s−1 at mid-levels will advect a tracer for about 160 km in three hours,

a distance comparable with the actual radar range.

As recognized in several studies [7, 12, 24] the assimilation of reflectivity observations

presents important challenges. Latent heat transfers and non-linear observation operators

(eq. 6) are among the important topics of current research in the radar data assimilation field.

When the precipitation is widespread and covers a large portion of the model domain the

radial winds assimilation alone in general provides a relevant improvement, while the addition

of reflectivity has not always a defined positive impact. In addition reflectivity should only

be assimilated below the freezing level because of the warm rain process-based partitoning

of the total water mixing ratio. This is currently a serious limitation, since even during

summer mid-latitudes precipitation systems the ice microphysics in the middle to upper

troposphere play important roles in kinematic and thermodynamic processes. While there

are on-going investigations on the inclusion of more sophisticated partitioning schemes to

take into account the ice phase, it will be important to provide radar products of hydrometeor

classification for both verification and direct input into future assimilation schemes.
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CHAPTER 3

Polarimetric radar observations in the ice region

of precipitating clouds

Polarimetric radar observations have been widely exploited in rainfall estimation since

the introduction of dual-polarization radars in the seventies [25]. However the ice phase

of precipitating clouds have received much less attention, partly because of the intrinsic

difficulty in the direct observations of ice clouds, needed to provide in situ observations for

comparison.

During the last couple of decades several studies in the literature have focused on obser-

vations of ice particles with polarimetric radars. These studies often included the analysis

of in situ aircraft measurements and mainly considered the radar observations of differential

reflectivity [26–29] and linear depolarization ratio [30, 31, 27, 28].

Several papers considered specific differential phase shift (Kdp ) measurements of ice par-

ticles. Kdp is defined as one-half the range derivative of the two-way propagation differential

phase (Φdp ), which is the phase shift occurring between the horizontally- and vertically-

polarized pulses along the propagation path [32]. Some of these studies attributed the

Kdp signatures in the ice region of convective storms to the effects of cloud electrification

[33–36]. Only few studies reported observations of differential phase in snow [37–41]. Namely

Hendry et al. [37] reported values of Kdp ∼ 0.4◦ km−1 in snow at S-band and values up to

1◦ km−1 at Ku-band in heavy snow. Vivekanandan et al. [38] have also shown S-band dif-

ferential phase shift changes by 10 ◦ above the bright band in the stratiform region of a

mesoscale convective system, with peak values of Kdp up to 0.5◦ km−1 .
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More recently, positive values of Kdp in the ice region of stratiform precipitating clouds

have been shown to be linked to increased surface precipitation rates at S band [41]. These

authors found regions of enhanced Kdp are observed near the -15◦C isotherm and suggested

that they are related to the growth of dendritic crystals. The observed values of Kdp are only

few tenths of ◦ km−1 at S band, but are expected to be higher and more easily detectable

at higher frequencies such as those of C and X band due to the Kdp scaling with frequency

([25], their eq. 7.101).

Figure 3.1: Elevation scan from Colle di Tenda on 14 August 2010 at 1743 UTC, along the
340◦ azimuth. a) reflectivity (Zh ), b) filtered differential phase shift (Φdp ). The underlying
topography is shown in gray. Kdp contours are overplotted in both panels: isolines at 0.6
(dotted line), 1.1 (solid line), 1.6 (thick solid line)◦ km−1 . The horizontal gray lines mark the
location of the 0◦C and -15◦C temperature levels as inferred from the nearby radiosounding
of Cuneo Levaldigi (WMO code 16113).

Elevation scans at high space resolution collected by the Arpa Piemonte transportable

ARX X-band radar system during summer stratiform precipitation, for example, show

Φdp increases in excess of 40◦ in the ice region, with Kdp peak values up to ∼ 2◦ km−1 in

the mid-tropospheric layer at 5-7 km height (Fig. 3.1), corresponding to temperatures in the

range -9 to -20◦C as measured by a nearby radio sounding.
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This study aims at characterizing the phenomenological behavior of Kdp in the ice region

of generic mesoscale precipitation systems, irrespective of the phase of precipitation (liquid

or solid) at the surface, at C-band and X-band radar frequencies. Differential phase shift

measurements have the well-known advantages of being 1) immune to radar calibration, 2)

immune to attenuation due to propagation, 3) mainly insensitive to partial beam blocking

[42, 25, 43–45]. One of the potential problems with differential phase measurements is the

backscattering differential phase δ at C and X band. In fact radar does not measure directly

Φdp , but the total differential phase shift Ψdp, which equals the sum of the differential prop-

agation phase and δ, i.e. Ψdp = Φdp + δ. Typical ice particles in the ice region of stratiform

clouds around -15◦C are Rayleigh scatterers at both C-band and X-band radar frequencies

(Section 3). This fact makes δ negligible [46], removing a potential source of error in deriving

reliable specific differential phase estimates. The primary source of data for this paper is the

C-band Bric della Croce radar, close to Torino (Italy). The data from this system allowed

an extensive analysis of vertical profiles of the polarimetric measurements in the northwest

Italy subalpine region. Although Kdp is the main focus of this study, differential reflectiv-

ity (Zdr ) measurements from this radar are exploited to infer the dominant crystal habit.

Additionally, measurements collected by the transportable ARX X-band system during a

selected event are also considered. This made possible a thorough analysis of Kdp in the ice

region with simultaneous observations at C-band and X-band radar frequencies (5.640 and

9.375 GHz respectively). Interpretation of radar measurements at the -15◦C isotherm level

are supported by electromagnetic scattering simulations performed at these frequencies.
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3.1. Radar data and processing

The data considered are from the same radars described in chapter 2.2, Table 4.3. Φdp is

filtered using the Hubbert and Bringi [47] scheme. Then the rain profiling algorithm based

on Testud et al. [48] is applied to correct the reflectivity for path attenuation. Attenuation

correction is performed exclusively in the rain medium (i.e. below the melting level) to avoid

introducing a bias due to differential phase increases in the ice region. Kdp is estimated using

the Wang and Chandrasekar [49] technique. This technique has been implemented in the

operational post-processing chain of the Arpa radar network and proven to be suitable for

the unsupervised processing of large data sets. In fact it does not require the estimation of

the system differential phase (which may typically fluctuate with time as a consequence of

hardware maintenance) and is insensitive to differential phase aliasing. The Kdp estimation

requires measurements with a good Signal to Noise Ratio (SNR), to avoid too noisy phase

measurements. A 5 dB threshold was used for this study, which implies that the effective

sensitivity of the two radar volume scans using the short pulse (Table 4.3) is decreased from

2 dBZ (4 dBZ) at 50 km range to 7 dBZ (9 dBZ) for the C-band (X-band) radar respec-

tively. The vertical profiles of temperature needed for the freezing level identification in the

attenuation correction procedure and for the Kdp analysis on which this paper is focused, are

taken from the 3-hourly output of the local area COSMO model (www.cosmo-model.org) run

over Italy (analysis at 00 UTC and subsequent 3-hourly forecasts). In previous verification

studies (COSMO Newsletter # 7, chapter 5.4) the accuracy of mid-tropospheric tempera-

ture analysis and 24-h forecast has been shown to be within 1◦C . The vertical profiles are

calculated considering all the radar volumes collected with a 5-minute frequency in a given

time interval (typically 1 hour or 24 hours). Only sweeps at elevation angles below 15◦ are
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used since the polarimetric signals decrease with higher view angles, due to the general hy-

drometeor orientation with the symmetry axis in the vertical direction. Additionally, range

bins farther than 50 km from the radar are excluded to avoid excessively sparse vertical

sampling. The data are then binned in 0.3 km height levels. The lowest available height is

900 m (layer 750-1050 m) for the C-band radar and 300 m (layer 150-450 m) for the X-band

radar.

Differential reflectivity measurements from the C-band radar are used in the following

sections, in addition to Zh , Kdp and ρHV , in order to support the characterization of the

dominant crystal habit limitedly to stratiform precipitation systems. As shown in Wolde

and Vali [27] and more recently in Williams et al. [50], strongly distinctive Zdr signatures

are associated with either dendrite crystals or plate crystals. Plate crystals, owing to their

high volume fraction of ice and low axial ratio may give Zdr values up to 6-7 dB, while

Zdr for dendrites with lower bulk density attains values in the range 1-2 dB. The required

accuracy on the Zdr measurements to distinguish between the aforementioned crystal habits

is therefore not as stringent (say 0.1-0.2 dB) as for use in quantitative polarimetric rainfall

estimation algorithms.

Figure 3 shows a scatterplot of the hourly average Zdr vs. Zh for the lowest level (900 m)

of 260 vertical hourly profiles in stratiform precipitation (refer to Section 4 for the profiles

processing and the stratiform/convective classification). Only profiles with the freezing level

above 1.5 km are considered to ensure the measurements are in the rain medium. The

Zdr values tend to approximately 0 dB when the reflectivity is below 20 dBZ, as expected

due to the mostly spherical shape of small droplets. Displayed for comparison (dashed line)

is also the Zdr vs. Zh average relation from Bringi et al. [3]. Differential attenuation at C

band may introduce a bias affecting Zdr measurements especially in the ice region, where
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Figure 3.2: Scatterplot of hourly averages of Zdr and Zh in rain from the lowest height level of
the 260 profiles in stratiform precipitation (Section 4). The solid line represent the nonlinear
fit to the data, the dashed line the Zdr (Zh ) relation from Bringi et al. [3].

the radar pulse is sensing the cloud after passing through the rain and the melting layer.

To check the effect on the average profiles we derived statistics from large dry aggregates

right above the melting layer in stratiform precipitation. Low density dry aggregates are

known for the intrinsic low Zdr [44]. The vertical profiles of Zdr show a local minimum just

above the freezing level (Fig. 14), where large aggregates are most likely to be found. The

temperature corresponding to this minimum for the daily profiles in stratiform precipitation

(27 events between April 2009 and December 2010, Section 4) is -2.6 ± 1◦C and the associated

average Zdr is 0.23 ± 0.14 dB, varying in the range -0.06 to 0.52 dB. Although these values

are slightly higher than the 0.25 dB upper limit reported in Ryzhkov and Zrnic [39] for

cold snow, the limited variability over the long period analyzed is a good indication of the

stability of the system and ensures the considered profiles are not significantly affected by
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differential attenuation. Overall, the Zdr average profiles for the stratiform precipitation

cases can be considered as accurate within 0.2 dB, which is enough for the purpose of crystal

habit identification.

3.2. Widespread stratiform precipitation case

In this section the same stratiform precipitation event analysed for the WRF 3D-Var

assimilation experiments in section 2.2 is considered.

Figure 3.3: Frequency plot of daily Doppler velocity observations from vertical looking X-
band radar scans (27 April 2009). The color scale represents the number of observations
Nobs in logarithmic units, using 0.3 m s−1 and 0.125 km intervals for velocity and height
respectively. The horizontal gray lines mark the temperature levels of 0 and -15◦C , while
the vertical gray line marks the 0 m s−1 velocity.

The X-band radar performed a scan strategy that included an acquisition at vertical

incidence within each 5-min volume scan. Doppler velocity observations at vertical incidence

(Fig. 3.3) allow to infer that riming was likely not relevant in the vicinity of the radar.
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In fact the lack of a significant number of particles with Doppler velocity lower than -1.5

m s−1 (downward) is here taken as an evidence of the negligible generation of graupel by heavy

riming [51]. However the capture of small supercooled cloud droplets by snow crystals can

still take place when the air is saturated over water and simultaneous growth of ice particles

and liquid droplets is effective [52, 53], without leading to the formation of heavily rimed

crystals like graupel. The ARX vertical observations are therefore considered as suitable for

investigating ice particle distributions mainly resulting from vapor deposition, light riming,

and aggregation.

3.2.1. Polarimetric radar observations. Figure 3.4 shows the C-band polarimet-

ric radar measurements collected at 0025 UTC during a PPI scan at the elevation of 7.4◦ .

Both Zh and Zdr show the characteristic increase in the melting layer, with a corresponding

low correlation coefficient ρHV in the range 0.8-0.96, deriving from the co-existence of liquid

and partially frozen particles [39]. The values of ρHV in the western portion of the domain

are in general lower due to the weaker radar echo (low SNR) and the Zdr field is conse-

quently noisier. At higher levels, on the East side of the radar domain, Zdr shows marked

positive values (up to 2.2 dB) along an azimuth sector about 135◦ -wide centered on the

-15◦C temperature level at ∼4.7 km MSL. The corresponding reflectivity varies in the range

10-25 dBZ. These values are fairly consistent with the category A microphysical regime (den-

drite crystals) described in Williams et al. [50], who found the enhanced Zdr layer (1-3 dB)

in different case studies at temperatures between -13 and -15◦C , and with corresponding

reflectivity between 10 and 30 dBZ. Similar Zdr signatures in this temperature range were

also previously reported by Sauvageot et al. [54], Wolde and Vali [27, 28], Andric et al. [55]
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Figure 3.4: PPI at 7.3◦ elevation at 0025 UTC from the C-band radar. a) reflectivity Zh ,
b) differential reflectivity Zdr , c) specific differential phase Kdp , d) correlation coefficient
ρHV . The overplotted circles mark several significant temperature levels from the local
model analysis at 00 UTC. The thick solid black (white) line in panels b) and d) represent
respectively the 0.98 (0.5◦ km−1 ) level contour of ρHV (Kdp ) respectively. Note the overall
good spatial matching between the positive Zdr and Kdp patterns around -15◦C , in a region
of relatively low correlation coefficient (ρHV< 0.98).

and Kennedy and Rutledge [41]. In particular Wolde and Vali [27] analyzed in-situ measure-

ments with microphysical probes and W-band airborne polarimetric observations, reporting

Zdr up to 2 dB for dendritic crystals within a nimbostratus cloud at -13◦C .

41



The Kdp field (Fig. 3.4c) shows a similar behavior as Zdr at this time, with the highest

positive values around 1.3◦ km−1 at X=20 km, Y=-25 km. It is interesting to note that

the positive signatures (Zdr and Kdp ) lie in a region of relatively low correlation coefficient

ρHV (Fig. 3.4d). The aforementioned positive peak appears confined in an area where ρHV<

0.98, with higher correlation coefficient below (closer ranges). The same is observed on

the tongue-shaped positive Zdr signature extending to the North, around X=28 km, Y=5

km. In general the region where Zdr ≥1 dB at altitudes where the temperature is lower

than -5◦C is characterized by ρHV in the range 0.95-0.98. The transition from relatively

low correlation and high Zdr to higher correlation and lower Zdr may indicate the onset of

aggregation, with highly oblate crystals being replaced by larger particles with lower density

and less anisotropic shapes.

One hour and a half later at 0155 UTC (Fig. 3.5), the melting layer thickened and lowered

by about 200 m, from ∼1.8 to ∼1.6 km MSL, apparently as a consequence of the presence

of larger aggregates (higher reflectivity above the freezing level) that require more time to

melt. On the other hand the main positive Zdr pattern aloft appears on average shifted

to a slightly higher altitude, from ∼4.7 to ∼5.1 km MSL. The quantitative distribution of

Zdr , and its relation with the correlation coefficient, did not changed significantly, with the

southern peak only increasing from 2.2 to 2.4 dB. The appearance of patches of Zdr in the

northeastern sector, between -10 and 25◦C , suggests a transition to a less stratified structure

of the upper cloud. Despite the certain stratiform signatures (principally the well-defined

bright band), this moderate cellular structure aloft seems to indicate a degree of turbulence

consistent with updraft motions stronger than those associated with the average widespread

frontal lifting. In his radar study of a warm frontal region Heymsfield [56] has shown the

generating cells above the warm frontal zone to be associated with a distinctly cellular
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Figure 3.5: Like Fig. 3.4, but at 0155 UTC. In this case the positive Kdp pattern extends at
lower altitudes, compared to Zdr , in the eastern sector (see text of Section 3.2.1).

structure and vertical velocity up to ∼0.4 m s−1 . According to Korolev and Mazin [52]

updraft velocity in the range 0.1-1 m s−1 is sufficient for typical ice particle concentrations

and sizes to reach the water saturation. In addition, at higher temperatures (e.g. -15 < T

< -5◦C ) the saturation over water can be reached with weaker updrafts, suggesting that the

small supercooled droplets may have traveled within the updraft before reaching the altitude

of the -15◦C isotherm. When the saturation over water is exceeded, the new formation of

supercooled droplets contributes to deplete the available water vapor and maintain the air

43



supersaturation level close to the saturation over water. In this water saturated environment,

the most likely crystal habit is the dendritic type ice crystals [57, 58].

While the positive Zdr values aloft did not change significantly between 0025 (Fig. 3.4)

and 0155 UTC (Fig. 3.5), the Kdp field shows a substantial increase, from a peak value

of 1.3◦ km−1 at 0025 UTC to 2.3◦ km−1 at 0155 UTC (southern sector). In addition, unlike

the rather good spatial matching between the Zdr and Kdp positive patterns at 0025 UTC,

90 minutes later we note how Kdp extends to lower heights, particularly in the western

sector (Kdp> 0.5◦ km−1 down to the -5◦C temperature level) in a region of low differential

reflectivity and high ρHV (>0.98). While Zdr is only related to the (reflectivity-weighted) axis

ratio and density of the hydrometeors, Kdp is also a function of the mass of the crystals ([25],

their eq. 7.101). So when aggregation starts to reshape the PSD near the -15◦C level (see also

comments about Fig. 16 in Section 4) both the axis ratio and density of the largest particles

are reduced, likely causing the sudden decrease of the Zdr values, but a rather smoother

decrease of Kdp . This behavior will be shown to be quite a common feature of the vertical

profiles of polarimetric measurements in stratiform precipitation (Section 3.3).

In order to compare the radar observations at C band and X band in the ice region

we computed the average values in a 1.3 km-depth layer (4.2-5.5 km MSL) centered on

the -15◦C temperature level. Fig. 3.6 shows the resulting average Kdp fields over the study

area at 0155 UTC. There is excellent agreement between the two radar estimates, partly

owing to the proximity of the two systems. The X-band Kdp estimates are higher resolution

compared to the C-band estimates because of the difference in range resolution (125 m versus

340 m, Table 4.3). Hourly average vertical profiles of the polarimetric radar measurements

have been calculated for both radars. In addition to the common statistical parameters

(mean and standard deviation), the 20-quantiles (vigintiles) have also been calculated [59] to
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(a) C-band (b) X-band

Figure 3.6: Average Kdp in the layer 4.2-5.5 km MSL (around -15◦C ), at 0155 UTC, 27 April
2009. a) C-band radar. b) X-band radar. A 50 km-range ring is overplotted for the C-band
radar (solid line) and the X-band radar (dashed line) in both panels. For ease of comparison,
the color palettes are scaled by the 1.67 factor, corresponding to the ratio of the operating
frequencies.

better represent the distribution of radar measurements, which are in many instances highly

non-Gaussian. In fact, the quantiles divide the sample in 20 subsets (5% spaced classes)

containing approximately the same number of observations and represent the boundaries

between the resulting equal-populated classes. This allows a more comprehensive description

of the data and an effective graphical representation of the distribution, with special emphasis

on extreme values. Conversely, a simple average of hourly or daily profile may hide significant

polarimetric signatures resulting from a transient microphysical process.

Fig. 3.7 show the Zh and Kdp quantiles distribution with height for the C-band (a) and

the X-band (b) radar data, corresponding to one hour (04-05 UTC) of light to moderate

precipitation. The quantiles are only plotted between 10 and 90% to exclude possible outliers

from the visualization. The overlaid average Kdp profiles at the two frequency bands show a
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(a) C-band

(b) X-band

Figure 3.7: a) Graphical representation of the distribution of reflectivity (left) andKdp (right)
at all height levels (y-axis, 0.3 km vertical spacing) for the 04-05 UTC data collected on 27
April 2009 by the C-band radar. Colors represent the values of the quantiles (x-axis) of
Zh (a) and Kdp (b). The overplotted white line in both panels represents the average profile
(upper scale) and the horizontal white dashed line marks the height of the -15◦C level. b)
Same as a), but for the X-band radar.

46



peak between 4.5 and 5.0 km MSL, roughly corresponding to the -13 to -15◦C temperature

interval as per the 03 and 06 UTC COSMO model forecast. In generalKdp in the ice region at

X band is observed to be about 1.7 times higher than Kdp at C band, in good agreement with

the ratio of the operating frequencies of the two radars. Peak values of observed Kdp during

the event are ∼2◦ km−1 at C band and ∼3.5◦ km−1 at X band, respectively. Such values are

consistent with the scattering simulations reported in Kennedy and Rutledge [41]. When

Kdp values are well above the typical measurement error (i.e. Kdp>0.2◦ km−1 at C band),

Kdp fields at the -15◦C level at C and X band are highly correlated (the Pearson’s correlation

for the pairs of Kdp maps is r>0.9), indicating the robustness of the Kdp estimates in the ice

region. Reflectivity fields instead are less correlated (0.7<r<0.9) likely due to the variability

of the response of C vs. X band to a given PSD and to path attenuation uncertainties

determined both in rain and melting layer.

Figure 3.8 shows the frequency plot of Kdp at C and X band at the -15◦C level for the

first 10 hours of the day, when the highest rainfall amounts were recorded by the surface

gauges in the area (accumulations between 12 and 51 mm). The relation between the two

frequencies appears roughly linear, although for higher Kdp the C-band values underestimate

the corresponding X-band scaled estimates. This behavior only concerns the peak values and

it is believed to be a simple consequence of the different range resolution (Table 4.3), for

which the higher range resolution at X band allows to detect more intense local maxima.

3.2.2. Comparison with electromagnetic scattering simulations. T-matrix

simulations of scattering at C and X band have been performed to interpret radar measure-

ments at the -15◦C isotherm level, using simplified assumptions based on those adopted by

Kennedy and Rutledge (2011). The population of particles at the -15◦C level is modeled as a

mix of highly oblate spheroid crystals for diameter smaller than 3 mm with axis ratio varying
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Figure 3.8: Frequency plot of Kdp at C-band (x-axis) and X-band (y-axis) for the ten
hours interval 0000-0955 UTC on 27 April 2009, in the layer 4.2-5.5 km MSL (around
−15◦C ). The color scale represents the number of observations Nobs in logarithmic unit,
using 0.05◦ km−1 intervals.

between 0.05 and 0.15 and bulk density values as reported in Heymsfield et al. (2004) and

aggregates for larger diameters. Exponential PSD are assumed with N0 varying between

50×103 to 400×103 cm−1m−3 and Λ between 25 and 45 cm−1 [60, 41]. Simulations show

that Zh values are not significantly influenced by the frequency, Kdp can be scaled according

to the ratio of wavelengths and, finally, resonance effects such as the differential phase shift

upon backscattering are negligible at both frequencies.

Figure 3.9 shows the observed Kdp vs. Zh dispersion at C band (panel a) and X band (b),

together with the results from the scattering simulations. The observed radar variables are

the averages in the 4.2-5.5 km height layer during ten consecutive hours, as in Fig. 11. Given

the influence of wet radome attenuation on X-band power measurements, the reflectivity
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Figure 3.9: Frequency plot of Kdp vs. Zh (colors) at C-band (a) and X-band (b) for the ten
hours interval 0000-0955 UTC on 27 April 27 2009, in the layer 4.2-5.5 km MSL (around
-15◦C ). The color scale represents the number of observations Nobs in logarithmic units,
using 1 dB and 0.05◦ km−1 intervals for Zh and Kdp respectively. Overplotted (gray crosses)
are the simulated values for the PSD representing ice particles at the -15◦C level.

values for each scan have been corrected based on the 1-minute rain rate measurements

from the co-located optical disdrometer [61]. A fairly good agreement at C band is noted

for the positive Kdp values. The agreement is slightly worst at X band due to the higher

dispersion of the observations and a reflectivity bias of about -1.4 dB, compared to the C-

band measurements. The higher dispersion of the X-band reflectivity is likely related to

the increased uncertainty affecting the power measurements due to 1) residual wet radome

attenuation and 2) under-estimation of the path attenuation. The average -1.4 dB bias

between the X-band and C-band radar may also be a result of the excess attenuation at the

higher operating frequency.
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3.3. Analysis of polarimetric vertical profiles from C-band radar

observations

Space-time average vertical profiles allow a statistical evaluation of the vertical structure

of the atmosphere from radar measurements. Specifically the relation between measurements

at different height levels can be addressed without explicitly considering the height-dependent

advection, relying on the assumption that within a given observation period (∼hours) the

observed cloud water content aloft will mainly precipitate within the same (sufficiently large)

sampling area. More than one year of data routinely collected at C band between 2009 and

2010 by the operational radar was analyzed leading to a selection of 54 significant rainy days.

This choice was objectively made based on the regional raingauge network by selecting only

the days when at least 5 mm of cumulative precipitation was recorded by at least one rain-

gauge over the area of interest, defined in this instance by the 50 km-range area around the C-

band radar only. Daily and hourly profiles were calculated for all polarimetric measurements,

allowing to work on a wide statistical sample and check possible differences at the two time

scales. In order to perform an objective partitioning of the dataset into stratiform/convective

cases, the characteristic distribution of reflectivity vertical profiles described for example in

Steiner et al. [62] and Yuter and Houze [63] is exploited to define a metric for convectivity

named Radar Convective Parameter (RCP), described in the Appendix B.

For the purpose of the following analyses we arbitrarily define an event to be strati-

form when RCP is lower than 50th percentile and convective elsewhere. Figure 3.10 shows

the histograms of the resulting monthly distribution of stratiform and convective days. A

well-defined seasonal distribution arises from the automated classification, with convective

events mainly concentrated in the summer months between June and August and strati-

form events more frequent in autumn and spring. May is typically a transition period, with
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(a) Stratiform (b) Convective

Figure 3.10: Histogram of the monthly distribution of the 54 selected events. a) Stratiform
cases. The light gray bars represent the events with freezing level below 1.5 km MSL.
b) Convective events. The stratiform/convective classification is based on the RCP value
(Appendix B). Note the bimodal distribution for stratiform precipitation, with peaks during
spring and fall. On the other hand, the convective events are concentrated during the summer
months.

both stratiform and convective events. Winter is the driest season in northern Italy, the

dataset analyzed being not an exception, with no significant precipitation between January

and March.

3.3.1. Polarimetric vertical profiles and their relation with crystal habit.

Figure 3.11 shows the hourly vertical profiles of the four radar variables Zh , ZdrKdp and ρHV ,

with colors representing the RCP value. The decreasing magnitude of the correlation co-

efficient (Fig. 3.11d) for lower RCP values can be ascribed to the bias introduced by the

conventional zero lag ρHV estimator at low SNR [64], more likely to occur in stratiform pre-

cipitation. The change from stratiform to convective conditions can be clearly seen by the

vanishing of the bright band nose in the reflectivity profiles, fairly correlated with the in-

creasing RCP. The melting layer causes a well-defined local enhancement Zh , Zdr and Kdp ,
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Figure 3.11: Hourly vertical profiles of C-band Zh (a), Zdr (b), Kdp (c) and ρHV (d) colored
according to their respective RCP value. The RCP quantiles (0, 25, 50, 75, 100%) are respec-
tively (1.1, 2.7, 3.9, 7.3, 21.7 dB). The black (gray) thick lines represent the average of the
daily profiles for stratiform (convective) events. It is possible to note several Zdr convective
profiles (high RCP) notably affected by differential attenuation (negative values up to -1
dB). In order to highlight the variations for small values, the Kdp profiles are plotted on a
log-axis.

occurring (with slight differences, depending on the considered measurements) just below

the freezing level, evident in profiles with RCP lower than approximately 5 dB (see also the

solid thick lines in Fig. 3.11, representing the average of all daily profiles). The melting layer
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is also very well captured in the profile of ρHV , by virtue of its sensitivity to the diversity

of orientation, shape, size and thermodynamic phase of the hydrometeors. Interestingly, the

melting layer signature is well defined in Zdr and ρHV also for profiles with higher RCP, i.e.

with increasing convective characteristics [65].

The increase around the -15◦C level on the other hand is only depicted in the Zdr and

Kdp profiles. As already noted in Section 3.2, the peak appears sharper in Zdr than in Kdp ,

likely as a consequence of the different shape and mass-dependency of the two variables. The

analysis of Zdr reveals that the peak around -15◦C in the hourly profiles for stratiform precip-

itation varies between 0.1 and 1.3 dB (mean values), while the 90th quantile span over 0.5-2.5

dB, without any apparent relation with the reflectivity. Kdp instead shows a fairly defined

increase with reflectivity, which is further discussed in the next subsection. Also noteworthy

is the sudden increase in ρHV below the -15◦C level for stratiform precipitation (Fig. 3.11).

A similar increment is also observed in the reflectivity profiles (while Zdr decreases), being

indicative of the transition to a warmer layer, where aggregation produces larger particles

with lower density and the overall anisotropy of the medium is reduced.

The generally moderate Zdr peak encountered in this study (Zdr ≤ 2.5 dB for 90% of

the data) suggests that values as high (6-7 dB) as reported by either Wolde and Vali [27]

for high density plate crystals in the size range 0.2-1.5 mm or by Williams et al. [50]

are relatively uncommon in our geographical region for the type of meteorological events

considered. Actually, Wolde and Vali [27] observations of dendritic crystals with sizes up

to 4-6 mm (∼2 dB at -13◦C ) refer to nimbostratus (Ns) observations, while the highest

observed Zdr (up to 7 dB) refer to hexagonal plates in shallow altocumulus (Ac), which are

typically not associated with surface precipitation. We note in this context that the 5 mm

threshold on the surface rainfall adopted as a selection criterion for this study led to select
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a number of events characterized by similar warm frontal synoptic conditions, especially

relevant for their hydrological impact. While the mesoscale forcing associated with a warm

front passage is expected to produce large areas of weak updrafts, the vertical velocity field

is certainly modulated by smaller scale turbulence, as evidenced by the frequent insurgence

of the Zdr patched patterns shown in Fig. 3.5. Outside the weak updraft regions it is then

reasonable to expect that the air saturation over water is not always reached, making the

environment favorable to hexagonal plate crystals [57, 58]. However, due to the much smaller

sizes of these higher-density crystals, and considering the sensitivity limitations of our cm-

wavelength radar (Section 2), the fact that we did not observed in the cases analyzed a

correspondingly high Zdr cannot be considered an indication of the lack of hexagonal plate

crystals in these clouds.

Korolev et al. [66] provided statistics from four measurement campaigns in stratiform

clouds. Although the plate category was not included in that study (due to the insufficient

resolution of the particle measuring system), the frequency of occurrence in the -10◦C to

-15◦C temperature interval of the largest particles (>500 µm, most likely to influence radar

measurements) is shown to be dominated by irregular crystals (particles having an irregular

or random shape - 64%), followed by dendrites (28%). Given this general partition, it is not

surprising to observe in our region the average Zdr distribution shown in Fig. 3.11.

3.3.2. Kdp enhancement in the ice region. The Kdp enhancement around the -

15◦C level in the ice region of stratiform situations (Fig. 3.11c) appears close to a local

maximum in the height derivative of the reflectivity vertical profile (Fig. 3.11a, the slope of

thick black line increases towards the ground after crossing the -15◦C level). According to

Lo and Passarelli [60], the increased height derivative of reflectivity may be interpreted as an
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indication of the transition from vapor deposition to aggregation processes. Although aggre-

gation normally occurs at temperatures warmer than -5◦C , a secondary maximum between

-10 and -16◦C may exist when the arms of the dendritic crystals become entangled [67].

Figure 3.12: Histogram of the temperature distribution of the maximum Kdp within the ice
region (T < 0◦C ) from the daily vertical profiles. Dark bars refer to the daily 90th percentile
Kdp , while light bars to the daily average Kdp .

Figure 3.12 shows the temperature distribution of the maximum Kdp location in the ice

region (T < 0◦C ) for the profiles classified as stratiform. The 5◦C -interval histograms show

both the temperature distribution of the peak values derived from the daily averageKdp (light

bars) and from the daily 90th percentile (dark bars). The peak of the 90th percentile is well

defined and centered at -14.5◦C (mean value), while the average Kdp shows a less pronounced

peak around -12◦C . This is a clear indication that positive values of Kdp , when observed in

the ice portion of the precipitation system, are preferentially associated with the dendritic
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growth zone around -15◦C , as already pointed out in the case study discussion of Section

3.2. The average Kdp profiles are smoothed by averaging process and a local peak may not be

easily recognizable. In fact, processes like growth by vapor deposition, as well as riming by

small supercooled droplets when the air is saturated over water, are enhanced by updrafts,

which normally occur over a confined space-time portion of the stratiform precipitation event.

3.3.3. Statistical correlations between observations at -15◦Cand lower

levels. Using particle trajectory calculations, Kennedy and Rutledge [41] have shown the

linkage between the positive Kdp aloft and the snowfall intensification at the surface. While

their conclusions were limited to snow, from a hydrological point of view it is extremely

valuable to identify specific radar observations that may represent a precursor for the surface

rainfall onset or intensification. We therefore exploit the large dataset of radar vertical

profiles elaborated for the present study, seeking for statistical correlation between the radar

observations aloft (specifically the Kdp enhancement) and near the surface.

For the following analysis only events in which the freezing level was above 1.5 km MSL

are considered (dark gray bars in the histogram of Fig. 3.10), in order to avoid vertical

gradients associated with melting. This is done to allow meaningful comparisons with the

lowest level (900 m MSL) radar averages of Zh and Kdp , which are taken as representative

of the mean rainfall rate near the surface. Among the initial 54 rainy days, only four were

discarded based on the above threshold on the freezing level. We denote as r(P cold, Qwarm)

the Pearson correlation coefficient between a radar measurement P at the upper cold level of

-15◦C (P cold) and the measurement Q at warmer temperatures (Qwarm, where warm denotes

temperatures above -15◦C at lower heights). Specifically, we are interested in analyzing

(P cold, Qwarm) pairs such as (Zcold
h , Zwarm

h ), (K̃cold
dp , K̃warm

dp ), (K̃cold
dp , Zwarm

h ), where K̃dp =

10log10(Kdp) is used to linearize the relation between Zh and Kdp (Section 3.2). Note that
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this procedure is not directly affected by the change in the dielectric factor among profiles

since the correlation is calculated between two radar variables, each at a given temperature

level, e.g. at -15◦C (cold) and Zh at +5◦C (warm). However, some minor influence on the

correlation at different levels is possible since the change in the dielectric factor affects the

radar detectability of particles.

In general the microphysical processes relevant for the precipitation growth depend on

the temperature, and not on the absolute height. Therefore, we want to compute statistics

as a function of the air temperature (taken from the COSMO local area model) to compare

vertical profiles from different meteorological events. In order to compensate for varying

surface temperature, the temperature at altitudes below the melting level (T > 0◦C ) is

normalized to the average (over all events) lowest level temperature of 12◦C , according to:

(9) T̃ = 12
T

T900m

◦C

Figure 3.13a shows a scatterplot of the -15◦C hourly reflectivity versus the lowest level

reflectivity for convective (open circles) and stratiform (filled circles) events. The overplot-

ted regression lines with confidence intervals emphasize the significant positive correlation

between the reflectivity aloft and near the surface for both stratiform and convective pre-

cipitation. Fig. 3.13b summarizes the computed correlation values for all the temperature

levels, the correlation, with 3◦C -spacing, for both hourly and daily profiles. In Fig. 20

the analogous r(K̃cold
dp , K̃warm

dp ), correlation is presented. The correlation is calculated on a

total of 526 hourly profiles (260 stratiform and 266 convective) and on the 50 daily pro-

files. Although the daily profiles form a much lower statistical sample (23 stratiform and 27

convective events), the same qualitative results are found.
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(a) (b)

Figure 3.13: a) Scatterplot of hourly average Zh aloft (-15◦C ) versus Zh at the lowest level
(900 m MSL) for stratiform and convective precipitation. The solid black (gray) line is the
regression for stratiform (convective) cases; the dashed lines mark the 99% confidence inter-
val. b) Correlation coefficient between Zh aloft (-15◦C ) and Zh at lower levels (3C-spacing)
for both hourly and daily average profiles. The superscript (*) on the y-axis temperatures
indicate normalized values (eq. 9).

The statistical significance of the correlations between the -15◦C level and the lower levels

subsequently reported is always ensured at the 0.5% level (α=0.005 is the significance level

under which the null hypothesis of no correlation is rejected) for both hourly and daily

stratiform profiles. Reflectivity shows a decreasing correlation from the initial value of unity

at -15◦C (correlation between the -15◦C level reflectivity with itself) to approximately 0.4-

0.6 at the lowest level. There is a qualitative difference between stratiform and convective

cases, with lower correlation in the melting layer for the stratiform precipitation and a more

linear trend for convection. This behavior, and the higher slope of the regression between

Zh aloft and near the surface (Fig. 3.13a), are explainable in terms of the lower stratification

(higher mixing) for the convective cases and keeping in mind that the small scale variability
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if filtered out by space-time integration in the calculation of the mean profile. No significant

differences are observed between the 1-hour and the 24-hours correlation profiles. This result

is indeed expected, since it forms the basis for the widely used Vertical Profile of Reflectivity

(VPR) correction methods [68, 69].

Figure 3.14: Correlation coefficient between log-transformed Kdp aloft (-15◦C ) and Kdp at
lower levels (3◦C -spacing) for both hourly and daily average profiles.

Less predictable is the r(K̃cold
dp , K̃warm

dp ) correlation (Fig. 3.14). For convective cases the

correlation decreases rapidly to approximately zero below the melting layer, indicating that

the specific differential phase in the rain medium has, in general, no relation with the values

observed aloft in the ice region. On the other hand, for stratiform cases, the r(K̃cold
dp , K̃warm

dp )

correlation shows a behavior closer to the r(Zcold
h , Zwarm

h ) correlation, with moderate values

(> 0.5) at all temperature levels.
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For stratiform events the measured range of the hourly 90th percentile Kdp aloft over

all the events is -0.02 to 0.99◦ km−1 , with 8% of the values of Kdp< 0.1◦ km−1 . On the

other hand, the range of hourly 90th percentile Kdp at the lowest 900 m height level is

0.04 to 0.59◦ km−1 , with a higher fraction (31%) below the 0.1◦ km−1 threshold. We notice

that the correlation of Kdp aloft with the corresponding Kdp at the lower levels could be

affected by the lack of sensitivity of Kdp measurements in the light rain, such as that typically

occurring in light rainfall intensities of stratiform precipitation systems. For this reason it

is useful to consider also the r(K̃cold
dp , Zwarm

h ) correlation, i.e. the correlation between Kdp at

the -15◦C temperature level and Zh at lower altitude levels, since Zh has no such sensitivity

limitation within the 50 km range.

(a) (b)

Figure 3.15: a) Scatterplot of hourly average Kdp aloft (-15◦C ) versus Zh at the lowest level
(900 m MSL) for stratiform and convective precipitation. The solid black (gray) line is the
regression for stratiform (convective) cases; the dashed lines mark the 99% confidence inter-
val. b) Correlation coefficient between Kdp aloft (-15◦C ) and Zh at lower levels (3◦C -spacing)
for both hourly and daily average profiles. The superscript (*) on the y-axis temperatures
indicate normalized values (eq. 9).
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A scatterplot of the hourly average Kdp at the -15◦C temperature level versus Zh at the

lowest 900 m level, with regression lines for stratiform and convective events, is shown in

Fig. 3.15a. The regression line over the stratiform sample shows a positive slope indicating

an increase in Kdp with increasing Zh . On the contrary, the points representing convective

cases appear mostly randomly distributed with a weak negative correlation. Fig. 3.15b shows

the correlation summary for all levels. For stratiform cases the correlation varies between

approximately 0.5 above the freezing level and 0.7 below, for both hourly and daily profiles.

If we enforce a stricter definition of stratiform precipitation, considering only events with

RCP < 25th percentile, then the correlation between Kdp at -15◦C and Zh at 900 m increases

to approximately 0.8 for both hourly and daily profiles, while it remains around 0.5-0.6 be-

tween Zh at -15◦C and Zh at 900 m (not shown). This marked correlation can be seen as an

indication of the ability of Kdp aloft to represent the ice water content (IWC) ([25], their

eq. 7.17). Since we are applying a relevant space-time averaging in the derivation of the

vertical profiles, Zh in the rain layer is well related to the precipitation liquid water content

(LWC). In fact a Marshall-Palmer exponential relation represents fairly well the drop size

distribution (DSD) after enough space-time averaging [70]. For ice PSD mainly arising from

water vapor deposition (plate-like crystals) the IWC has been shown to be linearly related

to Kdp , as opposed to the power law relation between the IWC and Zh (Vivekanandan et al.

1994). In the absence of other microphysical processes contributing to IWC generation at

lower altitudes (riming, accretion) and neglecting evaporation, the LWC below the freezing

level is expected to be strictly connected to the IWC around -15◦C . This is because the par-

ticle distribution undergoes modifications mostly through aggregation in the layer between

-15◦C and 0◦C and therefore should keep its IWC essentially unchanged. The correlation
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between Kdp aloft and Zh in rain is then taken as an evidence of a plausible representation,

on average, of the IWC by Kdp in this particular ice region of the stratiform clouds.

The results shown in Figs. 3.12-3.15 clearly reveal the existence of a statistically signifi-

cant link (at the 0.5% significance level) between peak values of Kdp in the ice region and the

precipitation near the surface for mesoscale widespread precipitation systems. No positive

correlation is found for convective precipitation, for which other processes such as heavy rim-

ing may overwhelm the depositional growth of ice. A slightly negative correlation is found

actually for convective events (Fig. 3.15b), more pronounced (r∼-0.3), but less significant

(15% significance level) for daily average profiles. This negative correlation, opposite to the

stratiform case, can be attributed to the increasing role of particle growth by riming, which

contributes to generate higher-density particles with lower Kdp in the ice region and larger

Zh over the whole vertical profile, resulting in higher rainfall intensity near the surface.

Unlike Kdp , the reflectivity aloft was shown to be fairly correlated (r∼0.5) with the

lowest level reflectivity for both stratiform and convective precipitation (Fig. 3.13). The

Kdp peak around the -15◦C temperature level appears to be therefore a distinguished feature

of stratiform precipitation, where the vapor deposition mechanism, possibly combined with

condensational growth of liquid droplets in the water saturated cloud, can be considered the

dominant ice-particle growth processes [71, 53].

3.4. Discussion and conclusions

Differential phase shift measurements and specific differential phase estimators have re-

ceived considerable attention in recent years mainly due to their potential for hydrological

applications [72, 73]. Kdp -based rainfall rate estimators in particular have become increas-

ingly popular, especially at attenuating frequencies such as C band and X band for their
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insensitivity to path attenuation and the increased sensitivity for light rain measurements

at these frequencies [74]. In contrast, measurements in the ice region of precipitating sys-

tems where the hydrometeors can exhibit considerable anisotropy to dual polarization radar

methods have been only occasionally considered [37–41]. The present study has extended the

results of Kennedy and Rutledge [41] who analyzed Kdp at S band in several winter storms in

Colorado. For the present research a large dataset of measurements collected between 2009

and 2011 by the operational C-band radar of Bric della Croce (Torino, Italy) was processed.

Additionally, a single significant stratiform event observed by the C-band radar and by the

nearby deployed ARX transportable X-band system has been studied in more detail.

A first result of the present work elucidates the microphysics behind the studied signa-

tures of Kdp in stratiform precipitation. The analysis of the coincident C-band and X-band

measurements in the ice region demonstrated that, in agreement with electromagnetic scat-

tering simulations, the ice particles in the region centered around -15◦C are Rayleigh scat-

terers because Kdp scales with frequency. Vapor deposition, associated with riming by small

supercooled droplets at water saturation [53], is the most relevant snow growth process in

stratiform clouds, occurring in the region where the difference between the saturation vapor

pressure over water and the saturation vapor pressure over ice is the greatest. In this region,

between approximately -12 and -16◦C , plate-like crystals present the most effective shape

for the deposition of the ambient water vapor by virtue of the high surface-to-volume ratio

[67]. The ice crystal habit is in general a function of both temperature and supersaturation

(with respect to ice). In particular, the appearance of hexagonal plate crystals (high den-

sity) or dendrites (lower density) in the -10 to -20◦C is governed by the relative humidity

and the consequent level of supersaturation in the cloud [58]. As noted in Williams et al.

[50], dendritic crystals represent the most likely crystal habit for the considered temperature
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range in water saturated regions. A detailed analysis of the polarimetric radar signatures for

a single case showed qualitative and quantitative agreement with previous observations of

dendritic crystals [27]. The following evaluation of the polarimetric characteristics of the av-

erage vertical profiles for 27 days of stratiform precipitation allowed to extend this evidence

and to deduce that dendrite crystals represent a common crystal habit in the -15◦C region,

for autumn and spring stratiform precipitation in the Italian subalpine region.

The presence of dendritic crystals, whose branches are prone to become entangled [67]

and collect the available supercooled droplets to form rimed aggregates, is probably one

plausible reason for which these signatures are so easily revealed by cm-wavelength radars

[55, 41, 50], whose detection capabilities are strongly dependent on the availability of large

scatterers. This leads us to remark that, although dual-polarized radar observations provide

an invaluable tool for the observation of ice clouds, the crystal habits and relevant micro-

physical processes can only be comprehensively depicted using a wider range of observing

instrumentation systems, ultimately relying on in-situ measurements.

Secondly, statistical evidence is presented that the Kdp signature in stratiform precipita-

tion occurs near the -15◦C level, irrespective of altitude. Being independent of the precipi-

tation type at the ground, it appears to be a relevant feature not only in snowfall, but more

generally for widespread rainfall events, which in the area of interest are most likely to occur

during spring and fall. For the 27 days analyzed the height of the -15◦C temperature level

ranged between 3.9 and 6.0 km MSL and the surface daily average temperature between 1.3

and 16.9◦C . For over 70% of the cases the maximum value of Kdp above the freezing level

was found between -10 and -18◦C . A restriction of the dataset to include only the days with

the freezing level height above 1.5 km MSL (23 stratiform daily profiles, 260 hourly profiles)

was applied to calculate the correlation between the radar observables (Zh and Kdp ) aloft
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and the corresponding observations in rain at the lowest available level (900 m MSL). Since

the low level average Zh can be taken as adequately representative of the surface precipita-

tion rate for light to moderate intensities, the correlation found between Kdp in ice at the

-15◦C level and Zh in rain (r∼0.7, Fig. 3.15) is considered especially relevant for potential

hydrological applications and short term precipitation forecasting.

The skeweness of the reflectivity distribution is considered to define a convective param-

eter named RCP (Radar Convective Parameter, described in Appendix). More generally,

the skewness of the distributions of the polarimetric variables is an important characteristic

that could be further exploited to derive valuable information about the microphysical state

and processes of precipitation particles. A local characterization of the distributions, e.g. by

n-quantiles calculation over limited space-time domains, may also have a potential to benefit

the performance of hydrometeor classification schemes [75, 4].

Fig. 3.16 finally summarizes the correlation statistics (Kdp aloft vs. the near-surface

reflectivity) as a function of the RCP value associated with the analyzed hourly profile. In

this plot the Pearson correlation r and the rank (Spearman) correlation rS are shown for ten

equal-sized classes, each bar representing the correlation calculated over approximately 50

samples. The rank correlation does not assume a linear relationship, but just a monotonic

one, so there is no need to linearize theKdp - Zh relation by taking the log values of the former

variable, as for the Pearson correlation. The rank correlation is in general higher than the

Pearson correlation, as expected, being more robust to outliers [76]. The plot highlights the

dramatic difference between stratiform and convective precipitation. In particular, the trend

presents a marked step change around RCP = 4 dB, with the lowest 40% of the total sample

having a rank correlation near rS = 0.8. This presents clear evidence that the statistical
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Figure 3.16: Pearson correlation (dark bars) and Spearman (rank) correlation (light bars)
between hourly Kdp aloft (-15◦C ) and Zh at the lowest level for ten equal-sized classes of
the Radar Convective Parameter (RCP). The values on the x-axis at the base of the bars
denote the left and right limits of the RCP classes.

correlation between the Kdp signatures associated with snow growth aloft and the surface

precipitation rate is unique to stratiform precipitation.

The correlation statistics focused on events with a relatively high freezing level (> 1.5

km MSL) for ease of comparison with the low level reflectivity, representative of the surface

precipitation rate. While precipitation associated with purely stratiform rain has generally

moderate consequences on the subalpine Italian territory, even weak snowfall events over

the plains can have a major impact, especially on ground transportation and aviation. For

this reason it will be fundamental to assess whether and under which circumstances the

presented results may extend to snowfall episodes. At the same time, the origin of the

statistical correlation between observations aloft and surface precipitation will need to be

further explored. In particular time-lagged analysis between Kdp in the ice region and surface
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precipitation (from either gauges or radar) will help to assess if there is a potential for

prognostic applications.
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CHAPTER 4

Hydrometeor classification

The WRF 3D-Var reflectivity assimilation (version 3.4), similarly to other radar assim-

ilation schemes, is currently relying on a warm-rain process physics [22]. This means that

only rainwater increments are considered in the minimization of the cost function. Ice-phase

schemes are nowadays under development by researchers within the numerical model com-

munity. Once those schemes will become available more radar information will be usable

for assimilation, providing accurate microphysical retrievals that are expected to improve

numerical weather prediction. In particular, methods will need to be devised to incorporate

into the assimilation schemes the information about the hydrometeor phase and type (rain,

hail, snow,...) from dual-polarization radar.

Besides microphysical retrievals application for numerical models, hydrometeor classifi-

cation is also relevant to:

• QPE (Quantitative Precipitation Estimation), providing a guidance for application

of the most suitable semi-empirical relation to estimate the rainfall (snowfall) in-

tensity;

• discriminate between hail and heavy rain;

• identify aircraft icing conditions.

In view of the numerical modeling anticipated progresses and the aforementioned poten-

tial applications, we devise a need for a robust radar hydrometeor classification methodology.

Although classification schemes have been developed and even operationally employed over

the last decade at S band, frequencies such as C band and X band present specific challenges

due to non-Rayleigh particle scattering, attenuation and differential attenuation.
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4.1. Background

The radar variable employed for hydrometeor classification are listed in table 4.1, with

the corresponding definitions in terms of:

• wavelength λ;

• radar cross sections at horizontal or vertical polarizations σh,v;

• dielectric factor kw,i (water,ice);

• complex forward scatter amplitudes at horizontal and vertical polarizations fh, fv;

• elements of the backscattering matrix Shh, Svv.

Table 4.1: Definition of the radar variables relevant for hydrometeor classification.

Radar variable Definition Unit

Reflectivity Zh,v = 10 log10


 λ4

π5|kw,i|2

Dmax∫

Dmin

σh,v(D)N(D)dD


 dBZ

Differential
Reflectivity Zdr = Zh − Zv dB

Specific Differential

Phase Shift Kdp =
180

π
λRe

Dmax∫

Dmin

[fhD − fvD]N(D)dD ◦ km−1

Correlation
Coefficient ρHV =

∣∣∣∣
〈Svv · S

∗
hh〉

〈S2
hh〉1/2 · 〈S2

vv〉1/2

∣∣∣∣ -

Dmin and Dmax are the minimum and maximum diameter of the hydrometeors in the distribution
N(D). Asterisk is complex conjugate, and the angle brackets indicate expectation values.

The early work of Straka et al. [77] provides a basic description of the radar variables

as for their characteristics and potential in hydrometeor classification. More recent studies
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have extended the discriminating capabilities in specific circumstances, in particular for ice

particles.

Most of the recent hydrometeor classification schemes are based on fuzzy logic [78, 75, 4,

79–81]. When the fuzzy logic algorithm is applied to noisy input variables, the resulting clas-

sification is also noisy. This is inherently due to the fact that the classification is performed

on the individual radar resolution bins (hereafter simply bins) with typical size ∼ 1◦ ×100 m,

irrespective of the surrounding observations. For operational applications in particular it is

desirable to have a smooth and clear output to ease the interpretation by the end user. An

obvious way to get a smooth output is by filtering either the input variables or the final

classification. In this paper we present an attempt to produce a noiseless classification by

combining in a unique way:

• the quality (or strength) of the classification

• the spatial coherence and self-aggregation propensity of the observations

• basic microphysical constraints

The aim is to define an objective and completely automatic procedure to attain a result

as close as possible to the classification that a human expert could perform. The items

listed above are natural information sources that a radar expert is normally considering to

partition the physical space in different categories based on the multiple inputs provided by

the polarimetric radar observations. The adopted approach lies within the class of semi-

supervised learning and is implemented here around a core cluster analysis module. In this

type of learning methods, also called constraint-based, the auxiliary background knowledge

or a given amount of labeled data is used to improve the partition of the data space. The

technique is basically heuristic. In fact the supervised component of the analysis relies on
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constraints and rules which can be ultimately considered background knowledge supported

by precipitation microphysics.

The proposed method assumes that a standard bin-based classification scheme is already

available and is intended to improve the initial output, through noise reduction and ex-

ploitation of the self-aggregation process inherent in cluster analysis. The ultimate goal of

the method is to attain a simplified picture of the hydrometeors distribution, summarized

by a limited number of connected regions in the two-dimensional observation space (either

PPI or RHI).

The development of the classification methodology considerably relies on techniques com-

monly used in data mining and digital image processing. In particular an adaptation of the

K-means clustering algorithm [82] is developed to incoporate a spatial contiguity constraint

and a penalty term for the inclusion of microphysical constraints. One of the distinguishing

points of the proposed methodology is that the final classification is performed over con-

nected regions, as opposed to traditional methods which are applied to the individual range

bins or Cartesian grid points. The connected regions in the radar observations domain can be

derived based on digital image analysis techniques. In this work, the Connected Component

Labeling (CCL) algorithm [83, 84] is employed for the identification and unique labeling of

regions populated with adjacent bins assigned to the same hydrometeor class.

For the definition of the dual-polarization variables ranges and membership functions for

the set of hydrometeor classes we rely on the relevant published work, in particular [77, 4, 79]

for S-band, [85–87] for C-band, [80, 88, 89] for X-band.

In Section 4.2 the proposed methodology is described in detail, and in Section 4.3 ap-

plication examples using data from different radars operating at frequencies ranging from
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S-band to X-band are illustrated. Section 4.4 presents a statistical evaluation of the method

and finally Section 7.4 summarizes the main results.

4.2. Method for noiseless hydrometeor classification

The basic building block of the classification procedure is the quite popular fuzzy logic

method depicted in Fig. 4.1. The success of the fuzzy logic techniques in hydrometeor

classification is likely due to the ease of implementation. All that is needed is a proper set of

rules, generally implemented through analytical membership functions. The specific fuzzy

logic technique adopted here is essentially based on the classification methods described in

[78] and [79], with few modifications discussed in Section 4.2.1. The overall structure of

the classification algorithm is represented by the diagram in Fig. 4.2. The building blocks

1-4 encompassed by a the dashed line are discussed in detail in the following sub-Sections.

Hereinafter we’ll refer to the output of blocks 2, 3 and 4 in Fig. 4.2 respectively as bin-based,

cluster-based and region-based classification.

The input radar variables for the hydrometeor classification are: reflectivity Zh , differen-

tial reflectivity Zdr , specific differential phase shiftKdp (the range derivative of the differential

phase shift Φdp ), cross-polar correlation coefficient ρHV . The vertical profile of temperature

T from either a nearby observed sounding or numerical model output is also considered,

leading to a total of Nvar = 5 inputs. In addition, for the identification of non-meteorological

echoes (Section 4.2.1), the spatial variance of the differential reflectivity σ(Zdr ), the spatial

variance of the total differential phase shift σ(Ψdp ) and the Doppler velocity V are also used.

The observed total differential phase shift is defined as:

(10) Ψdp = Φdp + δhv
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where δhv is the differential phase shift upon backscattering [25]. To avoid over-estimating

the variability of Zdr and Ψdp due to physical trends in the observations (e.g. Ψdp increasing

in heavy rain), the variances are calculated on the residuals after linear regression over five

consecutive range bins.

The algorithm is designed to work on the radar observations and textures in the two-

dimensional (either PPI or RHI) polar domain (radial θ, range R). The choice is in the

first instance dictated by the need to limit the overall computational resources for real-time

applications, avoiding interpolation of all radar variables and textures. Working in the polar

domain also has the notable advantage to avoid loss of information near the radar and

preserve the contiguity properties in the observation space.

The classification is partitioned in Ncl=11 hydrometeor classes: large drops (LD), drizzle

(DR), rain (RA), heavy rain (HR), rain + hail (RH), hail (HA), graupel (GR), wet ice

(WI), dry ice (DI), crystals (CR), dendrites (DN). In addition to the above 11 hydrometeor

classes, non hydrometeor decision classes such as clutter (CL) and clear air (CA) categories

are considered in the preliminary fuzzy-logic classification (Section 4.2.1). The most notable

difference between the hydrometeor classes used here respect to most previous studies is

the addition of a specific class for dendrite crystals. Kennedy and Rutledge [41] for S-band

radar, Bechini et al. [90] for C-band and X-band have shown that dendrite crystals have

specific dual-polarization signatures. Kdp (as high as 2◦ km−1 at C-band) and the environ-

mental temperature (ranging between approximately -10◦C and -20◦C ) are the most relevant

variables employed for the identification. Another new feature of this classification system

is a macro-class (LIQUID, MIXED, SOLID, HAIL) associated to the hydrometeor classes,

for use in the final step of the classification (block 4 in Fig. 4.2). The LIQUID macro-class
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Figure 4.1: Diagram of the basic fuzzy-logic classification. Adapted from [4].

includes four hydrometeor types (LD, DR, RA and HR). The MIXED macro-class is only

composed of WI, SOLID includes GR, DI, CR and DN, while HAIL includes RH and HA.

4.2.1. Preliminary processing and fuzzy-logic classification. Several process-

ing tasks normally performed separately are here integrated in a single procedure. The rea-

son is twofold: on one hand the total computational time is reduced, on the other hand the

adopted scheme provides an environment favorable to deal with the interconnection between

attenuation correction and hydrometeor classification in the development process.

The preliminary processing of the dual-polarization moments includes clutter identifica-

tion, Ψdp filtering, Kdp calculation and attenuation correction. The fuzzy logic hydrometeor
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Figure 4.2: Diagram of the full four-step classification. The box labeled “fuzzy hydroclass”
is represented in detail in Fig. 4.1. See text for further details.

identification algorithm follows the classical fuzzification - inference - aggregation - defuzzi-

fication flow depicted in Fig. 4.1. In addition to the class for a specific bin, the fuzzy-logic
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algorithm provides in output the quality (described hereinafter) associated with the spe-

cific class assignment. This is an important point because the quality of the classification

is needed in the subsequent cluster analysis (Section 4.2.3). To represent the membership

functions (MBF) both beta functions [4] or trapezoidal functions [79] have been used. Park

et al. [91] proposed asymmetric trapezoidal functions to better approximate the shapes of

the probability distributions. Keeping a similar approach we define an asymmetric beta

distribution, with values ranging from 0 to 1, as:

(11) MBF(x) =





1

1 + (x−m
al

)2bl
; x ≤ m

1

1 + (x−m
ar

)2br
; x > m

where x is the value of the input variable (radar or temperature), m is the center of the

function, al/ar the left/right side half width, and bl/br is the left/right side slope. In the

current implementation br = bl for all hydrometeor classes, while different values are used for

the non-meteorological classes clutter and clear air. In fact the parameters for the clutter

and clear air classes are derived by means of statistical analysis over samples of known echo

type [92] and the values of bl/br can be set to better match the empirical distributions.

For the hydrometeor categories the parameters m, al, ar, bl, br are derived for each class

and radar parameter, based on relevant observational and modeling studies. Specifically we

mainly rely on [77, 4, 79] for S-band, [85–87] for C-band, [80, 88, 89] for X-band.

As an example, Table 4.2 reports the parameters defining the beta function for the four

dual-polarization variables at S-band. Similarly to [79] we deal with physical dependencies

between radar variables for specific hydrometeor classes, by introducing a dependency be-

tween the parameters m, al/ar and Zh . This is visually represented in Fig. 4.3, where the
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Figure 4.3: Membership functions for the input variable Zdr and hydrometeor classes
large drops and rain/heavy rain. As reported in Table 4.2 the values of m and al/ar
are expressed as a function of Zh . The thick solid line represents the 1.0 central value of the
beta function m(Zh), while the lower and upper boundaries of the colored areas represent
the 0.5 value of m(Zh) − al(Zh) and m(Zh) + ar(Zh) respectively (al = ar in this case).

MBF of Zdr is plotted for the large drops and rain/heavy rain classes. The large drops

class is essentially defined as the rain category, following a similar increase with Zh but with

higher Zdr . large drops can be found either below the freezing level, originating from the

melting of large snow flakes, or within strong updrafts indicating the presence of supercooled

liquid drops [93, 94].

The inference rule is given by the weighted sum of the MBF of temperature and radar

parameters [79, 95]:
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Table 4.2: Values of the parameters used to define the asymmetric beta function (eq. 11) for the dual-polarization radar variables
at S-band. When ar 6= al both values are indicated, otherwise a single value is reported. For some classes the parameters m

and al/ar are expressed as a function of Z̃h (where Z̃h = Zh [Zh > 7 dBZ]; Z̃h = 7 [Zh ≤ 7 dBZ]) to account for the expected
physical correlation.

Zh Zdr ρHV Kdp

Class m al/ar bl/br w m al/ar bl/br w m al/ar bl/br w m al/ar bl/br w

large drops 40 15. 8 1.0 0.4+0.08· Z̃h 0.5+0.02· Z̃h 2 0.8 0.99 0.03 2 1.0 0.3 0.3/1.0 2 0.5

drizzle 0 25 8 1.0 0.5 0.7 2 0.8 1.00 0.02 2 0.8 0.01 0.2 3 0.5

rain 34 14 8 1.0 -0.4+0.055· Z̃h 0.8+0.025· Z̃h 2 0.8 0.99 0.03 2 1.0 0.3 0.3/1.0 2 0.5

heavy rain 50 10 8 1.0 -0.4+0.055· Z̃h 0.8+0.025· Z̃h 2 0.8 0.99 0.05 2 1.0 0.5 0.2/10.0 2 0.8

rain + hail 65 15 4 1.0 0.5 1.5 3 1.0 0.95 0.07 2 0.8 5.0 5.0 8 1.0

hail 65 13 4 1.0 -2.0 3.0 3 1.0 1.00 0.06 2 0.8 0.0 1.0 2 1.0

graupel 42 14 5 1.0 1.2 2.0 2 0.8 1.00 0.06 2 1.0 0.8 1.5 2 0.5

wet ice 20 25 4 1.0 1.5 1.7 3 1.5 0.88 0.08 2 1.0 1.0 1.2 2 0.5

dry ice 22.5 15 5 1.0 0.2 1.0 2 0.4 1.00 0.05 2 1.0 0.2 0.3 2 1.0

crystals 0 22.5 5 1.0 1.5 3.5 2 0.5 0.98 0.06 2 1.0 0.5 0.7 2 1.0

dendrites 20 15 5 1.0 1.0 0.5/1.5 2 1.0 1.00 0.07 3 0.5 0.8 0.4/2.5 2 2.0
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(12) Sk =

Nvar∑

i=1

[wk(xi) · MBFk(xi)]

Nvar∑

i=1

wk(xi)

where wk(xi) are the weights associated with the input variable xi and hydrometeor class

k. Sk is the resulting confidence associated with the class k and the output class is the

one for which Sk is maximum. The additive inference rule has the advantage to mitigate

the effect of measurement errors, especially on the dual-polarization parameters, which may

show unreliable values mainly due to partial beam filling, side lobes effects, low signal to

noise ratio. The weights are a priori assigned based on the confidence and the discriminating

capability of the temperature and radar variables for every hydrometeor type.

The weight associated with the temperature is not a priori fixed as for the radar variables,

but is defined to be a parabolic function of the temperature itself, with a minimum value

(1.0) at +1.25 ◦C . The weights then double at -14◦C (+16◦C ) and triple at -20◦C (+23◦C ).

Lim et al. [95] proposed a hybrid scheme where the sum inference rule is used for Zdr ,

Kdp , ρHV , while the product rule is used for Zh and T . In such scheme the reflectivity and

temperature are strong constraints, with the advantage of reducing most misclassifications

due to overlapping dual-polarization radar MBF. But on the other hand the multiplicative

membership function of T introduces very sharp and often unrealistic transitions across

precipitation phase changes. The use of the parabolic weight for the temperature is intended

to exploit the temperature information to minimize misclassifications in regions far from

phase transitions and to rely more on radar information to discriminate near the melting

layer.

79



A special feature of the algorithm implementation is that the clutter is treated exactly

as an additional class and is identified (optionally, depending on the specific signal processor

filtering activation) within the same fuzzy logic volume processing. This allows a reduced

total computation time. More specifically, within the loop over the radials, the clutter is

identified at radial n by imposing a threshold value on its confidence (when Sclutter > 0.5

the bin is flagged as clutter, irrespective of the confidence associated to the other meteoro-

logical classes). The rest of the hydrometeor classes are treated within the same loop, but

considering the preceding radial n − 1, which is already flagged for clutter. This is devised

to allow possible calculation of averages and textures in range for the purpose hydrometeor

classification, excluding the bins marked as clutter.

The processing of the nth radial also includes filtering Ψdp using the Hubbert and Bringi

[47] scheme to remove δhv, after the clutter bins are flagged. Kdp is calculated by a linear

moving window regression in a two-step procedure: a first estimate is obtained over a large

window (e.g. ±16 range bins). In the second step the initial Kdp estimate is used to set

the proper window width (smaller for higher Kdp ). In this way it is possible to retain the

small scale variability in heavy precipitation and at the same time limit the noise in weaker

precipitation regions. More sophisticated algorithms are available for the estimation of Kdp ,

but mainly for application to rainfall estimation [49, 96, 97]. For the purpose of hydrometeor

classification the current approach has the advantage of being simple to implement, robust

(it provides an estimate of Kdp even in regions of low signal to noise ratio (SNR) where Ψdp is

more noisy) and completely independent of the other polarimetric variables. However, if a

Kdp estimate is already available from a separate processing, this can be used as input for

the hydrometeor classification.
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The rain profiling algorithm proposed by Testud et al. [48] is applied to correct the hor-

izontal reflectivity for path attenuation, while differential attenuation is linearly estimated

from the horizontal attenuation αh [98]. Attenuation correction is performed exclusively in

the rain medium (i.e. below the freezing level) to avoid introducing a bias due to differ-

ential phase increases in the ice region (Chapter 3). However, especially for X band, the

attenuation corrected measurements are subject to increasing uncertainty with range, due

to the inherent approximation of the attenuation estimate. An obvious implication is that

Zh and Zdr measurements at farther ranges, when attenuation is relevant, should be given less

confidence in the hydrometeor classification. This is implemented by applying an arbitrarily

defined attenuation-dependent and exponentially-decaying weight to Zh and Zdr (multiplying

the weight wk(xi) in eq. 12), as a function of the estimated horizontal attenuation:

(13) WZh,Zdr
= e−(αh/coeffZh,Zdr

)2

where the values of coeffZH ,Zdr
is set to 20 dBZ and 10 dB respectively for Zh and Zdr .

Before hydrometeor classification is performed, optional range averaging over the radar

observations can be applied, excluding the bins flagged as clutter.

Based on the MBF defined in eq. 11, it is possible to define the quality (or strength) of

the classification in several ways, e.g.:

• confidence of the identified particle class (max confidence among all hydrometeor

classes: max
k

(Sk));

• difference between the confidence of the first and second identification [81];

81



• difference between the confidence of the first identification and the highest confidence

of a particle with a different macro-class.

After detailed evaluation the simplest method a) was chosen for exhibiting the most robust

performance in the definition of the seeds for the cluster analysis (Section 4.2.3).

4.2.2. Adjustment of the freezing level height. Due to the uncertainty typ-

ically affecting the temperature vertical profile (space-time representativeness of observed

soundings, model uncertainty) a preliminary step in the algorithm (block 1 in Fig. 4.2) aims

at fine tuning the location of the freezing level. In the literature several approaches have

been proposed, based on the dual-polarization measurements with focus on the location of

the minimum of ρHV [39, 99] or considering the change in the vertical gradient of Zdr [95].

Here an iterative procedure is adopted, to adjust the level of the 0◦C isotherm based on the

results of the bin-based hydrometeor classification itself. A direct search algorithm [100] is

used to find the temperature increment (positive or negative) that maximizes the average

quality of the bins identified as wet ice. The proposed recursive approach exploits all the

dual-polarization information available, without the need of an additional specific processing.

The temperature optimization for the application examples discussed hereinafter in Sec-

tion 4.3 is represented in Fig. 4.4. In order to accept the estimated temperature shift

the curvature of the wet ice quality vs. dT curves represented in the plots is considered.

A threshold on the 2nd order derivative estimated from non-uniformly spaced data points

[101] is used in the current implementation, which allowed to accept all temperature shifts

corresponding to the maxima in Fig. 4.4.

Finally the whole temperature profile is shifted by the resulting increment. When the

absolute value of this final temperature increment is significant (e.g. >0.5◦C ), the new
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Figure 4.4: Average quality of the wet ice class for different temperature shifts during the
maximization loop (block 1 of the diagram in Fig. 4.1). The number below each curve
represents the estimated 2nd order derivative (curvature) in units of % ◦C−2. All curves
show values below (higher curvature) the adopted threshold of -0.3 % ◦C−2.

estimation of the freezing level height is used to re-run the attenuation correction and the

bin-based hydrometeor classification. Although discontinuities may arise from one scan to

the next, in a operational implementation a stable estimate should be attained through

filtering the available preceding time series of the temperature shift.

The current implementation relies on the four polarimetric radar variables (Zh , Zdr ,

ρHV and Kdp ) and temperature for the identification of wet ice, as for all the other hydrom-

eteor classes. It is likely that the adjustement of the freezing level could be further improved

by additionally considering the variance of Ψdp and the vertical derivatives of Zdr specifically
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for the wet ice category. In fact these additional parameters should improve the identification

of wet ice and also make it less susceptible to small biases in Zh and Zdr .

4.2.3. Cluster analysis. The bin-based fuzzy-logic classification performed using the

adjusted temperature profile is the initial step of the cluster analysis (block 3 in Fig. 4.2).

The centroids of each hydrometeor class are calculated and used as initial values (seeds) for

an analysis based on K-means clustering [82].

The K centroids (K being the number of hydrometeor classes found in the current data:

K ≤ Ncl) are defined by a vector µk whose components are the quality-weighted average val-

ues of the radar variables Zh , Zdr , Kdp and ρHV (observation vector x) for each hydrometeor

class. The ith component of the vector µk can be expressed as:

(14) µki
=

Nk
obs∑

n=1

[Sk · xi]

Nk
obs∑

n=1

Sk

where Sk is the confidence (eq. 12) associated with the class assigned by the bin-based clas-

sification to the nth bin and xi is the ith radar variable. Nk
obs is the number of observations

(bins) that have been assigned to the class k ∈ [1:K].

The temperature T is not included in the cluster analysis, which entirely relies on the

radar observations. In fact the inclusion of T in this step may lead to an excessive vertical

stratification in the resulting analysis. In addition, only the 11 hydrometeor classes are

considered hereinafter, i.e. the identification of clutter and clear air is finalized in the bin-

based classification step. It is also worth emphasizing that the membership functions and

associated weights for the radar parameters are not used in the clustering process, which is
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designed to extract additional information from the observations with a “learn from data“

approach.

K-means clustering is used to partition the data space, by iteratively computing the

affinity between a hydrometeor assignment and each of the K already existing clusters. Lak-

shmanan [102] proposed a segmentation technique for the radar reflectivity using textures.

Applying a K-means clustering approach to the vector x of dual-polarization variables, under

smoothness assumption a cost function Ek can be defined for every bin in the polar domain:

(15) Ek = λ ·Dk + (1 − λ) · (Ck + γ · Pk)

where k indicates the hydrometeor class. Dk is the Mahalanobis distance [103] between the

cluster vector µk for the class k and the observation vector x for the current bin, defined as:

(16) Dk =
√

(x − µk)
TΣ−1(x − µk)

where Σ is the covariance matrix of the observations and the superscript T indicates the

transposed vector. Since the covariance matrix is in general positive definite, the matrix Σ

can be first decomposed into into a product of a lower triangular matrix and its transpose

using Cholesky decomposition and then inverted. The Mahalanobis distance is widely used

in cluster analysis and provides an objective method for the normalization of the observation

vector, whose components (Zh , Zdr , Kdp , ρHV ) represent different variables with different

physical units (dBZ, dB, ◦ km−1 , unitless). The use of the Mahalanobis distance for vector

normalization allows to overcome one of the typical limitations of K-means clustering, i.e.

the tendency to produce spherical clusters arising from the adoption of the Euclidean metric.

85



Figure 4.5: Geometry of the contiguity window for an elevation scan (a) and an azimuth
scan (b). The colors represent the cos(φ) term in eq. 18 (penalty term).

Ck is a measure of contiguity given by the number of neighboring bins with a hydrometeor

class different from the candidate class k for the current bin:

(17) Ck =

∑Nθ

t=−Nθ

∑NR

r=−NR
(1 − δ(Jt,r − k))

Ntot

Jt,r is the class of the neighboring bin in the polar array, NR and Nθ are the number of bins

in range and azimuth (or elevation) respectively and Ntot the number of valid observations:

Ntot ≤ (2Nθ + 1)(2NR + 1).

NR and Nθ are set according to a desired width and height of the contiguity window, typically

of the order of ∼ 1 km · 1 km or less. For the higher elevations in vertical scans (RHI) it is

necessary to cut the polar contiguity window to keep a uniform geometry in the Cartesian

projection, as shown in Fig. 4.5.
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Pk is a penalty term introduced to provide some weak physical constraints to the cluster

analysis. In the actual configuration the constraints only involve the relative position in the

vertical of different hydrometeors. For example it is more likely to find hail rather than rain

above a candidate rain + hail bin. The checkerboard diagram in Fig. 4.6 illustrates the

implemented pairwise constraints. The columns indicate the unlikely hydrometeors (black

boxes) above a given candidate k (top labels), while the rows indicate the unlikely hydromete-

ors below a given candidate (left labels). Those penalty terms add up after proper weighting

according to the relative position of the neighboring bin respect to the candidate bin. The

penalty term Pk can then be expressed as:

(18) Pk =

∑Nθ

t=−Nθ

∑NR

r=−NR
cos(φ) · (Bp[k, Jt,r] −Bp[Jt,r, k])

Ntot

where Bp represents the Boolean penalty matrix in Fig. 4.6 (black boxes are ones and white

boxes are zeroes), with k representing the column index and Jt,r the row index. φ is the

angle between the vertical and the line connecting the candidate bin k and the neighboring

bin. The polar bins in Fig. 4.5 are colored according to the weighting term cos(φ). A good

performance has been achieved over many different cases with the multiplying factor γ in eq.

15 set to a value of the order of 10. The penalty term is clearly more relevant for RHI scans,

where the observations are distributed on a vertical plane rather than on a low elevation PPI

conical surface (Fig. 4.5).

Fig. 4.7 gives a picture of the typical convergence rate for two values of λ (λ=0.2 and

λ=0.9). With low values of λ (more weight to contiguity) the convergence is in general

faster. Decreasing the value of λ with increasing iteration n was found to be a good option
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Figure 4.6: Checkerboard representation of the Boolean penalty matrix Bp in equation
18. The x and y axis labels represent the hydrometeor classes: large drops (LD), drizzle
(DR), rain (RA), heavy rain (HR), rain + hail (RH), hail (HA), graupel (GR), wet ice
(WI), dry ice (DI), crystals (CR), dendrites (DN). Black boxes in a given column indicate
hydrometeors to be penalized above a candidate (top labels), while black boxes in a row
indicate hydrometeors to be penalized below a candidate (left labels).

to provide a robust classification result in few iterations:

(19) λn = α · λn−1; 0 < α ≤ 1

In this way during the first iterations the K clusters may change significantly by self-

adapting to the observations, while the last iterations provide the desired spatial smoothing.

The iteration is stopped when the number of bins changed in the classification array falls

below a given threshold (1% of the total number of valid bins).

4.2.4. Region-based classification. Depending on the value of the parameters in

the cost function (eq. 15), especially when high values of λ are used, the K-means cluster
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Figure 4.7: Number of bin classification changes at each iteration of the cluster analysis, for
three different cases (Section 4.3) and two fixed values of λ (α=1 in eq. 19).

analysis may cause some cluster to drift too much from the initial values. As a consequence

the original hydrometeor class may become no more appropriate for a given region. The for-

mulation of the cost function with increasing emphasis on the contiguity component (eq. 19)

yields a virtually noiseless classification map. On this map it is practical to identify a limited

number of connected regions (Nr) by running a Connected-Component Labeling (CCL) algo-

rithm [83, 84]. The implemented CCL algorithm works by checking for 8-connectivity (four

horizontal and vertical neighbors, and four diagonal neighbors) in binary input images. One

hydrometeor class is processed at a time, by setting all the pixels marked with the current

class to one and the pixels with a different class assignement to zero. From this input binary
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Figure 4.8: Illustration of the Connected Component Labeling (CCL) for the case study
reported in Fig. 4.10. Two connected regions identified as hail (panel a)) and three regions
of rain are identified and sequentially labeled (overplotted numbers).

image all the connected regions are sequentially labeled. An example illustrating the CCL

results for two hydrometeor classes is reported in Fig. 4.8, where the labels identifying the

connected regions are represented by different gray levels. In this example, referring to the

case study analysed hereafter in Section 4.3.1, two separate connected regions of hail and

three regions of rain are identified. These plots elucidate one of the main features of the

proposed approach, i.e. the aim to deal with homogeneous and spatially connected regions

instead of individual range bins.

The fuzzy logic hydrometeor classification can now be applied on the set of connected

regions in a similar way it is applied to the individual bins. It is in principle only necessary

to identify a proper parameter (typically the mean or the median) representing the under-

lying statistical distribution for every region. Alternatively, a direct comparison between

the Probability Density Function (PDF) of the univariate observations and the associated

membership function can be performed. This latter approach is illustrated in Fig. 4.9. In
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practice the value of MBFk(xi) in eq. 12 is replaced by an affinity measure defined as:

(20) AFFk(xi) = 1 −
Aoutk

Atotk
(xi)

where Aoutk is the portion of the area under the PDF (dashed line in Fig. 4.9) for variable xi,

lying outside the domain defined by the membership function for the class k (hatched area

in Fig. 4.9). Atotk is the total integral of the PDF, obtained from the observations using a

Gaussian kernel smoothing [104]. The AFFk(xi) parameter, encompassing the 0-1 range just

like the membership function in eq. 11, provides a measure of the conformity of the observed

distribution to the theoretical expectation. For most cases this definition provides a similar

estimate as the one simply (and quickly) obtained using the average or median value of the

distribution. But in some instances, e.g. highly non-normal distributions or distributions

with large tails exceeding both sides of the membership function, it gives a more robust

indication about the affinity of the region with a given hydrometeor class. The classification

then proceeds as for the bin-based application described in Section 4.2.1.

The resulting region-based classification may either confirm the original class of the

connected region (which means that the cluster analysis did not drift excessively) or propose

a new assignment. At this point we can further exploit the availability of a statistical

sample for every connected region (as opposed to the single value bin) to introduce some

simple physically-based rules. These rules rely on the 0, 25, 50, 75 and 100% quantiles of

the temperature distributions and are implemented as if statements within the loop over

the hydrometeor classes, for a given connected region nreg. With k being the index of the

candidate class:

• If macro-class(k) is LIQUID
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Figure 4.9: Observed distribution (histograms) of the reflectivity (a) and the correlation
coefficient (b) within the connected region 2 classified as hail in Fig. 4.8a. The solid line
represents the corresponding membership function (right y-axis), while the dashed line is
the kernel density estimated PDF of the observations.

– if T 75
nreg < T 25

wet ice then skip k

– if T 0
nreg < -12◦C then skip k

• If macro-class(k) is SOLID

– if T 25
nreg > T 75

wet ice then skip k

– if T 100
nreg > +12◦C then skip k

The superscript of T represents the percentile of the temperature. T 25
wet ice and T 75

wet ice are

respectively the 25 and 75% quantiles over all the regions identified as wet ice. Therefore

some of the above conditions are only applicable if at least one wet ice region is present in

the classification map. The scope of the rules is to avoid some clearly unreliable situations,

e.g. when a rain region is entirely above the melting layer. This kind of situation is not likely

to occur but still possible, since the temperature information is not included in the cluster
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analysis. Other common features, in convective systems, are regions of liquid hydrometeors

extending from near the surface to above the ambient freezing level within an updraft. These

regions will not be affected by the adopted rules and will be preserved.

The region is finally reassigned only if the quality of the new assignment is higher than

the quality of the original class by a given relative threshold (parameter β in block 4 of the

diagram in Fig. 4.2). The higher the value of β, the higher the confidence posed in the

self-adapting attitude of the data. Lower values of β are more suitable for an operational

conservative approach. In the following application examples a value of β=4% is used. This

means that the new proposed assignment must have a confidence at least 4% higher than

the confidence associated with the original class to be accepted.

The region-based classification is not performed if a region is too scarcely populated (<50

bins) because a reliable PDF may not be estimated. The bins of these regions are assigned

after the loop in block 4 (Fig. 4.2) is completed, based on the mode of the surrounding bins.

Although at the moment only few very simple rules are adopted, it is clear that work-

ing with connected regions considerably expands the potential of the classification. The

properties of the spatially-connected statistical samples (density function, orientation, verti-

cal/horizontal extension, etc.) can be further exploited to introduce more physically-based

constraints.

4.3. Application examples

In order to test the method, dual-polarization data from different radar systems operating

at S, C and X band are considered (Table 4.3). In particular, the following examples are

based on measurements collected by the S-band CHILL radar in Colorado [105], the C-band

Bric della Croce radar in Italy and the CASA IP1 X-band system in Cyril, Oklahoma [106].

93



The classification may vary significantly depending on the choice of the parameters λ, α

and γ in eq. 15 and 19. In the following examples, except where explicitly noted, the initial

value of λ is set to 0.8, α=0.75 and γ=12.0. The λ parameter in particular determines the

adopted approach to the cluster analysis. High values of λ allow the clusters to vary signifi-

cantly from the first guess classification. The input variables may assume values departing

from the initial definition of the classes through the membership functions. Low values of λ

on the other hand produce a classification relying more on spatial contiguity. In this case

the distribution of the input variables within the regions may widen, although the average

values will not change significantly. With the set of chosen values it is found that in general

less than 10% of the regions are reassigned in the final step of the classification (fuzzy logic

applied to the connected regions, as depicted by block 4 in Fig. 4.2). This is considered an

acceptable compromise between a heavy data-adaptive approach (high values of λ) and an

analysis based on spatial contiguity.

4.3.1. S-band, deep convection (Colorado). Fig. 4.10 shows a RHI scan through

a deep convective storm in Colorado observed by the CHILL radar on 22 June 2013 at 23:06

UTC. The radar operated in Alternate Transmit Simultaneous Receive (ATSR) transmission,

with 128 integrated pulses and a radial resolution of 0.25◦ . The most close and recent tem-

perature profile available for real-time processing is from the Denver 12 UTC sounding. From

this profile the height of the freezing level is located around 4650 m MSL. The temperature

optimization loop (block 1 in Fig. 4.2) provides a considerable temperature shift of -3.75◦C ,

as inferred from the average quality of the wet snow bins in Fig. 4.4. Although the analysed

scene is mainly convective, the more stratiform region closer to the radar provides enough

data for a fairly robust adjustement of the freezing level height (re-located around 4000 m

MSL), as can be inferred by visual inspection of the differential reflectivity field between 20
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Table 4.3: Main characteristics of the three radars used for the application and evaluation of
the method. SHV stands for Simultaneously transmitting H and V polarizations, while ATSR
is for Alternate Transmit Simultaneous Receive mode. The Pulse Repetition Frequency
(PRF) of the C-band radar is staggered with ratio 3/2.

S-band C-band X-band

CHILL Bric CASA IP1

Location Greeley, CO Torino, Italy Cyril, OK

Altitude (m) 1432 736 424
Antenna diameter (m) 8.5 4.2 1.5
Antenna beam width (◦) 1.0 0.93 1.8
Antenna gain (dB) 43 45 37
Polarization type ATSR & SHV SHV SHV
Operating frequency (GHz) 2.725 5.640 9.403
Transmitter peak power (kW) 800 250 25
Pulse width (µs) 1.0 0.5 0.4
PRF (Hz) 1000 882/588 2000
Range resolution (km) 0.150 0.340 0.096
Range (km) 140 170 40

and 60 km range. In particular the separation line between solid and liquid/mixed phase

particles in Fig. 4.10c follows quite well the boundary between marked positive and weakly

positive Zdr . The bin-based classification after the temperature adjustement is represented

in Fig. 4.10e, while Fig. 4.10f shows the region-based final classification using a different

pair of coefficients (λ=1.0, α=0.95). Both region-based classifications (panels b and f) show

a considerable improvement respect to the first-guess bin-based map (panel e) in terms of

noise reduction, but the choice of the λ and α coefficients determines some difference in the

output results. As previously mentioned the classification with λ=0.8 and α=0.75 is a com-

promise between a conservative approach (low λ), which would basically act like a spatial

filter, and a more data-adaptive approach (high λ). In this case the final classification is

basically the output of the cluster analysis (block 3 in Fig. 4.1), since only a couple of small
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Figure 4.10: RHI along the 135◦ azimuth on 22 June 2013 at 23:06 UTC, from CHILL radar.
Reflectivity (a) and final region-based hydrometeor classification with λ=0.8 and α=0.75 (b).
The classes in the legend are: clutter (CL), clear air (CA), large drops (LD), drizzle (DR),
rain (RA), heavy rain (HR), rain + hail (RH), hail (HA), graupel (GR), wet ice (WI),
dry ice (DI), crystals (CR), dendrites (DN). Zdr (c), Kdp (d), the bin-based hydrometeor
classification after temperature adjustement (e) and the region-based classification using
λ=1.0 and α=0.95 (f). The overplotted solid black line in panels a) to d) marks the separation
between solid and liquid/mixed phase particles in the final classification of panel b).

wet ice connected region (composed of less than 100 polar bins) have been reassigned in the

final step (block 4).

The use of high values of λ through the K-means cluster iterations (λ=1.0, α=0.95) on

the other hand may significantly modify the characteristcs of the clusters. Several regions
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showing a major evolution in their extension and properties have been reassigned based

on the fuzzy logic classification of the connected regions. Specifically five regions (three

of which composed by more than 103 polar bins) have been reassigned in the final step of

the classification, out of 36 total connected regions. Some of the large drizzle regions in

Fig. 4.10f were previously classified as wet ice after the cluster analysis. These regions

have grown considerably during the K-means cluster iterations, reaching an extension from

the freezing level down to the surface, which caused the subsequent automatic reassignment

to a more plausible class. This specific behavior can be seen as a lack of a well spatially

defined signature for the wet ice (although still sufficient for the freezing level adjustment). A

moderate enhancement in Zdr is apparent, while both Zh and ρHV do not present the expected

spatial trend in a typical well defined melting layer.

The most relevant difference respect to the classification in Fig. 4.10b is the lack of

the hail region, replaced in the lowest levels by a slightly enlarged rain hail region. The

rain hail is distinguished from the overhanging graupel mainly for the lower correlation

coefficient (and higher temperature), while Kdp reaches values up to 1◦ km−1 in rain between

65 and 75 km range but Kdp ∼0◦ km−1 between 75 and 80 km near the surface and above

(Fig. 4.10d). The hail area aloft grown during the cluster analysis at the expenses of the

surrounding graupel, leading to the inclusion of excessively low reflectivity values to be still

acceptable for a hail classification. The median reflectivity lowered from 54.6 dBZ in the

bin-based classification to 50.9 dBZ, leading to a final reassignment to the graupel class.

The distinction between hail and graupel in this case merely lies on the absolute value of

the reflectivity, since all the other polarimetric variables show rather weak signatures. This

causes the hail area to grow within the graupel bigger region until an equilibrium is reached

when the two regions have similar extensions. This behavior can be viewed as a limitation
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Figure 4.11: RHI along the 45◦ azimuth on 2 July 2008 at 22:57 UTC, from CHILL radar.
Reflectivity (a), region-based hydrometeor classification (b), Kdp (c) and Zdr (d).

of the method, but it is actually stressing the low discriminating power between hail and

graupel based on the available observations in this specific case. An easy workaround in this

type of situation may be a later reassignment of a graupel sub-region solely based on the

reflectivity value.

Fig. 4.11 illustrates another example of a deep convective storm observed in July 2008

by the CHILL radar. As for the previous case, these dual-polarization measurements are

also collected in ATSR mode, but with a larger number of integrated pulses (256) and a

radial resolution of 0.2◦ resulting in high quality moments and very little noise. This can

be considered a text case, with very well defined dual-polarization signatures. In particular

the Kdp signal is very strong and helps to designate precisely the boundary between the hail
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and rain + hail regions. The rain + hail region is characterized by the high Zh and Kdp ,

but lowering Zdr in particular between 50 and 55 km range. In the stratiform region on

the other hand Kdp provides very little information for the region-based classification, while

Zdr is fundamental for the definition of the transition between dry ice, wet ice and rain.

The two examples presented elucidate the most noteworthy characteristc of this method.

The region-based classification is empowered by a controllable degree of self-adaptation to the

most prominent spatial polarimetric signatures. This essentially means that the procedure

itself does not need any specific tuning for a particular radar or operating frequency. At S

band the classification is especially sensitive to Zh and Zdr , while at attenuating frequencies

like C and X band Kdp is automatically gaining importance owing to the frequency scaling

and the consequent better definition of spatial patterns for several hydrometeors.

4.3.2. C-band, stratiform precipitation (Italy). Observations collected in PPI

mode with 1.0◦ angular resolution by the Italian C-band dual-polarization operational radar

located in Torino are discussed in this section. The case presented refers to a warm frontal

stratiform precipitation system illustrated in detail in Chapter 3. The freezing level opti-

mization loop estimates a -2.25◦C temperature shift (Fig. 4.4), lowering the 0◦C altitude

from approximately 2.3 km (Milano Linate sounding at 00 UTC) to about 2.0 km MSL.

Fig. 4.12 shows the PPI at 1.2◦ elevation of the radar dual-polarization observations and the

resulting hydrometeor classification. The radar is located on a hill and surrounded by com-

plex orography. The dual-polarization measurements are subject to side-lobe contamination

which enhances the measurement noise and determines low ρHV values over some parts of the

domain. Hydrometeor classification in stratiform widespread precipitation is in general an

easy task when considering significant elevation angles, owing to the sharp transitions along

the range on the conical surface. For low elevations however, the designation of the melting
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Figure 4.12: PPI at 1.2◦ elevation from the C-band Bric radar, on 27 April 2009 at 01:30UTC.
observed Zh (a), attenuation corrected Zdr (b), ρHV (c), bin-based hydrometeor classification
(d), cluster-based classification (e) and final region-based classification (f).

layer boundaries is not straightforward. In Fig. 4.12d the bin-based classification shows

a noisy map, with ambiguous results especially in the low reflectivity area in the western

sector. The low correlation and noisy Zdr caused by side lobe effects produced many clearly

wrong wet ice identifications close to the surface. The final classification in contrast shows

a definite improvement, mainly in terms of overall noise reduction and very well separation

between liquid (drizzle and rain) and mixed (wet ice) precipitation. The lower boundary

of the melting layer appears reasonably well defined with good enough spatial resolution.

In the bin-based classification (Fig. 4.12d) 157 bins are suspiciously identified as rain hail,

due to the relatively high attenuation corrected reflectivity (the 25, 50 and 75% percentile are

respectively 50.1, 51.1, 52.5 dBZ) and the low correlation coefficient (0.817, 0.870, 0.898).
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From this initial classification an enlarged region has grown during the cluster analysis

(Fig. 4.12e), encompassing about 1200 bins with (25, 50 and 75%) percentiles of Zh and

ρHV respectively (46.4, 48.0, 49.6 dBZ) and (0.839, 0.874, 0.902). This expanded rain hail

region (and few other smaller) is eventually reassigned to wet snow in the final step, because

of the low affinity measure AFFk(xi) = 0.49 for the intensity reduced Zh distribution. The

high Kdp values up to 1.8 ◦ km−1 (not shown) well above the melting layer are responsible

for the two regions of dendrites crystals adjacent (and at higher altitude) to the extended

graupel area. This classification appears fairly consistent with the existence of a mid-level

weak widespread updraft associated with light riming above the melting layer (graupel)

and sustaining the crystal growth by vapor deposition around the -15◦C temperature region

(dendrites), as discussed in detail in Chapter 3.

4.3.3. X-band, convective precipitation (Oklahoma). Fig. 4.13 shows the RHI

observations (0.25◦ radial resolution) and hydrometeor classification from the CASA IP1 test-

bed data in Oklahoma on 20 May 2011 at 04:14 UTC. The temperature profile is taken from

Norman (OK) sounding observations at 00 UTC, reporting the height of the freezing level

around 4.5 km. The 0◦C level is then lowered to about 4.1 km MSL after the temperature

optimization loop, providing an estimate of -3.75◦C shift (Fig. 4.4).

The X-band observations are corrected for attenuation and differential attenuation. Fig.

4.13a and 4.13b show respectively the observed and the attenuation-corrected reflectivity.

Attenuation up to 17 dB for Zh and 2.2 dB for Zdr is estimated. Given these high atten-

uation estimates, the weights associated with Zh and Zdr are reduced according to eq. 13.

This explains how the wet ice region identification is possible, despite negative Zdr values

beyond the rain hail core. The presence of the rain hail region may actually be responsi-

ble for an underestimation of the differential attenuation, stressing the ultimate importance
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Figure 4.13: CASA IP1 RHIs of dual-polarization variables: observed Zh (a), attenuation
corrected Zh (b), Zdr (c), Kdp (d), ρHV (e) and final hydrometeor classification (f) on 20 May
2011 at 04:14 UTC, along the azimuth 101.6◦ .

of coupling the hydrometeor classification and attenuation correction for short wavelength

radars. The classification appears in general reasonable with few well distinguished regions.

It is especially apparent the relevance of the Kdp observations for delineating the modulated

boundary between liquid and frozen particles.
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The polarimetric signatures of Kdp and Zdr at approximately 10 km height and 30 km

range (negative values) point to the existence of vertically oriented ice crystals, associated

with electrical activity inside the storm [33–35]. This specific hydrometeor class is not

considered in our scheme, and the more generic definition adopted for crystals implies a

relatively low reflectivity (≤22 dBZ), which eventually causes this upper portion of the

storm to lie within the dry ice region.

4.4. Evaluation of the method

A comprehensive direct validation of hydrometeor classification algorithms from radar

is in general not possible due to the scarcity of in situ measurements. Even when in situ

observations are available, the comparison is challenging considering the largely different

sampling volumes of radar and cloud probes, as well as specific issues with airborne cloud

particle sampling [107–109]. In this work we rely on an internal evaluation approach, consid-

ering the application examples illustrated in the previous section. In addition to the obvious

noise reduction in the final classification, in the following sub-sections we focus on a metric

for the evaluation of clustering algorithms and on the sensitivity to noise and bias in the

input observations.

4.4.1. Clustering evaluation with Davies-Bouldin (DB) index. Davies and

Bouldin [110] introduced a metric for the internal evaluation of clustering algorithms, with

the useful property of being independent on both the number of clusters analyzed and the

method used to produce the data partition. The internal evaluation scheme provides a

measure of the goodness of the cluster partitioning, based on quantities inherent to the

employed dataset. The definition of the DB index relies on the ratio of a measure of the
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scatter within the cluster (intra-cluster distance) to a measure of the separation between the

clusters (inter-cluster distance):

(21) DB =
1

K

K∑

k=1

Rk

where

(22) Rk = max
k 6=j

(Rk,j); Rk,j =
dk + dj
dk,j

In eq. 22 K is the number of clusters, dk and dj represent the dispersions (average distance

between each point in the cluster and the centroid of the cluster) of clusters k and j, while

dk,j is the distance bewteen the centroids of clusters k and j, using the same metric defined

in eq. 16. It is clear that a lower DB value is associated with a better partitioning of

the data, indicating that the hydrometeor classes are well separated based on the input

dual-polarization measurements.

Rather than the absolute value of the DB index, we consider the relative variation of

the index between different classification schemes. This allows in particular to assess the

improvement achieved using the proposed methodology, respect to the traditional bin-based

classification. Table 4.4 reports the DB index obtained for the cases described in Section 4.3

(with a supplemental higher elevation for the Bric case) in the three steps of the classification,

after the adjustement for the temperature profile (blocks 2, 3 and 4 in Fig. 4.2). In addition,

the results from two completely unsupervised K-means clustering are reported. The first one

(K − meansbin) is obtained using the seeds from the bin-based classification (with the same

number of classes). The second K-means clustering (K − meansopt) is performed using the
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optimal number of classes (with random seeds), determined as the one which minimizes the

DB index. In this case several experiments with independent initializations revealed that

the effect of the random seeds on the final partions is quite limited, i.e. the variability in

the number of output classes is in general ≤1 and the standard deviation of the DB index is

≤0.02.

For the cases considered, with the exception of the CASA X-band RHI, the cluster

analysis produced an improvement in the partition of the hydrometeor classes, respect to

the first-guess bin-based classification. This may sound tautological given the purpose of the

clustering algorithm. But in fact, considering the specific minimization process including

the additional contiguity and penalty terms (eq. 15), a reduction of the DB index is not

automatically guaranteed. This result indicates that the method has the ability to conjugate

a reduction in the output classification noise with a tighter affinity within the same class

and a better separation of the hydrometeor classes. In most cases the DB index reduction

is achieved with a concurrent reduction of the number of the hydrometeor classes, i.e. some

hydrometeor type poorly represented in the bin-based classification have been suppressed in

the cluster analysis.

During the last step of the classification process (region-based hydroclass in Fig. 4.2)

the number of classes can be further reduced following the reassignment of one or more

connected regions. This is the case for example for the CHILL 2013 RHI with λ=0.8 and

α=0.75, where a couple of residual wet ice regions are converted to rain and drizzle, and

the DB index of the final region-based classification is further decreased. For the same

case, but with λ=1.0 and α=0.95, on the other hand the reassignments of some connected

regions (in particular the hail region to graupel) reflects in an increase of the DB index. In

fact while the high weight of the distance component in the clustering analysis (λ=1.0) is
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responsible for a better clustering (DB=1.83 as compared to DB=2.24 for the same case with

λ=0.8), the excessive deviation from the reference membership functions and the subsequent

reassignment as discussed in Section 4.3.1 implies a deterioration of the clustering tightness,

but still a better performance than the bin-based classification (DB=3.96).

The unsupervised K-means clustering using the seeds from the bin-based classification

(K − meansbin in Table 4.4) predictably shows a better performance in terms of the DB

index, respect to the region-based classification. The DB index for the optimized K-means

clustering (K − meansopt) is the lowest by definition, but may imply a consistent change in

the number of hydrometeor classes. In fact the number of represented classes in the analysis

is much lower respect to the final region-based classification for the CHILL 2013 and CASA

cases, while it is higher for the Bric PPIs.

The K-means clustering classifications using the initial classes from the bin-based clas-

sification are shown in Fig. 4.14 for the CHILL 2008 and the CASA case of Fig. 4.11 and

4.13 respectively. The limitation of these analyses is clear, with several hydrometeor classes

deviating too much from the original definition. Both the hail and rain hail regions have

grown excessively in the CHILL case, including much lower reflectivity values. In addition,

the lack of a temperature constraint in this process has led to the wrong dry ice classification

of many bins below the melting layer and drizzle in the highest portion of the cloud (low

reflectivity, high correlation and near zero Kdp and Zdr ). In the CASA case (Fig. 4.14d) the

weak reflectivity region closer to the radar, due to the lack of any well defined polarimet-

ric signature (and low ρHV likely arising from non-uniform beam-filling), resulted in a noisy

classification from the surface up to about 7 km MSL. A fairly coherent region in the upper

portion of the storm is identified and marked as hail, whereas this region is most likely to

contain vertical ice crystals originating from cloud electrification processes.
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Figure 4.14: K-means unsupervised classification (K −meansbin in Table 4.4) for a) CHILL
2008 case (Fig. 4.11) and b) CASA case (Fig. 4.13).

Looking back at the cluster analysis, the increased DB value for the CASA RHI (DB=3.44

in Table 4.4, compared to DB=3.09 for the bin-based classification) seems actually ascribable

to the influence of the weak reflectivity region closer to the radar. In fact if the DB index

is calculated only for the main storm, by simply a applying a reflectivity threshold of 25

dBZ, the resulting DB values are 2.30 (11 classes), 1.84 (9) and 1.66 (7) respectively for the

bin-based, cluster and region-based classifications. These values present a similar qualitative

behavior as in the other cases, showing a significant improvement in the final classification.

This case emphasizes the importance of the supervised component in the classification

process. The membership functions, variables weighting, temperature optimization are all

important components to derive a reliable first-guess. Furthermore the contiguity/penalty

terms in the cluster analysis and the subsequent possible reassignment of the connected re-

gions have a fundamental role in controlling the aggregation process. The effort pursued

with the proposed method is ultimately to balance the data-adaptive strength of the cluster-

ing technique with the conventional fuzzy-logic, physically-based approach. In fact a pure

unsupervised clustering may give better partitioning results in terms of DB index, but at

the cost of results not physically meaningful (Fig. 4.14).
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Table 4.4: Davies-Bouldin internal evaluation index (DBI) for the classification examples in
Fig. 4.10, 4.11, 4.12, 4.13. The first three columns report the values of the index for the
intermediate (bin-based and cluster analysis) and final (region-based) classification results.
In brackets the number of distinct hydrometeor classes is indicated. The last two columns
report the DBI value for the unsupervised K-means clustering, with the same number of
classes as resulting from the bin-based classification (K −meansbin) and with the optimal
number of classes (K −meansopt).

Bin Cluster Region K − meansbin K − meansopt

CHILL 2013 3.96 (11) 2.24 (10) 2.14 (9) 1.21 (11) 1.02 (5)

CHILL 2013(*) 3.96 (11) 1.83 (10) 2.34 (8) - -

CHILL 2008 2.00 (10) 1.43 (10) 1.42 (9) 1.11 (10) 1.01 (9)

CASA 3.09 (11) 3.44 (9) 3.89 (8) 1.25 (11) 1.11 (3)

Bric 1.2◦ 2.67 (11) 2.45 (7) 2.51 (7) 1.37 (11) 1.27 (15)

Bric 10.0◦ 2.02 (7) 1.61 (6) 1.63 (6) 1.23 (7) 1.14 (14)

All classifications using λ=0.8 and α=0.75 except (*) which is obtained using λ=1.0 and α=0.95
(Fig. 4.10f).

Finally, the very limited reduction of the DB index for the C-band 1.2◦ PPI scan in Table

4.4 may indicate a difficulty to improve the first-guess hydrometeor classification, in terms

of clusters tightness, for low elevations radar scans. Data at low elevations are sometimes

lacking well defined polarimetric signatures, especially in vertically stratified clouds where

the radar resolution volume may encompass particles in different thermodynamic phases.

Running the method on a higher elevation (10◦ ) from the same volume actually produces a

better result (last line in Table 4.4), in agreement with the RHI scans. The cluster analysis

in fact achieves a more significant decrease of the DB index in this case (from ∼2.0 to ∼1.6).

4.4.2. Sensitivity to noise and bias. In this section we consider the sensitivity to

input noise and bias, with the aim to assess the impact of the cluster analysis in mitigating

the effect of perturbed inputs. For this purpose we compare the bin-based classification with
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the cluster-based classification (output of block 3 in Fig. 4.2), after properly altering the

original radar measurements described in Section 4.3.

The sensitivity to additional noise in the input variables Zh and Zdr is shown in Fig. 4.15,

while Fig. 4.16 reports the corresponding results for ρHV and Kdp . The white noise is gener-

ated using a Gaussian distribution with increasing standard deviation (x-axis). The extent

of the noise considered is clearly higher than the normal levels found in real observations, but

is used here to emphasize the fundamental qualitative trend. The lines in the plots represent

the number of polar bins that changed class, compared to the reference classification using

the original un-perturbed observations. The colored areas between the two lines (bin-based

and cluster-based classifications) highlight the improvement (light blue color) or worsening

(orange color) of the proposed method in terms of robustness to the noise. The fact that

the classification using perturbed inputs remains closer to the original one is taken as an

indication of its robustness, especially for real-time applications.

With few exceptions the classification resulting from the proposed method shows a lower

sensitivity to the noise in the radar observations, compared to the bin-based classification.

The most notable improvement is obtained for the ρHV and Kdp radar measurements. The

specific asymptotic behavior in the ρHV plots (Fig. 4.16, panels a) to e)) seems due to the

fact that although the measurable range of ρHV is 0 to 1, the actual range for meteorological

targets is about one order of magnitude shorter, i.e. ∼0.85 to 1.0. Consequently the contri-

bution of ρHV to the particle classification becomes practically irrelevant for additional white

noise with standard deviation in excess of 0.1.

The plots referring to the 1.2◦ PPI from the Bric radar (all four radar variables: panels

d) and i) in Fig. 4.15 and 4.16) and the 2013 RHI from CHILL (limitedly to Zh and Zdr :

panels b) and g) in Fig. 4.15) show a small impact for the new classification method. As
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Figure 4.15: Sensitivity to an artificial Gaussian white noise in the input observations
Zh (panels a) to e)) and Zdr (panels f) to j)) for the cases analysed in Section 4.3. The
plots report the number of polar bins that changed class with respect to the reference hy-
drometeor map without added noise, for the bin-based and the cluster-based classifications
(output of block 3 in Fig. 4.2, with λ=0.8, α=0.75). In addition, the right y-axis reports
the fraction (in %) of bins changed respect the total number of valid bins. In order to fa-
cilitate the interpretation, the area between the two lines is colored in light blue when the
cluster-based classification produced less class changes, in orange otherwise.
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Figure 4.16: As in Fig. 4.15, but for the input observations ρHV (panels a) to e)) and
Kdp (panels f) to j)). The Kdp noise introduced is scaled with the radar frequency.

observed in Section 4.4.1 the beneficial effect of partition clustering is quite limited for the

low elevation Bric scan and this may explain the neutral impact in terms of sensitivity to
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additional noise in the radar observations. For the CHILL 2013 case on the other hand, there

is a lower sensitivity to noise in ρHV and Kdp , while for Zh and Zdr no significant differences

are noted. A more detailed analysis shows that this specific behavior may be ascribed to

the generation of several small regions of wet ice in the stratiform portion of the storm,

when the noise in Zh or Zdr is increased. This splitting into multiple small regions around

the melting layer has the effect of vanishing the advantage of the cluster analysis in relation

to noise sensitivity. The same negative effect is not seen in the CHILL 2008 case, which

is also showing a relevant stratiform region. The main difference between the two cases is

that in the 2008 case (Fig. 4.11) the melting layer signature is well marked in few variables,

i.e. Zdr , ρHV (not shown), and weakly in Zh and Kdp , while in the 2013 case (Fig. 4.10)

only Zdr shows the characteristic increase due to the transition between snow and rain. As a

consequence, when the noise in Zdr is increased, the cluster analysis has no other observations

to rely on in order to preserve the original consolidated regions.

The sensitivity to additional bias in the input power variables Zh and Zdr is also consid-

ered and represented in Fig. 4.17. While the effect of additional reflectivity bias (Fig. 4.17,

panels a) to e)) is rather ambiguous, the sensitivity to the Zdr bias (Fig. 4.17, panels f)

to j)) is significantly lower for the cluster-based classification, compared to the bin-based

classification. This is interpreted as one of the beneficial effects of the data-adaptive ag-

gregation process during the cluster analysis. The unsupervised K-means clustering would

actually be completely insensitive to systematic biases in the observations. The proposed

semi-supervised procedure is however able to maintain a certain degree of insensitivity. The

key point is the adaptive aggregation of the observations during the cluster analysis, even-

tually attaining a set of homogeneous connected regions. This is possible of course when

the classification relies on multiple input variables, so that if one variable is biased the
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Figure 4.17: Similar to Fig. 4.15, but here the sensitivity to an artificial bias is shown, for
the input observations Zh (panels a) to e)) and Zdr (panels f) to j)).

other variables will still drive a specific hydrometeor identification and involve a degree of

self-adaptation to the biased observations in the cluster analysis.
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The reflectivity does not show a clear improvement in the sensitivity to the additional

bias. This behavior may be explained considering the peculiarity of the reflectivity mea-

surements, as opposed to the other dual-polarization variables considered. The correlation

coefficient ρHV and the differential variables Zdr and Kdp are often characterized by abrupt

changes corresponding to transitions between different hydrometeor types. This natural seg-

regation behavior is exploited in the cluster analysis. Reflectivity by contrast is an absolute

power measurement which does not depend on the shape of the hydrometeors, so it most

often behaves as a continuum involving only gradual quantitative transitions. For this reason

it appears to be less suited for a data-adaptive approach in a clustering analysis. As a matter

of fact a key limitation of the pure K-means clustering is the tendendy to produce clusters

of approximately similar size, as was shown in the CHILL 2013 example (Fig. 4.10) using

λ=1.0. In that case the hail region expanded excessively mainly because of the continuous

decrease of the reflectivity outwards from the storm core. The current method already limits

this issue through the use of the cost function involving the additional contiguity and penalty

terms (λ ≤ 1, α << 1).

4.4.3. Implementation and performance evaluation. The procedure is coded in

C language for its efficiency and portability. The implementation is modular, in the sense

that various parts of the procedure can be activated by editing a text configuration file. In

fact, depending on the specific radar data being used, some of the processing may result

redundant, e.g. in some cases the input radar data may already contain a Kdp estimate.

All the radar-specific parameters (radar constant, operating frequency, etc.), membership

functions (one table for each class and frequency band) and algorithm-specific parameters

(λ, α, γ, extension of the contiguity window, etc.) are defined in external configuration files.
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This provides a considerable flexibility for testing and adaptation to new radars/wavelengths,

without need to edit and recompile the source code.

Table 4.5 presents a summary of the algorithm performance for the cases analysed, run-

ning on a 2010 laptop hosting a Intel i7 CPU M 620 @2.67GHz. The total wall-clock time is

clearly dependent on the number of range-bins processed, as reported in the first row. While

the RHI scans took about 10-12 s to complete the classification procedure, the processing

of the low elevation PPI needed almost twice that time to complete. The 10◦ elevation PPI

on the other hand only took ∼8 s. One of the most time-consuming modules, i.e. the tem-

perature optimization loop, does not need to run at every radar scan. In fact the height of

the freezing level is not expected to vary significantly at the time scale of the scan update

frequency. In an operational implementation this module may only be executed e.g. every 30

minutes and only for selected elevations from a 3D polar volume. Overall, the performance

appears compatible with real-time operations.

4.5. Discussion and conclusions

This study has two major goals:

• exploit the spatial information content of dual-polarization radar observations for

the purpose of hydrometeor classsification

• enhance the standard bin-based fuzzy logic classification by additionally considering

the quality of the classification itself, the spatial coherence and the self-aggregation

propensity of the radar observations

Thus the basic fuzzy logic classification method is improved with a data-adaptive ap-

proach, typical of clustering methods (unsupervised component). Additional supervised
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Table 4.5: Summary of the detailed performance of the hydrometeor classification procedure
for the different cases analysed. The total number of valid range bins processed is indicated
in the first row. The partial times are provided for the modules depicted in Fig. 4.2, with
item 2) including Ψdp filtering and the calculation of Kdp . For items 1) and 3) the number
of iterations performed is indicated in brackets. The I/O time represents the time spent for
reading and writing the radar data files.

CHILL 2008 CHILL 2013 CASA Bric 1.2◦ Bric 10.0◦

N valid data bins 35,188 40,046 28,173 95,368 35,512

Wall-clock time (s)

1) T-profile adjust. (Niter) 3.2 (8) 5.7 (11) 2.6 (8) 9.2 (9) 3.5 (9)

2) Bin-based hydroclass 0.7 0.8 1.1 2.4 0.9

3) Cluster analysis (Niter) 5.2 (4) 6.3 (5) 7.6 (4) 7.2 (6) 2.9 (5)

4) Region-based hydroclass 0.1 0.2 0.1 0.5 0.3

I/O 0.2 0.3 0.1 0.2 0.2

TOTAL 9.5 13.3 11.5 19.5 7.8

components are provided in the form of pairwise constraints (penalty term) and elementary

physical rules (temperature limits for the connected regions).

The method is implemented in a four-steps procedure (Fig. 4.2), including optimization

of the temperature profile (step 1), bin-based fuzzy logic classification (2), cluster analysis

(3) and fuzzy logic classification applied to the connected regions (4). The key features of

the proposed method are a degree of self-adaptability and the shift from classical bin-based

classification schemes to a region-based classification.

The method has been tested on few cases in different meteorological situations and using

data from radars operating at different frequencies. These preliminary application examples

show promising results, especially for RHI scans. Continuous scanning in elevation clearly

helps to detect the vertical variations in the dual-polarization observations, with a resulting

higher segregation across a region encompassing a range of different microphysical species.
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The classification also worked fairly well for the analyzed PPI scan in widespread precipita-

tion, likely due to the large amount of available data across the transition regions. However

more tests considering a wider range of precipitation events is needed to asses the potential

for real-time application to volume scans resulting from a collection of PPI at fixed elevation

angles.

An analysis of the performace showed that the method is suitable for operational applica-

tions. In addition, for real-time applications the recent history of clusters description should

be considered to improve their statistical representativeness, providing a classification both

robust and stable over time. To this end, the use of specific RHI interleaved with volume

scans (some radars, e.g. during CASA IP1, actually perform this type of complex strategy)

will be investigated to better train the clusters of the hydrometeor classes.

The sensitivity to noise and bias in the input variables has been shown for five cases

(three RHIs and two PPIs). The semi-supervised approach seems able to maintain a certain

degree of insensitivity to a measurement bias in Zdr . For Zh however there is no defined

improvement respect to the bin-based method. In addition the method showed a reduced

sensitivity to noisy observations. In fact, the addition of a white Gaussian noise to the four

radar variables (Zh , Zdr , Kdp and ρHV ) resulted in less changes in the classification resulting

from the cluster analysis (compared to the classification with original measurements) when

the proposed method is used. This is certainly a noticeable outcome of the method, which

is able to provide a clean and appealing classification also for operational applications. It

is clear that for a generalization of these preliminary findings the analysis of a larger and

comprehensive dataset is needed.
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Going from a bin-based to a region-based classification has several advantages. The

regions are identified from the semi-supervised analysis, which is able to reduce the intra-

cluster distance and increase the inter-cluster distance (lower Davies-Bouldin index). This

allows a more clear separation between the different hydrometeors. The final fuzzy logic

classification applied to the connected regions is very robust, being based on a statistical

sample rather than on single point measurements. In addition, the classification is locally

adaptive, in the sense that it automatically exploits and adapt to the most marked spatial

signatures in the polarimetric observations.

Having defined a classification map with (relatively) few connected regions may in the

future allow the inclusion of further spatial processing, e.g. based on the polygons defining

the regions, the boundaries between different regions or their orientation (e.g. horizontally

elongated for melting hydrometeors, vertically-elongated for hail). In general, working with

sets of contiguous bins, instead of pointwise measurements, considerably widens the poten-

tial of the classification algorithm, by allowing the inclusion of more sophisticated physical

constraints based on either spatial properties or microphysical processes.

Working with regions however also brings in some issues specific to spatial analysis, in

particular the modifiable areal unit problem [111]. In fact when point-based measurements

are aggregated into contiguous regions, the resulting statistics is affected (biased) by the size

and boundaries of the regions. The size effect, mainly controlled by the contiguity window

in our procedure (Fig. 4.5), must be considered in relation with the processes one is aiming

to represent. The scale of the process is generally different from the spatial resolution of

the data. In cloud microphysics the scale of the process can range from sub-pixel (processes

within the radar resolution bins, e.g. turbulent mixing) to much larger scales, like organized

updrafts, phase changes across the melting layer, etc. The heuristic approach adopted in the
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proposed methodology is clearly aimed at representing the larger scale features in the cloud,

by aggregating a multitude of radar bins with similar characteristics.

In addition to the parameters specified for the definition of the membership functions

and the weights associated to the input variables, the current procedure involves additional

parameters in the cost function (λ, α, γ), and few other arbitrarily defined thresholds. The

parameters of the cost function in particular can be set depending on the specific purpose of

the classification. For example, if λ is very low (near zero) then the method simply acts like

a smoother. If λ is set to a high value (close to one) on the other hand, the method could be

useful for exploratory analysis and eventually for refinement of the membership functions.

On the downside, the increased degrees of freedom in this method may complicate the

set-up for a specific system and also the interpretation of the final results. However, the pro-

posed method is mainly devised to be super-imposed on an existing fuzzy-logic classification

algorithm. Therefore the membership functions are assumed to be already fairly established

and the set-up of the procedure should only involve the specification of the cost function and

few other parameters.
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CHAPTER 5

A methodology to analyze the wind field in the

storm environment using dual-polarization

observations

Radar provides high density observations inside the storm, but in general a poor sampling

of the environment around. However, the thermodynamic characterization of the storm

environment is fundamental for a comprehensive analysis, the basic building block of any

forecasting model.

Conventionally the problem of incorporating the available observations into a physically-

consistent analysis is addressed within the framework of data assimilation (Chapter 2). For

the assimilation of radar data the typical strategy involves the definition of proper observa-

tion operators to map the model space (model variables at model grid points) into the radar

observation space (reflectivity, Doppler velocity, dual-polarization parameters at sampling

locations). For the assimilation techniques based on statistical estimation theory (optimal

interpolation, variational assimilation, ensemble Kalman filter) the resulting analysis aims

at the minimization in a least squares sense of the distance between the observations and the

model background [10], given a proper definition of the model and observations covariances.

However, this global minimization may not preserve important local features inherent in the

radar data. In fact the assimilation of radar observations for convective storms, as opposed

to stratiform systems (Chapter 2), presents relevant challenges. In particular, serious issues

may arise if the background (a model state used as first guess) has no convection whereas

the radar indicates precipitation, or vice versa. For very short-term forecasting of convec-

tive precipitation and winds, it may be preferable to retain significant features resulting
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from the radar imagery. In addition to Doppler signatures of convergence, divergence, and

rotation, the columns of Zdr extending above the freezing level are an example of a polari-

metric signature that may be useful to mark the location of the updraft within a storm.

The correct location of the updraft regions is indeed fundamental to correctly reproduce the

main dynamics of the storm and forecast its very short-term evolution. Besides advection by

mid-tropospheric winds, in fact, one of the primary mechanisms of propagation of convective

systems is by the action of cold-pools [112]. A low-level analysis is needed to realistically

represent the gust-front associated with the storm propagation.

Dual-Doppler analysis has been widely used to reconstruct the three-dimensional wind

field in the storm, but mostly offline for specific case studies. In fact dual-Doppler is sel-

domly available or over only limited portions of the spatial domain, depending on the beam

intersecting angles. The proposed feature-based approach exploiting the Zdr column signa-

tures is intended for application to individual radars, so it could be more easily implemented

for real-time operation. In addition, inclusion of surface wind measurements is essential to

reproduce the relevant flow around the storm, where Doppler observations are scarce due to

the lack of scattering targets.

The purpose of the analysis procedure described in this Chapter is primarily to demon-

strate the potential offered by an elaborated radar product for possible inclusion in data

assimilation systems. This may represent a complementary option to assimilate the in-

formation from radar, in addition to the standard processing of the whole amount of raw

observations on a regular grid.
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5.1. Dual-pol features: columns of Zdr and relation with updraft

The updraft within storm cells can reach velocities as high as 20-30 m s−1 . This intense

upward motion may then exceed the terminal fall velocity of the drops in the radar resolution

volume. While the smaller drops are carried aloft and eventually evaporated in the intense

air flow, the resulting DSD deprived of the smaller drops results in a distinctive Zdr signature.

In fact if the updraft is sufficiently strong, also the bigger drops in the distribution are carried

aloft at heights even few kilometers above the environmental freezing level. This particular

feature has been reported since the early nineties [93, 94] and named Zdr column.

The connection of the Zdr columns with the updraft offers interesting clues for nowcasting

the storm evolution. Indeed the potential for short-term forecasting has been investigated

over the years among others by Scharfenberg et al. [113] and Van Den Broeke et al. [114].

Picca et al. [115] have shown evidence of the lagged correlation between Zdr columns and

the increased production of precipitation at the surface, including hail. Snyder et al. [116]

recently demonstrated the strong spatial association between updrafts and Zdr columns us-

ing high-resolution numerical simulations with spectral bin microphysics and a polarimetric

forward operator.

Fig. 5.1 shows the 2-hours track of a convective cell observed by the C-band radars of

Bric della Croce (table 4.3) and Monte Settepani, another C-band system located 95 km

South-South-East of the Bric radar. The storm produced large hail at the surface, as per

local reports. The presence of large hail in the storm is also inferred from the three-body

scattering occurring in the radar volume data between 13:50 and 14:20 UTC (not shown).

Fig. 5.2 shows the intensifying convective cell between 13:30 and 14:00 on 22 May 2005.

At 13:30 UTC a Zdr column is clearly visible on the Southern edge of the convective storm

in the 4000 m CAPPI in fig. 5.3a. The Zdr column extends up to ∼6 km (fig. 5.3b), about
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Figure 5.1: Domain of the two C-band radars and storm track between 13:00 and 15:00
UTC.

3 km above the freezing level (0◦C was located at 3200 m from nearby sounding), where

the ambient temperature was as low as -20◦C . The super-cooled drops carried aloft by the

updraft likely served as embryos for the growing hail [93].

The connection of the Zdr column with the updraft is revealed by a dual-Doppler analysis.

The additional Doppler observations provided by the Settepani radar allows a wind synthesis

during the first part of the storm life, when the cross-beam angles were near 90◦ . The

resulting wind analysis for the 2000 m height CAPPI at 13:30 UTC is shown in fig. 5.4,

together with isolines representing the calculated divergence field, showing maximum values

123



(a) 13:30 UTC (b) 14:00 UTC

Figure 5.2: PPI of reflectivity at 0.5◦ elevation from Bric della Croce C-band radar, show-
ing the marked precipitation intensity increase after 13:30 UTC. The rectangle in panel a)
indicates the area of Fig. 5.3 (a).

of the order of 10−2s−1. It is possible to see the fairly good match with the location of the

Zdr column in fig. 5.3a.

5.2. Surface-based wind analysis incorporating radar features

The Zdr column signature may be considered as a proxy for positive vertical velocity

within the storm. Then, through a mass continuity constraint it can be related to horizontal

convergence near the surface. The objective of this section is to describe a methodology

to build a wind analysis from surface wind observations and divergence information from

Zdr columns.

Vector field interpolation may lead to different vector analyses, depending on the vector

decomposition. For a wind vector V with zonal and meridional components (u, v), interpo-

lation of the u- and v-components will lead to a wind analysis different from that obtained

interpolating the direction and intensity. Interpolation of direction and intensity is in general
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(a) CAPPI at 4000m. (b) Vertical cut through the line in panel a)

Figure 5.3: Reflectivity and Zdr contours at 13:30 UTC.

avoided, since direction is a circular variable and could not be treated using standard linear

methods. Most often the wind vector is analyzed from the u- and v-components separate

interpolations. However for the purpose of this study and in general for many meteorological

applications, a major aim is to preserve the convergence and rotational features in the wind

field. According to Helmholtz’s theorem, the wind vector field can be decomposed into an

irrotational and a non-divergent component. For a horizontal wind vector V the vertical

vorticity ξ and divergence δ are defined as:

(23) ξ = k · ∇ × V =
∂v

∂x
−
∂u

∂y
, δ = ∇ · V =

∂u

∂x
+
∂v

∂y

The wind field can be expressed in terms of the stream function ψ and velocity potential χ:

(24) V = Vψ + Vχ = ∇χ+ k ×∇ψ
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Figure 5.4: CAPPI (2000m) at 13:30 UTC: reflectivity (gray levels), divergence (blue con-
tours, units 10−3 s−1) and wind retrieved from dual-Doppler analysis.

From eq. 23 and taking respectively the vertical component of the curl and the divergence

of eq. 24 we get the Poisson equations for ξ and δ:

(25) ∇2ψ = ξ, ∇2χ = δ

From equation 25, with proper boundary conditions over a limited domain, it is possible to

reconstruct the wind field.

5.2.1. Estimation of divergence and vorticity. In addition to the standard defi-

nition in eq. 23, using Green’s theorem the divergence and the vorticity can also be obtained

from the line integral forms [117]:
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(26) ξ = lim
A→0

1

A

∮

Γ

V · dr, δ = lim
A→0

1

A

∮

Γ

k · V × dr

where A is the area of the surface S, k the unit vector perpendicular to S and dr the

differential of the position vector along the curve Γ bounding the surface S in the horizontal

plane.

Under a linearity assumption, the discretized forms of (26):

(27) ξ̂ =

∑
u∆x+ v∆y

A
, δ̂ =

∑
u∆y − v∆x

A

allow the calculation of the divergence and vorticity over a polygon region [117–119]. The

error in the estimation of the divergence and vorticity using three observations goes to infinity

when the three observations are aligned, while it is minimized for an equilateral triangle [120].

There are many possible ways to define the triangles in the network of surface observations.

Delaunay triangulation is used in this context, because it allows a maximization of the

minimum angle of all the angles of the triangles. In addition Delaunay triangle tessellation

is unique (with the exception of the special case of four co-circular points), providing an

objective and reproducible method for the specification of the triangle regions.

Fig. 5.5a shows an example of the Delaunay tessellation applied over the meteorological

network of wind sensors in northwestern Italy (red dots in fig. 2.3). Mountain stations

have been excluded in the current analysis, because the integral method is not intended

for application over non flat areas, with triangles having vertices at different heights. The

triangles obtained after tessellation are checked for their minimum angle and the ones having

an angle lower that 20 deg are discarded, to avoid excessively noisy estimates. In fig. 5.5b,
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(a) Delaunay tessellation (b) Size distribution

Figure 5.5: a) Example of Delaunay triangle tessellation over the northwestern Italy meteo-
rological surface network (10 July 2011 at 17:30 UTC). The wind barbs intensity is magnified
by a factor of 10 (one full barb = 1 knot) for display purposes. Solid gray lines indicate the
triangles used in the divergence and vorticity calculation, while the dotted gray line mark
the edges of the triangles discarded for having an angle lower than 20 deg. The red rectangle
indicates the sub-area considered in subsequent figure 5.6. b) Distribution of the triangle
dimensions.

the distribution of the triangle dimensions is represented, together with the characterstic

meso-γ and meso-β scales of atmospheric phenomena [121]. The network resolution appears

sufficient to resolve the characterstic motions of mesoscale convective systems and squall-

lines, but is on average too coarse to adequately represent the environment of individual

thunderstorms. For this reason the input from radar observations is expected to be relevant

in order to better resolve the motions near the surface in the environment of the storm.

The values of divergence and vorticity calculated with eq. (27) are referred to the centroid

of the triangles and spatially interpolated using a IDW (Inverse Distance Weighting) method.

The results obtained for the surface winds reported in fig. 5.5a are plotted in fig. 5.6
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(b) vorticity

Figure 5.6: Divergence and vorticity fields interpolated from local estimates (open circles)
using Inverse Distance Weighting, at 17:30 UTC.
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(b) Zdr connected regions

Figure 5.7: Zdr integral (a) and column identification through connected-component labeling
(b) at 17:30 UTC. The contours of Zh (dBZ) are overplotted in both panels for reference.

5.2.2. Inclusion of Zdr columns information. In order to identify the columns of

Zdr first a vertical integration (Zdr ·dz) is performed in the radar volume considering values
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exceeding a given threshold (2 dB) above the freezing level and imposing a vertical contiguity

constraint. The resulting Zdr integral product, with units db km, is subsequently analyzed

with a connected-component labeling [122] algorithm to identify the cores with maximum

values exceeding 6 db km and minimum of at least 3 db km (fig. 5.7). Attributes of the iden-

tified connected regions (Zdr columns) are calculated, including area, centroid coordinates,

mean and max value.

Since a Zdr column has in general a much smaller area than the Delaunay triangles over

surface observations, a resampling over a larger area is necessary before the spatial interpola-

tion is performed, to avoid mixing terms with very different spatial representativeness. The

column is then assumed to correspond to a Gaussian spatial distribution of divergence with

center corresponding to a fixed value of 10−2 s−1, as per dual-Doppler observations (fig. 5.4),

corresponding to about a 20 m s−1 increase in vertical velocity over a 2000 m deep vertical

layer (under mass continuity hypothesis). The width of the Gaussian distribution (σ) is set

equal to the radius of the equivalent circular area of the Zdr column. Finally, the Gaussian

distribution of divergence is integrated over an area equal to the average area of the five

closest Delaunay triangles to yield a value of similar spatial representativeness.

Fig. 5.8 shows the same type of divergence IDW analysis as in fig. 5.6a, but in this

case including the additional divergence information from Zdr columns (marked with white

crosses). The Zdr column centroids (white crosses) lie in a region where the divergence was

already estimated to have negative sign, using surface observations alone (fig. 5.6a). This

is a confirmation of the connection of the Zdr columns with the updraft. The inclusion of

the Zdr column information has the effect of enhancing the near surface convergence ahead

of the storm.
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Figure 5.8: Divergence field interpolated from local estimates (open circles) and Zdr column
divergence information using Inverse Distance Weighting. The white crosses mark the cen-
troids of the Zdr column, while the black solid contours represent the Zh field.

5.2.3. Wind field evaluation technique. When the global values of divergence and

vorticity are available, the wind field can be retrieved within an additive constant. However,

when the spatial domain is limited, boundary conditions need to be specified. Taking the

partial derivatives of eq. 23, we obtain a new pair of Poisson equations:

(28)
∂δ

∂x
−
∂ξ

∂y
= ∇2u,

∂ξ

∂x
+
∂δ

∂y
= ∇2v

These equations are solved using a SOR (Successive Over Relaxation) method, with bound-

ary conditions specified by an auxiliary wind field estimate. In the following example we used

the WRF analysis resulting from the 3D-Var assimilation of surface observations (Chapter

2).
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5.2.4. Test on a real case. The outlined procedure is illustrated with an application

to a real case. On 10 July 2011 a convective storm developed on the Western Alps and

shortly after moved eastwards (fig. 5.9), gaining energy from the warm and humid air

subsiding over the plains. The storm produced large hail and one tornado. The steps in the

analysis procedure are summarized as follows:
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(d) 17:50 UTC

Figure 5.9: DARTS (Dynamic Adaptive Radar Tracking of Storms) motion vectors [5] and
reflectivity between 16:20 and 17:50 UTC. The red rectangles define the sub-domain in the
following fig. 5.10.
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• A first-guess from WRF analysis is obtained upon 3D-Var assimilation of surface

observations (winds and temperatures);

• Divergence and vorticity are estimated from surface observations, based on integral

definitions (eq. 27) over Delaunay triangles;

• The location and extent of the Zdr columns provide additional bogus observations

of divergence;

• Divergence and vorticity observations are interpolated on a regular grid by means

of IDW;

• Finally, a successive over-relaxation iterative method is applied to retrieve the u-

and v-component of the wind field from divergence and vorticity analyses, using a

first guess and boundary conditions provided by the WRF analysis.

Fig. 5.9 shows the reflectivity maps between 16:20 and 17:50 UTC, with overplotted

motion vectors calculated using the frequency-domain estimation technique implemented

in the CASA radars [5]. The initial eastward displacement is followed by a right-flank

development of the storm determining a southeastward motion and south-west to north-east

alignment of the radar echo pattern.

The corresponding surface-based wind analyses including Zdr information are shown in

fig. 5.10. In addition to the reflectivity and wind vectors, the divergence contours (black solid

lines) and surface temperature (red isolines) are also represented. Temperature observations

are interpolated with a kriging technique, using the autoKrige function (package automap

[123]) within the R Project for Statistical Computing package [124].
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(c) 17:20 UTC

360000 400000 440000 480000

49
40

00
0

49
80

00
0

50
20

00
0

50
60

00
0

UTM X (m)

U
T

M
 Y

 (
m

)

0

20

40

60

5 knots

 24 

 25 

 25 

 25  26 

 27 

 29 

 30 
 30 

 31 

 −1.5 

 −
1.

5 

 −3 

 −3 

(d) 17:50 UTC

Figure 5.10: Surface analysis of temperature (red contours) and winds with observed reflec-
tivity between 16:20 and 17:50 UTC. The black contours represent divergence levels of -1.5
and -3.0 10−4 s−1, the red contours the surface kriging-interpolated temperature. The radar
location is marked with a triangle.

Auto-propagation (the process in which a storm can regenerate itself) by cold-pools is

indeed a major mechanism for storm propagation [112], in addition to the advection by mid-

tropospheric winds. The analyses in fig. 5.10 well represents this mechanism. The dominant

134



feature in the interpolated temperature field is represented by the minimum behind the cell

core. The temperature minimum is already visible at 16.20 UTC (28◦C ) and subsequently

deepens down to 24◦C at 17:50 UTC. During the intense phase of the storm life-cycle, the

retrieved regions of maximum negative divergence (black isolines) are always roughly co-

located with the maximum gradient of the surface temperature. This is a clear indication of

the vertical motion triggered by the gust-front. The movement of the advancing gust-front

is close to the speed a the density current, which is typically of the order of 10 m s−1 [125]. A

quantitative estimation of the gust-front North-West to South-East displacement is obtained

from the analysis of the temperature gradient at successive times. The overall displacement

of about 45 km corresponds to a fairly consistent speed of ∼8 m s−1 . The apparent lagged

displacement and modification of the reflectivity field is also apparently correlated with the

estimated divergence field, providing further evidence of the overall reliability of the retrieved

wind field.

It is finally worth noting how the cold-pool triggered auto-propagation has the important

effect to modify the initial storm trajectory (West to East, fig. 5.9), making it difficult for

reflectivity-based extrapolation methods to ascertain with reasonable accuracy the position

of the storm in the next 20-30 minutes.

135



CHAPTER 6

Assimilation of dual-polarization information in

VDRAS (Variational Doppler Radar Analysis

System)

Four-dimensional data assimilation techniques have been introduced during the last cou-

ple of decades in global and regional models [126–128] to provide a temporal extension

respect to previous three-dimensional variational systems, and as an alternative to other

popular methods based on statistical estimation theory like the Ensemble Kalman filter-

ing. In large-scale models the four-dimensional assimilation process is mainly intended as

an optimal filter, but for the convective scale it becomes also relevant to retrieve the unob-

served variables. In fact, while for the meso-synoptic scale the conventional meteorological

observations (surface measurements and upper-air soundings) provide adequate resolution

to represent the model variables, for the convective scale only weather radars are able to col-

lect observations with enough spatial and temporal resolution, although only for a reduced

set of variables. In addition, the variables observed by the weather radar (e.g. reflectivity

and radial winds) are not among the model variables, but are generally related to the water

content and winds through appropriate observation operators.

The Variational Doppler Radar Analysis System (VDRAS) is an advanced data assimi-

lation system specifically designed for ingesting Doppler weather radar observations at the

convective scale [7]. The system has been installed at many sites around the world and is

typically running using long-range operational S-band or C-band radar networks. The core

four-dimensional data assimilation scheme is based on a cloud-scale model and considers a

12-15 minutes time window for the radar assimilation, with 1-3 km spatial resolution.
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The Dallas Fort Worth (DFW) Urban Demonstration Network project is centered on

the deployment of a network of several dual-polarization, X-band radars to demonstrate

improved hazardous weather forecasts, warnings and response in a densely populated urban

environment (pop. 6.3 million in 2010). Specifically, low level wind analysis and forecast

ranging from 10 minutes to 3 hours are among the main research areas of the project. The

scanning strategy of the radars is inherited from the CASA project distributed collaborative

adaptive sensing concept [106] and is intended to sample with high time resolution the lower

atmosphere (1-3 km above ground level). During standard operation, 4 or more full PPI or

sector scans at elevations ranging between 1 and 7 deg and range resolution of 50-100 m are

performed within 1 minute.

In this chapter the feasibility of running VDRAS at high spatial resolution (2 km) with

rapid update (5 minutes) is studied, exploiting the frequent low-level sampling of the atmo-

sphere available within the DFW network of X-band radars.

6.1. VDRAS 4D-Var assimilation

The central process of VDRAS is the 4D-Var radar data assimilation, which includes

a cloud-scale numerical model, the adjoint of the numerical model, a cost function and a

minimization algorithm [7, 129]. The assimilation scheme, through the iterative minimization

of a cost function, fits the model to the observations on the three-dimensional spatial domain

and over a specified time window. Similarly to eq. (3) in Chapter 2 a cost function, measuring

the distance between the model variables and the observations, is defined as:

(29) J =
∑

σ,τ

[ηv(vr − vobsr )2 + ηq(qr − qobsr )2] + Jb + Jp
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where σ and τ represent the spatial and temporal domains, the variable vr is the radial

velocity computed from the model velocity components and vobsr is the observed radar Doppler

velocity; qr is the rainwater mixing ratio from the model and qobsr is the rainwater mixing

ratio estimated from radar observations. The quantities ηv and ηq are constant weighting

coefficients. This formulation assumes that the observation errors of the radar fields are

uncorrelated in space and time. The terms Jb and Jp represent respectively the background

and the penalty term. The background term provides a measure of the distance between the

analysis and a prior estimate, while the penalty term ensures a proper spatial and temporal

smoothness. It is important to emphasize that, as opposed to eq. (3) in Chapter 2, the cost

function in 4D-Var includes the summation over the temporal domain. The minimization

of the cost function (eq. 29) is obtained using the limited-memory quasi-Newton conjugate

method [130]. The search direction is calculated using the information of the cost function

and its gradient. While the cost function is computed integrating forward in time the non-

linear model, the gradient is derived from the integration backward in time of the adjoint

model (the transpose of a tangent linear version of the non-linear cloud-scale model).

The specific implementation of the VDRAS system used in this work (appropriate also

for real-time applications) is described in detail in the Sun and Crook paper [129].

6.2. Radar data pre-processing

The rainwater mixing ratio is conventionally derived in VDRAS from reflectivity ob-

servations using a power-law relation obtained assuming a MarshalPalmer raindrop size

distribution:

(30) Z = 43.1 + 17.5 log10(ρqr)
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where Z is the reflectivity expressed in dBZ, ρ is the air density and qr in in units of g kg−1.

However, for X-band systems path attenuation greatly affects the reliability of reflectivity-

based estimates in heavy precipitation. Dual-polarization measurements allow to correct

for path attenuation and to estimate the rain rate and the rainwater content with higher

accuracy [25].

In this work a blended algorithm is adopted that combines the available dual-polarization

observations (namely reflectivity, differential reflectivity and the specific differential phase

shift) using different relations, providing a rainwater estimate less sensitive to DSD (Drop

Size Distribution) variations and mostly un-affected by attenuation. The basis to apply

different relations is provided by a preliminary hydrometeor classification [6] described in

Chapter 4, which drives the choice of the most proper algorithm. The relations used are

for the liquid water content (LWC), i.e. the rainwater content mixing ratio scaled by the

air density: LWC = ρqr: the dual-polarization relations include functions of Zh and Zdr ,

Kdp and Zdr , and Kdp only, with coefficients for the S-band as follows [25]:

LWC(Zh, Zdr) = 0.7 10−3Z0.89
h ξ−4.16

dr

LWC(Kdp, Zdr) = 6.05K0.88
dp ξ−2.52

dr

LWC(Kdp) = 1.65K0.77
dp

(31)

where Zh is expressed in mm6 m−3 , ξdr = 100.1Zdr is the differential reflectivity in linear

units. For S-band, the LWC(Kdp) is always used when the hydrometeor classification in-

dicates heavy rain or rain + hail mixture, while for the other liquid hydrometeors either

LWC(Zh, Zdr) or LWC(Zh) as in eq. (30) are used, according to predefined thresholds on

the radar Zh and Zdr values [131]. AT X-band the attenuation and differential attenuation

may severely affect the radar observations. In particular the correction for the differential
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Figure 6.1: PPI from Midlothian radar at 20:39UTC. Left: reflectivity; center: hydrometeor
classification; right: rainwater mixing ratio estimated from dual-polarization observations.

attenuation may introduce a relevant error on Zdr . Considering the high sensitivity of the

LWC(Zh, Zdr) and LWC(Kdp, Zdr) estimators to small Zdr biases, it is then preferred to avoid

the use of such relations. So, for the small X-band systems, the LWC(Kdp) estimator:

(32) LWC(Kdp) = 0.64K0.77
dp

is used whenever the hydrometeor classification output reports rain, heavy rain or rain +

hail mixture. In fact, the differential phase shift (Kdp) measurements are immune to both

radar calibration and attenuation due to propagation, and are also mainly insensitive to

partial beam blocking [25]. In the other cases the simpler LWC(Zh) is adopted.

For assimilation in VDRAS, the radar observations of vobsr and the estimates of qobsr in the

polar domain are first interpolated to Cartesian PPIs with 500 m-resolution. Figure 1 shows

an example of a reflectivity PPI at 2.0deg elevation from the Midlothian X-band radar, with

hydrometeor classification and the resulting qobsr estimation.

140



6.3. Model set up

Data assimilation experiments have been initially conducted for a hailstorm event oc-

curred on 12 May 2014. For this case the data from the S-band NEXRAD KFWS radar

have been considered, in addition to the X-band radars located in Arlington and Midlothian.

In order to provide an initial condition (background) for the cost function minimization (eq.

29), a mesoscale analysis is preliminarily performed to start the model simulation (cold start),

based on surface observations (METAR reports) and vertical sounding from a preliminary

WRF model simulation on a larger domain. The experiment started at 19:25UTC, and then

cycled every 5 minutes using the previous forecast as background. The cycling procedure is

actually matched with the NEXRAD volume update frequency, which was slightly less than

5 minutes, ensuring the availability of a large scale 3-dimensional coverage for the analysis.

Within the 5-min window, in addition to the NEXRAD volume scan, about 5 to 10 PPIs at

the same low elevation angle (2deg) are available from each of the X-band radars. Adaptive

sector scans at higher elevations were not considered in these first experiments.

In previous VDRAS applications assimilation windows of about 15-20 minutes have been

used, including several radar volume scans. The reference time for all the observations

during the whole volume scan was the beginning of the first elevation scan, disregarding

the time differences between successive elevations. In the current set up, however, the short

assimilation window required to consider the actual observation time of the individual PPIs

within the NEXRAD volume scan, in order to deal more consistently with the frequent

low-level scans of the X-band systems. Since the VDRAS version with warm-rain only

microphysics is considered in this study, the assimilation of the radar observations is limited

to data below 5 km height.
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Figure 6.2: VDRAS analysis of qr (colors) and winds at 19:30 UTC from the first cycle on
the full model domain. The blue wind barbs represent the METAR surface observations, the
red circles indicate the 40 km-range domain of the two X-band radar (black triangles). The
small filled black circle indicates the position of the NEXRAD KFWS radar.

The model domain is 133x100x37 (nx,ny,nz) grid points, with horizontal resolution of 2

km and vertical resolution of 400 m, and the integration time step is 4 s. The runtime for

the analysis is about 20 minutes on 8 processors. In fig. 6.2 the VDRAS analysis from the

first (cold start) 4D-Var cycle is shown on the full model domain. At this stime, a squall

line can be seen approaching from west-northwest the DFW region covered by the X-band

radars (red circles). The wind analysis during the following period can then rely on multiple

Doppler observations as well as on several surface METAR measurement.
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(a) Single-pol qr (b) Single-pol qr (c) Single-pol qr

(d) Dual-pol qr (e) Dual-pol qr (f) Dual-pol qr

Figure 6.3: Analysis of rainwater mixing ratio (color) and winds for the lowest model level
(200m). Panels a) to c) shows three successive analysis using the single-polarization qr
estimation algorithm (eq. 30), while panels d) to e) present the same analysis obtained with
assimilation of the dual-polarization qr estimates (eqs. 31 and 32).

6.4. Wind analysis

6.4.1. Dual-polarization vs. single-polarization rainwater estimation. One

of the notable advantages of using dual-polarization relations for the estimation of the rain-

water (eqs. 31 and 32) as opposed to the single-polarization algorithm (eq. 30) is illustrated

in fig. 6.3. Panels a) to c) (single-polarization qr estimation) show a suspect decrease of the

rainwater intensity when the squall line passes over the KFWS radar and enter the domain

of the smaller X-band systems. On the other hand, the dual-polarization assimilation exper-

iments show an apparently more consistent evolution of the storm. The progressive intensity
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weakening in panels a) to c) may not be suspect in other circumstances. What makes it

suspicious in this case is the fact that the weakening coincides with the storm passage above

one radar (KFWS) and when the X-band observations start to contribute significantly to

the analysis in this region. Further investigation allowed to identify two distinct issues:

• the reflectivity was not completely recovered from path attenuation on the X-band

measurements, using the rain profiling algorithm described in Chapter 4, section

4.2.1;

• up to ∼2 dB attenuation was estimated to affect the S-band observations, due to

radome wetting.

While the former issue is not completely surprising, due to the known difficulties to correct

large attenuation affecting radar operating at high frequencies, the second problem is some-

how unexpected since the effect of radome wetting at S-band is generally neglected. However,

Merceret and Ward [132] reported a similar attenuation of approximately 2 dB at S-band

for high rain rates in the order of 50-100 mm h−1. This would produce an underestimation

of the rainwater mixing ratio of about 25%. At X-band the effects of radome attenuation

are more important [61], making the R(Kdp) estimator the first choice in the majority of

situations. It is concluded that the use of dual-polarization algorithms, in particular R(Kdp),

is relevant for its insensitivity to the wet radome attenuation (in addition to the previously

mentioned advantages), also for S-band when heavy rain reaches the radar site.

It is also intersting to look at the evolution of the cost function (eq. 29) during the

minimization process. Fig. 6.4 shows the velocity (left panel) and rainwater (right panel)

components of the cost function for the Midlothian radar analysis at 20:18 UTC. This is a

representative example of the experiment running with the assimilation of dual-polarization
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Figure 6.4: Cost function at 20:18 UTC for the Midlothian radar. The velocity and rainwater
components as defined in eq. (29) are respectively plotted in the left and right panel.

qr estimates, including seven low-level scans available within the five minutes assimilation

window. The colored lines represent the cost function for the observations collected during

each scan, whose time is indicated in units of time steps (4 seconds) relative to the beginning

of the assimilation window. Both the velocity and rainwater components of the cost function

show a decrease of at least a factor of two during 35 iterations. Similar performances in

terms of convergence are obtained for most of the event, with an exception of about 10-15

minutes during tho most intense phase of the event, with the X- band observations suffering

extreme attenuation and complicating the minimization process. The evolution of the cost

function rainwater component for the Arlington radar during the strongest storm phase

in the overlapping radar region (around 20:43 UTC, as depicted in fig. 6.7) is especially

informative about the impact of the dual-polarization vs. the single-polarization rainwater

estimation. The left panel in fig. 6.5 presents the cost function evolution for the five scans

within the assimilation window, when the single-polarization algorithm (eq. 30) is used in
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Figure 6.5: Evolution of the cost function rainwater component for the Arlington radar at
20:43 UTC. The left and right panel respectively show the results obtained after application
of the single-polarization and dual-polarization rainwater estimation algorithms.

the assimilation. In this case it is evident that it was not possible to reach convergence,

as the cost function shows an increase during the iterative process instead of the expected

decrease. This is clearly a particularly difficult case for the X-band radars (the cost function

for the NEXRAD radar on the other hand shows the anticipated decreasing trend), for

which the differences deriving from the application of different rainwater estimators are

more pronounced. The use of the blended dual-polarization rainwater algorithm is in fact

associated with a better minimization of the cost function (right panel in fig. 6.5).

6.4.2. Single radar (S-band) vs. multiple radars (S-band + X-band) as-

similation. The availability of multiple Doppler radial velocity observations is expected to

allow a detailed retrieval of the 3-dimensional wind field. In the case considered three radars

are available, the conventional S-band NEXRAD radar (KFWS) and two newly deployed
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small X-band systems (XUTA and XMDL). The major benefit for the wind retrieval is ex-

pected during the period when the storm entered the central area of the model domain with

relevant radar overlapping. It is therefore useful to compare the analysis obtained using only

the long range S-band radar and the analysis based on the assimilation of all three radars.

As an example, fig. 6.6 shows the rainwater and wind retrievals obtained when only the

NEXRAD observations are assimilated (panels a and b) and when the two X-band radars

are additionally included in the assimilation process (panels c to f). In order to facilitate the

interpetation of the resulting wind fields, the original radial Doppler wind observations are

displayed (color) in panels b), and d) to f), after horizontal interpolation on the model grid.

In the single radar analysis (panels a and b) the retrieved wind field presents a divergence

just east of KFWS resulting form the model “interpretation” of the single Doppler velocities.

In addition, as a consequence of the model physical balances a depression in the rainwater

field is generated, which has no correspondence with the actual observations. When the

Doppler observations from XUTA and XMDL are assimilated together with the NEXRAD

data, the wind field appears noticeably different, in particular in the southern portion of the

model domain. A band of intense convergence near the surface is identified from this updated

analysis, crossing from south to north the ideal triangle formed by the three radars on the

map. In this region the outflow generated by the evaporative cooling of the precipitation

within the approaching squall line from the west meets the warmer southerly flow on the

eastern portion of the domain. This convergence leads to relevant upward motions, which

continued for about 30 minutes until a hailstorm eventually formed (fig. 6.7).

This analysis and the following ones are consistent with the subsequent development of

the storm. In particular the wind analyses at 20:28 and 20:33, when the intensity of the
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(a) qr + δ contours (NEXRAD) (b) Doppler NEXRAD+analysis (NEXRAD)

(c) qr + δ contours (NEXRAD+XDFW) (d) Doppler NEXRAD+analysis (NEXRAD+XDFW)

(e) Doppler XUTA+analysis (NEXRAD+XDFW) (f) Doppler XMDL+analysis (NEXRAD+XDFW)

Figure 6.6: Analysis at 20:13UTC on a smaller portion of the model domain, for the lowest
vertical level (200 m height). In brackets the observations used in the analysis are indicated.
The Doppler observations are from the lowest PPI (0.5◦ for KFWS, 2.0◦ for XUTA, and
1.8◦ for XMDL), and interpolated on the model grid. The solid (dashed) contours in panels
a) and c) represent negative (positive) divergence.
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main convective core within the squall line was actually decreasing, show an updraft region

ahead of the squall line with vertical velocities in excess of 16 m s−1.

At 20:43 UTC (fig. 6.7) the estimated rainwater mixing ratio is characterized by a

well-defined convective core downwind of the region previously distinguished by the intense

updraft. There were several hail reports around this time and location.

For this case the hydrometeor classification algorithm described in Chapter 4 is indepen-

dently applied on the dual-polarization measurements collected by the three radars. The

algorithm running on the one-minute scans of the X-band systems initially identified hail

within a heavy rain region around 20:37 UTC (XUTA and XMDL) and during the sub-

sequent 18 minutes (until 20:55 UTC). The achieved results are consistent with the lower

sampling frequency S-band NEXRAD radar (hail identified in the scans at 20:38, 20:43 and

20:48 UTC), and with the hail reports obtained from the media. This analysis led to estimate

the area interested by hail at the surface level. In fig. 6.7 the perimeter of the estimated

hail swath is drawn as a solid contour, overplotted on the rainwater field estimated from the

NEXRAD dual-polarization observations at 20:43 UTC.

6.5. VDRAS forecast

VDRAS was primarily developed as an analysis system and as such is being used for

research purposes and also as an operational tool at several meteorological offices. However,

the same cloud model used for the analysis retrieval in the four-dimensional assimilation

scheme can be integrated further in time to provide a forecast. For the experiments described

in the previous section 6.4.2 a forecast up to +58 minutes lead time was run, with a specific

focus on evaluating the contribution to the forecast performance deriving from the use of

the X-band radar observations in the assimilation.
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Figure 6.7: Estimated rainwater mixing ratio from KFWS dual-polarization measurements
at 20:43 UTC, with overplotted the hail swath perimiter as inferred from hydrometeor clas-
sification [6].

As an example, fig. 6.8 shows the forecast comparison for the analysis at 20:13 UTC. The

forecast starting from the analysis elaborated with the NEXRAD radar only is displayed in

the left column, while the forecast obtained from the analysis including both the NEXRAD

and the two X-band radars (NEXRAD+XDFW) is reported in the middle column. In the

right column the analyses at the corresponding lead times are displayed for comparison.

One notable difference between the two experiments can be seen early during the forecast

in the rainwater fields. As already noted discussing fig. 6.6, the divergent wind field close

to the KFWS radar, in the case of the single radar assimilation, produces an anomalous

weakening of the rainwater in the analysis. Coherently with this context, the forecast shows

a gradual splitting of the squall line, with the southern sector intensifying during the first ∼30

minutes and the central portion in the overlapping region progressively dissipating. On the

other hand, the NEXRAD+XDFW experiment shows a remarkable ability to qualitatively

simulate the evolution in the northern part of the domain during the first ∼30 minutes.
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Figure 6.8: Forecast using VDRAS with assimilation of NEXRAD radar only (left col-
umn), multiple radars NEXRAD+XDFW (middle column), and corresponding analysis at
the proper lead time (right column). In the first row the +0 min lead time forecast (analy-
sis) is displayed, in the second row the +14 min forecast, and in the third row the +34 min
forecast.

Since this portion of the squall line is located downwind respect to the region where multiple-

Doppler observations are available, this can be interpreted as an indication of the X-band

measurements significance for the improvement of the wind analysis.
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(a) Forecast (b) Analysis

Figure 6.9: Liquid water potential temperature forecast at +34 minutes lead time (left) and
corresponding analysis (right), with wind arrows, at 200m vertical level. The overplotted
thick blue lines mark the approximate position of the gust front, based on the wind and
temperature fields.

Regarding the wind prediciton, it is evident from the evolution of the wind field and

the temperature (fig. 6.9), that the model forecast is not able to properly represent the

advancing gust front associated with the cold pool propagation. The thick blue lines in fig.

6.9 mark the approximate position of the advancing gust front in the forecast (left) and in

the analysis (right). In the forecast the gust front propagates very similarly as the rainwater

field (fig. 6.8, bottom/middle panel), while the analysis depicts a faster propagation of the

gust front relative to precipitation within the squall line (fig. 6.8, bottom/right panel). In

fact in the analysis at 20:47 UTC (+34 min forecast in fig. 6.9) the near-surface convergence

region and the strongest temperature gradient are located near the southern limit of the

Midlothian radar domain (southern circle in the image), while the organized precipitation

system is also moving eastward but has just barely passed the radar site. The forecast also
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Figure 6.10: Same as fig. 6.8, but for the +58 min forecast.

presents a very pronounced intensification of the temperature gradient along the leading

edge of the squall line, which is not found in the corresponding analysis.

As the forecast progresses, the squall line tend to narrow excessively, reducing the width

along the propagation direction. The ∼1 hour forecast of rainwater presented in fig. 6.10

shows a considerably reduced width of the squall line, associated with an increased amount

of rainwater. In particular values of qr up to ∼5 g kg−1 are visible in the forecast starting

from the single radar analysis (left panel in fig. 6.10), about a factor of two higher than

the maximum found in the analysis. It seems plausible that the use of warm-rain only

microphysics in the model may be responsible for the excessive narrowing in the forecast.

The impact of the assimilation of the whole radar data set, including observations in the ice

phase, will need to be evaluated using the recent VDRAS implementation of the ice-phase

microphysical process [133].

In general the boundary conditions play a relevant role on the limited area model fore-

casts. In fact the uncertainties in the boundary conditions may have implications early in

the forecast, sooner for smaller domains. The current version of the VDRAS system uses

boundary conditions derived from the WRF model for the initialization and assumed fixed
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during the assimilation time window and for the subsequent forecast. This is a viable solu-

tion if the assimilation system is only used for the analysis, as it was originally devised for.

If the domain is sufficiently extended, in fact, the impact of using fixed boundary conditions

over a typical time window of about 5-15 minutes is expected to be very limited. If the

same model is run further ahead in time to provide forecast up to ∼1 hour or longer, the

impact may start to become relevant. In addition to the uncertainties in the boundary at

the time of the analysis, the steadiness of the model state on the borders starts introducing

more errors as the forecast progresses.

For the specific case analyzed, some of the issues discussed and specifically the excessive

intensification in the southwestern part of the domain, appear very likely ascribable to the

steadiness of the boundary conditions.

6.6. Conclusions

VDRAS simulations using X-band radar data in addition to a single NEXRAD radar

were performed in this preliminary study. In order to cope with path attenuation affecting

short-wavelength radar a new estimation of the rainwater mixing ratio from radar has been

implemented, exploiting dual-polarization observations and the hydrometeor classification

described in Chapter 4.

The availability of multiple short-range radars is fundamental to provide radial velocity

observations and rainwater estimates near the surface. In addition, the scan strategy imply-

ing very frequent low-level scans appears especially suitable for running an analysis system

based on four-dimensional data assimilation. First results are encouraging and indicate the

potential for low-level wind analysis over the DFW metropolitan area.
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The same cloud model employed for the assimilation is also integrated forward in time

in this study to evaluate its potential for short term forecasting. First results show lights

and shadows. On the upside the model demonstrated an ability to provide reliable indi-

cations about the very short term storm development, beyond the simple information that

is generally possible to infer from applying simple extrapolation on previous observations.

This seems particularly true when multiple radar observations contribute to the analysis, as

discussed with regard to the 0-30 min forecast in fig. 6.8 (middle column). The impact on

the forecast deriving from the inclusion of the two X-band radars in the initial analysis can

be quantitatively evaluated considering the classical summary measures (Appendix A). Fig.

7.14 reports the average Threat Score with increasing forecast lead times for two experiments

(single and multiple radar assimilation) and two thresholds on the rainwater (0.1 and 0.4

g kg−1). In this figure the light blue area area denotes an improvement of the forecast skill

when the X-band observations are used in the VDRAS analysis. The forecasts are verified

against the simple mosaicked rainwater field (the first guess from which the analysis is even-

tually obtained after the assimilation process). For this reason the initial (+0 min forecast)

value of the Threat Score is less than one. The Threat Score plots indicate a small improve-

ment associated with the NEXRAD+XDFW assimilation, for lead times approximately ≥30

minutes. However, the amount of the improvement does not appear significant, given the

larger variability of the score during the event represented by the gray area in the plots. It

is possible that the relative small coverage of only two X-band systems considerably limit

the impact on the forecast when evaluated over the larger model domain during the whole

event. For the case study analysed only two radars were operational over the Dalls-Fort

Worth testbed, but at the time of writing the rest of the initially planned eight systems are

being deployed. Future analysis of more case studies including the enlarged X-band radar
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Figure 6.11: Threat score calculated for two different qr thresholds (0.1 and 0.4 g kg−1

respectively in left and right panel), for the forecast based on assimilation of single NEXRAD
radar (blue line) and both NEXRAD and the two X-band radars (red line). The gray area
represents ± 1 σ (standard deviation), with light gray for NEXRAD and darker gray for
NEXRAD+XDFW. The light blue area denotes an improvement of the forecasting skill
when the X-band observations are ingested in the assimilation.

network will allow a more quantitative evaluation of the VDRAS potential for nowcasting in

the DFW area.

Another relevant aspect regards the VDRAS undergoing developments. Two major ad-

vancements potentially affecting the application in the DFW region are the implementation

of the ice-phase microphysical process [133] and the inclusion of dynamic boundary condi-

tions, currently being developed (Juanzhen Sun, NCAR, 2016, personal communication).

The former development (implementation of the ice microphysics), in addition to represent

an improvement for the model itself, will allow a more synergistic use in combination with the

advanced hydrometeor classification technique based on dual-polarization radar observations

(Chapter 4). Based on the radar classification it will be possible to provide better estimates

of both liquid and ice water content to the four-dimensional data assimilation system. The

inclusion of ice microphysics will also foster research on new approaches to assimilate the
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information about the hydrometeor type. This is anticipated to be especially relevant for

deep convection and the very short term prediction of hail. Finally, the inclusion of dynamic

boundary conditions is also an awaited improvement that is expected to benefit in particular

the forecasting phase.
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CHAPTER 7

An attempt to bridge the gap between model and

extrapolation nowcasting

The description of the atmospheric state evolution is inherently a three-dimensional prob-

lem involving several variables (e.g. for warm rain process: temperature, humidity, pressure,

winds, water vapor, cloud water, rainwater). However the purpose of this work is specif-

ically linked to the two-dimensional forecast of the rainwater (qr) and winds (u, v) in the

near-surface layer. One possible and increasingly pursued option for precipitation and wind

nowcasting is to run a three-dimensional numerical model and then consider only a specific

section of the forecasted atmospheric state, i.e. two variables on a single horizontal layer.

This approach has been investigated in this research work in Chapter 2 using the WRF

model, and in Chapter 6 with the VDRAS four-dimensional variational assimilation system.

At the other extreme, extrapolation-based precipitation nowcasting exclusively relies on one

variable (typically the radar reflectivity) observed on a given surface, e.g. the conical scan

surface. Nowcasting by extrapolation often makes use of optical flow techniques to estimate

the motion vectors based on two or more previous observations. The motion vectors are then

used to advect in time the most recent observations. Given the huge difference in terms of

complexity between the model and the extrapolation approaches, the performance attain-

able by adopting the latter technique for precipitation nowcasting is somehow surprising.

The reason is that in general the advective component of the storm evolution prevails over

the more complex dynamical and microphysical interactions within the storm and with the

surrounding environment.

158



In the previous chapter it was shown how the use of a four-dimensional data assimila-

tion system has the potential to provide an accurate low-level wind analysis. Unlike simpler

multiple-Doppler techniques, the adoption of a cloud-scale numerical model in the assimi-

lation process ensures the physical consistency between the wind and the rainwater fields

over the assimilation time window. The same cloud model used in the assimilation phase

can be let run further to provide a short range forecast. However, while the typical assimila-

tion window only spans few to several minutes, the desired forecast range is quite larger for

typical nowcasting applications (∼60 minutes). Over this forecast range the model may ac-

tually show poorer performance respect to methods based on the simple extrapolation of the

observed reflectivity or related quantity ([134, 135]). On the other hand, the extrapolation-

based methods provide good results for very short term forecasting (up to about 20 minutes),

but their performance tends to quickly decrease due to the absence of a representation of

the atmospheric physics, and more specifically:

• the lack of source/sink terms: the most recent observations are simply advected, as-

suming Lagrangian persistence and irrespective of possible growth or decay affecting

the storm evolution;

• the motion vectors are estimated from observations typically confined over a portion

of the radar domain. When the storms are advected in regions originally not showing

radar echoes, the motion vector estimates may loose their representativeness.

The availability of a reliable estimation of the low-level wind field may help to compensate

the aforementioned limitations. In particular, the divergence of the low-level winds provides

useful indications about the location of convergence (negative divergence) regions near the

surface, where intensification of existing storm or new development is more likely. On the
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other hand, the downdraft inferred from the positive divergence regions, in conjunction with

the rainwater content evolution, may be used to attempt a simple representation of the

outflow which is relevant to the evolution of the wind field in the lower level [125].

“Mean winds“ methods have been used with some success to predict the storm motion.

These methods rely on the empirical evidence that the motion of the storms correlates well

with the average wind in the low- to mid-troposphere. For example Davies and Johns [136]

used the average wind in the lowest 0-6 km AGL. The rainwater motion vectors estimated

using the past storm location can therefore be regarded as representative of some weighted

average of the lower tropospheric winds. It seems then consistent to attempt exploiting

the low level wind prediction to update the initial estimate of the rainwater motion vectors

during the forecasting phase, assuming that the upper level winds will evolve more slowly.

An attempt to model the interconnections between the rainwater and the low-level wind

evolution is described in section 7.2. This model relies on the independent estimation of the

motion vectors for the rainwater and for the components of the wind field (divergence and

vorticity). In short, the approach described in this chapter can be regarded as an attempt to

inject some basic elements of atmospheric physics in a model (pure extrapolation) otherwise

completely lacking such information.

Preliminarily, the next section focuses on the specific technique employed to estimate the

motion vectors.

7.1. Horn-Schunck optical flow with a multi-scale pyramidal approach

Many techniques exist to estimate the motion of objects or surfaces from a sequence

of ordered images. These techniques are generally referred to as optical flow and can rely

on different methods for the determination of the motion. In the atmospheric science the
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most popular approaches are the block-based methods, minimizing the sum of squared differ-

ences or maximizing the normalized cross-correlation ([137, 138]) or the variational methods

([134]). Horn and Schunck [139] were the first to propose a variational method for optical

flow estimation. In their seminal work, the basic optical flow constrain equation, frequently

referred as the brightness constancy assumption, states that the apparent brightness of mov-

ing objects remains constant over time. This is expressed as:

(33)
dI

dt
= ∇I · u(x) +

∂I

∂t
= 0

This equation can not be solved pointwise. In fact, because of the two unknowns, only

the magnitude of the motion in the gradient direction can be estimated. In order to solve

this aperture problem, some additional constraint need to be introduced. Horn and Schunck

proposed a variational method with global smoothing to ensure filling in the motion estimate

from nearby gradient constraints. The variational problem is thus solved minimizing an

energy functional:

(34) J =

∫ ∫ [(
∂I

∂x
u+

∂I

∂y
v +

∂I

∂t

)2

+ α2
(
|∇u|2 + |∇v|2

)
]

dx dy

where the parameter α is a regularization constant to control the smoothness of the motion

estimates. Larger values of α lead to a smoother flow. The minimization of J can be achieved

by solving the associated EulerLagrange equations:

∂I

∂x

(
∂I

∂x
u+

∂I

∂y
v +

∂I

∂t

)
− α2∇2u

∂I

∂y

(
∂I

∂x
v +

∂I

∂y
v +

∂I

∂t

)
− α2∇2v

(35)
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where ∇2 is the Laplace operator. With two equations and two unknowns, and approximating

the Laplacian with ∇2u(x, y) = ū(x, y) − u(x, y) (with ū(x, y) being the average of u in the

neighborhood of (x, y)), it is possible to solve iteratively using the Jacobi method. For a

given iteration number k:

uk+1 = ūk −

∂I
∂x

( ∂I
∂x
ūk + ∂I

∂y
v̄k + ∂I

∂t
)

α2 + ∂I
∂x

2
+ ∂I

∂y

2

vk+1 = v̄k −

∂I
∂y

( ∂I
∂x
v̄k + ∂I

∂y
v̄k + ∂I

∂t
)

α2 + ∂I
∂x

2
+ ∂I

∂y

2

(36)

The method relies on the proper estimation of the partial derivatives
∂I

∂x
,
∂I

∂y
, and

∂I

∂t
.

If these can not be correctly estimated due to highly non linear gradients or excessively

large displacements of the precipitation patterns between successive images, the motion

vectors can not be correctly calculated. To overcome the possible issue related to non

linear gradients, the radar reflectivity (or logarithmic rainwater) at a given vertical level

is considered for the estimation of the motion vectors. In fact the rainfall rate (or liquid

water) tend to show high peaks with exponential decay away from the precipitation core in

convective precipitation. On the other hand logarithmic quantities like reflectivity present a

more linear decay. The second issue may arise from either excessive physical displacements

or too high grid resolution. In order to overcome this possible issue the multi-scale strategy

approach of Meinhardt-Llopis et al. [140] is adopted. In their method a pyramidal structure

provides a coarse-to-fine successive refinement of the flow field. The input reflectivity images

are filtered and downsampled by a factor η using bi-cubic interpolation. Starting at the

coarsest scale the optical flow equations (36) are solved and every intermediate solution is

used as the initialization in the next scale. The factor η is chosen based on the expected

162



maximum storm motion and the grid resolution of the images, in order to keep the motion

to be detected small at the coarsest scale.

Fig. 7.1 shows an example of motion vectors estimation for the case study discussed in

section 7.3, for the rainwater (panels a and c) and the divergence (panels b and d).

(a) (b)

(c) (d)

Figure 7.1: Example of motion vectors estimation. Panel a) and c) show the rainwater anal-
ysis at 600 m height for two successive time steps (20:02UTC and 20:06UTC). Based on the
optical flow solution on this pair of images, the motion vectors in panel c) are estimated.
Similarly, panels b) and d) show the corresponding motion vectors estimation for the diver-
gence fields at the same vertical level. Only one vector every six grid points is plotted for
clarity.
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The motion vectors for the rainwater show a dominant westerly component in the western

sector, behind the squall line (moving eastward), while a south-westerly flow is estimated

ahead of the storm. This is in good agreement with the VDARS wind retrieval in the low

levels (fig. 6.6 in Chapter 6). In this specific case the optical flow method is able to derive

a reliable estimate ahead of the storm, exploiting the motion of the two small cells close to

the two X-band radars (triangle symbol). The divergence (panels b and d in fig. 7.1) shows

a westerly flow over most of the domain, also ahead of the storm, with a small modulation

across the squall line. The motion fields of rainwater and the wind components (divergence

and vorticity) may show relevant differences that are expected to bring useful complementary

information for the forecast.

7.1.1. Semi-Lagrangian Advection. After the estimation of the motion vectors, the

advection of the rainwater and wind components can be accomplished using either forward

or backward schemes. Forward (in time) schemes foresee the distribution of the advected

quantity among the neighboring grid points around the destination point (which in general

does not coincide with a grid point). Forward schemes are therefore mass-conservative by

definition. Another approach is to use backward advection, i.e. for a given grid point the

origin at the previous time step is found by following the flow backward. This again will not

coincide with a grid point, so in this case interpolation is necessary. Bi-linear interpolation

is often used for this purpose [134]. However, in order to reduce the diffusion arising from

the bi-linear scheme, a bi-cubic interpolation is adopted here.

The combination of the Lagrangian perspective and the use of a regular grid Eulerian

framework is known as semi-Lagrangian scheme. This class of methods has the notable

advantage of being particularly efficient, allowing the use of large time steps.
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As opposed to the forward advection, the backward scheme is not mass-conservative,

although it may be considered nearly mass conservative when the divergence of the flow field

is negligible. So, in order to ensure mass conservation, the divergence component of the

rainwater motion vectors field needs to be removed. This is accomplished relying basically

on a technique widely used in fluid dynamics simulations [141]. In practice, referring to eqs.

(24, 25, 28) in Chapter 5, the procedure can be summarized in three steps:

• calculate divergence from the motion vectors field

• solve for the velocity potential χ, given that ∇2χ = δ, using iterative relaxation

• subtract ∇χ from original motion vectors field

This procedure to make the motion vectors of rainwater non-divergent is especially impor-

tant when the motion vector field is mixed with the low level wind field during the forecast, as

described later in section 7.2.3. In fact the low level wind field generally has a quite relevant

divergence component, which would severely impact the stability of the rainwater advection

in terms of mass conservation causing unphysical visual deformations (stretching/shrinking).

7.1.2. Image registration. As described in the next section, the parametric model

relies on the analyses at two vertical levels for the estimation of the rainwater content gradi-

ent. The vertical gradient is used to estimate the contribution to the rainwater in the lowest

level by vertical advection. However, possible tilting of the storm may affect this estimate in-

troducing artifact gradients. In fact the two-dimensional model does not resolve the vertical

wind shear, so the high-level rainwater need to be aligned with the low-level field to com-

pensate the eventual tilting. In addition, depending on the scanning strategy and analysis

method, an apparent additional tilting may be introduced by the delayed radar scanning of

the higher elevations. Correction of the apparent misalignement can be performed through
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image registration. Optical flow may also be used for this purpose, so the Horn-Schunck

technique described in section 7.1 is also applied to determine the appropriate deformation

(motion vectors) to align the upper level to the lower level rainwater field.

7.2. Parametric model for nowcasting

If the two basic assumptions for the optical flow, i.e. the stationarity of the motion

vectors and the lack of a source term, are removed eq. (33) becomes:

(37)
dqr
dt

= ∇qr · u(t,x) +
∂qr
∂t

= S(t,x)

If the brightness is not constant the motion estimate can be biased. Although attempts

have been made to develop methods including brightness variation caused by time-dependent

physical models [142], these were mainly limited to relatively simple applications such as

changing illumination or thermal diffusion in infrared images.

The approach adopted here is instead based on a separate treatment of the optical flow

derived from equation (33) and the local rate of change of the rainwater content and winds.

The proposed model relies on analyses from two vertical levels of the VDRAS assimilation

system (Chapter 6):

• 600m MSL (rainwater and winds)

• 3400m MSL (rainwater)

The choice of the specific levels is dictated by the need to have a sufficient vertical spacing

inside the liquid phase layer to calculate a reliable rainwater gradient (section 7.2.1). While

the VDRAS analysis provides the full set of atmospheric variables, only the radar observable

fields (rainwater and winds) are considered in this approach. The idea is to constrain the
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observations (analyses) using a simplified physical model with adaptive parameters. It is

argued that while the deficient physical description will inherently limit the validity of the

forecast for large lead times, the adaptiveness of the model may help to improve the very

short term forecast (0-60 minutes). The traditional use of extrapolation applied to reflectivity

(rainwater) is here extended to the wind components and simple relations governing the rain

growth and decay are defined and heuristically tuned through a set of adaptive parameters.

In an observational environment such as the DFW (Dallas-Fort Worth) testbed (Chapter

6), the architecture of the weather radar network provides the best coverage in the atmo-

spheric layer closer to the surface. In this perspective, the aim of the proposed approach is to

extract the most valuable information content from the available observations. In addition to

the rainwater content, analysis and nowcast of the wind field near the surface has a special

relevance on its own for the potential impact on human activities and infrastructures. A

suitable representation of the dynamics taking place in the lowest layer is also important for

the tight relation with the storm evolution.

The basic steps of the parametric model are described in detail in the following subsec-

tions. The divergence δ and the vertical component of the curl ξ (hereafter simply vorticity)

are initially calculated from the low-level wind analysis. Considering a pair of observational

time frames, typically lag-0 (time t0) and lag-1 (time t0 − 1), the optical flow technique is

applied independently to the rainwater (qr), divergence (δ) and vorticity (ξ), obtaining the

respective motion vectors Uqr, Uδ, Uξ. The divergence and vorticity are advected to the

next time step using the respective motion vectors, while before applying advection to qr,

its local rate of change at the two vertical levels is estimated (section 7.2.1).
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7.2.1. Growth and decay parameterization. The parameterization of the growth

and decay local rate of change is realized according to the following equations:

(38)
∂qr
∂t

=
∂qr
∂z

(w + Vt) + p0 w

(39) Vt = 5.40 q0.125
r

where Vt is the terminal fall velocity of rain drops [7], while w is the vertical velocity of air

obtained from the divergence in the hypothesis of mass conservation. Since the divergence

at the near-surface level (600m) is being considered, assuming w = 0 below this level and

zero divergence at the upper level (3400m), a positive (negative) divergence corresponds to

negative (positive) vertical velocity in this atmospheric layer. Equation (38) is basically

the continuity equation for precipitation originally derived by Kessler [143]. The first term

on the right represents the sedimentation (vertical advection) of rainwater, and the second

term the growth by condensation. Since cloud water (qc) is not considered in this model,

the microphysical contributions to precipitation due to auto-conversion of cloud to rain and

accretion of cloud water by existing rain are not accounted for. Following [143] the depletion

of rain by evaporation can be represented as:

(40)
∂qr
∂t

= p1 qc q
0.65
r

where, with a strong approximation, qc has to be assumed constant (= 1) for being not

represented in this context. For the practical implementation, since only two vertical levels

are considered, the above parametric equations are applied to the upper (superscript 1) and
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lower (superscript 0) levels:

(41) (qr)
1
t+1 = (qr)

1
t + p0 L

p2wt dt; Lp2wt = wt−p2

(42) (qr)
0
t+1 = (qr)

0
t +

(qr)
1
t − (qr)

0
t

∆z
(w + Vt) dt; (qr)

1
t > (qr)

0
t and (w + Vt) < 0

(qr)
0,1
t+1 = (qr)

0,1
t + p1 q

0.65
r dt;(43)

where t and t+1 indicate the current and next time step, and dt is the forecast time interval.

In eq. (41) L denotes the lag operator, i.e. Lp2 means lagging w by a period p2. The lagged

field is obtained by advecting backward or forward in time the divergence (vertical velocity)

using the estimated motion vectors. This is a necessary and important feature of the model

to compensate for the lack of three-dimensionality, in particular for squall lines with surface-

based cold pools. In fact the regions of strong convergence near the surface, often associated

with a gust front (fig. 7.2), may move significantly away (often downwind) from the main

storm core. This may result in a tilted warm inflow current turning into the updraft. In

this case the storm enhancement or new cell development will take place upwind respect to

the observed low-level convergence. The role of the lagged vertical velocity is therefore to

heuristically contemplate the possible spatial displacement. After all, although the storm

evolution is greatly dependent on the environmental shear profile [112], it is believed that the

relative position and propagation of the near-surface convergence respect to the precipitation

core has a potential to provide valuable information to improve the very short-term prediction

of the overall system motion and morphology.

The rainwater vertical advection is only applied when there is a positive qr flux downward

(eq. 42) in the current setting. Equation (42) may actually be applied irrespective of the

169



Figure 7.2: Idealized diagram of a squall line vertical structure showing updrafts, downdrafts,
and a gust front. Precipitation forming in the tilted updraft falls into the downdraft. Beneath
the cloud, the denser cool air of the downdraft spreads out along the ground. On the leading
edge of the outflowing downdraft a gust fron may form, forcing the moist surface air to
flow up into the cloud. In the lower horizontal plane oriented perpendicular to the diagram,
a real VDRAS wind analysis from the case study discussed in section 7.3 (20:21UTC) is
displayed with divergence in color. The diagram and the horizontal analysis are subjectively
matched with the purpose of illustrating the relation between the low level wind and the
storm vertical development. From the retrieved wind field, the average storm motion has
been subtracted in order to show the storm-relative winds. The diagram is adapted from
www.srh.noaa.gov/jetstream/index.html.

gradient and vertical velocity signs, although this may imply negative qr values. Negative

qr can be dealt with and provide a way to inhibit new convection in regions where persisten

downdraft have occurred. However some preliminary test showed that the adopted solution,

exploiting the evaporation term to balance the overall rainwater budget, performed better.
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The coefficients p0 (condensation), p1 (evaporation) and p2 (lagged vertical velocity) are

part of the parameters set to be determined adaptively through the optimization described

below in section 7.2.4.

7.2.2. Outflow parameterization. A downdraft generally develops within a thun-

derstorm when precipitation falls through an unsaturated layer and evaporation starts cool-

ing the air. The combined effect of precipitation loading (drag of liquid water) and evapora-

tive cooling can lead to the formation of a cold pool associated with damaging winds at the

surface. In fact the downdraft approaching the surface causes a divergent flow and a gust

front (outflow boundary) propagates, separating the cooler air below the storm core from the

environmental warmer air [125]. The speed of the advancing gust front relative to the ambi-

ent flow is found to be close to the speed of a density current and can be expressed in terms

of the density difference between the surrounding air and the more dense air within the cold

pool [144]. However, the lack in this context of any information about density (or pressure)

prompts for an attempt to represent the flow associated with the cold pool in terms of the

vertical velocity and the evaporative cooling (eq. 40). Due to the non-uniform surface winds

and the three-dimensional flow organization, in particular the presence of a rear inflow jet in

squall lines causing cold air to be drawn in on the rear side of the storm [125], the divergent

flow on the two-dimensional plane near the surface is in general not symmetric. In order

to mimic this near-surface two-dimensional structure of the flow originating in downdraft

regions, a term defining the outflow strength is first introduced:

DIVout = p3 (w + Vt) dE dt; dE = ((qr)
0
t+1)

0.65 − ((qr)
0
t )

0.65

dE > 0 and (w + Vt) < 0

(44)
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where dE represents the incremental rainwater mass loss owing to evaporation between time

steps t and t+1. Eq. (44) is based on the knowledge that the outflow produced at the surface

is the consequence of both the negative vertical velocity (producing divergence) and cooling

due to evaporation (producing a spreading density current). The initial wind analysis already

implicitly includes the outflow term, while for the next predicted time steps the evolution of

both the downdraft velocity and the rainwater mass needs to be considered.

(a) p4 = -1.0 (b) p4 = 0.0 (c) p4 = +1.0

Figure 7.3: Qualitative illustration of the flow representation within the cold-pool on an
arbitrary xy-plane. The gray shading represents the intensity of the divergence, the black
arrow the storm-relative wind in the cold-pool. The red arrows indicates the direction of the
divergence motion and the solid contour represents the outflow boundary.

From the divergence term associated with the downdraft (eq. 44) the corresponding

irrotational flow (Uout) is estimated using a Successive Over Relaxation (SOR) technique

and recalling eq. (24) and (25) in Chapter 5:

(45) Uout = ∇χ; ∇2χ = δ

where χ is the velocity potential and assuming Dirichlet boundary condition (null velocity

on the boundary).
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The combination of the mean wind and the rear inflow with the outflow causes the

circulation within the cold pool to divert from the symmetric pattern arising from the SOR

retrieval. In practice over time the cold pool tends to elongate in the direction of the mean

wind [145], with segments of the gust front oriented parallel to the mean wind remaining

quasi stationary, while segments perpendicular to the mean wind move faster downwind.

This behavior can be portrayed considering the angle θ between the unit vector representing

the motion of the wind field divergence (indicative of the gust front propagation) and the

irrotational flow vector associated with the outflow (eq. 45). A damp factor is defined based

on the dot product between these two vectors as:

d = d0 − (d0 − 0.5) (1 − p4); d ≥ 0.5

d = d0 + (0.5 − d0) (1 − p4); d < 0.5

d0 = (cos(θ) + 1)/2

(46)

and applied to the outflow vector:

(47) V
′

out = d · Uout

For p4=0, the flow is unaffacted except for a 0.5 scaling factor (middle panel in fig. 7.3),

while values of −1 ≤ p4 < 0 and 0 < p4 ≤ 1 are associated respectively with backward

and forward propagation (left and right panel in fig. 7.3). The resulting flow V
′

out is finally

added to the low-level wind field:

(48) U
′

= U + V
′

out
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Table 7.1: Synthetic description of the parameters in the model.

Parameter Description

p0 Condensation
p1 Evaporation
p2 Vertical velocity Lag
p3 Outflow divergence
p4 Forward-Backward outflow factor
p5 Mix-winds weight factor

7.2.3. Wind advection and mixing with rainwater motion vectors. Vorticity

and divergence are calculated from eq. (48) and advected using the respective motion vectors

estimates. The wind field at time step t + 1 (U
′

t+1) is then calculated applying the SOR

technique from the divergence and vorticity components (eq. 28 in Chapter 5), relying on

the current time wind field (U
′

t) as first guess. The updated low-level wind field is also used

to adjust the rainwater motion vectors, based on the previously discussed assumption that

the storm motion is influenced by the mean wind in the low to medium troposhere:

(49) Uqr = (p5 · U
′

+ Uqr)/(p5 + 1)

The flow-related coefficients p3, p4, p5 complete the set of six parameters (table 7.1) that

need to be determined.

The general procedure is represented by the flow diagram in fig. 7.4 and summarized

hereafter:

(1) the analysis (rainwater and wind) at the current (t0) and previous (t0−1) time steps

are considered as input for the model;
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a) image registration is applied in order to align the rainwater fields at the two

vertical levels (600 and 3400m), compensating for possible real (wind shear) or

apparent (inter-scan delays) tilting of the storm;

b) the intensity of the outflow, and relative flow vectors, is estimated from the

rainwater and divergence at time t0 according to eq. (44) (blue blocks in the

flow diagram);

(2) optical flow estimation of the motion vectors is performed separately for the three

fields: rainwater (qr), and the two derived components of the wind field, i.e. diver-

gence (δ) and vorticity (ξ);

(3) growth/decay terms are applied to the qr fields (lower and upper levels) according

to eqs. (41, 42, 43).

(4) the fields qr, δ and ξ at t0 are advected to time step t0 + 1 using the respective

motion vectors (point 2), relying on a backward advection scheme with bicubic

interpolation.

(5) from the updated qr and δ at time t0 + 1, the new intensity of the outflow and

relative flow vectors is also estimated.

(6) the advected δ and ξ are combined with the outflow from point 1b (also advected

using the motion vectors Uδ) to retrieve the update low-level wind field at time step

t0 + 1

(7) the updated low-level wind field is mixed with the qr motion vectors at time t0 to

provide new displacement vectors to advect qr forward from t0 + 1 to t0 + 2.

For the successive time steps, points 3 to 7 are cyclically repeated incrementing the time

indexes. The time step used in the forecast is the same as the time interval between the pair
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Figure 7.4: Schematic flow diagram of the nowcasting model. The Growth/Decay process
icludes sedimentation, condensation and evaporation (section 7.2.1). SOR means Successive
Over-Relaxation. h0 and h1 respectively refer to the lower (600m) and upper (3400m) level.

of initial observations t0 and t0 − 1 (292 seconds). Experiments using shorter time steps for

the forecast resulted in small differences.

7.2.4. Optimization of the model parameters. In order to find the optimal set

of parameters, the Nelder-Mead (NM) downhill simplex method [146] is adopted. The NM

method belongs to the class of direct search methods and is suitable for multidimensional

unconstrained optimization. The simple grounding idea and ease of implementation makes

it a very popular method, used in a wide range of scientific applications. The method relies

on the concept of a simplex, which is a special polytope with N+1 vertices in N dimensions

(e.g. a triangle on a plane for N=2). A simplex-based direct search method begins with a set

of N+1 points x0,...,xn ∈ Rn that are considered as the vertices of a working simplex S, and

the corresponding set of function values at the vertices fj:=f(xj) , for j = 0, ..., n. A starting

point is defined corresponding to the first vertex (x0), and the initial S is constructed to be a
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regular simplex using an arbitrary scaling factor. Then, a series of transformation (reflection,

expansion, contraction, reduction) on S is performed, aimed at decreasing the funcion values

at the vertices of the simplex. The type of transformation required is determined at each

step by computing the function values at one or more test points, and by comparison of these

function values with those at the vertices. This process is eventually terminated when the

the function values fj are close enough (the variance of fj is used, with a given tolerance)

or a predefined maximum number of iterations is reeached.

The NM method is not a true global optimization algorithm, although in practice it tends

to work reasonably well for problems that do not have many local minima. The objective

function to minimize in the current application is defined by the following sum of root mean

square errors:

f =

〈
(qobsr − qfcstr )2

〉0.5

σqr
+

〈
(uobs − ufcst)2

〉0.5

σu
+

〈
(vobs − vfcst)2

〉0.5

σv

σqr = 0.2 g kg−1; σu = 3.0 m s−1; σv = 3.0 m s−1

(50)

where the average is calculated over the space-time validation domain. The normalization

factors in the denominator are assumed constant. The spatial domain is a sub-domain of the

whole model domain, to avoid boundary effects, while the temporal domain extends from

the analysis time until a given forecast lead time (e.g. 60 minutes).

7.3. Results

Considering the case study of Chapter 6 the period between 19:47 and 21:00UTC is

selected, including a total of 16 analyses (one every 292 seconds). The analyses have been

processed running VDRAS on a slightly modified domain respect to the experiment in Chap-

ter 6. In this case the model domain is 122x112x30 (nx,ny,nz) grid points, with horizontal
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resolution of 2 km, vertical resolution of 400 m, and an integration time step of 4 s. In

addition, the assimilation window is reduced from five to three minutes, allowing inclusion

of one S-band volume scan and three to five low level PPI scans from each X-band system.

These modified parameters allowed to reduce the wall-clock time for the generation of a

single analysis to about 5 minutes, using 16 processors.

For each analysis a forecast up to +58 minutes (12 time steps with dt=292s) is started,

using the current and the lag-1 fields for the optical flow estimation. The forecasted qr and

low-level winds U are compared with the corresponding analyses for the estimation of the

function f in the iterative optimization procedure (eq. 50). In the current implementation

all the parameters in the model (table 7.1) are scaled during the forecast by a factor of 1

(forecast +0 min) linearly decreasing with lead time until zero (forecast +120 min). In fact,

since the model greatly relies on extrapolation (qr and winds) and the domain is partial

(both the spatial domain and the variable space), the simple physical relations adopted (eqs.

41-49) will inherently loose their adequacy during the forecast. The decreasing scaling factor

is then adopted to give more confidence to the physical relations during the first stages of

the forecast, while trying to keep the performance robust for longer lead times.

The validation domain is represented by the rectangle in fig. 7.6 (89x94 grid points).

The results of the current method are compared with both the simple Horn-Schunck Optical

Flow based on qr motion vectors only (hereafter simply OF) and with the Dynamic Adaptive

Radar Tracking of Storms (DARTS) method [5]. For DARTS, the previous 20 minutes (5

reflectivity images) are considered for the estimation of the motion verctors, while the forecast

is performed using a backward bi-linear advection scheme.

For each of the 16 analyses in the study period, the Nelder-Mead optimization is per-

formed to determine the optimal set of model parameters. The optimization is performed
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without constraints, but the choice of the initial value of the parameters has an impact on the

result, since NelderMead is not a true global optimization algorithm and it may converge to

different local minima depending on the initial setting. One way to overcome this limitation

would be to perform an outer loop utilizing many initial simplices in order to find the most

suitable part of the parameter space to start with. In this preliminary evaluation, the initial

parameters are set to “reasonable” values based on the physical meaning of the processes

involved (p0 and p5 are expected to be positive, while p1, p2 and p3 should assume negative

values) and trial and error forecast runs with varying configurations. The adopted initial set

of values is: p0 = +2.0 · 10−5, p1 = −0.5 · 10−5, p2 = −600 s, p3 = −1.5 · 10−7, p4 = +0.8,

p5 = +2.0. During the optimization a 58 minutes forecast is run iteratively until convergence

is reached. On average a single optimization loop took about 18 iterations and 39 function

evaluations. The resulting parameter are plotted in fig. 7.5 for every independent forecast.

It can be seen that, although the 16 optimizations at successive times are performed in-

dependently 1, the resulting parameters are substantially stationary or smoothly changing.

The parameter showing the most significant relative variation is p1 (evaporation), passing

from about −1.0 · 10−5 at 19:47UTC to ∼ 0 around 20:50UTC. As discussed further later

in this section, the evaporation term contributes little or nothing to the skill of the forecast

when evaluated using the Threat Score (eq. 55), but is only useful to maintain the average

rainwater level close to the observations.

As an example, fig. 7.6 shows the parametric model forecast starting at 20:26UTC, de-

noted Enhanced Optical Flow (EOF) hereafter. In this and the following analysis/forecast

1However, the initial analyses are not completely independent. In fact for a given analysis time the VDRAS
assimilation relies on the the background forecast from the previous cycle. This contributes to guarantee
physical consistency among successive analyses, and can also reflect in the smooth evolution of the parameters
resulting from the optimization.
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Figure 7.5: Parameters obtained after Nelder-Mead optimization over 58-minutes forecasts
between 19:47 and 21:00UTC. The red line represents a spline fit overplotted to highlight
the trend of the parameters with time.

images a coarse grid with 0.5◦ lat/lon spacing is superimposed with letters/numbers coordi-

nates in red to facilitate the comparison. The forecast for successive lead times are displayed

in the righ column, while the left column reports the corresponding analysis. In addition to

the rainwater (color palette), the analyzed and forecasted low-level (600m) winds are dis-

played (arrows). In the +14 min forecast the cell development associated with the hailstorm

described in Chapter 6 is located fairly well just north of the Midlothian radar (lower-right

triangle). This local enhancement associated with the gust front propagation is rather con-

tinuous in time in the forecast, while the analyses show a more pulsed behavior. In general

the larger scale morphology is depicted reasonably well until ∼1-hour lead time. In particu-

lar the model seems able to reproduce the increasingly faster movement of the northeastern
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Figure 7.6: Analysis (left column) and corresponding forecasts every ∼ 15 min (right col-
umn) of rainwater and low-level winds starting at 20:26UTC. The black (blue) solid contour
represents the 0.5 (−0.5)s−1 m km−1 divergence level. The domains of the X-band radars are
marked with red circles, while the rectangle encloses the validation area. The color palette
for reflectivity (dBZ) is defined assuming a Z(qr) relation as in [7].

portion of the storm and the broadening taking place south-southwest of the three radar,

where a cyclonic circulation developed. This is more evident when the parametric model
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Figure 7.7: Analysis (leftmost column) and corresponding forecasts every ∼ 10 min using
different techniques. From left to right: DARTS, standard optical flow (OF), parametric
model forecast (PMF).
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forecast (EOF), is compared with the image processing techniques in fig. 7.7. Both DARTS

and OF tend to greatly underestimate the westward motion of the northeastern part of

the storm, which appears to be caused by a combination of auto-propagation [125] and the

stronger winds flowing in the region. In fact at lead time +58 min the grid points E4-E5 are

still empty for DARTS and OF, while the PM forecast is in better agreement with the truth.

Another relevant difference is in grid point C2. The southwestern part of the storm has a

marked elongated shape at the analysis time, and the simple image processing methods tend

to simply displace this pattern forward. The slower velocity respect to the rest of the storm

is well captured by these techniques, as demonstrated by the corrrect position of the rear

boundary of the storm. However the interaction of the southerly flow with the advancing

storm is determining a broadening and instensification in this region which can not be re-

produced by a simple motion vectors advection. On the other hand the parametric model is

triggering new convection in this region. Although there are significant differences in mag-

nitude and small scale organization respect to the actual analysis, the general agreement of

the large scale pattern appears valuable for nowcasting applications.

From a qualitative perspective the forecasted wind field in fig. 7.6 appears reliable over

much of the domain until ∼ 30 min lead time, with a reasonable location of the main

convergence regions. For larger lead times however the actual gust front located over the

overlapping region between the two X-band radars at 20:26UTC propagates faster than

depicted in the forecast. At 21:24UTC the gust front in the analysis extends from C2 to E2,

while in the forecast is located significantly behind (B2 to D2).

For a quantitative evaluation of the proposed method the well-known summary measures

POD, TS (or CSI), FAR and bias (Appendix A) are considered. Fig. 7.8 shows the perfor-

mance diagram, which allows to visualize multiple measures of forecast quality on the same
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diagram [147] (Appendix A). Left panel in fig. 7.8 shows the performance of the simple

optical flow (OF). The Threat Score decreases from 1 (+0 min lead time) to 0.2-0.3 (+58

min lead time) for most of the forecasts. The forecast starting at 20:21UTC has the worst

performance with a TS reaching almost 0.1, while the 20:02UTC forecast shows a significant

bias (0.6) after about 30 minutes into the forecast. In the right panel the same diagram

for the parametric model (EOF) depicts a significantly better peformance, with a TS never

reaching below 0.4 for the longest forecast. The bias is also very close to 1 for the first 30

minutes forecast and within the 0.8-1.2 range afterwards.

(a) Optic Flow (OF) (b) Enhanced Optic Flow (EOF)

Figure 7.8: Performance diagram for qr threshold of 0.4 g kg−1, corresponding to a reflectivity
of ∼ 36 dBZ. The colors represent the forecasts starting at the analysis time in the legend
and the circles along a line indicate the successive forecast steps (dt=292s). The final circle
along each line corresponds to the +58 minutes forecast.

The average TS over the different forecast runs is also summarized in fig. 7.9, which

reports the results for the EOF together with the corresponding performance of DARTS

and OF. Panels a), b) and c) are for three different thresholds on qr, namely 0.1, 0.4 and

1.0 g kg−1, corresponding respectively to a reflectivity of approximately 26, 36 and 43 dBZ.
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DARTS was originally developed to perform extremely short term forecasts (few minutes)

in order to accordingly adapt in real time the radar scan. It has not been used for longer

forecast and it actually shows a poorer performance compared to both OF and EOF for this

kind of application. The OF and EOF forecast show similar skill until about 20-25 minutes,

after which the EOF performs better. In particular for the 0.4 g kg−1 threshold, the TS score

for the EOF forecast lowers to 0.5 about 20 minutes later than for the OF forecast. For the

other thresholds a similar improvement is also observed for the larger lead times. This kind

of performance would reflect in a sizeable impact in terms of advanced warning for real time

applications. The reults displayed in panel d) are for the same threshold as in panel b),

i.e. 0.4 g kg−1, but considering a validation area moving along the qr flow. Specifically the

verification is performed on a portion of the whole validation domain, determined by the grid

points that track back (using the model motion vectors) to the region in the analysis where

co-located Doppler observations from at least two radars were available. In this way it is

possible to attempt sizing the impact of multiple Doppler observations on the forecast. It is

in fact beneficial for the VDRAS assimilation to ingest Doppler observations from different

radars, allowing an accurate retrieval of the 2-dimensional wind field. The density of the

Doppler observations is advected similarly to qr and is used to define the along-flow validation

domain for every forecast lead-time. The result in fig. 7.9d shows an increased improvement

upon the standard OF forecast (which did not changed substantially), corroborating the idea

that a good wind analysis from multiple radars is crucial for the quality of the nowcasting.

The results illustrated so far represent the maximum achievable performance of the model

for the given case study, since the results are optimized for each individual forecast using the

future analyses. In a real-time application this is of course not possible, so the variability of

the model parameters will have to be further analyzed using a comprehensive dataset to assess
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(a) qr = 0.1 g kg−1 (b) qr = 0.4 g kg−1

(c) qr = 1.0 g kg−1 (d) qr = 0.4 g kg−1 along-flow

Figure 7.9: Average Threat Score (19:47-21:00UTC) plotted for increasing forecast lead time
and for three diferent qr thresholds (panels a, b, c), corresponding respectively to ∼ 26dBZ,
∼ 36dBZ and ∼ 43dBZ. In panel d) the Threat Score is calculated for the same threshold
as in b), but “along the flow”, i.e. over grid points originating from regions in the analysis
where Doppler observations from at least two radars were available. This moving sub-region
extends over ∼ 20 − 25% of the whole validation domain.

their validity for a wider range of meteorological situations. However, for this specific event

it is evident from fig. 7.5 that most of the parameters do not show important variations

during the event considered. As previously noted, this is likely ascribable to the specific
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VDRAS assimilation technique, ensuring the proper physical consistency in space, time and

among the model variables. The observed slow time change of the parameters is encouraging

for a hypothetical real-time application, when one can not perform the optimization using

future observations. In real-time it may be possible to evaluate the set of parameters on the

previous 40-60 minutes and use it for the current forecast.

To show the impact of neglecting the parameters variation during the event, the perfor-

mance using fixed parameters is evaluated. The parameters are simply set from the arith-

metic average of the values resulting from the optimization (fig. 7.5), i.e.: p0 = +2.4 · 10−5,

p1 = −0.5 · 10−5, p2 = −394 s, p3 = −2.0 · 10−7, p4 = +1.3, p5 = +2.3.

The performance diagram corresponding to the forecasts with fixed parameters is pre-

sented in fig. 7.10. Not surprisingly given the limited variations of the optimized parameters,

these summary measures indicate a performance actually very similar to the reference in fig.

7.8, except for a more pronounced bias earlier in the forecast for some specific runs. For

example, the 19:57UTC (light orange color) forecast presents a positive bias, which is at-

tributable to the lower evaporation coefficient p1 (+0.5 ·10−5) respect to the optimized value

(+1.0 · 10−5).

For the wind verification no other nowcasting reference is available, so the parametric

model results are compared with simple persistence, i.e. assuming the t0 analysis wind

does not change during the forecast. Fig. 7.11 shows the average Root Mean Square Error

(RMSE) for the zonal (u) and meridional (v) wind components, for increasing forecast lead

times. These are the same errors used in eq. (50) (2nd and 3rd term) for the optimization

of the model parameters, so the clear improvement upon persistence is anticipated. The

performance using fixed parameters (orange lines) is very similar, as the parameters directly

affecting the wind forecast (p3 and p4) are relatively constant during the event (fig. 7.5).
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Figure 7.10: As in fig. 7.8, but using fixed parameters in the model.

Figure 7.11: Average RMSE for zonal (u) and meridional (v) wind components for increasing
forecast lead time. The black line represents the error associated with the wind prediction
assuming persistence, while the red (orange) line shows the error for the extrapolation model
forecast with optimized (fixed) parameters. The error bars, corresponding to ±σ, are omitted
for clarity for the orange line.

The improvement of the wind components (u,v) forecast accuracy also reflects on the

wind direction, and to a lesser degree on the wind velocity (fig. 7.12). In precentage the
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relative improvement for the wind direction is over 30% at ∼60 min lead time, while only

10-15% for the wind velocity.

Figure 7.12: Same as fig. 7.11, but for wind direction (left) and intensity (right).

In order to assess the relative impact of the individual terms in the parametric model, a

number of experiments is performed by selectively suppressing some of the processes. This

is realized by setting to zero the parameter(s) controlling a given process and re-running

the optimization procedure on a reduced number of parameters. In this way, although the

subset of the remaining parameters may converge to different values respect to the full

model configuration, the summary statistical measures allows to evaluate the relevance to

the nowcasting of the single components of the model. Fig. 7.13 reports the results for

the performance of rainwater nowcasting (left panel) and wind direction (right panel). The

impact on the wind velocity is not considered because the improvement obtained with the

full model (fig. 7.12) is quite small (the difference between the RMSE of Persistence and

EOF is within ±σ), and the even smaller differences achievable with the partial model can

not be reliably evaluated.
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Instead of reporting the TS as in fig. 7.9 for qr, in the left panel of fig. 7.13 the difference

between the EOF and OF Threat Score for the 0.4 g kg−1 threshold (i.e. the improvement

upon simple optical flow) is displayed to better appreciate the smaller differences. The solid

red line with circles is the difference between the Threat Score of EOF and OF as in fig. 7.9b

and represents the reference performance with the full model. The lower the TS difference

for the other experiments, the more relevant the process removed from the forecast.

It is clear that the removal of the evaporation process alone (dashed pink line) has a

negligible impact on the Threat Score, as previously anticipated. The bias (not shown)

remains very close to 1 because the reduced condensation parameter p0, close to zero during

the first part of the event, compensates the lack of evaporation. On the other hand, removing

the condensation process (alone or together with the evaporation, solid and dashed blue line

respectively) has a sizeable effect on the overall performance of the rainwater forecast. For

the wind forecast (right panel in fig. 7.13), evaporation and condensation have little impact.

This is somehow expected, since these processes directly affect the qr distribution and only

secondarily the wind field through the ouflow parametrization. This last process (outflow)

is indeed the most relevant for the wind field, since it explicitly influences the flow around

the cold pool region below the storm core. Less obviously the outflow modeling is also

very important for the rainwater nowcasting. This highlights that a proper forecast of the

gust front propagation is essential to ascertain the location where the storm enhancement

or new convection development will occur. In the proposed approach, this aim is pursued

through 1) the forecast of the divergence field using the optical flow technique and 2) the

parameterization (parameters p3 and p4) of the outflow below the precipitation cores. The

last parameter considered in the model, the mix-winds weighting factor p5, has also a relevant

impact on the rainwater forecasting skill. Compared to the outflow modeling, the update of
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the rainwater motion vectors using the low-level winds seems to have a larger impact earlier

in the forecast. In fact the solid gray line in fig. 7.13 starts deviating from the red line around

20 minutes lead time and then remains almost parallel to the reference performance. On

the other hand the forecast without the outflow parameterization becomes increasingly worst

than the reference after 30 minutes lead time. The solid gray (mix winds) and green (outflow)

lines intersect around 40 minutes lead time. This indicates that the outflow representation

has indeed the longer lasting effect on the quality of the forecast.

(a) qr: TS difference (qr threshold = 0.4 g kg−1) (b) Wind Direction: RMSE difference (◦ )

Figure 7.13: Performance of the forecast runs suppressing selected processes. The red line
with circles indicate the reference performance of the full model as in fig. 7.9b, relative to
the Optical Flow forecast. The other lines represent the forecasts without given processes
(the name in the legend indicates the process suppressed).

7.4. Conclusions

The basic idea behind the nowcasting approach discussed in this section is to extend the

Lagrangian persistence concept, traditionally applied to reflectivity only (or related quanti-

ties such as the rainfall rate, rainwater,..), also to the components of the wind field, namely

divergence and vorticity. This clearly presumes the availability of a reliable wind analysis

192



consistent with the radar observations in terms of coverage, spatial and temporal resolution.

In addition, some basic interactions between the wind and the rainwater advection have to

be represented in the nowcasting model to allow the forecasted variables to evolve coherently,

at least for short lead times.

The motivation for this work originates in part from the frustration of not being able

in many instances to fully exploit the large amount of information provided by a Doppler

weather radar. In the large majority of radar nowcasting applications nowadays reflectivity

is still the only observation being contemplated. While methods including dual-polarization

variables have been proposed to improve the diagnosis and forecast of rainfall [148], the use

of the Doppler information is in general largely unexploited.

The reasons are partly residing in the objective technical and conceptual difficulties, in

particular when only single radar Doppler measurements are available. In addition to the

advantages for the detection and quantitative estimation of precipitation, a dense networked

radar system like the Dallas-Fort Worth test bed represents a unique tool to accurately

sample the winds near the ground. Overlapping coverage allows each point in the three-

dimensional network domain to be simultaneously viewed by two or more radars, allowing for

multiple-Doppler wind vector retrievals. Several geometric techniques for multiple-Doppler

retrieval exist and can provide wind retrievals for various applications. However, only using

a numerical model for the assimilation and analysis allows to properly retain the physical

consistency between the winds and the precipitation fields.

As a matter of fact the radar Doppler observations have been traditionally exploited in

numerical models, being “naturally” prone to be ingested into data assimilation systems.

The Doppler wind observations have in fact notable advantages. Radar wind measurements

are immune to biases, while reflectivity are prone to calibration errors. In addition the wind
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is defined continuously all over the model domain (unlike rainwater, which is subject to the

“on-off“ switches in the warm rain process), facilitating the assimilation of the radial wind

component.

The four-dimensional assimilation approach realized in VDRAS and described in Chapter

6 is specifically devised for the assimilation of weather radar data and is able to largely retain

the observation component in the final analysis. However, while NWP data assimilation

systems can provide fairly accurate and complete analyses, the model forecasts are still

beaten by extrapolation techniques when it comes to very short-term prediction. It appears

then reasonable to attempt taking the best of the two approaches, i.e. the robustness and

consistency of data assimilation for the analysis and the simplicity of extrapolation techniques

for the subsequent nowcast. The method illustrated in this chapter represents a preliminary

attempt to realize this idea.

The VDRAS data assimilation system is used to prepare the initial analyses (time t0) of

wind and rainwater. This ensures the proper environment for the subsequent forecast. A

simple two-level, three-variables model (rainwater and two wind components) contemplating

vertical advection of rainwater, condensation, evaporation and a simplified representation of

the outflow originating from downdraft regions is constructed and expressed in terms of six

adaptive parameters. While the local rate of change is determined according to these basic

physical processes, the variables are advected using motion vectors established after applica-

tion of an optical flow method on the previous observations. Despite a certain naivety of the

basic model construnction, the preliminary results seem to indicate an ability to generate a

positive impact on the nowcast accuracy, in comparison with standard extrapolation meth-

ods. One peculiar aspect of this technique is the use of a parametric model, with parameters
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adaptable to the specific meteorological situation. For this preliminary application the pa-

rameters have been determined a posteriori using an optimization method (Nelder-Mead),

based on the deviation of the forecast from the corresponding analysis. However it seems

possible to devise a real-time application where the parameters are evolving based on the

past observations.

The achieved superior performance of the EOF parametric model compared to standard

optical flow methods is ultimately ascribable to the inclusion of the radar Doppler wind

observations in the VDARS analysis, which allows to reliably represent the wind field around

and ahead of the storm. This favors the representation of the condensation process leading

to local storm enhancement, and the evolution of the wind field in the outflow region. On

the other hand, the prediction of the local dissipation appears more difficult, and the simple

evaporation process currently included did not contributed to the forecast skill. A possible

improvement, to be investigated in the future, may come from the inclusion of the cloud

water qc from the VDRAS analysis, allowing application of the Kessler parameterization of

evaporation (eq. 40).

Apart from the actual chances of this substantially heuristic model to find its place as

a nowcasting operationsl tool, the overall good performance documented in this study may

also be interpreted as a demonstartion of the accuracy and potential of the VDRAS wind

analysis system. With this respect it is also interesting to compare the forecasting skill of the

EOF model depending on the initial VDRAS analysis setting (Chapter 6). Fig. 7.14 shows

the average Threat Score obtained after running the model with optimization, starting from

a first analysis with assimilation of single NEXRAD radar (dark green line) and a second

analysis using multiple radars (NEXRAD+XDFW, red line). In order to perform a fair

comparison, given two different initial analyses, the forecasts are verified against the simple
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Figure 7.14: Threat score calculated for two different qr thresholds (0.1 and 0.4 g kg−1

respectively in left and right panel), for the forecast based on assimilation of single NEXRAD
radar (dark green line) and both NEXRAD and the two X-band radars (red line). The gray
area represents ± 1 σ (standard deviation), with light gray for NEXRAD and darker gray
for NEXRAD+XDFW. The light blue (orange) area denotes an improvement (worsening) of
the forecasting skill when the X-band observations are used in the VDRAS analysis.

mosaicked rainwater field (the first guess from which the analysis is eventually obtained

after the assimilation process). For this reason the initial (+0 min forecast) value of the

Threat Score is less than one. The differences highlighted by the light blue area seem to

indicate a small improvement of the forecast skill until ∼50 min lead time when the X-band

observations are included in the analysis. This appears coherent with the overall qualitative

evaluation of the analysis in Chapter 6. However, the improvement is objectively limited

and relatively small when compared to the variability of the score (gray area) during the

event.

As already noted, the portion of the model domain with overlapping Doppler observatons

is quite limited, given that only two X-band systems were available for the event considered.

For an overall quantitative evaluation and possible confirmation of the added value arising
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Figure 7.15: Wall-clock execution times in seconds for different nowcasting methods. Para-
metric model with optimized coefficients (filled circles), parametric model with fixed coeffi-
cients (empty circles), Optical flow (filled squares), DARTS (empty squares). The y-axis in
in logarithmic units.

from the assimilation of X-band observations, new cases will need to be considered when the

complete 8 radar DFW network will be completed.

In terms of computational requirements, this method is more demanding compared to

extrapolation techniques based on optical flow techniques. Fig. 7.15 shows a comparison

between the wall-clock run times for the different techniques during the case study considered.

From bottom to top the time required to complete a one-hour forecast goes from the order

of 0.1 seconds or less for DARTS to about 1-2 minutes for the parametric model including

optimization of the parameters (EOF-opt param). When using fixed parameters (EOF-fix

param) the run time is about 5 seconds. These performances refer to the domain with

Ntot = 13664 grid points (NX = 122, NY = 112) and 2 km spatial resolution, running on

a laptop hosting a Intel i7 CPU M 620 @2.67GHz. The computational complexity is of the
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order of O(Ntot) so doubling the spatial resolution would result in about four times longer

run times. For the parametric model method, however, the time required to elaborate the

wind analysis (VDRAS) has to be added. The MPI (Message Passing Interface) version of

VDRAS was used in this study, running on a parallel computer using 16 processors. For the

setting described in Chapter 6 the time required to complete an analysis with a three minutes

assimilation window is about five minutes. Given the focus on the low-level wind analysis it

seems plausible to further decrease the needed run time, adopting a modified configuration

with fewer vertical levels. These overall computational time requirements appear compatible

with possible real-time implementation.
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CHAPTER 8

Summary and Conclusions

The research activities pursued in this thesis work had the common goal of investigating

the potential of Doppler and dual-polarization radar observations for microphysics retrievals

and application to nowcasting, i.e. 0-2 hours short-term forecast. Although nowcasting is

most widely associated with convective storms, stratiform precipitation systems may also

have relevant short-term impacts. In particular during the winter season, stratiform systems

associated with mid-tropospheric mesoscale forcing can lead to large snowfall accumula-

tions at the ground affecting infrastructures, ground transportation and aviation. The first

part of this study then focused on this type of events, considering a widely used numerical

atmospheric model for the assimilation of radar observations (Chapter 2), and analyzing

the dual-polarization radar signatures in the ice region of precipitation systems (Chapter

3). The three-dimensional assimilation scheme developed within the Weather Research and

Forecasting (WRF) model (WRF 3D-Var) is used to evaluate the impact of the assimilation

of Doppler radar observations for a case study in northern Italy. As already evidenced in

previous studies, the assimilation of Doppler velocity has in general the larger and consistent

impact on the quality of the analysis and the subsequent forecast, as compared with reflec-

tivity. The reasons for this may be attributed to the fact that the core of the atmospheric

model is the dynamics, i.e. the compressible, non-hydrostatic Euler equations, including

conservation of mass (continuity), momentum, and energy. So the benefit introduced by

an adjustment of the wind field using radar velocity observations may easily propagate to

the other model state variables. Secondarily, reflectivity is assimilated through a non linear

observation operator that relates its intensity to the amount of rainwater in the model. This
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is currently realized in WRF 3D-Var using a partitioning of the total water mixing ratio

implemented by a warm-rain process [22], including condensation, evaporation, accretion

(collection of cloud droplets by precipitation) and auto-conversion (conversion of cloud into

precipitation by coalescence of cloud droplets).

The lack of the ice phase inclusion in the current WRF 3D-Var assimilation system may

certainly limit to some extent the potential benefit of the radar data assimilation. This ex-

plains the efforts undertaken over the past few years to investigate the information content

inherent in dual-polarization observations in the ice phase and to develop suitable forward

operators for ice processes [149]. In fact, while the strengths of dual-polarization radar ob-

servations have been widely demonstrated for rainfall, it is less clear how much information

can be inferred from observations in ice regions. In this respect, the observational study

presented in Chapter 3 focused on the characterization of the radar dual-polarization signa-

tures in the ice region of stratiform precipitating clouds. This study, supported by a large

statistical analysis, revealed a significant connection between dual-polarization signatures

aloft and the precipitation intensity near the surface. In particular, the high specific differ-

ential phase shift (Kdp ) observations in the ice portion of stratiform clouds are explained by

the vapor depositional growth of dendritic crystals in weak ascending flow, associated with

mid-tropospheric mesoscale forcing. It is argued that the improved understanding of the

information content of dual-polarization radar observations and their relationship to model

physics will contribute to future microphysically consistent assimilation approaches for both

liquid and ice water content.

The purpose of establishing a more general framework for the microphysical interpretation

of radar dual-polarization measurements led to the development of an improved method for

the classification of hydrometeors from radar echoes (Capter 4). The proposed technique
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presents important novelties with respect to the state-of-the-art radar classification methods.

The traditional bin-based classification is replaced with a semi-supervised approach which

combines cluster analysis, spatial contiguity, and statistical inference to assign the most

likely class to a set of identified connected regions. The main salient points include a degree

of self-adaptiveness (through the unsupervised intermediate cluster analysis), a noiseless

classification (by means of spatial contiguity), and the inclusion of microphysical constraints

to improve the consistency of the hydrometeors spatial distribution. This method, in addition

to a smoother and easier to interpret classification, ensures a lower sensitivity to noise in the

observations and also to small biases in the differential reflectivity measurements.

For convective precipitation, the connection between dual-polarization measurements

and the storm dynamics is initially considered analyzing a well known polarimetric signa-

ture, the columns of differential reflectivity. The observation of vertically contiguous positive

Zdr values extending between the lower layers and above the environmental 0◦ level is exten-

sively documented and associated with the presence of a well developed updraft capable of

lifting oblate liquid water and partially frozen hydrometeors [116]. The estimation of the

vertical velocity from the Zdr columns is applied on a case study to demonstrate the potential

for improving the analysis of the low-level wind field, in conjunction with surface observa-

tions. The preliminary results indicate a general consistency of the retrieved wind analysis

with the temperature spatial distribution and the evolution of the precipitation.

In parallel with this heuristic approach for the wind field estimation in the storm environ-

ment, data assimilation of dual-polarization observations is investigated. The assimilation

of radar observations for convective storms, as opposed to stratiform systems, presents spe-

cific challenges. In particular, some serious issue may arise if the background (a model state

used as first guess) has no convection whereas the radar indicates precipitation, or vice versa.
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Sugimoto et al. (2009) suggested to use a cloud analysis procedure to modify the background

and mitigate huge departures from the observations. In practice, some model variables are

modified based on the observed reflectivity before performing the 3D-Var assimilation. How-

ever, a difficulty with this approach is that the radar only observes quantities related to the

rainwater content and winds, while it gives no information about temperature and relative

humidity.

Another approach is to use a four-dimensional data assimilation system with the purpose

of fitting the observations to a model trajectory as close as possible over a given time win-

dow, while at the same time retrieving the unobserved variables. The Variational Doppler

Radar Assimilation System (VDRAS) [7] is an advanced data assimilation system specif-

ically designed for the assimilation of Doppler radar observations. Its potential for the

assimilation of small short wavelength radars (X-band) with dual-polarization capabilities

is investigated in this work, over the Dallas-Fort Worth urban demonstration testbed. Re-

cent attempts to assimilate the radar dual-polarization observations have been shown to

improve the performance of the short-term precipitation forecast [150]. In their work Li

and Mecikalski [150] have defined Zdr and Kdp forward model operators according to the well

assessed dual-polarization rainfall estimation algorithms described in [25]. In this work, the

reverse approach is taken, partially shifting the assimilation problem from the model domain

(observation operators) to the pre-processing of the radar observations (2.1). In fact, prior to

the assimilation, the dual-polarization measurements are processed in order to correct for at-

tenuation and differential attenuation, which may have a relevant impact for high frequency

radars (f ≫ 3 GHz), and the hydrometeor classification is used as a basis for the application

of a blended dual-polarization algorithm for the estimation of the liquid water content. The

results of the VDRAS assimilation have shown the potential for a detailed and consistent
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wind analysis when overlapping small radars are included in the assimilation process, in

addition to the conventional long-range systems. Although for the event considered in this

work only the first two radars were available, a significant improvement for the precipitation

and wind analysis can be anticipated upon completion of the X-band network.

The final part of the thesis work focused on the development and assessment of a simple

parametric model for nowcasting, starting from the VDRAS rainwater and wind analysis.

While the standard approach of variational data assimilation (implying fitting the observa-

tions to a physical model) is maintained for the diagnostic phase (analysis), the approach is

substantially reversed for the prognostic phase. A very simple, partially heuristic parametric

model is built considering only the relevant processes for convection, with parameters dy-

namically tuned through an optimization process over a defined temporal period. The whole

procedure is then split in two parts:

(1) the analysis phase, which is based on variational assimilation to ensure proper initial

conditions and physical consistency among the diagnosed variables;

(2) the forecasting phase, which relies on extrapolation techniques to propagate into

the future the past filtered observations, assuming that the optimized relevant in-

terconnections among the model variables keep their validity as the storm evolves

(persistency of the model setting).

The preliminary results are encouraging, having shown a clear improvement upon stan-

dard nowcasting by extrapolation techniques for the prediction of a squall line evolution in

Texas. This approach also appears naturally prone to incorporate additional information

from radar observations, like the dual-polarization signature related to the updraft location

and intensity discussed in Chapter 5.
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In conclusion, the research activities illustrated in this thesis have examined the potential

of dual-polarization measurements for the microphysical characterization of precipitation,

winds and their short-term prediction. The study focused in particular on some specific ob-

servational features and on the use of state-of-the-art radar data assimilation techniques. The

main achievements, expected impact, and future developments are summarized as follows:

• Characterization of dual-polarization observations in the ice phase

– This study contributes to the ongoing efforts towards a better understanding of

the polarimetric information content for solid hydrometeors and their relation

with model physics. The improved description of these relationships will benefit

the development of enhanced radar data assimilation methodologies for ice-

phase microphysical processes.

• Semi-supervised hydrometeor classification method

– This technique aims at extracting and synthesize as much microphysical infor-

mation as possible from the set of polarimetric observations. It is considered

a necessary preliminary step for future applications ranging from data assimi-

lation to hail nowcasting. Future developments will include extension to four

dimensions (3D volume scans and time), and a solution to explicitly deal with

the interconnection between attenuation correction and the classification.

• Assimilation of X-band dual-polarization observations in a four-dimensional varia-

tional system (VDRAS)

– The first evaluation in the context of the developing X-band radar network in

the Dallas-Fort Worth metroplex demonstrated the effectiveness for improving
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the low-level analysis, specifically for the wind field. Currently undergoing im-

provements in the VDRAS assimilation process (ice phase microphysics, evolv-

ing boundary conditions) will be included in future experiments. At the same

time, the contribution of the complete eight radar network sampling the lower

atmospheric layer with unprecedented detail will need to be carefully evaluated,

in particular for the near-surface retrievals and short-term forecast.

• Parametric adaptive model for precipitation and wind nowcasting

– The proposed hybrid approach extends the conventional extrapolation-based

nowcasting by including the wind analysis and basic modeling of relevant

physical processes. The improved performance initially demonstrated by this

methodology in comparison with conventional nowcasting techniques will need

to be confirmed with an extensive analysis including a range of case studies

representative of different meteorological situations. This will allow to asses

the effective potential of this method as an operational nowcasting tool.
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APPENDIX A

Evaluation of forecast accuracy

For a quantitative evaluation of a forecast the well-known summary measures obtainable

from the entries in the contingency table A.1 are considered:

(51) POD (Probability Of Detection) =
A

A+ C

(52) FAR (False Alarm Ratio) =
B

A+B

(53) SR (Success Ratio) = 1 − FAR

(54) bias =
A+B

A+ C

(55) TS (Threat Score) = CSI (Critical Success Index) =
A

(A+B + C)

Mathematical relations can be easily derived among several of the above summary mea-

sures, and help construct a geometrical representation of the forecast accuracy in the so

Table A.1: 2x2 contingency table.

Event
Observed

Yes No

Event Yes A B

Forecast No C D
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Figure A.1: Example of performance diagram for an extrapolation forecast from 0 to ∼60
minutes, involving ∼5 min time step (from chapter 7). The 13 dots along the red line shows
the evolution of the performance during the forecast, starting from the initial upper right
corner (POD=SR=TS=1) which corresponds to the analysis (perfect forecast).

called performance diagram (SR, POD plane) [147]. The following relations are used to

overplot isolines of TS and bias on the performance diagram:

(56) TS =
1

1
SR

+ 1
POD

− 1

(57) bias =
POD

SR
= tan θ

where θ is the angle from the horizontal axis counterclockwise in the performance diagram.

The performance diagram then allows to easily visualize multiple measures of forecast

quality on the same diagram. Fig. A.1 shows an example of the diagram for a precipitation

forecast from chapter 7. The diagram summarizes the SR (x-axis), POD (y-axis), bias
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(dashed lines, labeled on the outward extension), and TS (solid lines). For good forecasts,

POD, SR, bias, and TS approach unity, such that a perfect forecast lies in the upper right

of the diagram. The gray area is added to visually represent the region with Threat Score

> 0.6 in the upper right portion of the diagram, which normally represents a good forecast.
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APPENDIX B

Radar Convective Parameter (RCP)

Following Houze [67] stratiform precipitation is defined in terms of the vertical air motion

leading to the formation of precipitation particles, i.e.:

(58) |w| ≫ |Vice|

where w is the vertical air velocity and Vice is the terminal fall speed of ice precipitation par-

ticles (∼1-3 m s−1 ). Conversely, the precipitation type is defined to be convective when (58)

does not hold. Unfortunately observations of the vertical air velocity are scarcely available,

so a definition in terms of the radar reflectivity is needed for many applications. The condi-

tion (58) implies that all hydrometeors are constantly falling, therefore avoiding larger and

denser particles growing by aggregation and riming to be found in the upper atmospheric

levels. On the other hand in convective precipitation, the relationship between upward ver-

tical air velocity and the development of ice condensate aloft results in much larger particles

at sub-freezing temperatures [151]. The main consequence of the limited vertical air velocity

in stratiform precipitation is the highly stratified reflectivity structure above the melting

layer. The subsequent melting of the ice crystals and aggregates leads to the characteristic

bright band signature, whose presence (absence) is often used to classify a reflectivity profile

as stratiform (convective).

The bright band-based classification is dichotomic, i.e. it does not allow a continuous

parameterization of the degree of convectivity. In addition the detection of the bright band

is typically based on several empirical thresholds on the reflectivity values and gradients,

which are also sensitive to the radar operation frequency due to complex electromagnetic
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scattering properties of mixed-phase particles. For the scope of this study we wanted instead

to perform an objective continuous classification of the average reflectivity profiles, either

daily or hourly. We therefore defined the Radar Convective Parameter (RCP), a simple

parameter to describe the degree of convectivity of a given reflectivity vertical profile as

(59) RCP(dB) = 10log10




∫ h(−15 ◦C)

h(0 ◦C)

〈Zlin〉

median(Zlin)
)dh

h(−15 ◦C) − h(0 ◦C)




where 〈Zlin〉, the average of the reflectivity in linear units (mm6 m−3 ), and median(Zlin) are

calculated over all the observations available at a given vertical level h and the integral is

over the atmospheric layer bounded by the 0◦C and -15◦C temperature levels. In practice

the integral in eq. 59 is replaced by a summation over the available discrete height levels.

The summation is performed on the ice portion of the vertical profile only, despite the fact

that higher reflectivity differences between convective and stratiform situations are expected

below the 0◦C level [62]. Likewise the reflectivity enhancement in the bright band is not

involved in the definition of the RCP to eliminate the variable depth of the liquid and

mixed-phase layer, especially when dealing with a large dataset encompassing a wide range

of freezing level heights (0.4 to 4.3 km MSL for the profiles analyzed in this study). It

should be noticed that eq. 59 is actually very similar to the definition of the Pearson’s

second skewness coefficient:

(60) skewness = 3
(mean − median)

standard deviation

The main difference is that in eq. 59 there is no normalization by the standard deviation. The

higher vertical air motions in convective precipitation allow mixed phase particles (graupel)
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and supercooled liquid water (with approximately five-fold higher refractive index compared

to ice, for the 5-10 GHz frequencies considered in this work) to reach heights with temper-

atures below freezing. The presence of scatterers with higher equivalent reflectivity values

in convective situations contributes to broaden the distribution, whose variance increases.

The difference between the mean and the median also notably increases, due to the highly

positively skewed distribution of the reflectivity in linear units. The use of eq. 59, compared

to eq. 60, is therefore preferred to enhance the dynamic range of the convective parameter.
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