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ABSTRACT

SIMCOMP Version 3.0 is a FORTRAN-]ike computer simulation language
designed to ease the development and implementation of compartmental flow/
discrete event simulations. The language is an extension and refinement of
SIMCOMP Version 2.0. The system is designed to reduce the programming
overhead required while sufficient flexibility to solve certain problems.
Compartmental-flow simulations are defined by specifying the flow rates
between compartments and may be in either difference or differential
equation form. Discrete events can be included in the form of event
routines which are controlled by a dynamic event scheduler. Various forms
of tabular and graphic output can be easily requested. An execution time
interpretive debugging facility is also included. The syntactical rules
for writing SIMCOMP programs are presented In this document along with a

number of examples.
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Iintroduction

The development of a second major simulation compiler, SIMCOMP Version
3.0, perhaps requires some justification. SIMCOMP Version 3.0 represents
a series of refinements which have extended the capabilities of SIMCOMP
Version 2.0 (Gustafson and innis 1972). The refinements which have been
incorporated into the Version 3.0 compiler are best understood in three
broad categories. These categories are (i) refinements and extensions due
to conceptuél advances in modeling paradigms; (ii) refinements which ease the
coding of SIMCOMP source programs; and (iil) the development of more efficient
algorithms within the compiler and in the generated object program.

As a means of abstraction and representation of ecological systems,
computer simulation models have taken many forms. Since many successful
ecological simulations have adopted the state equation approach, we do not
wish to abandon this paradigm. Instead, S!MCOMP Version 2.0 was designed
around an extension of the state equation paradigm, namely the conceptualiza-
tion of an ecological system as a set of compartmental-flow equations.

SIMCOMP Version 3.0 retains the capability to represent systems as sets of
compartmental-flow equations. The program organizes these equations into
difference equations and provides a solution algorithm.

Certain categories of ecological phenomena appear strained when
described in terms of state equations. These categories include (i) phenomena
which admit to a heuristic description; (il) phenomena with a low probability
of occurrence; and (iii) phenomena which are best described as stochastic
processes. The above categories are not meant to be exhaustive or mutually
exclusive. The feature incorporated into SIMCOMP Version 3.0 to facilitate
the modeling of such phenomena includes event routines and an event scheduler.

In addition, a number of distribution functions for the generation of stochastic
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variates are available. Event and compartmental-flow simulations may be
combined in the same simulation.

Changes in the format of SIMCOMP Version 3.0 statements are in large
measure due to the comments and suggestions of the users of Version 2.0.
Source program statements were simplified when possible. A number of new
statements have increased the capabilities of the language. For example,
the fact has been recognized that many times in large ecosystem simulations
flow equations are developed which take similar mathematical form, varying
only in the values of the parameters. SIMCOMP Version 3.0 provides for such
cases with the capability to iteratively declare flows. Additionally, an
execution time interpretive variable dump facility has been provided to ease
the debugging process.

The execution characteristics of the compiler and the generated object
code have been significantly improved in Version 3.0, Execution times and
core requirements have been reduced. A complete description of the system
and its operation is contained in the "SIMCOMP Version 3.0 Maintainance

Document' (Stevens and Gustafson 1973).
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1. SIMCOMP SIMULATIONS.

Every simulation language is designed to ease the
translation of real-world phenomena into computer simula-
tion models. Each language is designed to model a
particular class of real systems. Some notable examples
are the application of MIMIC (Control Data Corporation
1972) to the simulation of continuous physical systems
and the application of SIMSCRIPT (Markowitz et al.

1963) to the simulation of queuing and inventory systems.
SIMCOMP was designed primarily to model ecological
systems. As is the case with other simulation languages,
the realm of applicability of SIMCOMP is certainly not
-Iimited to the field for which 1t was designed (ecology).

The principle features of SIMCOMP were designed
with the modeling of ecological systems In mind.

This desire required some broad general izations about
the nature of ecological systems. These generalizations
include the following:

(1) Ecological systems can be viewed, in part, as

systems of continuously varying variables.

(2) Ecological systems can be visualized as a

system of compartments linked by material
or energy transfers or flows.

(3) The flow of material or energy depends on

other states and driving variables of the

system (information flows).
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(4) Ecological systems contain components which
can be visualized as discrete-valued variables.

(5) Ecological systems contain processes which can
be visualized as events occurring discretely
through time.

SIMCOMP is designed to model phenomena in the above

categories. Sections 1.1 and 1.2 are presented to

formally define the paradigms employed by SIMCOMP to

implement these generalizations. Sections 2 and 3

describe the syntax and coding procedures for writing

SIMCOMP simulations.
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1.1 Flow-Oriented Continuous Simulations.

A broad variety of techniques have been developed
to model and simulate many systems. Differential equa-
tions and difference equations have been most used in
the development of ecological models. As greater reality
and resultant complexity are introduced, the solutions
have become more intractable and computers have been
employed. Computer simulation in this context has come
to mean the numerical solution of a simultaneous set
of differential or difference equations.

Although many solution schemes are available, one
of the most versatile approaches is to view the simulation
as an initial value problem. The initial value problem
for first-order difference equations takes the following
form. Let the amount of material or energy in the ith
compartment at time t be represented by xi(t). For a
system of n compartments, the state of the system at
any time t can be expressed as a vector

x(t) = ((xq (0, x(8), ..., x (1)

Let a change in the state of the system over some time
interval, say At from time t to time t + At, be
represented by

px(0) = (ax,(8), axy(), oo, ax (8)) .

In general, the Axi(t) are functions which may
depend upon,

(1) the values of the state variables at time t,

x(t).
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(2) the values of a set of informational variables,
say vj(t) for j = 1; +++ , m, which, in general,
vary with time (these may depend upon or include
driving variables).

(3) the values of a set of parameters or constants,
say py, k=1, ..., s, which do not vary with
time,

(4) and time itself.

The change in the ith

state variable Axi(t) at time t

over the time interval At may be functionally written as
Axi(t) = F.Ix(t), vit), P, t, At] - At,

where the function Fi is the change per unit time in the

state variable X Note that if the system modeled is

to be represented by differential as opposed to difference

equations, then the dependence of Fi upon At should

not exist.

Given the initial values of the state variables at
time t = t,, that is x(ty), and the changes in the state
variables ax(t), we can find the state of the system
at any time tm = to + mit form=0, 1, 2, ... , M.

The state of the system at any time tM is iteratively
computed as
M-1

x(ty) = x(ty) + at - ;

z Folx(ed, vle ), p, £, at]

In order to simulate biological systems, we

postulate the following three principles.
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(1) A biological system can be viewed as a collec-
tion of smaller subsystems. (Indeed some
systems might consist of a single subsystem.)

(2) A change of state in any subsystem must result
from the flow of material or energy between
compartments contained in that subsystem.

(3) The identity of the material or energy flowing
in any subsystem must maintain [ts physical
identity throughout the subsystem.

As a result of the second postulate, we have further
required that the change of state of any particular com-
partment be expressed as the algebraic sum of the flows
to or from that compartment. Let the net flow per unit
time from compartment i to compartment j be represented by

fij = fij[’f(t)’ v(t), p, t].
Note that fij = _fji' that is the net flow into compart-
ment j, is reflected by a corresponding loss from
compartment i, and by necessity the identity of the
material flowing must remain unique. Therefore, expanding
upon our formulation of the solution of the initial
value problem, we find that the rate of change of
material in some compartment i, above expressed as
F. [x(t), v(t), P, tl, is the sum of the net flows from

each of the associated compartments. Formally this

requires that Fi = I fij' where S is the set of
JES

compartments which are coupled to compartment | by

flows.
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A nine-compartment system comprised of two sub-
systems is illustrated in Fig. 1.1-1, The compartments
are represented by the boxes. Material or energy flows
are represented by solid arrows between the compartments.
A flow which is always in one direction is represented
by a single-headed arrow, such as the flow from compart-
ment 1 to compartment 3. Flows in which the net flow
may be in either direction are represented by a double-
headed arrow, such as the flow between compartment
2 and compartment 3, Note that there are no material
flows between compartments in separate subsystems,
Informational flows are represented by dotted arrows.
The rate of flow between compartment 5 and compartment
7 for example, is controlled by the amount of material
in compartment 3. These informational flows are
represented by v(t) in our mathematical formulation.

We may further identify compartment 1 as a source,
provided the flow from 1 to 3 does not depend upon the
quantity of material in 1, and likewise identify

compartment & as a sink.
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Fig. 1.1-1., A nine-compartment system comprised of two subsystems illustra-

ting actual flows (solid arrows) and informational flows (dotted
arrows).

We have now identified the elements necessary to
specify a computer simulation of a compartmental -fiow
model. We require,

(1) initial values for the state variables.

(2) mathematical expressions which calculate the

net flows between compartments.

(3) mathematical formulas which calculate the

informational flows.
(4) the identification and values for parameters
and constants used in (2) and (3).

(5) the starting and final times over which the
simulation is to be run and the time step
for the numerical solution of the initial value

problem.
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SIMCOMP 1s designed so that these five items are easily
specified by the user. SiMCOMP organizes the flow
expressions into difference equations and provides the
solution. SIMCOMP further requires the user to specify
what information is to be printed and plotted. The
syntactical definitions for writing SIMCOMP programs
are explained in section 2. The mathematical formula-
tion of any compartmental-flow simulation, by first
specifying the above five items, perhaps with the aid
of a flow diagram, should precede the formulation of a

SIMCOMP program.
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1.2 Event Simulations.

While many ecological processes can be visualized
as material or energy transfers between compartments,
somne processes are not so easily represented. Processes
in the following categories can often be most easily
described by an event-oriented simulation:

* Processes involving discrete-valued variables.

* Processes which can be visualized as a queuing

problem,

* Processes which do not occur uniformly through

time,

*+ Stochastic processes.

An event in SIMCOMP can be formally defined by
specifying the following two items:

(1) A computation or set of computations, referred
to as the action of the event, which represents
the effect of the event on the system.

(2) A specification of the time of occurrence of the
event.

Al) events will be assumed to have the above two
attributes. The development of an event-oriented
simulation model will then involve abstracting from
real-world phenomena, processes which can be completely
described by specifying the action of the process on the
system and the timing of the process. For example, if

a birth process is to be simulated, the action of the
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process would be to increase the number of individuals
in the population. The time of occurrence of the birth
would also have to be determined.

There exists two methods by which the time of
occurrence of an event can be determined: events gen-
erated within the model and events fed to the model
from the outside world. The first method of event
scheduling is termed internal or endogenous while the
second method is termed external or exogenoug. The
~difference between the types is that endogenous events
are triggered by the explicit reaction of the model
to its operations, i.e., the model generates internal
events as it progresses, while exogenous events are
fed to the model from an external data source.

Changes which take place in the state of the
system when an event occurs are termed actions. Central
to the concept of an event is that an action requires
zero-simulated time to occur. This is the crucial
difference between discrete-event and continuous-time
simulations. In discrete-event simulations, state-
changes take place only at specified points in simulated
time at which interactions between system components
occur. In continuous-time simulations, interactions
and state-changes take place continuously. To model
continuous changes, numerical integration procedures
must be employed, but are not required for discrete-event

simulations.
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2. SIMCOMP PROGRAMMING.

SIMCOMP is a FORTRAN-1ike language designed to
implement both continuous and event simulations as
described in section 1. Continuous and discrete-
event simulations may be combined in the same simulation.

The fundamental elements of a continuous-variable
simulation are flow definitions. Likewise event def-
initions are the fundamental elements of discrete
simulations. Storage allocation for glcbally defined
variables (i.e., variables accessible by all portions
of the simulation) is provided by means of storage
declarations. FORTRAN subroutines and functions may
be supplied by the user. The source section of a
SIMCOMP simutation is specified by the inclusion of
any or all of the above statement types. The format
and usage of SIMCOMP source statements are described
in section 2.1,

A SIMCOMP simulation source section is a mixture
of FORTRAN statements and SIMCOMP processor directives.
This manual assumes a basic knowledge of FORTRAN pro-
gramming and the user is referred to any good instructional
FORTRAN manual such as ''Computer Programming - FORTRAN
IV (Anderson 1966). The SIMCOMP processor produces
code which is compiled by Control Data Corporation's
FORTRAN Extended Version 3.0 compiler. It is recom-

mended that all FORTRAN coding contained in a SIMCOMP
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source program conform to the specifications in the
""FORTRAN Extended Reference Manual'' (Control Data
Corporation 1973).

The initial values of state variables and parameters
are specified in the SIMCOMP data section. Requests for
tabular and graphic output are also included in the data
section. The format and usage of SIMCOMP data section
specifications are described in section 2.2. The data
section is read in and processed by the SIMCOMP~generated
simulation program. The sequence of operations in the

processing of the source and data sections is outlined

in Fig. 2-1.

.........

| t

SIMCOMP SIMCCMP
LISTING PROCESSOR

SOURCE

FORTRAN | | FORTRAN
DIAGNOS TICS COMPILER
r
J\_:zﬂ}le UTIiLITY
R ROUTINES
r
EXECUTE S hATAT
SIMULATION [T S2c T on -

SIMULATION

Fig. 2-1. Sequence of operations in a typical SIMCOMP job. Dotted blocks
indicate user-supplied portions.
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The detection and notification to the user of
execution errors is a task usually assigned to the com-
puter operating system. SIMCOMP provides an execution
time debugging facility which recovers control from the
operating system when an error is detected. A mnemonic
dump of user variables along with an explanation of the
nature of the error is printed in the output, Section
2.3 describes how this information may be utilized in

debugging programs.
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Source Program.

Ll 2.1-1
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SIMCOMP source programs are a mixture of SIMCOMP
processor directives and FORTRAN statements. The SIMCOMP
compiler Is actually a pre-processor which converts
SIMCOMP source language statements into segments of
FORTRAN compilable code.

SIMCOMP recognizable processor directives are
generally comprised of a key word followed by a period.
These statements may be contained anywhere in columns
1 through 72. FORTRAN statements included in the text
must begin in or after column 7. Columns 1 through 5
are used for statement labels and columns 73 through
80 are ignored. Column 6 is used for statement continu-
ation. FORTRAN etatement labels may take on any value
with the exception of five digit labels beginning with
9.

SIMCOMP reserves certain variable names as attrj-
butes of the system. Any of these variables may be
used (or altered at the user's discretion) in the
computation at any time. These variables and their

meaning are shown in Table 2.1-1.
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Table 2.1-1. Reserved variable names (simulation control variables).

Variable Meaning
X(i) where Current amount of material in

1 <1 5999 compartment |.
TIME Current simulated time.
TSTRT Starting time of the simulation.
TEND Ending time of the simulation.
DT Integration step size.
DTPR Time step between print-outs.
DTPL Time step between plotted values.
DTFL Time step between flow print-outs.
FLOW Value of the currently computed flow.

The user is cautioned againet the use of any vari-
able name beginning with the letter X. Variables
which are internal to the operation of the SIMCOMP
system use the convention of beginning with the letter
X. This avoids potential conflicts between the
user-supplied code and the system routines. This
precaution deserves special cognizance for ‘'canned"
FORTRAN subroutines where such variables might be

used.
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Parameter declarations.

Parameter declarations are used for two purposes .,
These are (i) storage allocation and (ii) stochastic
function definition. A1l parameter declarations con-
sist of a key word followed by a period, followed by
a list of names delimited by commas of the following
form:

key word. name,, name,, ... , name
The key word may begin in any column. The entire state-
ment should be contained in or before column 72.
Parameter declaration statements may not be continued
on successive cards. As many parameter declaration
statements may be Included as are required. Parameter
declaration statements can appear anywhere in the source
program with the following exceptions:

(1) within the text of a flow.

(2) within an event routine or subprogram.

Variable storage allocation.

Storage allocation statements consist of statements
of the following form:
STORAGE. vary, vary, ... , var
INTEGER. vari, varz, see o varn
REAL. var,, Vary, «.. , var
The names of variables in the variable declaration list

may be from 1 to 5 alphanumeric characters in length

and must begin with a letter other than X.
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Variables which fall in the following categories
should be declared In a variable storage allocation
statement.

(1) Variables which are subscripted.

(2) variables whose values are to be assigned via

data assignment statements in the data section
(refer to section 2.2.1).

(3) Variables where values are to be printed or
plotted via PRINT.V or PLOT. requests. (refer
to section 2.2.2).

(4) variables whose values are computed in flows
and are used in events or subprograms and vice
versa.

(5) Variables whose implicit type must be altered,
i.e., from integer to real or from real to
integer.

STORAGE., INTEGER., and REAL. statements can be
thought of as FORTRAN COMMON, INTEGER, and REAL declara-
tion statements. This is true with the exception that
any variable declared in an INTEGER. or REAL. statement
is treated as though the variable were also declared in
a STORAGE. statement. As such any variable declared in
one of the three storage allocation statements can be
considered to be globally defined in all segments of

the simulation. ALl events and subprograms, in addition

Y Note that the period is part of the command verb,
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to all flows, have access via its mnemonic name to

the value of any declared variable. The maximum number
of dimensions allowed for any subscripted variable is
three.

Exampie 2.1.1-1. Storage allocation statements.

——— —am

STORAGE, A+B+P(3)4+Q12+3)+INDEX
REALe M(I)eNsL(2+2)
INTEGER. D+E(29342)49F+ByP (6]l

If a variable is declared more than once, the last
declared mode of the variable is assumed. In the above
example variable 'B" would be assumed type integer. |If
a variable is dimensioned more than once, the last
declared dimensions hold. In the above example the
variable "P'" is assumed to be an integer one-dimensional
array with six locations. Once a variable is dimen-
sioned, the dimensionality of the variable remains in
force regardless of changes in type. The variable "L
above is assumed to be an integer two-dimensional array

with four locations (two by two),

Primary and secondary class storage.

Normally, the initial values of all user-declared
variables are printed in the output after the data
section has been processed, prior to the start of the
similation. User-declared variables can be segregated

into two classes of variables by the following convention.
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Any user-declared variables named in storage allocation
statements in the normal manner will be considered a
primary-ctass variable. All primary-class variables
will be printed in the initial-conditions output unless
otherwise requested. Secondary-class variables are
prefaced by an asterisk. Normally, secondary-class
variables will not be printed in the initial-conditions
output. Secondary-class variables are treated just as
primary-class variables in all other respects. This
feature is useful especially in the case of large arrays
whose initial conditions are not of interest, thus
minimizing the amount of output produced in the initial-
conditions output. Data section commands which will
alter the normal procedure taken for selecting variables
for printing in the initial-conditions output are
described on page 2.2.2-17. An example of secondary-

class variables is also presented in section 2,2.2,

Stochastic function definitions.

Stochastic function definition statements consist

of statements of the following form:

UNI FORM. name ., , name,, ... , hame
NORMAL . name;, name,, ... , name
EXPONENT. name, , name,, ... , name

LOGNORMAL . name, , name,, ... , name

The names contained in the variable list must contain

from 1 to 5 alphanumeric characters beginning with a
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letter. Variable names starting with the letter X
should not be used. Similarly variable names which are
implicitly type integer should not be used. Continuation
cards are not allowed. As many stochastic function
definition statements as required may be included.

Each entry in the list does not actually allocate
storage to the named variable, but generates a function
subprogram of that name. The function is called by
using the variable name in an arithmetic expression.

In the expression the variable name must be followed by
an argument list containing the correct number of
Parameters which specify the particular distribution
function. The parameters in the argument lists must be
real-valued constants or variables. Each call returns
a value from the indicated distribution as the value

of the function. The number of parameters and their
meanings for each of the distributions are given in

Table 2.1-2,

Table 2.1-2. Stochastic variable parameters.

Distribution No. of Meaning
Function Parameters of Parameters
Uniform 2 (1) Minimum value.

' (2) Maximum value.
Normal 2 (1) Mean value.

Exponential
Lognormal

(2) Standard deviation.
(1) Expected value.

2 (1) Mean value.
(2) Standard deviation.
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A flow simulation containing stochastic parameters.

NORMAL. V

STORAGE. VMEANsVSTDP
{1~2)1+ RVEV(VMEANW+YSTD)
FLOW=RV® (P=X{2})

endwof-record separator—=

?g’

VMEAN=

0,01 § VvSTD=0.01 $ P=20. $ X(1)=100., $ X(2)=5. §

TSTRY=0, $ TEND=100. & DT=1. §
(X{11=1) e (X (2)=2)

PLOT,.

MOT NO,
H 100,000
2 15,8090 -1 [} [} ] [} 1
[} [} i 1 1 et
11 | [ i t 222 |
[ S [} N | 1 | F4 |
| 1 1 | ) | 1 [} 72 I
t 13 | F™ I | ] .22 [}
1 111 [} | 1 { 2 1
L) | 1 i ima |
1 8. 0000 | u:“l : : : If :
3.8008 -1 2
¢ ! | ‘n » t ] m 1
t [ { ] i ! 4 1 [}
! 1 i i 2 ] i
) ] 1 [} ] a2 ] i
1 i 1 1 ] 4 [ ]
t | 13113 % ] 1 2 1 t
] | 11 t 1 2 1] i
1 ] 1 ] ] 2 L] 1
3 b, 0044 ] ] 113111} t 2 i 1
2 11.9880 -] ] 11 1=-28 i ]
1 ' 1 n 1 i
1 ¥ 1 1 ) 1 i
] t ] 1t a2z L} []
1 ] \ 1 22 1 1
] ] 1 12022 [} ] I
] ] 1 211 [} ] 1
] ] ] 2 1 t ] 1
] ] ] n 1in t 1
1 40080 ] ] I 22 1 | 1
* 400800 -l 3 I~ 11 ] !
1 ] i2 [ IR ) I
] ] 22222 1 1 ] )
1 ] 2 ] ] 1 3 ]
] ] 2z L] 1 i t ]
) 1 222 2 1 ] 1 [} 1
i ] 2 ] ] 1 ] ]
] 1 z I 1 | §1 ] ]
1 1 2 ¥ ] 1 ] 1
P 92,0000 t 12 [ 1 ] i
H TL00800 -§ -2 ] 1 Lil==1 ]
] 22221 3 1 11 [}
) {1 1] ] 1 11 1
1 4 1 ] [FE3Y ]
[} 2222 1 1 ] i 1 1%} 1
1 22 ] i ] ] 1111 \
[} & 2 ] 1 ] ] 11 I ]
[ I 4 [} [} ] ] 1 ]
|2 1 1 ] ] 1111
1 9.0008 ] | t ] L] ih ]
4 $.00808 -t L L [l 1 H
] . [} ] [} ] ]
e 28.2080 40,9008 kP00 80,8000 100.000
TINE
The parameter RV in the above example might represent
the value of some variable which was experimentally
determined to have a mean value of 0.01 with a standard
deviation of 0.01, The above flow would be computed
2/

An end-of-run separator is a single card with a 7-8-9 multipunched

in column 1.
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using a randomly sampled value from a normal distribu-
tion with the given mean and standard deviation at each
time step of the simulation. Refer to section 2.1.2
for a description of flow definifions.

A description of each of the above distributions
and the method used for their generation is given by
Naylor et al. (1966).

Example 2.1.1-3. An event simulation using stochastic parameters,

STORAGE . RMIN+AMAN+NO+TEXP+FINAL
UNIFORM, SIZE
EXPONENT. TDELT
EVENT MIGRT
TNEXT=TIME+TDELTI(TEXP}
IF(TNEXT.GT.FINALY RETURN
NO=NO+SIZE {RMIN.RMAX)
CALL EVENT{SHMIGRT+TNEXT+1)
RETURN
END

78y end-of-rasord separator

RMIN=10, $ RMAX=35. $ NO=0 § TEXP=l, $ FINALT255., §
TSTRT=0. $ TEND=365. §

EVENT, MIGRT 2645491

PLOT. (NO=N}
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This example might simulate the immigration of a .
species of animal during the time interval from day
245 to day 255. The time interval between arrivals
of groups of animals was assumed to be exponentially
distributed with an expected value of one. The number
of animals per group was assumed to be a uniformly
distributed random variable in the range from 10
through 35. The total number of animals which have
arrived Is contained in the variable NO. Refer to

section 2.1.3 for a description of event definitions.
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2.1.2 Flow definitions

Flows or material transfers between compartments,
named X(j) where 1 < j s 999, In a subsystem are
computationally defined in f]ow definitions. A flow
definition is comprised of a flow definition label
followed by a series of one or more FORTRAN statements
which compute the flow rate. The reserved variable
FLOW should be set to the computed value of the flow
rate. Flow definitions in general take the following
form:

(phrase - phrase).

executable FORTRAN statements
In the above, the terms ''phrase' are each one of the
following forms:

(1) n where n is an integer constant.

(2) v = ny» N, where v is a simple integer vari-
able and n, and n, are integer constants.

(3) v = Nps Ay, Ny where v is a simple Integer
variable and the n, are integer constants,
i=1,2, 3,

(4) Vi =n; * v, ¥ n, where the v; are simple
integer variables and the n; are integer
constants, i =1, 2.

The above phrases specify the indices of the source

and destination state variable compartments between

which a flow occurs. The system allows for a maximum
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of 999 compartments (i.e., X{(1) through X(999)). The
maximum number of flows which may be defined is 9999

or is limited by the amount of central memory core
storage available. A flow definition label may begin
in any column and must be completed in or before column
72. Any nonblank characters following the period in

or before column 72 are assumed to be an executable

FORTRAN statement,

Constant phrases.

If elther of the phrases In a flow definition
label are of the form (1) above, n must be an integer
constant in the range 1 s n < 999. The following flow
label would define a flow from compartment X(3) to

compartment X(239).

3 239

(3-239).

executable FORTRAN statements

lterative phrases.

Phrases of the form (2) and (3) define flows
iteratively, |If the mathematical form of a serjes of
flows Is identical, perhaps differing only in the
values of parameters used in the computation, the

flows can be economically written. The phrases of



Case 1.

2.]-2—3

forms (2) and (3) correspond in operation to the itera-
tion phrase of a FORTRAN DO-loop. Phrases of the form
(2) would indicate a series of compartments Ny, Ny + 1,
Ny + 2, ve. nye These are the values that the Integer
variable v takes on. Admissable values of the constants

n, and Ny must satisfy 1 < n, <N, < 999. Phrases of

the form (3) would indicate a series of compartments

+ 3 % n n, +m*n

3* M 30 0 g 3

where m is the smallest value such that n +m*n, > n,.

3
Admissable values of the constants Ny Ny and n3 must

Nys Nyt n3, n, + 2 *n

satisify 1 < n, < n, 5993 and n, + m * ng < 999. Source
and destination compartment phrases may contain any
combination of forms (1), (2), and (3). The integer
valued variable v must be a simple integer variable
containing from 1 to 5 characters. The following flow
declarations illustrate some of the possible combinations.
A flow diagram of the flows defined by each declaration

is included with each case.

83

733 84

85

(733 - 1 = 83, 85).

executable FORTRAN statements
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Case 2.

I &\\\\\\\\\\*
3 » 20
: /
(KK =1, 5, 2 - 20).
executable FORTRAN statements
Case 3,
]
988
4
o999
7

(IFROM = 1, 7, 3 - 1TO = 998, 999),

executable FORTRAN statements

Computational phrases.

Phrases of the form (4) must be used in conjunction
with iteration phrases of the forms (2) and (3). The
variables vy and v, must be simple integer variables
containing five or fewer alphanumeric characters.

The variable v, must be the same variable used in
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the other half of the flow definition. The constants
n, and n, must be simple integer constants. If either
of the constants ny and n, are chosen to have the
value zero, the zero must be written. That is, a
computational phrase must appear exactly as specified
in form (4). The values of the constants ny and n,
must be chosen such that the values of v, satisfy

1 g Vy S 993. The following declarations illustrate
the usage of computational phrases of form (4). A

flow diagram of the flows defined follows each case.

Case 1. o
l -y 4
2 1)
3 > 8

(I=1,3-J0=2%714+2),

executable FORTRAN statements
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Case 2.
100 » o
102 » 103
104 105

(M=1%N-1-nN=101, 105, 2).

executable FORTRAN statements

Case 3,

100 » 200

ol . 202

(It =100, 101 - 12 = 2 * I1 + 0).

executabie FORTRAN statements

The statements which follow a flow definition

label can be any executable FORTRAN statements with
the following restrictions.

(1) FORTRAN statement labels containing five numeric
characters beginning with '"9" should not be
used. Any FORTRAN statement label which is not
of the form 9DDDD, where the D's are any digits,

may be used.
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(2) FORTRAN transfer of control statements (i.e.,
conditional or unconditional jumps) should
not transfer control to statements not contained
within the range of the current flow definition
label. The range of a flow definition label is
defined as all executable FORTRAN statements
following the flow definition label prior to
encountering (i) another flow definition label,
(ii) a parameter declaration statement (refer
to section 2.1.1), (ifi) a SUBROUTINE, FUNCTION,
or EVENT statement (refer to sections 2.1.3
and 2.1.4), or (iv) the end of the source program.
(3) The reserved system variable FLOW is set
equal to the computed value for the flow rate.
The value of FLOW does not have to be set via
an arithmetic replacement statement. FLOW
may be passed as a formed parameter to a
subprogram where its value is set. |If within
a flow definition FLOW is not assigned a
value, its value is flagged as INDEFINITE
and a fatal error will occur (refer to section

2.3).

Construction of flow simulations.

The design and construction of flow-oriented
continuous variable simulations might be described by

the foliowing steps.
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(1) Construct a flow diagram of the system to be

simulated.

(2) Develop mathematical equations which will

compute the values for each of the flow rates.

(3) Program the flow definition statements.

(4) Execute, debug, and evaluate the output of the

simulation.

The following soii water model, taken from Smith
(1971), is presented as an example of a compartmental
flow model. The model is designed to simulate the
following processes:

(1) iInfiltration of surface water.

(2) surface water runoff.

(3) transfer of soil water from unsaturated to

saturated storage elements.

(&) soil water drainage.

Evapotranspiration is not considered in the model. This
model is presented primarily to illustrate the implementa-
tion of the model in SIMCOMP. A complete discussion

of the theory and performance of the model is presented

in Smith (1971). A flow chart of the model is presented
in Fig. 2.1.2-1. The following verbal description of

the operation of the model is excerpted from the above

mentioned report.
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Fig. 2.1.2-1. Flow chart of the volumetric threshold infiltration modei ,

The compartments X(1}, X(2), and X{3) represent
the volumes for depression storage, unsaturated soil
water storage, and the total volume between the unsatu-
rated storage and saturation. The input to the system
is the rain rate R1. The outputs of the system are the
runoff rate Y1 and the drainage rate Y3. Ordinarily,
evapotranspiration would draw water from compartment
X(2). The flow between X{1) and X{2) is the actual
infiltration rate Y12 and the flow between X{2) and

X(3) is also the actual infiltration rate Y23,
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If the rain rate is greater than the potential
infiltration rate FP or if there is ponded water at the
surface, i.e., X(1) is greater than zero, Y12 is equal
to the potential infiltration rate. If the rain rate
is nonzero and is less than the potential infiltration
rate and X(1) is zero, Y12 is equal to the rain rate.

tf X(1) is less than the surface storage capacity
K1, the runoff rate Y1 is zero. When X(1) attempts to
exceed K1, the runoff rate is equal to the difference
between the rain rate and the infiltration rate.

When X(2) is less than the capacity of unsaturated
storage K2, Y23 is zero. When X(2) approaches K2, steady
state is reached for that storage, i.e., Input equals
output, and Y23 is equal to Y12. When X{3) is greater
than zero, the drainage rate Y3 is equal to the saturated
hydraulic conductivity {the final infiltration rate,
FC).

A listing of the source and data sections of the
mode] and the output produced during a 9-hour simula-
tion comprised of two rainfall events is presented in
the following example. The graphs presented were
reproduced from microfilm which was generated by

SIMCOMP.,



Example 2.1.2-1,

A sample simulation illustrating flows.

STORABE, RAINLZ:241)

STORAGE. AWFC

REAL s N«K]oKZ24K3

STORAGE. PlsY1eY124Y234YIFP
Conse COMPARTMENT DEFINITIONS,

X{1) DEPRESSION STORAGE.
X{z UNSATURATED STORAGE.
Xy SATURATED STORAGE.
X1l0 TOTAL RUNOFF,

X(20} DEEP STORAGE.

X(9989) SOURCE OF RAINFALL.

e e —

cea.VARIABLE DEFINITIONS. - ‘ T

K1 VOLUME OF DEPRESSION STORAGE,
K2 . VOLUME OF UNSATURATED STORAGE.
x3 VOLUME OF SATURATED STORAGE.
£C SATURATED HYDRALIC CONDUCTIVITY
(FINSL INFILTRATION RATE},
N POTENTIAL LNFILTRATION EXPONENT,
A POTENTIAL INFILTRATION COEFFICIENT,
R1 RAIN RATE.
FP POTENTIAL INFILTRATION RATE.
g RUNOFF RATE.,
Y12 ACTUAL INFILTRATION RATE (X(1} TO X(2)).
Y23 ACTUAL INFILTRATION RATE (X{(2) TO X(3}),
Y3 NRAINAGE RATE. .
RAIN RAIN RATE DATA RECORD,

OO0 NONO0ON00OA000ONND

CoesTHE RAIN RATF IS LINEARLY INTERPOLATED FROM DATA,
1999«1), RISALINT2{TIMEsIFCKsRAIN)
FLOW=R]
Caes INFILTRATION TO UNSATURATED STORAGE .
{1=2)s FPSAB(K2+4K3=X(2)=X{3) ) 9eN+FC
Y12=FP
IF (X1} eLEeDu} YIZ=AMIN](RL FP)
IF {Y1290T.6GT.X(1}) Y12=X(1) /DT
FLOW=Y]2
Coe o RUNOFF WHEN THE CAPACITY OF DEPRESSION STORAGE 1S EXCEEDED.
{1-10). Yl=z0,
IF (A(1)GTaK]l} Yi=AMAXLI(R1=Y12+0.)
IF ({Y12+¥1)*0T . GTaX{1)) Yi=(X(1l)=Y12DT)/DT
FLOW=Y]
Coes INFILTRATION TO SATURATED STORAGE,
(2=3), Y23=0,
IF (X(2).GT.K2) v23=Yl2
IF (Y23*DT.6T.X(2}) Y23=X(2)/0T
FLOW=Y23
CeasORAINAGE WHEN THE SOIL IS SAYURATED.
(3-20). Y32AMIN1C(Y234.FC)
IF (Xt3)GTa0.) YIRFC
IF (¥Y3*DT,.GT.X13)) YI=Xi3}/DT
~ FLOWsY3

73, ond-0f record separator

2.1.2-11
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Kl=0.1 ¢ K2=]1,60 $ X3z0,15 % Az0.65 § N=1.19 S FC=0,8] §
X=3%0, % X(19)2C, § X(20)=0. $ X{999)=1000. &
TSTRT=0, 5 TEND=S, $ 0T=0.02 % DTP:‘D;I : FPa0. S
= =t, Yi=g, $ Y12=0. § Y23=0. =04
::!:;otc;!uo.1?2-:-O.sznb-0.3.6.0-a.ﬁ-5.810.5;4.6-0.6-3.#-0.7.2.000.80l.h
BeFoeletelalrDerSeelasS 080l edsS0leaBrB.15+3:.005:8922a915,25+2:305:3014T»
5.35-1.005.&-0-505.45.0.2!5.500- 3

PRINT,

PRINT. RI«FPoaY12Y12+Y234Y3

TITLE. RAINFALL RATE GENERATED FROM DATA.
PLOT. (M1}

TITLE. DEPRESSION STORAGE = s RUNGFF RATE = Yo ACTUAL INFILTRATION RATE = A

PLOT, (Y1l=Y)s(X(l)=1)e(Y]12=A)
T%TLE- UHS;?UPITEO 2 2+ SATURATED = 3+ POTENTIAL INFILTRATION RATE = P

PLOY: (X{(2)%2) o (X(3)=3) . (FPaP)
TgTLE- DEPRESSION STORAGE = }s RUNOFF RATE = Ys ACTUAL INFILTRATION RATE = A

PLOT. (Y1x¥)o(X(1)=))oiY12=A)[0.e2,] ‘
T%gLE- DEP;ESSION STORAGE = 1. RUNOFF RATE = Ys ACTUAL INFILTRATION RATE = A

PLOT, (YIsY)a(X(1)=1)o(Y122R)[4.5064])
T:TLE. 1uns;‘rum‘rtn ; 2+ SATURATED = 3+ POTENTIAL INFILTRATION RATE = P

PLOT. (X{2)22) 0 (XTI %3} o (FPzP}[D0r2.])
T%TLE. UNSlTGBAYEB = 2+ SATURATED = 3+ POTENTIAL INFILTRATION RATE = P

PLOT. (X{2)%2) 4 (X(3) 23] 4 (FP=P} [445464]
FILM.

STHULATION PESALTS

(partial lieting)
TN = 9.
RIW9S) & 1800. 30804 kit = [ ] M = ] AiBh = ,
¥ « L} RI20) » [] nl e [ nas. ]
Y} = L] Yi2 = L] YE) = [ ] 3= L ]
TIFE & Jl80ti0dee
REW9¥E « VW B%0M0 Ak ® e loNsR00L~4) K21 m»  JARAHIORNNL -] AMig) =
Rt » | ] Rite)r = [ ] Rl = 2.00000004 P = 2.00831809
AN 9. YIT = 1900004008 Y2l e ] Yl e ]
FINE = 290000800 i
X1999) a2 999404000 Rily = L11317es2e L2} = 297248000 (191 = 188575574
- Xt = [] i) = " Rl = S,60000008 FR s 1,87494158
¥Yi o= 3. 7250882 i YIZ #  1.8T494)158 23w L] ¥ia L]
TINE = 300000000 )
RI99%: = 998,020080 A1) = 120080000 RIEY w  LAT5640T87 X119 = 554359233
513} = ] KiZS) a ] Rl & &,008000080 FP o 1,72540424
Y o= 4,1945957s YIZ = | TISA0s2e Y23 = . Yy = L]
TINE & .a58008000
50999) =  998,232008 Xil) = L)ZoosoQoe Xi2) » 860008880 K(IO) = 1.00799114
Kt3) w ° Arzo) » [] Rl = 5.80000000 FP & 1.89}13732
Yoz 4.20888268 YIZ »  1.59111732 Y2l » ] ¥l s ¢
TINE = 300400000
RI999) = 997,TZalee x11) =« 120000008 AGZ) = JTRLRTYRTY Ril®) = 1.36ep2272
M = [} Ai29} = ] RL = 4.60000000 FP . J,47044333
¥l = 3,12955567 YiZ & },47040433 Y23 ™ ] Y3 = B ]
TIME = 680880000
KOO8 = 997,.336048 Xtll = .12e000009 Ki2) = LQI2220848 Kila) » 1.611T7938
X13} = ] xi20) = L] "l = J.a0000000 FP » 1.361966¢8
Yl = 2,03803382 Yik = 1,30196648 Y2y = [] Yl [
TIME = 70000008 .
RISS8) =  $97,080008 A3y m Sj2o0wesds Rid) =  1,0624835) XKila) &« 1,73751047
At = L] . X{28) = ] ) Rl = Z.480400080 P s 1 26445521
Yl & 713954079 Yit = j.2essS92] )= L} ¥y« ]
TINE = 240000000
BT = 994940800 RLE & 116402091 R} = |, 18390008 X{10F = 1,75993871
AN = L} Kze) = , [ Rl s L.00080008 FP a 1.1T687545
LI ] YIE = L.i1TedT4aS i)' » [] M= L]
TINE = 9800000408
RISV = Te.aTeNES il & LeTS55SI42€-01 Kifh » 1.2%a50a78 XCle » ) ,.759%38T1L
i3 » [ RiZe) » 3 Rl & .edd0doddd P l,09833736
¥l e 4 Yid . I.M)l‘ut. YE) » L] Y3 = L]
TINE = ), 080000000
AL = 994,.840000 ALY & 170082941 E=1a K2y » 1. 38008109 Kilg) = 1,7599387)
() = L] Ri2e) » L L= LAS2e51MM=]) FP = 1,03000ae%
i s ] Yi2 & 000000000k =2) ¥ = & 3 » L]
Tint » .
Kil) » [ ] X2} = 1,3800412% < K10k = ),73993071
A28 w ] Al = ] FP = 1.6200617¢
Yiz = L Y23 = ] ¥ a L]
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2.1.3 Event definitions.

An event in the SIMCOMP language is defined as a
set of computations which may be scheduled for execution
at any Instant during simulated time. Event routines
are essentially FORTRAN subroutines which are called by
the executive routine at requested times. The format
of an event routine is:

EVENT name
FORTRAN statements

END .

All statements must begin in or after column 7.
Columns 72 through 80 are ignored. Column 6 may be
used for statement continuation. The name of the event
hame must contain from one to five alphanumeric charac-
ters starting with a letter. Event names beginning
with the character X should be avoided. The FORTRAN
statements which represent the computations in the
event must be followed'by an END card. All variables
which have been declared in parameter declaration
statements (refer to section 2.1.1), in addition to
the system reserved variables, may be considered
present in the event and may be used in the computa-
tions. A maximum of 100 different events can be

defined in a simulation.
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Event scheduling.
| SIMCOMP simulations are executed under the control

of an executive routine. This executive routine has
the responsibility of stepping the simulation through
time. In addition to scheduling and passing control
to a number of system-defined events such as printing
output, saving values of variables for plotting, and
updating the state variables if flows are included,
the SIMCOMP executive keeps a dynamic list of all
user-defined events scheduled to occur and their time
of occurrence. This list is termed the event stack.

An event can be scheduled to occur either exoge-
nously (external]y) or_endogenously (internally).
Exogenous events are defined as those events which are
scheduled prior to the start of simulated time. By
including an exogenous event request card in the data
(refer to section 2.2.3), an event, its time of occur-
rence, and a priority is entered into the event stack,
Exogenous event request cards have the following format.

EVENT. name, time, priority

Endogenous events are defined as those events which
are scheduled dynamically during the course of a simula-
tion. An event is placed in the event stack by a FORTRAN
call to the system event schedule in the following format,

CALL EVENT (mHname,time,priority)
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where, |
m is a character count of the number of
characters contained in the name of the
event (1 s m < 5).
name is the name of the event routine (left
Justified)., The term mHname is a
FORTRAN hollarith constant.
time . Ts a real-valued variable or constant

containing the value of simulated time
at which the event is to occur.

priority is an integer variable or constant in

the range ¥ through 512,

After a call of the above form is made and the
current simulated time, TIME, becomes equal to the
scheduled time of occurrence of the event, the event is
called and executed. When an event is called by the
executive routine, the corresponding entry in the event
stack is purged. The priority of an event is used as
a tie breaker if more than one event is scheduled to
occur at the same time. A priority of 1 is highest
(first to occur) and 512 is lowest (last to occur). If
the value of a priority is outside the range 1 through
512, a priority of 512 is assumed. If two or more events
of the same priority are scheduled to occur at the same
time, the first to have been scheduled is the first

to occur. Additionally, if the same event is scheduled
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to occur more than once at identical times, the second
and subsequent requests are ignored. The maximum number
of events that can be scheduled at any one time is
limited by the amount of core available to the job. If
an attempt to schedule a nonexistent event is made, a
diagnostic is issued and the simulation is terminated.
Once an event has been put into the event stack,
the event may be canceled at any time prior to the
time of occurrence. This is accomplished with a FORTRAN
call of the following form,

CALL CANCEL({mHname ,dummy,status)

where,
m is a character count of the number of
characters contained in the name of the
event (1 < n < 5).
name s the name of the event routine (left

justified),
dumﬁy is a dummy argument which is not used, but
must be included for compatibility with
calls to EVENT.
status is an integer variable which is used to
signal the status of the cancellation
operation to the user.
Upon return from the cancellation routine status con-
tains,
0 if the routine was found in the event

stack and was successfully canceled.
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1 if the routine was not found in the stack
and no action was taken.
2 if the event stack was empty.
If an event is scheduled to occur more than once and
a call to CANCEL is made, the entry which was first to

occur is removed from the event stack.

System-defined events.

A number of events are defined and scheduled by
the system. The user should be made aware of these
events for the following reason. In some simulations
various system actives are sometimes scheduled to
occur at the same time as user-defined events. Most
notable of these is the system routine which produces
printed output. If a user's routine was scheduled
to occur at the same time as the system's printing
routine but at a lower priority, then the printed
output would not reflect the state of the system
after events scheduled at that time have occurred.
Table 2.1.3-1 contains a list of the system routines,
their scheduling priority, and the system-defined
variable which controls their time of occurrence. Some
of the routines listed are user-defined special purpose

subroutines described in section 2.1.4,
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System-defined events.

2.1.3-6

Routine . Controlling .
Name Priority Variable Action
START/ 100 TSTRT User-supplied.
XPRNT 200 DTPR Prints tabular output.
XPLOT 200 DTPL Saves values of variables
for plotting.
XCSIM 300 DT CYCLY is called if includ-
"ed by the user, the flows
are computed, the state
variables are updated,
and CYCL2 is called if
included by the user.
FiNIs®/ 500 TEND User-supplied.
HALT 512 TEND Halts execution,

User-supplied routines, scheduled by the system.
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The system—defined routine HALT can be scheduled
by the user any time he desires the simulation
terminated, A choice of priorities for scheduling
events should be made with the above table in mind.

In most situations the user will desire to schedule

his events at a higher priority than the system events
(i.e., less than 100). As indicated in Table 2.1.3-1, a
number of system-defined events are scheduled accord-
ing to the values given the reserved system control
variables. |If values for these variables are needed

by the system, but have not been set by the user,
default values will be supplied. A complete discussion
of the system-control variables and their use in

controlling simulations is contained in section 2.2.1.

Construction gi event simulations.

The construction and operation of event-oriented
simulations is illustrated by considering a simple-
event simulation of a hypothetical population. The
simulation is not intended to be biologically realistic.
The processes to be considered are (i) births, (ii)
recruitment from the juvenile age class to the adult
age class, and (iii) deaths. The following variables
are the variables of interest in the simulation.

NJM - No. of juvenile males.
NJF - No. of juvenile females.

NJ - Total no. of juveniles.
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NAM - No. of adult males.

NAF No. of adult femalgs.

NA - Total! no. of adults.

N Total popuiation.

Each of the processes or events in the simulation
consist of two sets of computations. These computations
are (i) computations which reflect changes in the variables
of interest due to the processes being simulated and
(i1) computations which determine the time at which an
event will occur. The particular equations used to
compute these two quantities embody the assumptions about
the processes involved in the population. For the sake
of clarity in thls example we will assume a very simple
description for the processes influencing the population
dynamics.

(1) Births are assumed only to occur from the 90th

to the 120th day of each year. We assume that
80% of all female adults have offspring during
this time Interval and that the number of off-
spring per female occurs In the following
proportions.
No. of offspring/birth Percent occurrence
5%
80%

10%
5%

£ N -




(YEARS)

MEAN ADULT UFE-SPAN

=)
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We further assume that males are born as often
as females. Therefore during the 30 days of
natality the number of birth events which occur
on the average is 0.8 * NAF. Hence the average
time between births is 30./(0.8 * NAF). The
standard deviation of the time between births
is assumed to be 10% of the mean.

(2) Recruitment from the juvenile age class to the
adult age class is based on the assumption
that the mean time required for a juvenile to
mature is 365 days with a standard deviation of
20 days.

(3) Deaths are assumed to occur according to the
following graph of mean adult lifespan vs.

total population size.

i >

]
100 500 1000
TOTAL POPULATION SIZE

The standard deviation of the mean adult lifespan is
assumed to be 10% of the mean. Table 2.1.3-2 lists the
events required for this simulation and the actions

performed by each event.
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Population simulation events.

Event

Name Computations

(1) Birth

(2) Male/female

maturation

(3) Male/femaie
death

BIRTH (a) No. of offspring/birth
(b) Sex of each offspring
(c) Adjust population size
(d) Schedule time of maturation
(e) Schedule time of next birth

RCRTM/ (a) Adjust age class sizes.
RCRTF (b) Schedule time of death
DETHM/ (a) Adjust population size
DETHF

A complete listing of the simulation and the results
are contained in example 2.1.3-1. Since the simulation
contains stochastic elements, the results shown in the
output represent oniy one of the many relaizations of
the simulation which would be required for an exhaustive
analysis of the model. Whenever a variable in a simula-
tion is defined stochastically, the value of the variable
at any point in the simulation is obtained by the random
sampling of a value from the indicated distribution
function. Therefore any one run of the simulation
represents only one possible realization of the system
which is being modeled. If the statistical properties
of the variables of interest are desired, a number of
runs using different random number sequences would be

required.
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Example 2.1.3-1. A sample simulation illustrating events.

STORAGE . NJMJNJF s NJsNAM+NAF + NAsNe YEAR

UNIFORM, FRCT

NORMAL. TSMP
EVENT RIRTH
YEAR=TIME/365.

CessBIRTH EVENT, DETERMINE THE NUMBER OF OFFSPRING,
F=FRCT(0anla)

NR=1
IFIF.LE.0.05) GO TO 5
N@=2
TIF(F.LE.D,B85) 60 TO &
NR=z3
IFIFLEL0.95) GO TO 5
NR=&
C...INFRFMFNT THE POPULAT]BN VAR]AHLES AND SCHEDULE RECRUITMFNT-
S DO-20 I=LsNH
CeseSAMPLE THE TIME OF RECRUITMENT OF THE OFFSPRING,
10 TRC=TSMP (365.4+204)
IFITRC.LE.O.) GO TO 10

Caea INCPEMENT THE TOTAL POPULATION SIZE AND NO, OF JUVENILES.
NJ=NJ+}

. N=N+]l

CeesDETERMINE THE SEX OF THE OFFSPRING.

R=FRCT (Basls)
IFIR,GT.0.5) GO T9 1S
NJMEN M+ ]
CALL EVENT(SHRCRTH+TIME+TRC420)
GO T0 20
15 NJF=NJF+]
CALL EVENT (SHRCRYF2TIME+TRC20)
20 CONTINUE

CesosSCHEDULE THE TIME TO THME NEXT BIRTH.
THB=30./(0.B2*NAF)

TSB=o.1sTMB

25 TR=TSMP(TMB.TSE)
IF (TR,LE.D.) 6D TO 25
TY=AMGD(TIME+3654)
IF(TY+TR,6T.120,) TBaTB+335,.
CALL EVENT{SHBIRTHsTIME+TB+20)
RETURN
END
EVENT RCRTM
YEAR=TIME/ 365,

CoeoEVENT OF THE RECRUITMENT OF A MALE JUVENILE.

NJM=NJ#=]
NAM=NAMS ]
NasNJg=-1

NAzNA+]

CeesSAMPLE THE LIFESPAN OF THE ADULT AND SCHEDULE THE OEATH,
TML=ALINT2(N«IFLGe100G+1095¢500¢36551000¢36)
TSLED.1®THL

5 TNaTSMP{TML+TSL}
IF (TDLLE.O.) 6O T0 S
CALL EVENT(SHDETHMyTIME+TD+20)
RETURN
END
EVENT RCRTF
YEAR=T]IME /365,

CaesEVENT OF THE RECRUITHENT OF A FEMALE JUVENILE.

NJF=NJF =]
NAFzNAF +]
NJ=N =1

NAzZNA«]

CessSAMPLE THE LIFESPAN OF THE ADULT AND SCHEDULE THE DEATH.
THLIALINT2tNoIFLG|10011095-5000365vlooﬂ-B&)

5 CALL EVENT (AHHALT+TIME1)
RE TURN
END
EVENT DETHF
YEAR=TIWE/ 365,

CeesDEATH EVENT, IF POPULATION GOES TO ZERO TME SIHULATION IS WNALTED,

IFIN,LT.1) GO TO S
N=N=-}]
NA=NA-]
NAF=NAF=]
RETURN

5 CALL EvENttsnnALr.tlnE.li
RETURN
END
SUBROUTINE START
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TSL=0.1=2THL
5 TO=TSMP(TML,TSL)
1F (TD.LE.Oe) GO TO S
CALL EVENT(SHDETHF+TIME+TD+20)
RETURN
END
EVENT DETHM
YEAR=TIME 7365,

CoesDEATH EVENT, IF POPULATION GOES TO ZERQ THE SIMULATION [S HALTED.

IF(N,LT,]) 80 TO S
LEL LY

N&=NA~=]

NAM=NAM=]

RETURN

< DEATHS,

00 5 I=leNam
THL=ALINT2INVIFLGe100+41095+4500436551000436)
TSL=0.1#TwML

& TR=TSMP ITML+TSL)
IF (TDWLE.0.) GO TO #

5 CALL EVENT(SHOETHMsTIME+TD+20)
DO 10 I=lsNaF
TMLEALINTR2 INy IFLGr100+2095:5000¢365+1000436)
TSL=0.12TWL

9 TD=TSMP{TML,TSL)
IF (TDJLLE.O.) GO TO &

L0 Call EVENT (SHDETHFTIME+TD»20)

CeseSCHEDULE THE FIRST BIRTH,

CaLL EVENT(SHBIRTH+30,.+20)
RETURN
END

78y end-of-record separator

T CL..ASSUMING AN IRITIAL POPULATION OF YOUNG ADULTS ONLY» SCHEBULE THEIR ~ ~

NJUM=0 § NJF=0 § NJ®0 § NAM=SO $ NAF=50 § NAz]O00 $ N=100 §$

YEAR=2Q. § TSTRT=0, S TEND=3650. § DTPLZ4,5625 §

TITLE. JUVENILE POPULATION == TOTAL = J+ MALES = M. FEMALES = F,

PLOT. (NJUM=M NJUFEFsNJ=J) /YEAR

VITLE. ADULT POPULATION == TOTAL = As MALES = M+ FEMALES = F.

PLOT. {NAM=M.NAF2FsNASA}/YEAR

TITLE., TOTAL POPULATION == ADULTS + JUVENILES = Ny ADULTS = Ay JUVENILES = J.

PLOT. (NJ=JINAZASNEN) FYEAR

TITLE. JUVENILE POPULATION,
PLOT, (NJSJ)/YEAR
TITLE. ‘ ADULT POPULATION.
PLOT. (NA=A)/YEAK
TITLE. TOTAL POPULATIGN,
PLOT. {N=N}/YEAR
FILm,
ERAPNICAL SIMULATION RESULTS $7/25/18 19.11,52,

ChiPi  GhguP  CROUP RENGE DECLAMATION  DEPENCENT VARISOLEMS)  PLOTTED INCEPERCENT aRIgLE  IRDCPERIENT Nin il L

No. CHIRACTER

1 t [ ¥} R e
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L7 )

H 1 NER L] LifL
nF 4
L1 ]

] ' w LAk
[ 1] .
| ]

4 1 L J LR
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PoT N, 3
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SubErograms.
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FORTRAN subroutines and functions may be supplied
by the programmer. Subroutines and functions may appear
anywhere in the source section provided they do not
appeear within the Intended range of a flow definition
label. Parameter declaration stateménts may not be
included within the text of a subprogram. All reserved
system contro) variables (cf. Table 2.1-1) and all
user-defined variables and stochastic functions declared
in parameter declaration statements should be considered
globally defined and are accessible within every user-
supplied subprogram. These variables are in a common
block inserted by SIMCOMP into each of these routines.
The format of user-supplied subprograms conforms to
FORTRAN specifications for subroutines and functions.

A user-supplied subprogram can be called from within
any flow definition or other subprogram or event.

Certain special purpose subroutines can be supplied
by the user which will be called by the SIMCOMP execu-
tive timing routine at predetermined times in the
simulation. These reserved routine names are listed in
Table 2.1.4-1. Computations which are to be performed at
the specified times are included in a FORTRAN subroutine
appropriately named. Since special-purpose subroutines
are called by the executive routine, argument lists are
not allowed. A flow chart of the execution sequence
in a simulation containing flow definitions is given in

Fig. 2.1.4-1.




2.1.4-2
~59-

Table 2.1.4-1. Reserved subroutine names

Subroutine Name Use

START Called after parameter values have been
set by data assignment statements in
the data section just prior to the
start of execution, TIME = TSTRT.

CYCL1= Catled just prior to the computation of
flows at each time step.

CycL2=~ Called after the flows have been com-
puted and the state variables have
been updated, but prior to any print-
ing or storing of values for plotting
at each time step.

FINIS . Called at the end of simulation, TIME =
TEND.

a/ Called only if flow definitions are present,.
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PROCESS INITEAL
DATA CONDITIONS
SECTION PRINTED
TIME«—TSTRT

VALUES GENERATE TABULAR
L uTPUT | OUTPUT

\

COMPUTE
FLOWS

¥

UPDATE
STATE VARIABLESY

Y

TIME=TIiME 4+ DT

TABULAR
OUTPUT

@ND SIMULATIO@

Fig. 2.1.4-1. Flow execution sequence.
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An example of a user-defined subroutine.

2.1.4-4

The graph was

reproduced from a printer plot generated by SIMCOMP.

(1=101+105-263).

CapLL vCaLcC
J=1-100
FLOW=V(J)*P1/DT
SUBROUTINE VCALC
00 10 I=1,.5
Jalel00

10 viI)=X(J)*P2
RETURN
END

78y end-¢f-record ssparator
Xt10 1 ) "1 Our 1 2 .t 1 5 (R 8 .y 20.

TSTRT=0. $ TEND=100. $ DT=2,.

S

$ X(263)=1000,

$ P1=0,0001 $ P2=2.,363 %

PLOT, (X{101)=1) e (X{102)=2) ¢ {X(103)=3)+(X(104)=8)4s(X{105)=5)
L3

H
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2.1.4-5

Note that the variables in the STORAGE. statement

are globally defined and are avallable for use in the

subroutine and in the flows.

Example 2.1.4-2. An example of a user-supplied function.

MOT Mo,

104080

100200

Lal2and

Thlabe

Ledbat

" $TORAGE, AsT1eT2+PHISClsC2

FUNCTION COSX(T)
COSX=A2COSt(T=T2)/3.14+PH])
RETURN
END
SUBROUTINE CYCL1
Cl=X(9)uCOSX{TIME=T]}
C2=0.1%C]
RETURN
EnD

(1-9), FLOW=C]

{2=9), FLOW=C2/X(2)

78, end-of-record separator _
A=0.01 $ T1=20., § T2=)0. § PHIz3.14 $ Cl=0, $ C2=0

+ 3

TSTRT=0, $ TENDU=6.28 $ DT=0.0628 $

X(1)=100. $ X{2)=100, $ X{9)=),. %

PLOT. (X(9)=9)
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2.1.5 Utility routines.

A library of subroutines and functions is avail-
able which is accessed and made available to the user
by SIMCOMP. Whenever the user includes a call to one
or more of the utility routines and does not supply a
subprogram by the same name, the utility library is
accessed and the called routine or routines are loaded.
The routines currently available include the functions
reported by Parton and Innis (1972). The calling
sequences for their functions are compatible with the
FORTRAN listings provided therein. The utility routines
listed in Table 2.1.5-1 are also available, and a description

of their use follows.

Table 2.1.5-1. Utility routines.

Name Purpose
ALINT1 Linear interpolation of data whose
~ independent variable is regulariy

spaced.

ALINT2 Same as ALINT1 for unevenly spaced data
points.

FLOWV Returns the most recently computed value
for a particular flow.

XSTATS Statistical sampling package

PUNCHD Produces a punched deck of data in

SIMCOMP acceptable format.
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Linear interpolation.

Many times the most desirable way to specify a
function Is by a table which is jinearly interpolated.
The FORTRAN callable functions AL!NT! and ALINTZ will
interpolate a table of values producing a value of the
dependent variable for any given value of the independent
variable.

Mathematically, the operation of ALINT1 and ALINT2

is described.

Given: 3/ ]

x= - the value of the independent variable at
which point a linearly interpolated value
is to be computed.

n - the number of pairs of values In the
interpolation table.

xj - the jth value of the independent variable
in the table to be interpolated.

yj - the jth value of the dependent variable

in the table corresponding to xj.
In order for the linear interpolation routine ALINT2 to
operate efficiently, the values of the independent
variable must be in ascending order,
xj s x-i + 1 for j=1,2, ... ,n-1.
The functions ALINT! and ALINT2 compute the linearly

interpolated value as follows:

3/

= The use of lower case x in this section should not be confused with
the state variables X.
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interval data.
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A

if x < X then ALINT = Y4
if x> X then ALINT = y

for j=1,2, ... ,n-1

if xj < X < XJ*1
then
Yiep = Y
ALINT =y e L (- x;).

J+1 J

The utility function ALINT1 can be used whenever
the values of the independent variable in the inter-
polation table are equally spaced. An example of such
a table and its graph is presented in Fig. 2.1.5-1,

The linearly interpolated value for x = 0.25 is y(x) =
0.375. Note in the graph that for values of the
independent variable outside the range of definition
of the table, that is less than 0.0 and greater than
0.5, the value of the dependent variable is assumed
to be equal to the value of the function at its tabular
end point. Therefore x = 0.55 produces y{x) = 0.05.
Whenever extrapolation occurs, this is the action taken
by ALINT1 and ALINTZ.
Ll
oo | .
Ol 3
o2 4
03 35
25
05

04
05

y {x)

'] 1 v i (] L o

00 Ol 02 03 04 05
X

Fig. 2.1.5-1. Sample tabular function and graph
containing equal interval data.
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The second calling sequence to ALINT1 is,

V = ALINTI(R,IFLG,RS,RD,Y1,Y2, ... , YN)
where R, IFLG, RS, and RD are as defined in the first
type of call. The constants or variables Y1 through
YN correspond to the values in the array RT. The
quantities Y1 through YN correspond to the values Yi»
Yor +oo 5 ¥ in the mathematical description of the
interpolation algorithm. These quantities may be
either integer or real valued, but again It is recom-
mended that real values be used. There must be at
least two or more entries of the dependent variable
in the call(i.e., n must be greater than or equal t§
two). Using the second method of calling, the previous
example would be programmed as follows.

Example 2.1.5-2. \Use of ALINT1, type 2 call.

(1-2). FLOWSALINTL(X{(2)9IDUMsO0ur0slv0ale0eIr0it90,3500.25+0,05)
78y end-of-record separator

Xz100,+0, $ TSTRT=0, $ TEND=10., $ DT=0.1 §
PLOT. (X{(2)=2). _

Unequally spaced data.

The utility function ALINT2 must be used whenever
the values of the independent variable in the interpo-
lation table are unequaily spaced. In this case the
values of the independent variable at each of the tabular
points must be supplied in the function call. An
example of an Interpolation table which contains unequally

spaced data is presented in Fig. 2.1.5-2,
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The first type of FORTRAN calling sequence to
ALINT? is,
V = ALINT1(R, IFLG,RS,RD,RT)
where, R is the value of the independent variable
at which point a linearly interpolated value
is desired.
RS 1is the starting value of the independent
variable in the table.
RD is the increment between successive values
of the independent variable in the table.
RT is an array containing the tabular values
of the dependent variable.
The above four quantities can be either integer- or real-
valued variables or constants. It is recommended that
only real values are used so that internal conversion
is not required. The array RT must be declared in
STORAGE., and the declared size of the array must be
one word longer than the number of values in the array.
The last location in the array must not be set to any
value either in the data section or within the source
section. By use of this convention, ALINT] is able to
determine n, the number of values in the table. Upon
return from the function,
ALINT? is the interpolated value.
iFLG is an integer variable set by the function

as a flag to the user,
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IFLG = 0 for normal interpolation.

IFLG = 1 if extrapolation occurred.
For the sample data in Fig. 2.1.5-1 the above calling
sequence is illustrated,

Example 2.1.5-1. Use of ALINT1, type 1 call.

STORABE, Y{T}
11=2)s FLOWZALINTL(X{2)»IDUMs04s0elsY)

78y end-of-record separator

Y=°.l'°.3.01"o.35.°|25'°n05 s !3100.00. S TSTRT=0. L TEND=10. 1 DT-OQI $
PLOT. (X(21=22)
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-

yi{x)

I Y R

Fig. 2.1.5-2. Sample tabular function and graph containing unequally
spaced data.
The first type of FORTRAN calling sequence to
ALINTZ is,
V = ALINT2(R,|FLG,TABLE)

where R and IFLG are as described in the calls to
ALINT1. The variable TABLE must be a two-dimensional
array declared in STORAGE. and is dimensioned TABLE
(2,n+1) where n is the number of pairs of values in
the interpolation table. The entries TABLE (1,n+1)
and TABLE (2,n+1) must not be given any values in the
data section or in the source program. The array TABLE
can be either an integer-valued or real-valued array,
but it is recommended that a real-valued array be used.
The location of the values of the interpolation table in

the array TABLE follows,

TABLE {1,1)

X TABLE (2,1) =

1
~
—

‘l’
X,y TABLE (2,2) = Yy

TABLE (1,2)

TABLE (1,n) x , TABLE (2,n)

|
~
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with TABLE (1,n+1) and TABLE (2,n+1) not given any

values. The following example is derived from the

data given in Fig. 2.1.5-2.

Example 2.1.5~3. Use of ALINT2, type 1 call.

PLOT MO,

[ 23

E R 2

L2

1

£00.000
J06.000

440.0¢4%
20,000

3a0,0480
lav.908

320.900
120,000

2a0.060
£9.9000

200,080
e

STORAGE. TT(2,7)

(8-80). TV=0,8%X(B0)
TF=ALINT2(TV+IFLsTT)
FLOW=TV®TF
IF(TV.LT.0.) FLOW=0.

78y end-of-record separator

TT=0001-!10-tO-T’EOo00-5.35l!0-35'500'0025!70.'0.2 b
TSTRT=0. % TEND=10. & DT=0.1 % Xt8) =500, $ X(80)=50, %
PLOT. (X(B))+(X(BO))
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The second type of calling sequence to ALINT2 is,
V = ALINT2(R,IFLG,R1,Y1,R2,Y2, ... ,RN,YN)

where R and IFLG are as described in the calls to ALINT2
ALINT1. The constants or variables R1, Y1 through RN,
YN correspond to the entries in TABLE in the first type
of call to ALINTZ. Referring to the mathematical
description of linear interpolation the arguments R1,
Y1 through RN, YN correspond to,

R1 = X Y1 = Y4

R2

X

20 V2=,

RN = x N =vy .

n’ n

Note that in both types of calls to ALINTZ the values
of the independent variable in the interpolation table
must be specified in ascending order. Using the second
method of calling ALINT2, the sample data contained in
Fig. 2.1.5-2 would be linearly interpolated as in the

following example.

Example 2.1.5-4, Use of ALINT2, type 2 call.

(8=-80). TV=0.B*X(80)
TF=ALINTZ2(TVsIFLs0els1000.T920+0:5+35+0435450+0.25470+0,2)
FLOW=TV®TF
IFITV.LTL04) FLOW=0,

739 end-of-record separator

TSTRT=0, $ TEND=10. § DT=0.1 $ X(B)}=500, § X(80)=50. §
PLOT. {(X(B))(X{80))

Step functions.

The special utility function ALINT2 can be used to

generate step functions. A step function f{x) is in
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general defined by,

f(x) = § .

vV IA

X
S

X

S

f x
f x

By allowing two consecutive entries of the independent
variable in the interpoiation table to assume the same
value, ALINT2 will generate a step. Fig. 2.1.5-3
contains the equation of a step function, its graph,
and the interpolation table used for its generation.
Using the second form of call to ALINT2, the step func-
tion illustrated in Fig. 2.1.5-3 would be programmed

as in the following definition of a flow.

+(x}
T

Y

Fig. 2.1.5-3. Sample step function.

Example 2.1.5-5. Use of ALINT2 as a step function.

STORAGE. RAIN
(3=1)e RAINSS,J0G®EXP(~0.00125%(TIME=50,)8%2)

FLOW=RAIN
(1223 FLOW=0L, 14X (1) CALINTZ2(RAINSIFs3av0asIesrle)l
789 end-of-record separator

X=0,90.4100, $ TSTRY=0, % TEND=100. § RAIN=0.22434 § DT=], §
PLOT. (X{1})+(X(2)})+ (RAIN)
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Retrieving values of flows.

The value which is computed for a flow is not
directly available to any part of a source program
except within the range of the particular flow. Some-
times it is desirable to acquire the value of a
particular flow or flows for use in the computation
at some later time. The usual situation is when the
value of one flow depends upon the value of some
previously computed flow. While this situation is
physically impossible {Innis 1972), it may be a very

useful procedure. The special utility subroutine
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FLOWV is used to access the value of a previously
computed flow given the source and destination
compartment indices of the desired flow. The FORTRAN
calling sequence to the routine FLOWV is,

CALL FLOWV(I,J,VALUE, IFLAG)
where | Is the source compartment index.

J is the destination compartment index.

VALUE is the most recently computed value

of the flow.
IFLAG is a flag which signals various
conditions to the user.

Table 2.1.5-2 summarizes the values which |FLAG can
attain and their meanings. Any attempt to subsequently
use the variable VALUE in the computation while IFLAG
returning any of the values 1 through 5 will result
in an arithmetic-mode error and the simulation will be
abnormally terminated. By checking the value of |FLAG
prior to using VALUE in the computation, an abnormal
termination can be avoided. Refer to section 2.3 to
determine what arithmetic operations can produce any
of the conditions 2 through 4. The quantities | and
J may be integer constants or variables. VALUE must
be a real-valued variable. The following flow chart

and example illustrate the use of FLOWV.
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Xt

X(s) o X x(2)

X(3}

Table 2.1.5-2. Values for IFLAG on return from FLOWY.

iFLAG VALUE Description

0 -- Current value returned OK.

1 Indefinite Flow exists, but was not assigned a
value by the user.

2 +Infinite Flow exists, value is positive
infinite.

3 -infinite Flow exists, value is negative
infinite.

] Indefinite Flow exists, value is indefinite.

5 Indefinite Flow was not defined in the simula-
tion.

Example 2.1.5-6. Simulation containing a call to FLOWV.

STORAGE. R{3)
(S=4), FLOWZ1D.*SIN(TIME®3,14159/365.)
{4«121s3), CALL FLOWV(Se&eFLy ICHK)
FLOW=0,
IF{ICHK.NE.O) GO TO 10
FLOW=R({I}*FL
10 CONTINUE

78y end-of-resord separator

Xx4#0,+5000., $ R=0.100,.3¢0.5 §
TSTRT=0, $ TEND=365. $ DT=1l. §
PLOT, (X(B)=5)+(X{a)s4&)

PLOT. (X11)=1sX(2)=2+X()=])
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Statistical-sampling package.

Often the outputs of a simulation experiment are
statistical measurements. Statistical measures of
simulated variables through time are often the principle
variablies of interest in event simulations. Such
quantities as the yearly average population size, the
mean time to maturation, and the probability of reach-
ing a given age are typical measures of performance
of an event-oriented simulation of population dynamics.
Normally, statements must be scattered throughout the
program to gather such statistics. Writing the state-
ments necessary for gathering such guantities as sums
and sums of squares is a task to be avoided because
it clutters the logic of simulation with statements
whose onty function is the collection of output
information.

The statistical sampling package XSTATS provides
a number of subroutines which simplify the gathering
énd reporting of such information. The statistical
sampling routines allow the use of either of two
sampling strategies. These are {i) discrete sampling
of variables and (ii) time-weighted sampling of vari-
ables. The mathematical description of each of these
methods is presented in Table 2.1.5-3 glven the
following definitions.

n - the number of samples.



2.1.5-16

_78_
xiﬁ/ - the value of the ith sample.
ti - the time at which the value changed
from X, to X1
ty - the time at which sampling started.
At; = t. - t._. - the length of time which the i
sample had the value X: .
Table 2.1.5-3. Statistical sampling computational methods.
Statistic Discrete Sampling Time-weighted Sampling
Number or total time n EAti
Sum Exi in . AtI
Sum of squares Exiz Xxiz . Ati
Mean Exi Exi . Ati
n ZAt?
Mean square zxiz z:xiz . Ati
n EL\ti
Variance inz Exi 2 Exiz . At] }:xi . Ati 2
n \ n IAt, B ZAE,

Standard deviation AAariance Vvariance
Max i mum largest X; largest X
Minimum smallest X, smallest x;

Discrete sampling.

As an example of discrete sampling consider the

following table of values which might have been the

4/

The use of lower case x in this section should not be confused with
the state variables X.
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times to maturation of individuals in a simulated

population.
individual &1|2,3|h|5|6
time to maturity l 1.8 1.702.110.911.6 1.7

Table 2.1.5-h4 displays the values of each of the statistics

using discrete sampling.

Table 2.1.5-4., Example of discrete sampling.

Statistic Value
Number 6.0
Sum 9.8
Sum of squares 16.8
Mean 1.63
Mean square 2.8
Variance 0.132
Standard deviation 0.364
Max imum 2.1
Minimum 0.9

Time-weighted sampling.

As an example of time-weighted sampling consider
the following table of values and their graph through

time. The graph might be the graph of the size of a
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population through time. Remember that the value t
is the time at which the sampled variable changed from
x. to x

i i+

4 7.4 | 11.9 | 16.5 | 19.6 | 22 | 22.8 | 24

Ati 1.4

2.6 | 3.4 4.5 4.6 3.1 | 2.4] 0.8 1.2

1 3 2 5 6 4 3 2

1 L ) 1 L ] 1 1
4 4 6 B |10 2 4 16 I8 20 22 24
t

Using time-weighted statistics, we are not just interested
in quantities such as the average of each of the sizes

the population takes on, but in the more meaningful
quantities such as the time-weighted average. That is,
the average over the 24-unit time interval is computed

by averaging the sizes the population assumes weighted

by the time spent In each population size. Table 2.1.5-5
displays the values of each of the statistics using

time-weighted sampling for the above example.
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Table 2.1.5-5. Example of time-weighted sampling,

Statistic 7 Vaiue
Total time 24,0
Sum 77.8
Sum of squares 328.2
Mean 3.242
Mean square 13.675
Variance 3.167
Standard deviation 1.773
Maximum 6.0
Minimum 0.0

Statistical package calling sequences.

The statistical sampling package XSTATS contains
two entry points for sampling values of variables.
The FORTRAN-calling sequences for sampling the value
of a variable are

STORAGE. VAR

CALL SAMPLE (VAR)
or CALL SAMPLE(VAR,TIME).
The first argument in the call must be a real-valued
variable and should be declared in STORAGE. The first
form of the call is used for discrete sampling. Each

time a new value for the sampled variable is computed,
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a call to sample should be made. The second form of
call s used for time-;eighted sampling. A call to
sample should be made for each value the variabie
assumes when TIME is equal to the final end point of
the interval over which the value holds. Calls to
SAMPLE for a particular variable can not be mixed
between the two forms of call. |If an attempt is made
to sample a variable in both discrete and time-weighted
modes, a diagnostic is issued and subsequent calls
referencing this variable are ignored. A maximum of
30 different variables can be sampled within a simula-
tion. Upon attempting to sample more than 30 variabies,
a diagnosfic is issued and attempts to sample in excess
of the first 30 variables ére ignored.

The sampling sequence can be reinitialized to
begin anew at a point in the simulation by calls of
the Fol]owfng form,

CALL RESET{VAR)

or CALL RESET(VAR,TIME).
When RESET is called, each of the statistics for the
named variable are reset to the appropriate initial
values. In the discrete sampling case quantities such
as n, Ix and Exz are initialized to zero. For time-
is

0

set to the current value of time in addition to the

weighted sampling the initial time of sampling t

other required initializations. If RESET is not called
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prior to any time-weighted calls to SAMPLE, the initial
value assumed for to is TSTRT, or the time of the first
event if TSTRT is not given a value in an event-only
simulation.

The statistics gathered by calls to sample will
be printed by executing a call of the following form,

CALL REPORT(VAR)
A report of all statistics will be printed in the out-
put as illustrated in the example at the end of this
section automatically. |If the variable VAR is declared
in STORAGE., the output will be labeled with the name
of the variable. Otherwise the output is labeled by
an integer enclosed in asterisks (*) which represents
the actual core location of the variable.

The values of any of the statistics for any sampled
variable can be assessed during the simulation by the
FORTRAN function calls presented in Table 2.1.5-6. |If
the requested variable has not been sampled prior to

the function call, an indefinite result is returned.
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Table 2,1.5-6. Statistical function calls.

Sample Calling Sequence Value Returned

V = COUNT(VAR) h or IAt,

V = SUM(VAR) sum

V = SUMSQ(VAR) sum of squares

V = AVERAGE(VAR) mean

V = RMEANSQ({VAR) mean - square

V = VARIANC (VAR) variance

V = STDEV(VAR) standard deviation

V = RMAX (VAR) largest value

V = RMIN(VAR) smallest value
Example 2.1.5-7. Illustration of calls to the statistical package.

STORAGE, POP+BUEL +ODEL +PMEAN
NCRMAL » PNORM
EVENT BIRTH
CesoeEACH TIME THIS EVENT IS CALLEDs A BIRTH OCCURES. THE TIME BETWEEN
c AIRTHS IS ASSUMED TO BE NORMALLY DISTRIHUTED WITH THE MEAN AND
c STANDARD DEVIATION A FUNCTION OF TIME GIVEN BY AN INTERPOLATION
C TARLE .
c
IF{POP.LE,0.) RETURN
CeaoSAMPLE THE POPULATION SIZE.
CALL SAMPLE (POP.TIME)
Caeo INCREMENT THE POPULATION SIZE.
POP=zPOP+},
Ces«SCHFDULE THE TIME OF NEXT BIRTH,
PME‘N=ALINT?(TIHE'ICHK0001‘00‘50l2.5!7°g11l!90.'0.57!120.'0.5'
- 180!!0073!210!01025’27000303'365.0‘0,
PSTDV=0.14PMEAN
S BDEL=PNCGRM (PMEANSPSTOV)
CaseTHE NORMAL DISTRIBUTION 1S TRUNCATED AT ZERO.
IF(BDEL.LE.Q.) GO TO §
CALL EVENT (SHBIRTHTIME+BDEL y))
CuesSAMPLE THE TIME BETWEEN BIRTHS,
CALL SAMPLE (BDEL)
RETURN
END
EVENT DEATH
CuseEACH TIME THIS EVENT IS CALLED A DEATH OCCURES. THE TIME BETWEEN
C DEATHS IS5 ASSUMED TO BE NORMALLY DISTRIBUTED WITH A MEAN OF 1.0 AND
C STANDARD DEVIATION OF 0.1.
[
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IF (POP.LE.D.) RETURN
CoesSAMPLE THE POPULATION S1ZE.
CALL SAMPLE (POP.TIME)
CawDECREMENT THE POPULATION SIZE.
POP=POP=1,
CuesSCHEDULE THE TIME OF NEXT DEATH.
£ DNEL=PNORM(1les0.1}
CeoesTHE NORMaAL DISTRIBUTION 1S TRUNCATED AT ZERO.
IF IDDELLLELD.) GO TO S
CALL EVENT (SHDEATH«TIME+DDEL+ 1)
CeeeSAMPLE THE TIME BETWEEN DEATHS.
CALL SAMPLE(DDEL)
RETURN
END
EVENT STOP
CessREPORT STATISTICS.
CALL REPORT{PCOP)
CaLL REPDRT(BDEL)
CaLL REPORT{DDEL}
RETURN
END

78y end-of-record separator

TSTRT=0., $ TEND=365. § POP=100. $ PMEAN=4, $
EVENT. BIRTHs04nl

EVENT. DEATH.04s1
- EVENTe STOP»365.01

PLOT. (PMEAN)

PLOT. (POP)}

STATISTICAL REPORT FOR POP TINME = 365.000000

364,39107Y AYERAGE 87.9511232
129.000000 MINI W™ 27.0000000
32048.6778 SUM Sa. 308793:.19
STATISTICAL REPORT FOR BDEL TIME = 365.000000
296.000000 AVERAGE Le2600T0M7T
4,55162573 MINIMUM »3858954681]1
36T.24B812 Sum S0, TeX, 749583
STATISTICAL REPORT FOR DDEL TINE = 365.000000
369.0v..L0 AVERAGE «990517629
1.284T7T732% MINIMUM 693412332
36%5.50100%5 SUM 59, J6S5.6T9931

ST+ DEV.
VARIANCE
MEAN SQ.

ST. DEVS
VARTANCE
MEAN S@.

5T. DEV.
VARIANCE
MEAN SO0,

2.1.5-23

27.18069066
T38.790267
B4T4,22553

1.02023854
1.04088068
2.5802350]

9,937122086€-02
P.AT44395I5E-03
«990%99813
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Punching data decks.

The special.utility subroutine PUNCHD provides
the capability of obtaining a punched deck of the
system-declared simulation control variables (refer
to Table 2.1-1, with the exeception of FLOW) and all
variables declared in STORAGE.. The data deck is
punched in a format consistent for input to a SIMCOMP
simulation (refer to section 2.2.1}. Any variables
which have not been assigned a value are ignored. The
call to PUNCHD contains no parameters and is of the
following form.

CALL PUNCHD

The call to PUNCHD can be placed at any point in
the simulation, but will be executed only the first time
it is called. The call in most cases should be placed
in routines that are executed only once, such as START
or FINIS, A call to routine PUNCHD is most useful when
data is generated in one simulation and is to be used
as input in another simulation. The punched deck
produced by PUNCHD will have the same job number as the

job that generated the punched deck.
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2.1.6 Listing controls.

SIMCOMP normally produces a listing of the source
section during compilation. The SIMCOMP compiler
directives LIST. and NOLIST. may appear at any place
In the source section. If a NOLIST. directive is
encountered, the printing of all source statements from
that point on is suppressed. The printing of source
statements is reinitiated by the LIST. directive. LIST.
and NOLIST. can appear anywhere in columns 1 through 72

and blanks are ignored.
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Execution controls.

At CSU using the SCOPE 3.3 operating system, the
SIMCOMP compiler remains on the system as a permanent
file and is called up and executed bf means of the job
control cards listed in Appendix C. SIMCOMP simulations
can be executed in any one of three different modes,
seiected by the inclusion or absence of execution-
control directives in the source section. The three
modes of execution correspond to (i) the absence of
any execution directives, (ii) the inclusion of a DEBUG.
execution directive, and (iii) the inclusion of a NOGO.
execution directive. Either DEBUG. or NOGO. is key-
punched anywhere in columns 1 through 72 and blanks
are ignored. |If both a DEBUG. and a NOGO. card appear
in the source section, then NOGO. is assumed.

The first mode of execution, that is, the default
action of the compiler, should be used during the early
stages of the development of a simulation. Any FORTRAN
compilation errors which are detected will be printed
in the output along with the offending statements. The
second mode of execution, selected by a DEBUG. directive,
should be used after all compilation errors have been
eliminated. |If compilation errors are encountered while
DEBUG. has been selected, the only indication is a
message entered in the dayfile; the run is terminated.

The printed output will not contain any diagnostics
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explaining the nature of the compilation error. The
use of DEBUG. is intended primarily for the detection
and reporting of execution errors. |f DEBUG. is
selected and an arithmetic-mode error occurs during
the course of the simulation, a short explanation of
the error along with a dump of all variables and their
values is provided. A complete explanation of the

use of the DEBUG. facility is contained in section 2.3.
The third mode of execution, selected by the NOGO.
directive, suppresses compiler generation of the job
control cards and therefore requires the user to supply
the desired job control cards. When the default or
DEBUG. mode for execution is selected, a standard set
of job control cards are generated by the compiler
which will automatically execute the simulation. By
selecting NOGO. the user must supply his own control
cards If anything more than a SIMCOMP compilation is
desired. The job control card sequences generated in

the default and DEBUG. modes are listed in Appendix B.
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2.1.8 Comments
Comments conform to the format for FORTRAN comments

and can appear anywhere in the source section. Any
statement with the letter C in column 1 will be taken

as a comment. The commentary information can be any
string of blanks and characters in columns 2 through

80. Each comment statement must begin with a C in
column 1 and may not be continued by means of a non-

blank character in column 6 on subsequent cards.



2.2 Data Section

2.2-1
-92-

When a SIMCOMP source program has been compiled
successfully, the first phase of execution of the simula-
tion begins by reading and processing the data section.
The data section is comprised of three types of state-
ments. These are (i) data value assignment statements,
(i1) output requests, and (iii) exogenous event requests.
All statements in the data section are free form in

columns 1 through 80 and bianks are ignored. Statements

within the data section can appear in any order. {l1legally

formatted statements will produce a diagnostic, but in a
great majority of cases the errors are not fatal. An
attempt will be made to execute the simulation by assum-
ing default values for critical parameters. As a result
the output should be examined for data section diagnosticé
if correct results are to be realized. The physical
location of the data section within the job deck is

illustrated in Appendix B.
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Parameter input data.

The values of variables or arrays declared in
storage-allocation statements (refer to section 2.1.1)
and the values of the simulation-control variables
(refer to Table 2.1-1, with the exception of FLOW) may
be set by data-value assignment statements. Data-value
assignment is specified by statements of the following
form:

var = v §
or
var = V], Vor e a VS
The variable name or array element ''var' must have been
declared in a storage-allocation statement or is a
reserved simulation-control variable. The value of the
variable or the values of the array '"v' may be either
integer- or real-valued constants. The mode of the
value should correspond to the mode of the variable.
If the mode of the value and the variable differ the
mode of the value is converted to the mode of the vari-
able. If an attempt is made to assign a real value to
an integer variable, the value Is truncated to an integer,
the assignment is made, and a diagnostic is issued.
Each expression is followed by a dollar sign. The
expressions are free form in columns 1 through 80 and
blanks are ignored. More than one expression may appear

on a single data card, in addition to being run on from



2.2.1-2
_Sq_

one card to the next. |If any variable declared in a
storage-allocation statement or state variable is not
given a value in the data section, the variable is
flagged as indefinite, and subsequent use of the variable
prior to assigning the variable a value in the simula-
tion will cause an arithmetic-mode error. Refer to
section 2.3 on detugging for an explanation of the
resulting diagnostic.

If the term '"'var'" is an array element and a series
of values are to be assigned to the array, the values
are stored by columns in ascending order. This means
that successive storage locations in a multiple-dimensioned
array can be located by visualizing the left-most sub-
scripts to vary the fastest. The array element '"var"
must be the location in the array where the storing

of values begins. In an array dectared as 8(3,2,2)

the order of the elements of the array is as follows:

B(1,1
B(2,1
B
B

v v W e w W e ow o ow o ouw o ow o ow
M MNR - = e DR N —=

w W W W W W e W W e w w
MNRNRNRMNRNRN = o
N et Mt Ve Vgt S i N S St St St

P Ty~ i
LU S R L N LYY

oo www

For example, if we desired to set the last six locations
of the above array to the values 1., 2., 3., 2., 4.,
and 6., respectively, we write:

B(1,1,2) = 1., 2., 3., 2., 4., 6. ¢
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If an array name is not followed by a subscript,
the first element is assumed. That is,
B=20., 1.2262, 1.22E-2 §

would result in

C.
1.22E2
1,22E-2,

[r=v =i ve)
W by —
-

1
1
1

and

(
(
(

I

’
o1y

If a series of locations are to contain the same
value, an integer-repetition factor may be used. |If
the last six elements of the array B were to have the
values 1., 1., 1., 3., 3., and 9., respectively, then we
write:

B(1,1,2) = 3%x1., 2*%3,, 9. §
The entire array could be set to zero with the single
statement:
B =12%0. §

If a particular variable or array element is set
more than once, the last assignment is assumed in effect.
If the entire array above is to be set to zero with
the exception of element B(2,2,1) which has the value
9.3 x 10—3, we write:

B =12%0. $ B(2,2,1) = 9.3E~-3 $

Example 2.2.1-1. Illustration of data-value assignment.

STORAGE. S{3+431452(4)¢INDX
STORAGE. VA«VBs+VC+TOPsPRIXVAL(2,3)
PEAL. T{(10}).Jt10)

INTEGER, Tl.T2

784 end-of-record separaton

52681, % VB=2. 3 VC=z3.14 % VA=3.69385E=6 % TOP=10.3 $ S(le1)=0.2 § ${2+2)=0.3 3

S(3+3)=045 $ INDA=1 $ KVAL=1+90+3%04500 § PX=9,9E+10 § I=3%0s1 § [(5)=592 § U=l
34543264440 § T1=20 $ T2=10 $ PXz999,099 % S2(2)=39. $ S{4)=kl, $ TSTRT=0. % TEN
D=100. $ DT=0,01 % DTPR=10. % DTFL=20, % X{1)=0. $ X(23)=350. §
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Simulation control variables.

Table 2.2.1-1.

When a simulation has been defined containing
flows, the reserved system control variables TSTRT,
TEND, and DT should be given values in the data section.
These variables must be given values in order for the
simulation to execute; if the usér fails to set the
value of any or all of these three variables, default
values will be assumed. Whenever the system assumes
a default value for a control variable not specified
by the user, a warning message is issued. Table 2.2.1-1
describes the default values assumed by the system.

When the user supplies values for TSTRT, TEND, and DT
the following conditions must hold:
TSTRT < TENb
DT > 0
If either or both of these conditions are not satisfied,
a diagnostic is printed and the values in the last }ine

of Table 2.2.1-1 are assumed.

Default values of simulation control variables for
simulations containing flows.

TSTRT TEND DT
given given (TEND-TSTRT)/10.

given TSTRT + 10.*%DT given
TEND - 10.*DT given given

given TSTRT + 10. 1.

TEND - 10. given 1.
0. 10.%DT given

0. 10. 1.
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IT the simulation does not contain any flows, the
simulation Is assumed to contain only events. In this
case the reserved simulation control variable DT has
no meaning and does not have to be given a value. In
order for an event-only simulation to execute, the chain
of events has to be initiated in either of two ways. |If
TSTRT is given a value in the data section and subroutine
START has been supplied by the user, then execution
time calls to the event schedule (refer to section
2.1.3) can be included in subroutine START to Initiate
the event sequence. If TSTRT is not given a value, then
the only way an event sequence can be initiated is by
including exogenous-event requests (refer to sections
2.1.3 and 2.2.3) in the data section. In this case if
TSTRT has not been‘given a value, TSTRT is assumed to be
equal to the time of the first exogenously scheduled
event. If TEND is not given a value, no action is taken
and the user has the responsibility of scheduling the
system-defined event HALT at the appropriate time. |If
TEND is given a value, the simulation will be terminated
automatically at time TEND. |If TEND is less than or
equal to the value of TSTRT, the value of TEND is assumed
indefinite.

The reserved simulation control variables DTPR,
DTPL, and DTFL are used by the SIMCOMP executive routine
to determine the frequency of tabular print-outs, stor-

age of values for plotting, and the printing of values
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of flows respectively., |If one of the above output actions
is requested (refer to section 2.2.2) and the correspond-
ing simulation control variable has not been given a
value in the data section or was given an illegal value,
the system will issue a diagnostic and a default value
will be chosen. The following default values (Table
2.2.1-2) are those chosen if at least one flow has been

defined in the simulation.

Default values of output control variables for continuous
simulations (containing flow definitions).

Condition

Default Action

PRINT. request(s)
present and

(1) DTPR < 0. or DTPR = maximum of
indefinite. (TEND-TSTRT)} /10 and DT.
(2) DTPR < DT. DTPR = DT,

PLOT. request(s)
present and

{1} DTPL < 0. or DTPL is set to a value which provides
indefinite; and .good readability while minimizing
TIME is the execution time.

(2)

DTPL < 0. or DTPL.
indefinite; and

TIME is not the

independent vari-

able of any plot.

independent vari-
able of a least
one plot.

]

DT.

(3) DTPL < DT. DTPL = DT.

FLOW. request(s)
present and

(1) DTFL < 0. or DTFL
indefinite. and DT.

maximum of (TEND-TSTRT)/190

(2) DTFL < DT. DTFL = DT.
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If no flows have been defined in the simulation
and only events have been defined, the following table
(Table 2.2.1-3) describes the default values chosen

for the output simulation control variables.

Table 2.2.1-3. Default values of output control variables for simulations
containing only events.

Condition Default Action

PRINT. request(s)
present and

It

(1) DTPR < 0 or DTPR = (TEND-TSTRT)/10.
indefinite, and

TEND is defined.

I
—
.

(2) DTPR < 0 or DTPR
indefinite, and
TEND is undefined.

PLOT. request(s)
present and

(1) DTPL < 0 or DTPL is se to a value which provides
indefinite; TEND good readability while minimizing
is defined; and execution time.

TIME is the

independent variable
of a least one plot.

(2) DTPL < 0 or DTPL
indefinite; TEND
is defined; and
TIME is not the
indefinite variable
of any plot.

n
—

{3) TEND is undefined. DTPL

il
-
.




2.2.2-1
~100-

2.2.2 QOutput requests,

PRINT,

requests.

The results of a simulation can be requested as
printed tables of values through time in addition to
printed or microfilm plots. OQutput requests also allow
a measure of control over the printing of the initial
values of variables declared in STORAGE.. An execution
trace facility is also provided which is especially use-
ful during the debugging stages of simulations containing
events. The format and usage of these commands are
described in the following pages. In general, an output
request is comprised of a request verb followed by a
period with the remainder of the card containing the
necessary information. The output requests are free
form in columns 1 through 80 with blanks ignored.

All output requests are contained in the data section.

Printed tabular output requests are specified by
the statement form:
PRINT, Vis Vg e s Vo
Each of the variables v, to be printed must be
a variable or array location which appears in a storage'
allocation statement (i.e., STORAGE., INTEGER., or
REAL. statement) in the source section. The values of

the state variables may also be requested for printing

by specifying '"X(i)" where i is the compartment number.
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If a card with the word PRINT. without a list of vari-
ables is included, then all state variables will be
printed., As many PRINT. cards as needed may be included.
The variable which controls the frequency of
tabular output through simulated time is DTPR. The
value for DTPR should be set by means of a data-assign-
ment expression., |f DTPR is not given a value, a
diagnostic will be issued and a default value assumed.
Tables 2.2.1-2 and 2.2.1-3 describe the values chosen.
The following example illustrates some legal PRINT,
requests. Presumably the state variables requested in
the second request would have been defined in the
simulation. An example of the output produced by PRINT,

requests Is presented in example 2.2,2-1,

Example 2.2.2-1, {llustration of PRINT. requests.

STORAGE. RSET+QVAL{3})sTQ(4+3+2)
REAL. NPOP.IST(2+3)
INTEGER. DAY +MONTH»YEAR

784 end-of-record separator

PRINT. DAYsMONTHeYEARSRSET»IST(101) o IST(201)eQVALCL)+QVAL(2) »OVAL(3) sTQ(ls1sl)
PRINT, NPOP+X{3)eX(4)9X(66)+X(976)
PRINT,

FLOW. requests.

The printing of computed values for the flows
over each integration step is specified by the statement

form:

FLow. (i,J), (k,1), ... , (m,n)
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Each parenthesized pair of numbers refers to a
flow defined in the source section. |If a card with
the word FLOW. is included without a list of particular
flows, then all flows defined in the simulation will
be printed. If a requested flow (i,]) has not been
defined, a diagnostic is issued and the illegal request
is ignored.

The variable which controls the frequency with
which flows are printed is DTFL. The value for DTFL
should be set by means of a data assignment expression.
If DTFL is not given a value, a diagnostic will be
issued and a default value assumed. Tables 2.2.1-2 and
2.2.1-3 describe the values chosen. When evaluating
the performance of a simulation, care must be taken to
associate the values of the flows with the correct time
step. The following simple example illustrates the
relationship between the times at which the state vari-
ables are printed via a PRINT. request and the times

at which the flows are printed via a FLOW. request.

Example 2.2.2-2, |Illustration of FLOW. requests.

(100-200)s FLOW=0,01%X{200)
{I=1e¢3=-500), Fl=1®2
FLOWZ0.1*X(I)/F1

784 end-of-record separator

X(1)=3%100, $ X(100)=1000. $ X{200)=2). $ X(500)=0. %
TSTRT=0. ¥ TEND=10. $ DT=1. $ DTFL=l, $ DTPR=1. &
PRINT.

FLOW,
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fpartial Iiating)

TI®ME = 0.
X4100) = 1000.,00000
At2y = J0O.000000
YALUES OF FLOWS. TIME = 8,
FLCWwil00+200) = .10000E~0)
TIME = 1.0100000080
Xt100) = 999.99000¢
Xr21 = 97.5000000
VALUES OF FLOWS. TIME = 1.000G0000
FLOWILO0G.200) =  410100F=0]
TIME = 2.00000000
NEIGD) = 999,97990p
X12) = 95.06250040
VALUES OF FLOWS, TI¥E » Z.00000000
FLOW1i0Q4200) = .10201E~D1
TIME = 3.0000C000
X100 = 999,.989099
Xi2) = 92.485937%
VALUES OF FLOWSs TIME = 3.00000000
FLOV{YON.200) =  .10303E~01
TIVE ®  4,00060G0D
XiLAG = 959,094,930
- AL21 = 0. 36RTE9]
VALUES 0F FLONS, JIMF = &,00009000
FLOWCLIRQs200) = .10400E-D)
TIME = 5.0000003060
XT10D) = 999.548990
Ki2) = BR,109549)
VALUFS of FLGWS. TIME & 5,00000000
FLOW(10D+200) ¥ Li®8S10E=01
TI®E =  6,06000000
X190 = 999,938u85
W12y = »7,5068301
VH_UES OF FLOWS. T1™ m  ¢,00300000
FLOWI]0C+200) 2 LL0&15E-0]
TIME = 7.00000000
FLIOB) = 999,927865
AMZ) = BILTHIL5TI
VALLES 05 FLOWS. TIME = 7.0p000000
FLOaal0022000 = L1OYZ1E=-0)
TIHE = HA,GO0RACQW
AII0D1 2 999.91T1e1
221 = Bl.boS180e
VALUES OF FLOWSe TINF = 8.00000000
FLOw(100+2001 = J10A2EE=01
PLOT. requests.

Ke2oo)
nedr =

T0
FLOWE
X200}
Xi(3) =

10
FLOW{
Ki2oo0)
X3} =

T0
FLOW({
XtzZot)
k(3 =

T0
FLOW(
X(ZOO}
A3 =

T0
FLOW{
Xi2e0)
Xid =

To
FLawi
X{Z200)
At =

70
FLOw(
x{2o0m
i3 =

T0
FLOW(
{260}
X3} =

0
FLOWI
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= 1,00000000
100,000009

l.00000000

145000 =  S.00000000

& l.0loocodo
98.3333333

2.00000000

145080 = &.T58¢0000

= 1,02010000
LT IT YT TS

J.0o000000

145001 = 4.5)12%p000

= 1,03030100
$5.0820704

+. 00000000

1+500) = &,28687500

® l.040b6040]
93.49A)5%9

5,0000000N0

193007 = «.07253125

®* }.C510100%
91.93985133

©.00000000

19500 = 3,8089%0469

= 1.0815201%
YL, =0T522a

T.00005000
1eBO0E % 3.67545%45

& 1.07213535
AB.F00TI0

B.0000000Q

145001 = J.491b8b4d

& 1.06785671
8T.419051%

9.00000000

15000 = 3,317140210

xilh =

FLOw!

Al =

FLOw

iy =

FLOW(

Xil) =

FLOW{

Kil} =

FLOwl

Arlh &

FLDOW

Xily =

FLOWI

(1) =

Fiowl

Xl =

FLOWI

100.000000

245000 = 2.50000000

95.0000000

2+500) =’ 2.43750000

90.2500000

2+500) = 2,37856250

85,.7375000

2+500) = Z.31Ti4Bss

B81.4506250

2+500F = 2,25921973

T7.3780937

2+500) = 2.20273923

T3.5001891

2:580) = 2,14767075

69.43372%6

2:500) = 2,09397858

6b,342043]1

20500) = 2,08]6295)

following statement forms:

PLOT. (group]), v (groupn)

or

FLOwWY

k(500

FLOW{

RiS0Q)

FLOW !

k(5000

FlLOwg

x1500)

FLOw(

Xis00)

fiowi

EAL11H]

FLOWI

xis5e0)

FLOW

11500)

FLowr

2.2.2-4

3+540) 3 l.6660880T

= Q.lebbRobT

3,500) = ].6383888%

= 17,9930554

3+500) = 1.561157407

= 26,4938921

3+500) = 1. 5847151

= 34.6824301

3,500 = 1.55830280

= 42,57¢4836

34500 = 1.53223089

= 50.1764585

3+500) = ].50679204

= §7.5063807

1,500 = l.48l6TEB

= 64,5737250

3+500) = 1.45698419

Plotted output requests are specified by the

PLOT. (group]), ver (groupn) phrase
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Each plot card will generate a single plot {on
the line printer unless a FILM. card is included--refer
to page 2.2.2-12) of the variables listed in the groups
on the plot card. Each ”(groupi)“ is an expression
of the following form:
(u1, cer um)
or
(ul, cee s U [min,max])él
Each of the terms “ui” is an expression specifying
a dependent variable and takes on one of the following
forms :
var
or
var=c
or
var .LOG
or
var .LOG=c
Each term ''var' is a dependent variable to be
plotted and must be a simple variable or location in
an array which was declared in a storage-allocation
statement in the source section, or is a state variable
of the form "X(i)" where i is a compartment number.
The logorithm to the base 10 of a variable is plotted

by specifying '".LOG" immediately following the variable

2/ The characters "[" and "] are represented on a key punch by the
multipunches 8.7 card 0-8-2, respectively.
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name and its subscripts if present. |In this case the
variable is plotted on a log scale, but the true values
of the variable are printed on the dependent axis. |If
one variable in a group is requested to be plotted on
a log scale, all variables in the group will be so plot-
ted. The character used in the plot to identify the
particular variable is normally chosen by the plotting
routine. An index of the variables piotted and the
characters used is printed out. A specific character
for a variable can be selected by appending the expression
"=c," where ''¢'' is the character to be plotted.

Each group of variables (groupi) is scaled on
the plot independently of the other groups. One through
five groups per plot card with one through five variables
per group are allowed. |If the expression in brackets
"[min,max]" is in;luded in a group, the minimum and
maximum specified in the brackets are used as the extremes
of the dependent variable(s) In the group. The terms
"min" and ''max'' must be integer- or real -valued constants.
If the extreme values for a group are not specified,
the minimum and maximum values for all variables in the
group, appropriately rounded for readability, are used
as the extreme values of the group.

The optional modifying expression '‘phrase' is of
the following forms:

/ var

or
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/ var [min,max]
or
fmin,max]

The term '/ var' specifies the independent variable
for the plot. Only one independent variable is allowed
per plot. |If the term '/ var' is omitted, '/ TIME" is
assumed. The term ''var'' can be any variable declared
in a storage-allocation statement or a state variable of
the form X(i). The bracketed expression [min,max]"
specifies the extreme values to be used in the plot
for the independent variable. |If the bracketed expres-
sion is omitted, the minimum and maximum values for
the independent variable are used. The quantities '"'min"'
and "max'' must be integer- or real-values constants.

When PLOT. cards have been included in the data
section, the values of the variables named on PLOT.
cards are saved on a mass storage device during the
simulation at intervals of DTPL. These values are later
retrieved and used to produce the plots. As long as
TIME is the independent variable for at least one plot,
the value of DTPL does not have to be set by the user
via a data-assignment statement. A value for DTPL
which reduces the amount of data to be saved while
preserving the ultimate readability of the plot is
chosen automatically. Refer to Tables 2.2.1-2 and
2.2.1-3 for a complete description of the choices of

values for DTPL.
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PLOT. requests are free form in columns 1 through

80 and blanks are ignored.

completed on one data card.

Each plot reguest must be

The following examples

illustrate some of the possibilities of formatting plot

requests.

AVl of the printer plots were generated in

the same run and are reproduced following the examples

of the plot requests.

e 2.2.2-3.

STORAGE.

STORAGE.

(1«2).
T=TIME®6,28/50,
RX=AeT-Al4SINIT)
RY=A=-A12CQSI(T)
TSIN=SINI(T)
FLOW=P.2TSIN
v=TIME /10,
UzEXP{VEeSIN{V))

TrAsAL+RXRY»TSIN
UV

784 end-of-record geparator

TSTRT=0. § TEND=100. $ DT=l. $ X=2%g,
T=0. % A=1. § Al=2. % RX=0. $ RyY=-l.
v=0., % U=1l., %

PLOT. (RX=KsRY=Y)/T

PLOT. (RY=#[=1.5+3.5}1/RX[=2+14.5]
PLOT. (TSIN) «(X(1})

PLOT. (TSIN=+[=2+2])/K(1)[=80e+40]
PLOT. (U /v

PLOT. (U.LOG)/V

GRAPHICAL SIMULATION RESULTS e IRMT

5
$ TSIN=O, $

10.48,%8,

I1lustration of PLOT. requests with printer-plotted output.

gRAPH  GROUP  GROUP RANGE DECLARATION DEPCHIENT Vlﬂ[lFLEGSi ::2;:%2(“ INDEPENDENT VARIABLE :::g:i:::::a::l:g:ﬂ.t
NO. L
v :: y

2 1 =1.50 --'") 3.5 RY ‘ . RE =2.00 o 14,8
-;---’ 3 TS1N TInE

4 LE3 ] 8

. 1 ~2.00 T0 2.00 .‘SIN . II(II ~40.8 10 “0.t

L] 1 v A v

----- 1 v Lo8 L] v
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FILM. regquests.

PLOT. requests will cause the graphs to be
produced on the line printer and will accompany the
output. A FILM. card included in the data section,
all plots requested will be generated on microfilm.
Plots generated on microfilm will generally have a
higher degree of resolution than those produced by the
line printer. The FILM. card is free form in columns
1 through B0 and blanks are ignored. The plots which
were illustrated in the preceding section are reproduced

in the following from microfilm.

Example 2.2.2-4. A sample of microfiim output.

SRAPHTICAL SIMULATION RESULTS 07/2%/7% 18,50 54,
SRAPW  GRGUP GROUP RUNGE CECLARLTION DEPENCERT VER[ABLE(S!  PLOTTED INDEPENDENT VARILALE  INDEPENDENT YERJAMN i
NO. CHARACTER RENGE CEZLAMET Oy
1 1 RY x T
rY 4

2 1 -1.%9 10 B.%A L1 - L33 =2.0% hied s
] 1 151N [ ' TIME

2 x(1j 3
¢ 1 -2.00 ™ 2.0 T$IK . xin -40.0 e 435
5 i v [ v
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TITLE. requests.

A one-line title for each plot can be requested

by a statement of the following form:
TITLE. text

A TITLE. card is free format in columns 1 through
80. The title for each plot is indicated by placing a
TITLE. card before the corresponding PLOT. card. |If a
TITLE. card appears after all PLOT. requests or if more .
than one TITLE. card precedes a PLOT. request, a diag-
nostic is issued and the offending TITLE. card or cards
will be ignored. The TITLE. card immediately preceding
a PLOT. card will be used as the title of the plot.
Any nonblank characters following the period on a title
card is assumed part of the title and will be reproduced
at the top of the corresponding plot. The use of TITLE.
requests is illustrated in example 2.1.3-1.

Initial-conditions listing controls.

After the data section has been processed but
prior to the start of execution of the simulation,
the initial values of the simulation control variables,
state variables, and primary user-declared variables
are printed. Primary user-declared variables are those
variables declared in storage-allocation statements
which are not prefaced by an asterisk (refer to section
2.1.1). The initial values of secondary user-declared

variables (i.e., those variables prefaced by an asterisk



Example 2.2.2-5.

STOR
STOR
REAL
INTE

?39

S(343)=0.5 % INOX=]1 8 KVAL=1+90+3%0+500 8 PX=9,9€+]10 % I=3%0,1 § I(5)=522 § J=1l,
3e543%6,479 & T1=20 & TZ2=10 % PX%999,999 § S2(2)=39.
0. € NT=0.01 % DTPR=10.

D19

‘GE.
AGE.
« TLI0}0(10Q)
GER,

An example of normal
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in storage-allocation statements), in addition to the
initial values normally printed, are requested by the
inclusion of an ALL. card in the data section. The
characters ALL. are free form in columns 1 through
80, and the period must be included. Similarly, the
printing of all initial conditions is suppressed by
the inclusion of a NONE. card. The characters NONE.
are free form in columns 1 through 80, and the
trailing period must be included.

Both of the examples presented are followed by the

initial-conditions output which was requested.

initial-conditions output.

S(43)252(4) s INDXW#LARGE (25}
VA+VBeVCeTOPsPRWKVAL({2+3)

T1+T2+2TEMP] +8TEMP?

end-of-record separator
$=98], § VA=2. % VC=3,14 & VA=3.,6938SE~6 § TOP=10,3 $ S(l+1)s0.2 § S{2+21=0.3 §

$ Ste)=4],
$ X(23)=3%50. $

$ TSTRT=0,.

§ DTFL=20., $& X{1)=0.

LANGE=24H5463045+7291%¢38492+100412+3+445045%]10 & LARGE(2))=5%] §

BINCOMP VERSION 2.4

111=-3
INDX =
Jla=6)
KYAL L]

St2:1+3.:1) =

$13.:.0)
TOP =
VR =

H
s 6,00000000
1 2=1s3) =
1.00000000
= L500000000
10.3000000
2.00000000

PARAMETER vALUES

« SIMULATION CONTROL PARAMETERS -

TSIRT = ¢
TEND = 100.000000
orT ® L100000000E-01
DYPR =  10.0000000
DTIFL = 20.0000000
- PAIMARY USER DEF INED VARIABLES -
Tta} = 1.00000000 1¢5=9) = 2,00000000 [{lo} = INDEFINITE
Jil) = 1.00000000 J12) = 3.00000000 Ji3) = 5,00000000
JUT=10y = 9,0000000¢ KVALCLel) w ° 1 KVALE2.1) = L0
0, KVAL(2+3} = 560 Fx =  599.999000 Sil«l) = 200000000
Sile2) = 430000000 S(2.2) = 300000000 Ste2=-2+2) = 1.00000000
S21{1) = INDEFINITE 52(2) = 39,0000000 5213-4) = INDEFINITE
Tl = 20 Tg = 10 YA = 389385000E-05
vC = 3.18000000

$ TEN
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Example 2.2.2-6. An exampie of initial-conditions output using ALL.

STORAGE. S1(3+43)+S2(4)+INDX»=LARGE (25}
STORAGE, VAVBVCsTOP+PRsRVALI(2:+3)
REAL. T(10).J1(}0)

INTEGER. T14T2+#TEMP].#TEMPZ

784 end-of-record separator

5=98], § VA=2, $ VC=3.14 % VA=3,693B85E-6 $§ TOP=10.3 & S{lsl)=0.2 % S(2+2)=0,3 %
S(3+3)=0.5 & INDX=1 5 KVALT=1+490+300,500 % PX=9.,9E+10 § I=3%0,1 % I(5)=5¢2 5 J=l»
3,543%6:4%9 5 T1=20 % T2=10 % PX=999,999 % S2(2)=39, 3 S(4)=4l. $ TSTRT=0., % TEN
D=100. % DT=0.01 $ DTPR=10., % DTFL=20. $ X(1}=0. % X(23)=3%50, %
LARGE=2+485463065472:¢15+38+923100+12¢3+4450+5%10 % LARGE(21)=5%] %

nLL L]
SIMCOMP VFRSION 3.0 PARAMETER YALUES
- SIMULATION CONTROL PARAMETERS »

TSFRT = o

TEND = 100,.000000

oT «  .100000000E-0]

DIPR = 10,0000000

DTFL = 20.0000000

« PRIMARY USER DEFINED VARIABLES -
11-1 = 0 1ta) = 1.00000000 [th=9) = 2,00000000 1410} = INDEFINITE
THDN = 1 Jil1Y = 1.00000000 Ji2)y = 3,00000000 Ji3 = 5,00000000
Jia=p) = 6,00000000 - JIT=10) = 9,00000000 KVALtlsl) = ° | ] KYALI2+1) = 90
KVALTLs2=1»2) = 0 KVAL{Z2.]) = 500 PX = 999,999000 S{lsl} = 200000000
S02+1«341) = 1,00000000 S(1+2) = &}, 0000000 512+2) = ,300000000 §342=2+3) = 1,00000000
543,37 = ° 500000000 $211) = INDEFINITE s2¢2) = 39.,0000000 §2(3=4) = INDEFINITE
TORP = 10.3000000 Tl = 20 T2 = 10 VA = L,389385000E-05
VP z  2,00000000 vC = 3.14000000
- SECONDARY USER DEFINED VARIABLES -

LARGE L)) = 2 LARGE(2) = as LARGE(]) = ' 63 LARGE (&) = 45
LARGE (5) = T2 LAMGE (6) = 15 LAHGE(T) = a8 LARGE (8) = 92
LAKGY [9) = 100 LARGEL(]1Q) = 12 LANGELLL) = 3 LARGE (12} = &
LARGE(LD} = 50 LARGE(14-186) = . 10 LAHGE 119-23) = INDEFINITE LARGE (2)=25) =
TFuPl = INDEFINITE TEMP2 = INDEFINITE

Event execution trace.

Simulations containing a large number of events,
in which the logical structure for scheduling and
rescheduling the events is complicated, are sometimes
difficult to debug. It is important in such cases to
determine that the events are being scheduled and

executed in the proper sequence. The event-execution
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trace facility is provided to aid in debugging this
type of simulation. The trace facility is envoked
by including in the data section a card of the following
form:
TRACE.
The command is free form in columns 1 through 80,
Blanks are ignored,

The trace facility will print in the output the
contents of the event stack, including event names,
scheduled times of occurrence, and priorities, each time
an event is executed. The current value of simulated
time is also printed. Care should be taken in using
the trace feature since in some simulations a very

large amount of output can be produced.
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Exogenous event requests.

Events can be scheduled externally prior to the

start of simulation by statements of the following form:
EVENT. name, time, priority

The event name must be the name of an event defined
in the source section or one of the system-defined events
included in Table 2.1.3-1. The event HALT is the most
commonly used system-defined event. The simulated time
of occurrence, ''time,' must be either an integer- or real-
valued constant. Integer-valued constants are converted
to real-valued constants internally since TIME is a
real-valued variable. The priority of the event,
Ypriority,' must be an integer- or real-valued constant in
the range 1 to 512. Real-valued priorities specified
on an event card are truncated to an integer. Priorities
outside the range 1 through 512 are assumed to be 512,

If the priority is not specified, a priority of one is
assumed.

A maximum of 20 exogenous event requests can be
included in the data section. |If more than 20 requests
are needed, endogenous event requests of any number could
be included in subroutine START (refer to section 2.1.3).
An example of an exogenous event request is contained

in example 2.1,1-2,
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During the course of programming a simulation,
three phases of development occur. These are (i} the
detection and correction of compilation errors, (ii)
the detection and correction of execution errors, and
(ii1) the evaluation and refinement of the results of
the simulation in preparation for production runs.
Section 2.1.7 described the use of special execution
controls, The default mode of execution should be
used during the first phase of development. Once
compilation errors have been eliminated, the DEBUG.
mode of execution should be selected. The inclusion
of a DEBUG. statement in the source section enables the
simulation executive routine to detect arithmetic mode
errors and produce a report. Arithmetic mode errors
occur when illegal values are used in an arithmetic
operation. Other types of errors can occur which will
not produce a report, but are usually self explanatory

such as an exceeded time limit.

Types of errors reported.

As stated above, arithmetic mode errors are
detected when an illegal value is used in a computation.
Table 2.3-1 can be the result of an operation, but will
not be detected and reported until the resulting illegal
value is used as an operand in a computition, Table
2.3-1 summarizes the iliega) conditions which are detected

and reported.
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Table 2.3-1. Summary of error modes.

Error Mode Condition

1 Address out of range - an attempt was
made to reference central memory out-
side of established limits.

2 Operand out of range - the floating
point arithmetic unit attempted to
use an infinite operand,

3 Combined errors 1 and 2.
4 Indefinite operand - floating point

arithmetic unit attempted to use
an indefinite operand.

5 Combined errors 1 and 4.
6 Combined errors 2 and 4.
7 Combined errors 1, 2, and 4.

Error number one, address out of range, usually

occurs when an index of a subscripted variable

gets too large. Error numbers two and four occur when
infinite or indefinite operands are used in the computa-
tion. The possible ways in which infinite or indefinite
operands can be generated by division are illustrated in
Table 2.3-2, using the following definitions of floating
point (real) values. In Table 2.3-3, "X" represents any

octal digit.
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Table 2.3-2. lllegal results produced by division {A/B}.
B
+N -N +0 -0
+N - - +o -
-N - - - 4o
A +0 0 0 +IND +IND
-0 0 0 +IND +1ND

Table 2.3-3. Definition of floating point operands and results.

Octal{internal)

Mnemonic Representation Meaning
+0 0000 X ... X positive zero
-0 7777 X ... X negative zero
+ca 3777 X ... X positive infinite
—ca 4000 X ... X negative infinite
+IND 1777 X ... X positive indefinite
-IND 6000 X ... X negative indefinite
N | -- any value with the

exception of 1w,
tIND, or 0.

Positive or negative infinite results can be
generated whenever a computation yields a floating point

value whose absolute magnitude is outside the range

10-293 322.

to 10 Such a condition can occur in
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iterative computations where the value of a variable
grows exponentially. This case can happen quite easily
in simuiations where a flow is defined to be proportional
to a state variable which is linked by the flow.

Variables which are declared in storage-allocation
statements (i.e., STORAGE., INTEGER., and REAL. state-
ments) or reserved simulation control variables including
state variables which are used in the computation, but
have not been given a value will cause a mode 4 error.
All such variables are initialized to an indefinite
value before the data section is processed. Assigning
a variable a value in the data section or in the simula-
tion prior to the use of the variable as an operand will
avoid the detection of an indefinite value,

An indefinite operand will also be detected if the
variable FLOW is not assigned a legal value within the
range of each flow declaration. The source and destina-
tion state variables which are linked by flows must be
assigned legal values prior to the start of simulation,

or an indefinite operand will be detected.

The toilowing sample simulation is shown to
illust-rate tne information contained in a debug report.
vhe listing in example 2.3-1 is the source and data
section used which produced the debug report which

follows.
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DEBUG.
STORAGE.
(10-12) .

124~

A sample simulation containing an error,

Note:

numbers refer to items explained in the text.

PeQeR
CALL PVAL

FLOW=PH#COS(TIME®S,28/50,}
SUBROUTINE PVAL
P=TIME/R+G

RFTURN
END

?39

_TSTRY=0.
PRINT,.

ARITHRETIC WODE ERROR

TYPE OF ERRON:

ERROA MODE = &

NON=STANDARD FLOATING POINT ARITHMETIC = YABLES OF NON=STANDARD RESULTS BY DIVISION

W
-
"0

-0

EXCHANGE JUMP PALKAGEN

ADDRESS

PEGISTERS CONTENTS
80 0520008

It soTal0m

a2 0061368

'}) @ 01042728

(13 glbTiTR

I 016716R

At s0T6158

at 0078148

@ OPERAND
REGISTERS

x0 voos

x1 0000

%2 0040

%3 (::\ o108

xa WO o1

x5 1TY7

I 323

xr 1777

DIVIDE 1A/B)

-N

®

$

REFERENCED
VARTABLE NAME

FiOw
RMFL

CONTENTS

Qo000
onoa
0108
[ LDL]
4o
000
(L1
"o

(1274
(111
€300
(113
2006
po00
L1 1]
obod

s000
o0oe
0000
(.11}
a0
8000
00948
o80e

end-of-record geparator
$ TEND=100,

DT=1.

$ X(10)=100.

O1ASNOSTIC DUMP

-1NF
314
+1ND
+IND

©

TYPE
*RARRAY

REAL
REAL
REAL
TeTESENR

9000M
LLLLL]
20008
600098
gaaen
17618
#0018
[ 11].].]

®

FLOATING POINY lleHHEtIC.UNIY RECIEVED AN INDEFINITE OPERAND

WHERE
*0

$ X(l2¥=0.

Warrza/ty

-0
sINF
=INF
+ 1IN0
-180

Y
ITTY
000
1177
[ 111 ]

$ R=2.

$ DTPR=20,

2.3-5

circled

s

L0.55.59,

OCCURING (APPRORIMATELY) AT ADORESS S0T6228 WHICHW IS LOCATION 900DOsB IN ROUTINE PWAL @

Xeask B

Leaak B

Keaek B (o [NFINITY)
Keaok 8 [= INFINITY)
RoseX B (s INDEFINITED
NessX B i~ LNDEFINITEY

“

O

INDEX
(DEC)

®
LOCAL  CONTATNED
ADDRESS w

gooonlss
a00101R
voeeion
oolr6)B
oeiTe0B
to0o02ze
90a0218

AFLONS
XEXECTY
KTRNSY
/!

!/
AFLOWS
AFLOWS

DECODED VALUE

[}

0

4805124204546

1,3084312303453~280 (EE}

2.000000000000
e INDEFINITE
» INDEFINITE
* INDEFINITE

©

VALUE {(OCTAL)

out
go00
0000
111
&000
2000
de0e
"

eooo
o000
0046
8000
8900
[ L1
L 1] 1]

OF RANGE

oot
Q00!
8004
(111}
0400
000d
"ot

ANY WORD ERCEPT «INFo =IWF, +INDs ~INDy <0y OR =3

DECODED VYALUE

00008 °
06638 4531
60n06  1,3084312383453-280
00008 2.000000000000
17618 o INDEFINITE
soolp * INDEFINITE
00008
INCREMENT

REGISTERS CONTENTS

80 LI 1T
Bl 0115308
B2 . go0013s
(1] 0000] 38
) 0090008
1) 0000018
ms 0800018
a? 0115218



VARTABLFE DUmp

VARTARLE DUmP

@

VAR [APLE

HAME

RMFL
FLOw

KADRS
TIvE
TSTRY
TEND
or
DTPR
oypL
DYFL
L}

2 L-Rl

EVSTK

XFLOwS

TYRE
LEYTTY

IMTEGER
REaL

sREAL
RESL
REAL
REAL
REAL
REAL
REAL
REAL
SREAL

REAL
REAL
REAL
*REAL

LOCATION

0TH14B
NpTHISE

6147308
01a737H
[T LY 1]
QisTall
plataa
Q147430
B147448
P1ATASH
01474068

e1a7158
1aTion
I6TITH
eleT208

LOCAL
ACORESS

gueeie
0008278

onopooR
000001H
0000028
LLIT L) ]
0000¢aR
agogosh
te0006N

ooodeTe -

ao1757H
001Te0N
0altaln
selletn

-125-

REPEATED

sooe
iTEY

5663
0000
o000
1126
1720
1724
1717
1117
itn
1726
1717
0000
1
177
ATIY
11z}
(119

VALUE 10CTaALY

opoo
oond

663
nooo
0000
b200
«000
5000
gond
0000
0000
6200
0008
4000
ag00
0000
pooo
4000
f000

LI
0000

kL] 1}
0000
0008
0000
aane
aggd
0000
o000
0000
0000
0000
gooog
0000
ogog
(111 ]
[ 111
i

5301
ao00
L L1
0500
goce
0000
o0Do
booo
[120]
0400
pooo
L1 L4
0G0
coee
*$000
"woe
"ol

agoon
noood

RIS
o008
anpoB
00008
00008
soooH
goooe
00008
Qo00B
00008
0o00R
gobon
0000A
LTT 1]
00008
oboos
[ LY 1] )

2.3-6

Dtcooto YALUE

+ TRDEFINITE

=1+90065564518BAE+37
0.
o,
106,0000200000
1.000000000000
20.00000000000
+ INDEFINIIE -
¢ IRDEFINLTE
+ INDEFINITE
190.0000000000
+ INDEFINITE
Q.
» FNDEFINITE
+ INDEFINITE
» INDEFINLYE
2.000000000009
1.7T21623%906173-282

All debug reports contain the following items which

refer to the circled numbers

report contains three parts.

in example 2.3-1.

A debug

These are (I} an explana-

tion of the type of error, (II) the exchange jump

package, and (III) the values of all variables in the

simulation when the error was detected.

The first part contains (1) the error mode and

(2) an explanation of the error mode (refer to table

2.3-1).

which the error was detected

is

listed.

After this information, (3) the routine in

In this example

an attempt was made to use an indefinite quantity in

subroutine PVAL.

We can immediately infer that either

an indefinite value was generated by an undefined opera-

tion earlier in the simulation (such as 0 : 0), or an

attempt was made

initialized.

to use a variable which was never

In this example the error was detected

in the user-supplied routine PVAL.

It is possible to
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have errors detected in the simulation executive routines.
If an error is detected in routine XFLOWS, the illegal
condition was detected while a flow was being computed.
The executive routine which updates the state variables
is called XCSIM. An error in this routine indicates
that either the value of a flow is tllegal or the value
of a state variable is illegal. Errors can also be
detected within FORTRAN-intrinsic functions such as ALOG
and EXP and will be reported accordingly,

The second part of a debug report is the exchange
jump package. This portion of the report reflects
the contents and meaning of the operation registers
at the time the error was detected. All computations
in the computer are accomplished by operating on
the values in these registers. The address registers
(4) contain the addresses in central memory of vari-
ables whose values were currently being used or were
recently used. |f an address corresponds to the
address of a user variable, the name (5), the mode (6),
the one-dimensional array location (7) if the variable
is an array, the routine or common block in which the
variable is located (8}, the internal representation
(9), and the decimal representation (10) of the value
contained in the location of the variable are reported.
The operand registers (11) contain the values which

were currently being used in the computation. The
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decimal equivalents {12) of the contents of the operand
registers are also supplied. The increment registers
(13) usually contain counters such as the indices of

D0 loops. Their contents are useful in debugging
simulations only very rarely. In (8) common blocks

are represented by names enclosed in slashes. The
blank common block whose entries are denoted by / /
refers to the location of storage of reserved-system
variables and state variables in addition to variables
declared in storage-allocation statements. For the
example simulation we find that Q contains an
indefinite value. Referring back to the listing in
Fig. 2.3-1, we find that Q was never assigned a value.
This was the cause of the error. In subroutine PVAL
we had attempted to add the value of Q to the quantity
TIME/R, but Q had not been given a value. A special
note of caution is in order. The failure to determine
the cause of an error through the use of the information
contained in the exchange jump package is usually
caused by trying to digest too much information.

Many times much of the information is not relevant

to the discovery of the error. In determining the
cause of the error in the above example, we had com-
bined the information that the error was detected

in subroutine PVAL along with the information that Q was

indefinite. We were thus not mislead by the fact that
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FLOW is indefinite. FLOW is indefinite because it is
not assigned a value until the call to PVAL is completed.
The third part of a debug report contains a listing
of the values of the variables when the error was detected.
Most of the information is self-explanatory. |If a vari-
able is an array which contains successive equal values,
a repetition factor is used to conserve space (14). in
this example the first nine state variables are
indefinite. State variables X(10), X(11}, and X(12)
contain respectively the values 100.0, indefinite and
0. The remaining 987 state variables are indefinite.
This is all satisfactory since X{10} and X(12) are the
only state variables used in this simulation and are
defined (i.e., given legal values). The variable XMFL
in the routine XFLOWS has a special meaning. If an
error is detected in routine XFLOWS, the value of XMFL
+ 1 points to the flow which was being computed at the
time of the error. |f XMFL equals zero, the first flow
was being computed. |f XMFL equals 10, the 11th flow
defined in the simulation was being computed. Do not
forget to count all flows in iteratively defined flows.
The following sample simulations are shown to
illustrate various types of errors and the procedure for
determining the cause of the errors using the debug
report as a guide. Each table following a listing and

a debug report contains the relevant information used
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in deducing the cause of the error.

2.3-10

Practice is required

in recognizing the relevant pieces of information which,

when combined, produces an explanation of the error.

Many

times a single piece of information is misleading unless

It 1s 1

nterpreted along with other pieces of information.

ITlustration of an uninitialized state variable (see Table

2.3-4).

DEBUG.
pE‘L.

{2-3)e FLOWSN#*COS(TIME®6.28/50.)

739

TSTRT=0.
PLOT.

AR]THMETIC ™ODE ERROR

YYPE OF ERROA!

ERROR VODE = &

FLOATING POINT ARIImMETIC UNIT RECIEVED AN

N

end-of-record separator
00. % DT=1. % X{(2)=100. § N=10. § (::)

$ TEND=1}

(X(2)eX(3)}

DIAGNOS

TIC DUMP

O]

®

IMDEF INETE OPERAND

/23713

1051487,

OCCURING [APPROLIMATELY) AT ADDRESS 2106678 MAICH 15 LOCATION #994218 IN ROUTINE RLCSIM (::)

NON=STANDARD FLOATING POINT ARITHMETIC « TABLES OF MON-STAHOARD HESULTS BY DIVISION

o~
=N
3
-0

EACHANGE JUMP PACKAGE!

ADDRESS

REGISTERS COMTEMTS

L]
Al
az
LR
av
ah
s
at

VP RAND
REGISTERS

*a
L
2
A3
4
F13
e
ar

052900R
0147268
01aTgsRA
0:07.11R
[y 3410
S 8T
aleTiiA
LT ]

1723
1720
ooon
Qono
1726
117
17T
LI T

RIVIDE (asB) WHERE
] “0 % 0000 %...X B
-~ -N +0 -2 =0 w TITY ALK B
sINE = 31T Keyok B
- - ¢INF  =INF =~INF = ADOM RessA B
am -~ =~INF +INF +IND a 1777 M. esX B
0 0 +IND  eIND “IND = 8000 Xee X B
° 0 sIND +IND N. = ANY WORD EXCEPT
HEFERENC O TYPE INDER  LOCAL  CONTAINED
VAR ANLE wAME  *-aARRAY {DEC] ADDRESS N
out
or REAL 000004B £ / 1720 4000
040037TH  XCSIN 0oee Qo008
0000438 XCSIm 5170 0313
Q0004CA XCSIW [TIT T
f’;) ~REAL 3 0000lBR s / iTTT o000
W enEaL 2 ooonice / s 1726 5500
00GIQ0D  XXFLIWS 1773 41TT
CONTERTS OECODED VALUE
ATTY TEIVT YT FITTR 10.0800C0000050
430 0000 0000 QOOR 1.00800000000¢
eo0g OOTT TITO GOQOR 1utarp905s
B0ae 0e00 0000 0O002A 2
Suds 3000 0008 G0O0GR 90,00000000000
CLa0 OO0 0000 0O]IR + INDEF INITE
G006 000D 000G G00UR * INDEFINITE
2000 060D 0000 0OUIN

[+ INFINTITY)
1~ INFINITY}
L+ INDEFINITES

VALUE (10CTALY

OF HANGE

o000
o077
+321
o000
Q000
4000
e

(111 ]
TITR
1Y)
[ L1
(11}
"ee
TITY

i~ INDEFINITE}
¢INFy =INFy ¢INDs =IND+ *Q¢ OR =9

DECODED VaLVE

conon 1.000000000000
dovno0d Lo¥2799058
H000A =]1,3490593958519+]132
¥rTIR 2T67
001w » INDEFINITE
ooQon 0. 00000000000
Tr?I8 18.000000000060
INCREMENT
REGISTERS CONTENTS
Bg odooude
81 0060208
B2 uos0lTe
Lk glotize
.13 TITT7ZA
s soogola
as TTTITIB
1) enlTe
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YARIAALE DumP = KFLUONS

YARTANLE Tyeg LOCAL

NANF whPRAT LOCATION ADDRESS  WEPLATED VALUE tOCTaL} BECODED VALLL
XMFL INTESER 0076060 vo001TR D040 €000 DOIY 408D DUOLR 1
fLOW REsL o00TL0TH [ Ll L4 L] 1743 +T7F YPIT ATV I107B 10.,9000080000%8

VARIAALE DURP = / /

XADRS SREAL 0187228 0000008 364 0853 J606 5301 Jaben =1.900655645108%E«37
TIuE REAL f1s723R e0000)R eovd 6020 0000 0QOW QeocH .
TSTAT REAL 0laT24B 0000028 eou0 0000 0000 QOLD COOOMW [
TEND REAL 014725A S000038 1770 6700 0000 0000 00008 180.0000000000
0T HEalL 4147208 000088 1720 «000 Q000 0000 ©OOOB 1.000000000000
bTeR REAL DIAT2TR LI L] 1777 0UG0 CQ00 000G 0000R + INDEFIKITE
preL REAL 0147308 (L1 L 1720 000 e000 €000 00008 1.900000000000
OTFL - AL olatlin ageo0TE 177 goed 0000 0GAG S000H ¢ INDEFINITE
X SREAL eie7I28 [IIIFE ] LTTT 0000 Q000 BC64 D0DOB ¢ ENGEFINITE
1726 5500 0040 0040 00QDE 90,.0000000004¢0

. ”r 1T/T 0008 C08 $849 D000B ¢ INDEFIN(TE
] REAL 0167016 oe1757H 31723 5000 0404 4980 SCMOM 10.00000000000
REVSTH *REAL L LR ] [ 1R/ 1] SO70 000 0819 9991 OsloB Le0T8014064T79350-28)

Table 2.3-4. iInformation used in determining the error in example 2.3-2,
Item numbers refer to the circled numbers in example 2.3-2.

item No. Information

(1) and (2) An indefinite quantity was used in XCSIM.
Therefore either a flow or state variable
was indefinite.

(3) %X{(3) was indefinite.

(4) and (5) X(3) is the source compartment for the flow,
but was not initialized in the data section.

Example 2.3-3., [(lilustration of the failure to assign a value to FLOW.

{see Table 2.3-5).

DEBUG.

(1=2)Y. V=X{1}®0,01
W=X({2)4COSITIME®G.28/50,)
FLW=WsY @

78, end-of-record separator

TSTRT=0. $ TEND=100, § DT=1. $ X=.006,e1. %
PLOT. (XU1))s(X(2))
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ARITHMETIC MODE ERROR DIASNOSTIC DumP ¥Tr23/73 20:35.34,

TYPE OF ERRON:
EAROR #ODE = »

FLOATING POINT ARITHMETIC UNIT RECIEVED AN INDEFINITE OPERAND
OCCURING {APPROXINATELY) AT ADDRESS S106T10 WHICH 15 LOCATION S800)ed IW AOUTINE lC‘ll@

NON-STANDARG FLOATING POINT ARITHMETIC = TABLES OF NON-STANDAND RESULTS BY DIVISION

DIVIDE {a/B) WHERE
. - LI I T T2 FPOY o]
N -N -0 -8 =8 % FFIT BesaX B
fINMF % MTTT Xuesd B t+ INFINITY)
- - = +INF  =INF ~IMF B 4N Hee X B 1= INFINITYD
s =N - = =INF slNF +INO = LTT X @ (s INDEFINITE)
«8 [ " eIMD <IN ~imDp = e88d W, A B L= INDEFINITED
- . 8 +IND  +IND M = ANY WORD EACEPT +INFs+ ~INFe +INDs «INDs +0+ OR =0
ERCHANBE JUMP PACKAGE
ADDRESS REFERENCED TYPE INDEX  LOCAL  CONTZINED
WEGISTERS CONTENTS VARTABLE NAME ®#sARRAY (DEC) ADDHESS I~ YALUE {OCTAL) DECODED VALUE
a0 520008 DUT OF RANGE
al 0187338 .1 REAL (1117 11 N 1724 4000 $000 0000 0QOBUE 1.000006000000
»2 LT ) BOURITR  NGSIM w000 0890 DOTT TTTH deos 1oT3T09058
a3 0L07168 . SON04I8  NCEIM 957 3342 5855 5733 085H  =3,3TBTAG9MZGTITESST
m wasied ONBE0N  KAFLIWS 1711 0008 0009 000¢ ooolB + INDEFINITE
as 060158 0000018 EAFL)WS [1r]] IZTTE
[ sestish 000000R  XKFLIVS » ee0in + INDEFINITE
AT setelee NFL INTESER 0000230  XFLOHS oenin
OPERAND IMCREMENT
RESISTERS CONTENTS DECODED VALUE : REGLSTERS CONTENTS
1) 111t + INDEFINITE [1] (LTI ]
nl 1124 4 080 1.000900000008 - (1] B06016R
1z [ ] LE13Te90%0 (13 ous0158
n 2949 2900 & 1 83 slori7E
s 1777 9800 * INDEFINITE O 1711128
X3 9040 0008 & IZTTE [+ ] sedosle
L) 1777 4086 00N 0000 + INDEFINITE " 1777738
x? SRR S00E 0OED U0 SOOIP 1 ur [TV REL]
VARTAGLE DUMP = AFLDNS
VARTABLE TYeE LDCAL
NANF SeARRAY LOCATLON ADDALAS NEPEATED vaLut (OCTAL) DECODED VALUE
AMFL INTEGER s eTelon [IITERL] JIL LTI IT]] 1
FLOW KEAL 0076118 DO00ZAD 1TT7 0000 S004 9ddd + INDEFINLTE @
v REAL 0Tulzh [TITFLL] 1724 4000 9000 9000 G000B 1.000000000000
v REAL 0076128 [TITHI ) 10T FTTIT OTRIT PITT MATTIR L.49008000000000 .
FLV REAL FETLINB [TITHI 1721 +000 0080 HUBE OOGOD 2.000000000000 @
YARJABLE DUNP - / /
EADRS smEAL (LYl 4004000 =].300655645100VE+37
TInE REAL a147300 200004A .
TSTAY REAL siataLE rROEOZA [N
TEND HEAL $147220 [IIT1x ] $09.6000000000
[ MEAL LILY EET s0e00sn 1.#00000000000 -
DTeR REAL BiATIAR sebeesa s INDEFINITE
oYL REAL sletase O000L0 1,880000000000
by REAL 147300 + INDEFINITE
x SREAL 0141278 [ IT1L1T 1]
[TIrt T
9r NOEF INITE
EVSTE sAEaL siateny mLTSTE 2,T5459T6013290-281




Table 2.3-5.
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Information used in determining the error in example 2,3-3.

ltem No. Information
(1) and (2) An indefinite quantity was used in XCSIM.
Therefore either a flow or a state variable
was indefinite.
(3) The value of FLOW is indefinite.
(%) The values of the state variables X(1) and
X(2) are legal values.
(5) and (6) A variable FLW contains a legal value but

is obviously a mispunch for the variable
FLOW.

Example 2.3-4.

!Tlustration of the generation of an infinite operand (see

Table 2.3-6).

DERUG.
STORAGE.

739

EVENT. popL’oo
EVENT. CRWDs0.
EVENT, HALT.100.
PCP=3, & DENS=3,

PLOT.
PLOT.

BIRT=3.9SIN(TINE®6,28/50.)
END
1F (AREA.LTo0.5) AREA=ARMIN

BIRT+POP+DENSsAREA+ARMIN
POP=POP+HBIRT/DENS ::
EVENT CRWD
RFTURN
$ AREAT=1. § ARMIN=O. §

EVENT POPL
CALL EVENTU4HPOPLsTIME+]1,41)
DENS=POP/AREA

RETURN

CALL EVENT{4HCRWD+TIME+],.+])
AREA=EXP (-TIME/10C,)

END

end-of-record separator
(BIRT) « (POP) + (DENS)

{POP) /DENS



wATTHAETEC MODE ERROR

TYeE OF ERROA:

ERROA mODE = 2
FLOATING PGINT ARITHMETIC UNIT RECIEVED AN INFINITE OPERAND
OCCURING (APPRORTMATELY) AT AODRESS 0078308 weiCw IS LOCATION 06Q01ER IN ROUTINE POPL (::)

DIASNOSTIC Dl

-133-

®

1723713

NON=STANDARD FLOATIAS POINT ARITHRETIC = TABLES OF NON-STANDARD RESULTS BY DIVISION

2.3-14

18.57 .46,

- DIVIDE {A/B) WHERE
. Y [ ] 0080 X..aX B
+N -M ] -8 - - TTTT Rewsh B
+1INnF » ITH? Keaah B L+ INFINITY)
N - - «INF  =INF =INF - 4090 R.uok B (= INFINIYY)
- - - =[NF +INF +IND. 1777 NeosX B (¢ INDEFINITE)
+0 L) ] +IND +IND -1ND L4 6008 Xeeak B (= INDEFINITE)
-0 [ ] 8 +IND +1MD N = ANY WORD EXCERT +INFs =INFy *INDe =IND+ +0¢ OR =8
EXCHANGE JUMP PACKAGE!
ADDRESS REFERENLED Tret INDER  LOCAL  CONTAINED
REGISTERS CONTENTS VARIABLE NAWE SsARRAY (DEC) ADDRESS I~ YALUE tOCTAL) OECODED VALVE
[ 1] 0520008 ouT OF RANGE
[ ¥} 0134058 Q000408 SINCOSE 6108% 3301 0laS 2401 &6178 ~2,71555218727710E~-07
ag 2134268 0000418 SENCOSE 1663 4338 1433 4416 J607R 2.,062910634T665E~09
[} [FRIT] ] QO00448 SINCOSE 1713 5252 %252 S252 1a6T8  4.16066600666470E-02
A% [ JRETY ] 0080458 SINCOSE 6061 0090 O0ROD 0000 QO0AR -, 5000000000000
f 1] 0170488 DENS KEAL oolteld 7 / 3TTT 9060 0000 Q040 0COOB « INFINITE
(1] [TLTAE ] 0000020 KXEVENT 000 $008 S000 0000 00108 ]
AT HoTEa68 0000220 POPL L7223 3088 #040 2000 #000D 19.00000000008
OPERAND INCREMENT
REGISTERS COMTENTS CGECODED VALUE REGISTERS CONTENTS
1.2 ] Q000 QO0ee 000¢ 0000 000ON [} 1] Q000008
x) ©0T3 3434 2514 $352 ol7iR =2.693TI5040945RE-04 B8l soooole
x2 1673 Tedn 250! po6T 041TA 9,3093336049074E-07 a2 Q000018
x3 0000 G000 0009 0OGO QOOOA [ ] a3 soa0008
e 061} 00060 0000 0000 0QO&A -,5000000000000 Ph go0os70
s 3777 0000 0000 Q000 0000R + INFINITE s 9000038
xa 1717 TIT] 1276 5512 71440 + 9045827809445 [ 1] 179578
nr 1721 5332 7415 4170 13138 2.T13T48342833 BT 000000
VARIABLE DUNE = XFLOVS
VARTABLE TYPE LOCAL
HAMF SmARAAY LOCATION aDDRESS REPEATED YALUE (OCTaAL) DECODED VALUE
RF', INTESER T ADTR2IR (.11 1.0 0003 %003 L7000 G000 OOOCB
VYARTABLE DUNPF = /7 /
XADRS SREAL 0150658 aneodon S663 0h6) I80s 5201 16178 «].9006556451881E37
TINE REAL 0150688 000001R 1723 4400 0000 0DOO 0000B 9.000000000000
TSTRT REAL 3i%5067TH 000002H QoQ0 4000 OO0O 0000 QQOOE [
TEND REAL 015070 24000038 17T 0000 €000 0000 OCOOB +« INDEFINITE
or REAL a150718 [1.1:X 114} 1777 0000 0000 0000 QUOGOB s INDEFINITE
DTER REAL 150728 0000058 }7T7 0000 0000 0000 GUOOB s INDEFINLTE
oOTPL REAL 01%0738 D00006E 1720 000 0900 000¢ 00J0E 1.000000000000
DTFy REAL 2150748 0000078 1777 0000 0000 0000 0Q0GD + INDEFINITE
x SREAL 0150758 conoion 99 1777 0000 0900 0000 00000 ¢ IMDEFINITE
RIRY REAL GiT0aa8 0017578 1721 5040 Y372 320l 37048 2.5321646156570Q
L+ REAL #LTOASH 0olTe0A 1722 5156 10se O02e0 13508 %.21511)658479
DENS REAL 81T046R o0lToin 3777 4000 0000 0800 000G + INFINITE
AREA REAL ciT0e70 0elte2e G000 0080 0000 Q000 0UOLB L
Abhuin REAL siToSed 17630 G0ce 0008 0000 G000 S8H0B [ M
~EVETK SREAL ol705.8 [T1R[ T2 ] #1Ca S080 0000 #1461 ¥54TH 8.T3ISTZA9L0934-28]

®

O]
&
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Table 2.3-6. Information used in determining the error in example 2.3-4.
Item No. Information
(1) and (2) An infinite operand was used in event POPL.
(3) The variable DENS was + infinite.
(4) DENS was initialized to a legal value.
(5) DENS is computed as POP/AREA.
(6) and (7) AREA was initialized to 1., but now contains

the value 0.

(8) AREA is recomputed in event CRWD and can
assume the value of ARMIN,

{9) and (10) ARMIN currently has the value zero and was
mistakenly initialized to zero.

Example 2.3-5. Illustration of an out-of-range subscript (see Table 2.3-7).

DEBUG.
STORAGE, P(5) N (::)
(1-1=211+15). J=I+N

FLOW=P (J)#X (]}

789 end-of-record separator

TSTRT=0, $ TEND=10. $ OT=1l. $§ DTPR=1. %
P238041+042+0.5 % X(1)=1000s 3 X{1)1)230.420.925,92%10, $ N=9000 §
PRINT,



ARTITHHETIC wODE

1vPE OF ERROAL

TRAOR MODE + 1

ATTEMPTED 1O REFERENCE CENTRAL MEMORY DUTSIDE ESVARLISHED LIMITS

CIASNOETIC DUMP

- ];35;_

®

oT723/73

2.3-

CPY [ TR R 1Y

OCCURING 1APPROXIMATELY) AT ADDRESS DOTG14B WHICH 1S LOCATION ¢0e0138 IN ROUTINE XFLOWS (::)

EXCHANGE JUMP PACKAGE:

REFERENCED
VARTABLE NAME

ADDRESS
REGISTERS CONTENTS
AD 8520008
Al GlOT240
a2 Q403230
a3 LRI TY] H
i 0076248 J
AS 0076228 !
(13 0076228 1
AT s0TePaB o
QPEPAND
REGISTERS (1]
0 0000 9008
x) 000 6300
xP 0dde 00090
"3 1724 Ta0Q
na to0d 0000
| 1 0000 0000
xe 0000 6000
x7 opoo 0008
YARIAALE DUMP - AFLONS
VARTARLE TYPE
NamE s=ARRAY
AWFy INTEGER
I INTEGER
FLOW REAL
o IKTEGER
VARIARLE DUMP « / 7
ZANRS SREAL
TImE REAL
TSTRY REAL
TEND REAL
B RFaL
LR RE AL
Doy REAL
DYFL RFAL
x SAE AL
» SRE AL
N INTEGER
XEVSTH SRE AL

NTENTS

o000
000
o000
eood
[ 11.1.]
000
(.11 1]
popo

[1].]1]
00
oooe
2000
0002
ogon
(111 ]
o002

LOCATION

0078218
0076228
0076238
00To2an

Blape2s
L ICT X))
014664P
0148650
014etsd
flseeTa
Q146T0R
olse7In
*lanT2B

Ll Ta L]

[ L0100 1]
#losaTh

1724
0w
s
000
111}

VALUE (OCTALY

OUT, OF RANGE
Q00 QD00 006l
oUT OF RANGE
T400 0000 G800
asne ¢ o2
#0006 0000 QDOM
300 e08e DOGY
*000 0000 0002

VALUE {OCTAL)

TYPE INDEL  LOCAL  CONTAIMED
#uARRAY (DEC) ADDRESS In
cotesld  NCSIM
sREAL 11 ovoevies 7 /
INTEGER 0000238 AFLOWS
INTEGER 0000248 AFLOWS
INTEGER 0000238 XFLOWS
INTEGER 000238 XFLOWS
DECODED VALUE
coozn 2
oonon 0
0000A L}
sooen 30,04000000000
14838 9011
8013RA n
[T]% 0] 1
14834 il
LOCAL
ADDRESS REPEATED
800370R [T11]
L1l Fa].] [TT1]
o00022R 8003 5003
0000238 00es 0V00
H00000R 5661 0063
sgcoain #4900 0000
LLLITF. ] 0000 D000
LLLLGEL] 1123 soo0
[LIT1 2% ] 1720 «000
d00004%8 1720 4000
0000008 177T aogoo
000007R \T?T 0000
0000) 08 1731 Toed
L . 1717 gooo
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Table 2.3-7. Information used in determining the error in exampile 2.3-5.

ltem No. Information
(1) and (2) An attempt was made to reference central

memory outside established limits in routine
XFLOWS. Therefore the error occurred while
evaluating a flow.

(3) XMFL equals zero; therefore the first flow
was being computed.

(4) The value of J is 9011; much too large.

(5) J is defined as the sum of I and N,

(6) N was initialized to 9000, an error. N

should have been initialized to -10.
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APPENDIX A

DIAGNOSTICS

Compilation Diagnostics

The SIMCOMP compiler will list error messages immediately following

the source card containing the rule infraction. Errors are either fatal,

which are prefaced by **%**FE, or nonfatal, which are prefaced by **%**NF,

Fatal errors cause abnormal termination, and execution of the simulation

will

not cccur. Nonfatal errors only result in a diagnostic being issued,

but should be corrected in a subsequent run. Unpredictable results in the

execution are possible if nonfatal errors exist in the source section.

AololokE £
kbR E
*okickE B
SopodAokF E
ek 2
SRk F E
stk
AAAAKE E
ook k£
skl |
Aok AF £
AR E
AotedolokF £
FkodoE £
AR E
skt £
ARAEE
SR E
e
AokHArEE
Wk E E
AoARAHEE
e
Aok Rk E
AAAAIRE
RkE R E
wokdct R
Skl
Rtk
FRAAKE

A FIELD IN WHICH A CONSTANT SHOULD APPEAR IS MISSING OR 15 NEGATIVE
A VARIABLE DECLARATION IS INCOMPLETE AT CARD END

ABOVE CARD ILLEGAL AT THIS POINT

ARITHMETIC PHRASE MUST BE USED IN CONJUNCTION WITH A DO... PHRASE
CHARACTER " ' IS ILLEGAL

CHARACTER "_" IS ILLEGAL IN COLUMN _

EXPECTED
EXPECTED

SUBSCRIPT MISSING
VARTABLE NAME MISSING

FLOW DIRECTIVE UNTERMINATED AT CARD END

FLOW EXPRESSION SUB-FIELD " oo CONTAINS MORE THAN 10 NON~BLANK CHARS

FLOW INDICES {___ =~ ) PRODUCED BY THE ABOVE LABEL ARE OUTSIDE THE RANGE 1 - 999

FLOW I1TERATION PHRASE CONTROL VARIABLE " ____ " MUST BE A 5 CHAR OR LESS INTEGER VARIABLE
FLOW PHRASE ' v+o" CONTAINS MORE THAN 40 NON-BLANK CHARS
INSUFFICIENT FIELD LENGTH, INCREASE BY (NO. OF FLOWS - _ )

NUMBER OF DECLARED VARIABLES HAS EXCEEDED

NUMBER OF FLOWS EXCEEDS 9999

NUMBER OF USER-DEFINED EVENTS EXCEEDS 100

ROUTINE NAME LONGER THAN 5 CHARS OR MISSING

ROUTINE NAME MISSING

ROUTINE NAME " <+ LONGER THAN 7 CHARS
ROUTINE NAME "' STARTS WITH AN ILLEGAL CHAR

SUBSCRIPT ™ ".U." i. _ONGER THAN 4 CHARS

SUBSCRIPT "___ " GREATER TriN 1023

SUBSCRIPT "___ " NOT DECODABLE

THE DO.eo PHRASE CONTROL VARIABLE MUST BE THE CPERAND IN THE ARITHMETIC PHRASE
VARIABLE " eae' IS LONGER THAN 5 CHARS

VARIABLE " BEGINS WITH A NON-ALPHABETICAL CHAR

VARIABLE * " BEGINS WITH CHAR X"

VARIABLE " " HAS BEEN PREVIOUSLY DECLARED, LAST DECLARATION IS ASSUMED CORRECT

VAR IABLE

" " IS5 A RESERVED SYSTEM VARIABLE
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Data Section Diagnostics
Errors encountered while processing the data section are reported in
the output by a general message of the following form:
%%%x% ERROR IN PRINT REQUEST
x%%%% ERROR IN FLOW PRINT REQUEST
xk&%% ERROR IN EXOGENOUS EVENT REQUEST
*x&%% ERROR IN DATA ASSIGNMENT
#%%%% ERROR IN PLOT REQUEST
One of these messages is followed by the card containing the infraction and
one of the following diagnostics. All errors reported in the data section
are nonfatal. The system will attempt to execute the simulation regardless

of errors in the data section. Execution errors can occur because of errors

in data assignment and exogencus-event requests.

CHARACTER ™ " 15 ILLEGAL IN COL

DATA ITEM " »ss" LONGER THAN 20 CHARS

DATA REPETITION FACTOR ™ .es" LONGER THAN 10 CHARS
DATA REPETITION FACTOR " v | ESS THAN OR EQUAL TO ZERO
DATA REPETITION FACTOR Y " NOT DECODABLE

EVENT NAME " +s " LONGER THAN 5 CHARS

EVENT ¥ " OIS NOWN-EXISTANT

EVENT " " SCHEDULED AT TIME AT PRIORITY OF __

EXPECTED FLOW INDEX M1SSING IN OR BEFORE COLUMN ___

EXPECTED VARIABLE NAME MISSING IN OR BEFORE COLUMN __

FLOW INDEX " o.." LONGER THAN 3 CHARS

FLOW INDEX "__" NOT DECODABLE OR OUT OF RANGE

FLOW INDICES UNTERMINATED AT CARD END

FLOW PRINTING REQUESTED - NO FLOWS DEFINED

FLOW (_, ) DOES NOT EXIST

ILLEGAL CHARACTER DETECTED "_"

ILLEGAL CHARACTER IN RANGE DECLARATION

IMPROPERLY FORMATTED LOG REQUEST

INTEGER VARIABLE WAS ASSIGNED A REAL VALUE IN THE DATA SECTION
MISSING EXPECTED VARIABLE NAME OR DATA ITEM IN OR BEFORE COLUMN

MORE THAN 100 VARIABLES NAMED IN PLOT REQUESTS, THIS AND SUBSEQUENT PLOT REQUESTS IGNORED
MORE THAN 200 VARIABLES REQUESTED FOR PRINT

ND. OF EXOGENOUSLY SCHEDULED EVENTS EXCEEDS 20, ABOVE REQUEST 1GNORED
NO. OF GROUPS PER PLOT 15 0T+ 5

NO. OF VARIABLES PER PLOT IS .GT. 5

RANGE DECLARATION .GT. 10 CHARACTERS--THE UPPER LIMIT

REAL VARIABLE WAS ASSIGNED AN INTEGER VALUE IN THE DATA SECTION
SUBSCRIPT wee" LONMGER THAN & CHARS IN COLUMN __
SUBSCRIPT " " NOT DECODABLE

TIME OR PRICRITY LONGER THAN 20 CHARS AT COLUMN __
VARIABLE HAS .GT. 3 SUBSCRIPTS

VARIABLE NAME IS .GT. 5 CHARACTERS

VARIABLE SUBSCRIPT .GT. 999--THE UPPER LIMIT

VARIABLE " s+ LONGER THAN 5 CHARS

VARTABLE " " WAS NOT COMPLETELY DECLARED BY CARD END
VARIABLE " W WAS NOT DECLARED IN A <STORAGE.> STATEMENT
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APPENDIX B
DECK ORGANIZATION AND CONTROL CARDS
A typical SIMCOMP job is executed by means of the following control
cards.

TAxxx, Annnnnnn. {job card)
ATTACH, SIMCOM, SIMCOM3,CY=1yMR=1, ID=NREL.

SIMCOM,

789 (end of record)
source section

7

89

data section

678 (end of file)

S

In actuality more control cards than those shown are utilized in execut-
ing the simulation. The SIMCOMP compiler generates a series of control cards
which are used subsequent to the loading and execution of the compiler. As
described in section 2.1.7, a SIMCOMP simulation can be executed in three
different modes. |If a NOGO. execution directive is included in the source
section, the generation of these control cards by the compiler is inhibited.
If the default mode or the DEBUG. mode of execution is selected, standard
~ets of control cards are generated automatically which are used after the
SIMCOM. control card is executed. If a NOGO. directive is included in the
source section, the following control cards and deck structure is equivalent

to the deck in the above example with the default execution mode selected,
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i.e., by the absence of any execution directives. In the following case the
user is supplying the control cards rather than having the compiler generate
them automatically.

TAxxx, Annnnnnn. (job card)

ATTACH, SIMCOM, SIMCOM3,CY=1+MR=1, ID=NREL .
SIMCOM,

FTN, I=SIMPRGyROUND=T-*/ 4 5=0,LRN=0.
ATTACH,B,SIMCOM3,CY=2,MR=1,ID=NREL.
ATTACH,LIB,SIMCOM3,CY=34MR=1, ID=NREL.
SELECT.

COPYBF,B,LGO.

LOAD,LGO.

NOGO. 1/

REWIND yNEWT L,

SELECT ¢ P=PRELDAD, I=PRELOAD.

PRELOAD yNEWT14MAIN.

MAIN.

7
89

NOGO.

source section

data section

6
78
9
Similarly the following example is equivalent to the first exampie if

a DEBUG. directive had been included in the source section. Here again the

user s supplying the required additional control cards since the automatic

1/

— Not to be confused with the speciai execution directive NOGD. which
Is included in the source section.
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generation of the control cards is suppressed by the NOGO. directive in the
source section.

TAxxx, Annnnnnn. {job card)

ATTACH, SIMCOM, SIMCOM3,CY=1,MR=14 ID=NREL .
SIMCOM,.

FTN, I=SIMPRG,LN=DEBUG R=1, 5=0,ROUND=T~-%/,
ATTACH,B,SIMCOM3,CY=2,MR=1, ID=NREL.
ATTACH,LIB,SIMCOM3,CY=3,MR=1, ID=NREL.
SELECT.

COPYEF,B,LG0.

MAP,PART.

LOAD,LGO.

mm >

REWIND s NEWT 1.

SELECT, P=PRELOAL s I=PRELOAD.

PRELOAD yNEWTL,MAIN.

MAIN.
7
89
NOGQ.
source section
7g
)
data section
6
7g
9
Job Limits. The job card illustrated in the above examples implicitly

requests the minimum amount of time, pages printed, cards punched, and core

required for a simple SIMCOMP job. These limits are:



Limit
Time
Core
Printed
pages

Punched
cards

_143_

Mnemonic on

Job card

T16

CM43000

PR10

PU10

B-4

Meaning
16 seconds CPU time

43000 octal words of
central memory

10 printed pages

10 punched cards

These limits are usually adequate only for the smaller SIMCOMP jobs.

The limits specified on the job card should reflect the physical size of the

simulation and the number of time steps (i.e., (TEND-TSTRT)/DT or the totai

number of events executed) used during the execution of the simulation. This

is true for the time and core requirements,

The number of printed pages is

a function of the listing length and the number of output requests. A punch

Vimit is required only if routine PUNCHD is called (refer to section 2.1.5).

Only experience can be used to estimate these limits.
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INDEX

Arithmetic Mode Errors
AVERAGE

CALL ALINT1(...)
CALL ALINT2(...)
CALL CANCEL(...)
CALL EVENT(...)
CALL FLOWV(...)
CALL PUNCHD
CALL REPORT({...)
CALL RESET{...}
CALL SAMPLE(...)

Comment Statements .
Comment text

Compilation Diagnostics

Computational Phrase in Flow Definitions
Constant Phrase in Flow Definitions
Construction of Event Simulations
Control Card Requirements

COUNT

CYycu

CycL2

Data Section .

Data Section Diagnostics

DEBUG,

C-1

120-123
84
65-68
68-71
46, 47
L, 45
73-76
87

83

82, 83
81, 82

91
91

138
29-31
27

L9
150~141
84
58-60
58-60
92-119
139

89, 90,
120-136, 4o
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Debugging Facility .

Debug Reports

Discrete Sampling

DT .

DTFL

OTPL .

DTPR .

Endogenous Event Schedul ing

Event Canceling

Event Definition Statements
CALL CANCEL(...)
CALL EVENT(...) .
Cancellation status flag
Construction of event snmulatlons
Endogenous event scheduling .
Event canceling
Event scheduling
Example of, . .
Exogenous event schedullng
Externally scheduled events
Internally scheduled events .
System-defined events

Event Execution Trace

Event Scheduling .

Exogenous Event Scheduling .

Execution Controls

EXPONENT. Statements

Fi_M, Reguests .

FINIS

Flow Definition Statements

Computational phrase in flow deflnltnons

Constant phrase in flow definitions
Construction of,

c-2

120-136
123-136
78, 79
96-97
97-99
97-99
97-99
bh-46
b6-47

43-57
46, 47
L 45
hé, 47
h9
bi-46
he-47
Li-b6, 119
kg-57
44, 119
by, 119
Lh-46
47-4g

117-118
4h4-46, 119
Ly, 119
89, 90,
140, 141
21

111-114
48, 58-60
26-42
29-31

27
32
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Example of, e
Flow-execution sequence .

FLOW, (reserved variable) ..
Iterative phrase in flow definitions
Range of, .

RetrleV|ng values of

FLOW, Requests

FLOW. (Reserved Variable)
Functions

fnitial Conditions .

Initial Conditions Listing Control

Input Data
Exampile of,

INTEGER, Statements
'terative Phrase in Flow Definitions .
Job Card Limits

Linear Interpolation
CALL ALINTI(...)
CALL ALINT2(...)
CALL FLOWV(...) . .
Equal |ntervai data for lnterpolatlon .
Examplie of linear interpolation

Example of retrieving flows
Retrieving values of flows
Step functions

Unequal interval data for |nterpolat|on .

LIST,

Listing Controls (Data Section)
Listing Controls (Source Section)
LOGNORMAL. Statements
Mathematical Library Routines

NOGO,

C-3

32-42
60
32
27-29
32
73-76

101-103
32
58-62
93-95
115-117

93-95
95

18-20
27-29
142-143

64-71
65-68
68-71
73-76
65, 67
67, 68, 70,
71-73
75, 76
73-76
71-73
68-71

88
20, 21,
116-117
88
21
63

89, 90, 141
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NOLIST,
NORMAL. Statements .
Output Requests
Parameter Declarations
Parameter Default Vaiues
Parameter Input Data .
PLOT. Requests
Primary Class Storage
PRINT. ﬁequests
Punching Data Decks
REAL, Statements
Reserved Variable Names
Retrieving Values of Fiows
RMAX .
RMEANSQ
RMIN .
Secondary Class Storage
Simulation Control Variables
Source Program Section .
Special Purpose Subroutines
Cycel
CYcLz |,
FINIS . e .
Flow short of execution .
START .
START

Statement Labels

C-4

88

21
100-118
18-25

98, 99
93-95
103-110
20-21
100-101
87

18-20

17

73-76

84

84

84

20-21

17, 96-99
16-91
58-60
58-60
58-60

48, 58-60
60

48, 58-60
48, 58-60

16, 31



-148-

Statistical Sampling Package .
AVERAGE . . .
Calling sequences of
CALL REPORT(...)
CALL RESET(.. )
CALL SAMPLE(.. .
Computational methods of
COUNT . . .
Discrete samp}lng .
Example of, . - e e
Tlme-welghted sampllng e .
RMAX . . .

RMEANSQ .

RMIN .

STDEV .

SUM .

SUMSQ .

VARTANC .

STDEV

Step Functions .

Stochastic Function Definitions
Examples of, e e e e e
EXPONENT, statements ., . . . .
LOGNORMAL. statements
NORMAL. statements .
Stochastic function parameters
UNIFORM. statements .

Storage Declarations

STORAGE, Statements

Subprograms

Subroutines

SUM

SUMSGQ

Table-Lookup Functions

TEND .

Time-Weighted Sampling .

TITLE, Requests

TRACE,

€-5

77-86
84
81-84
83

82, 83
81, 82
77-81
84

78, 79
84-86
79-81
8

81

84

84

84

84

8L

84
71-73
21-25
23-25
21

21

21

22

2]
18-21
18-20
58-62
58-62
84

84
64-71
96-97
79-81
115

118
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TSTRT
UNIFORM, Statements

User-Supplied Subprograms
Examples of, .

Utility Routines . . . . .
Linear interpolatio
Punching data decks
Retrieving values of flows
Statistical sampling package
Table of, e e e e e .

Variable Naming Conventions

Variable Storage Allocation
Example of, . . . . .
INTEGER, statements .
Primary class storage .
REAL. statements
Secondary class storage .
STORAGE, statements

VARTANC

XSTATS,

C-6

96-97
21

58-62
61, 62

63-87
64-73

73-76
77-86
63

17

18-21
20

18-20
20-21
18-20
20-21
18-20

84
77-86
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