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Abstract

Acoustic Monitoring System for Frog Population Estimation Using In-Situ

Progressive Learning

Frog populations are considered excellent bio-indicators and hence the ability to monitor

changes in their populations can be very useful for ecological research and environmental

monitoring. This thesis presents a new population estimation approach based on the recog-

nition of individual frogs of the same species, namely the Pseudacris Regilla (Pacific Chorus

Frog), which does not rely on the availability of prior training data. An in-situ progres-

sive learning algorithm is developed to determine whether an incoming call belongs to a

previously detected individual frog or a newly encountered individual frog. A temporal call

overlap detector is also presented as a pre-processing tool to eliminate overlapping calls. This

is done to prevent the degrading of the learning process. The approach uses Mel-frequency

cepstral coefficients (MFCCs) and multivariate Gaussian models to achieve individual frog

recognition.

In the first part of this thesis, the MFCC as well as the related linear predictive cepstral

coefficients (LPCC) acoustic feature extraction processes are reviewed. The Gaussian mix-

ture models (GMM) are also reviewed as an extension to the classical Gaussian modeling

used in the proposed approach.

In the second part of this thesis, the proposed frog population estimation system is

presented and discussed in detail. The proposed system involves several different components

including call segmentation, feature extraction, overlap detection, and the in-situ progressive

learning process.
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In the third part of the thesis, data description and system performance results are

provided. The process of synthetically generating test sequences of real frog calls, which are

applied to the proposed system for performance analysis, is described. Also, the results of the

system performance are presented which show that the system is successful in distinguishing

individual frogs, hence capable of providing reasonable estimates of the frog population. The

system can readily be transitioned for the purpose of actual field studies.

iii



Acknowledgements

I would first like to thank my adviser, Dr. Mahmood R. Azimi-Sadjadi, for his

invaluable support and considerate guidance throughout the course of this research. His

guidance and time is greatly appreciated throughout the course of my graduate education.

I would like to thank my committee members, Dr. Kurt Fristrup and Dr. Christopher

Peterson, for their time and assistance.

I would like to thank the National Park Service (NPS), for providing the funding for this

research under cooperative agreement # H2370094000.

I would like to thank my colleagues in the Signal and Image Processing Lab. They have

provided a great environment for discussing work and providing help when most needed.

Thanks to Nick, Neil, Soheil, Amanda and Jarrod.

Finally, I would like to thank my family for their support and guidance throughout my

graduate education.

iv



Dedication

To my parents, Khaled and Colleen.

v



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Survey of Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3. Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4. Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2. Review of Acoustic Recognition Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Acoustic Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3. Classification Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter 3. Population Estimation Using In-Situ Progressive Learning . . . . . . . . . . . . . . . . 21

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2. Proposed System Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3. Call Segmentation and Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vi



3.4. In-situ Progressive Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5. Overlap Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 4. Data, Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2. Data Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3. Synthetic Test Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4. Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Chapter 5. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2. Suggestions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vii



List of Tables

4.1 Simulation Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Population estimates for the Liklihood and KL-divergence methods on non-

overlapping test sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Association performance of Likelihood test for non-overlapping test sequences (a) 1

- (f) 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Association performance of Likelihood test for non-overlapping test sequences (a) 7

- (d) 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Association performance of KL-divergence test for non-overlapping test sequences

(a) 1 - (f) 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Association performance of KL-divergence test for non-overlapping test sequences

(a) 7 - (d) 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.7 Percent correct association and population estimates on overlapping test sequences

with and without overlap detection.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.8 Percent correct association and population estimates on extended test sequences

with and without overlap detection.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

viii



List of Figures

2.1 Diagram showing MFCC feature extraction process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Hamming window function of length N = 64 samples in both time and frequency

domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Band-pass filter bank in frequency domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Diagram showing LPCC feature extraction process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Proposed system architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 (a) Frog call acoustic time series (b) STFT of (a) (c) corresponding peak magnitude

function showing first segment detection and isolation (d) second segment detection

and isolation (e) corresponding start and end locations for segments in signal

spectrum and (f) data matrix of the detected and isolated frog call. . . . . . . . . . . . . . . . . 26

3.3 In-situ progressive learning diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 (a) Time series of two overlapped calls (b) plot of the cumulative log-likelihood (c)

plot of averaged trend of likelihood (d) graph of most dominant models.. . . . . . . . . . . . 36

4.1 Pseudacris regilla frog species calls (a) type 1 (b) type 2 (c) type 3. . . . . . . . . . . . . . . . . 39

4.2 Portion of a non-overlapping test sequence with labeled calls. . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Portion of a overlapping test sequence with labeled calls and overlaps. . . . . . . . . . . . . . 40

4.4 The average percent correct association using (a) Likelihood test and (b)

KL-divergence test over all ten non-overlap test sequences run. . . . . . . . . . . . . . . . . . . . . 44

ix



4.5 The percent correct association using Likelihood test for non-overlap test sequences

1 (a) - 6 (f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 The percent correct association using Likelihood test for non-overlap test sequences

7 (a) - 10 (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.7 The percent correct association using KL-divergence test for non-overlap test

sequences 1 (a) - 6 (f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.8 The percent correct association using KL-divergence test for non-overlap test

sequences 7 (a) - 10 (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.9 The ROC of the overlap detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.10The average percent correct decisions on overlapping test sequences (a) without

overlap detection and (b) with overlap detection.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.11The average percent correct decisions on extended test sequences (a) without overlap

detection and (b) with overlap detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

x



CHAPTER 1

Introduction

1.1. Background and Motivation

Frog populations are considered excellent bio-indicators, and the ability to monitor

changes in their populations is of utmost importance to ecological research and environ-

mental monitoring [1]. Frogs are very sensitive to environmental pollutants due to their

permeable skin and water-based life cycle [2]. It has been suggested [3] that a stressed envi-

ronment suffering from poor water quality and an ecosystem lacking in diversity are causes

of recent frog population decline. This has triggered interest in monitoring frog populations

to fully understand the causes and the resulting impact, with hope to possibly reverse this

decline [4].

Call surveys and call count data are the most widely used methods to assess the presence

and abundance of different species of frogs [5]. However, it has been shown that there is

no clear relationship between trends in frog call activity and the true population of frogs

[6], any resulting population estimates are also likely to be biased [5]. The most effective

method currently used to assess the population size of frogs is the capture mark re-capture

(CMR) method which can provide unbiased and more precise estimates of frog populations

[5]. However, this method is labor intensive, time consuming, and intrusive [5].

Little research has been conducted on estimating populations of animals using acoustic

recordings though this approach is less expensive, quicker, and has virtually no impact on

the animals [7]. The estimation of animal populations through acoustic recordings requires

the ability to differentiate vocalizations from different individual animals. Previous work

has focused, almost exclusively, on species recognition [1, 8, 9, 10, 11, 12] where different
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species of animals were identified from their acoustic recordings. There are a limited number

of studies that have focused on the problem of individual recognition of animals from their

acoustic recordings [13, 14]. These methods, almost exclusively, rely on the availability of

training data for each of the individuals to be recognized, and do not consider the problem

of population estimation of the same species as a possible application. An acoustic animal

population estimation system will require the ability to recognize new, unknown individuals

of the same species.

1.2. Survey of Previous Work

Previous work has focused, almost exclusively, on species recognition [1, 8, 9, 10, 11, 12,

15, 16] where different species of animals are identified from their acoustic recordings. Gary

et al. [1] developed a method based on a set of heuristic features derived from the signal

spectrogram of frog calls such as bandwidth and length of call to discriminate amongst

different frog species. The frog species is identified by a series of filters and groupings

that make use of the identified heuristic features. Harma [10] uses sinusoidal modeling

to identify different bird species from their songs. Each song is decomposed to a set of

amplitude and frequency modulated pulses. The amplitude and frequency trajectories are

then used to identify the different species. Lee et al. [8] proposed a method that uses

averaged Mel-frequency cepstral coefficients (MFCCs) [17] and linear discriminant analysis

(LDA) [18] to automatically identify frog and cricket species from their sounds. MFCCs

are extracted from each window of isolated syllables and averaged over the duration of

the syllable. The averaged MFCCs are then transformed to a lower dimensional space

through LDA. The distance between vectors in the lower dimensional space is then used

for species identification. Tyagi et al. [15] proposed a new technique which computes the

2



Spectral Ensemble Average Voice Print (SEAV) for each bird species considered. The SEAV

is computed as the averaged spectrum over all windows of the duration of the bird song. The

euclidean distance between the SEAV from different recordings is used to identify the bird

species. Somervuo et al. [16] compared three different parametric representations, namely,

sinusoidal modeling, Mel-cepstrum parameters and a vector of various descriptive features

such as spectral centroid, signal bandwidth, zero cross rate and short time energy for the

purpose of bird species recognition. Recognition based on the use of single syllables was done

by means of nearest neighbor classification [19]. A series of syllables (song fragments) was also

used to identify the species. In this case, Gaussian mixture models (GMMs) [20] and hidden

Markov models (HMMs) [21] are used for classification. Fagerlund [12] studied automatic

identification of bird species using two different parametric representations and support

vector machine (SVM) classifiers [22]. The first parametric representation used was the mel-

cepstrum parameters and the second was a set of low-level signal parameters such as spectral

flux, spectral flatness, and frequency range. A decision tree with binary SVM classifiers at

each node was used to identify the bird species. Huang et al. [9] automatically identifies frog

calls using three features namely spectral centroid, signal bandwidth, and threshold-crossing

rate. The classification is done using the k-nearest neighbor (kNN) algorithm [19], as well

as, SVMs. Chen et al. [11] used a standard feature template which is extracted by analyzing

the multi-stage average spectrum (MSAS) of frog calls to perform species classification. A

template matching method was used to compare feature templates extracted from test and

training data to recognize the unknown frog species.

There is a limited number of studies that have focused on the problem of individual

recognition of animals [13, 14, 23]. Fox et al. [23] extracted MFCC features from bird calls

3



and used a multi-layer perceptron (MLP) neural network [24] to recognize different individual

birds. Chang et al. [13] extracted similar MFCC features but used GMMs for individual

recognition of birds. Zhang et al. [14] applied a similar method to the individual recognition

of insects using a more sophisticated α-GMM classifier.

All the above-mentioned methods rely on the availability of training data for each of the

individuals to be recognized, and do not consider the problem of population estimation of

the same species as a possible application. An acoustic animal population estimation system

will require the ability to recognize new, unknown individuals of the same species.

Acoustic features that can capture inter-individual variations as well as classification

models that can effectively model these variations are required to be able to successfully

differentiate among individuals and perform population estimation. Such features and clas-

sification models have already been developed, which has demonstrated promising results in

achieving individual recognition of birds [13] and insects [14]. Among these features are the

mel-frequency cepstral coefficients (MFCCs) which are typically used in many speech and

speaker recognition systems [25]. Additionally, among the probabilistic-based models used

for species classification are the Gaussian mixture models (GMMs) [26] which are well-suited

in dealing with noise.

1.3. Proposed Method

In this thesis, a new population estimation method based on the recognition of individual

frogs of the same species, namely the Pseudacris Regilla (Pacific Chorus Frog) which are

found in the West Coast region of the United States and Canada at various elevations from

sea level and upto 10,000 feet, is introduced. The proposed method is based on a progressive

learning algorithm which attempts to learn to recognize individual frogs by grouping calls
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produced by the individuals in an in-situ manner without prior training. This makes the

application of the system in real settings possible. A realistic frog call recording typically

contains several temporally overlapping calls from the same frog species. However, since the

call signatures are very similar, separation of the calls in order to process each individual

call may only be possible with multi-channel recording, i.e. multiple microphone systems,

which were not available for this study. Therefore, we also introduced a call overlap detector

which serves as a pre-processing tool to exclude temporally overlapping calls of two or more

frogs to avoid performance degradation. The frog calls are first detected by means of a

segmentation algorithm which exploits the spectral signature of the incoming signal [10].

MFCC feature vectors [17] are then extracted from each detected call, and the overlap

detector disregards any calls with detected overlap. The remaining non-overlapping calls

are subsequently applied to progressively build models to represent the individual frogs

producing the calls in which multivariate Gaussian distributions are used as the probabilistic

classification model. The progressive learning algorithm essentially performs a series of

association tests on incoming detected calls in which each incoming call is determined as to

whether it belongs to a previously detected individual or to a newly encountered individual.

Synthetically generated test sequences, using multiple individual frog calls, are used to

evaluate the performance of the system. Several test sequences are generated by inserting

single frog calls of known identity into a test signal which is then applied to the system as

input data. Two different sets of test sequences are used to test the system’s performance.

The first set of test sequences contains frog calls none of which are temporally overlapping.

These test sequences are used to evaluate the progressive learning ability of the system

where in this case the overlap detector is bypassed. The second set of test sequences contain
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several temporally overlapping frog calls. These test sequences are used to evaluate the

overlap detection ability of the system.

The system performance is measured in terms of the percent correct association of incom-

ing calls for the progressive learning and the probability of detection (PD) and probability of

false alarm (PFA) of the call overlap detection. Simulations have produced promising results

with around 97.9% average correct association and PD = 0.85 and PFA = 0.15 for the call

overlap detection system.

1.4. Organization of the Thesis

This thesis is organized as follows. Chapter 2 reviews two acoustic feature extraction

methods and a classification method. The acoustic feature extraction methods reviewed

are the MFCC features and LPCC features whereas the classification method reviewed is

the GMM. Population estimation using in-situ progressive learning, as well as, the overlap

detection are described in detail in Chapter 3. Chapter 4 provides a description of the data

set, the synthetic test sequence generation, and experimental results for applying the non-

overlapping test sequences, the overlapping test sequences, and a set of extended sequences

to the system. Finally, Chapter 5 provides a conclusion and suggestions for future work.
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CHAPTER 2

Review of Acoustic Recognition Methods

2.1. Introduction

In this Chapter, two popular acoustic feature extraction methods, namely MFCC [17]

and LPCC [27], are reviewed in detail. These methods have been very popular recently

in many speaker recognition applications and, hence, have also been applied to animal

species/individual recognition applications in at attempt to achieve similar success. In addi-

tion, the probabilistic classification method, namely the GMM [20], is reviewed in detail as an

extension of the currently applied method of multivariate Gaussian modeling for individual

frog recognition in the system proposed in this thesis.

Both the MFCC and the LPCC, which are the linear predictive coefficients (LPC) [27]

represented in the cepstrum domain, features are based on computing the cepstrum of the

signal which is a warped version of the spectrum that attempts imitate the human auditory

perception. The main difference between these two feature extraction methods is in the

initial spectrum estimation [17]. The LPCC offers a quicker alternative to the use of Fourier

transform for estimating the signal spectrum [28] which could potentially provide a more

computationally efficient alternative to the MFCC features currently employed.

The GMMs are used to capture the shape of an arbitrary multivariate distribution.

The distribution, in this case, corresponds to the feature vectors, i.e. the MFCC features,

extracted from the acoustic recording. The GMM captures the shape of the distribution by

finding the Gaussian parameters or several Gaussian component densities as well as their

mixing weights. Typically, expectation maximization (EM) [29] algorithm is used to find

the unknown parameters. In the current application, only one Gaussian component is used
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and so the ability to capture the shape of the distribution is limited. Therefore, the GMM

is explored as a possible future extension to the currently applied method to improve the

overall modeling capability.

In this chapter, the MFCC and LPCC feature extraction methods are reviewed in detail.

Furthermore, the GMM probabilistic classification method is also reviewed.

2.2. Acoustic Features

2.2.1. Mel-Frequency Cepstral Coefficients (MFCC). The Mel-Frequency Cep-

stral Coefficients (MFCC) are the most popular acoustic features used recently for human

speaker recognition applications [17]. Due to their success in speaker recognition applica-

tions, they have also been adopted for animal species and individual recognition applications

[8, 12, 13, 14, 16, 23]. Several approaches exist for computing MFCC features. The approach

detailed in this section is based on cepstral computation of a Mel-scale warped spectral es-

timate [30]. A diagram illustrating the MFCC feature extraction process in shown in Fig.

2.1.

Acoustic

Signal
STFT

Mel-scale Frequency

Warping

Log Magnitude

Warping
DCT

MFCC

Features

Figure 2.1. Diagram showing MFCC feature extraction process.

2.2.1.1. Short-Time Fourier Transform (STFT). The Short Time Fourier Transform

(STFT) is first used here to provide spectral content of the signal in localized time win-

dowed regions. The input signal of interest is divided into overlapping windows of length N

where each window is shifted from the previous one by ∆. A windowing function is used

here for time localization and to reduce discontinuities in the windowed signal. Several types
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Figure 2.2. Hamming window function of length N = 64 samples in both
time and frequency domains.

of windows exist such as the Hamming, Hanning, Welch, Triangular, Gauss, Blackman and

Bartlett [17]. Each type of window has a different shape and localization (time-frequency)

characteristic. However, the most popular window used in speech processing is the Hamming

window, shown in Fig. 2.2, given by:

w(n) = 0.54− 0.46cos

(
2πn

N − 1

)
(1)

where N is the length of the window.

Let s(n) denote the signal and sm(n) denote the mth window of the signal given by:

sm(n) = s(n)w(n−m∆) (2)

where ∆ is the shift between each window and m is the window index.
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The spectrum of the mth window of the signal is given by:

Sm(k) =

m∆+N
2
−1∑

n=m∆−N
2

sm(n)e−2jkπn/N , ∀k ∈ [1, K] (3)

where k is the frequency index.

This process assumes stationarity of the signal over the duration of the window size.

Although the computed spectra Sm(k) are complex-valued, it is common for most speech

processing systems to consider only the magnitude spectra |Sm(k)|.

2.2.1.2. Frequency and Magnitude Warping . The Mel (abbreviation of melody) is a unit

of pitch which is defined to be equal to one thousandth of the pitch (℘) of a simple tone

of frequency 1000Hz with an amplitude of 40dB above the auditory threshold [17]. This

definition of pitch in the Mel-scale was motivated by the fact that the human auditory

perception is approximately linear upto the frequency of 1000Hz and then becomes more

logarithmic for higher frequencies. Another motivation was the experiments conducted by

Zwicker [31] where he modeled the human auditory perception system using a 24-band filter-

bank of critical bands whose center frequencies are positioned according to the so-called Bark

scale where they are non-linearly spaced in the frequency domain. The relationship between

frequency and pitch in the Mel-scale is given by [32, 33]:

℘ =
1000

ln(1 + 1000
700

)
ln(1 +

f

700
) (4)

where f is the frequency in Hz and ℘ is the pitch in Mels.

Because of the way in which the human auditory perception works, the magnitude co-

efficients of the spectrum |Sm(k)| computed in Section 2.2.1.1 are modified to have less

10
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Figure 2.3. Band-pass filter bank in frequency domain.

coefficients that are related to the critical band center frequencies using the Mel-scale. This

can be achieved by building a filter bank of triangular pass-band filters, as shown in Fig.

2.3, to convert the magnitude spectral coefficients in |Sm(k)| by computing a weighted sum

of spectral coefficients to obtain the Mel-frequency magnitude spectrum coefficients denoted

by |S̆m(l)|, which is the lth coefficient of the mth window of the signal and is given by:

|S̆m(l)| =
K∑
k=1

Wl(k)|Sm(k)|, ∀ l ∈ [1, L] (5)

where Wl(k) is the lth band-pass filter weights and L is the number of filters in the filter

bank.

Up till now, the magnitude spectral coefficients of the window of the signal have been

warped to the Mel-frequency domain. Next, these magnitude coefficients need to be warped

so that they may be logarithmic and resemble human auditory perception. This can be

achieved by simply taking the logarithm of |S̆m(l)| [30],

Y l
m = ln(|S̆m(l)|) (6)
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2.2.1.3. Mel-frequency Cepstral Coefficients (MFCC). We now have a representation of

the mth window of the signal in Y l
m that closely resembles how the human auditory system

perceives the sound. The next step is to compress the information provided in this repre-

sentation and then take only the most useful part of the compressed representation. Several

ways to achieve the sought compression exist but the most prevalent method is to compute

the discrete cosine transform (DCT) of the coefficients in Y l
m [30]. The MFCC features for

the mth window of the signal, ydm are computed as the DCT of the derived logarithm of the

magnitude spectrum of the windowed signal in the Mel-scale Y l
m,

ydm =
√

2/L
L∑
l=1

Y l
mcos

(π
L

(l − 0.5)d
)
, ∀ d ∈ [1, D] (7)

where
√

2/L is a normalization factor and D is the number of MFCC features computed.

Although the number of MFCC features can be set to equal the number of filters (i.e.

D = L), usually only the first few MFCC coefficients are taken (i.e. D < L) since they

capture most of the useful information.

Remark: In order to capture the dynamics of the MFCC features, first and second order

derivatives of the MFCC features known as Delta and Delta−Delta MFCC, respectively, are

often used [14]. These features are, in general, independent of the original MFCC features,

i.e. contain new information, and can be used to extract information on the local dynamics

of the sound. However, adding too many features will increase dimension of the extracted

acoustic feature vector which will increase the amount of data required to estimate the

statistical parameters of a model which is not well-suited for the system proposed in this

thesis. Furthermore, the standard MFCC features alone inherently capture some of the local

12
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Figure 2.4. Diagram showing LPCC feature extraction process.

dynamics due to the windowing process [17]. Therefore, for the proposed system, only the

standard MFCC features are considered.

2.2.2. Linear Predictive Cepstral Coefficients (LPCC). The LPCC features

will be reviewed here as an alternative to the currently used MFCC features which could

increase the proposed system’s overall computational efficiency by eliminating the initial

Fourier transform computation required to compute the MFCC features [28]. The LPCC

features are the cepstral version of the linear predictive coding (LPC) [17] which is a para-

metric, spectral, source-filter modeling scheme [34]. LPC coefficients are the autoregressive

(AR) model [35] coefficients that minimize the error between the predicted values and the

actual values of a given window of data [36]. A diagram illustrating the LPCC feature

extraction process in shown in Fig. 2.4.

The first step of time domain framing and windowing to achieve short time analysis of

the signal is the same as that in the MFCC feature extraction explained in Section 2.2.1.1.

We will begin our analysis here with the mth window of the signal sm(n) defined in (2).

The method we will use for computing the LPC will be based upon an AR(P ) process [17].

Performing error minimization of the P th order AR model results in the Yule-Walker [35]

equations:
P∑
p=1

aprm(|i− p|) = rm(i), 1 ≤ i ≤ P (8)
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where rm(i) is the autocorrelation of the signal in the mth window and is given by:

rm(i) =

m∆+N
2
−1−i∑

n=m∆−N
2

sm(n)sm(n− i) (9)

Let us define the autocorrelation matrix Rm as:

Rm =



rm(0) rm(1) rm(2) · · · rm(P − 1)

rm(1) rm(0) rm(1) · · · rm(P − 2)

rm(2) rm(1) rm(0) · · · rm(P − 3)

...
...

...
. . .

...

rm(P − 1) rm(P − 2) rm(P − 3) · · · rm(0)


(10)

which is a non-singular Toeplitz matrix and the autocorrelation vector rm as:

rm =



rm(1)

rm(2)

...

rm(P )


(11)

Then, we can rewrite (8) in matrix form as:

Rmam = rm (12)

where am = [a1, a2, ..., aP ]> is the AR coefficients vector for the mth window.

The Toeplitz structure of the matrix Rm makes it easy to solve for am using some efficient

algorithms that do not rely on matrix inversion. Alternatively, one can use the Levinson-

Durbin recursive algorithm [35] to solve for am.
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Once the LPC coefficients am are computed they must be converted into cepstral coeffi-

cients. This conversion can be achieved by using a recursive algorithm [37] which will result

in the linear predictive cepstral coefficient (LPCC) features. This recursive algorithm al-

lows for the computation of the cepstral coefficients without needing to compute the Fourier

transform of the signal. Let us denote the LPCC feature vector as αm = [α0, ..., αd, ..., αD]>.

The LPCC are computed as follows:

(1) For d = 0,

α0 = rm(0) (13)

(2) For 1 ≤ d ≤ P ,

αd = ad +
d−1∑
i=1

i

d
αiad−i (14)

(3) For d > P ,

αd =
d−1∑
i=1

i

d
αiad−i (15)

These LPCC features are not based on the perceptual Mel-scale like the MFCC features.

However, a warping can be applied to make them based on such a scale. Also, it is usually

the case that the dimension of the LPCC feature vector D is greater than the dimension of

the linear predictor coefficients P [34].

2.3. Classification Methods

2.3.1. Gaussian Mixture Models (GMM). Gaussian mixture models (GMMs) are

used to model measurements or feature data (e.g., MFCC or LPCC features), by representing

the probability density function of the data as a weighted sum of multivariate Gaussian

densities with unknown parameters [20]. This allows GMMs to smoothly capture the shape

of an arbitrary density representing the data. The characteristics of the data captured by
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the GMM can be used for classification purposes where a GMM can be trained to recognize

a certain phenomenon by capturing the shape of the distribution of the data produced by

such a phenomenon. An M component GMM is given by:

p(y|λ) =
M∑
i=1

wip(y|µi,Σi), i = 1, 2, ...,M (16)

where y is a D-dimensional observation or feature vector, p(y|µi,Σi) are the Gaussian com-

ponent densities with mean µi and covariance Σi and wi are the unknown mixture weights.

The mixture weights wi must satisfy the constraint:

M∑
i=1

wi = 1 (17)

Each component density is a D-variate Gaussian function defined as:

p(y|µi,Σi) =
1

((2π)D/2|Σi|1/2)
e
−1
2

(y−µi)
>Σ−1

i (y−µi) (18)

where | · | stands for determinant of the matrix inside.

The GMM is completely parametrized by the mean vectors µi, covariance matrices Σi

and mixture weights wi from each component density. The combined GMM parameters, λ

are denoted as λ = {pi,µi,Σi}, i = 1, 2, ...,M.

The structure of the GMM in terms of the number of components, M, to use, type of

covariance to impose (i.e. full vs diagonal) and how parameters are tied usually depends

on the nature of the application. For example, for the proposed system in this thesis, the

nature of the problem imposes a limit on the amount of data available since the system is

designed to work in-situ with possibly limited data. Therefore, for this system it would be
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more reasonable to use a smaller number of component densities and parameters. Otherwise,

there may not be a sufficient amount of data to estimate all the parameters of the model.

Let Γ = [y1, ...,yv, ...,yV ] be the matrix of training observation/feature vectors where V

is the total number of vectors available. To model this data using a GMM is to estimate

the parameters of the density components of the GMM for a certain structure. This is

essentially an attempt to choose the GMM parameters that will capture the shape of the

training data distribution. There are several methods for estimating the parameters of

a GMM [29, 38, 39, 40]. The most popular of which is the maximum likelihood (ML)

estimation which estimates the model parameters from the training data using an iterative

expectation-maximization (EM) algorithm [29].

2.3.1.1. Maximum Likelihood (ML) Parameter Estimation . In ML estimation, GMM

parameters are determined by maximizing the likelihood of the GMM given the training

data. The likelihood of the GMM given the data in Γ is given by:

`(Γ|λ) = p(Γ|λ) (19)

where if we assume that the observations in Γ are conditionally independent, which may not

be a necessarily correct assumption but a necessary one nonetheless to make this problem

solvable, we can write the likelihood as:

`(Γ|λ) =
V∏
v=1

p(yv|λ) (20)
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Alternatively, working with the log-likelihood function and using the definition of the

GMM in (16), (20) becomes:

L(Γ|λ) =ln(
V∏
v=1

p(yv|λ))

=
V∑
v=1

ln(p(yv|λ))

=
V∑
v=1

ln(
M∑
i=1

wip(yv|µi,Σi))

(21)

It is not possible to maximize log-likelihood function in (21) directly, however, it can be

maximized using an incomplete data approach used in the EM algorithm [29]. The general

idea here is to use an initial model parameter set, which we will denote as λold, to estimate

a new parameter set, which we will denote as λnew, such that `(Γ|λnew) ≥ `(Γ|λold), i.e. a

higher likelihood is achieved with the new parameter set. Once the new parameter set is

determined, it is used to find the next set and so on until a convergence criteria is met [20].

A two step process is used to estimate the new model parameters, λnew, that will guarantee

a monotonic increase in the likelihood of the model.

In the expectation step, the maximization function Q(λ) is formulated based on the

a-posteriori probability of the ith component density, p(i|yv) given by:

p(i|yv) =
p(i,yv)

p(yv)

=
pip(yv|µi,Σi)∑M

i′=1 pi′p(yv|µi′ ,Σi′)

(22)
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and maximization function, Q(λ), which is the expected value of the log-likelihood of the

joint event of of the data, Γ, and the model parameters, λ, is then given by [21]:

Q(λ) =
V∑
v=1

M∑
i=1

p(i|yv)ln(p(yv|i)wi) (23)

In the maximization step, the function Q(λ) is maximized using the following parameter

update equations [21]:

pnewi =
1

V

V∑
v=1

p(i|yv) (24)

µnew
i =

∑V
v=1 p(i|yv)yv∑V
v=1 p(i|yv)

(25)

Σnew
i =

∑V
v=1 p(i|yv)(yv − µnew

i )(yv − µnew
i )>∑V

v=1 p(i|yv)
(26)

where the new model parameter set λnew is given by:

λnew = {pnewi ,µnew
i ,Σnew

i } (27)

2.4. Conclusion

This Chapter reviewed two popular acoustic feature extraction methods, namely the

MFCC and LPCC, as well as the GMM probabilistic-based classification method. The re-

viewed feature extraction methods are two of the most frequently used algorithms in speaker

recognition applications and recently have been applied to the problem of animal species

and individual recognition [13, 14]. These methods attempt to imitate the human auditory

perception by warping the acoustic signal both in frequency and magnitude. The LPCC fea-

tures were shown [28] to be more computationally efficient by avoiding a Fourier transform
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computation and, hence, can be used in the proposed system as an alternative to MFCC

features to increase the overall performance.

The GMM was shown to offer better capability than the classical unimodal multivariate

Gaussian modeling, used in the proposed system, in terms of capturing the unique charac-

teristics of a certain frog call by being better equipped to capture the distribution of the

feature vectors. However, in order to be able to accurately estimate the many parameters of

a GMM, a much larger number of training samples must be used. This limitation prevents

the use of GMM in the conventional sense, however, it could be possible to incrementally

move from the simple multivariate Gaussian modeling, currently used in the proposed sys-

tem, to more sophisticated GMM by increasing the number of Gaussian components used

in the GMM only after a certain amount of data has become available through the learning

process. This can be accomplished, for example, by establishing data thresholds where if

the amount of data accumulated for a certain class/model exceeds the established threshold,

then a new model with a more sophisticated structure can be trained to replace the existing

model.

20



CHAPTER 3

Population Estimation Using In-Situ Progressive

Learning

3.1. Introduction

The system presented in this chapter is designed to process an acoustic recording which

contains frog calls produced by several different individual frogs. The calls are detected and

used by the in-situ learning process to count how many individuals are present and to learn

to recognize these individuals. Occasional temporal overlaps between different calls are also

taken into consideration by designing an overlap detection process to detect and eliminate

such overlapping calls in order to avoid performance degradation which would have resulted

by including these calls.

In this chapter, the proposed system is presented and it’s different components are dis-

cussed in detail. First, an overview is given of the proposed overall system structure. Next,

the call segmentation and feature extraction stages of the system are detailed. Then, the

proposed in-situ progressive learning system is discussed in detail. Finally, the details of the

overlap detection process are discussed.

3.2. Proposed System Structure

The proposed system structure is depicted in Fig. 3.1. In this system, the frog calls

are initially detected by means of a segmentation algorithm, which exploits the spectral

signature of the incoming signal [10]. MFCC feature vectors are then extracted from each

detected call and the overlap detector then identifies and disregards overlapping calls. The

overlap detector relies on previously generated models to detect association ambiguities,
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Figure 3.1. Proposed system architecture.

which are caused by overlapping calls. The non-overlapping calls are subsequently applied

to the progressively learning models to represent the individual frogs producing the calls and

to perform in-situ learning of the corresponding parameters. Multivariate unimodal Gauss-

ian distributions are used as the probabilistic-based classification model. The progressive

learning algorithm essentially performs a series of association tests on incoming detected

calls to determine whether they belong to the previously detected individuals or to newly

encountered individuals. The subsystems and processes in Fig. 3.1 are described in detail

in the following Sections.

3.3. Call Segmentation and Feature Extraction

3.3.1. Spectral-Based Call Segmentation. The segmentation stage is responsible

for detecting and isolating calls in the recorded acoustic time series to essentially provide the

start and stop times for each detected call. In this stage, the acoustic recording is partitioned

into a set of segments which are then grouped together to form complete frog calls. For the

frog species considered here, each frog call consists of two parts separated by a short silent

interval. Fig. 2(a) illustrates a typical call from a Pseudacris Regilla frog. The detected

segments are grouped together based on the interval separating them, i.e. if two segments

are separated by less than a pre-specified interval, then the two segments are combined and

together make up a complete call. The silent interval was not considered since it does not
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contain acoustic characteristics that are specific to the frog individual considered and hence

would cause more ambiguity between the calls of different individual frogs.

The segmentation process [10] is based on the signal energy in certain frequency subbands

associated with frog calls. Thus, it can reject many transient sources and interference, e.g.

high frequency insect sounds and low frequency clutter. Transients or interference sources

which exist in the same spectral bands as with the frog calls cannot be rejected by this

segmentation process. However, other features could also be exploited to reject such unlikely

transients or interference sources.

The segmentation process begins by normalizing the amplitude of the recorded signal s(n)

and computing the Short-Time Fourier Transform (STFT), Sm(k), where m is the window

index and k is the frequency index. Next, the peak magnitude for each window is computed

as:

P [m] = max
k

(20log10|Sm(k)|), kmin < k < kmax (28)

where kmin and kmax are frequency indices that correspond to fmin = 300Hz and fmax =

4000Hz, respectively, which contain most of the spectral energy of the frog calls of interest.

In order to perform call detection and isolation, a moving average filter is applied to

sequence P [m] to generate P̃ [m] as,

P̃ [m] =
1

∆1

m+
∆1−1

2∑
n=m−∆1−1

2

P [n] (29)
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where ∆1 is the span of the filter. This filtering is done to smooth out the peak magnitude

function for easier call detection and isolation. The call segments are then detected and

isolated using the following procedure:

(1) Set i = 1.

(2) Find window indexmi of the ith segment’s peak by computingmi = arg maxm(P̃ [m]).

(3) Check that the detected segment is valid, i.e. P̃ [mi] > β, where β a validity thresh-

old experimentally found to be 25. If not valid, terminate.

(4) Find window indexmi
s of the ith segment’s start by tracing P̃ until P̃ [mi

s] < P̃ [mi]−φ

for mi
s < mi, where φ is a roll-off threshold experimentally found to be 6.

(5) Find window index mi
e of the ith segment’s end by tracing P̃ until P̃ [mi

e] < P̃ [mi]−φ

for mi
e > mi.

(6) Delete region of detected segment in P̃ , i.e. set P̃ [m] = 0 for mi
s < m < mi

e to allow

for the detection of the next valid segment.

(7) Repeat steps 1− 5 until all valid segments are detected and isolated.

Once all segments have been detected and isolated, the segments which are close enough

to each other are combined to form a complete call. This process is specific to the frog species

of interest since the calls in this case usually consist of two parts. The observation vectors

from two adjacent segments are combined if the number of windows separating them is less

than a certain threshold, i.e. if mi+1
s −mi

e < θ where θ is experimentally found to be 16. The

windows included in each complete call are collected to form a data matrix Ψj, where j is

the detected call index., i.e. Ψj = [S1, ...,Sv, ...,SVj ] where Sv = [Sv(1), ..., Sv(k), ..., Sv(K)]>

is the discrete Fourier transforms (DFT) of the vth included window of the signal, K is the
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number of DFT points computed, v is the observation index, Vj is the number of observations

collected for the jth call, and operator > denotes matrix transpose.

The segmentation process is depicted in Fig. 3.2 for a particular frog call. Fig. 2(a)

shows the acoustic time series of a typical Pseudacris Regilla frog call. Fig. 2(b) shows the

STFT of the time series with the frequency bands of interest indicated. Here the window was

Hamming window of size 440 with 95% overlap. Figs. 2(c) and 2(d) show the segmentation

process using the magnitude peak function P̃ . Figs. 2(e) and 2(f) show segment combination

and the formation of the data matrix Ψj.

3.3.2. Feature Extraction. To distinguish between different frogs of the same species,

features must be capable of capturing the potentially subtle, inter-individual differences. The

MFCC features [17] described in Chapter 2 are applied to each column of the data matrix

Ψj = [S1, ...,Sv, ...,SVj ] computed in the call segmentation stage. Each detected and isolated

call, j, will therefore result in Vj extracted feature vectors.

The observations of the data matrix Ψj, which are the DFT of the windows of the original

time series, are warped from the frequency domain to the mel-frequency domain [32, 33].

This warping is achieved by applying a set of triangular band-pass filters to the amplitude

spectrum [17]. The filters are half overlapping with center frequencies spaced equally apart

in the mel-frequency domain but not in the frequency domain. The final step is to take the

discrete cosine transform (DCT) of the logarithm of the magnitude of the warped spectrum.

The result is the observation matrix Γj = [y1, ...,yv, ...yVj ] where yv = [y2
v , ..., y

d
v , ..., y

D
v ]> is

the vector of (D−1) MFCC features computed for the vth observation of the data matrix Ψj,

d is the MFCC index, D − 1 is the number of MFCC features computed. The first MFCC,

y1
v , is ignored since it represents the average value of the spectrum which does not provide
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Figure 3.2. (a) Frog call acoustic time series (b) STFT of (a) (c) correspond-
ing peak magnitude function showing first segment detection and isolation (d)
second segment detection and isolation (e) corresponding start and end loca-
tions for segments in signal spectrum and (f) data matrix of the detected and
isolated frog call.
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Figure 3.3. In-situ progressive learning diagram.

any useful information in this case [41]. The reader is referred to Section 2.2.1 of Chapter 2

for more detailed treatment of MFCC feature extraction method.

3.4. In-situ Progressive Learning

The in-situ progressive learning algorithm, as shown in Fig. 3.3, follows a special learning

procedure which allows the system to recognize the individual frogs as it is exposed to their

calls sequentially in time. The algorithm operates as follows:

For the first detected call a new model is initiated using the data in the computed

observation matrix, Γ1. For subsequent detected calls the data, i.e. Γj for j > 1, is tested

against all available models to determine any possible association. If an association with a

previously initiated model is declared, the current data is combined with data previously

used to update the corresponding model parameters. If, however, no association is found,

the current data is used to initiate a new model. This process continues until all detected

calls are processed and associated. The population can then be estimated as the number

of distinct models that have been initiated. Detailed explanations of the model generation,

recognition and association in the in-situ progressive learning process are provided next.
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3.4.1. Model Generation. A multivariate unimodal Gaussian is used to model the

inter-individual characteristics of the detected and isolated calls i.e.

p(y|λq) =
1

((2π)
D−1

2 |Σq|1/2)
e
−1
2

(y−µq)>Σ−1
q (y−µq) (30)

where y is an (D−1)-dimensional observation vector, µq is the mean vector, Σq is the covari-

ance matrix and q is the model index. The multivariate Gaussian is completely parametrized

by the mean vector µq and covariance matrix Σq or parameter set λq = {µq,Σq} for model

q.

The multivariate unimodal Gaussian modeling used here is similar to GMM, described in

Section 2.3.1, for the case where there is only one component density, i.e. M = 1. The nature

of the learning process proposed here imposes a restriction on the number of components

that can be used in the mixture. The amount of data available to generate new models is

not sufficient enough to estimate the parameters of a more sophisticated model with more

than one mixture component.

When a new model is to be initiated, a model data matrix Mq is initialized as Mq = Γj

and then used to estimate model q parameters. When an association is declared, the data

of the call being processed is combined with the data of the associated model subsequently

used to update the model parameters. This is done by augmenting the model data matrix

with the new data as Mnew
q = [M old

q Γj], where q is the associated model index being updated

and Γj is the observation matrix of the associated call, and computing the new sample mean

and sample covariance matrix using:

µ̂q =
1

Vq

Vq∑
v=1

yv (31)
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and

Σ̂q =
1

Vq

Vq∑
v=1

(yv − µ̂q)(yv − µ̂q)
> (32)

which correspond to the maximum likelihood (ML) [42] estimates of these parameters where

Vq is the number of observations in the qth model data matrix Mq.

3.4.2. Recognition and Association. In the recognition and association phase, an

incoming detected call is recognized and associated with either a new or previously initiated

model. If no association is found (i.e. the first call of a new individual is detected), then

a new model is initiated. Otherwise, if an association is found, the data from the newly

detected call is used to update the associated model as described in the previous section.

For the first call detected by the system, this stage is bypassed and a new model is generated

directly since no models are available to test for association at that time.

Two methods can be used to determine association, the first method is based on a

likelihood score [43] whereas the second method is based on the Kullback-Liebler (KL) di-

vergence measure [44]. Both methods attempt to measure how well the new observations fit

the previously generated models. The likelihood-based method does make an assumption on

the conditional independence of the observations which is not shared by the KL-divergence

method. Furthermore, the KL-divergence method is faster in terms of processing time. Both

methods are detailed next.

3.4.2.1. Likelihood Test. The likelihood test uses the maximum a posteriori (MAP) method

[45] to determine whether or not the incoming call data is associated with any of the already

generated models represented by the set of parameters {λ1, ..., λq, ..., λQ}, where Q is the

number of models already generated.
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As before, let Γj = [y1, ...,yv, ...yVj ] be the observation matrix extracted from the jth de-

tected call to be tested. The model that satisfies the MAP condition [45] for the observations

in Γj is used to determine association, i.e.

q
MAP

= argmax
q

(p(λq|Γj)) (33)

where q
MAP

is the model index corresponding to the MAP model. If we assume equal priors

for our observations then using the Bayes rule (33) becomes

q
MAP

= q
ML

= argmax
q

(p(Γj|λq)) (34)

which corresponds to the ML estimate of the associated model.

Now, assuming that the observations are conditionally independent we can write

p(Γj|λq) =

Vj∏
v=1

p(yv|λq) (35)

Alternatively, working with the log-likelihood function and using (35), (34) becomes

q
ML

= argmax
q

(

Vj∑
v=1

log(p(yv|λq))) (36)

Association of the jth detected call with model q
ML

is then determined by the following

rule:
Vj∑
v=1

log(p(yv|λqML
))

associated

≷
not associated

ζ (37)

where ζ is a threshold which is experimentally determined. If an association is found, then

the associated model is updated as explained in Section 3.4.1.
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3.4.2.2. Kullback-Liebler Divergence Test. The KL-divergence test determines associa-

tion by essentially measuring the distance between the estimated density of the incoming

data and the densities associated with the generated models. This is done to determine

which density best matches the new data and then to determine whether an association can

be made. The KL-divergence, also known as the relative cross-entropy [44], between the two

densities p(y|λF ) and p(y|λG) in general is computed as:

KL(p(y|λF ), p(y|λG)) =

∫
p(y|λF )log

(
p(y|λF )

p(y|λG)

)
dy (38)

For the case when p(y|λF ) and p(y|λG) correspond to multivariate Gaussian densities

such that p(y|λF ) ∼ N(µF ,ΣF ) and p(y|λG) ∼ N(µG,ΣG), the KL-divergence can be

written as [46]:

KL(p(y|λF ),p(y|λG)) =
1

2
(log

(
|ΣG|
|ΣF |

)
+ tr(Σ−1

G ΣF )

+ (µG − µF )>Σ−1
G (µG − µF )− (D − 1))

(39)

where in (39) | · | represents the determinant of the matrix inside.

The KL divergence, however, is not a symmetric measure (i.e. KL(p(y|λF ), p(y|λG)) 6=

KL(p(y|λG), p(y|λF ))). Therefore, it cannot strictly be used as a distance metric. To achieve

the sought symmetry, a KL2 distance metric [47] which is defined as

KL2(p(y|λF ), p(y|λG)) =KL(p(y|λF ), p(y|λG))

+KL(p(y|λG), p(y|λF ))

(40)

is used instead.
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Again, let Γj = [y1, ...,yv, ...yVj ] be the observation matrix extracted from the jth de-

tected call to be tested. The observations in Γj are used to estimate parameters of a test

model, using (31) and (32). This test model, which represents the newly detected call j,

is compared against all previously generated models using the metric defined in (40). Let

λ̃ = {µ̃, Σ̃} denote the estimated parameters of the test model. We then determine:

q
KL2

= argmin
q

(KL2(p(y|λq), p(y|λ̃))) (41)

where q
KL2

is the model index corresponding to the model that is closest in KL2 distance

to the test model, p(y|λ̃). Association of the jth detected call with model q
KL2

is then

determined by the following decision rule:

KL2(p(y|λq
KL2

), p(y|λ̃))
not associated

≷
associated

ξ (42)

where ξ is a threshold which is experimentally determined. Similar to the likelihood test, if

an association is found, then the associated model is updated as explained in Section 3.4.1.

3.5. Overlap Detection

In this section, a test is developed to identify temporally overlapping calls of the same frog

species and exclude these corrupted calls from the in-situ learning process. This is done to

avoid any possible degradation in performance that would otherwise result. The effectiveness

of the method is based on the assumption that at least one (single non-overlapping) call

belonging to each of the individuals that produced the overlapping calls is already observed

by the system before the overlapping call in encountered. Due to this assumption, the overlap
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detector can only be used after the system has learned the individual frogs involved in the

overlapping calls.

The overlap test is based on sequentially tracking the cumulative sum of log-likelihoods

[48] for each available model sequentially, for each observation, in order to gain insight on

the composition of the detected call. If any ambiguity in call association is detected, then

the call is identified as a potentially overlapping call and hence is discarded.

From Section 3.4.2.1, assuming equal priors and conditional independence of observations,

the cumulative log-likelihood Lq(`) for model q computed for a sequence of consecutive

observations y1, ...,y` is

Lq(`) =
∑̀
v=1

log(p(yv|λq)) (43)

An increase in the value of the log-likelihood Lq(`), i.e. a positive trend, for a specific

model q indicates that the corresponding observations are likely associated with the indicated

model. Therefore, the trend information in the log-likelihoods can be used to determine

different model associations within the detected call. To this end, the trend (or gradient) of

Lq(`) denoted by ∇Lq(˜̀), where the new index ˜̀ is used to avoid confusion, is computed as:

∇Lq(˜̀) =Lq(˜̀∆t + 1)

− Lq(˜̀∆t + 1−∆t), ∀˜̀∈ [1,L]

(44)

where L = Vq/∆t and ∆t is the trend interval.

A moving average filter is then applied to ∇Lq(˜̀) and the new trend function is denoted

as ∇̄Lq(˜̀) i.e.

∇̄Lq(˜̀) =
1

∆2

˜̀+
∆2−1

2∑
l=˜̀−∆2−1

2

∇Lq(l) (45)
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where ∆2 is the span of the filter. This filtering is done to smooth out the resulting trend

lines.

For each model q of the available models, a domination ratio ρ(q), which is the ratio

of the duration for which a certain model achieves the highest likelihood trend to the to

duration of the entire call, is computed as:

ρ(q) =
1

L

L∑
˜̀=1

Iq(˜̀) (46)

where

Iq(˜̀) =


1, argmax

q
(∇̄Lq(˜̀)) = q

0, otherwise

(47)

is an indicator function. An overlap is then declared when the domination ratio ρ(q) exceeds

a given threshold η for two or more models, which implies that there are regions of the

detected call that are more likely associated with atleast two different models, i.e. two or

more different individuals have contributed in this detected call.

An example illustrating the steps in this process is presented in Fig. 3.4. Fig. 4(a) shows

the acoustic time series of two overlapping frog calls with the region of overlap indicated.

Fig. 4(b) shows the cumulative log-likelihoods Lq(`) for all initiated models. Fig. 4(c)

shows the averaged trends ∇̄Lq(˜̀) for all initiated models where it is clear that there are two

dominant models in different portions of the observed overlapping call. Finally, Fig. 4(d)

shows a graph of the domination ratio ρ(q) which is used to make a decision on whether or

not an overlap is present. Since the top two dominant models exceed the given threshold in

this case, the detected call is declared as potentially overlapping call and is hence discarded.
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3.6. Conclusion

In this chapter the components of the proposed population estimation system were de-

scribed in detail. The input acoustic signal is first segmented using a spectral-based segmen-

tation algorithm which is responsible for detecting and isolating all frog calls in the signal.

Once isolated, the calls are further processed to extract the associated MFCC feature vec-

tors which are then used to form a data matrix of observation vectors, Γj, for each detected

call j. The observation matrices are then applied to the in-situ progressive learning system

where individual frogs progressively become known to the system and are identified by the

models which are parametrized by their 1st and 2nd order statistics. These parameters are

updated when associations are declared by re-estimating the parameters while taking into

account the newly acquired data from the associated call. After the first calls are applied

to the system, the overlap detector becomes active and every newly detected call will be

subject to the overlap detector to check for temporal overlaps which will disqualify the call

from contributing to the system’s in-situ learning process. In the next Chapter, the proposed

system and it’s components will be tested on synthetically generated test sequences which

contain frog calls from different individual frogs some of which are temporally overlapping

with each other.
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Figure 3.4. (a) Time series of two overlapped calls (b) plot of the cumula-
tive log-likelihood (c) plot of averaged trend of likelihood (d) graph of most
dominant models.
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CHAPTER 4

Data, Experiments and Results

4.1. Introduction

In order to test the effectiveness of the proposed population estimation system, recordings

of frog calls from the Cornell Lab of Ornithology, Macaulay Library, were used. However,

these recordings are generally of either one individual frog calling or of a chorus of overlapping

calls from multiple individual frogs. The proposed system is designed to be applied to a series

of non-overlapping calls from several individual frogs. Since no such recordings with labeled

calls could be found, they were instead synthetically generated using the available individual

frog recordings. The proposed system includes an overlap detector as described in Section

3.5 of Chapter 3. This detector is designed in an attempt to make the system robust to

occasional overlaps after the system is exposed to atleast one non-overlapping call of each

individual frog. This capability is tested by generating additional synthetic recordings with

controlled overlaps inserted.

In this chapter, the data used in the experiments is described. The synthetic sequence

generation process is explained. Also, the performance measures used to asses the system

are detailed. Finally, the results of three experiments are presented and discussed.

4.2. Data Description

The work in this paper is developed specifically for the Pseudacris regilla frog species,

also known as the Hyla regilla, but can be extended to other frog species or other animals.

Male advertisement calls of the Pseudacris Regilla are of three distinct types [49]. The most

common type (Fig. 1(a)) consists of a two-part burst of sound repeated after a short interval.
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The sound is made up of a series of trills, which is a rapid alternation of two tones, where

there are 5 to 11 trills in the first part and 2 to 5 trills in the second part. The second type

(Fig. 1(b)) consists of a one-part burst of sound consisting of 4 to 7 trills. The third type

(Fig. 1(c)) consists of a long series of short duration notes. This type is not very common

and was not present in our data set. The dominant frequencies of all three call types are in

the range 0.3-4kHz. In general, only male frogs produce advertisement calls [50] and so the

population estimates of our system will only reflect the estimated number of male frogs in

the recorded environment. Note that estimating the populations of male frogs is the usual

practice and these estimates can give a good indication of the overall frog population [5].

4.3. Synthetic Test Sequences

For the purpose of evaluating the performance of the proposed system, synthesized test

signals that contain several calls from 11 individual Pseudacris Regilla were constructed.

The calls were extracted from recordings of each individual frog from the Cornell Lab of

Ornithology, Macaulay Library. The calls belonging to each individual frog were manually

identified and extracted from the recordings to form a call database containing between 14

and 35 calls per individual.

From the call database, ten non-overlapping test sequences of frog calls are synthetically

constructed by randomly choosing 14 calls from each of the 11 individual frogs and then ran-

domly ordering them in a sequence. A portion of a synthetically generated non-overlapping

test sequence is shown in Fig. 4.2. Each test sequence contains a total of 154 calls which

belong to 11 individual frogs none of which are temporally overlapped. These test sequences

are used to evaluate the performance of the in-situ progressive learning discussed in Section

3.4 of Chapter 3. Ten additional overlapping test sequences are synthetically generated to
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Figure 4.1. Pseudacris regilla frog species calls (a) type 1 (b) type 2 (c) type 3.
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Figure 4.2. Portion of a non-overlapping test sequence with labeled calls.
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Figure 4.3. Portion of a overlapping test sequence with labeled calls and overlaps.

evaluate the performance of the overlap detection method introduced in Chapter 3. These

sequences are generated similar to the non-overlapping sequences but include a total of 50

overlapping calls which are inserted subject to the assumption presented in Section 3.5 of

Chapter 3. In addition to the mentioned assumption, only two simultaneously overlapping

calls are used at a time with upto 50% overlap. A portion of a synthetically generated

overlapping test sequence is shown in Fig. 4.3.

4.3.1. Test sequence generation. The sequence generation process is divided into

two parts. The first part of the process randomly selects 14 calls from each of the 11

individual frogs available. After selecting which calls will be used to construct the test

sequence, the non-overlapping sequence is constructed by randomly arranging the selected
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calls and arranging them in a sequence where each call is separated by a short buffer of

length 200ms.

For the overlapping case, the overlapping sequence is constructed by again randomly

ordering the selected calls and arranging them such that two consecutive calls will be over-

lapping with a certain probability. A total of 50 overlapping calls are inserted in each

overlapping test sequence. This test sequence generation procedure results in a mixture of

overlapping and non-overlapping calls in the overlapping test sequences. Furthermore, the

insertion of the overlapping calls is governed by the rule that at least one non-overlapping call

from each individual contributing to the overlapping call must have been inserted previously

in the test sequence. This is done to adhere to the overlap detection assumption discussed

in Section 3.5 of Chapter 3.

4.4. Performance Evaluation

The test sequences discussed above are applied to evaluate the association, as well as,

the overlap detection performance of the proposed system. For the association, the system

processes each non-overlapping test sequence separately and makes a series of association

decisions on the detected calls, in each sequence, which ultimately leads to an estimate of the

number of individuals that are present in each test sequence, i.e. the population estimate.

In order to evaluate the system in this case, it is necessary to define what is meant by an

association error in this context. An association error occurs when either of the following

scenarios occurs:

(1) An incoming call is not associated with any model, yet at least one call from the

individual that produced this incoming call was processed before.
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(2) An incoming call is associated with a certain model and one of the following condi-

tions are true:

• The individual that initiated this model and that produced the incoming

call are not the same.

• The individual that produced the majority of the calls associated with the

model and that produced the incoming call are not the same.

When no association error occurs, the association is considered correct.

4.4.1. Experiment 1: Non-Overlapping Test Sequences. The first experiment

conducted here applied the non-overlapping test sequences to evaluate the association per-

formance of the system. The overlap detection was not used in this case. The parameters

chosen in this experiment are shown in Table 4.1. The performance is reported in the form

of plots of the percentage of correct association as a function of the number of calls processed

for the two methods of Likelihood based and KL-based test methods discussed in Section

3.4.2 of Chapter 3. Fig. 4(a) shows the average correct association using the Likelihood test

method for all ten non-overlapping test sequences. This plot shows that after processing

all 154 calls in each of these test sequences, on average 87.5% of the detected calls are cor-

rectly associated. Fig. 4(b) shows the average correct association using the KL-divergence

method over the same set of test sequences. This plot shows that on average 97.9% of the

154 calls are correctly associated. As can be seen from both plots, initially, after the first call

is associated, the system exhibits more association errors as expected. Once the learning

progresses, the system begins to make lesser and lesser association errors and the overall

percentage of correct associations begins to recover. The trend is clearly increasing even

towards the end of the learning. However, this recovery is restricted by the number of calls
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Table 4.1. Simulation Parameters.

parameter description value
Fs sampling frequency of input recording 44.1kHz
w Hamming window N = 440
∆ window shift 418 (95% overlap)
K # DFT points computed 512
∆1 span of P filter 51

D − 1 # of MFCC features 16
ζ Likelihood test threshold -6700
ξ KL-divergence test threshold 37

∆t trend interval 5
∆2 span of ∇Lq filter 25

available in the test sequences. Furthermore, comparison of the percent correct association

for these methods clearly shows the advantages of the KL-divergence test. This indicates

that the KL-divergence test is perhaps a better measure of the similarity between two calls

of the same individual frog in this application. This could be attributed to the fact that the

KL-divergence method does not assume conditional independence of observations nor does

it assume equally likely priors as with the Likelihood method discussed in Section 3.4.2 of

Chapter 3. The correct association plots for each non-overlapping test sequence is shown

in Figures 4.5 and 4.6 using the Likelihood method and in Figures 4.7 and 4.8 using the

KL-divergence method, respectively. These plots show that the KL-divergence method is

less sensitive to the order in which the calls are presented since the performance using this

method is more consistent over the different test sequences, as apposed to, the Likelihood

method which shows large variation in performance over the different test sequences.

Table 4.2 gives the resulting population estimates for each non-overlapping test sequence

for the Likelihood and KL-divergence methods. It should be noted that the final population

estimate is equal to the number of distinct models that have been initiated and have at least

one detected call that has been associated with it, i.e. models that have been initiated but
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Figure 4.4. The average percent correct association using (a) Likelihood test
and (b) KL-divergence test over all ten non-overlap test sequences run.

have had no detected calls associated with them are not counted in the population estimate.

The table shows that both methods slightly over-estimate the actual population that was 11

individual frogs. However, the over-estimation is less severe for the KL-divergence method as

shown by the smaller mean population estimate in Table 4.2 for this method . Additionally,

the population estimates generated using the KL-divergence method are found to be more

consistent across the different test sequences. Given its superior performance, the KL-

divergence method was used as the association method for all remaining simulations.

The association performance is alternatively demonstrated in Tables 4.3 - 4.6 where the

true IDs of the associated calls for each model created are shown for each non-overlapping

test sequence for the Likelihood and KL-divergence methods. Models that were initiated but

never associated with any new calls, i.e. have only one associated call, were disregarded here.

From the Tables it is again apparent that the KL-divergence method is better at grouping

calls from the same individual frog and is less prone to confusing two individual frogs as one

such as in model # 1 of Table 4.3 (b) where frogs 8,9, and 10 are all considered one frog.
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Figure 4.5. The percent correct association using Likelihood test for non-
overlap test sequences 1 (a) - 6 (f).
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Figure 4.6. The percent correct association using Likelihood test for non-
overlap test sequences 7 (a) - 10 (d).

4.4.2. Experiment 2: Overlapping Test Sequences. As for overlap detection, the

overlapping test sequences were similarly processed but each detected call is first applied to

the overlap detection to determine whether an overlapping call has occurred. As mentioned

before, this is done to avoid performance degradation of the system. The performance of the

system in this case is measured by the probability of detection (PD) and the probability of

false alarm (PFA) which are, in this case, defined for each test sequence as:
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Figure 4.7. The percent correct association using KL-divergence test for
non-overlap test sequences 1 (a) - 6 (f).
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Figure 4.8. The percent correct association using KL-divergence test for
non-overlap test sequences 7 (a) - 10 (d).

PD =
# correctly detected overlapping calls

total # overlapping calls

PFA =
# falsely detected single calls as overlapping calls

total # non− overlapping calls

The receiver operating characteristic (ROC) curve [45] of the overlap detection is shown

in Fig. 4.9 where the threshold η is varied from 0 to 0.25. The knee point of the ROC at
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Table 4.2. Population estimates for the Liklihood and KL-divergence meth-
ods on non-overlapping test sequences.

population estimate
sequence # Likelihood test KL-divergence test

1 15 14
2 12 13
3 14 15
4 14 13
5 14 13
6 15 13
7 15 14
8 15 13
9 12 14
10 13 13

mean 13.9 13.5
std. deviation 1.20 0.71

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.5

0.55

0.6

0.65

0.7
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P
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P
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P
D

 = 0.85
P

FA
 = 0.15

η = 0.085

Figure 4.9. The ROC of the overlap detection.

which PD + PFA = 1 for this detector (when η = 0.085) gives PD = 0.85 and PFA = 0.15.

The PD can be increased further at the expense of a higher PFA and this will mean that

more non-overlapping calls will be mistakenly excluded from the learning process which can
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Table 4.3. Association performance of Likelihood test for non-overlapping
test sequences (a) 1 - (f) 6.

Model # Associated Call True IDs

1 ’5 5 5 5 5 5 5 5 5’
2 ’2 2 2 2 2 2 2 2 2 2 2 2’

3 ’11 11 11 11 11 11 11 11 11 11 11’

4 ’8 8 8 8 8 8 8 8 8 8 8 8 8 8’
5 ’4 4 4 4 4 4’

6 ’1 1 1 1 1 1 1 1 1 1 1 1 1’

7 ’10 10 10 10 10 10 10 10 10 10 10 10’
8 ’11 11 11’

9 ’7 7 7 7 7 7 7 7 7 7 7 7 7’

10 ’9 9 9 9 9 9 9 9 9 9 9 9 9 9’
11 ’6 6 6 6’

12 ’6 6 6 6 6 6 6 6 6 6’

13 ’4 4 4 4 4 4 4’
14 ’3 3 3 3 3 3 3 3 3 3 3’

15 ’3 3’

Model # Associated Call True IDs

1

’8 10 10 10 10 8 9 9 10 8 8 10 10 9 10

8 9 8 10 9 9 10 8 8 10 8 9 9 9 9 10 9 8
8 8 10 9 9 10 9 8 8’

2 ’4 4 4 4 4 4 4 4 4’

3 ’6 6 6 6 6 6 6 6 6’
4 ’6 6 6 6 6’

5 ’4 4 4 4 4’

6 ’1 1 1 1 1 1 1 1 1 1 1 1’
7 ’11 11 11 11 11 11 11 11 11 11 11 11’

8 ’2 2 2 2 2 2 2 2 2 2 2 2 2’

9 ’5 5 5 5 5 5 5 5 5 5’
10 ’3 3 3 3 3 3 3 3 3 3’

11 ’3 3 3 3’

12 ’7 7 7 7 7 7 7 7 7 7 7 7 7’

(a) (b)

Model # Associated Call True IDs

1 ’5 5 5 5 5 5 5 5 5 5 5’

2 ’9 9 9 9 9 9 9 9 9 9 9 9 9 9’

3 ’8 8 8 8 8 8 8 8 8 8 8 8 8 8’
4 ’4 4’

5 ’3 3 3 3 3’

6 ’3 3 3 3 3 3 3 3 3’
7 ’6 6 6 6 6 6 6 6’

8 ’10 10 10 10 10 10 10 10 10 10 10 10 ’

9 ’2 2 2 2 2 2 2 2 2 2 2 2 2’
10 ’7 7 7 7 7 7 7 7 7 7 7 7 7’

11 ’4 4 4 4 4 4 4 4 4 4 4’

12 ’11 11 11 11 11 11 11 11 11 11 11 11’
13 ’6 6 6 6’

14 ’1 1 1 1 1 1 1 1 1 1 1 1’

Model # Associated Call True IDs

1 ’11 11 11 11 11 11 11 11 11 11 11 11’

2 ’3 3 3 3 3 3 3 3’
3 ’2 2 2 2 2 2 2 2 2 2 2 2 2 2’

4 ’4 4 4 4 4 4 4 4 4’

5 ’9 9 9 9 9 9 9 9 9 9 9 9 9 9’

6
’8 8 8 10 10 10 8 10 8 10 8 10 10 8 8

10 8 8 10 10 10 8 10 8 10 8 8 10’

7 ’5 5 5 5 5 5 5 5 5 5’
8 ’3 3 3 3 3 3’

9 ’6 6’

10 ’7 7 7 7 7 7 7 7 7 7 7 7 7’
11 ’4 4 4’

12 ’1 1 1 1 1 1 1 1 1 1 1 1’

13 ’6 6 6 6 6’
14 ’6 6 6 6 6’

(c) (d)

Model # Associated Call True IDs

1 ’9 9 9 9 9 9 9 9 9 9 9 9 9 9’

2
’10 10 10 10 10 10 10 10 10 10 10 10

10 10’
3 ’8 8 8 8 8 8 8 8 8 8 8 8 8 8’

4 ’3 3 3 3 3 3 3 3 3’

5 ’1 1 1 1 1 1 1 1 1 1 1 1 1 1’
6 ’3 3 3 3 3’

7 ’4 4 4 4 4 4 4 4’

8 ’4 4 4 4’
9 ’11 11 11 11 11 11 11 11 11 11 11 11’

10 ’5 5 5 5 5 5 5 5 5 5’

11 ’2 2 2 2 2 2 2 2 2 2 2 2 2’
12 ’7 7 7 7 7 7 7 7 7 7 7 7 7’

13 ’6 6 6 6 6 6 6 6’

14 ’6 6 6’

Model # Associated Call True IDs

1 ’10 10 10 10 10 10 10 10 10 10 10 10’

2 ’2 2 2 2 2 2 2 2 2 2 2 2 2 2’

3 ’9 9 9 9 9 9 9 9 9 9 9 9 9 9’
4 ’3 3 3 3 3 3 3 3 3 3 3’

5 ’6 6 6 6 6 6 6 6 6’

6 ’3 3 3’
7 ’8 8 8 8 8 8 8 8 8 8 8 8 8 8’

8 ’4 4 4 4 4 4 4 4 4 4 4 4’

9 ’1 1 1 1 1 1 1 1 1 1 1 1’
10 ’6 6 6 6’

11 ’5 5 5 5 5 5 5 5 5’

12 ’7 7 7 7 7 7 7 7 7 7 7 7 7’
13 ’4 4’

14 ’11 11 11’

15 ’11 11 11 11 11 11 11 11 11 11 11’

(e) (f)
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Table 4.4. Association performance of Likelihood test for non-overlapping
test sequences (a) 7 - (d) 10.

Model # Associated Call True IDs

1
’10 10 10 10 10 10 10 10 10 10 10 10

10 10’

2 ’5 5 5 5 5 5 5 5 5 5’

3 ’4 4 4 4 4 4 4 4’
4 ’3 3 3 3 3 3 3 3 3 3 3 3 3 3’

5 ’6 6 6 6 6 6 6 6 6 6 6 6’

6 ’7 7 7 7 7 7 7 7’
7 ’4 4 4 4 4 4’

8
’11 11 11 11 11 11 11 11 11 11 11 11

11 11’
9 ’7 7 7 7 7 7’

10 ’9 9 9 9 9 9 9 9 9 9 9 9 9 9’

11 ’8 8 8 8 8 8 8 8 8 8 8 8 8 8’
12 ’1 1 1 1 1 1 1 1 1 1 1 1 1’

13 ’2 2 2 2 2 2 2 2 2 2’

14 ’2 2’
15 ’6 6’

Model # Associated Call True IDs

1 ’7 7 7 7 7 7 7 7 7 7 7 7 7’

2
’8 8 8 8 8 10 8 10 8 8 10 10 10 8 10 10

10 8 8 10 8 10 8 10 8 10 10’

3 ’3 3 3 3 3 3 3 3’
4 ’1 1 1 1 1 1 1 1 1 1 1 1 1’

5 ’5 5’

6 ’2 2 2 2 2 2 2 2 2 2 2 2 2’
7 ’9 9 9 9 9 9 9 9 9 9 9 9 9 9’

8
’11 11 11 11 11 11 11 11 11 11 11 11

11 11’
9 ’4 4 4 4 4 4 4 4 4 4 4 4’

10 ’5 5 5 5 5 5’

11 ’6 6 6 6’
12 ’6 6 6 6’

13 ’6 6 6’

14 ’5 5’
15 ’3 3 3 3 3 3’

(a) (b)

Model # Associated Call True IDs

1 ’4 4 4 4 4 4 4 4 4 4 4 4 4 4’
2 ’8 8 8 8 8 8 8 8 8 8 8 8 8 8’

3 ’2 2 2 2 2 2 2 2 2’

4
’10 10 10 10 10 10 10 10 10 10 10 10

10 10’

5 ’1 1 1 1 1 1 1 1 1 1 1 1 1 1’

6 ’7 7 7 7 7 7 7 7 7 7 7 7’
7 ’3 3 3 3 3 3 3 3 3 3 3 3 3’

8 ’2 2 2 2 2’

9 ’9 9 9 9 9 9 9 9 9 9 9 9 9 9’
10 ’6 6 6 6 6 6 6 6 6 6 6 6’

11
’11 11 11 11 11 11 11 11 11 11 11 11

11 11’
12 ’5 5 5 5 5 5 5’

Model # Associated Call True IDs

1 ’2 2 2 2’

2 ’11 11 11 11 11 11 11 11’

3 ’5 5 5 5 5 5 5 5 5 5’

4
’10 10 10 10 10 10 10 10 10 10 10 10

10 10’

5
’8 9 8 9 9 9 9 8 8 9 9 9 8 8 8 9 8 8 9 9

8 9 8 9 9 8 8 8’

6 ’3 3 3 3 3 3 3’
7 ’6 6 6 6 6 6 6 6 6 6 6 6’

8 ’7 7 7 7 7 7 7 7 7 7 7 7 7’

9 ’1 1 1 1 1 1 1 1 1 1 1 1 1’

10 ’11 11 11 11 11 11’
11 ’3 3 3 3 3 3 3’

12 ’4 4 4 4 4 4 4 4 4 4 4 4 4 4’

13 ’2 2 2 2 2 2 2 2 2’

(c) (d)

have some impact on the overall performance of the system depending on how many calls are

detected and available for the learning process. Nonetheless, the effects of excluding some

non-overlapping calls is less dramatic than including the false negatives.

A simulation was conducted to asses the affect of using the overlap detector on the

overall performance of the system when applying the overlapping test sequences. Similarly,

the results here are reported in the form of a comparison of the percent correct association
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Table 4.5. Association performance of KL-divergence test for non-
overlapping test sequences (a) 1 - (f) 6.

Model # Associated Call True IDs

1 ’5 5 5 5 5 5 5 5 5 5 5 5 5 5’
2 ’2 2 2 2 2 2 2 2 2’

3 ’11 11 11 11 11 11 11 11 11 11 11’

4 ’8 8 8 8 8 8 8 8 8 8 8 8 8 8’
5 ’4 4 4 4 4 4 4 4 4 4 4 4 4 4’

6 ’1 1 1 1 1 1 1 1 1 1 1 1 1 1’

7 ’10 10 10 10 10 10 10 10 10 10 10 10’
8 ’11 11 11’

9 ’7 7 7 7 7 7 7 7 7 7 7 7 7 7’

10 ’9 9 9 9 9 9 9 9 9 9 9 9 9 9’
11 ’6 6 6 6 6 6 6 6 6 6 6 6 6 6’

12 ’2 2 2 2’

13 ’3 3 3 3 3 3 3 3 3 3 3’
14 ’3 3’

Model # Associated Call True IDs

1 ’8 8 8 8 8 8 8 8 8 8 8 8 8 8’
2 ’4 4 4 4 4 4 4 4 4 4 4 4 4 4’

3
’10 10 10 10 10 10 10 10 10 10 10 10

10 10’
4 ’6 6 6 6 6’

5 ’6 6 6 6 6 6 6 6 6’

6 ’1 1 1 1 1 1 1 1 1 1 1 1 1 1’
7 ’2 2 2 2 2 2 2 2 2 2 2 2 2 2’

8 ’11 11 11 11 11 11 11 11 11 11 11 11’

9 ’9 9 9 9 9 9 9 9 9 9 9 9 9 9’
10 ’5 5 5 5 5 5 5 5 5 5 5 5 5 5’

11 ’3 3 3 3 3 3 3 3 3 3’

12 ’3 3 3 3’
13 ’7 7 7 7 7 7 7 7 7 7 7 7 7’

(a) (b)

Model # Associated Call True IDs

1
’10 10 10 10 10 10 10 10 10 10 10 10

10 10’

2 ’5 5 5 5 5 5 5 5 5 5 5 5 5 5’
3 ’9 9 9 9 9 9 9 9 9 9 9 9 9 9’

4 ’2 2 2 2 2 2’

5 ’6 6 6 6 6 6 6 6 6 6 6 6 6 6’
6 ’8 8 8 8 8 8 8 8 8 8 8 8 8 8’

7 ’4 4 4 4 4 4 4 4 4 4 4 4 4 4’

8 ’3 3 3 3 3’
9 ’3 3 3 3 3 3 3 3 3’

10
’11 11 11 11 11 11 11 11 11 11 11 11

11 11’
11 ’2 2’

12 ’7 7 7 7 7 7 7 7 7 7 7 7 7’

13 ’2 2 2 2’
14 ’1 1 1 1 1 1 1 1 1 1 1 1 1 1’

15 ’2 2’

Model # Associated Call True IDs

1 ’11 11 11 11 11 11 11 11 11’

2 ’3 3 3 3 3 3 3 3’

3 ’11 11 11 11 11’
4 ’2 2 2 2 2 2 2 2 2 2 2 2 2 2’

5 ’4 4 4 4 4 4 4 4 4 4 4 4 4 4’

6 ’9 9 9 9 9 9 9 9 9 9 9 9 9 9’
7 ’8 8 8 8 8 8 8 8 8 8 8 8 8 8’

8 ’5 5 5 5 5 5 5 5 5 5 5 5 5 5’

9 ’3 3 3 3 3 3’
10 ’6 6 6 6 6 6 6 6 6 6 6 6 6 6’

11 ’7 7 7 7 7 7 7 7 7 7 7 7 7 7’

12 ’1 1 1 1 1 1 1 1 1 1 1 1 1 1’

13
’10 10 10 10 10 10 10 10 10 10 10 10

10 10’

(c) (d)

Model # Associated Call True IDs

1 ’6 6 6 6 6 6 6 6 6 6 6 6 6 6’

2 ’9 9 9 9 9 9 9 9 9 9 9 9 9 9’

3
’10 10 10 10 10 10 10 10 10 10 10 10

10 10’

4 ’5 5 5 5 5 5 5 5 5 5 5 5 5 5’
5 ’8 8 8 8 8 8 8 8 8 8 8 8 8 8’

6 ’3 3 3 3 3 3 3 3 3’

7 ’1 1 1 1 1 1 1 1 1 1 1 1 1 1’
8 ’3 3 3 3 3’

9 ’4 4 4 4 4 4 4 4 4 4 4 4 4 4’

10 ’11 11 11 11 11 11 11 11 11 11 11 11’
11 ’2 2 2 2 2 2 2 2 2 2’

12 ’7 7 7 7 7 7 7 7 7 7 7 7 7 7’

13 ’2 2 2 2’

Model # Associated Call True IDs

1
’10 10 10 10 10 10 10 10 10 10 10 10

10 10’
2 ’2 2 2 2 2 2 2 2 2 2 2 2 2 2’

3 ’9 9 9 9 9 9 9 9 9 9 9 9 9 9’

4 ’3 3 3 3 3 3 3 3 3 3 3’
5 ’6 6 6 6 6 6 6 6 6’

6 ’3 3 3’

7 ’8 8 8 8 8 8 8 8 8 8 8 8 8 8’
8 ’4 4 4 4 4 4 4 4 4 4 4 4 4 4’

9 ’1 1 1 1 1 1 1 1 1 1 1 1 1 1’

10 ’6 6 6 6 6’
11 ’5 5 5 5 5 5 5 5 5 5 5 5 5 5’

12 ’7 7 7 7 7 7 7 7 7 7 7 7 7 7’

13 ’11 11 11 11 11 11 11 11 11 11 11 11’

(e) (f)
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Table 4.6. Association performance of KL-divergence test for non-
overlapping test sequences (a) 7 - (d) 10.

Model # Associated Call True IDs

1
’10 10 10 10 10 10 10 10 10 10 10 10

10 10’

2 ’5 5 5 5 5 5 5 5 5 5 5 5 5 5’

3 ’4 4 4 4 4 4 4 4 4 4 4 4 4 4’
4 ’3 3 3 3 3 3 3 3 3 3 3 3’

5 ’6 6 6 6 6 6 6 6 6 6 6 6 6 6’

6 ’7 7 7 7 7 7 7 7 7 7 7 7 7 7’

7
’11 11 11 11 11 11 11 11 11 11 11 11

11 11’

8 ’9 9 9 9 9 9 9 9 9 9 9 9 9 9’
9 ’8 8 8 8 8 8 8 8 8 8 8 8 8 8’

10 ’1 1 1 1 1 1 1 1 1 1 1 1 1 1’

11 ’2 2 2 2 2 2 2 2 2 2’
12 ’2 2’

13 ’2 2’

14 ’3 3’

Model # Associated Call True IDs

1 ’2 2 2 2 2’

2 ’7 7 7 7 7 7 7 7 7 7 7 7 7’
3 ’8 8 8 8 8 8 8 8 8 8 8 8 8 8’

4 ’3 3 3 3 3 3 3 3’

5 ’1 1 1 1 1 1 1 1 1 1 1 1 1 1’
6 ’5 5 5 5 5 5 5 5 5 5 5 5 5 5’

7 ’2 2 2 2 2 2 2 2’

8 ’9 9 9 9 9 9 9 9 9 9 9 9 9 9’

9
’11 11 11 11 11 11 11 11 11 11 11 11

11 11’

10 ’4 4 4 4 4 4 4 4 4 4 4 4 4’
11 ’6 6 6 6 6 6 6 6 6 6 6 6 6 6’

12
’10 10 10 10 10 10 10 10 10 10 10 10

10 10’
13 ’3 3 3 3 3 3’

(a) (b)

Model # Associated Call True IDs

1 ’4 4 4 4 4 4 4 4 4 4 4 4 4 4’
2 ’8 8 8 8 8 8 8 8 8 8 8 8 8 8’

3 ’2 2 2 2 2 2 2 2 2’

4
’10 10 10 10 10 10 10 10 10 10 10 10

10 10’

5 ’1 1 1 1 1 1 1 1 1 1 1 1 1 1’

6 ’7 7 7 7 7 7 7 7 7 7 7 7 7 7’
7 ’3 3 3 3 3 3 3 3 3 3 3’

8 ’2 2 2 2 2’

9 ’6 6 6 6 6 6’
10 ’9 9 9 9 9 9 9 9 9 9 9 9 9 9’

11 ’6 6 6 6 6 6 6 6’

12 ’5 5 5 5 5 5 5 5 5 5 5 5 5 5’

13
’11 11 11 11 11 11 11 11 11 11 11 11

11 11’

14 ’3 3 3’

Model # Associated Call True IDs

1 ’2 2 2 2’

2
’11 11 11 11 11 11 11 11 11 11 11 11

11 11’

3 ’5 5 5 5 5 5 5 5 5 5 5 5 5 5’

4
’10 10 10 10 10 10 10 10 10 10 10 10

10 10’

5 ’8 8 8 8 8 8 8 8 8 8 8 8 8 8’
6 ’9 9 9 9 9 9 9 9 9 9 9 9 9 9’

7 ’3 3 3 3 3 3 3’

8 ’6 6 6 6 6 6 6 6 6 6 6 6 6 6’

9 ’7 7 7 7 7 7 7 7 7 7 7 7 7 7’
10 ’1 1 1 1 1 1 1 1 1 1 1 1 1 1’

11 ’3 3 3 3 3 3 3’

12 ’2 2 2 2 2 2 2 2 2 2’
13 ’4 4 4 4 4 4 4 4 4 4 4 4 4’

(c) (d)

with and without the overlap detector. However, since the number of calls processed by the

system is different over the different test sequences due to the rejection of a different number

of calls by the overlap detector, we will only report the final percent correct association for

each test sequence. Also, a new error scenario is defined here in addition to the errors defined

in the beginning of Section 4.4 of this Chapter. An error will also occur when a call passed to

the learning system by the overlap detector is overlapping, i.e. a miss detection has occurred,
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Table 4.7. Percent correct association and population estimates on overlap-
ping test sequences with and without overlap detection.

% correct assoc. population estimate
sequence # no overlap det. overlap det. no overlap det. overlap det.

1 35.6 85.4 15 7
2 37.5 66.7 14 6
3 23.1 31.3 15 8
4 38.5 84.4 14 9
5 41.4 65.1 14 8
6 40.4 77.8 12 11
0 42.3 66.7 15 9
8 34.6 81.6 14 9
9 32.7 66.7 17 11
10 40.4 91.9 13 8

mean 36.6 71.8 14.3 8.6
std. deviation 5.7 17.2 1.3 1.6

and both members of the overlapping call satisfy either one of the error scenarios defined in

the beginning of Section 4.4 of this Chapter. If at least one individual of the overlapping call

does not satisfy either of the error scenarios then the association is considered correct. Table

4.7 gives the resulting percent correct association for each overlapping test sequence, as well

as, the resulting population estimates. From Table 4.7 it is apparent that the association

performance of the system improves by an average of 35.1% when applying overlap detection.

In order to show the impact of using the overlap detection on the overall system perfor-

mance, a new indicator, the percentage of correct decisions, is used. For this indicator, miss

detections (false negatives) and false alarms from the overlap detector are treated as errors

in addition to the association errors defined at the beginning of Section 4.4 of this Chap-

ter. This means that the percent correct decisions shown here not only reflects the learning

performance of the system but it also incorporates the overlap detection performance. Fig.

10(a) shows a plot of the average percent correct decisions when no overlap detection was

used while Fig. 10(b) shows the same when the overlap detector is operating at the knee
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Figure 4.10. The average percent correct decisions on overlapping test se-
quences (a) without overlap detection and (b) with overlap detection.

point threshold (i.e. η = 0.085) of the ROC in Fig. 4.9. These plots attest to the importance

of overlap detection for preventing a large degradation in the system performance. They also

show that using the overlap detection can improve the overall system performance by upto

31.9% as can be seen in Fig. 4.10. Therefore, being able to identify and discard overlapping

calls is crucial.

4.4.3. Experiment 3: Extended Test Sequences. In this experiment, extended

test sequences were applied to the system. The extended sequences were generated by

concatenating the non-overlapping test sequences with the overlapping test sequences. This

experiment was conducted to investigate the effect of having more data available on the

performance of the system. Similar to experiment 2, the results here are reported in the form

of a comparison of the final percent correct association with and without overlap detection.

Table 4.8 gives the resulting percent correct association for each extended test sequence, as

well as, the resulting population estimates. From Table 4.8 it is apparent that the association

performance of the system improves by an average of 15.4% when applying overlap detection,

while the population estimate improves more significantly. The population estimates here
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Table 4.8. Percent correct association and population estimates on extended
test sequences with and without overlap detection.

% correct assoc. population estimate
sequence # no overlap det. overlap det. no overlap det. overlap det.

1 79.1 97.1 14 10
2 79.5 96.9 17 13
3 68.2 79.2 16 12
4 79.8 95.7 13 14
5 79.8 93.7 13 12
6 79.5 92.3 15 12
0 78.7 94.8 17 11
8 78.7 96.6 14 13
9 79.5 95.3 16 10
10 79.5 94.7 15 13

mean 78.2 93.6 15 12
std. deviation 3.5 5.3 1.5 1.3

are better, on average, than those in experiment 1 when the non-overlapping sequences were

used. This is due the fact that more data is available in this case when combining the

non-overlapping calls from both parts of the extended sequence.

In order to show the impact of using the overlap detection on the overall system per-

formance in this case, the percentage of correct decisions is generated here as well. Similar

to experiment 2, the percent correct decisions not only reflects the learning performance of

the system but it also incorporates the overlap detection performance. Fig. 11(a) shows a

plot of the average percent correct decisions when no overlap detection was used while Fig.

11(b) shows the same when the overlap detector, operating at the knee point threshold (i.e.

η = 0.085), was used. These plots show that when using overlap detection the overall per-

formance of the system initially suffers due to the errors produced by the overlap detector,

i.e false alarms, but eventually recovers and slightly surpasses the overall performance of the

system without overlap detection.
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Figure 4.11. The average percent correct decisions on extended test se-
quences (a) without overlap detection and (b) with overlap detection.

4.5. Conclusion

In this chapter, the results of evaluating the proposed system’s performance were pre-

sented and discussed. Several synthetic test sequences were generated and applied to the

system and the performance was determined in terms of correct association and overlap detec-

tion. Three experiments were conducted. In the first experiment, Only the non-overlapping

test sequences were applied to the system to evaluate the learning performance though the

percent correct association. The results have shown that the system can achieve an average

of 97.9% using the KL-divergence method the non-overlapping sequences without using over-

lap detection. In the second experiment, the non-overlapping test sequences were applied

to the system to evaluate the overlap detection and rejection capability. The ROC of the

detector was computed which showed that the overlap detector, operating at the knee point

of ROC, can achieve PD = 0.85 and PFA = 0.15. Furthermore, the impact of using the

overlap detection of the overlapping test sequences was studied. It was found that this de-

tector improves the percent correct association, i.e. the learning performance, by an average

of 35.1% and when including the effect of the overlap detector errors, i.e. false alarms and
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miss detections, the overall system performance increases by an average of 31.9%. In the

third experiment, an extended sequence, including non-overlapping as well as overlapping

portions, was generated and applied to the system. In this case, an average of 15.4% increase

in percent correct association and a corresponding 1.3% increase in overall system perfor-

mance was reported when using an overlap detector. Furthermore, the population estimates

in this case using the overlap detector were much closer to the actual population of 11 when

compared to previous estimates.
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CHAPTER 5

Conclusion and Future Work

5.1. Conclusion

Estimating the population of frogs of different species is an important problem for en-

vironmental monitoring purposes as well as ecological research [3]. This importance is at-

tributed to the fact that frogs are very sensitive to the environmental condition due to

their delicate, permeable skin and water-based life cycle [2]. It has become of great interest

to monitor frog populations in order to serve as an indicator of the overall health of the

environment [1].

Several methods for estimating the population of frogs in the environment exist including

call count and call survey methods, as well as, CMR methods [5]. However, these methods are

lacking in both the accuracy of the population estimates produced, and the efficiency of the

process. The use of passive acoustic monitoring for frog population estimation or, in general,

animal population estimation, is an effective and non-invasive approach which can provide

the needed accuracy and efficiency. Many acoustic-based systems have been developed for the

purpose of recognizing different species of animals [1, 8, 9, 10, 11, 12, 15, 16]. A fewer number

of acoustic systems have been developed for the purpose of recognizing individuals of the same

species [13, 14, 23]. None of the existing acoustic systems provide the capability of estimating

the population of the animals being observed acoustically. An acoustic system that is capable

of estimating the population of the monitored animals requires that the vocalizations of the

individuals in the recordings be distinguishable [51]. The proposed system in this thesis was

developed with this precise goal in mind i.e. to be able to distinguish individual frogs from
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their vocalizations or calls. The system should be able to provide an estimate of how many

individuals are present in the recording and, hence, in the population.

The proposed population estimation using the in-situ progressive learning acoustic sys-

tem was introduced and described in detail in this thesis. The proposed system used a

combination of MFCC features extracted on a window-by-window basis, and multivariate

Gaussian modeling to achieve individual frog learning. Spectral-based call segmentation was

used to detect and isolate frog calls in the input acoustic signal where spectral matrices

were computed for each detected call. MFCC features were then extracted from the columns

of the spectral matrices for each detected call. These features are used in the progressive

learning component of the system where Gaussian models were generated from the data to

model the calls from the different individual frogs and newly detected calls were tested for

possible associations with previously generated models. After processing an entire acoustic

recording, the number of models initiated throughout the process was used to estimate the

population. The proposed system was shown to be capable of learning to recognize different

individuals by being progressively exposed to their calls. This learning ability eliminates the

requirement for a prior training data that would otherwise be required. It was mentioned

that this capability allows the system to operate in-situ which makes it more advantageous.

The proposed system was shown to be capable of generating models to represent different

individual frogs from the detected calls. Also, the system was shown to include overlap

detection capability to detect and reject temporally overlapping calls.

The data set comprising of calls of different individual frogs was described and synthetic

test sequences were generated for evaluating the performance of the system. The generated

sequences included provisions to make them more realistic by including artificially induced
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temporally overlapping calls. This was done due to the fact that in any real acoustic recording

of frogs, which would be used to estimate the population, many such overlapping calls would

occur due to the sometimes very high call rates from multiple frogs in the same proximity.

Therefore, it was important to analyze the effect of such overlapping calls to determine

the viability of applying such a system in the field. Three experiments were conducted

to evaluate the system’s performance in terms of it’s learning ability and overlap rejection

ability. Based on the simulation results presented, it was shown that the proposed system

excelled at the task of distinguishing frog calls from the different individual frogs. The

system was able to produce high percent correct association, 97.9% correct association, and

was robust to changes in the order of calls in the input acoustic signal when using the

KL-divergence based test method. Furthermore, the overlap detection component was able

to detect a significant number of the overlapping calls, 85% probability of detection, and

reject them. The overlap detection was shown to have a significant impact of the learning

performance of the system. It should be noted that high percent correct association did not

necessarily produce a proportionally accurate population estimate. This is due to the fact

that a negligible number of association errors can greatly impact the population estimate by

initiating additional models. Additionally, the system may not be capable of dealing with

extremely dense choruses where the acoustic recording contains long segments of continuously

overlapping calls.

Based on the results presented in this thesis, it is evident that the proposed system pro-

vides a viable acoustic frog population estimation method. The system provides a foundation

for a new avenue in acoustic-based animal population estimation.
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5.2. Suggestions for Future Work

Although the acoustic system proposed in this thesis does demonstrate preliminary suc-

cess in being able to accurately distinguish between calls of individual frogs, it has not yet

been tested on a more realistic set of data that could potentially have more varied conditions

such as greater interference, and more spontaneity in the frog calls produced. Therefore, in

order to evaluate the true performance applicability of this system, new data sets should

be applied to the system. The ideal test data that could be used in this case would be a

recording of a certain number of frogs in a lab controlled environment which will provide

reliable data along with an accurate ground truth. It would also be of interest to determine

the minimum number of non-overlapping calls required to achieve a certain percent correct

association. This could be determined by running a Monte Carlo experiment [52] over many

test sequences with randomly ordered calls.

This acoustic system is a first attempt at using individual recognition in the application

of frog population estimation. It is also, as far as we can tell, the first system to apply an

in-situ progressive learning approach which eliminates the need for prior system training.

Given the novelty of this approach, several improvements could be explored to potentially

increase its accuracy and robustness to noise, interference, and other unfavorable conditions.

These improvements include but are not limited to:

• Including additional pre-processing steps such as digital pre-emphases [53] to en-

hance the high frequency content of the acoustic recording. Such high frequency

content can suffer from higher attenuation during propagation and may include ad-

ditional information on inter-individual variations in the frogs calls which could be

exploited to improve system performance.
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• Better understanding the inter-individual variations in frog calls and develop acous-

tic features that can capture these variations. A similar procedure used in developing

the MFCC features may be followed where the frog vocalization and auditory percep-

tion systems are studied to develop specific features that emphasize inter-individual

variations among frog calls.

• Exploring the use of more sophisticated classification methods such the GMM in con-

junction with an EM-based parameter estimation method. GMMs can offer better

feature vector distribution modeling capability allowing for more efficient capture

of the inter-individual variations. Given the challenge of initial data availability

posed by the proposed system, such a sophisticated classification method can only

be used in a gradual fashion where the number of GMM components, for example,

is increased gradually based the amount of data available.

The proposed system can also be incorporated into a larger animal tracking system

which could be used to eventually learn and track the individual movements of many different

vocalizing animal species. Such a system would rely on strategically placed recording devices

over an area of interest. The resulting acoustic recordings can be processed to learn to

recognize the different individual animals in the area and, therefore, be able to recognize

them if they move to a different locality thus providing tracking capability. This large scale

system could be easily implemented as an extension to the system proposed here, and would

provide a low cost alternative to existing satellite-based systems , i.e. GPS tracking systems,

and could extend tracking capabilities to smaller animals that are currently not supported

by existing animal tracking systems [54]. The benefits of such capability are enormous and
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will allow researchers to further understand issues such as animal migration patterns, the

spread of infectious disease, biological diversity, ecosystem function, and many others.
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