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ABSTRACT

The problem of the adjustment of the mass and wind fields in a
divergent barotropic model is solved on the equatorial B-plane.
Contrary to the traditional f-plane analysis, the motion does not
tend to a perfect geostrophic balance on a short time scale. However,
the B-plane approximation allows for the presence of Rossby waves and
since these waves are quasi-geostrophic, they may be regarded as the
adjusted state. It is also shown that the concept of an adjusted
state on the B-plane is dependent on the dispersive properties and
energetics of Rossby and gravity waves.

Two basic experiments are shown: the first is a perturbation in
the geopotential field, and the second is a perturbation in the
rotational part of the wind field. When perturbing the mass field
on a small scale compared to the equatorial Rossby radius of deforma-
tion, most of the initial energy is dispersed by gravity waves; but
altering the vorticity field is a very efficient way to localize the
energy input. The adjusted state shows asymmetries that cannot be
obtained on an f-plane analysis. The circulation patterns produced
by steady mass and momentum sources and sinks are also shown. Pos-
sible cbnsequences of the results for tropical dynamics are discussed

in terms of the effect of clouds on the environment.
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1.0 INTRODUCTION

The nature of tropical motion has excited the imagination of
researchers for a long time not only because of its presumed importance
for mid-latitude phenomena but also for the challenge of understanding
the unique role of latent heat release in driving large-scale circula-
tions. A considerable amount of effort has been devoted to the develop-
ment of theories on how small-scale convective motions interact with
large-scale motions. However, when one examines the Titerature, only
a few references to the problem of the adjustment of the mass and wind
fields at low latitudes can be found. The objective of this research
is to study the dynamical adjustment of the mass and wind fields at
low latitudes. This is a relatively simple problem that can be studied
without having to resort to complicated scale interactions. When one
studies the problem of the adjustment of the mass and wind fields, the
large-scale dynamics of the atmosphere are isolated and possible
effects of small-scale convection are taken as a known forcing. Thus,
this research may be regarded as a study of the basic dynamics of the
tropical region.

The process of the adjustment of the mass and wind fields is
closely related to the problem of energy dispersion in the atmosphere.
This theory was developed by Rossby (1945) and Yeh (1949) but with the
advent of the baroclinic instability theory by Charney (1947), which
consists of energy conversion rather than propagation, the theory
lacked further development. Only recently has the problem of energy

dispersion been revisited by Hoskins, et al. (1977), who studied the



Tinear barotropic vorticity equation on the sphere. In the following
sections, we briefly discuss the current theories of tropical motions
from an energetics point of view and discuss the reasons why we believe

that the process of adjustment might be important.

1.1 Energetics of Tropical Motion

The current theories of tropical motions can be easily understood
in terms of energy generation and conversion. Some researchers (Nitta
and Yanai, 1969; Burpee, 1972) have suggested that the kinetic energy
of wave disturbances in the trades is supplied through barotropic
instability, which involves a conversion of zonal kinetic energy (ZKE)
to eddy kinetic energy (EKE). Another possible source of EKE has to
do with boundary terms through the divergence of wave energy flux.
This possibility was suggested by Mak (1969) who showed that in z two-
layer model large-scale tropical waves can be forced laterally by pres-
sure interaction with middle latitude disturbances. The next possible
mechanism for increase of EKE is the conversion from eddy available
potential energy (EAPE). With the advance of numerical models incor-
porating moist convection it was suggested that eddy available potential
energy in the tropics is maintained chiefly by the release of latent
heat and is converted to eddy kinetic energy (Manabe and Samagcrinsky,
1967).

Observational studies of the energetics of the tropics have given
a somewhat inconsistent picture concerning the maintenance of easterly
waves. In the classical baroclinic and barotropic instability processes
in middle latitudes it is clear that the basic state flow must give up

potential or kinetic energy to the perturbation. However, Nitta (1972)



showed that the generation of EAPE over the Marshall Islands due to
condensational heating and the conversion from EAPE to EKE plays the
most important role in the energy balance of the disturbances. Reed
et al. (1977) and Norquist et al. (1977) found that barcclinic and
berotropic conversions contributed almost equally to the maintenance
of the kinetic energy of the African waves.

Theoretical studies (Rennick, 1976; Pedgley and Krishnamurti,
1976; Simmons, 1977) indicate that the wavelength of the African dis-
turbances can be explained by barotropic instability of the basic flow
because the barotropic conversion term is about one order of magnitude
larger than the baroclinic conversion term. However, other character-
istics of the model results, such as horizontal and vertical structure
and growth rates, are not as well reproduced and cne could argue that
the effect of latent heat is not properly handled.

Thus, it seems that the mechanisms responsible for the maintenance
of tropical waves are dependent on the basic state on which the distur-
bances are superimposed. The dynamics of tropical waves in the Pacific
region seem to be related to internal energy conversions in which the
so-called CISK mechanism (Conditional Instability of the Second Kind)
is the primary cause. The CISK mechanism proposed by Charney and
Eliassen (1964) and Ooyama (1964) involves an internal convective feed-
back which enhances the vertical motion.

The energy equations imply a continuous generation, conversion,
and dissipation of energy, but nothing is implied with respect to the

scale of the atmospheric response to forcing.



1.2 Scale and Organization

An interesting example of the problem of scale and organization
of tropical motions is the CISK mechanism. The concept of CISK as
initially visualized by Ooyama (1964) and Charney and Eliassen (1954)
involved a cooperative behavior between the small-scale latent heat
release and the large-scale dynamical field in such a way that the
condensational heating drives the low level convergence (tﬁrough
boundary layer processes) which in turn supplies moisture to the
clouds. In the wave-CISK hypothesis (Yamasaki, 1969; Lindzen, 1974;
Stevens et al., 1977; and many others) the convergence is produced by
the wave dynamics. It has been suggested by Gray and Jacobson (1977)
and McBride and Gray (1979) that the cluster-scale feedback through
latent heat release and radiative gradients is a powerful forcing
mechanism which ultimately controls the disturbance.

The critical point in the development of the tropical depression
through the CISK mechanism is the need to lower the surface pressure
by the heating of a hydrostatic atmospheric column. Increasing the
intensity of the low pressure requires small dispersion ¢f the heating
perturbation. In other words, if a heating perturbation at the center
of the depression is quickly wiped away, and the associated energy
dispersed to a large area, the intensification of the system will be
hindered. Thus, we are interested in the processes which occur after
a heating perturbation, not only in terms of the ability of the atmo-
sphere to retain the initial signal, but also the type of circulation
generated by such forcing.

Observational studies of the tropical region have indicated that

the Tocal warming is approximately zero although the implied heating
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by the release of latent heat in the column (inferred from precipita-
tion reaching the surface) is on the order of several degrees per day
(Reed and Recker, 1971; Gray, 1973; Yanai et al., 1973). Thus, there
is observational evidence that the dispersion of thermal energy (or
equivalently the dispersion of the geopotential perturbation) is
important in the real atmosphere.

In the momentum field we know that dissipation acts on a longer
time scale (on the order of several days) but there is considerable
evidence from cloud modelling that kinetic energy may be generated
by clouds under appropriate conditions of wind shear (Moncrieff and
Miller, 1976; Moncrieff, 1978). A recent observational study on
tropical cyclone formation (McBride, 1979) suggests that the cloud
influence on cyclone genesis is not only through the latent heat
release but also through the generation of momentum by clouds, a
process that ultimately inhibits the energy dispersion as we will
see later.

Thus, it seems that one of the basic questions that we have to
answer in order to grasp the dynamics of tropical motions concerns the
ability of the atmosphere to adjust to imbalances between pressure
and wind.

In any of the mentioned theories of tropical motions (boundary
effects, conversion qf ZKE to EKE, or generation of EAPE and conversion
of EAPE to EKE) an adjustment of the mass and wind fields is implied.
However, the nature of the resulting motion such as its scale and
organization are not explained by the energy transformation equations.
The growth of a tropical depression through the CISK mechanism is an

example of the importance of the organization of the mass and wind fields.



The task of explaining the nature and scale of motions generated
by such imbalances in the pressure and wind fields in a generally
stratified atmosphere is certainly difficult. However, in certain
simplified physical systems the process of dynamical adjustment of the
pressure and wind fields has been studied with success. An example is
the so-called geostrophic adjustment problem first discussed by

Rossby (1938) and Obukhov (1949).

1.3 The mass-wind adjustment problem

In general, the geostrophic adjustment problem has been studied
with the so-called shallow water equations on an f-plane since this
is the simplest context in which the problem arises. Rossby's work
(1938) considers only the relationship between the initial unbalanced
state and the final geostrophically balanced state. The linear tran-
sient adjustment was studied for the one dimensional case by Canhn
(1945) and for the two dimensional case by Obukhov (1949). The effect
of horizontal shear of the basic flow (Blumen and Washington, 1969)
and the effect of non-linear terms (Blumen, 1967) have also been
considered. Blumen (1972) has extensively reviewed studies of the
geostrophic adjustment problem.

For the type of mass-wind adjustment that occurs in the equatorial
region the traditional f-plane analysis seems inappropriate in view
of the small Coriolis parameter. On the other hand, the B-effect is
maximum at the equator suggesting that its inclusion in the problem cf
equatorial mass-wind adjustment might be important. In fact, the

g-effect has been considered in the traditional geostrophic



adjustment problem by Matsumoto (1960), Dobrischman (1964), Geisler
and Dickinson (1972) and others, but none of these works treat the
equatorial case explicitly.

A variable Coriolis parameter introduces a turning point into
the differential equation for single frequency waves (Longuet-Higgins,
1965). As a consequence the wave character of the solution is con- ‘
fined to a certain domain determined by the turning points; outside
this domain the solution is exponentially decaying. As shown by
Longuet-Higgins (1965) there are in general two turning latitudes
when spherical geometry is considered. The usual mid-latitude B-
plane approximation (Lindzen, 1967) implies no turning points, i.e.,
the solution is wave-like over the whole domain and therefore energy
is allowed to disperse to infinity as in Matsumoto's and Dobrischman's
work. On the equatorial B-piane there are two turning latitudes
located symmetrically with respect to the Equator and therefore the
energy is trapped (Matsuno, 1966; Bretherton, 1964). Since the
energy is trapped, we do nﬁt expect a steady geostrophic current to
be established on the equatorial B-plane because the energy in
ageostrophic motion (or gravity waves) is not allowed to disperse to
infinity. Geisler and Dickinson (1972) use a linear approximation
for fz and only one turning point is situated north of the reference
latitude. Thus, there can be dispersion of gravity waves towards
the south.

It should be remarked at this point that the introduction of the
R-plane approximation into the shallow water equations implies that
the steady geostrophic solutijon must be zonally directed (Dobrischman

1964; Blumen, 1972). The more accurate solution on a rotating sphere



also gives the same result for steady geostrophic flow. However, the
B-plane approximation allows for the presence of Rossby waves and
since these waves are quasi-geostrophic, they may be regarded as

the adjusted state (Matsumoto, 1960).

Thus, our main concern will be to study the characteristics of
the motion that is left after the energy in ageostrophic motion
(gravity waves) is dispersed.

The use of the shallow water equations to study the mass-wind
adjustment problem is not overly restrictive because the governing
equations for a stratified fluid, linearized about a basic state at
rest, can be separated into horizontal structure equations and a
vertical structure equation; the horizontal structure equations are
the shallow water equations and the separation constant H is the
depth of the homogeneous ocean (Taylor, 1936; Eckart, 1960).

A considerable amount of work has been done in oceanography on
the response of the tropical ocean to atmospheric forcing. (Yoshida,
1959; Lighthill, 1969; Moore and Philander, 1976; Anderson and
Rowlands, 1976; Cane and Sarachick, 1976). The emphasis is however,
on the effect of wind stress in generating ocean currents and although
the equations and method of solution are akin to our problem the

objectives are different.

1.4 OQutline
In this study we shall solve an initial value problem geverned
by the linearized shallow water equations on an equatorial B8-plane

(Matsuno, 1966; Lindzen, 1967). The basic state is assumed to be at



rest although some considerations on how the inclusion of & horizon-
tally sheared basic state might modify the results are discussed in
Chapter 7. The normal mode technique is employed to solve the initial
value problem since the free wave solutions of the governing equations
form a complete set (Matsunc, 1966).

In Chapter 2, we review the governing equations and discuss the
method of solution including a generalization to the three- dimensional
case (stratified atmosphere).

The equatorial B-plane is known to be a valid approximation for
internal modes having small H (the so-called equivalent depth). For
the external mode of an isothermal atmosphere, H is approximately
10 km (Lindzen, 1967) and the inclusion of the full effects of the
geometry of the earth are necessary. In Chapter 2, we also show that
the linearized initial value problem on the sphere is a simple gen-
eralization of the equatorial B-plane solution. The generalization
is accomplished by replacing the B-plane free wave solutions with
the spherical free wave solutions, which are called Hough functions
(Kasahara, 1976). 1In Chapter 3, we discuss the process of dispersion
of energy on the equatorial B-plane and on the sphere (for the exter-
nal mode) under the assumption of zonal periodicity.

The initial value problem with an initial condition in the geo-
potential field and no wind is discussed in Chapter 4. The opposite
case, i.e. no geopotential perturbation but wind perturbation initially
is treated in Chapter 5. The initial value problems discussed in
Chapter 4 and 5 can also be interpreted as an impulsive forcing in

the geopotential and momentum fields respectively. In Chapter 6 the
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adjustment of the mass and wind fields in the presence of a steady
‘mass sink/source is studied.

It turns out that the internal mode of a two level baroclinic
model with typical parameters of the tropical atmosphere can be
well represented by the equatorial B-plane shallow water equations
{Chapter 2) provided we interpret the geopotentia1 as thickness (or
temperature) and the momentum field as the wind shear between the
upper and Tower Tlevels.

Finally, in Chapter 7, we analyze the results of Chapters 4, 5,
and 6 in a unified way, discuss the implications of this work, and

suggest future research in this area.



2.0 GOYERNING EQUATIONS

In this chapter we discuss the solution of the linearized primitive
equations on the equatorial B-plane for a basic state of no motion.
These equations are separable into horizontally and vertically
dependent parts (section 2.7) . The vertical structure is dis-
cussed in section 2.2 and the horizontal structure which is given by
the so-called shallow water equations is treated in section 2.3. The
free wave solutions so constructed form a complete and orthogonal set.
Therefore, an initial condition can be represented by a superposition
of such free waves and the solution for the initial value problem can
be easily obtained as shown in section 2.4. The inclusion of Rayleigh
damping terms and thermal forcing can also be easily accomplished as
shown 1in section 2.4.

The generalization of.the solution of the initial value problem
to the sphere can be done using Hough functions computed by the method

of Kasahara (1976). 1In section 2.5, we show how this can be done.

2.1 Perturbation Equations
The perturbation equations on an equatorial B-plane for a basic

state of no motion are

du B
-B?-B_yv+ax 0, (2.1.a)
oV 3 _
T EBYPR s =0 (2.1.b)
iu— + —-B—-!— + Eﬁ =0 » (2-1'(:)

X oy ap
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= (-%g)-awo, (2.1.d)

where (u,v) are the eastward and northward velocity components and
xs=g%- is the vertical veloecity in the p-coordinate; ¢ is the geopoten-
tial, f is the Coriolis parameter (f=2Qsin¥) where ¥ is the lati-
tude, and o= b—ég—g% ) is the static stability parameter of the basic
state atmosphere.EIFor a statically stable atmosphere ¢ is"a positive
parameter.

Equations (2.1.c) and (2.1.d) can be combined to eliminate w

resulting in

—_
™3
no

—

S8 (1 3% s
at[ 3 Er_ap)]wa'w o

where W= (u,v). Equations (2.1.a), (2.1.b) and (2.2) constitute a
system of three equations for the three unknowns u, v and ¢ . The

next step to solve (2.1.a), (2.1.b) and (2.2) is to assume

21y, 1
185 ¢t I (2.3)

where 0-2 is a constant of proportionality. Equation (2.3) is formally
equivalent to assuming that the solution of (2.1) is separable into
horizontal and vertical dependent equations as is usually done (e.g.
Lindzen, 1967). Given suitable vertical boundary conditions, the
constant c2 can be defermined as an eigenvalue of (2.3). The constant
¢ has the dimension of speed and therefore we can write c2= gH where

H has dimension of height. Equations (2.1.a), (2.1.b) and (2.2) reduce

to a system of equations independent of pressure, namely



du _ 3
5t Byv + o o , (2.4‘.a)
v ¢ _
56~ Bow ¥ o 0o , (2.4.b)

,@Q |,:-! e =
3t + gh v i\ 0o ., (2.4.(:,)

for each eigenvalue H of (2.3).

The system (2.4) is the so-called divergent barotropic model, i.e.
the governing equations for a layer of incompressible and homogeneous
fluid with a free surface in hydrostatic balance. Equations (2.4) are
also known as the shallow water equations. The coefficient H in
(2.4.c) is known as the equivalent depth after Taylor (1936). For the
sake of completeness, we discuss the free wave solutions of (2.4) in
section 2.3; these solutions were originally discussed by Matsuno
(1966).

Alternatively, (2.4) can be interpreted as the system of equations
governing a two level baroclinic model in p-coordinate, as shown by
Matsuno (1966). Let us first divide the atmosphere into two discrete
layers as shown in Figure 2.1. The u and v components of the wind
and the geopotential are defined at the odd levels; the vertical p-
velocity w is defined at the even leveis. The boundary conditions are

Wy = Wy =0 . The linearized governing equations about a basic state at

rest are
Bu] a¢]
_‘a_E_-ByV']+_3T =0 , (2.5.3)
Bu3 3¢3

_at__By V3+W :0 ) (2-5-b)
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Figqure 2.1 Vertical staaaerina of variables in a
two-Tevel baroclinic model.



oV, 3¢]

‘E?*BY“1+3Y'=O’ {2.5.c)
av3 a¢3
gt-+8_yu3+ "73-}—‘—0 s (25d)
au v w

sl .
et B P (2.5.¢)
au 3V @

- . (2.5.f)

% T3y B

3 (3.1 0, (2.5.3)

3 ((‘b3_¢] ) -2 -3"9 o
AP ”

where 52= (- é;-%% )2. Subtracting (2.5.b) and (2.5.d) from (2.5.a)

and (2.5.c) respectively and defining

Ug = Uy - Ug s (2.6)
Vg = Vy - V3o, (2.7)
bq = 67 = b3 (2.8)
we get
-B;tq-ayvd*r%%q=0, (2.9.a)
¥-+Byud+%=0. (2.9.b)

The objective now is to reduce (2.5.e), (2.5.f) and (2.5.9) to
one single equation in Ugs Vg4 and ¢d similar to (2.4.c). This can be
achieved by subtracting (2.5.e) from (2.5.f) and substituting the

result in the thermodynamic equation (2.5.9). The final equation is
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=0, (2.9.c)

where WV, = (ud, vd}. Comparing (2.9) with (2.4) we see that the equiv-
alence is perfect provided we interpret u and v in (2.4) as the wind
shear and ¢ as the thickness (or temperature). The speed of pure

gravity waves on the fluid of depth H in (2.4) is now

c=vgH = ap J %2 , (2.10)

NI

and represents the phase speed of an internal gravity wave in the two
level baroclinic model.

Although the main concern of this research is the horizontal
structure of (2.1) for a specified vertical mode H, it is useful to
consider some particular solutions of (2.3). This is the objective

of the next section.

2.2 Vertical structure
Let us first consider the solution of (2.3) under the boundary
conditions

w=0 at p=0 and p=1p (2.11)

G

The boundary conditions (2.11) can be easily seen to be equivalent to

3 - 0 at p=0 andp=p (2.12)

op o’

If we further assume that the static stability is constant with pres-

sure the solutions of (2.3) are given by

= A / o 5
¢ = A, cosy/ —p , (2.13)
J J Cj
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where the Aj are arbitrary constants and the eigenvalues cj are such

that

BB e Fow B, & Ty we ) (2.14)

The horizontal divergence has this same vertical structure according
to (2.4.c) since we can also assume a separable solution in time. The:
J =0 mode has constant divergence with height and corresponds to the
barotropic non-divergent mode because of the boundary conditions (2.11).

The equivalent depth of the j =0 mode is infinity according to (2.14)

2
J°

The j=1 mode has one level of zero divergence at p =500 mb while

since gHj =C

the j =2 mode has two and so on. The barotropic divergent mode (or
the so-called external mode) has been eliminated from this analysis
because of the boundary condition (2.11). Had we assumed gw==§%*=0

as the boundary condition, (2.12) at p= Py would be replaced by

P = " -
5t Tope =0 at P=p, » (2.15)

where fq is the air density at p= Po The usual approximation of
applying the Tower boundary condition at a pressure surface ol
const. has been applied in (2.15). In this case the functional form
of the vertical structure of ¢ is still given by (2.13) but the eigen-

values cj are defined by the transcendental equation

s 0P, P
tan (“g_ p0)=7;u+_ (2.16)
j T
(=,
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Table 2.1 contains a summary of the results for the first five values
of the eigenvalue c; with the boundary condition (2.11) at p=0 and

with (2.15) applied at the lower boundary p= Py - The numerical values

= -
of p., o and 0, are respectively 1000 mb, 1.6 X 106mqs“kg 2 and 1.2

0
=3

kgm It is clearly seen that the effect of having w=0 at p=p

g

0

-

is simply to eliminate the barotropic divergent solutions of (2.1)

while the internal modes are practically unchanged.

| 5 c(ms™") |
i i w=0 at w=0at p=0 |
| J §p=Oamjp=p0 w=Oatp=p0

l : :
: | !
o | © 322.5 |
1 40.5 39.9 |
2 20.2 20.2 |
i3 ] 13.5 13.5
4 10.1 10.1 3

Table 2.1. Eigenvalues C; of (2.16) with w=0 at
p=0 and p=p0andwiﬂ1w=0 at p=0

and w=0 at p=p_ . The value of o is

1.6 x 10”%n%s2kq™2 .

The results obtained above are dependent on the assumption of
constant static stability o with pressure. Jacobs and Wiin-Nielsen
(1966) have shown that (2.3) with the boundary conditions (2.11) can
be solved in terms of Bessel functions if o is evaluated for a basic
state characierized by constant lapse rate. Wiin-Nielsen (1971
generalized their solution to the more realistic lower boundary condi-
tion (2.15). In both cases the spectrum is discrete. For an iso-
thermal basic state the spectrum consists of a discrete part given

by the barotropic mode and a continuous part. However, for the
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purposes of this research the assumption of constant o is sufficient
and therefore there is no need to enter into the details of the more
realistic basic state discussed by Wiin-Nielsen (1971).

Our main concern for this research is that (2.3) with the boundary
condition (2.11) or (2.15) at p= Py form a Sturm-Liouville type bound-
ary value problem (Morse and Feshback, 1953). Thus, the corresponding

solutions ¢j are orthogonal in the sense that

Po

Of 05 05 dp =85 5 (2.17)

(where 61 j is the Kronecher delta function) and form a complete set
in the interval [o, po]. Consequently, any function of p can be rep-

resented by a series of eigenfunctions ¢j in the interval [o, pd] as
G(p) = 2 a5 b (p) > (2.18)
J=0
where G(p) is the arbitrary function of p and

pO
a; = [ s(e)sp)dp (2.19)
0 .

In (2.12) we have assumed that the ¢j are normalized such that

Po
2
[ ¢ (P)dp =1 (2.20)
0
As a consequence of the completeness and orthonormality of ¢j , any

initial condition which is separable in vertical and horizontal struc-

ture can be projected onto the vertical modes given by (2.13) with cj
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given either by (2.14) or (2.16). We now proceed to solve (2.4),

which gives the horizontal structure of any sclution of (2.1).

2.3 Horizontal structure

The horizontal structure of the solution of (2.1) is given by the
shallow water equations (2.4). These equations on the equatorial B-
plane were first successfully solved by Matsuno (1966). His method of
solution is employed in this section and an extention to tﬁe zonally
symmetric case is performed in section 2.3.3.

It is convenient to transform the shallow water equations (2.4)

to non-dimensional form. The natural scaling for system (2.4) is
[L]= (&%, M = (5)° (2.21)
g cE? =

where ¢ is an eigenvalue of (2.3) corresponding to the wave speed of
pure gravity waves on a fluid of depth H (c=/gH). The length scale
[L] can be interpreted as the usual Rossby radius of deformation

l==%— evaluated at latitude [L] i.e.,

[L] = M[L]) = fi;EL]J“ = B[CL] ) (2,22)

and [T] is the inverse of the Coriolis parameter at the latitude [L]
(Cane and Sarachik, 1976). Figure 2.2 shows the number of non-dimen-
sional time units per day (left scale) or the time scale [T] (right
scale) in days as a function of the eigenvalue c= /gH . The number of
non-dimensional length units per 1000 km as a function of ¢ is dis-
played in Figure 2.3 (left scale). The length scale [L] is shown on

the right scale of Figure 2.2.
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Figure 2.2 Number of non-dimensional time units per day
(left scale) or time scale [T] in days (right
scale) as a function of c=v/gH .
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Taking gH as the scaling for ¢ in (2.4), the non-dimensional forms

of the shallow water equations become

3_5_§3+3_f_=g, (2.23.a)
ot X
L‘q_}_g;anig:g, (2.23.B)
ot 3y
B0 4 80 . B _ iy (2.23.c)
ot  Bx ay

where the symbol (*) refers to non-dimensional quantities. After

dropping the symbol (~) for simplicity, we write (2.23) in vector form

as
%+ ag =0, (2.24)
where
u(x,y,t)
E(x.y,t) = | vix,y,t) , (2.25)
d(x,y,t)

and the linear operator Q is defined by

0y =
Q= |-y o0 5‘37 . (2.26)
5 3
L3 By [ |

We shall first assume that &(x,y,t) is cyclic in the zonal direc-

tion with zonal period L . Thus, £(x,y,t) can be represented as a

series in the zonal direction as
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E(y,t) =8 g (yot) e (2.27)
k
where k is confined to multiple values of %E- since we have imposed
X
zonal periodicity of length Lx,i.e.,
k=30 m=0, 4,22, ... . (2.28)
X

The boundary condition in the meridional direction is
g (¥5t) >0 as yorxo (2.29)

compatible with the infinite equatorial B8-plane.
'ii'.} t
We now seek solutions of (2.24) proportional to e k , where the
w, are the eigenfrequencies associated with the zonal wavenumber k.

The system of equations to be solved takes the form

7wkuk _ yVK + 1k¢k = 5 (2.30.a)
. do
1w, v, i yuk + " 0, (2.30.b)
. vy
1wk$k + 1kuk + 757—= 0, (2.30.c)
or in vector form
iwkgk + gkgk = 0 5 (2.31)

where Q is defined as in (2.26) except that g%-+ ik .  Solving (2.31)
subject to the boundary condition (2.29) poses an eigenvalue problem
which can be easily solved as shown in section 2.3.1. The eigenfunc-
tions of (2.31) form a complete and orthogonal set (Matsuno, 156C; Cane

and Sarachik, 1976) and therefore, any mathematically "well behaved"

initial condition £(x,y,0) can be represented by a series of the



eigenfunctions. For the objectives of this research, it is sufficient
to consider a square integrable function in the interval (-« ,+«) as
a "well behaved" function.

In section 2.4, we use the completeness and orthogonality of the
eigenfunctions of the linearized shallow water equations about a basic

state at rest to formulate the initial value problem.

2.3.1 Eigenfrequencies
The vector equation (2.31) can be reduced to the single ordinary

differential equation in the meridional velocity v

k 2. k 2 »
+ (wk - k" + GE-— yo) Ve =105 (2.32)

with the boundary condition derived from (2.29)
v+0 as y-+to, {2.33)

The original system of three equations and three unknowns has
been reduced to an equation of the Sturm-Liouville type known as the
Schradinger equation. The customary way to solve that equation is to
factor out the behavior of the solutions at infinity by setting

2
*
W Lk =g v (y)
which reduces (2.32) to a Hermite differential equation. The final
solution is
2
o
2

Ve W =e 2 H () (2.3¢)
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and

]

3
(o E|
~—

bk L1, ne0 1,2, e (223
W

where Hn(y) is the Hermite polynomial of order n. The definition of
Hermite polynomials and some of their properties are shown in Appendix
A. (2.35) is a third order polynomial in w, Provided the Tongitudinal
wavenumber k and the index n are specified. For each n, we have a
definite meridional structure which is called mode n. Two of the
roots of (2.35) correspond to inertia-gravity waves: one which
propagates to the west (w > 0) and the other to the east (w < 0). The
third root corresponds to a westward propagating Rossby wave (w > 0).
Therefore, the eigenfrequencies of (2.32) are perfectly characterized
by three indices k, n, and r where k is the zonal wavenumber, n is the

meridional mode, and r is 0, 1 or 2, i.e.
®e.n,0 T Rossby wave
By ng * Westward propagating gravity wave
W, nop * Eastward propagating gravity wave.

An approximation for the three roots of (2.35) can be easily

obtained using the following relationships

ok,n,.0 %, 0,1 %, n,2 T 0
w +w w + w w = —’k2+2n+1)
“k,n,0%,n,1 k,n,0°k,n,2 k,n,1%,n,2 \ :

“ron,0%,n,1%,n,2 = -k
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assuming that RN TTY The results are
§ifs - BLH |

JKke+2n+1 (2.36)

B atE ==

k
W = . (2°3?)
Kala0 24 on e ]

The plus sign in (2.36) gives the frequency of the westward propa-

gating inertia-gravity wave and the negative sign corresponds to the

eastward moving inertia-gravity wave. The third root given by (2.37)

is the westward moving Rossby wave. Note that the frequency of the

Rossby wave is zero if the wavenumber k is zero. For Rossby modes the

zero frequency exhibits degeneracy since there is more than one eigen-

function corresponding to it as we will see later.

The three roots of (2.35) for n=0 are

= k ; (2.38)

2

.ok L[k
U I 2 A L 2.39)

Lk 2
%07 2T WA (2.40)

The classitication of the roots is based on their behavior as a function

of n assuming that n is a continuous parameter, i.e.

oo * 1im (2.41)

n-+0 ksn
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Thus,
k far k < -{éj
V2
Wy 0.0 ° — i 1 (2.42)
J(3)2+1 - 5 for k2 L
VB
¢(—2k—)2+1 -% for k < ——
./n
I
wk,o"l = (?043)
k for Kk > o
Y K |
©.0,2 " (7?0 +1 - - for all k (2.44) E
where w

K,0,0 corresponds to the Rossby wave, ®y 0,1 to the westward
propagating gravity wave and ©k,0,2 to the eastward propagating gravity
wave. The peculiar behavior of the n=0 mode 1led Matsuno to inspect
more carefully the character of the associated eigenfunctions. He
showed that the ¢-eigenfunction associated with the root v 0” k does
not satisfy the boundary condition ¢+0 as y»>+« and therefore has to
be neglected. Blandford (1966), in a similar study, failed to recog-
nize the peculiar behavior of the n=0 mode and considered the w=k
solution as being valid.

In view of the peculiar behavior of the n=0 mode, we see that
©4.0,0 does not exist for k < 2'% and Ok 0.1 does not exist for

;j,

-1 =
k> 2 @ and that o merges continuously to w, 5,5 2t k=2 7.

k’O )]
Thus, for small k the westward moviny solution of the n = 0 mode

oscillates with higher frequency (in the gravity wave regime) while
for large k the frequency is low (Rossby wave regime). This is the

so-called mixed Rossby-gravity wave.
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Matsuno (1966) also points out the existence of another possible
solution not included in (2.35). Putting v=0 1in the system of govern-

ing equations (2.30), we get

; : = 205,
fwu, * ko, =0, ( é)
d¢
k. - 2.45.b)
Yo, # 9 (
T 6, + iku, =0 . (2.45.¢)

The first and third equations form a system of two algebraic

equations which has a non-trivial solution only if

(mk - k) (wk +ik) 2@,

and therefore

o
1l
1

~

-¢ if mk =,

or

=
"

¢ if Wy = -k
Equation (2.45) can now be written as

and the solutions are

2
6, = Uy = ae Y op w7k (2.46)

< g 7
O = Uy = ae?y for w =k (2.47)
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where a is an arbitrary constant. However, the solution corresponding
to Wy = k is not bounded as y=++*e and it has to be rejected. Matsuno
points out that the solution Wy = -k can be obtained from the freguency
equation (2.35) if we set n=-1. This particular solution is called
the n=-1 mode and can be considered an eastward propagating wave with
v=0, which is also called the Kelvin mode. The eigenfrequency as
associated with the Kelvin wave is labelled W 21,2 since it 1s an

eastward propagating wave.

2.3.2 Eigenfunctions for k#0
Multiplying (2.30.a) by 1'mk and (2.30.c)by -1k and adding the

results, we get

d Vi
%® Tk B (w yv + k55— s (2.48)

provided mk¢ b, If W = -k the associated eigenfunction has already

been found (2.46). Analogously,

1

dvk )
o 2 .
1(mk - k™)

ay (2.49)

¢’k=' (kyvk+wk
The next step is to substitute Vi into (2.48) and (2.49) by the already

known solution given in terms of Hermite polynomials (2.34). The

result is
dH (y) 2
- 1 , _n =Y 5
. * 7 [ukyHn(y)-kyHn(y)-+k & } e (2.50)
|(uJk -k%)
and
dH _(y) 2
— ] n -l
¢, = - —5—5— | kyH (¥) +w yH (y) +w W—Je Y (2.5
k i(mkz_kz)[ N K k Tdy (2.57)
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Making use of the recurrence formula and the differentiation formula

for Hermite polynomials, we obtain

2

= -l = ‘“55}’ -
ue = = [ MoK B () O B e, (2.52)
1(wk - k)
e T 2 | 5K Hg (9) - k) B ()]e“”“’?' (2.53)
O T T2 7 LW R VY B B\ B Ak
'l(wk - k%)
In vector form, the eigensolution Ek . is
r%(mk’n’r"k) HH‘H (y) + n(mk,n,r%) Hn_]()’) E
2
= 2 2 2k =y
B, el = | 1 (8 KD Bly) e
oK) Hog ) = o HOH G 0) | (2.50)

where the indices k and n refer, respectively, to a particular zonal
wavenumber and meridional mode, and r=0, 1 or 2 depending on whether
we are considering the Rossby mode, westward or eastward propagating
gravity wave,respectively.

The parity of the eigensolutions gk,n,r(Y) follows from the parity
of Hermite polynomials because Hn(y) is even or odd if n is even or odd
respectively. When n is odd the u and ¢ fields are symmetric relative
to the equator and the v-field is antisymmetric. This case is called
symmetric after Longuet-Higgins (1968). The Vi field is even if n is

even and the associated u, and ¢k fields are odd; this is called the

k
antisymmetric mode.

Equation (2.54) is valid for n=0 but the index r takes the value
1 and 2 if k<2 % or 0 and 2 if kg_Z'% as described earlier. The

eigensolution associated with the Kelvin mode (n=-1) can be written as



32

Hy (¥)
E1.2W = | o [ (2.55)
Ho(¥) J

since Ho(y) is a constant according to A.3.

The magnitude of the eigenfunctions Ek,n,r are arbitrary so far.
In order to normalize the eigenfunctions, we require that the total
energy integrated over the y-domain (-« ,+«) is invariant for each
mode corresponding to each eigenfrequency. The integrated total energy
Ek,n,r is easily obtained by the kinetic energy equation (multiplying
(2.30.a) and (2.30.b) by up and v, respectively), adding the result
to the available potential energy equation (multiplying (2.30.c) by ¢)

and integrating over the whole domain (-« ,+« ) using the boundary

conditions (2.29). The result is

SR [N ) IR A1) RE- N () D (2.56)

where the symbol < > indicates the inner product
> =
S

(2.57]

T T ST S
(uk,n,r' U nor T ViGnLr T Vione T %onr T ®kon,r? Y

- o0

In (2.57) the symbol (*) denotes the complex conjugate. Thus, the
magnitude of the normalized eigenvectors can be easily obtained by
dividing the previously obtained gk _— by its norm defined by (2.56).

The norm of gk i is
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.. 2 % 8] lﬁ[( )% (1) 40 ()2 ( Z-kz)z}
ksn,r i “kyn,r “,n,r “,n,r :
(2.58)
From now on, when we refer to the eigenfunction Ek .y We should
interpret it as the normalized eigenfunction
(oK) B ) +0 (o HOH ()
Ay
: 2 2 e
2 (y) = | 1 (0 - k%) H  (y) e
Kl kshr n FE
Kion.r
50y oK Hp ) =0y FRH () (2.59)

2.3.3 Eigenfunction of the zonally symmetric case (k=0)

As we have already discussed, the zonally symmetric case (k=0)
presents a degenerate behavior since the eigenfrequencies of the Rossby
mode are all zero. Also, the distinction of eastward and westward
moving waves looses meaning when k=0; the eigenfrequencies of gravity
modes appear in pairs of positive and negative values for the same
meridional number n.

The objective of this section is to construct a set of orthonormal
eigenvectors associated with the zonally symmetric degenerate mode.

Remembering that w=0 when k=0 for the Rossby mode, (2.30) is reduced

to
do
0:
Yilg * = 05 (2.60.a)
v, 50, (2.60.b)

which is the governing equation for a zonal geostrophic current. The
Rossby mode for k=0 is called the geostrophic mode after Kasahara

(1978) since the same governing equation is obtained with spherical
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geometry except for the curvature terms in (2.60.a). Kasahara's

approach for constructing the normal modes of (2.60) is to assume poly- |
nomial functions of various degrees for us and calculate ¢, OF vice
versa. The geostrophic modes so obtained are not orthogonal but a
simple vector orthogonalization routine based on the Gram-Schmidt
process can be applied. Tribbia (1978) retained the normal mode ex-
pansion for the zonally symmetric case considering that ggz_gecstrophic

u and ¢ are eigenfunctions of (2.60). The resulting eigenvectors can

also be orthogonalized.

Although Kasahara's or Tribbia's approach could be applied to our
problem, a close look at the normalized eigenfunctions defined by
(2.59) suggests an alternative procedure.

The eigenfunctions gk,n,r(y) form a complete and crthonormal set
if k#0 (Matsunc, 1966; Cane and Sarachik, 1976). The orthogonality
proof however, fails if degeneracy occurs. This is exactly the case
for Rossby modes if k=0. But we might speculate on the nature of

the eigenfuncticns & i O(y) as k tends to zero. First, we shall
3

K,
prove that such a 1imit exists and then that it satisfies the govern-
ing equations for zonal geostrophic current. Secondly, we consider
the orthogonality and completeness of the limiting set of eigenfunc-
tions.

The frequencies of Rossby type waves have the following asymptotic

behavior for small zonal wavenumber k,

k

Ym0 T2 AT i)

In order to obtain (2.61) we use the fact that inertia-gravity waves

for k=0 have frequency
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wO,n,](Z} =+ /(2n+ (2.62)

and the relation

W n,0 %k,n,1 Yk,n,2 - K- (2.63)

The normalized zonal wind component of the eigensolutions Ek . O(y)

is
My k) H_..(y)+ +K) H ] y°
U n® Lz(wk,n,O“ ) ne1 Y770 (wk,n,O : n-1(y)_ £
- 158 2 2 . 2]%
n_. s } _
(2'nlm?) (‘*’k,n,o k)< (n+1) +n (“k,n,0+k) +(wk’n:0 k%)
(2.64)
Let us consider now the asymptotic behavior of U .o 2s k-0. Sub-
stituting W 0o from (2.61) in (2.64), taking the 1imit as k-0 and
applying L'Hopital's rule we find that
1 [(+1)]‘f[2 #1) H Ho ] 5y
4T Umote) = LT (200 W (1)t )] &
Y
[2“(2n+1) n!w%] (2.65.a)
Analogously, we obtain
15
klmo Vk,nao(}’) =0 4 (2.65.b)
and
4 —‘»ayz
im ~ (1)1 [ 2(n#1) H () +H ((9) ] e
k=0 Pk,n,00) = ] 1%
[2 (2n+]) ntm ] (2.65-C)

Thus, as k=0 the eigenfunction associated with the n'th meridional
mode of the Rossby wave tends to a function which is a combination of

Hermite functions of order (n-1) and (n+1). It is an easy task to
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prove that (2.65) satisfy the zonal geostrophic equation (2.60) if we
use the recurrence relation (A.4) and the differentiation formula for
Hermite polynomials (A.5). The orthonormality is also easily proved
using (A.1). The completeness follows from the completeness of Hermite
functions. We can now write

K g

Tim
k-0 “k,n,om

” 1im
EO,II’O(Y) - k =0 Vk’n,o{}') -

Tim
k-0 ¢’k,n’0()’)

-

[n(n+1)] 2 [2(n+1) Hoay (9) + Hn_](y)]_ i

[2"(2n+1) n n‘ﬁ]/z
0 e Y, (2.66)
a(ne 1)1 (2t # 0 0) - 6 ()

L [2”(2n+?) n! W%Jli Ui

and B i r(y) form an orthonormal and complete set of eigenfunctions

over the whole range of k.

The completeness of the eigenfunctions gk,n,r(Y) in the interval
(- ,+o) and the completeness of eikx in the interval (-Lx, Lx) with
k giver by (2.28) allows to expand an arbitrary function G(x,y) in the

series

2 .
6x¥) = T Y T Ay bone®) € (267)
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with
3 - <SG g L), (2.68)
where
L
6,(y) = o [ G(x.y) e T gy (2.69)
k 2L X Gk T
-L
The dimensional form of the eigenfunction ak i lr\(y) i$ clearly

seen to be dependent on cj and therefore it can be written as

¢y 0 O ) )

Ej,k,n,r(y) = 0 ¢ 0 1&.nw (ELde ) & (2.70)
2
0 0 c5

where the symbol (~) has been replaced over the non-dimensional

variables.

2.4 Initial Value Problem - Equatorial B-plane
Let us consider now the solution of system (2.1) with a specified
distribution of diabatic heating é and momentum forcing (Fx’ Fy}.

More precisely, we propose to solve

—au - ﬁa = -
5t Byv+ 3% Ku + FX ’ (2.?1.3)
aV od _ _
§f+ByV+8y ku+ F (2. 71.5)

-

|

§f‘i), (2.71.c)

s (.15 F1 2 ol afay 3 1
—t[ap( )}”W cpap(a) *‘Bp( =

where k is a Rayleigh drag coefficient in (2.71.a) and (2.71.b), and

Q2
L)

the rate coefficient for Newtonian cooling in (2.71.c). These Tinear

terms are not necessary for the method of solution here described
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but they correspond to the simplest form of restoring forcas that
might arise as the system is disturbed from rest.

We will make use of the completeness of the eigensolutions of
the vertical structure equation (2.3) and the eigensolutions of the
linearized shallow water equations to solve (2.4). We first expand
u(x,y,pst), v(x,y,p,t), o{x,y,p,t) and the term on the right hand side
of (2.71.c) into a series of the eigensolutions ¢j(p) of the vertical

structure equation as in (2.18) obtaining

u

i P/)"c_.

J
uj(x,y,t] cbj(p) , v 2 v(x.y.t) ¢.(p)
i=0 =0 y

—

L

: J
¢ A E 0;(xy5t) 65(p) » i(i)% 2. as(x.yst) 6.(p)
J=4 j

|Mc;..

(2.72)
where uj, vj, ®j, qj, Fx,j and Fy,j are the expansion coefficients,
generally functions of x,y and t defined by (2.19) and J is the trun-
cation 1imit of the vertical modes. In order to write (2.72) we have
assumed that the eigenvalues of the vertical structure equation form
a discrete set. However, if the spectrum of the vertical structure
equation is continuous as in an unbounded atmosphere (Eckart, 1960),
the sum in (2.72) is replaced by an integral. If the spectrum is

part discrete and part continuous, (2.72) should be rewritten as com-

bination of sum and integral respactively.
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The series expansion (2.72) is assured by the completeness of ¢j
as discussed in section 2.2. Substituting (2.72) into (2.71), multi-
plying (2.71.a), (2.71.b) and (2.71.c) by ¢i(p), integrating over the

interval [o,po] and using the orthogonality of ¢j(p) we obtain

il o S /
2 Bva Hgs KU + Fx,j ; (2.73.a)
av ad
G . . b= = oagy, s .73.
st By Ty Ky ¥ Fpg (2.73.b)
ad.
—-‘] + 2 L] = 2 O L 1)
5t * ¢y v \Vj ¢ (q3 h@J) . (2.73.c)

where (2.3)has also been applied.

We now see that after projecting the solution (u,v,$) onto the
vertical modes, we get a system of equations for the expansion.coef—
ficients which is simply the linearized shallow water equations dis-
cussed in section 2.3 with non-homogeneous terms in representing the
external forcing and the linear damping terms.

It is convenient to work with the non-dimensional form of (2.73)
using the time and length scales shown in section 2.3 and write it

in vector form as
9
&+ qE = Fi-ksE s (2.74)

where £ and Q are defined by (2.25) and (2.26), respectively, and

Fx,j

By = (2.75)
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K: = (c.5 B)-E/2 B (2.76)

In the two-level baroclinic model discussed in section 2.1, the
inclusion of linear damping terms and a specified external forcing

yields the vector equation (2.75) with

S N (2.77)
R(Q),

The main concern of this research is the solution of (2.71) for
a specified equivalent depth; we thus drop the index 'j' on the right
hand side of (2.74) for simplicity. It should be remembered that the
solution of (2.74) can either be interpreted as one particular internal
mode or as the wind shear and thickness of the two-level baroclinic
model of section 2.1.

We can clearly assume that the solution £(x,y,t) and the forcing

.Fj(x,y,t] can be represented by a series of the eigenfunctions

ikx
€k’n’r(yJ e

as discussed at the end of section 2.3. According to

(2.67) we have

K. N 2
oy,t) & 2L D 2. S, 155 B plY) e

k==K n=-1 r=0 (2.78)

and
i i §2 L
! TKX
[F{x.y,t) & S bt) & (¥} & ,
k=& m=el pog KM TRy (2.79)
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where K and N are the truncation 1imits of the Fourier series in the
zonal direction and of meridional modes, respectively. Substituting
(2.78) and (2.79) into (2.74), multiplying the result by 5;;2,m(y),
integrating over the whole domain S (S={(x,y)/ xe[-L,L], ye(-o,+=)})

and applying the boundary condition (2.29) we obtain

d

dt Ck,n,r(t)' (1wk,n,r_x) Ck,n,r(t) = F

et (2:80)

for each k, n and r in (2.78). The above equation is familiar from the

theory of the Tinear harmonic oscillator problem. The general solution

of (2.80) is
t
Clpnar () = S, 00 0 Ly o V614 1 (5)
0
exp ["(iwk,n,r'K) (s-t)] ds . (2.81)

This is the solution presented by Cane and Sarachik (1976) except for
the damping term k.

Let us consider now some particular solutions of (2.81). If there
is no external forcing and there are no damping terms in (2.74) the

solution of (2.80) reduces to

Cron.elt) = ¢ (0) exp (i 0 t) . (2.82)
where ¢, (0) is determined from the initial conditions £(x.y,0) as
Ck,n,r(o) =<£k(y’0) ° Ek,n,r(yb s (283)

where

L
X .
g :0) = 7= [ Elxy.0) e ax (2.84)
X ‘Lx



42

Thus, the solution of (2.74) reduces to a superposition of the free
wave solutions, each oscillating at its own frequency.
If the initial condition is &(x,y,0) =0 and the forcing is at a

single frequency v such that

IF(x,y,t) = IF(x,y) e"i\’t ; (2.85)

the solution of (2.80) is simplified to

f . - (1w +K)t]
= k’n"‘r [ "‘;\)t k;n,Y‘
R RAL I 1 cumer) ory B G . (2.86)
where
Frone = SR = B g 9D, (2.87)
and
IF (y) = 1_ = IF(X y) e-ikx dx (2 88)
k 2LX 3 ] "
_.Lx

is the Fourier component of the forcing IF at wavenumber k. The second
term within brackets in the numerator of (2.86) is the transient solu-

tion; if «>0 the asymptotic behavior of (2.86) is

..'-t
£ el
1
¢ (t) = —=7—2—2— i s (2.89)
k,n,r 1(wk,n,r V) - K
for a steady forcing we have
c = fk n,r
k,n,r 2 (2.90)

Tw -K
ksnsr

If there is no damping, (2.90) is singular for geostrophic modes. How-

ever, for a steady forcing we have
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_ka,n,Ot)

Tim
Wy.n,0™0 0 n.0

tk,n,o(]' e

=tf (2.91)

Cy,n,0ft) = 0.n,0"

Thus, at resonance we have the algebraic or secular growth represented
by (2.91). We clearly see that the closer the frequency of the forcing
is to the natural frequencies of the system, the larger is the response.

Our main concern in this research is the horizontal structure of
the solution of (2.71) for particular values of j. The eqﬁatoria1 B-
olane is known to be a good approximation for the internal modes of
small equivalent depth (Lindzen, 1967). For the external mode (or
large equivalent depth H) the meridional structure of the eigensolu-
tions gk,n,R(Y) is not trapped near the Equator except for low n and
therefore a more accurate geometry and Coriolis term in (2.71) is
necessary. In the next section, we show that the solution on the
sphere is formally the same as on the equatorial B-plane except that
the eigensclutions of the horizontal structure equation are now

given by Hough functions (Longuet-Higgins, 1968).

2.5 Initial value problem-sphere
The perturbation equations on the sphere using the same basic

state as in (2.1) are

u 3 - (2.92.a)

st - Vit rmee - Y

av %

Dt -0, (2.92.b)
vow + 2o 3 (2.92.c)

ap
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2 - 28 ~ G = ( \
5t (- gp) - 0w =0, (2.92.d)

where the notation is the same as in (2.1) except that A is the Tongi-
tude, ¥ is the latitude, a is the radius of the earth, f is 20 siny

and

w1 (du, Bvcosy
VW stese (ot e ) (2.93)

Combining (2.92.c) with (2.92.d) we obtain (2.2) except that the diver-
gence is now defined by (2.93). The condition for separability inte
nhorizontal and vertical structure equations is seen to be the same as
before and therefore the vertical structure equation is given by (2.3)
where gf = gHj is the separation constant. The horizontal structure

is now given by the linearized shallow water equations over a sphere

i.e.,

ou ; 30 .
i I . 1 J
T 2Qsing v 2 o T (2.94.a)
ov. o .
- : e (2 Q
5t 2951n?t5 + By 0, (2.94.b)
36 ;
-—‘]— ° = [ ‘I
5t + gHj Vv \Vj 2 (2.94.c)
where ¥ » Vj is given by (2.93). We can scale (2.94) by
b: = 8s €78, t = toq, (2.96)
J & A

where cj: /gHj is the j-th eigenvalue of the vertical structure

equation (2.3) and Hj is the equivalent depth. As in the equatorial
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B-plane case, we write (2.94) in vector form as

9X .

s (L9, t) + 0, x; (LY, t) =0, (2.96)

where the symbol (") has been dropped for simplicity. In (2.96) we

have
uj(l,?’ t) |
xj(k,‘F,t) = vj(k,‘f’,t) (2.97)
¢j(k,?,t)
and
- _!6 -
e
J 9
0 sin ¢ osP
. X 3
0, = e
: siny 0 €5 e (2.98)
ol I
& 3 €5 5
cos®  n cos ¢ WL( Jeos {] 4
with
2 2
e = 4—“2—"" : (2.99)
%

Equation (2.96) is usually termed Laplace's tidal equations and
the solutions have been discussed in great detail by Longuet-Higgins
(1968) and more recently by Kasahara (1976). The solution X; of (2.96)

dropping the subscript j, is expressed by

%P E) = Hs’ﬁil,f) exp (i - % (2.100)

where HS Q(A;?) represents the horizontal structure of normal modes

with s denoting the wavenumber in the zonal direction (s=0,1,2,...),
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2 the meridional index and ¢ the dimensionless frequency of the

S,IQI
normal modes. The Tongitudinal dependence of H, R(A,fﬂ is given by

Hg o (A, P) = Gs,ﬁ(\P) exp (is), (2.101)

where Os,£ is called the Hough vector that has three components, namely
g, g (F)

0 (9) = | vg () | . S (2a0)
b5 o ()

The eigenfrequencies o
S’ﬂr

eastward and westward gravity waves and westward propagating Rossby

are divided in two different categories:

waves, the so-called waves of the first kind and waves of the second
kind, respectively.

Clearly the analogy between the shallow water equations on the
equatorial B-plane and on the sphere is perfect. Thus, the method of
solution shown in section 2.4 for the initial value problem can be
easily extended to the sphere provided we notice the following cor-

respondence

g w

Rl -

One important difference between the linear operator Qj on the sphere
and Qj on the equatorial B-plane is the inclusion of Lamb's parameter
Ej on the sphere. On the equatorial g-plane the non-dimensional form

of the shallow water equation does not depend on cj explicitly,and
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therefore the dimensional form of £ is simply obtained by a matrix
multiplication as in (2.70). On the sphere, however, we have to solve

for o and GS for each vertical mode j and then make a matrix

S
multiplication analogous to (2.70) to obtain the dimensional form

9

(RS

since ej appears in the linear differential operator Qj (2.98).

It should be remarked that the fortuitous happening on the equatorial
B-plane is a consequence of the boundary condition at infiﬁity; had
we chosen a finite B-plane the determination cf the eigenfunction and
eigensolutions would be dependent on the particular vertical mode
through the horizontal scaling.

Thus, the computer program to solve (2.74) can be easily organized
in such a way to accept different sets of eigenvalues and eigenfunctions
with minor modifications. Provided the eigenvalues and eigenfunctions
of the shallow water equations are given, the only part of the program
that depends on the particular version being used is the integration
routine in the meridional direction to compute the inner product. On
the infinite equatorial B-plane the integral in y is from -« to += and
an appropriate weighting function (e'yz) in the Gauss-Hermite quadra-
ture method can be used (Abramowitz and Stegun, 1970). Thus, the ron-
dimensional eigenfunctions gk,n(y) are computed at the Gaussian
latitudes given by the zeroes of Hermite polynomials. Because of the
Gaussian quadrature points are unevenly spaced, it is convenient to

recompute the eigenfunctions & (y) at equally spaced latitudes

k,n,r
after the expansion coefficients Cy.p.p are determined. On the sphere,
we use the regular Gaussian quadrature with the abcissas and weights

given by Abramowitz and Stegun (1970). In this case, the Gaussian
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latitudes are almost equally spaced and therefore there is no need to
recompute the Hough functions at equally spaced latitudes for display

purposes.
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3.0 FREE WAVE SOLUTIONS OF THE SHALLOW WATER EQUATIONS

The objective of this chapter is to present the horizontal struc-
ture and dispersive characteristics for the free wave soiutions of the
shallow water equations. This is important because the method of
solution of the initial value probiem is based on the method of eigen—.
function expansion, and the basis functions are the free waves of the
shallow water equations. Knowing the structure and dispersive char-
acteristics of the basis functions helps us in understanding the
behavior of the solution in space and time.

The eigenfrequencies are discussed in section 3.1 and the process
of dispersion of energy is treated in section 3.2. Section 3.3 deals
with the eigenfunctions and the energetics of the free modes. We also
compare some of the results obtained on the equatorial B8-plane with
the sphere for €e=10 and €=500. The €=10 case closely corresponds
to the external mode (also called the divergent barotropic mode) of
an isothermal atmosphere and the £ =500 corresponds to the equivalent

depth of the first internal mode of the two-level baroclinic model
discussed in section 2.1.

Lindzen (1967) has discussed the validity of the equatorial 8-
plane with emphasis on planetary scale waves. For ¢ sufficiently
large and n sufficiently small the equatorial B-plane provides us with
a good approximation for the eigenfrequencies of free waves on the
sphere. This statement is based on the behavior of the governing
equation for the meridional velocity (2.32) as a function of y; if

Y <Y where
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yT=/wk2-k+wﬁk- = YA, (3.1)

the coefficient of Vi in (2.32) is positive and the solution is wave-
like. If y >y the solution of (2.32) is exponentially damping in
order to satisfy the boundary condition. 1In dimensional form (3.1)

can be written as

o o SRR
‘yT = a3 % Von+1 . (3.2)

since the Tength scale [L] (2.21) can be written as

L] =ac® (3.3)

where a is the radius of the earth and € is Lamb's parameter defined
by (2.99).

When the turning latitude Y1 is such that Yy <¥p (where Yp is the
latitude of the pole) we expect (2.32) to be a reasonable approxima-
tion. Figure 3.1 shows yrasa function of € and it is clear that for
£=10 (external mode) the equatorial B-plane gives valid approximations
only for n<2. For an internal mode of equivalent depth H=180 m, we
have =500 and the condition Y1<¥p is satisfied up to n=25. 1In

this chapter we shall also discuss the relative error of the B-plane

for £=10 and £=500 in view of the condition Y1 <¥p -

3.1 Eigenfrequencies - equatorial B-plane and sphere

Figure 3.2 taken from Matsuno (1966) shows the eigenfrequencies
of the free wave solutions of the shallow water equations on the
equatorial B-plane as a function of the wavenumber k. The mixed
Rossby gravity wave 1links the low frequency Rossby regime to the

higher frequency westward propagating gravity waves. The difference
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between the modulus of the frequency of eastward and westward propa-
gating gravity waves is shown in Figure 3.3. The frequency of the
westward propagating wave is larger than that of the eastward wave.
The maximum difference occurs for the low order meridional modes
between the non-dimensional zonal wavenumbers 2 and 3. The maximum
difference is approximately 15% for the n=1 meridional mode and
consequently the phase speed of the westward propagating gravity
wave is about 15% faster than the companion eastward wave. The effect
of the rotation of the earth on gravity waves decreases as the wave-
length decreases and therefore the eastward and westward waves tend
to the same frequency in absolute value.

The effect of spherical geometry on the frequency of free waves
of the divergent barotropic model is shown in Figures 3.4 and 3.5 for
£=10 and £ =500, respectively. The ordinate of Figures 3.4 and 3.5
is the percent error of the 8-plane eigenfrequency relative to the
sphere eigenfrequency and the abcissa is the wavenumber s on the
sphere (s=0,1,2, ...). In order to compare the eigenfrequencies
on the sphere to those obtained on the equatorial B-plane, we have
two problems: {(a) the relationship between the non-dimensional wave-
number k on which the 8-plane eigenfrequencies are cependent (Figure
3.2) and the wavenumbers allowed on the sphere, and (b) the equiva-
lence between the meridional indices n (on the equatorial B-plane)
and 2 (on the sphere) as defined in Chapter 2.

The non-dimensional wavenumber k in the B-plane analysis is

related to the wavenumber s on the spnere Dy

b= %y RN B s - (3.4)
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Figure 3.4 Percent error of the equatorial B-plane eigenfrequency

relative to the corresponding eigenfrequency on the
sphere as a function of the zonal wavenumber s ( on

the sphere ) for all typ2s of waves and various merid-
ional modes n as labeled. The equatorial g-plane values
were made dimensional assuming €=10.
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Thus, the zonal periodicity imposed in the zonal direction of length
2Ta on the equatorial f-plane implies that k takes the values shown

in Table 3.7.

k
S
=10 SR 500|

0 0 0

1 0.56 0.21
2 112 0.42
3 1.69 0.63
4 2.29 0.85
5 2.81 1.06
6 3.37 1927
7) 3.94 1.48
8 4.50 1.69

Table 3.1 The non-dimensional wavenumber
k for zonal periodicity of length
27a as a function of €; s is the
wavenumber on the sphere.

As for the matching of the sphere meridional index 2 and the equatoria:

g-plane meridional index n, we consider the asymptotic form of the

eigenfrequencies on the sphere for e+« given by Longuet-Higgins (1962}.

The correspondence between Rossby waves (RW), mixed Rossby gravity
waves (MRGW), westward gravity waves (WGW), Kelvin waves (KW) and
eastward gravity waves (EGW) on the 8-plane (index n) and on the sphers

(index %) is shown in Table 3.2.
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wave type n L
KW n=-1 =0
EGW n>0 2>1, 2=n+]
MRGW n=0 £=0
RW nx1 t>1, &=n
WGHW nal 2>0, 2=n-1

Table 3.2. Correspondence between the B-plane index n
and the sphere index 2 for a Kelvin wave .
(KW), eastward gravity wave (EGW), mixed
Rossby gravity wave (MRGW), Rossby wave (RW)
and westward gravity wave (WGW).

Table 3.2 shows the n>1 Rossby modes on the g-plane are identi-
fied with the rotational waves with the same meridional index on the
sphere. The Kelvin wave is identified with the lowest eastward propa-
gating mode (£=0) of the first class as defined by Longuet-Higgins
(1968); the eastward propagating gravity waves for n>0 merge into
the 2 =n+] eastward modes of the first class. The mixed Rossby
gravity wave (n=0) corresponds to the 2=0 rotational mode of the
second class and the westward gravity waves for n>1 are identified
with 2=n-1 westward modes of the first class.

Returning now to Figure 3.4 (for €=10) we see that the eigen-
frequencies of the n=2 rotational waves are determined by the B-plane
to within 20% only for s=1, 2. The error for larger values of s
remains approximately constant at 30% up to s=7, decreasing for s>7.
Although the turning latitude for n=2 and £=10 is less than the
latitude of the pole in the equatorial B-plane (Figure 3.1), the phase
speed of the rotational mode is overestimated by as much as 30%.

The mixed Rossby-gravity wave (n=0) is well estimated since the errors

are within 10%. The frequency of westward propagating gravity waves



up to n=2 is estimated to within 15% by the equatorial B-plane but
the error is positive for long waves and negative for short waves,
thus affecting the process of dispersion of energy as we shall see
later. The eastward gravity waves seem to be more sensitive to the
B-plane approximation than their westward companions. The phase
speed of Kelvin waves is underestimated by less than 10% for long
waves, decreasing towards higher s.

For the £=500 case (Figure 3.5) we have extended the wavenumber
domain on the spheres up to s=24 in order to cover approximately the
same range in the non-dimensional wavenumber k domain as in the =10
case (Table 3.1). According to Figure 3.1, the turning latitude of
the n=8 mode is approximately 5600 km and therefore we expect the
n=38 frequencies to be well estimated. However, the frequency associ-
ated with rotational modes is not as well estimated as that of gravity
modes; the 8-plane frequency is underestimated for s=1 (-10%) and
overestimated for large s (over 25% for s=20). At s=24 the relative
error curves are leveling off except for the n=8 Rossby mode. In
section 3.2 we discuss the effect of the larger error for the rotation-
al frequencies on the process of dispersion of energy.

The g-plane estimate for €=500 (Figure 3.5) has a tendency to
overestimate (underestimate) the magnitude of the phase speed of Tonger
(shorter) gravity waves but the magnitude of the relative error is
smaller than for rotational waves. Although the errors for ¢ =500
are acceptable, we have to consider the dispersion of energy which is
related to the slope of the frequency curves with respect to zonal

wavenumber. This is the objective of the next section.
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3.1.1 Dispersion of energy

The key concept for understanding the process of dispersion of
energy is the group velocity. In a dispersive system the speed of
propacation of energy is different from the phase speed of waves; the
energy is propagated with the group velocity (Lamb, 1952; Rossby, 1945;
Longuet-Higgins, 1964). '

The east-west group velocity on the sguatorial 8-plane can be

.k
amk 2wk
c. = = " (3.5)

written as

which, together with the dispersion relation (2.35) gives Figure 3.6
for Rossby waves, gravity waves, mixed Rossby gravity waves and non-
dispersive Kelvin wave as a function of zonal wavenumber k (abcissa)
and n as labelled.

Figure 3.6 snows that as k increases the group velocity of gravity
waves and Rossby waves tends to 1.0 and 0.0, respectively. For k<1,
the magnitude of the group velocity of Rossby and gravity waves is
comparable. Long Rossby waves disperse towards the west (cg*:O) and
short Rossby waves have a small but positive group veiocity (eastward
dispersion). The westward propagating gravity wave also shows this
peculiar behavior but the spectral region of eastward group velocity
is very small and near the origin (ultra-long waves). The qualitative
behavior of the n=0 mode is similar to the n>1 gravity waves but the
whole pattern is shifted towards positive group velocity. Thus, the
mixed Rossby gravity wave behaves like a gravity wave for small k and

as a Rossby wave for larger k from an energy dispersion point of view.
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Figure 3.6 Group velocity ¢ on the equatorial 2&-plane
as a function of ghe zonal wavenumber k (abcissa )
and meridional mode n ( as labeled ) for various
types of waves as indicated.
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So far we have discussed the group velocity of the free wave
solutions of (2.4) assuming an infinite domain in the x-direction.
Let us consider now the concept of group velocity when the allowed
zonal wavenumbers are quantized by the imposed zonal periodicity,

following the work done by Hoskins et al. (1977).
(k1x+w.|t)

and ei(k2X+w2t)

Let us consider two waves of the form e’
called waves I and II, respectively. If we set the phase difference
between waves I and II equal to 2wj (j=0, £1, #2, ...) we can write

the following equation relating x to t:

27j - (w.l -wz)t
X = =t J=OL s 22, can o (3.6)
1.7 %2

The above equation defines the solid lines in the (x,t) plane shown in
Figure 3.7. At a point (x], t]) on these lines, waves I and II have
the same phase except for a 27 factor. Without loss of generality,

we may assume that at t=0 there is a crest of wave I at x=0 so that

crests are located at Xo = Z{%ﬂ (m=0, #1, %2, ...) initially.
K

Crests of wave I move in time with the phase speed ey = = Gl' defining
1

the family of straight lines

2mm - m1t
K e Qs FHl i T8y s : (3.7)
1

These Tines define the position of crests in the (x,t) plane as shown
in Figure 3.7 (dashed 1ines). The interception between the straight
lines defined by (3.6) and (3.7) define points in the (x,t) plane
where both waves reinforce each other i.e., the phase difference

between wave I and Il is zero (except for a factor 2w) and both waves
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snow a crest at the interception point. If we take j=0 and m=1 we
reproduce Hoskins et al. (1977) formulas for the distances and times
between trough reinforcements. The interception points for arbitrary

J and m have coordinates

w1(j-m)-km Wy

Xq o{jsm) = 2w ——— (3.8)
-I ,2 k-ldlz kzw'l
j.m) =2m e : i

with J 20, £l 22y oo a0d =05 215 224
We can now interpret Figure 3.7 more carefully. The phase dif-
ference lines are labelled j=0, *2, ... according to (3.5) and the

w2-w
slope iz—k; is that of the 3-plane mixed Rossby gravity wave at

k]= 1 (wave I) and k,=3 (wave II). The lines labelled m= 1,3, ...
are defined by (3.7) and the slope Cq is that of the mixed Rossby
gravity wave for wavenumber k1= 1. The train of reinforcement points
appears to move along the constant phase difference 1ine (solid line)
with speed cg given by

Wy = W
¢t T - (3.10)
¥ R

In the T1imit when kz—*k}, we have the standard definition of group
veloctiy Cg::%% (3.1). However, when periodicity is implied in the
zonal direction (3.10) is the appropriate definition of the speed of
propagation of the energy associated with waves I and II (Hoskins
et al.,1977).

Figure 3.7 shows that at t=0 we have reinforcement pcints

situated at x = §l¥§L- (3j=0, *2, £4). 1If we follow this train in
172
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time along constant phase difference 1lines, reinforcement will occur

at the time interval At1 2 given by

k2 -k
- k

1

~ {(3.11)
241

&t1,2 = 2 K

e

and the successive distance between the reinforcement points of the

same train will be

(¥%]

——t

M2
—

Wy = W
1 2 I
AX = 2n|rv———— 58
142 |k1w2 - kzm-i I

as indicated in Figure 3.7.

The direction of propagation of the reinforcement train depends
on the slope of constant phase difference lines defined by (3.10).
For the two mixed Rossby gravity waves shown in Figure 3.7 the train

of reinforcement points moves towards the east at c¢_=0.16 (in dimen-

9
sional units cg= 0.16 VgH ) since the slope is positive. A negative
cg implies westward propagation of energy.

The distance between reinforcement points (aixxi’2 in degrees of
latitude), time interval in which they occur (at1’2 in days) and
implied group velocity (c],2 degrees per day), based on the Hough
function frequencies for =10, are shown in Table 3.3 for the mixed
Rossby gravity wave (2=0) and for the £=1, 2 and 8 meridional modes
of Rossby waves. The number in parentheses is the percent of the
R-plane estimate relative to the sphere.

The reinforcement train associated with low meridional number

Rossby waves propagates towards the west in the longwave part of the

spectrum and towards the east for shorter waves. For higher meridiona’



65

e=10
| ?
s, . 3 5 1 9 3 5 7 3 = & 3 B3
T 710, 10 L ki,  oR 40 3% 9 62 5 E s
(-1) (=2) (-3) (-3) (-7} (-3) (-2) (-1) (-6) (-1} {i} (2
3 1.4 1.5 1.6 38 31 27 27 2 1
MRG (-2} (-3 (-9) (0 (1) (1) (16; (1) (1)
ey B 18 24 272 #ou
b=, (-10} (-10) (2) (3) (13} (13)
7 | 2.4 21 3
! (-3) (3) {13)
1{66 55 53 52 @8 19 0 6 =13 -3 -0 1
(23) (8) (3) (1) (125} (183%-1000%-76) (83) (163}{»1200){-7¢}
| 3 31 31 3.2 21 21 19 7 71 6
B (-i7) (-19) (-20) (-16) (2) {2) (2) (21 {2}
L 55 3 21 19 3 B
(=27) {-24) (6; 17) (43; (22}
| 7 3.4 12 5
i (-24) (2} (22)
1{11.3 9.3 9.1 8.3 12 4 19 7 11 -5 -2 -1
i sy (17) (7)) (3) (198) (175)(12)(273)  (99) (135} {173} (285}
3 | 5.2 5.5 5.0 8 12 13 g . 2 .3
R l (-22) (-23) (-26) (-75){-23) (-4} (-63) (C) (29}
(i=2) 5 4.6 4.6 15 15 103
| (-32) (-33) (9) {13 (s1) (€3}
7 4.7 15 3
{-34}) (18} (7€}
1]104.177.7 66.3 61.0 426 226 124 101 -4 -3 -2 ¢
(37) (-3) (-25) (-33) ({257} (158)(102) (77) (180 {179} {173} (Is3
3 3.3 29.5 27.2 60 36 23
Ri (=30} (-33) (-52) (91) (57} (29}
. W B 22.6 20.3 15 38
! {-57) (-£0) (7} {45)
7 12.5 2
i (-52) (36}
| 't o {(days} “‘.._2 (g 1a-ti:u-:e)

; Table 3.3 Distance between reinforcement points &x1 5
o (degrees of latitude), time interval in '°°
which they occur Aty » (days) and implied
group velocity (degrées per day) for the
mixed Rossby-gravity wave (2=0) and some
Rossby waves (2=1, 2 and 8) on the sphere
for € =10.
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modes the spectral interval of westward energy propagation is much
broader but the group velocity is smaller. The energy associated
with the shorter waves tends to move as a whole pattern since the
frequencies 1ie on almost straight lines (Figure 3.2).

If the initial disturbance has most of the energy in the 2=1,
1<s<3 Rossby modes the reinforcement points will occur about 90°
westwards after about 6.5 days. Given an initial disturbahce with
maximum energy in the short wave part of the spectrum of the 2=1
mode, Table 3.3 shows that reinforcement occurs approximately 20°
towards the east after 3.2 days.

The time between reinforcements associated with higher order
meridional modes is generally so large for long waves (see the 1=8
mode in Table 3.3) that it is of littie or no meteorological signifi-
cance. For short waves the time between reinforcements is of the
order of 20 days for the 2=8 rotational mode and the implies group
velocity is almost zero, reflecting the stationary nature of the
disturbance.

The characteristic positions and times of reinforcements (ax1,2
and At1’2 respectively) and the implied group velocity for energy
initially in long waves (1<s<3) or in shorter waves (7<s<39) for
2=0, 1, 2 and 8 and for £=500 are given in Table 3.4. The time
between reinforcements at],z is very large even for the low order
meridional modes except for the mixed Rossby gravity wave. The

implied group velocity is towards the west for n>1 and towards the

east for the mixed Rossby gravity wave.
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There are two basic differences between the dispersive character-
istics of internal and external rotational modes: (a) the internal
modes disperse the energy towards the west even for shorter zonal
scales (s>5); and (b) although the group velocity of internal long
zonal scales (s:iS) is not much smaller than the external group veloc-
ity, the time between reinforcements is much larger thus implying that
the two waves go around the earth many times before reinforcing each
other (approximately 6 times for the s=1, 2=1 rotational mcde on
the sphere).

The dispersion of energy due to gravity waves on the sphere is
summarized in Table 3.5 for initial energy in the regions 1<s<3 and
5<s<7 and for €=10 and ¢=500. As in Tables 3.3 and 3.4, the
parameters ﬂt],z, &x]’z and c1’2 are shown in units of days, degrees,
and degrees per day, respectively. The numbers in parentheses are
the errors of the B-plane estimated relative to the sphere.

The group velocity for gravity waves (Tabie 3.5) is on the order
of 14C° day"] to 220° day_] in absolute value for the £=10 modes

! for the rotational modes given in

compared to -13° clay"1 to 7° day
Table 3.3. The upper limit of 1.2 for gravity waves is reached for the
reinforcement between shorter waves, and mere important, At],z . ﬁx}’z
and <:1£,2 are almost independent of S and S - Therefore, the pattern

L or 283 ms'] with very 1ittle

moves as a whole at about 220° day~
dispersion, at approximately the phase speed of pure gravity waves
(c=290 ms'] or 226° day']) on a fluid of depth H=8400 m (=~ 10).
Higher meridional modes for £=10 are almost non-dispersive including

the long waves as shown in Table 3.5 for n=8 (both eastward and
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westward modes). Reinforcement for gravity waves typically cccurs in
less than a day except for the Towest meridional mode and towards the
west (east) for westward (eastward) propagating modes. If the initial
condition contains high energy in these modes the dispersion due to
rotational modes may be obscured by the fast dispersive character of
gravity waves since they go around the globe in a time-scale shorter
than the typical reinforcement time of Rossby waves.

A different picture emerges when considering the dispersion
associated with the internal modes shown in Table 3.5 (e=500). The
group velocities of the westward gravitational modes and of the in-
ternal rotational waves shown in Table 3.4 are comparable at least in
the Tong wave part of the spectrum. However, the time and distance
between reinforcements are much shorter (ﬂt1,2 in the order of a few
days compared to 12 to 2720 days for the rotational modes in Table
3.4). Although the upper limit on the absolute value of the group

velocity for €=500 is 32° ciay'1

, Table 3.5 snows the C1,2 is well
below this 1imit for the spectral regions under consideration. How-
ever, |c],2| tends toward the upper limit as S1 and S, increase.

Another point that should be raised concerns the east-west
asymetry produced by the different dispersive characteristics of
westward and eastward gravity modes in agreement with Figure 3.3.
Except for large 2, ﬁt],z 3 Ax]’z ana ¢y , may differ significantly,
and for initial energy in small & the asymmetry of the gravity wave
front can be quite marked as shown in Chapter 4.

The distortion of the process of energy dispersion by the equa-

torial B8-plane approximation is shown in percent error relative to the
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sphere in Tables 3.3, 3.4 and 3.5 (number in parenthesis). For the
external modes the errors are consistently small (less than 15%) only
for the mixed Rossby gravity wave. If the initial energy is in certain
zonal wavenumbers of the 2=1 and 2 Rossby modes, the B8-plane esti-
mates of ﬁt],Z or &XT,Z may be within 20% of the correct result on the
sphere as seen in Table 3.3. However, the error distribution as a |
function of wavenumber is such that we cannot have both ﬂti,z and Ax}’z
within 20% in the same spectral region.

Errors in estimating Ax]’2 for Rossby modes are likely to be very
large if the zonal wavenumbers Sq and S, are on each side of the hump
of the frequency curve. The group velocity becomes negligible and
the reinforcement points remain almost stationary, occurring at the
time interval given by ﬂtl,z. The spectral regicn for which the
group velocity changes sign is a function of 2 as shown in Figure 3.2.
Thus, if the initial energy is in high order meridional modes the
stationary disturbance will only appear if the maximum energy is in
higher zonal wavenumbers.

An interesting aspect of the dispersion of energy for e=500 is
related to relatively Targe errors for At]’z and éx],z in view of the
small error for individual frequencies (Figure 3.5). The B8-plane
frequencies are within 10% or less of the solutions on the sphere for
1<s<§ and 2<8 but &t]’z and Ax]:z can be overestimated by more than
80%. Even for the 2=2 Rossby mode, the relative errors of ax]’z and
&t]’z are larger than for individual frequencies. This is a conse-
quence of the slope of the relative error curve for Rossby modes dis-

cussed in section 3.1.
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The B-plane yields better results for the dispersion by gravity
modes than by rotational modes. Figures 3.3 and 3.4 show that the
error is estimating individual frequencies of eastward gravity modes
is larger than for the westward gravity modes. As a consequence the
g-plane timing and positioning of eastward bound reinforcement points
is not as well estimated as the westward bound reinforcement points.

The non-divergent barotropic model studied by Hoskins et al. (1977)
performs very well with respect to the energy dispersion between short
waves (s>7). However, for long waves and specifically for s<3 the
dispersion is drastically affected by the non-divergence assumption.
In the non-divergent model the group velocity between ultralong waves
of the 2=1 mode is positive (Table 1 of Hoskins et al., 1977) whereas
in the divergent model, the reinforcement train moves towards the east

(c1,2= -13° day"]

for 2=1, 1<m<3). For waves such that 3<s<7 the
group velocity towards the east implied by the divergent model is
about 30% slower than the non-divergent model prediction.

The excessive westward wave speed of rotational ultralong waves
is discussed by Phillips (1963). For ultralong waves the magnitude
of horizontal divergence is not negligible compared to the vertical
component of the vorticity (Burger, 1958) and therefore any model built

upon the assumption of small or zero divergence is not appropriate to

describe the characteristics of such ultralong waves.

3.2 Eigensolutions - equatorial B-plane and sphere
The eigensolutions of the linearized shallow water equations on
the equatorial 3-plane have been previously discussed by Matsuno (1966].

For the sake of completeness we discuss some of the characteristics
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of the eigensolutions that are relevant for the interpretation of the
results presented in Chapters 4 through 6. We shall first discuss the
normalized zonal kinetic energy Ku, the normalized meridional kinetic
enerqgy KV and the normalized available potential energy P as functions
of non-dimensional wavenumber k and meridional mode n. Secondly, the
horizontal structure of the eigensolutions will be reviewed. Although
Matsuno (1966) compared the eigensolutions for different values of n
but the same zonal wavenumber k, he did not compare waves of the same
meridional number n but different zonal wavenumbers. In this section,
we shall discuss this case since it is important for the interpretation
of the results presented later. We also compare the energetics and
structure of the free wave solutions on the equatorial B-plane with

the results obtained on the sphere.

3.2.1 The energetics of the eigensolutions
The normalized zonal kinetic energy Ku’ the normalized meridional

kinetic energy KV and the normalized available potential energy P are

defined by
+ o
_ 2
LT OR (3.13)
+
(74 P, 2
LG _fw Ve 1 (y) dy , (3.14)
+ o
| b (¥) dy (3.15)

The normalization condition (2.59) implies that

Ku+KV+P=I/2. (3.16)
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Substituting the definition for - r(y) given by (2.59) into (3.15),
-] L)

we obtain

2 2
P, ol g0l gl gl NY LB
/ Eli'_".'-;f-_'f._-k ) Pjﬂi‘lw_ Tgik‘i‘f_i_k_?_ Hyq 1Y) - (":k,n_,r' k)n { "_t:,i;_,_.v-"'k:' B (0) B (y3] a2 )

S Binih o | s

n 2" al oo E("‘k.n.:" K in+i)+n {:"k.n.rz + k‘?) + ('"k.m: - kz}]

(3:17)
for n>1. The third term in the integrand vanishes because of the
orthogonality of Hermite polynomials (A.1). The terms 1nv61ving the
square of Hermite polynomials are easily evaluated using (A.2). The

final result is

= 1
P 57 (3.18)
(U-}k = K )
sHsT
2491 * 5 5
(wk,n,r_ k)* (n+1) +n (mk,n,r+ k)
for n>1. A close Took at the expression for U g r(y) in (2.5%)

reveals that

K =P . n>1 (3.19)

because the only difference between KU and P is the sign of the third
term in the integrand of (3.17) which vanishes as discussed above.

Using (3.16) and (3.19) we finally have

KV =1-2P , Bx1 . (3.20)

The available potential energy of the n=0 mode can be obtained

in a similar way and the result is

PR & ! , (3.21)




The eigensolution corresponding to the Kelvin wave (n=-1) is indepen-

dent of the wavenumber k according to (2.55) and therefore

= — = e ( 77\.
Ku P=i, Kv 0 for n=-1. (3.22)

From section 2.3.3, we know that for the geostrophic modes w + 0

as k=0, and therefore by taking the 1imit of (3.18) as k~0 we obtain
K =P =1% for geostrophic modes . , (3.23)

Figure 3.8 shows the magnitude of Ku or P (a) and Ky (b) for the
eastward gravity waves (dashed Tine) and westward gravity modes (solic
line) as a function of the non-dimensional wavelength k (abcissz) and
n as labelled. The magnitude of Ku (or P) increases with increasing
k and decreasing n for the gravity waves and accordingly, the magni-
tude of KV decreases as k increases and n decreases. The Kelvin wave
(dash-dotted Tine in Figure 3.8) has no meridional kinetic energy
since v=0 on the equatorial 3-plane. Only minor differences are
found between the eastward and the westward gravity modes; Ku of the
eastward mode is larger than Ku of the westward mode, the difference
being Targer for small k and n. As k increases the kinetic energy
of the n'th esastward mode merges into the (n+1)'th westward mode.
For k=0 both modes have exactly the same Ku (or P). As for Kv , the
same behavior is found i.e., the merging of the n'th eastward gravity
mode into the (n+1)'th westward gravity modes as k increases. At
k=0, all gravity modes share the same meridional kinetic energy
(K, =0.25). \ | |

Figure 3.9 is the samé as Finge 3.8 bﬁt for Rossby waves. The
mixed Rossby gravity wave has been included on this diagram although

= |
it should have been displayed as a westward gravity wave for k<2 2



76

" "Abuasua |eLjuajod d|ge|LeAr Y3 SL ¢ dddym
d=") aue|d-g |eLJ03enbd Sy} u] "palage| Se u pue ( eSSLIGe) ¥ JO UOLIDUNS B SB SIARM
A3Laeab 40y (q) My pLati-A 9yz uL pue (e) "y ploLy-n ay3 uL ABJaua JL]9ULY PazZL|ewdoN g°€ aunbLy

S0°0

oLo

S0

0c'o

§C0

~SZL0
0GL0
GLL'O

N
d M
0czo

szC’0

0sT0




"S9ARM AQSSOY 404 ING 8°E 24nbL4{ se aueg g°¢ 24nbL4

77

@

I~

oLo

ozo

0€0

-0+0

0G0

[

!

1

MY

—60°0

—10L'0

e N

1610

—0¢CC

T ALY




78

as discussed in section 2.3.1. As a first approximation Figure 3.9
shows that Ku is larger than Kv provided k<n, i.e. zonal motion
predominates over meridional motion for large n and small k. For
ultralong waves (k<1) however, most of the kinetic energy is in the
zonal direction. At k=0 (the geostrophic modes) K, vanishes since
v =0 according to (2.66). The energetics of the mixed Rossby gravity
wave tends towards the typical behavior of Rossby modes for large k
and to gravity modes as k decreases to zero.

The ratio of total kinetic energy (K = Ku4~KV) to the total energy
(E=K+P) is shown in Figure 3.10.a for the eastward gravity waves
(dashed lines)and for the westward gravity waves (solid Tines) and in
Figure 3.10.b for the Rossby waves as a function of zonal wavenumber
k (abcissa) and n (as labelled). The ratio tends to 0.5 for gravity
waves and to 1 for Rossby waves as k increases. For k=0, the ratio
is 0.75 and 0.5 for gravity waves and Rossby waves respectively. The
mixed Rossby gravity wave is again seen to behave as 2 Rossby wave for
large k and as a gravity wave for small k.

The energy of Rossby waves is thus seen to be almost equally
partitioned between kinetic and available potential energy for ultra-
long waves while most of the energy is in kinetic form in short waves.
The partition of total energy in kinetic and available potential forms
of energy in gravity waves is not as sensitive to k as Rossby waves
are since

0.5<K/ (K+P)<1 for Rossby waves
and

0.5<K / (K+P)<0.75 for gravity waves .
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Another important conclusion that can be drawn from Figure 3.10 is that
more information is contained in the wind field than in the geopoten-
tial field for short Rossby waves since the ratio K/E tends to 1 as

k increases. In gravitational modes both wind and pressure fields

are important since the ratio K/E tends to 0.5 as k increases.

The asymptotic behavior of Ku (or P), KV and K/E of the B-plane
free waves as k tends to zero (not shown) agree with the e~ case on
the sphere. The results on the sphere as a function of € are shown
in Figures 14 (s=0) and 15 (s=1, 2) of Longuet-Higgins (1968).

Let us compare now the =500 equatorial B-plane estimate of partition
of energy with the sphere results discussed by Longuet-Higgins (1968).
For the zonally symmetric case, the B-plane estimate of K/E for gravity
waves differs from the sphere by less than 2% up to £=5. The geo-
strophic modes are not discussed by Longuet-Higgins. For s=1 and 2
(k=0.21 and 0.42 according to Table 3.1), the B-plane fails to re-
produce some of the features on the sphere. The difference appears

in the trend of the ratio K/E as a function of the meridional index.
The ratio decreases as a function of the meridional index on the
sphere for class two waves and on the B8-plane the reverse is true
(figure 3.8.a). The magnitude of the relative error is however, less
than 3% for the modes shown in Figure 3.8.a and therefore comparable
to the B-plane errors already discussed in sections 3.1 and 3.2. For
rotational waves the ratio K/E is less than 0.5 for s=1 and 2 on the
sphere while on the B-plane it is larger than 0.5 (Figure 3.8.b), but

the relative error is less than 5% for the modes shown in Figure 3.10.
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The 8-plane seems to perform slightly better for gravity waves
(e =500) as far as the ratio of kinetic energy to total energy is
concerned. The energetics of Kelvin waves and mixed Rossby gravity
waves are also well reproduced by the B-plane.

The ratio of kinetic energy to total energy K/E for the externa].
mode as a function of s (ordinate) and meridional index & (as labelled)
for gravity waves and rotational waves are shown in Figure 3.11 (taken
from Kasahara, 1976). Although the general trend as a function of s
is the same as in the equatorial B-plane case (Figure 3.10) the trend
as a function of % is opposite (refer to Table 3.2 for the relation-
ship between 2 and n). The conclusions drawn from the 8-plane case
concerning the relative importance of the geopotential and wind fields

are still valid provided that the dependence on £ (or n) is reversed.

3.2.2 The two-dimensional structure

The horizontal structure of the normal modes of the shallow water
equations on the equatorial R-plane can be conveniently displayed
independently of Lamb's parameter €. Figures 3.12-3.17 show the two
dimensional distribution of the wind and geopotential fields for k=0.5
(a) and k=6.5 (b). 1In all figures one wave length is shown in the
x-direction and the ordinate is the non-dimensional y . Figure 2.3
allows us to readily estimate: horizontal distance in Figures 3.12-3.18
in dimensional units provided e is given, e.g., for €=10 one non-
dimensional length unit is approximately 3600 km. The relationship
between the non-dimensional ivavenumber k and the wavenumber s on the
sphere is given by (3.4). Thus, k=0.5 corresponds to s¥1 and k=6.5
to s¥12 for £=10. For ¢=500 the nearest integer wavenumbers on the

sphere are s=3 and s=32 for k=0.5 and k=6.5 respectively.
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Figure 3.11 Ratio of kinetic energy K ( K=Ky+K, ) to the total
energy E ( E=K+P ) for gravity waves and rotational
waves as a function of the zonal wavenumber s and
meridional index £,as labeled on each Tine.

( after Kasahara,1976 )
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Rossby modes are shown in Figure 3.12 for n=1 and in Figure 3.13
for n=6. The balance of the pressure and wind fields is such that v

is approximately in geostrophic balance with ¢ for long waves and u

33 (Qi) is large {(small) for
ot ‘ot

Tong (short) waves. The relationship between the kinetic energy and

with ¢ for short waves. Consequently,

available potential energy discussed in the previous section is
evident when comparing Figures 3.12.a and 3.12.b,namely, the small
geopotential deviations for larger k (the geopotential field is scaled
by 1000 in Figure 3.12.b) implying that most of the energy is in kinetic
form (mostly in meridional motion) as shown by Figures 3.9 and 3.10.b.
Figures 3.12 and 3.13 indicate the following about the latitudinal
distribution of P and K: for large n (Figure 3.13) pressure gradients
are small in the equatorial regions contrary to the Tow n case (Figure
3.12). On the other hand, the wind intensity is high in the equatorial
region in both cases. It can be argued that the tendency for geo-
strophy in equatorial areas makes u (or v) large since the Coriolis
parameter is small. The maximum amplitude of the geopotential field
shifts northwards as n increases as shown in Figures 3.12 and 3.13.
The latitudes of wind maxima are, however, related to the meridional
number n and do not have a definite latitudinal preferenca.

Figures 3.14 and 3.15 display the n=1 and n=6 westward gravity
waves respectively. The n=1 is a peculiar wave since for larger k
it looks like a Kelvin wave (Figure 3.17) moving towards the west
(notice the convergence at x =0 which tends to build the high pressure).
However, the pressure and wind fields are m out of phase with respect
to the Kelvin wave. The smaliness of the meridional wind component

could have been anticipated by the spectral distribution of kinetic



aul

*A 9pnjLje| |eUOLSUSWLP-UOU 3y} SL DIRULPAO Y] PuR X3} SL BSSLIOQR
“((91°¢) 03 burpaodde ) g0 sL AB4BUD [BI0] 3Y] 10Y] YDNS PIZL[RWAOU dJe [eLjuay

-0d0ab pue puimM dy] *s3Lun |eUOLSUBMWLP-UOU ul Bue|d-g [eL403enba 8yl uo dAem AQSSOY |=U 3Yy] Z|°'E a4nblL4

G 9=3 (q) G'0=1 (v)
. o o G 0=
00607 49 PaTEdS ¢
- —
290 z Z 290 2 o
T T T Y _\/\. T T T T
S e =t ey Taox oA
. e A e o
- WP e N e T b s
©Q P M Yl /— e P~ i e &
- ‘\.—.ﬂvﬁ w LM v, Ty e mgiasse B ._. :
f f 3 ”_._”H \ i T \mQM.I././,._ _...H '
~ . ! I A # .
Mlwl s A &Ry b i & F Elayd, o
= & o ek \u— R d 3 ///a.,..: = enw e dde &
o v . S N e L i
= L .w...lh.l.b. .l“ = /l..ff.lfﬂlr‘l..l. o< Ql_\ - .
A A - - = iy i _” JT!..‘I!lO.I.\T — 4 .
- - - - - - - S G f— g -—— - - -
I N S H ¥ -k — i — 4
Ry TR R e T U
i \M e ..|I“ .rf# b s \\l\ = .-r-....”z ;u,f ’”_. ._
A7 - ...i SO N le gy~ \\mmlmu.lﬂ..r g A \ il
[ ] \\ - \ 1
! —\.nu.h__ru ”/ w_ M g Py T 5 Y ._._
A = . ' [ 1 r
’ﬁ % .\ﬁx »q._ RN s % e \u.“ ey o
e S T i '
o M el v S e T L
R e R o e # g
e ol T L % i 2o e s 1 % 2
.a.:.»l . . . . & ' ; i " i \
1 : 1 3 .x/\_ ) i 1 )

EIGSRRNA



Ly

TOARM AQSSOY 9=U 9y} 404 INq 21 ¢ aunbL] se awes ¢|°¢ 24nbl 4

§°9=4 (4) G 0=% (®)
o
. P
050 Z [§740] Z
5 3 i 8 AL O
! ¥ T
TEEETY B ey
17 * £ 22t ” o # o ¢ 2~ 59k td N ,.
! e 0 TR ; : v ¥y
SET R LA ) i ’
T oW ey v N e
_;/r..a,,......,@\&‘ N e |
e s A e § 2
..|-. Beil v s St el L = el P T
S WPl - g R
ol “mlu G /..,,.r " fr TR T Y
ﬁ ||1||J-...\__. ¥ g et il 3 LW O SO
v |.I...||||I.i|.||i\ -~ o e A Lt = 2 - . .
o Yose Rt OO em i P T e e -
z 5 - L T — - s\ . ~ T
.. ﬁ __w\ ﬂ.ﬁ.l o= T gl\ _”. » L * - \Jhe_nup.nl - - . . . L.
oA & 80T ey _w Sk L B N Y N
s : J - e G A— g o e . . = W 8
" - a—— lca..ll:.li.ﬂ.i..ﬂ:l ey - e S g — — — - - —
Alh ol ﬂlo a S —wil‘ ﬂ|.l FM.‘.:. - - -— -— e o -— -~ - nA . - - .
§ o o £ | s g9 NG .”l_

3dnLiLv



...... 4
u)‘!‘,
LU
. p oy e
.rtl,:,'-jj'n
1 P
bt LETTL
) e %
jt!?t.'T'
= A 2 :\'
\‘0:1
..1{! B

e e

e - e

SR i BB

l“"l[;‘t'{l
"i{“‘"‘ltl
I

S

3

L .
LVAAG
Rl T J\‘

AR e T S

R

L

oy CYNA V(\\iq@}ﬂ!{ P i .

T \";_\’\l\\\q“,\:l f{/’/‘iﬂ/:;,/' ' A

. \\\‘\\L\.‘L\': ¥ L.L")'/“
A\ s

-
- -.-.ﬁ-ﬁ-.‘-—!‘-H-Q-—Q—..c:.-. T e i
-

e

- - \
'f/ﬁ/;;\\{\\\\‘i‘\ . 5. L Q8
N
/ r’,’fr(r-\\\\\‘ NNANN &0

va b 1L E Hn.rrvl:-j“;:l‘?lﬂ IFESS TN

\

e ————— e

i

[ AAAAL 2w u

e B

v

1

M

QN

)

—_—

Jdn.LLIv

-
ot
o

SN

(b) k=6.5

(a) k=n.5

1 westward gravity wave.

Figure 3.14 Same as Figure 3.12 but for the n



!

=
(=]

"9ARM A1LARAb pABMISOM 9=U 3yl 404 1Nhq 2L € d4anbL4 se sweS G['g I4nbL4

S

§°9=Y% (q)

10

™
T e s e e o
i
—

7

1
1

NN
d = = hY

v oN\=
i

PR
!{.1'%\\':“. L]

La

.\u

HA

- - L]
e N
s g ST NG
-— g 2 :.//
o GO S o~ N
S~ BN
-— P — |
e W A A
o i s

]

P
LR ]

e

]

EIGARRNA A



energy shown in Figure 3.8. As k increases the frequency SRR tends
towards k (Figure 3.2) and therefore (2.59) shows that the eigenfunc-

tion Ep 1 q(y} is approximately given by

2k
e—%yz
B gt¥) =3 0 T (3.24)
e | kel

which only differs from the Kelvin wave eigenfunction Ek,—T,Z{y)
(2.55) by the k factor. Also of some interest is the behavior of the
number of zeros of uk,n,1 and $k,n.1 as a function of latitude as k
increases; the term dependent on Hn+](y) in (2.59) looses its impor-
tance since it is multiplied by (mk,1,1_k)' This effect is clearly
shown in Figures 3.14 and 3.15.

The zonality of the wind field for short gravity waves is also
pronounced for the n=6 mode but not as much as for n=1, as predicted
by the kinetic energy partition (Figure 3.8). No tendency for geo-
strophy is observed for gravity waves; the wind blows towards high
pressure and when the air is flowing parallel to the geopotential
isolines it usually does so in the wrong direction. Thus, local
accelerations of u and v are high in order to satisfy the momentum
equations. As a result of the ageostrophy, the divergence field is
large and the direction of propagation is easily verified by inspecting
the Tocal tendency of 5.

The mixed Rossby gravity wave for k=0.5 and k=6.5 is shown in
Figures 3.16.a and 3.16.b respectively. Two well defined vortices are
centered at the Equator and in Figure 3.16.b we notice the predominance
of meridional motion. The magnitude of the perturbation pressure field
is also very small for the shorter wave (the geopotential field in

Figure 3.16.b is scaled by 10,000).
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The vortex centered at the Equator for the mixed Rossby gravity
wave 1S a characteristic of modes of even order because v is symmetric
about the Equator and u and ¢ are antisymmetric as discussed in
section 2.3.2. Contrary to pure gravity waves, the mixed Rossby
gravity wave shows a marked tendency for geostrophy at higher lati-
tudes. For shorter waves, the v-component is very large, another
characteristic of Rossby waves.

The perturbation geopotential and zonal wind of the B-plane
Kelvin wave are independent of the zonal wavenumber k as shown by
(2.55). The balance between the zonal velocity and the meridional
geopotential gradient is clearly observed in Figure 3.17 which shows
the B-plane Kelvin wave for an arbitrary zonal wavenumber.

Let us consider now the vorticity and divergence fields associated
with the free wave solutions of the divergent barotropic model. We
have already mentioned the effect of convergence in gravity waves in
generating a strong geopotential rise thus building a high pressure
area. This effect can perhaps be most easily identified in Figure
3.14 for the n=1 westward propagating gravity wave for k=0.5.

Figure 3.18.a and 3.18.b shows the divergence and vorticity fields
for this particular wave. The maximum convergence is centered at the
Equator where there is no vorticity. The vorticity comes primarily
from the zonal gradient cf the meridional wind component (%%).

The divergence and vorticity fields of a Rossby wave (k=0.5 and
n=1) are shown in Figure 3.19.a and 3.19.b respectively. The cyclonic
and anticyclonic vortices centered at y=0.8 in Figure 3.12 are clearly

shown in the vorticity field (Figure 3.19.b). The regions of maximum

and minimum convergence are located at y=1.2 but-g out of phase.



91

‘; | | | | I
(=] . . .
= k.
A | o . F . % .
é - " - » - . .
- - - — — — -
Sior R e AR B M 4
i = 1= T e Mol P =N -
5 = s - e -
I i T = E T > \.\ T
- f T A e e —— -
s & SN
- f— Tt g g g gemy N
- — q-—-_h—-@'-—-i-‘—“\w——- — -
Ec‘ — | — I&-— — e — +— [ — J— l —
i. - -—l.q-——_(\;l—r__ S — —| !
BCR T RN, 75> 5 L 2
- = e q.\—_:-— — - & ]
b Jobr o agalul
a— ! [ ST N e e ot - -
R o e e 2
- - - - - < B
il e R N
-2 - s
(=]
(=1
—
g -
[ g =

I | |
T 07 0 7 77
2 E ) 053
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However, the striking difference between the Rossby wave shown in
Figure 3.19 and the gravity wave in Figure 3.18 is the ratio betwezen
the vorticity and divergence maxima; for the Rossby wave the ratio is
approximately 12 and for the gravity wave it is approximately 0.5.
Thus, for the long Rossby wave shown in Figure 3.19 the vorticity is
about one order of magnitude larger than the divergence, and for the
n=1 westward gravity wave the vorticity and divergence are about
the same order. At k=6.5 and n=1 the ratio of vorticity to diver-
gence 1is approximately 300 and 0.1 for the Rossby wave and westward
gravity wave respectively. Thus, as k increases, the divergence
becomes negligible compared to vorticity in Rossby waves and diver-
gence becomes domfnant in gravity waves.

Figure 3.20 shows the ratio of the maximum vorticity to the maxi-
mum divergence (max|z|/max[§|) as a function of the zonal wavenumber
k on the eguatorial 3-plane. For Rossby waves the ratio max|z!/max|$|
is minimum at k% 9.85, increasing rapidly for k20.85. This same ratio
for gravity waves is fairly constant over the range of k shown in
Figure 3.20 (0.1<k<7) being of the order of 0.5 but decreasing as
k increases. The peculiar behavior of the eastward gravity wave in
the neighborhood of k=1.5 does not seem to have a simple explanatien.
Long Kelvin waves have more vorticity than divergence but for k>0.6
the reverse is true. Vorticity and divergence in mixed Rossby gravity
waves are comparable only for small k; as k increases it behaves like
a Rosshy wave and the vorticity far exceeds the divergence for k> 2.

The horizontal structure of Hough functions on the sphere for

e =500 are qualitatively and quantitatively similar to the equatcrial
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B-plane free waves discussed so far and need not be shown here. The
equatorial B-plane estimate of Hough functions with € =10 are qualita-
tively good in the neighborhood of the equator even for higher order
meridional modes. Figure 3.21 shows the 2=6 Rossby wave (a) and the
2 =5 westward gravity wave on the sphere (e=10) for s=1. According
to Table 3.2, which gives the correspondence between the meridional
numbers on the equatorial B-plane and on the sphere, Figure 3.21.a

can be compared to Figure 3.13.a and Figure 3.21.b to Figure 3.15.a.
The qualitative agreement is fairly good with respect to latitudinal

distribution of highs and lows and wind maxima and minima.

3.3 Discussion

When solving an initial value problem by the normal mode technique
it is extremely helpful to know the characteristics of the basis func-
tions since the initial condition and/or forcing term are projected
onto such functions. Obviously, an initial condition near the geo-
strophic balance can be mostly described by Rossby modes. On the
other hand, an initial condition in the geopotential field alone (e.g.
a geopotential bump near the Equator) cannot be accurately described
by Rossby modes since the geopotential gradients near the Equator are
required to be small by geostrophy (see Figures 3.12 and 3.13).

Thus, some characteristics of the solution can be inferred a
priori just by the knowledge of the horizontal structure of the basis
functions. On the other hand, knowledge of the frequency and disper-
sive characteristics of the free waves also help us in understanding
the time behavior of the solution. If the initial condition is pro-

jected mostly onto gravity modes we expect the initial configuration
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to be rapidly dispersed, especially if it contains more energy in the
short wave part of the spectrum as shown in Figure 3.6 and Table 3.5.
Along this same line, the Rossby wave contribution to the initial con-
dition can yield dispersion of energy to the east and west: the west-
ward dispersion is mainly of long waves and the eastward dispersion

is characterized by short waves (Figure 3.6 and Table 3.3). Depending
on the spectral distribution of energy in the zonal direction we may
observe different time behaviors.

The concept of wave reinforcement introduced by Hoskins et al.
(1977) and discussed in section 3.1.1,although based on a frequency
argument,also depends on the meridional structure of the wave. Sup-
pose we are considering two waves: wave I (short) and wave II (long).
Reinforcement occurs when the two ridges (or troughs) come together,
but if the two waves have maxima, minima and zeroes at different
latitudes it is not meaningful to consider reinforcements. However,
for a wide range of meridional modes we have observed that the merid-
ional structure of the free waves is not highly dependent on che
zonal wavenumber (Figures 3.12 to 3.16 are an example).

In this chapter we have also compared the equatorial 8-plane
eigenfrequencies and dispersive characteristics (distance and time
between reinforcement of waves) with the results on the sphere. As
expected, for small equivalent depth (large €) the agresment is fairly
good as discussed in section 3.1. In Chapters 4, 5 and 6 we present
solutions of the initial value problem on the equatorial B-plane and
on the sphere and we observe that the R-plane estimate for =10 is
qualitatively good provided the initial conditon and/or forcing is

located near the Equator and is of small dimension compared to the



equatorial Rossby radius of deformation. Another constraint is re-
lated to the period of time over which we observe the solution: the
characteristic time scale of wave reinforcement for Rossby modes is
of the order of a few days as shown in Table 3.3 and therefore the
evolution of the initial condition over a period of a few hours is
expected to be qualitatively similar on the sphere and on the equa-

torial B-plane.
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4, INITIAL CONDITICN IN THE GEOPOTENTIAL FIELD

The problem of adjustment of the mass and wind fields when an
initial perturbation is given solely in the geopotential field is
treated in this chapter. According to section 2.1 such an initial
condition can be interpreted as an instantaneous mass source or sink,
and the results can be interpreted as internal modes, or as wind shear
and thickness in a two level baroclinic model.

In section 4.1, we discuss the general form of the initial condition
on the equatorial g-plane. The partition of energy between Rossby
modes and gravity modes for a symmetrical g¢-perturbation as a function
of size and latitude is shown in section 4.2. In section 4.2, we also
discuss the effect of the partition of energy on the future behavior of
the solution. In section 4.4, we discuss the solution on the sphere
for the external mode (e=10). A summary of the results can be found

in section 4.5.

4.1 Initial Condition
Let us consider now the initial value problem on the equatorial

g-plane with the initial condition given'by

§ o]
o]
! (4.1)
{x + (y-ygiz]

£(x,y,0) = |exp { - F—m—s } |

i |

. 1

The above expression depends on the two parameters i and L the

first is the e-folding half width of the bell shaped initial condition

and the second is the latitude of its center.
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The initial condition (4.1) can either be interpreted as a
geopotential perturbation in the homogeneous fluid due to accumulation
of mass or interpreted as a temperature perturbation in the stratified
fluid as discussed in Chapter 2. In particular, for the two-level
baroclinic model, the initial condition (4.1) corresponds to a bell-
shaped thickness perturbation with maximum unit value at x = 0 and

1

Y = Xy Taking aAp = 500 mb and a lapse rate of 2.2° C km * we easily

1 and therefore ¢ - 500. The

compute ¢ to be approximately 41 ms~
above Tapse rate is typical of the conditionally unstable tropical
atmosphere. Accordingly, for a unit non-dimensional thickness pertur-

bation we have

" 2:-2 o
$ =1 ¢ 500 3 1716°57C > aT = 6°C (4.2)

where 4T is the temperature difference in the 500 mb layer between
Tevels 1 and 3 in Figure 2.1.

The first step to solve the initial value problem governed by
linearized shallow water equations (2.4) with the initial condition
(4.1) is to find the Fourier components gk(y,o) of (4.1) according

to (2.69). The result is

where k is given by (2.28). The e-folding half width of the Fuurier

spectrum of (4.1) is

.
k = = (4.4)
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Thus, (4.4) shows that a narrow initial condition in ¢ is projected onto
a broad band of zonal waves and vice-versa with maximum sk(y,o) always
at k=0. The Tocaiization of maxima and shape of the Fourier spectrum
of the initial condition is of great importance for the process of
¢ispersion of energy as discussed in Chapter 3.
In most situations to be considered in this chapter, Lx (the
zonal periodicity) and ro are such that the approximation
L
erf (Fi) = ] (4.5)
e
can be safely applied to (4.3). The next step is to find the projection
of gk(y,o] onto the normal modes Ek,n,r(y) in order to define the
expansion coefficient Ck,n,r as in (2.83). Once the coefficients
Ck,n,r are determined, the series expansion for the solution at any
arbitrary point (x,y) and time t can be performed (Equation 2.78), and

the solution is known within the desired truncation in the zonal wave-

number k and meridional index n.

4.2 Partition of energy
Parseval's theorem allows us to estimate the partition of energy
between Rossby and gravity modes given the initial condition (4.1).

A measure of the partition is given by the parameter R defined by

2
TE Z Ck,n,o
RS RW = all k,n (4 6]
TE & 2 "

all k,n,r k,n,r

R is the ratio of the total energy in Rossby waves (TERN) to the total
energy in the initial condition (TE). The value of R is important in

understanding the dynamical characteristics of the motion evolving



103

from the initial condition (4.1). Most of the initial energy coes into
Rossby modes if R is near unity and the time behavior of the solution
is slow (i.e., in approximate geostrophic balance). If R is small,
most of the initial energy is in gravity modes which have a fast time
character and tend to rapidly propagate outward with T1ittle dispersion
in the short wave part of the zonal spectrum (Figure 3.6). |

Figure 4.1 shows the ratio of total energy in Rossby waves to the
total initial energy as defined by (4.6) as a function of the e-folding
half-width Fy at y0=0 and y0=1.2 as labeled. The scale at the top of
Figure 4.1 is in dimensional units for e=500; in this case the distur-
bance at y0=1.2 is centered at approximately 14°N. The ratio increases
as ry increases and it is larger for y0=1.2 implying that more energy
goes into Rossby waves for large disturbances and those centered at
higher latitudes. The two curves tend to merge for very large dis-
turbances simply reflecting the fact that the initial condition at
y0=0 and y0=1.2 are not clearly distinguishable if f D5 s

The smallness of R and its larger value for large-scale
geopotential disturbances away from the Equator can be easily explained
by the structure and energetics of Rossby waves as discussed in
Chapter 3. Most of the total energy in Rossby waves is in kinetic
energy form (Figure 3.10) and the geopotential gradients are small
near the Equator as required by geostrophy (Figure 3.12-3.13). A
small perturbation at the Equator requires a broad spectrum in the zonal
wavenumber k according to (4.4) and as k increases the total energy
in Rossby waves is almost all in kinetic form (Figure 3.10), i.e. there
is more information in the wind field for large k (small zonal wave-

length). This explains why less energy goes into rotational modes
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for small-scale geopotential disturbances. Shifting the geopotential
perturbation away from the Equator makes it possible for higher order
meridional-modes to contribute to the representation of the initial
condition since large n Rossby modes have maximum geopotential
perturbation away from the Equator (Figure 3.13). Figure 3.10 shows
that for a fixed zonal wavenumber, the ratio K/E decreases for higher:
meridional index n Rossby medes and therefore we would expect a larger
fraction of the disturbance centered at y0=1.2 to be represented by
Rossby waves.

For a geopotential perturbation with the parameter Vs larger than

the equatorial Rossby radius of deformation a more significant percentage

of the initial energy goes into Rossby waves. In particular, if the
non-dimensional half-width is twice the equatorial Rossby radius
(re=2) we have an equal partition of energy between Rossby waves and
gravity waves.

Knowing the ratio R of the initial condition and the energetics
of Rossby waves we can anticipate gross fcatures of the time evolution
of the initial value problem. Let us consider for example the
development of the broad initial geopotential perturbation re=2. In
this case the Fourier components (4.4) show that the energy is concen-
trated near k=0 with a sharp cut-off rear the origin. In other words,
most of the energy is concentrated in the long wave part of the
spectrum. Figure 4.1 shows that 50% of the energy is in Rossby modes
and Figure 3.9 shows that in long Rossby waves P=Ku is nearly zero.
The initial geopotential perturbation tends to remain at the initial
position being slowly dispersed westward (Figure 3.6). Thus, we can
say that if the disturbance is large compared to the equatorial Rossby

radius of deformation the wind field tends to adjust to the mass field.



On the other hand, a small initial geopotential perturbation has a
broad spectrum in the zonal direction according to (4.4) and little
energy goes into the slow dispersive Rossby modes according to
Figure 4.1. Moreover, Rossby modes of shorter wavelength have more
energy in the wind field (Figure 3.10) and therefore the initial
geopotential perturbation is drastically reduced. The small energy
and slow dispersive motion left after the gravity waves disperse most
of the initial energy is primarily in the wind field. Thus, we can
say that the mass field has adjusted to the wind field since there was
no motion initially.

On the f-plane, the classical geostrophic adjustment problem also
predicts a wind adjustment for large disturbances and mass adjustment
for small disturbances. However, in this case the comparison is made
with the Tocal Ressby deformation radius %3 which tends to infinity
as the Equator is approached. Vlhen the g-effect is included the
relevant parameter is the equatorial Rossby radius of deformation
defined by (2.22). We should also bear in mind that the adjusted
state is not the same on the f-plane and on the equatorial g-plane

as discussed in section 1.3.

4.3 Equatorial g-plane example
In Figures 4.2 to 4.6, we show the evolution in time of the
initial condition in the geopotential field given by (4.1) for

re=0.35 (re * 480 km for ¢=500) and ¥o=1.2 (y. = 14° N for ¢=500).

0
Figure 4.1 shows that for such an initial condition about 20% of the
initial energy is described by Rossby modes. The results of such an
experiment are therefore representative of relatively small perturba-

tions. If we interpret the results as being produced by the 2-Tevel
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baroclinic model with =500 we are describing a perturbation of a scale
slightly larger than a tropical cloud cluster (Williams and Gray, 1973).
Truly localized disturbances require a prohibitive number of eigen-
functions to be accurately reproduced by the series representation
given by (2.79) but Figure 4.1 shows that, from an energy partition
point of view, the results wouid not be qualitatively different had

we chosen 0.2<re<0.5.

In most of the experiments performed on the equatoria} g-plane,
we have looked at the solution up to t=8 (tz3 days for ¢=500). We
have chosen the period in the zonal direction Lx and a displaying
area such that the influence of the periodicity is not felt within the
time frame of the experiment. This can be easily computed remembering
that the maximum group velocity allowed in the governing equations is
the phase speed of pure gravity waves c or, in non-dimensional units,
one unit of length per unit time. Thus, if we 1imit the horizontal
area to 3 units in the zonal and meridional direction we can use
Lx=12 non-dimensional length units. The value of k is dependent on
i_x as shown by (2.28) and the dispersive characteristics of the system
are affected by the choice of Lx‘ Howgver, within the time frame of
the experiments this effect is negligible.

Figure 4.2 is an x-t cross section at y=1.2 of the geopotential
field for the geopotential disturbance centered at y0=1.2 with
e-folding half-width ro=0.35. Figure 4.2.a is the complete solution
and Figure 4.2.b (scaled by 1000) is the quasi-geostrophic solution,
i.e., the gravity modes were eliminated from the series solution (2.78).
Figure 4.2.a shows that at t=0 the geopotential perturbation is con-

centrated around the origin x=0 and that it is rapidly dispersed by
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the gravity modes in the form of fast moving gravity fronts, one
propagating towards the west and the other towards the east. The
gravity front travels at almost the maximum group velocity allowed in
the system (cg = 1 non-dimensional unit), in agreement with the results
on dispersion of gravity waves discussed in Chapter 3.

The amplitude of the ¢-perturbation is reduced to less than 15% °
of the initial value after t = 2 in agreement with the expected behavior
based on energy partition (Figure 4.1). Comparing Figures 4.2.a with
4.2.b we clearly see that the geopotential field after t=1 is primarily
due to the Rossby mode contribution. The region of positive geopoten-
tial perturbation drifts towards the west and at the same time it is
spread over a larger area showing the slow dispersive character of
Rossby waves. A small negative geopotential perturbation appears to
the east of the initial perturbation in Figure 4.2.a and we can trace
it to the Rossby mode contribution in Figure 4.2.b. This negative
geopotential area is a reflection of the eastward dispersion of shorter
Rossby waves (Figure 3.6).

Figure 4.3 and 4.4 show the x-t cross section of the vorticity
and divergence fields respectively, at y=1.2. As in Figure 4.2, the
complete solution is shown in Figures 4.3.a and 4.4.a while the Rossby
mode contribution to the totai solution is shown in Figures 4.3.b and
4.4.b. The divergence field in Figure 4.4.b is scaled by 10,000.
Figures 4.3 and 4.4 clearly show that the motion left after the passage
of the gravity front is primarily due to Rossby waves, with divergence
at least one order of magnitude smaller than the vorticity. This result
could have been anticipated based on Figure 3.20 which shows that the

ratio of vorticity to divergence in Rossby waves is very large. The



112

vorticity associated with the slow dispersive gravity waves is a small
perturbation on the vorticity field of the quasi-geostrophic part of
the solution as inferred from Figure 4.3.a and 4.3.b.

The divergence field in Figure 4.4.a progressively becomes more
zonal as time increases. This is due to the slow dispersion of long
gravity waves as shown in Figure 3.6. Positive and negative zonal
bands of divergence alternate in time with a period of approximately
2.5 non-dimensional time units implying a frequency typical of long
gravity waves as shown in Figure 3.2. The divergence associated with
Rossby modes (Figure 4.4.b) has a negligible contribution to the total
divergence field (Figure 4.4.a).

Although the geopotential and vorticity (Figure 4.2.b and 4.3.b
respectively) of the Rossby mode contribution to the initial condition
at t=0 is symmetrical about the origin x=0, the divergence field
(Figure 4.4.b) is antisymmetrical. As a result, the initial develop-
ment is such that the whole geopotential configuration drifts toward
the west; the positive divergence lowers the geopotential perturbation
to the east of the initial geopotential maxima, eventually to negative
values. Towards the west a slow increase in the geopotential values
is observed reflecting the initiai convergence shown in Figure 4.4.b.

The non-dimensional divergence field in Figure 4.4 can be made

dimensional by the factor (T)'T. From (2.21) with =500, we have

5

Loy 8.1 0 10757 (4.7)

The vertical moticn at the middle level of the 2-level baroclinic model
can be obtained from the divergence field through the continuity

equation as in (2.5.e). In dimensional units (mb day"1) and for
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e = 500 we have

1

wy = 1.3 x10° (7W ) mb day” (4.8)

2

Figure 4.4.a shows that the vertical motion oscillates between

+ 16 mb day_] (using (4.2) and (4.8)) for an initial positive tempera-’
ture deviation of 1° C in the 500 mb layer between levels 1 and 3 of
the 2-level baroclinic model (Figure 2.1). The maximum vertical motion
associated with the Rossby modes in the x-t cross section shown in

1 at t=3. However, the initial

Figure 4.4.b is approximately 4 mb day”
imbalance generates a violent response in the divergence field in a
very short time as shown in Figure 4.4.a. The associated maximum
upward vertical motion for the 1° C instantaneous heating at the
500 mb Tevel is approximately 750 mb day'].
From Figure 4.2, 4.3, and 4.4 we conclude that the low frequency
Rossby type of motion is dominant in the neighborhood of the initial
o~perturbation after approximately one non-dimensional time unit.
Figure 2.2 allows us to convert this adjustment time to dimensional
units; for ¢ > 5 ms“1 we see that one non-dimensional unit is less
than one day. In particular, for =500 (c=41 ms'1) the quasi-geostrophic
motion is dominant after less than half a day (scale on left of
Figures 4.2, 4.3 and 4.4). In section 4.5 we further discuss. the
adjustment time which in our case has to do with the time required for
the Rossby mode solution to become dominant. In the classical geo-
strophic adjustment problem the adjustment time is defined as the time

required for the geostrophic solution to become dominant (Cahn, 1945;

Obukhov, 1949).
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In view of the character of the solution after the fast moving
gravity waves leave the area of the initial disturbance, let us consider
the two dimensional wind and geopotantial fields at particular times.
Figure 4.5.a, b, ¢, and d shows the two-dimensional wind and geopoten-
tial fields at t=0, t=2.7, t=5.3 and t=8 for the same experiment
discussed so far. In Figure 4.5 the lower and left scales are in dimen-

sicnal units for €=507 and the up

T

er and right scales are non-
diriensional. As for dimensional time we have: =0, 1, 2, and 3 davs
tfor rigures 4.5.a, b, ¢, and d respectively. The gesopotential field
in Figure 4.5 is scaled by 10,000 and the arrows are proportional fo
the wind speed. At t=2.7 (Figure 4.5.b) we can still see the gravity
wave front at the corners of the figure with its characteristi
ageostrophic motion. Comparing Figures 4.5.a, b, ¢, and d, we see
that the initial ¢-perturbation has dropped to less than 107 of the
initial value and has moved westward and slightly northward 0.7
non-dimensional length units (900 km for £=500).

Another interesting detail in the development of the initial
cendition (4.1) is the appearance of the low ¢ cell to the east of
the initial perturbation. This can also be seen in Figure 4.2 and it
is basically a Rossby moticn feature since it is also shown in
Figure 4.2.b. Associated with this Tow pressure center we observe
cyclonic vorticity as shown in the x-t vorticity cross section
(Figure 4.3). The intensity of this low pressure center becomes
comparable to the remnant of the initial ¢-perturbation after 3 days

e=50) at about 5% of the initial value. The vortex generated in

_—

geostrophic response to the initial #-perturbaticn is highly asymetrical

and the central pattern is stretched in the zonal direction reflecting
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a westward dispersion of the energy in long Rossby waves. The wind
maximum in the neighborhood of the initial ¢-perturbation lies to the
SE of the high ¢ center at t=2.7 and 5.3 (Figure 4.5.b and 4.5.c
respectively). At t=8.0 the maximum wind is still located to the SE
but the whole pattern is not so well characterized by the Rossby wave
type motion because, as the energy in Rossby waves gets dispersed, thé
Tocal effect of slow dispersive gravity waves becomes comparable as
shown in Figure 4.5.b.

The two-dimensional vorticity field associated with the wind field
of Figures 4.5.b and 4.5.d is shown in Figures 4.6.a (t=2.7) and
Figure 4.5.b (t=8.0). The label of the contour lines in Figure 4.6
are non-dimensional; they can be made dimensional by the factor [T]‘]
which for ¢=500 takes the value given in (4.7). At t=2.7 (t=1 day
for £=500) the vorticity field (Figure 4.6.a) is dominated by a fairly
symmetrical area of cyclonic relative vorticity and a region of
anticyclonic relative vorticity. The anticyclonic region develops to
the east of the cyclonic region with maximem intensity towards the
southeast. At t=8.0 (t=3 days for £=500) the intensity of the anti-
cyclonic region has decreased while the cyclonic one has increased.

At this same time the development of another cyclonic center can be
observed near the Equator stretching northward suggesting a cross
equatorial transfer of energy in Rossby modes. This new anticyclonic
center is not a gravity wave feature since iL also appears in the
Rossby mode solution (not shown).

In Figure 4.5.d we can identify the anticyclonic vorticity field
near the equator as a vortex with Tittle geopotential perturbation.

This is because the short Rossby waves, which have positive group
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velocity, have small geopotential amplitude near the Equator. The bulk
of the geopotential field near the Equator is a manifestation of the
long gravity waves which have small group velocity.

The tendency for a SW-NE tilt in the relative vorticity field
produced by an initial vorticity source has been noted by Hoskins
(1977). Although an asymmetry of the same sort is obtained on the
sphere with variable g-parameter, our solution shows that.this can
also be produced on a s-plane provided the initial disturbance is put
away from the reference latitude (the Equator in our case).

The wind and geopotential fields at t=0, 2.7, 5.3, and 8.0 for the
bell shaped initial condition discussed so far but centered at the
Equator (y0=0) is shown in Figure 4.7. As in Figure 4.5, the arrows
are proportional to the wind speed and the geopotential field is
scaled by 10,000.

As predicted in section 4.2, based on the partition of energy
(Figure 4.1), the solution now shows much more variation in time.

At t=2.7 (Figure 4.7.b) the geopotential field has split into two
cells symmetric about the Equator and the maximum perturbation is less
than 4% of the initial value. At t=5.3 (Figure 4.7c) and t=3.0
(Figure 4.7.d) the long wave character of the slow dispersive gravity
wave is dominant in the geopotential field. However, there are some
common features among Figures 4.7a, b, ¢, and d such as the strong
zonal curvent at the Equator which 1is characteristic of symmetric
Rossby waves (odd meridional number) as shown in Figure 3.12.

Figure 4.8 shows the vorticity field associated with the wind
field at t=2.7 (Figure 4.8.a) and t=8.0 (Figure 4.8.b). The vorticity
field is antisymmetric with respect to the Equator, implying anti-

cyclonic relative vorticity in both hemispheres, and changes Tittle
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between t=2.7 (t=1 day for ¢=500) and t=8.0 (t=3 days for e=500).
The vorticity field in Figure 4.8 is a Rossby mode feature although
only 4% of the initial energy goes into Rossby modes. For a 1° C
initial perturbation, in the middle Tevel of the 2-level baroclinic
model, the maximum absolute relative vorticity is about 1.2 x 10'65']

at t=1 day compared to 5.1 x ]0'6 for the F = 1.2 case at the same

time (Figure 4.6.a).

The example shown in Figures 4.7 and 4.8 representing the initial
evolution of a small beil shaped geopotential perturbation at the
Equator shows that the initial condition leaves an impression in the
wind field as vorticity. Although the initial geopotential perturbation
is quickly wiped away, the wind field remains with a strong eastward
zonal current in the neighborhood of the initial perturbation.

Although the initial condition centered at B 1.2 (Figure 4.5)
and ¥ ™ 0 (Figure 4.7) differ only by the latitude where they are
located, the time behavior of the solution is quite different as
predicted in section 4.2 from an energy partition point of view.

Besides the fact that only a small part of the initial energy goes
into Rossby modes, the peculiar behavior of planetary waves near the

Equator, where f is zero, contributes to the distinctive behavior of

the ¢-perturbation centered at the Equator.

4.4 Sphere (£=10) example

In view of the results obtained in Chapter 3, we solve the
problem cf adjustment of the mass and wind field on the sphere for the
external mode (€=10). The technique is the same as on the equatorial
g-plane except that the basis functions are Hough functions as discussed

in section 2.5. It should be remembered that the initial condition
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(4.7) has to be corrected for the convergence of meridians in order to
be reproduced on the sphere. This effect is small in equatorial
regions since it depends on the cosine of latitude but becomes large
at higher latitudes.

Figure 4.9 shows the ratio between the energy in Rossby modes and
the total initial energy (potential energy in this case) for the
external mode on the sphere as a function of the dimensional half width
¥ (top scale) for various latitudes as labeled. The lower scale in
Figure 4.9 is the half width of the initial geopotential perturbation
in non-dimensional units to facilitate comparison with the equatorial
g-plane results shown in Figure 4.1.

The partition of energy on the equatorial g-plane for the
bell shaped geopotential initial perturbation (Figure 4.1) can be
extrapolated to the external mode (£=10). The equatorial g-plane case
centered at K™ 1.2 closely corresponds to the ¢-perturbation on the
sphere at 40° N (Figure 4.9). Comparing Figures 4.1 and 4.9 we see
that for small perturbations, say Pis 0.5 (or M 1800 km for e=10),
the equatorial g-plane and the sphere agree fairly well, mainly for the
disturbance centered at the Equator.

In general, more energy goes into Rossby modes on the sphere than
on the equatorial g-plane as the size of the initial ¢-perturbation
increases. The results shown in Figure 4.9 are however, qualitatively
in agreement with Figure 4.1 and the discussion in section 4.2 on the
partition of energy and the behavior of solution in time are still valid.

Figure 4.10.a, b, c, and d show the wind and geopotential fields
at t=0, 6, 12, and 24 hour respectively for the initial condition in

the geopotential field centered at A=-90° and f =25°. The half width
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is approximately 1300 km. At t=0 (Figure 4.10.a) we have & negative
geopotential perturbation, i.e. low pressure, and at t=6 hours
(Figure 4.10.b) the pressure has increased at the center of the initial
perturbation and moved north-northeast. The quasi-geostrophic nature
of the flow at the center of the perturbation is already clearly seen
as well as the gravity wave front. The initial bell shaped Tow
pressure propagates outwards drawing fluid from the undisturbed region.
As the fluid converges towards the ring of Tow pressure, the pressure
builds up behind. However, this is not a symmetrical effect as can
clearly be seen after 6 hours (Figure 4.10.b). The high pressure is
more intense on the western side of the disturbance and this is due to
the different dispersive characteristics of westward and eastward
moving gravity waves. The westward moving waves are less dispersive
than the eastward waves as shown in Table 3.5 and therefore the
western part of the gravity front is sharper.

At t = 12 hours (Figure 4.10.c). a high pressure region to the
east of the remnant of the initial low pressure is developing; at
t = 24 hours (Figure 4.10.d) it is well defined and the wind field is
strongest between the high and the low in geostrophic response to the
strong pressure gradient. 1In Figure 4.10.c the gravity wave front
has not yet reached the antipodean point and the bulk of the energy
in gravity modes is concentrated in the neighborhood of the gravity
front. At t = 24 hours the dispersion of gravity waves can be
noticed since the gravity wave type of motion is spread over a much
larger area. This is a consequence of the small difference in group
velocity of gravity waves as a function of zonal wavenumber and

meridional number. Thus, the gravity wave front breaks up and looses



127

=20° =
=-40° | S -
-60”? |- =
- >
-80° | -J
| L I L 1 i 1 1 1 1 1 1 1 L L L I 1 I
-160° —~120° -80° -40° 0° 40° 80° 120°¢ 160°
% scaled by 1,000 }\

T T T T T T T T T T T T T T T T T T T
,,,,,,,,,,, L T T S L S A R R T R e A ey
80° £ LR, R e m e w4 L u Ty i, L B0 0
e N e A G e T O T . T
G L SR S, vor g T I s e G
60° SV e el R T e
r R R S T
L Tabsmae /. =
s I'}.“r“‘r-'-' " .y =1
-4 P 4y L .
40 l"‘ fj’h"-‘(h‘f‘““ 4 3
[, {‘jg::‘:?"": %
207 F's urf_-‘...?.r‘-’, i
T Iy F
LR et ]
i [L TN e
P eq Jarimn o, ; -
i_ \ a&%'gg?;} P i
_ane Sy
20 r <\ & . . il
L e oy =
-40° - : 4
|
| .
I
-80° - . B
-80° -
! 1 j 1 1 1 ! 1 1 L 1 1 1 i 1 1 1 | L
=160° =|20° -80° -40° 0° 40° 80° 120° 160°

\ a2 .
(b) t=6 hcurs

Figure 4.10 Initial value problem on the sphere for the external mode
(¢ =10 ). The initial condition, given by (4.1) and shown
in (a), is a ¢-perturbation centered at¥,=25° 2=-90°. The
solution at t=6 hours, t=12 hours and t=24 hours is
displayed in (b),(c) and (d), respectively.



128

.
.
.
"
"
g

-120* -80* -40° 0° a0° gee 120° 160°

ed by 10,000

~-160°

i
-

2 secal

(c) t=12 hours

1

3
A
Y
il
J.
1
1
1

B R g i

40° 80° 12G° 160°

-]

~120° -80° -40° 0]

~-16G°

¢ scaled by 10,C00

=24 hours

(d) &

( continued )

Figure 4.10



129

its identity after a certain time and eventually there is ageostrophic
motion spread over the whole globe with no clear organization since the
narrow initial condition contains energy over a wide spectrum.

Most of the characteristics of the Rossby mode contribution to
the solution on the sphere are present on the equatorial g-plane
solution. As suggested by Figure 4.9, the equatorial g-plane partitidn
of energy assuming =10 closely approximates the result on the sphere
provided the disturbance is small and located near the Equator. On
the other hand, Table 3.3 shows that the equatorial g-plane prediction
of group velocity as defined by (3.7) can be large, on the order of
100% for long Rossby waves. However, the time between reinforcement
for long waves and Tow order meridional modes is on the order of 10
days and the group velocity is on the order of 10°-15° dayhl. If we
look at the solution up to t = 1 day we clearly see that the z-plane
solution for =10 can reproduce, at least qualitatively, the exact

solution on the sphere.

4.5 Summary and Discussion

In this chapter we have presented the solution of the initial
value problem governed by the linearized shallow water equations about
a basic state at rest subjected to an initial condition in the geo-
potential field. The analytical expression for the initial ¢-
perturbation is given by (4.1), which is a bell shaped bump centered
at latitude ¥q with half width Fs The Fourier components of the
initial condition are given by (4.3); the spectrum in the zonal
direction is such that a wide initial condition is projected onto a
narrow spectral band according to (4.4), which gives the e-folding

half width of the Fourier spectrum.
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A certain fraction of the ¢-perturbation initial condition goes
into Rossby modes as shown in section 4.1; for such an initial condition
most of the energy goes into gravity modes unless the initial disturbance
is Targe compared to the equatorial Rossby radius of deformation
(Figure 4.1). For small scale disturbances we conclude in section 4.1
that the mass field adjusts to the wind since very little energy goes
into Rossby modes and therefore there is practically no quasi-geostrophic
motion left after the gravity waves disperse the bulk of the initial
energy.

An example is shown on the equatorial 8-plane in section 4.2 for
a ¢-disturbance centered at 1.2 and Oy 0.35. For such initial
condition, approximately 20% of the initial energy goes into Rossby
modes; this experiment is shown in Figures 4.2 through 4.6. In the
two-Tevel baroclinic model discussed in section 2.7 with Lamb's
parameter £=500, the experiment can be interpreted as a sudden heating
with maximum heating at 500 mb. Thus, at t=0 we perturb the thickness
field without any effect on the wind field. During the time interval
between t=0 to t=3 days we notice the fast dispersion of the heating
by gravity waves and the development of a cold area to the east of
the initial disturbance. At t=3 days the cold and warm areas have
comparable intensity and the wind is close to thermal balance since
the solution at this time is mostly made up of siow dispersive Rossby
modes. Approximately 10% of the input heating is not dispersed by
gravity modes. As for possible consequences of these results to the

real atmosphere we postpone the discussion to Chapter 7.



131

In the experiment shown in Figures 4.2 to 4.5 we have noted the
fast adjustment time i.e., the time required to observe the Rosshy
modes contribution to the solution. The time for adjustment Ta can

be defined as

-

(4.9)

jai]
(g]
w |

where Cg is the characteristic group velocity of gravity waves. Thus,
if the initial condition is projected onto the short wave part of the
zonal spectrum, the adjustment is fast since in this situation cg in
(4.9) is close to the maximum value allowed in the system (cg=]), as
shown in Figure 3.6. For the bell shaped initial condition considered
here, the energy is concentrated near the origin with e-folding half
width of the spectrum given by (4.4). Figure 3.6 shows that the group
velocity of long gravity waves can be small and therefore the adjust-
ment time is slow; the wider the initial bell shaped ¢-perturbation, the
slower is the dispersion of the gravity modes although more energy
goes into Rossby modes in this case. Figure 4.11 is an example of
such behavior. It shows an x-t cross section of the divergence field
at y = 1.2 for an initial ¢-perturbation defined by (4.1) centered at
¥, ® 1.2 and of half width P ™ 2. As in Figure 4.2-4.4, the lower
and Teft scales are in dimensional units assuming €=500 and the top
and right scales are non-dimensional. The non-dimensional contour
Tines in Figure 4.11 can be made dimensional by (4.7) assuming £=500.

The divergence field is representative of gravity modes according
to Figure 3.20 since Rossby waves are primarily rotational. Figure

4.11 shows that the divergence field is indeed being slowly dispersed
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Figure 4.11

x-t cross section of the non-dimensional divergence
field at y=1.2 for an initial condition in the
geopotential field given by (4.1) with rg=2.0 and
y0=1.2. The scales on the top and right are non-
dimensional and the bottom and left scales are
dimensional for £=500.



133

since the maximum absolute value decreases with time but not nearly
as fast as in Figure 4.3, where the small scale geopotential initial
condition is treated.

In section 4.4 we have discussed the barotropic case on the sphere
with Lamb's parameter e=10. From the energy partition point of view,l
the results are qualitatively similar to the equatorial g-plane if
the initial condition is small and near the Equator. Figure 4.10 shows
the initial condition and the wind and geopotential fields at t=6 hour,
12 hour and 24 hour for a disturbance centered at 25° of latitude north
with e-folding half width of 1300 km. This is a global experiment and
therefore it shows unique features of the process of adjustment in a
bounded domain. Unless there is selective damping for the gravity
wave type of motion, the Rossby wave solution soon becomes overshadowed

by the gravity wave activity.
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5 INITIAL CONDITION IN THE WIND FIELD

The problem of adjustment of the mass and wind fields for an
initial condition in the rotational part of the wind field is discussed
in this chapter. It can be interpreted as an instantaneous addition
of momentum with no counterpart in the pressure field. As in Chapter
4, the results can either be interpreted as internal modes or as wind
shear and thickness of the two-level baroclinic model discussed in
section 2.1.

The functional form of a vortex like initial condition is shown
in section 5.1 and the partition of energy between Rossby modes and
gravity modes is discussed in section 5.2. Examples of the solution
of the initial value problem are shown in sections 5.3 and 5.4
(equatorial g-plane and sphere respectively). The results are

summarized in secticn 5.5.

5.1 Vortex initial condition
The initial condition to be considered now has the following

functional form on the equatorial g-plane

[+ (y-y,)°]
(y-y,) exp{- >
i
e
2 2
[x® + (y-y.)°]
E(x,¥,0) = =X expy{ - 5 0 | (28)]/2 £6:1)
Y'e re

|
] ; J

The radius of maximum wind speed of the initial anticyclonic vortex

(5.1) is
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#
r =-£ (5.2)

max />
where r = L’xz + (y—yo)2 . The anticyclonic vortex defined by (5.1)
depends on the two parameters P and Y is the e-folding width of
the exponential factor in (5.1) and therefore a measure in the size of
the vortex and ¥ is the latitude of the center of the vortex. The
1/2 -1
e

initial condition (5.1) is normalized by the factor (2e) such

that the maximum wind is one non-dimensional unit for any o
The relative vorticity associated with the initial vortex (5.1)

is

4% + (y-yo)zl [x* + (y—y0)2] (Ba) %
z =2 5 - 1] exp {- 5 &
Y‘e Y‘e e

(5.3)

and the divergence is zero. Thus, there is anticyclonic vorticity

inwards from the radius r and cyclonic vorticity outwards.

max
The Fourier coefficients of (5.1) are

; % 1/2 Lx (y_yo)2 r92k2-
| (-l " — (5] erf (;-e—) x|~z g
i e .
| re"3 -1 o972 Ly (y—y0)2 rezkz-1 ngl]/z
| A= N erf (F_)k exp { - g <y By
£, (y,0) o e ry ]
|
j 0
| _(5.4)

Thus, the Fourier spectrum of the zonal component of the wind is of the
2 kz]
2

)

form exp (-0.25 re' and the meridional component is proportional

2

to k exp (-0.25 re' k The Fourier coefficient of the meridional

wind of (5.1) is such that the energy peak is Tocated at
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Thus, a wide vortex (re large) is projected onto a narrow spectral band
and vice-versa. Changing the width of the initial vortex we are able
to shift the region of maximum energy in the spectral domain. In the
next section we study the partition of energy between Rossby modes and
gravity modes as well as the distribution of energy as a function of

zonal wavenumber k and meridional index n.

5.2 Partition of energy

We now proceed to discuss the partition of energy in Rossby waves
and gravity waves as was done with the initial condition in the ¢-field
in Chapter 4. The initial condition has a flat gecpetential field
and therefore it has no potential energy; all the initial ensrgy is in
kinetic form, and the initial wind field is non-divergent. Rossby waves
are primarily rational (Fig 3.20) and short Rosshy waves have much more
information in the wind field than in the geopotential field since tne
ratio K/E is large (Figure 3.10). Thus, a small vortex Tike initial
condition of the form (5.1) is expected to be projected mostly onto
shorter Rossby waves. In particular, the vortex centered at the
Equator has a structure similar to mixed Rossby gravity waves
(Figure 3.16), i.e. the equatorial vortex is projected mostly onto the
n=0 meridional mode.

As in Chapter 4, Parseval's theorem is applied and the results are
summarized in Figure 5.1 where the ratio R (4.6) of total energy in
Rossby modes to total energy in the initial condition is shown as a

function of ry for disturbances centered at ¥y = 0 and A 1.2. The
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Figure 5.1 Ratio R of the total energy in Rossby modes to
the total initial energy as a function of the
half-width ro for the vortex initial condition
given by (5.T) centered at the Equator ( y,=0 )
and at y,=1.2. The scale at the top is
dimensional for £=500.



scale on top of Figure 5.1 gives Fs in dimensional units assuming
e=500, in which case the disturbances are centered at the Equator and
at approximately 14° N.

Figure 5.1 shows that a small vortex of the form (5.1) is projected
mostly onto Rossby modes (R>0.95 for a disturbance centered at ¥ F 0
and re<0.5). As the vortex gets bigger and is displaced away from the
Equator less energy goes into rotational modes but up to B, = 1.5 the
ratio R is larger than 0.5. Thus, contrary to the examples shown in
Chapter 4, where the initial condition in the geopotential field was
treated, the initial vortex experiment is expected to show small
dispersion and to maintain its identity and strength for a longer time.

The partition of energy in the (k,n) space can be studied, through

the parametar

i
L)

-

where € n

L AL ]

. 5 3 y - \ \ 5
o 18 the projection of jk(y,o, onto the normal modes Sk,

The square of Ch. ti is the energy of the initial condition that is

- Dol

projected onto the mode £ (y). Thus, Cy ﬁ is a measure of energy

k,n,r
contained at wavenumber k and meridional mode n including all types of
waves.

Figure 5.2 shows the isolines of Ck?n (arbitrary units) for the
initial condition (5.1) with i, - 0.35 and 3 = 0 i.e., a vortex centerad
at the Equator. As expected, most of the kinetic energy of the initial

vortex is associated with the mixed Rossby gravity wave (n=0) with most

energy between wavenumbers 3.0 and 5.0 (non-dimensional). Since the

-

W o & ; - TR
initial condition only excites antisymetric modes the coefficient Cy n
8l

is zero for odd n. As n increases (n even) the energy peak shifts
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Figure 5.2 Isolines of Ck, % in arbitrary units for the vortex

initial condition given by (5 (5 1) with r,=0.35 and
¥0=0 ( symmetric modes ). Ci.j is defined by (5.6)
and is a measture of the energy in all types of waves
in wavenumber k and meridional mode n.
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towards the origin of the zonal wavenumber axis. This is an effect
that can be understood by the energetics of Rossby waves because as

n increases, Kv decreases and Ku increases for the same k (Figure 3.9)
and therefore we expect high n modes to be a manifestation of the
zonal wind component of the initial condition (5.1). The u-component
of the Fourier coefficient gk(y,o} in (5.4) is of the form

-2 2
re

exp (-0.25 k®) and therefore has a maximum at the origin thus

explainin

[ ]

the structure of the isolines of E%fn for large n in
Figure 5.2.

Figure 5.3 and 5.4 show the isolines of Eﬁ?n (arbitrary units)
for 21 odd and even ruspectively, for the initial condition (5.1) with
P = 0.35 and Yo 1.2. Shifting the initial vortex to higher latitudes
has the effect of shifting the highest values of Ek?n to the n=2 mode
(even modes) and n=1 mode (odd modes). Comparing the units
in Figures 5.3 and 5.4 we notice that there is more energy in odd modes
(symmetric modes). In both figures there is a secondary maximum at
n=12 (Figure 5.3) and n=7 (Figure 5.4) for any value of k. In
Figure 5.4 (odd modes) another energy peak is found at n=21 (about 10%
of the maximum value). The general behavior of the distribution of
energy in the zonal spectrum is similar to the ¥ = 0 case i.e., the
maximum away from the origin is only found for low n modes. However,
in the meridional spectrum (ordinate) we find energy concentrated in
definite n-bands when the initial vortex is shifted away from the
Equator.

For an initial vortex with parameter ¥u & 1.5, ishe initial energy

is almost equally partitioned between Rossby and gravity modes

according to Figure 5.1. For such an initial condition the energy
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vortex initial condition given by (5.1) with
re=0.35 and yp=1.2 ( symmetric modes ). cK,%
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Figure 5.4 Same as Figure 5.3 but for anti-symmetric
modes.
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is concentrated in a narrow band in the long wave part of the zonal
spectrum and according to Figure 3.70 both Rossby and gravity modes
nhave an appreciable amount of energy in both kinetic and potential
forms. Thus, a combination of both modes is required to produce the
initial condition.

; ; — 2
The isolines of Ck -

'

(arbitrary units) for re =2and y, =0 are
shown in Figure 5.5. The peak in the zonal spectrum is well defined
only for n=0 at k = 0.50. However, in this case we know that
approximately 70% of the initial energy goes into gravity modes
(Figure 5.1) and Figure 5.5 is a combination of Rossby and gravity

modes. Figure 5.6 shows the isolines of ¢ 2 i.e., the energy

k;hy0
associated with Rossby modes as a function of k and n. The dashed 1ines

for k < 27172

at n=0 is the gravity wave domain of the mixed Rossby
gravity wave as discussed in section 2.3.1. Comparing Figure 5.5 with
Figure 5.6 we clearly see that the Rossby wave contribution is mostly
due to the mixed Rossby gravity wave (for k > 2']f2).

Concerning the problem of adjustment of the mass and wind fields
we can anticipate the following, based on the initial energy partition
(Figures 5.1 to 5.6). In a small vortex (re less than the equatorial
Rossby radius of deformation) the bulk of the initial energy is in
Rossby modes (shortwaves) and, since these are slowly dispersive
(Figure 3.6) and contain more information in the wind field (Figure
3.10), the wind perturbation remains with little dispersion and the
pressure adjusts to the wind. Thus, a state of quasi-balance is

reached as soon as the energy in gravitational modes leaves the area

of the initial disturbance.
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We should notice that the partition of Ku and Kv in Rossby waves
is such that short waves have most of the kinetic energy in the
meridional wind component and long waves most of the kinetic energy
in the zonal wind component (Figure 3.9). Since Koo= P (3.19) we
expect to observe a slow westward dispersion of long Rossby waves
appearing as a zonally stretched geopotential and zonal wind perturba-
tion. In the eastward direction the shorter Rossby waves should induce
meridional motion and short-wavelength pressure cells in the zonal
direction. However, the smaller is the parameter . in (5.1) the
broader is the spectrum and the time behavior of the solution will not
be characterized by a particular zonal wavelength.

On the other hand, a large-scale vortex (compared to the equatorial
Rossby radius of deformation) contains more energy in gravitational
modes and the energy is concentrated in the long wave part of the zonal
spectrum (according to (5.3) and Figure 5.1). The long gravity waves
contain the bulk of the initial energy and they are slowly dispersive
(Figure 3.6). Thus, the adjusted state, i.e. the motion characterized
by the Rossby moda contribution is not clearly defined and we cannot
really speak of an adjusted state. A similar behavior was found in
Chapter 4 for a wide bell shaped ¢-perturbation.

In the traditional f-plane analysis, an initial disturbance which
is large compared to the Rossby radius of deformation (%J implies that
the wind adjusts to the pressure. Thus, if there is no geopotential
perturbation at t=0 there will be no wind in the adjusted state. On
the equatorial g-plane (and also on the sphere), the adjusted state

is the motion associated with Rossby modes that is left after the
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gravity waves are dispersed. Such an adjusted state is observed in

our analysis only if the energy in Tong gravity waves is much Tess

than the energy in Rossby modes. For the bell shaped disturbance con-
sidered here, a wide initial perturbation has most of its energy in

the longwave part of the spectrum and therefore the concept of adjusted

state may be meaningless.

5.3 The vortex initial condition on the equatorial B-p]ané

Figure 5.7 shows the x-t cross section of the ¢-field at y = 1.2

i

up to t = 8.0 (= 3 days for ¢=500) for the vortex initial condition

with re = 0.35 (= 480 km for £=500) and %™ 1.2 (=14° N for £=500).
The initial disturbance in this experiment is actually a cyclonic
vortex and therefore (5.1) has to be multiplied by -1. As mentioned
in section 5.1, the maximum wind speed is one non-dimensional unit at

t=0 (or 41 ms™!

for ¢=500). The periodicity in the zonal direction is
Lx = 12 for the reasons discussed in section 5.3.

The dynamical response for the initial imbalance is a strong
divergence which lowers the ¢-field to a minimum value of approximately
-0.5 non-dimensional units (see (4.2) for conversion to dimensional
units assuming €=500) at t = 0.6 (= 6 hr for ¢=500). After reaching
the minimum value at t = 0.6 the geopotential increases followed by
the formation of a high cell to the east. About 85% of the initial
energy goes into Rossby modes and therefore Figure 5.7 is mostly a
manifestation of these slow disﬁersive modes.

Figure 5.8 shows the 2-D structure of the'experiment shown in
Figure 5.7. The \V and ¢ fields are shown in Figures 5.8.a, b, c, and
dat t =20, 2.7, 5.3 and 8.0 (t=0, 1, 2 and 3 days for £=500) respec-

tively. As time increases the low é-cell generated in response of the
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scales are dimensional for £=500.



147

A

: | "006=3 404 chcwmcmewu 9Je S3|edS
13491 PUB WO330q 9yj pue |RUOLSUBUWLP-UOU B4R JyBLJA pue dol uo S8 PI2S Ayl
"A1oAL}09dsou “(P) pue (2) “(q) ut umoys st ( 00G=3 404 sAep €=3 ) (°8=1

pue ( oomnw 404 sAep g=1 ) £°G=3 ‘( 00G=3 404 Aep |=1 ) /°2=3 2e uoL}n|os

ML "g ="K pue £ Q=24 yiLm (L'G) Aq uaa1b uoLjLpuod [PLILUL X3]40A 3Y)
404 S]LUN | PUOLSUBWLP-UOU UL SPLAL} PULM pue jeLjudjodo9b [euoLsudwip-om| g
L°2=% () =1 (®)
OOG° T A poeas ¢
g (W) X . (W) %
W] ol
000z elele]] 0] 000iI- 000zZ- 0002 ool 0] 000I-  0002-
1 T T T I l 1 [ I I T \—\ T T T I ] I 1 ¥ T i ]
s o &
g0 ¢ g s
¥ o o % g

0] al
S0 % @ 5 ’
o B 8N
: R\J \\\ ! |
| ..r ) -/t
m.-._ R .~ ...\ L A
o< R R 3

g

S W RS

1 ! i Tew i 1 1

S0~ S1- 0l1- 02702 ¢§I 01 S0

0
o

02 Gl o1

g G
i =

"G adnb 4

0001 -

GO0l
(uny)
A

0002

000¢

000b

G0~ O1- ¢l1- o2-



148

.5..

( panuiLjuod )

8'G dunbiy

0°8=1 (P) €°G=1 (9)
- ?:v:x - ?.c:x
| it
Q002 0001 0 oN0l- 000e— aQne 00oCt (0] 000I1—- Q002 -
T T T T 1 T [} T 1 T \T T I I 1] 1 T T T T
e A -1 0001 —
= 0
-1 000
(i)
A
-1 0002
-1 000P
1 1 1
Ol- Gl- 0¢-




149

initial imbalance drifts towards the west and is stretched in the
zenal direction. The high ¢-cell noticed in the x-t cross section

is now seen to be more intense in the NE quadrant. As time increases,
the Tow and the high geopotential regions become comparable but the
wind field associated to that high cell is primarily meridional. This
is in agreement with the qualitative observations made in section 5.2l
based solely on the partition of energy and the characteristics of the
free modes.

Tne intensity of the wind field remains practically unchanged up
to t = 8.0 but the initial symmetrical vortex is intensified between
the Tow and high centers in accordance with the increased pressure
gradient.

In the two-level baroclinic model (section 2.1) this experiment
can be regarded as an initial condition with cyclonic shear. Thus,
the initial response is a cooling in the center of the vortex (thickness
decreases) and at the same time a warming occurs in the NE quadrant.
In terms of vertical motion, the cyclonic shear induces an upward
vertical motion in the center and downward motion in the NE quadrant.
Although the vertical shear retains the same intensity, strong east-west
asymmetries are observed.

Alternatively, we could look at wind and geopotential fields
shown in Figure 5.8 as representing the 750 mb level. In this case
the geopotential field at 250 mb would be the negative of the field
at 750 mb and the wind would have to be reversed but with the same
magnitude. Thus, the initial condition shown in Figure 5.8 can be

regarded as a anticyclone overlaying a cyclone. However, in this case
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the Towering of the geopotential field at 750 mb and the associated
rising at 250 mb implies a thickness increase and, through the
thermodynamic equation (2.5.g), sinking motion. The vertical shear
in this situation is anticyclonic.

Thus, if the initial condition is an anticyclonic shear with no
impression on the temperature field, the dynamic response of the
fluid is to set up a sinking motion initially so as to bring the flow
to approximate thermal balance. In dimensional units (assuming
e=500), the initial development of the ¢-field shown in the x-t
cross section (Figure 5.7) implies a maximum vertical motion of
approximately 40 mb day'I (up or down depending on whether the initial
shear is cyclonic or anticyclonic) if the maximum vertical shear
(Vg= ¥y - V,) s 1ms .

Figure £.9 shows the two-dimensional structure at t = 2.7 of the
same initial vortex treated so far but centerad at the Equator
(yo = 0). In both cases (yo = 0 and ¥ = 1.2) the initial vortex
remains almost unchanged up to t = 2.7. The initial condition is such
that u is antisymmetric and v is symmetric and therefore only anti-
symmetric modes are excited (n is even).

The pressure response js, however, quite different for an initial
vortex centered at ¥ = 0 and ¥ ™ 1.2, For the vortex centered at the
Equator the intense pressure response occurs to the NE and SE (high
and low respectively) though of smaller magnitude than the previous
case shown in Figure 5.8.a (notice that the pressure field is scaled

by 1000 in Figure 5.8.a and by 10,000 in Figure 5.9). Although the

mass readjustment within the initial vortex is small, Figure 5.9 shows
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Figure 5.9 Two-dimensional geopotential and wind fields in non-

dimensional units for the vortex initial condition
given by (5.1) with rg=0.35 and centered at the
Equator ( y,=0 ) at t=2.7 ( t=1 day for e=500). The
scales on top and right are non-dimensional and the
bottom and left scales are dimensional for e=500.
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that the ¢-field lowers in the northern hemisphere in response to the
cyclonic flow while the geopotential field goes up in the southern
hemisphere in response to the anticyclonic flow.

The barotropic response is similar to the equatorial g-plane
results shown in this section provided we appropriately interpret the
length and time scales (see Figures 2.2 and 2.3). In the next sectior
we show the re;u]ts on the sphere for ¢=10 over the whole globe in

order to emphasize the process of dispersion of energy.

5.4 Sphere (e=10) example

The initial condition (5.1) can be easily transformed to the
(A;?] space on the sphere and projected onto the Hough functions for
e=10. As discussed in section 2.5 the method of solution of the
equatorial g-plane can be carried out on the sphere with minor
modifications.

On the sphere (e=10) the partition of energy between Rossby
modes and gravity modes for the vortex defined by (5.1) is similar to
the equatorial g-plane case shown in Figure 5.1 for a vortex centered
at the Equator and re < 1500 km. For a vortex centered at 40° (yozl.EO)
the equatorial g-plane prediction of the ratio R defined by (4.6) is
within 50% for re € 1500 km.

Figure 5.10 shows the development in time of an initial cyclonic
vortex centered at the Equator with e 0.40 (= 1500 km for ¢=10).
The initial condition is shown in Figure 5.lu.a and the geopotential
and wind field at t=8 hr, 24 hr., 48 hr., 96 hr., and 144 hr. are
displayed in Figures 5.10.b, ¢, d, e, and f respectively. Only half
the globe is shown in Figure 5.10 and the geopotential field is scaled

by 10,000; the arrows are proportional to the wind speed as indicated.
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The solution on the sphere for =10 at t=8 hr. (Figure 5.10.b)
can be compared to the g-plane solution shown in Figure 5.9 at t = 2.7

(t 9 nr. for e=10). We clearly see that the equatorial g-plane result
is not only qualitatively but also quantitatively similar to the sphere
At t=24 hr. the g-plane results (not shown) are still qualitatively
good when compared to Figure 5.10.c but the positioning and magnitude
is not as accurate as at t = 8 hr.

At t = 48 hr. (Figure 5.10.d) we clearly see the eastward
dispersion of the mixed Rossby gravity waves characterized by large
v-component of the wind at the Equator and approximate geostrophic
balance at higher latitudes. The zonally elongated field to the west
of the initial vortex is characteristic of the westward dispersion of
Tong Rossby waves with the predominance of zonal over meridional wind
(Figure 3.12 and 3.13). The structure of the mixed Rossby-gravity wave
observed due east of the initial vortex corresponds to the s=5 wave or
k = 2.8 in non-dimensional units. This is approximately the wavelength
of maximum energy in the 2 = 0 mode (or n=0 according to Table 3.2)
shown in Figure 5.3. Table 3.3 predicts reinforcement to occur in a
time interval of approximately two days and about 27° to the east,

1 for a disturbance with peak

implying a group velocity of 14° day
energy at s = 5. Comparing Figure 5.10.d, e and f (at t = 48 hr.,

96 hr., and 144 hr., respectively) we can follow the eastward propaga-
tion of the high centers in the northern hemisphere at about the speed

predicted by the reinforcement argument.

5.5 Summary and Discussion
In this chapter we have shown the time development of the initial

vortex (5.1), which is characterized by the parameter Yo (latitude of
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the center) and iy (the size of the vortex). The Fourier components
of the initial condition are given by (5.4).

The partition of energy between Rossby and gravity modes and the
spectral distribution of energy in the zonal wavenumber and meridional
index space (k,n) is discussed in section 5.1. For a vortex which is
small relative to the equatorial Rossby radius of deformation, the
bulk of the initial energy goes into Rossby modes (Figure 3.1). As
the vortex size increases or is shifted away from the Equator less
energy goes into Rossby modes. In particular, for a vortex characterized
by Py = 2 approximately 40% of the energy goes into Rossby modes, and
Figure 5.5 shows that it goes primarily to the mixed Rossby gravity wave.
Although 40% of the initial energy is in the slow dispersive modes,
the rest of the initial energy is concentrated in long gravity waves
which are also relatively slowly dispersive (Figure 3.6). Thus, the
adjustment time Ta defined by (4.9) is large and we cannot speak of
the adjusted state in this case.

A small initial vortex (e.g. e 0.35) is characterized by an
adjustment of the pressure field to the initial wind configuration.
The energy is mostly in Rossby modes and the adjustment is fast as
shown in Figure 5.7 which shows an x-t cross section of the ¢-field
at y = 1.2 for an initial vortex centered at Y5 F 1.2

One might speculate on the implications of the vortex experiment
in terms of the maintenance ¢f closed circulations in the atmosphere.
If for any reason the intensity of the closed circulation is changed,
the mass and wind fields respond in a short time scale in such a
way so as to bring the pressure field into approximate geostrophic

balance with the perturbed wind which tends to remain unchanged
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(Figures 5.8 and 5.9). Thus, the pressure adjusts to the wind and this
is true over a wide range of vortex sizes since most of the initial
energy goes into Rossby modes (Figure 5.1).

The question that we have to answer now concerns the physical
mechanism that might produce such an initial condition, i.e., a
sudden intensification of the vortex intensity without changing the
pressure field,

In the oceanographic context, an initial condition in the wind
field is interpreted as a sudden wind stress applied at the ocean
surface (Lighthill, 1969). The wind stress is treated as a body force
distributed uniformly in depth over an upper well mixed layer in the
ocean. In the atmosphere, cumulus convection may act to redistribute
momentum in the vertical and possible generate momentum (Ooyama, 1971;
Houze, 1973; Moncrieff and Miller, 1976; and Stevens, 1977). However,
the physics of the momentum transport and generation in the atmosphere
is not yet fully understood and certainly more complicated than what
the simple shallow water equations can describe. Thus, *he interpre-
tation of the results shown in this chapter as momentum sources by
cumulus convection is speculative but has a diagnostic value as far as
the dynamics of the system is concerned.

Numerical studies by Moncrieff and Miller (1976) and Moncrieff
(1978) have indicated the possibility of kinetic energy increase at
lower and upper levels by deep convection provided the system is
embedded in an environment with the wind blowing in opposite directions
in upper and Tower levels. This is exactly thes situation in a tropical
storm. It has been recently suggested by McBride (1979) that a favor-

able condition for the development of a hurricane in a large vorticity
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gradient between the 200 mb Tevel and the 900 mb level. Under those
circumstances, deep convection might act towards increasing the inten-
sity of the anticyclonic vertical shear and our results indicate a
dynamically induced subsidence in the inner part of the vortex. The
decrease in the radial circulation traps the energy within the system
allowing for local warming and surface pressure fall. Thus, the
surface wind increases and the energy input by evaporation-further
contributes to the enhancement of the disturbance.

We might also speculate on the east-west asymmetry of the
resulting adjusted state characterized by the slow dispersive Rossby
modes. Anthes (1972) suggests that the asymmetries observed in a
hurricane are a result of dynamical (inertial) instability. However,
Anthes' argument is based on a model formulated on an f-plane. Our
results suggest that asymmetries can also be produced by the variation

of the Coriolis parameter.
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6. STEADY FORCING

In this chapter we consider the initial value problem governed by
the linearized shallow water equations (2.74). 1In particular, we assume
the forcing term is to be independent of time.

In section 6.1 we present an example of a steady bell shaped mass
source/sink on the equatorial g-plane. The dynamic response to a
witch-on stationary vortex momentum forcing is shown in section 6.2.
In the two level baroclinic model this experiment can be interpreted
as the momentum forcing induced by clouds in such a way that a
cyclonic or anticyclonic shear is continuously appiied.

In section 6.3 the latitude dependence and relative position of
the mass source/sink are considered. Section 6.4 is a summary of the

results to be discussed in this chapter.

6.1 Steady mass source/sink - equatorial 2-plane
The initial value problem posed by (2.74) with IF = 0 and
£(x,y,0) # 0 can be interpreted as an instantaneous forcing. In this

section we consider another particular form of the forcing term :F

such that . -
0 for t >0
{
IF(x,y,t) = f{x,v) |
= - (6.1)
L_ 0 for t < 0
where -
2
[x% + (y-y )°]
f(x,y) = +exp{- e (6.2)
r
e
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is time independent. The plus/minus sign in (6.2) represents a mass
source/sink in the shallow water equations.

In the stratified atmosphere discussed in section 2.1 the forcing
function (6.1) is the projection of the heating forcing onto a particu-
lar vertical mode.

In the non-homogeneous case of the two-level baroclinic model we’

have the relation

1
fxy) =c R(Q), (6.3)
where the subscript (2) in (6.3) refers to the middle level (Figure
2.1), Q is the heating rate in units of (°K s=1) and R is the gas

1 (e=500) equation (6.3) can be

constant for dry air. For ¢ = 41 ms™
written as

1

f(x,y) = (Q), 6.5 x 107 deg™' day (6.4)

The steady forcing considered in this section is expected to
give a large response in Rossby modes according to (2.86) since the
lower the frequency of the eigenmode the more resonant it is to the
stationary forcing. In fact, the geostrophic mode (k=0) is resonant
to the forcing (6.1) without the damping term « and gives a linear
growth of the zonal wind and geopotential fields, and therefore no
contribution to the divergence field.

Figure 6.1, 6.2 and 6.3 show an x-t cross section at y = 1.2 of
the geopotential, vorticity and divergence fields for « = 0, Py = 0.35
and s = - (re ~ 470 km and ¥ ® 1600 km for ¢=500) including Rossby
and gravity modes. The Rossby mode contribution to the solution is

shown in Figures 6.1b, 6.2b and 6.3b. The initial condition in this

experiment is one of no motion and no geopotential perturbation.



162

00G=3 404 [PUOLSUBUILD Bde $SB|BDS 143 pue
wo33oq ayjy pue LBUOLSuU3wWLp-uou aue 1y6La pue doj 3yz uo sajeas oyl “(e)
J4ed ul umoys uoLinios 839 |dwod ayy o3 uoLInqLuluod apow Aqssoy ayy st
(q) 24ed "2* =94 pue GE 0= yzLm (L'9) Aq uaaib @d24nos ssew Apeals syl
403 2 1=A 3@ p[aL4 [eLjual0doab Leuo

ESUSWLP-UOU 8Y} JO UOL}DBS SSOUD 3-X |°Q 9unbL 4
(q) (v)
(uy) X
000z [e]e]e]] 0 0001~ 0002~ 0002 Q001 0 Q001 - o002z -
. T 7 1 | ] =y T )\ e T 5
A ot
h_/ p'ou’
_ = GE
T /
| -1 O
¢ - ) R /
,,w sl / m : | Jm_ﬁm\mcg
\ LT AN : \
S || / / L% / : "oz
EHRT 2\ /.,. 5
- ,ﬂ __ ) .... .
z J_. ) : $. , \ 71 9¢
& U f \
\ _._ M ! / / ,,// \
ol __, | : \/ / " / / -1 O
h 1 I i Je.. | | | \/\ 1 | 1} !
s} (o]] GO 0 G0- 0O1- gl- 3

X
v

Sl Ol S0 0 S§0- O1- g-



163

"PLaL} AJLOLIAOA SAL]R[SUA [RUOLSUSWLP-UOU 3Y} A0} INQ [°9 dunbL{ Se aweg Z°9 aanbi4

(q) (e)

(wy) X
0002 QOOI 0 Q00I- QU0c - 0002 Q00| 0 0001 - 0002 -
B 1T T T 1 _ T 71 T T T T~/ 7 Trm—TT 7T 7T TT—T1 "
2 i T I N SN
_.._ / W.. # v. \l‘ ¢ .M.J i
; g .. §F / \ s = &0
[ A ] LSS
2r ' vy .__r_.z vy
_:\,,___. / (et
25 i \ s ¥ ¥R
_ ___ ~ vy ~ Ay
U \
[ 4 | [
m |- W"_:..‘_:_ .____.
\" ...u___-,___.._ \,....,
T G v
Sr P e,
nooA Jheav gy 402
e vy ™y \ a—-m__. \
wi/\a P VUL o = VIR gy
AR B N T Y R, v v
TR L. NI ,__ s¢
VA ” oy ey gy Mgy
_____________,____._ \ vy
= . e vonn \ \ T v \ -1 0¢
8 | | | L | i I \/\ 1 | L | | 1 |
Gl ol SO 0 G0~ 0l1- ¢giI=- gl o'l S0 0 S0- Ql1- Gl1-
X



164

"000¢1 Aq pageds st (g) uorin|os apom Aqssoy ayl Jo )
SANOJUOD JYL "PLOLS OOUILUDALP [BUOLSUDWLP-UOU DYF 40j INng [°9 danbL4 se awes €79 aanbi

<
—
ge]

(wy) X

0002 0001 (0] Q001- Q00¢ - A 0002 Q001 0 0001 - 000e -
T T T I T I T T T I =\ 1 T T T T T T T T

oL
N




Figure 6.1 shows that the gravity modes have a small contribution
to the total solution except fo} small x and t and along the character-
istic line x-t. The vorticity field (Figure 6.2) is practically all
due to Rossby modes. Both geopotential and vorticity fields show a
westward displacement of the center of maximum intensity although the
forcing is fixed in space and time. This behavior has to do with the
westward dispersion of long Rossby modes excited by the forcing. An
analogous phenomena occurs with the instantaneous forcing as discussed
in Chapter 4.

The cross section of the divergence field at y = 1.2 (Figure 6.3)
is practically all due to the gravity modes response as can be easily
seen by comparing Figure 6.3a with Figure 6.3b (scaled by 1000). The
divergence field reaches a quasi-steady state after approximately one
non-dimensional time unit (less than 9 hrs. for ¢=500). The exact
steady state solution implied by Paegle (1978) in a similar problem
is a consequence of his f-plane assumption which allows for a steady
state solution which is not zonally symmetric.

], with maximum in the middle

For the heating rate of 8° C day
troposphere, the two level baroclinic model (e=500) would give an
almost steady state upper level divergence of approximately
1.4 x 1072 571 (wp = 600 mb day"]) with convergence over a broad region

-1 implying w, = 50 mb day']).

west of the heat source (1.3 x 1076 s
The sinking west of the heat source produces a slow warming and conse-
quent increase in thickness as shown in Figure 6.1. To the east of
the heat source, the general tendency is for divergence in the upper

level and consequently upward vertical motion which induces a cooling

and thickness decrease. However, the contribution of the geostrophic
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mode (which is non-divergent) is a linear increase of the geopotential
field and the zonal component of the wind. The combination of the
geostrophic modes with all other modes explains the relative constant
value of ¢ east of the heat source as observed in Figure 6.1.

The two dimensional wind and geopotential fields are shown in
Figure 6.4 at t = 2.7 (1 day for e=500) for the same experiment shown
in Figures 6.1, 6.2, and 6.3. Figure 6.4 can be viewed as representing
the upper Tevel of the two level baroclinic model; in this case the
Tower Tlevel flow is reversed and the geopotential field has the
opposite sign i.e., we have cyclonic motion at the Tower level in agree-
ment with the heat source in the middle of the troposphere.

The heat source is fixed at x = 0 and ¥ = 1.2 but the maximum
geopotential perturbation is displaced to the north about 0.25 non-
dimensional units (= 330km for £=500) and slightly toward the west.
The northward displacement is significant since the half width of the
heat source is approximately 500 km. At large time the center of
the ¢-perturbation moves towards the west and the whole pressire
pattern becomes elongated in the westward direction as suggested in
the geopotential x-t cress section at y = 1.2 (Figure 6.1).

The wind and geopotential fields associated with the forcing
function (6.2) are not symmetrical (Figure 6.4) as an f-plane analysis
would indicate. The wind is more intense in the southeastern quadrant
where the cross isobaric flow is more prominent. This result seems
to be a consequence of the smaller value of f equatorward of the
heat source. Figure 6.4 has some resemblance to the observed flow in
the upper levels of a hurricane. However, asymmetries in hurricanes

may have a variety of causes (Anthes, 1972). Our results simply
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Figure 6.4 Two-dimensional geopotential and wind fields in non-
dimensional units for the steady mass source given
by (6.1) with rg=0.35 and centered at yqo=1.2. The
scales on the top and right are non-dimensional and
the bottom and left scales are dimensional for
£=500.
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isolate asymmetries that are attributable only to the dynamical affects
of a variable Coriolis parameter.

Another speculative aspect is the displacement of the center of
circulation with respect to the center of the forcing function exhibited
in Figure 6.4. Results obtained with e 0.20 (re 2 270 km for £=500)
indicate basically the same features but a more intense divergence
field. This could have been anticipated since both caseS'{re = (.35
and Py ® 0.20) imply disturbances which are smaller than the equatoria’
Rossby radius of deformation.

Another way of explaining the similarity between the £, 0.35
and Py, * 0.35 cases is related to the partition of energy between
Rossby modes and gravity modes of the forcing function (6.2) From
Parseval's theorem and the definition of the expansion coefficient
(t) for the stationary forcing (given by 2.90 with k=0) we

ck,n,r
clearly see that

1 - cos w i
E(t) =] - el (6.5)
all kg 57

“kon,r
where E (t) is the total energy at time t. The term in parenthesis

in (6.5) is bounded for any t provided » # 0. However, as w

k,n,r K.nsrl

tends to zero, (6.5) has the asymptotic value

Tl ote,, £ (6.6)
3its 2

Then, for the geostrophic modes (k = 0, r = 0) the total energy is
proportional to t2 and increases without bound in the inviscid case.
As a consequence, as t increases,more and more energy goes into Rossby

modes.
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Figure 4.1 gives the ratio between the energy in Rossby modes and
the total initial energy in the geopotential initial condition.
Figure 4.1 can also be interpreted as the ratio of the variance of the
forcing (6.2) explained by Rossby modes to the total variance. Thus,

althougn fk is small for Rossby modes for a bell shaped mass

oIty 7 ;
sink/source of small scale, the energy in Rossby modes can be comparable
to the energy in all modes because of the asymptotic value of E (t)
given by (6.6). These results are clearly seen in Figures 6.1-6.3
where the Rossby mode contribution to the solution is shown.

Figure 4.7 shows that the projection of the forcing onto Rossby
modes, which are more resonant with the steady forcing, does not show
a radical change as it would if we were considering a large-scale
forcing (e.g. re=2.0}. As ¥ decreases we expect the divergence field
to intensify because there is a progressively larger projection of the
forcing onto gravity modes as P decreases (Figure 4.1). Gravity waves
have more divergence than vorticity as shown in Figure 3.20 and as k
increases the gravity waves become primarily divergent. For truly
localized forcing functions of the type (6.2) the e-folding width of
the Fourier spectrum is large (see 4.4) and therefore we expect a more
pronounced divergence field as the size of the forcing decreases,
assuming a constant maximum forcing. | I

The example of a forced problem on the equatorial g-plane shown
so far has no damping, i.e. the coefficient « in (2.86) is zero.
For reasonable values of « such that the e-folding decay time is between
7 and 20 days (for e=500) the effect is negligible on a time scale of
1 day. In order to illustrate the effect of the damping term « on the

forced stationary motion let us consider the particular form of forcing



2
f(x,y) = cos kx exp )-7 (6.7)

2
"e

<

with By & 1.4. Equation (6.7) represents a sequence of mass sources
and sinks alternating along the Equator. This example has been treated
by Matsuno with k = 0.5 and « = 0.2. Figure 6.5a, b, c, and d show

the steady state wind and geopotential fields for « = 0.01, 0.05, 0.20,
and 0.40 respectively. For « = 0.01 (Figure 6.5.a) the geopotential
and wind field are similar to the n = 1 Rossby wave with k = 0.5
(Figure 3.12). The maximum pressure deviation is away from the Equator,
about-%- out of phase with the forcing and maximum at y = 1.2. A
strong zonal current, directed from mass source towards mass sink,
develops along the Equator. It is interesting to note that the

maximum pressure response is not centered where the forcing is maximum.
As k increases the maximum pressure response shifts equatorward but is
not in phase with the forcing in the zonal direction. Even with

k = 0.40 (Figure 6.5.d) the highest pressure, although located near

the mass source, is slightly shifted eastward so that the outflow
region does not exactly correspond to the forcing. This is true for
all values of « and is most apparent for « = 0.01 (Figure 6.5.a).

Thus, with Tittle damping, the fiuid flows along the Equator symmetri-
cally with respect to the mass source or sink and the mass accumulates
on both sides of the Equator with Tittle pressure response at the
maximum forcing. As « increases the stationary solution shows a

build up of mass at the mass source (removal of mass at the mass sink)
but the center of equatorial outflow (inflow) is lTocated eastward (wes:-

ward) of the maximum mass source {sink).
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The sensitivity of the stationary solution to the steady forcing
(6.7) reveals that the internal response for different values of the
: equava]ent deptn H.can be different since the damping coefficient «
',3'15 a functIOn of ¢ as shown in (2.76). Thus, internal modes of small
' ﬁequ1va1ent depth behave like the viscous case since the non-dimensional
Jtoeff%cient K i;és;bportional to [T]. |
?356.2 Steady mbmentum-fcrcing - equatorial B-plane
I In Chapter 5, we considered the time deve1ppmept of a vortex
like initial condition with no initial pressure berturbation. Such
an initial condition can be interpreted as an impulsive addition of
momentum to the fluid. We now consider the response of the mass and

wind field to a stationary momentum forcing such that

I [+ (y-y,)] ) T
_ (¥-y,) exp {- 5
: ) ‘e
¥t - - 2
L = xS (y=y )]
Az Flxadht) = S -x exp {- 7% for t> 0
BN P ]
4 (6.8)
0 for t <0
and
£(x,y,0) = 0 (6.9)

Thus, (6.8) has the same spatial dependence as the impulsive forcing
PREL -
4} a(cr 1ﬁ}t}a}-cond1t1oa} g1ven;by ¢5¢L)q, Ihe nesuTts for r, = 0. 35,
hu--

iz XG\“I1 2 and X 0 qre shoﬁn in. Flgurqhﬁ 6a,.bh c,and d at t = 1.3,
i §
2. 7 5, 3 and 8 O resgect1ve]y In d1mens1ona] .units, this corresponds

to t = 0.5, 1, 2 and 3 days respectively assuming the two Tevel
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baroclinic model discussed so far (¢=500). The geopotential field in
Figurg 6.6.a is scaled by 1000 and the arrows are proportional to the
wind speed as indicated.

The qualitative characteristics of stationary vortex forcing are
similar to the impulsive forcing (Figure 5.8) since the low frequency
Rossby modes describe 95% of the initial condition shown in Figure 5.8.a.
The build up of the high pressure center in the NE quadrant is also
observed. As discussed in Chapter 5, we can interpret the geopotential
and wind fields in Figure 6.6 as reprsscntative of the 750 mb level
of the two-level baroclinic model. In this case the steady momentum
forcing can be interpreted as a steady torque applied to the lower
layer in the cyclonic directicn and an opposite torque in the upper
layer. As a result, anticyclonic shear is being steadily forced and
subsidence is required in order to satisfy thermal balance.

The difference between the steaidy forcing and the impulsive forcing
is primarily quantitative. In the impulsive case, subsidence occurs
initially and as time increases th: &-field goes up in the center of
the vortex as shown in Figure 5.8. In the steady forcing case the
¢-field continues to decrease up = t = 8 (3 days for £=500). In the
impulsive case the initial energy is being slowly dispersed by the
Rossby modes and in steady forcing cases there is an energy source to

replace the energy that is continucusly dispersed.

6.3 Steady mass source/sink - sphere (==10)
In this section we consider the steady forcing problem on the
sphere with ¢=10. This section complements some of the results obtained

on the equatorial B-plane with an ext:nsion to the external mode.



176

Emphasis is placed on the steady state response of the model assuming
that the damping coefficient « in (2.74) gives an e-folding decay time
of 10 days for the external mode.

The forcing function has the functional form given by (6.1) and
(6.2) with the appropriate correction for the convergence of meridians.
In order to obtain the steady state solution to the stationary forcing
with damping terms the expansion coefficient ck,n,r is given by (2.90).

Let us consider now an experiment in which a mass source and mass
sink of the same intensity are put at the same latitude but separated
in Tongitude by AO degrees. Figures 6.7 and 6.8 show the steady state
solution for the mass source/sink system centered at fB = 20° and
?; = 60° respectively and half width Ky * 1250 km. The value of Ao is
90° and symmetry about the Equator is imposed by considering only
symmetrical modes in the series solution. Also indicated in Figures
6.7 and 6.8 is the location of maximum forcing intensity and the
e-folding radius.

In both Figures 6.7 and 6.8 the maximum geopotential response is
west-northwest of the maximum forcing, with the low and high centers
in the neighborhood of the e-folding range of the forcing function.

The tendency for the circulation center and the high or Tow pressure
to be displaced with respect to the forcing was also observed in the
transient solution on the equatorial g8-plane. Experiments with forcing
functions with e-folding width muck larger than the local Rossby radius

of deformation (not shown) indicate that the forcing and the pressure

response tend to coincide in space as the dimension of forcing increases.
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Although the mass source/sink system is adding/removing mass at
the same rate in the experiments shown in Figures 6.7 and 6.8, the low
pressure for the system centered at 60° (Figure 6.8) is approximately
six times more intense than the system at 20° (Figure 6.7). However,
the steady state maximum wind speed is only twice as intense in the
higher latitude system. These results are a consequence of geostrophy ‘
since Rossby modes are more resonant to the forcing than gravity modes.

Another interesting feature observed in Figures 6.7 and 6.8 is
related to the relative intensity of the high and Tow pressure centers.
Although the only difference between the mass source and sink regions
is the sign of the forcing function, the low pressure to the east is
more intense than the high pressure. For By = 20° (Fig. 6.7) and
By © 60° (Fig. 6.8) the ratio between the Tow and the high in absolute
value is approximately 2. Thus, Tow pressure generated in response
to the mass sink is approximately twice as intense as the high pressure
associated with the mass source.

The high pressure region in Figure 6.7 and 6.8, besides being less
intense than the low pressure, is stretched in the zonal direction and
covers most of the latitude band, the circulation being well defined
only around the low pressure region. Had we reversed the relative
position of the mass source and sink regions the results in Figure 6.7
and 6.8 would still be valid (because of linearity) provided we change
the sign of the pressure field and reverse the direction of the wind.
In this case the circulation about the high pressure area would be well
defined and the wind field associated with the low pressure would be

stretched in the zonal direction.
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Increasing the distance between the mass source and sink makes the
pressure systems more symmetrical in the east-west direction. However,
decreasing the distance intensifies the relative difference in intensity
up to a certain distance where the source and sink areas overlap
significantly. For a separation distance of about 40° the east-west
asymmetry in the pressure response reaches a maximum and the ratio
between the absolute value of the high pressure to the Tow pressure is
approximately 2.6 to 1.

The conclusion is that for a mass source/sink at the same latitude
and with the same strength, the system to the east is more intense and
the circulation well defined. The east-west mass source/sink problem
can be physically interpreted as a highly simplified view of the
Walker circulation between the eastern and western oceans. In the
western oceans, the high sea temperature favors convection and mass
is pumped up in the troposphere. 0On the eastern side of the ocean, the
low sea temperature inhibits deep convection and radiative cooling
requires subsidence warming to maintain the energy balance. If we
assume that the mass that goes up in the convective region is forced
to sink in the eastern region, the hypothetical experiment discussed in
. this secticn can be viewed as a gross projection of the Walker circula-
tion forcing onto the barotropic modes. However, in this case the
relative position of the mass source/sink areas in Figure 6.7 (*6=20°)
would have to be reversed since the mass sink is associated with the
convective region.

We do not claim that the size and latitude of the forcing term
in Figure 6.7 quantitatively agrees with the observed regions of active

convection and subsidence. The model equations are too simplified to
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get more than qualitative agreement with observations. Nevertheless,
Figure 6.7 suggests a rather well defined high pressure cell to the

NW of the positive forcing; the low pressure area is not so well defined
in terms of circulation and intensity. These features of the steady
state response have some similarity with the observed features of the
east-west circulation in the atmosphere such as the positioning of a
strong subtropical high and a not well-defined low pressure area in

the western sector of the oceans.

6.4 Summary and discussion

The objective of this chapter is to study the response of the mass
and wind fields to steady forcing. In section 2.4 we derived the
expression for the expansion coefficient of the solution when the
system is subjected to a time independent forcing or alternatively, a
zero frequency forcing. Equation (2.86) shows that low frequency
modes (Rossby modes) will have large amplitudes while the high frequency
modes (gravity modes) are suppressed if the amount of energy projected
onto each mode is the same. In particular, the k = 0 geostrophic mode
is resonant to the zero frequency forcing if « = 0 and linear growth
is expected according to (2.91). Thus, if the forcing is such that
it is projected mostly onto long waves we expect a large zonal geo-
strophic component to be observed in the form of a zonally stretched
current as time increases.

In section 3.1 we have shown an examplc of the transient solution

on the equatorial g-plane for a bell shaped mass source centered at

u

Yy = 1.2 and half-width 8 0.35. This experiment can be interpreted

as heating in the two-level baroclinic model discussed in section 2.1,
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and in this case the perturbation is centered at approximately 14° N
and the half-width is approximately 470 km. In Chapter 4 we considered
the impulsive forcing case with the same parameters ¥g and o As
expected, for a steady forcing the Rossby mode contribution to the
total solution is much more important than in the case studied in
Chapter 4, as can be seen comparing the x-t cross sections shown in
Figure 6.1-6.2 with Figures 4.2-4.3. In the forced case however, the
divergence field (Figure 6.3) is maintained by the gravity modes since
the Rossby modes are primarily rotational (Figure 3.20). The divergence |
field reaches a quasi-steady state after about 1 non-dimensional unit
(9 hours for e=500). A perfect state divergence cannot be reached
on the equatorial g-plane with no damping (x=0) since energy is trapped
within the critical latitudes (Stern, 1963; Bretherton, 1864; Matsuno,
1966). Furthermore, we are considering periodic domains in the
x-direction and therefore energy is not allowed to disperse to infinity
in any direction.

The two dimensional field of the above experiment is Figure 6.4
at t = 2.7 (*1 day for e=500). The asymmetry in the two-dimensional
structure of the geopotential and wind fields is due to the g-effect
since the forcing is perfectly symmetrical. Of course asymmetries in ,
hurricanes can be due to a variety of causes such as dynamical insta-
bility (Anthes, 1972) and the environment in which the storm is
embedded (Frank, 1976; McBride, 1979). Ir Figure 6.4 the g-effect
is isolated for a forcing in the mass field. Along this same line we
have shown in section 6.2 that a steady momentum forcing such that a
vortex is continuously forced also generates asymmetries in the mass

and wind fields on a short time scale. The results obtained with the



183

steady vortex are similar in many regards to the impulsive forcing
discussed in Chapter 5, e.g. the subsidence in the center of the vortex
and the up motion in the NE quadrant. The dynamically induced up motion
is favorable for enhancing convection and this is another example of
tropical storm asymmetry induced by the g-effect.

The effect of friction on the forced stationary motion is
discussed in section 6.1 for mass sources and sinks alternating along
the Equator. This problem was treated by Matsuno (1966) for « = 0.20.
In the equatorial region the geopotential distribution tends to ignore
the mass source when k is small but for high values of k the pressure
field tends to be identified with the mass source. At higher latitudes
the flow is in approximate geostrophic balance with the pressure field
but in the equatorial region the fluid flows from mass source to mass
sink forming a strong jet centered at the Equator.

In section 6.3 are some examples of the forced stationary motion
on the sphere for the external mode (e=10). Instead of the single
wave structure discussed in section 6.1, we now consider one mass sink
and one mass source at the same latitude. The latitude dependence and
relative position of the mass source/sink system is considered. For
the same mass-source/sink intensity, the higher the latitude the
stronger is the pressure response. If a mass source is positioned to
the east of a mass sink the high pressure associated with the source is
more intense than the low pressure which is the response to the wass
sink. For a mass source/sink with e-folding width smaller than the
Tocal Rossby radius of deformation the pressure field does not correspond

exactly to the impressed source/sink; the high/low is localized to the
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west of the source/sink. Since the dynamical response to a steady
forcing is more resonant to low frequency modes (Rossby modes), the

resulting fields are closer to geostrophic balance.
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7.0 SUMMARY AND DISCUSSION

In the standard treatment of the process of geostrophic adjustment
the shallow water equations are formulated on an f-plane. Thus, the
problem is solved on a flat unbounded earth and the motion indeed tends
to perfect geostrophic balance as t+«. This is because the gravity .
waves excited by local sources spread out very rapidly to infinity
Teaving behind the steady state geostrophic solution.

The real earth, although laterally unbounded, is finite. We have
not only the curvature effects of the spherical geometry but also the
dynamical effect caused the variation of the Coriolis parameter with
latitude. Besides the steady geostrophic solution (zonal current in
this case) we also have another type of low frequency motion represented
by Rossby waves, which are quasi-geostrophic. Because of the variation
of the Coriolis parameter gravity waves are refracted and form envelopes
on which the wave amplitude is large (Blandford, 1966; Jacobs, 1967).
Another dynamical effect of the variation of f is to allow for waves
with appreciable magnitude only in neighborhood of the Equator, a
phenomenon called equatorial trapping and discussed by Stern (1963),
Bretherton (1964) and Longuet-Higgins (1965).

The existence of a class of waves of low frequency and small group
velocity over a wide range of zonal wavenumbers suggests that the
concept of geostrophic adjustment can be somewhat generalized; the type
of motion characterized by the Rossby modes can be regarded as the
adjusted state. Thus, our objective is to follow the development of
an initial condition until the slow dispersive motion characterized

by the Rossby modes dominates.
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The adjustment time on the B-plane, i.e. the time required to ob-
serve the Rossby modes contribution to the solution, is determined by
the dimensions of the initial perturbation and the group velocity of
gravity waves (as in 4.9). Thus, if most of the initial condition
is concentrated in long waves, the adjusﬁed state is well-defined
only if the energy in Rossby modes is much greater than the energy
in gravity modes, since long gravity waves are also slowly dispersive
(Figure 3.6). The concept of adjusted state is therefore not only
dependent on the partition of energy between quasi-geostrophic modes
and gravity modes but aiso on the spectral distribution of energy.

Let us consider now the motivation for studying the character-
istics of the free wave solutions of the shallow water eguations on
the R-plane. As is usual for differential equations with time inde-
pendent coefficients, we solve the problem by the method of normal
modes or eigenfunction expansion (Butkov, 1968). If the initial con-
dition can be represented as a superposition of ncrmal modes, the
solution of the problem is the same superposition where each mode
evolves in time at its characteristic frequency. The method of solu-
tion for the more general case when friction and external forcing is
included is discussed in section 2.4 . The dispersive characteristics
of the free waves are displayed in Figure 3.6 where the group velocity
as a function of zonal wavenumber and meridional index for the various

types of waves is shown.

7.1 Significance of single equivalent depth analysis
In section 2.1 we have shown that the perturbation equation for a

basic state of no motion for a stratified atmosphere can be separated
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into the horizontal structure equations and the vertical structure
equation; the separation constant is the so-called equivalent depth H
(Taylor, 1936). The horizontal structure equations are the so-called
shallow water equations and H is the depth of the homogeneous ocean.

For simplified mode atmospheres which include some sort of rigid‘
tops (w=0 at p=0 is included in this category), the vertical struc-
ture equation provides the equivalent depth H as an eigenvalue;
furthermore, the boundary value problem posed by the vertical struc-
ture equation and the boundary conditions give us a complete set of
eigenfunctions. Thus, we can make use of expansion theorems and
expand the three-dimensional solution in a series of the eigenfunc-
tions. This is the method used by Bolin (1953) to solve the classical
geostrophic-adjustment problem in a stratified fluid. We should also
be aware that the completeness of the eigenfunctions in the vertical
also allows us to study the transient solution of a forced problem
since the vertical structure of the forcing can also be projected
onto the eigenfunctions of the vertical structure equation. Lighthill
(1969) discusses the ocean case where the external forcing is the wind
stress, which can be projected onto the vertical modes.

Models with a discrete numter of layers in the vertical and with
some sort of rigid top also belong to this category;i.e., we can find
the normal modes of the governing equations and expand the solution as
a series. The 2-level baroclinic model discussed in section 2.1 is
an example. Geisler (1970) discusses the response of a two-layer ocean
to a moving hurricane and points out the different time scales of the
barotropic and baroclinic responses (see the definition of [T] in

section 2.3).
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Internal modes (small equivalent depth) are adjusted rather

slowly since the maximum group velocity allowed in the system (c=+gH)

is considerably reduced relative to the barotropic mode (external mode).

In the forced problem, where the forcing is time dependent, we clearly
see that the transient response is strongly dependent on the frequency
of the forcing (see (2.86)) since the closer the forcing frequency is
to one of the natural frequencies the larger is the response.

We should notice that in some cases the eigenvalues of the ver-
tical structure equation are part discrete and part continuous as
shown by Jacobs (1967). The discrete part in this case is the baro-
tropic divergent mode with Lamb's parameter ¢%1C in an isothermal
atmosphere. The continuous modes are a consequence of the upper
boundary condition; with the radiation conditicn on the top of the
model only the discrete mode is allowed (Lindzen, 1967). Thus, it
seems that the existence of a complete set of normal modes in the
vertical can be questioned. When the volume of the fluid is infinite
it may be possible that energy is radiated to infinity but it is alsc
possible that energy is reflectad by particular profiles of the ver-
tical shear of the wind (Eliassen and Paim, 1960). In such cases,
the rigid top assumption can be justified and the existence of a
complete set of eigenfunctions in the vertical is justifiable.

Eckart (1960) suggests that the eigensolutions in the unbounded
case can be identified by a single continuously variable parameter as
can the eigenfrequencies. Thus, when the fiuid is unbounded the
expansion theorems become analogous to the Fourier integral expansion.
However, there has been little justification for considering such an
expansion in meteorology and application of more elaborate mathematica

techniques to initial value problems is lacking.
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Our single equivalent depth analysis of the adjustment problem

can be justified in a stratified fluid with some sort of rigid top or
in terms of the two-level baroclinic model discussed in section 2.1.
Interpretation of the results in terms of the external mode also seems
justifiable in the case of the unbounded atmosphere. However, we are
considering the projection of an initial condition with vertical strué-
ture on one particular equivalent depth. Thus, we are impiying that
our results are significant for initial conditions that are projected

mostly onto some particular value of H.

7.2 Significance of the results

In Chapter 4, we considered the problem of the adjustment of an
initial condition solely in the geopotential field. The opposite case
in which the initial condition is the wind field was treated in
Chapter 5. The initial condition in the wind field is assumed to be
a vortex with no divergence. The results of the experiments are
summarized and discussed in section 4.5 and 5.5, respectively.

For both types of initial condition we have seen that knowledge
of the dispersive characteristics of the free modes (section 3.1), the
partition of kinetic and potential energy and the two-dimensional
structure of the waves (sa2ction 3.2) allowed us to explain and predict
the characteristics of the solution. This demonstrates the importance
of knowing the basis functions in an initial value problem solved by
the method of eigenfunction expansion. Although the examples treated
in Chapter 4 and 5 are of a particular form, the technique that we
used to explain the results is appiicable to more general cases such as

elongated initial conditions in the zonal or meridional direction; in
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such cases we only have to estimate the spectral distribution in the
zonal and meridional direction which can be easily evaluated by know-
ledge of the structure of free modes.

The two examples that we have chosen in Chapter 4 and 5, an
initial condition in the mass field and a vortex-l1ike initial condition,
respectively, have interesting consequences for tropical dynamics.
Let us interpret the initial condition in terms of the two-level baro-
clinic model with phase speed of internal gravity waves on the order

of 40 ms."T

(e=500). The results in Chapter 4 imply that only about
10% of the input heating is not dispersed by gravity modes, as shown

in the example in Figure 4.5. Thus, heating the atmosphere impulsively
on a scale less than the equatorial Rossby radius of deformation

(& 1300 km for €=500) does not produce a large local temperature
change. The adjustment time (4.9) for a small heating perturbation

is certainly fast because the energy is spread over a brcad band of
zonal wavenumbers and the group velocity of the gravity wave packet

is large (Figure 3.6). In section 6.1 we have considered a steady
heating case and Figure 6.4 allowed us to estimate a temperature
change of about 1° C clay'—1 for a steady heat source of 8° C day_]

and of the same shape and size of the impulsive case. Thus, it is
clear that any small scale heating in the tropical atmosphere is

going to cause a small local temperature tendency. This is certainly
a possible explanation for the fact that local temperature changes

in the tropics are small and little temperature gradients are observed

between convectively active regions and clear regions (Reed and Recker,

1971; Yanai et al., 1973; Gray, 1973).
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The situation for an initial condition in the rotational part of
the wind field is totally different. Altering the vorticity of the.
momentum field on a small scale is a very efficient way to maintain
the input energy. This is because most of the initial energy goes into
Rossby modes which are slowly dispersive. Figure 3.20 shows the ratio
of maximum verticity to maximum divergence for the various types of
free waves of the shallow water equations. We clearly see that the
maximum vorticity is at least one order of magnitude larger than the
divergence for Rossby modes and therefore any initial condition which
is rotational will primarily be represented by Rossby modes.

In view of the above, we feel tempted to interpret our results in
terms of the efficiency of clouds in altering the geopotential and
wind fields. The clouds seem to be inefficient in provoking tempera-
ture changes through heating, since most of the input energy is dis-

Ipersed by gravity waves, provided we are dealing with disturbances
Tess than the equatorial Rossby radius of deformation (Figure 4.1).
However, if the clouds do indeed affect the rotational part of the
momentum field we have found Tong lasting effects in the momentum

and geopotential fields. In Chapter 5 and 6 we interpreted the vortex
experiment in the two-layer baroclinic model as a hypothesized anti-
cyclonic shear induced by the generation of momentum by clouds. The
results show that most of the initial energy stays in kinetic form

and subsidence is induced in the center of the vortex, thus warming
the atmosphere.

In summary, clouds can change the temperature field and the momen-
tum field. The adjustment problem indicates that altering the temper-

ature field is very inefficient since most of the:input energy is
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dispersed, assuming a small perturbation compared to the equatorial
Rossby radius of deformation. On the other hand, if clouds affect
the rotational part of the wind on the same scale, the energy is
slowly dispersed. However, we do not know the detailed physics of
the momentum interaction of clouds with the environment. Thus, we
cannot yet ascribe more importance to one mechanism or the other with
absolute confidence. The results are therefore speculative, although
observations indicate that the cloud effect on the momentum field
might be important for hurricane development (McBride, 1979).

Besides the different interpretations of the concept of an ad-
justed state on the f-plane and B-plane we should point out the
important differences found in our results. The adjusted state on
the f-plane is symmetrical if the initial condition is symmetrical;
on the B-plane this is not true since the dispersive characteristics
of the waves are not symmetrical in the east-west direction. Since
f increases with latitude,westward propagating Rossby waves are al-
lowed and the absolute vaiue of the group velocities of the westward
and eastward gravity waves are not exactly the same. However, more
important are the peculiar dispersive characteristics of Rossby waves;
long waves disperse the energy towards the west and short waves
towards the east. These results can be seen in Chapters 4, 5 and 6.
In particular, we notice the elongated patterns to the west and
relatively intense pressure centers developing in the eastern sector
in both the geopotential and vortex initial condition experiments.
This process occurs on a sufficiently short time scale to be of sig-

nificance since it may interact with convection.



193

In Chapters 4, 5and 6 we have also presented results of the
initial value problem solved on the sphere for the barotropic mode. .
However, the results are qualitatively similar to the equatorial B-
plane interpreted with the appropriate time and length scales of the
external mode (c <300 ms'1). 0f course, the qualitative agreement
is dependent on the time and length scales of the initial disturbance‘

or forcing and the latitude of the disturbance.

7.3 Recommendations for future work

We have treated the problem of the adjustment of the mass and
wind fields based on the dynamics described by the linearized shallow
water equations about a basic state of rest. There are two funda-
mental Timitations of such a system of equations as far as the real
atmosphere is concerned. The first has to do with the single equiva-
lent depth analysis and the second is related to the assumption of
a motionless basic state.

It is clear that stratificatfon and a basic state with horizontal
and vertical shear may produce even more interesting results. How-
ever, the solution of the problem in such a general situation is only
possible in numerical techniques and then we have to deal with the
distortion of the process of adjustment by the discretization
(Arakawa and Lamb, 1977). Analytical solutions can be obtained in
simplified systems such as an atmosphere with simple stratification
and no basic state wind as discussed in section 7.1. In the Soviet
Russian literature, we can also find some examples of the problem of
adjustment in stratified atmospheres (e.g., Kibel, 1963). Dickinson

(1969a) also describes the process of adjustment by a point source
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in a simplified hydrostatic mode. However, there has been 1ittle work
doen on the interpretation of theoretical results in 1ight of observa-
tions and this can be left as a suggestion for future work.

The introduction of a basic state with meridional shear in the
linearized shaliow water equations could be expected to cause changes
in the results presented here. Blumen and Washington (1969) studied
the effect of a basic horizontal shear flow on the linear geostrophic
adjustment process in an unbounded barotropic fluid. The motion was
assumed to be independent of x and only the adjusted state was con-
sidered. The main conclusion is that the process of energy partition
between geostrophic and ageostrophic motions is strongly influenced
by the presence of the horizontal shear. This effect increases as
the horizontal shear increases. Schubert and Hack (1979) consider
the partition of energy between geostrophic and ageostrophic motion
in an axisymmetric vortex as a function of the Froude number F=U/c,
where U denotes the characteristic tangential wind speed. Their
results indicate that there is an increase in the amount of energy
in geostrophic motion for small scale ¢-perturbations and a decrease
for small scale vortex perturbations as the Froude number increases.
However, for reasonable values of the Froude number, the partition does
not differ qualitatively from that for the motioniess basic state.

On the B-plane, the non-linear shallow water equations can be
linearized about a basic state with meridional shear. The governing
equations can be put in vector form as in section 2.2 with the basic
state dependent terms on the right hand side and the method of solu-
tion is a Galerkin procedure as in Kasahara (1977). The natural

choice for basis functions are the eigenfunctions corresponding to
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the free wave solutions of the shallow water ecquations discussed in
section 2.3. The reason for this choice of basis functions is that .
the partial differential equations of the sheared case are greatly
simplified to a set of coupled ordinary differential equations of
simple form that can be solved analytically.

As a by-product of the Galerkin method of solution, we get the
effects of meridional shear on Kelvin, Rossby, mixed Rossby gravity
and gravity waves. Such studies have been already published by
Simmons (1978) and Boyd (1978a, 1978b). Dikiy and Katayev (1971)
have computed the planetary wave spectrum of the two-dimensional
vorticity equation by the Galerkin method. It is shown that if the
oscillations are superimposed on a zonal fiow different from solid
rotation, then of the whole infinite spectrum of Rossby waves there
remains only a finite number of discrete modes whose angular phase
velocities are less than the minimum velocity in the zonal flow. The
rest merge into a continuous spectrum that covers the interval between
the minimum and maximum velocities. The discrete modes correspond
to the longer Rossby waves deformed by the zonal flow. In fact, for
those modes with phase speed between the minimum and maximum velocity
of the basic state there are critical latitudes and we might question
the validity of the method of solution since there are singularities
in the solution (Dickinson, 1969). In order to obtain convergence
in the Galerkin method, we have to introduce dissipation and some of
the results seem to be particularly sensitive to the singular line
effects.

The process of adjustment of the mass and wind fields in the

presence of horizontal shear is currently being studied by the author.
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And finally, it should be emphasized that there is a need for more
work on the interaction of clouds with the large-scale environment,

particularly the momentum interaction.
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APPENDIX A

The Hermite polynomials satisfy the usual set of formulas associ-
ated with Sturm-Liouville problems (Butkov, 1968) such as the ortho-
gonality over the interval (-« ,t«) with respect to the weight functign

.y2
e i

a t+

2
H (y) H (¥) e dy =0 (n#m) . (A.1)

- o

The normalization constant for Hermite polynomials is

+ =
2
S )17 &Y dy = 2"nlvE (.2)

The lowest order Hermite polynomial is

H{y) =1 , (A.3)

and the recursion formula is

2y H(y) = 2n H_ _;(y) + H ,,(¥) . (A.4)

The differentiation formula for Hermite polynomials is

dH_(y)

T * 2n Hn_](y) for n>1 . (A.5)
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