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ABSTRACT 

 

 

 

IMPACTS OF ASSIMILATING VERTICAL VELOCITY, LATENT HEATING, OR 

HYDROMETEOR WATER CONTENTS RETRIEVED FROM A SINGLE REFLECTIVITY 

DATA SET 

 

 

 Assimilation of observation data in cloudy regions has been challenging due to the 

unknown properties of clouds such as cloud depth, cloud vertical profiles, or cloud drop size 

distributions. Attempts to assimilate data in cloudy regions generally assume a drop size 

distribution, but most assimilation systems fail to maintain consistency between models and the 

observation data, as each has its own set of assumptions. This study tries to retain the consistency 

between the forecast model and the retrieved data by developing a Bayesian retrieval scheme that 

uses the forecast model itself for the a-priori database. Through the retrieval algorithm, vertical 

profiles of three variables related to the development of tropical cyclones, including vertical 

velocity, latent heating, and hydrometeor water contents are derived from the same reflectivity 

observation. Vertical velocity and latent heating are variables related to dynamical processes of 

tropical cyclones, whereas hydrometeors are byproducts of those processes. Each retrieved 

variable is assimilated in the data assimilation system using a flow dependent forecast error 

covariance matrix. The simulations are compared to evaluate the respective impact of each 

variable in the assimilation system.  

 In this study, the three assimilation experiments were conducted for two hurricane cases 

captured by the Global Precipitation Measurement (GPM) satellite: Hurricane Pali and Hurricane 

Jimena. Analyses from these two hurricane cases suggest that assimilating latent heating and 



	 iii	

hydrometeor water contents have similar impacts on the assimilation system while vertical 

velocity has less of an impact than the other two variables. Using these analyses as an initial 

condition for the forecast model reveals that the assimilations of retrieved latent heating and 

hydrometeor water contents were also able to improve the track forecast of Hurricane Jimena.  
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CHAPTER 1: INTRODUCTION 

 

 

 

1.1 Motivation 

With the advance of numerical weather prediction (NWP) models, specification of the 

initial conditions has become increasingly more important. Since the prediction made by the 

model is strongly impacted by the initial conditions, it is clearly important to have the initial 

conditions properly specified (Kalnay 2003). The most efficient and mathematically consistent 

way of improving initial conditions for NWP models using observations is data assimilation 

(DA). DA can be defined as a mathematical method based on Bayes’ theorem for optimally 

blending the information from observations and the model. In practical NWP applications, the 

optimal analysis in DA is created by minimizing the cost function that measures the 

mathematical distance from the model and from the observations. Critical for DA success is the 

specification of forecast and observation error uncertainties. Proper specification has led to 

remarkable progress in forecasting capability.  

One of the most commonly used observation data in DA systems is satellite data due to 

its high temporal and spatial coverage. Assimilation of satellite data was initially used only in 

clear-sky regions because optical properties of clouds and their uncertainties are not fully 

understood and they introduce significant uncertainties. Directly measured quantities, such as 

temperature or moisture content, were assimilated. Recently, the use of radiances has become 

more prevalent since fast and accurate Radiative Transfer Models (RTM) were developed and 

used as an observation operator (Matricardi et al. 2001). This avoids having to specify retrieval 

errors that were always uncertain, in favor of radiance errors which are well characterized. 

Assimilating clear-sky radiances in the National Centers for Environmental Prediction (NCEP) 
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operational global analysis-forecast system led to a dramatic improvement in forecasting mass 

and wind fields (Caplan et al. 1997; Derber and Wu 1998). European Centre for Medium-Range 

Weather Forecasts (ECMWF) also changed from assimilating retrievals to radiances around the 

same time and demonstrated success with the Television Infrared Observation Satellite (TIROS) 

Vertical Sounder (TOVS) clear-sky radiance data using variational data assimilation (Andersson 

et al. 1994). Assimilation of radiances has also been used in tropical cyclone (TC) applications, 

but considerable research is still being performed using retrieved products (Liu et al. 2010). Xu 

et al. (2013) showed some improvements in forecasting two TCs by assimilating clear-sky 

radiances from the Infrared Atmospheric Sounding Interferometer (IASI), but pointed out the 

importance of cloud detection schemes. The choice of a cloud detection scheme is critical in 

clear-sky data assimilation because too stringent a control discards too much data, while too 

lenient a control can include cloud contaminated pixels. Although clear-sky information could be 

useful in ameliorating environmental temperature and moisture profiles in the vicinity of TCs, it 

is not an effective way to use the vast amount of available data around the TC core region where 

there are few clear regions. Furthermore, clear sky assimilation schemes can make little or no use 

of dedicated satellites such as the Tropical Rainfall Measuring Mission (TRMM) and its 

successor, the Global Precipitation Measurement (GPM). The DA community is therefore slowly 

moving towards cloudy-sky DA, even though it is far more complex than clear-sky DA.  

Cloudy scenes are more difficult to assimilate because (a) clouds are not continuous 

variables (unknown correlation in time and space) and (b) the forecast models often do not 

explicitly diagnose all of the geophysical parameters needed by the observation operator (e.g. ice 

particle shapes and density or number of drops). Despite the difficulties, much effort has been 

dedicated to assimilate cloud affected data. Results thus far appear comparable to clear-sky 
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radiance assimilation. Zhang et al. (2013) assimilated cloud affected Advanced Microwave 

Sounding Unit-A (AMSU-A) radiances in NOAA’s operational Hurricane Weather Research and 

Forecasting (HWRF) system and showed that the cloudy-sky radiance assimilation outperformed 

clear-sky radiance assimilation. Another useful observation in cloudy-sky assimilation is radar 

reflectivity. Both ground-based radar and space-borne radar can bring useful information to the 

DA system. Okamoto et al. (2016) recently published a paper using both radiance and reflectivity 

data from GPM. Their results showed that the combined assimilation of radiances from GPM 

Microwave Imager (GMI) and reflectivities from the Dual-frequency Precipitation Radar (DPR) 

had the most positive impact but that GMI alone had more impact than DPR. Greater impact 

from GMI was mostly attributed to two factors. One of them was a wider swath of GMI yielding 

more observation data, and the other one was a limited sensitivity of DPR only to precipitating 

hydrometeors, although DPR has vertically distributed information.  

In addition to radiance and reflectivity, retrieved products such as hydrometeor water 

contents or mass-weighted diameter (Dm) of the drop size distribution (DSD) can also be used as 

an observation. However, derived products contain uncertainties coming from the DSD retrieval 

itself. DSDs of cloud hydrometeors have been examined by numerous studies but there is a 

fundamental difficulty in defining a unique probability distribution due to the complexity of 

observed DSD. This can lead to inconsistencies between the DSD in the forecast model, the 

RTM, and the retrieval algorithm. This inconsistency can accumulate significant amounts of 

uncertainty because observed quantities can be very sensitive to DSDs. (See Appendix A.) For 

instance, the Weather Research and Forecasting (WRF) model has 22 microphysical schemes 

with different DSDs. The Community RTM (CRTM), which is one of the most widely used 

RTMs, has a lookup table of cloud optical properties based on a modified gamma distribution, 
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(Petty and Huang 2011) and the DPR retrieval algorithm for GPM uses a gamma size 

distribution with a fixed shape parameter (µ). These inconsistencies must be dealt with in a 

practical manner for DA systems to be successful.  

Along with a proper DA method, the choice of variable to assimilate is also a crucial 

factor since many variables can be derived from observations in cloudy regions. Variables such 

as hydrometeor water content or drop size distribution parameters can have a direct impact on 

the model output, while variables related to dynamical processes, such as latent heating or 

vertical velocity, can directly constrain the motions. Latent heating is related to a phase change 

of hydrometeors, and vertical velocity is related to convection or subsidence, which are, in turn, 

related to the production rate of hydrometeors. Some models have started to assimilate these 

indirect variables. The NCEP High-Resolution Rapid Refresh (HRRR) model is one of those 

models and it assimilates latent heating rates derived from an observed radar reflectivity 

(Benjamin et al. 2016). Given these options, and an ability to retrieve hydrometeors as well as 

latent heating and vertical velocity, this study will explore the impact of assimilating each of 

three different variables derived from the same radar reflectivity observations in order to assess 

their respective impact on the DA system.  

 

1.2 Overview 

 Three variables, including one variable with a direct impact on precipitation (five 

hydrometeor water contents including cloud liquid water, rain, cloud ice, snow, and graupel) and 

two dynamical variables (vertical velocity and latent heating), will be assimilated in each DA 

experiments and compared between experiments to determine the relative impact of each 

variable on the DA system. In order to maintain consistency between the forecast model and the 
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retrieved variables, variables are not retrieved from the actual measurements but rather retrieved 

using a Bayesian scheme that uses the forecast model (from a set of prior TC simulations) for its 

a-priori database. The database consists of coupled profiles of reflectivity, vertical velocity, 

latent heating, and hydrometeor water contents. From this database, the reflectivity profile that 

best matches the observed reflectivity profile is selected, and profiles of the other three variables 

that are paired with the reflectivity profile are taken as retrieved products. The retrieved products 

are thus kept consistent with the microphysical scheme in the forecast model. 
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CHAPTER 2: DATA AND RETRIEVAL ALGORITHM 

 

 

 

 The data and the retrieval algorithm used in the DA experiments are described in this 

section. Although the three DA experiments assimilate different variables, assimilated data are 

derived from only one observation from the GPM satellite. With the same radar reflectivity 

profile from the DPR on GPM, vertical profiles of vertical velocity (VV) (m/s), latent heating 

(LH) (K/s), and hydrometeor water contents (HYDRO) (kg/kg) were retrieved and used in each 

experiment. This section describes the satellite data and retrieval algorithm with some detail. 

After the retrievals, each profile was assimilated in the Maximum Likelihood Ensemble Filter 

(MLEF) model using a flow dependent forecast error covariance matrix. Results from DA 

simulations were then validated with independent observations, including GMI brightness 

temperature (Tb), DPR reflectivity, and hurricane best track from the International Best Track 

Archive for Climate Stewardship (IBTrACS).  

 

2.1 Global Precipitation Measurement (GPM)  

 GPM is non sun-synchronous satellite launched on February 27, 2014 as a successor to 

the Tropical Rainfall Measuring Mission (TRMM). The GPM orbit was designed to encompass a 

broader coverage (68°N-68°S) and a wider range of precipitation intensity (Hou et al. 2014). 

GPM carries the GMI and the DPR. Both instruments are sensitive to a broad range of 

precipitating hydrometeors. GMI is a conically scanning passive microwave radiometer with 13 

channels including 10.65, 18.7, 23.8, 36.5, 89.0, 166, 183.31±3, and 183±7GHz. Each channel 

has characteristic sensitivity to different types and properties of hydrometeors as explained in 

Appendix A. DPR measures the three-dimensional structure of precipitation with a Ka-band 
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(35.5GHz) precipitation radar (KaPR) and a Ku-band (13.6GHz) precipitation radar (KuPR). 

KaPR and KuPR both have 5km footprints but KuPR has a larger cross-track swath of 245km. 

 Products from the KuPR and GMI instruments were used in this study. Level 1 

reflectivity products from DPR KuPR (version 4) were used to retrieve quantities used in the 

assimilation as well as for assessment of the assimilated fields, while GMI brightness 

temperature from Level 1C (version 4) products were used as an independent test for the three 

DA experiments. 

 

2.2 Weather Research and Forecasting (WRF) 

WRF is used as a background or forecast model in this study. WRF is a widely used 

weather forecasting model with two options for its dynamical core: ARW (Advanced Research 

WRF model) and NMM (Non-hydrostatic Mesoscale Model) (Skamarock et al. 2008). Here, 

WRF-ARW version 3.7 was used with 1° GFS analysis as an initial condition at the cold start 

and as a boundary condition throughout the analysis and forecast. Physics that are used in WRF 

are summarized in the table 2. Among twenty-two microphysical schemes in WRF, the WRF 

Double-Moment 6 class microphysical (WDM6) scheme (Lim and Hong 2010) was applied but 

graupel was assigned as the fifth hydrometeor instead of hail. The WDM6 scheme was modified 

to produce an additional output of vertical profile of latent heating coming from a phase change 

between hydrometeors as this is not a general output in WRF. In the modified WDM6 scheme, 

latent heating is calculated by dividing a temperature change from any phase change by the 

appropriate time step. It has a unit of K/s. 

 

 



	 8	

Table 1 Table for WRF physics 

Microphysics Modified WDM6 scheme 

Long wave radiation physics RRTM scheme 

Short wave radiation physics MM5 shortwave scheme 

Cumulus parameterization New Kain-Fritsch scheme 

Land surface model Noah land surface model 

Surface layer Monin-Obukhov similarity theory 

Planetary boundary layer YSU PBL scheme 

 

WRF was used both for building the a-priori database for subsequent retrievals, and the 

DA experiments. Different horizontal resolutions of the WRF model were used for retrieval and 

DA purposes to allow model errors to be present. Although different horizontal resolutions and 

number of grids are used, the sigma coordinate in the vertical was set the same so as not to 

require vertical interpolation in the DA simulation. For the a-priori database used in the retrieval, 

the WRF model was run with two domains of 300´300´30 grid points. The horizontal resolution 

is set to 9km for the outer domain and 3km for the inner domain. For the DA experiments, on the 

other hand, a coarser horizontal resolution (27km for outer domain and 9km for inner domain) 

was set with fewer grid points (150´150´30). 

 

2.3 Eddington model 

The Eddington model was developed to provide fast, yet accurate microwave brightness 

temperature and reflectivity estimation (Kummerow 1993). The two stream Eddington 

approximation expands the radiance and scattering phase function in a series of Legendre 

coefficients to first order in the cosine of zenith angle. The basic radiative transfer is calculated 

with discrete ordinate solutions. Since it was created primarily for microwave frequencies, the 

Eddington model focuses on both absorption and emission, as well as multiple scattering in a 

plane parallel medium. Calculations of radiance and reflectivity requires profiles of temperature, 
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pressure, water vapor, surface wind velocity, and hydrometeor water contents, and size 

distribution as inputs. These are all provided by the WRF model. The radiance calculation 

requires an additional variable which is the surface emissivity. The Eddington model has its own 

emissivity model but it was replaced by the Fast Microwave Ocean Emissivity version 5 

(FASTEM-5) model (Bormann et al. 2012) in this study. The DSD in the Eddington model was 

also replaced. DSD plays a critical role in calculating total values of cloud optical properties 

because it determines the number of drops of a specific drop size which is multiplied by the 

optical property of each size of drop. The Eddington model has an exponential distribution as a 

default for the DSD but this is inconsistent with the WRF outputs. Therefore, the WDM6 scheme 

was implemented in Eddington’s Mie calculation instead of its exponential distribution. The 

optical properties such as absorption efficiency, asymmetry factor, single scattering albedo, and 

backscatter phase function were calculated assuming spherical drop and they enter the main 

Eddington module to produce brightness temperature or reflectivity. 

 

2.4 Retrieval algorithm  

 The retrieval algorithm consists of two parts: building an a-priori database and choosing a 

profile from the database. The database was created from ten WRF simulations. Ten TCs in the 

Atlantic basin with different intensities varying from category one to four [Gonzalo (2014), 

Omar (2008), Edouard (2014), Gustav (2008), Cristobal (2014), Arthur (2014), Igor (2010), 

Katia (2011), Bill (2009), Danielle (2010)] were simulated in WRF-ARW for twelve hours. The 

Eddington model reads in the appropriate variables from WRF and calculates the reflectivity at 

each layer. Among calculated vertical profiles of reflectivity, only profiles that contain at least 

one level of reflectivity exceeding DPR’s threshold of 12dBZ were saved in the database with 
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vertical velocity, latent heating, and hydrometeor water contents profiles from the WRF outputs. 

In total, over two hundred thousand profiles were obtained from the above ten TC simulations. 

 Once the database is created, the observed reflectivity profiles at each pixel are compared 

with the simulated reflectivity profiles in the database. The squared difference between observed 

and modeled reflectivity at interpolated heights is summed for 30 layers (observed reflectivity 

has much finer vertical resolution) and profiles whose reflectivity profile has the least squared 

difference are chosen as “retrieved” fields (VV, LH, and HYDRO) for that grid. In order to 

smooth these values, they are averaged between six neighboring pixels with a rough Gaussian 

weight of 0.1 for each neighboring point and 0.4 for the center of the grid. 

 

2.5 Maximum Likelihood Ensemble Filter (MLEF) 

 MLEF is an ensemble-based DA method that also includes components of variational 

data assimilation. Details of MLEF can be found in Zupanski (2005) but it is reviewed here for 

completeness. As any other DA algorithm, MLEF goes through two steps in the assimilation 

process: forecast and analysis. In the forecast step, the analysis from the previous time (�"
#$%) is 

evolved by the prediction model to the current analysis time (n) to obtain the forecast guess used 

in data assimilation (�&
#). In addition, the ensemble forecast is used to evolve the analysis 

uncertainty from the previous analysis time to the current time to produce the forecast 

uncertainty used in DA. The initial conditions for ensemble forecasts are obtained by adding 

each column of the square-root analysis error covariance (�"
%/)

=	 �",%
#$% 	⋯	�",/

#$% 	) to the 

analysis vector, followed by a forecast to the next analysis time, as shown below 
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                                 �%
#$% =	�"

#$% + �",%
#$%                                             �&,%

#  

                                            ⋮                                           ⋮                         ⋮  

                                �/
#$% =	�"

#$% + �",/
#$%                                             �&,/

#   

                                �"
#$%                                                                          �&

# 

 

where N is the number of ensembles and �",2
#$% is the j-th column vector of the square-root 

analysis error covariance. Finally, the square-root forecast error covariance matrix (�&
%/)

) is 

calculated by subtracting each member of the ensemble forecast from the forecast started from 

the analysis, 

                                                                                           �&,%
# =	�&,%

# −	�&
# 

                                    �&
%/)

=	 �&,%
# 	⋯	�&,/

#     where                      ⋮ 

                                                                                           �&,/
# =	�&,/

# −	�&
# 

The analysis is obtained by maximizing the posterior conditional probability density, in practice 

achieved via iterative minimization of the cost function. Using common Gaussian error 

assumption, the cost function is  

� � = 	
1

2
� − �&

# 7
�&
$% � − �&

# +
1

2
[� − � � ]7�$%[� − � � ] 

where the superscript T denotes transpose, x is the model state vector, �&
# is the prior 

(background) state, and y is the measurement vector. H represents a nonlinear observation 

operator that maps variables from model space to observation space and R is an observation 

error covariance matrix. �& is a forecast error covariance matrix defined in ensemble subspace. 

Before performing actual iterative minimization, the MLEF includes a change of variable 

� −	�&
# =	�&

%/)
� + �7 �&

# �(�&
#)

$%/)
� 

where the j-th column of matrix Z is  

forecast 

forecast 
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�2 =	�
$%/) � �&

# + �&,2
# − �(�&

#)  

and � is new control variable. 

After calculating the optimal control variable from iterative minimization, denoted �CDE, the 

analysis is  

�"
# =	�&

# + �&
%/)

� + �7 �&
# �(�&

#)
$%/)

�CDE 

The analysis uncertainty is then calculated in terms of the square-root analysis error covariance 

�"
%/)

 

�"
%/)

=	�&
%/)

� + �7 �"
# �(�"

#) $%/) 

where the matrix Z is now calculated at the minimum. 

At the beginning of the DA experiment, however, the analysis and analysis error covariance do 

not exist, and a procedure to provide the initial state and initial uncertainty is required. In MLEF, 

the initial uncertainty is calculated using N time-lagged outputs from a single deterministic 

forecast centered at the initial time. The time-lagged outputs (Figure 1) are interpreted as 

ensemble members, and the initial square-root analysis error covariance �F
%/)

 is calculated by 

subtracting each time-lagged forecast from the central forecast. 

 

 

        

 

 

                                

 

                                                                    �%
F =	�% − �G   

                                   �F
%/)

=	
%

/
�%
F 	⋯	�/

F     where                 ⋮ 

                                                                                            �/
F =	�/ − �G   

Figure 1 N number of forecasts conducted to create the analysis error covariance at the initial time 
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The factor 
%

/
 is used to normalize the forecast difference. The initial state can be obtained by 

interpolating from an analysis or forecast that is produced by another modeling system, or by 

using the central forecast �G. 

 

2.6 International Best Track Archive for Climate Stewardship (IBTrACS) 

Hurricane best track data were obtained from IBTrACS. IBTrACS is a global dataset 

created at NOAA to inventory reported TCs worldwide and their characteristics such as location, 

wind speed, and time (Knapp et al. 2010). IBTrACS gathers TC information from several 

agencies and a best track data is stored according to the agency and the basin. Best track data for 

Hurricane Jimena was available from two sources: The Automated Tropical Cyclone Forecast 

(ATCF), and the National Hurricane Center (NHC) HURDAT2 Best Track Database in East 

Pacific basins. Both sources had the same track. ATCF was used for convenience. 
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CHAPTER 3: EXPERIMENTAL SETUP 

 

 

 

3.1 Case description 

 Two hurricanes that developed in the Pacific basin were chosen as a proof of concept 

study. They are Hurricane Pali and Jimena, and both hurricanes were captured by GPM. Pali 

became a tropical depression on January 7
th

, developed into hurricane on January 11
th

, and 

reached a category 2 hurricane on January 12
th

. Pali formed much further south (3.4° North) than 

is usual for Pacific Hurricanes. Hurricane Jimena developed in the central Pacific basin and 

deepened to a category 4 hurricane reaching its peak wind speed of 135kt, which is just below 

category 5 status. Their vertical structures captured by the GPM and 5 day track starting from the 

assimilation starting date are shown in Figure 2 and 3.  

 

 

 

 

Figure 2 Satellite image of Hurricane Pali by GPM (by Hal Pierce) and its 5 day track (Source: NOAA) 
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3.2 Assimilation setup 

 MLEF was compiled with the same WRF model described in section 2.2 and run with 32 

ensemble members. Control variables include the general state variables (temperature, 

perturbation geopotential, horizontal velocities, and perturbation dry air mass in column) and 

variables that will be assimilated (vertical velocity, latent heating, and five hydrometeor water 

contents). The observation operator is just a spatial interpolation for all three variables because 

they are set as control variables in the system.  

Quality control (QC) of observational data for each parameter is slightly different. For 

LH and HYDRO, observations are used if the absolute values of both observed and modeled data 

are bigger than the threshold of 10
-6

 (K/s for LH and kg/kg for HYDRO)
 
to make the distribution 

of the innovation vector Gaussian, as is assumed in MLEF. Without this process the distribution 

becomes more like a leptokurtic curve that peaks around 0 because the system incorporates 

Figure 3 Satellite image of Hurricane Jimena by GPM (by Hal Pierce) and its 5 day track (Source: 

NOAA) 
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unnecessary data such as rain water content above the freezing level or ice hydrometeor content 

below the freezing level. Vertical velocity does not require this procedure because it has non-

zero values most of the time. Instead, because of its vertically staggered grid, it requires an 

additional treatment. MLEF uses a system that assimilates observation data at non-staggered 

grids where most control variables reside. Thus, vertical velocity either has to be interpolated 

into non-staggered grid or a way to process vertical velocity at the staggered grid must be 

implemented. In order to avoid the vertical interpolation that might bring in more noise, the top 

grid of vertical velocity is discarded and the remaining observation values are assumed to be the 

values at the upper non-staggered grid.  

Observation errors were set so that the DA system incorporates the observation in the 

region where the difference between observed and modeled background data is moderate. 

Observation error whose square value forms a diagonal component of R is set as a constant of 

0.3m/s, 0.001K/s, and 0.0001kg/kg, for each VV, LH, and HYDRO respectively and observation 

data passes the QC check if  
|I$J K |

L
< 3. This threshold effectively rejects the observations that 

are too far from the model. 
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CHAPTER 4: RESULTS 

 

 

 

4.1 Results for Hurricane Pali  

 Cloudy scene in Hurricane Pali produced 92940 observation pixels for LH and HYDRO 

and 96038 points for VV (92940 points after passing the QC that discards data at the top level). 

These data cover regions from the convective core in the hurricane to rainbands around the core. 

Figure 4 and 5 show the reflectivity of the best matches from the a-priori database and the 

observed reflectivity from DPR at two different vertical levels. The lower level is at 1km and it 

describes the liquid precipitation in the scene while the higher level, at 7km, is above the 

freezing level and represents ice hydrometeors. The retrieved reflectivity captures the raining 

scene well enough while reflectivity above the freezing level is not as representative as the lower 

level.  

Figure 4 Observed (left) and the retrieved (right) reflectivity horizontal cross-section at 1km for 

Hurricane Pali 
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The reflectivity from the best match is overestimated at 7km. This might be due to an 

overestimation of ice hydrometeors from the database, a well-known problem in the forecast 

models (Gallus and Pfeifer 2008; Han et al. 2013). Horizontal maps of the retrieved fields of the 

three variables are compared with the background model data next. In Figure 6, VV from the 

background at 1km shows clear updraft and downdraft around the rainbands. The retrieved VV 

has less structured features but still shows bands of updrafts and downdraft. This might be due to 

the high variability of VV at the surface. The retrieved VV may be more reasonable than the 

background because it matches the updraft region with high observed reflectivity especially at 

7km.  

 

 

Figure 5 Observed (left) and retrieved (right) reflectivity horizontal cross-section at 7km for Hurricane 

Pali 
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Figure 6 Background(left) and retrieved (right) vertical velocity horizontal cross-section at 1km (upper) 

and 7km(lower) for Hurricane Pali 
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Figure 7 Background (left) and retrieved (right) latent heating horizontal cross-section at 1km (upper) 

and 7km (lower) for Hurricane Pali 
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 In Figure 7, the background LH shows convective (positive LH at the cloud base that 

slowly decreases with height in the rainbands) and stratiform (negative LH at the cloud base due 

to evaporation and positive at upper level) features between rainbands. On the other hand, the 

retrieved LH shows stratiform feature in most of the rainband region with only minimal 

convective features around the core. In the general, rainbands in TC systems produce rain by a 

convective motion at the low levels, but the retrieved field does not show any significant 

amounts of latent heat release by an updraft even in the regions where the updraft is significant. 

There are few spots where latent heating has a positive value at 1km, but it is not continuous 

along the rainbands. On the other hand, LH at 7km agrees well with the VV. The region with an 

updraft at 7km corresponds to the region with positive LH, implying a phase change from liquid 

water to ice since the freezing level is around 5km. Although LH at 1km does not represent the 

Figure 8 Background (left) and retrieved (right) rain water content horizontal cross-section at 1km for 

Hurricane Pali 
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convective rainband features very well, the rain water content agrees well with the observed 

reflectivity as shown in Figure 8.  

 Hydrometeors follow the reflectivity pattern most closely as it is directly related to the 

reflectivity. Precipitating hydrometeors were only examined at the level where they exist (rain at 

1km and snow and graupel at 7km). At 7km, snow and graupel (Figure 9 and 10) agree well with 

the observed scene as well. Overall, the retrieved data looks reasonable to represent the real TC 

system.  

 

  

 

 

 

 

Figure 9 Background (left) and retrieved (right) snow water content horizontal cross-section at 7km for 

Hurricane Pali 
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The ensemble forecast was then run at cycle 0 to get the background error covariance 

matrix and the background state vectors at the analysis time (cycle1). Background data and 

control variables are identical for the three experiments to make a simple comparison between 

different assimilated retrievals. At cycle1, three experiments were conducted each assimilating 

VV, LH, or HYDRO within a 6-hour assimilation window. The number of observations that 

passed QC for the inner domain with 9km resolution is 85812, 67499, and 134872 for VV, LH, 

and HYDRO respectively. Individual hydrometeor species have fewer observations that passed 

QC because they only exist within certain levels, but the total amount of entries is highest for 

HYDRO when all species are counted.  

Figure 10 Background (left) and retrieved (right) graupel water content horizontal cross-section at 7km for 

Hurricane Pali 
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The total cost function, that includes observation and background terms, was calculated 

before and after the DA simulation in order to examine the improvements.  A lower cost function 

means that the difference between observed and modeled variables decreased, thereby improving 

the quality of the analysis. Cost functions decreased by 27% (from 3.3341´10
4
 to 2.4292´10

4
), 

33% (from 2.3849´10
4
 to 1.5951´10

4
), and 21% (from 5.2525´10

4
 to 4.1478´10

4
) for VV, LH, 

and HYDRO respectively. All of the experiments show substantial improvements after 

assimilation. Histogram plots of the difference between observation and modeled output before 

and after DA are shown in Figure 11,12, and 13 for VV, LH, and HYDRO, respectively. 

Histograms were made with points that had an observation that passed the QC and were 

assimilated into the system. The edge of the bin is constrained by 3 � which comes from the 

QC (
|I$J K |

L
< 3). VV shows the most Gaussian-like distribution among the three variables 

because it has the smallest range of values and the difference between model and observations is 

naturally centered on zero. Its distribution became more Gaussian-like after DA with a lower 

frequency of occurrence at the edges and higher frequency around zero. Although the frequency 

of occurrence of the peak decreased after DA, the sum of frequencies of occurrence for the bins 

around zero increased markedly, implying that DA successfully adjusted the background values 

to observed values. Unlike VV, LH and HYDRO have a highly peaked and skewed shapes of the 

distribution. LH is skewed to the left which might suggest that the scheme is assimilating LH in 

the region where ice hydrometeors are overestimated. HYDRO, on the other hand, is somewhat 

skewed to the right which implies that grids where there is more water content in the observation 

are assimilated more than grids with larger water content in the background. LH and HYDRO 

began with an error distribution that is non-Gaussian, thus contradicting the assumption in 

MLEF. The residuals are nonetheless improved after DA. 
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Figure 12 Histograms of observation-background for LH before (left) and after (right) DA simulation 

Figure 11 Histograms of observation-background for VV before (left) and after (right) DA simulation 
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Analysis vectors produced after the DA experiments were examined with independent 

observations for an objective validation. Brightness temperature from GMI can be used for 

independent verification purposes. For a comparison between the observed Tb and the Tb 

calculated based on the analysis and background, Tb at 89GHz (vertical polarization) was used 

because this channel is sensitive to hydrometeors, especially in the ice phase. In Figure 14, the 

model background correctly created the convective core of the hurricane in the observed 

location, but it overestimated ice hydrometeors around the rainbands, and did not create the 

rainband around at 9°N. Overestimation of ice hydrometeors is evidenced by lower Tb caused by 

too much scattering of radiation away from the viewing direction. Figure 15 is the same 

brightness temperature map but with VV, LH, and HYDRO run. VV seemed to create the upper 

Figure 13 Histograms of observation-background for HYDRO before (left) and after (right) DA 

simulation 
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part of the rainband but still significantly overestimates the amount of ice scattering as in the 

background. In addition, it moved the lower part of the rainband southward which should have 

been moved northward. By contrast, the LH run reduced the amount of ice scattering 

considerably and created the upper rainband. It even tried to reshape the lower part of the 

rainband. HYDRO showed a similar pattern as LH but with less scattering at the lower rainband 

and higher scattering at the upper rainband. 

 

 

 

 

 

 

 

 

 

Figure 14 Brightness temperature map of observation and the background at 89GHz V for Hurricane Pali 
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In addition to the Tb, DPR reflectivity can also be used for validation data although it was 

used in the retrieval of the assimilated parameters. It is nonetheless useful in the sense that it can 

be evaluated at different levels. Figure 16 and 17 show reflectivity before and after the DA 

experiments at 1km and 7km respectively. Background reflectivity at 1km appears discontinuous 

at the edge of the rainbands. LH and HYDRO improved the simulation by creating trailing 

rainbands. VV also formed a rainband but it removed the northwest portion of it. At 7km, all 

three experiments showed similar patterns between the three experiments. They produced ice 

Figure 15 Brightness temperature map of VV, LH, and HYDRO at 89GHz V for Hurricane Pali 
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hydrometeors in the north east part of the rainband but, at the same time, they created 

unnecessary ice at the south of the rainband around 7°N. One thing to note here is that the results 

for LH and HYDRO look very similar both at 1km and 7km.  

Figure 16 Horizontal cross-section of reflectivity at 1km for Background, VV, LH, and HYDRO 
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Figure 17 Horizontal cross-section of reflectivity at 7km for Background, VV, LH, and HYDRO 
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Figures 18, 19, and 20 provide a quantitative assessment of the improved analysis for the 

VV, LH, and HYDRO assimilation experiments respectively. The horizontal axis in each plot 

displays the absolute difference between the observations and the background reflectivity while 

the vertical axis is the difference between the observations and the analysis. Points to the right of 

the one-to-one line therefore show an improved analysis field. Two figures are shown for each 

experiment: one that includes all of the points and one that excludes points on the one-to-one 

line. Points on the one-to-one line might appear to be unaffected by the DA procedure, but it is 

more likely that the change is very subtle and not detectable in the figure. An alternative 

explanation for the large number of points along the one-to-one line could be that observation 

errors were too large compared to forecast errors, and that the model thus tends to ignore these 

observations. All three experiments showed some improvements. In the VV experiment, 13.0% 

of the points improved in the analysis while 6.3% became worse and the remaining 80.7% was 

unchanged. Of those that changed, 67.5% showed improved and 32.5% retrograded. In the LH 

experiment, 12.9% of the total analysis improved. Excluding the points on the one-to-one line, 

the right plot in Figure 19 shows 70% improvement. HYDRO experiment also shows 70% of 

improvement without the unchanged points. The number of points that had passed the QC was 

larger in the HYDRO run than with LH, making HYDRO the most influential variable. The 

reason why HYDRO had the most positive impact on reducing the discrepancy in reflectivity 

might be because hydrometeor water contents are directly related to the reflectivity calculation as 

an input in the RTM. Positive effect on LH seems comparable to HYDRO even though LH is not 

an input to the RTM. 
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Figure 18 Scatter plot of difference between observation and analysis against difference between 

observation and background for VV including (left) and excluding(right) points that did not change 

Figure 19 Scatter plot of difference between observation and analysis against difference between 

observation and background for LH including (left) and excluding (right) points that did not change 
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4.2 Results in Hurricane Jimena case 

The same experiments were conducted for Hurricane Jimena starting with the creation of 

a retrieved data set. Jimena was a bigger and stronger hurricane than Pali as is shown in Figure 

21.  This can be supported by a map of VV in Figure 22 showing positive values in all the 

identifiable rainbands in the retrieved profiles. The retrieved field captured the hurricane 

reasonably well in most of the field. Yet, convective features in LH (release of the LH), 

corresponding to high reflectivity, are not represented well at 1km in Figure 23 even though rain 

water contents are high along the rainbands in Figure 24. Most of the regions in TC Jimena, 

except for a few grids on the core, can be considered to have stratiform features based on a 

significant amount of snow (Figure 25) rather than graupel (Figure 26) and a transition of a sign 

for LH from bottom to top. The background model field, on the other hand, had a larger 

Figure 20 Scatter plot of difference between observation and analysis against difference between 

observation and background for HYDRO including (left) and excluding (right) points that did not change 
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convective core and narrower rainbands. Therefore, a key point in Jimena’s case would be 

whether DA experiments were able to reduce the core size and create a broader rainband 

structure. 

Figure 21 Observed (left) and retrieved (right) reflectivity horizontal cross-section at 1km (upper) and 

7km (lower) for Hurricane Jimena 
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Figure 22 Background(left) and retrieved (right) vertical velocity horizontal cross- section at 1km (upper) 

and 7km(lower) for Hurricane Jimena 
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Figure 23 Background(left) and retrieved (right) latent heating horizontal cross- section at 1km (upper) 

and 7km(lower) for Hurricane Jimena 
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Figure 24 Background(left) and retrieved (right) rain water content horizontal cross-section at 1km 

Figure 25 Background(left) and retrieved (right) snow water content horizontal cross-section at 7km 
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Histograms of observed minus simulated parameters in Figure 27, 28, and 29 show 

similar patterns as with the Pali case: mostly Gaussian-like distribution in VV, skewed to the left 

in LH, and skewed to the right in HYDRO. By looking at the brightness temperature at 89GHz in 

Figure 30, we can see that all of the experiments tried to reduce the convective core size and the 

ice scattering in the rainband. For evaluating the vertical structure of the TC system after the DA 

experiments, horizontal cross sections of reflectivity are shown in Figure 31 (at 1km) and 32 (at 

7km). The background simulation at 1km is not well developed in the north and east part of the 

system. At 7km, it has the higher reflectivity than the observations in the overall rainbands and it 

is completely missing the north part of the rainbands (18.5°N). All three experiments had a 

positive impact at higher levels by lowering ice contents, and thus the reflectivity, but creating 

Figure 26 Background(left) and retrieved (right) graupel water content horizontal cross-section at 7km 



	 39	

ice hydrometeors on the North part of the system. However, VV did not have much impact at the 

lower levels while the other two experiments expanded the rainbands. The LH and HYDRO 

assimilation experiments showed similar patterns regarding reflectivity just like in the Pali 

experiments. The reflectivity data was again plotted on a scatter plot to evaluate the 

improvements quantitatively. The percentage of data that contributed to lower difference 

between observed and analysis excluding points on the one-to-one line was 67.8%, 78.5%, and 

78.2% of the pixels that showed change for VV, LH, and HYDRO (Figure 33, 34, and 35) 

respectively. Numerical results show that the LH had the most improvement but percentages in 

LH and HYDRO are comparable to each other.  

 

 

 

 

Figure 27 Histograms of observation-background for VV before (left) and after (right) DA simulation 
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Figure 28 Histograms of observation-background for LH before (left) and after (right) DA simulation 

Figure 29 Histograms of observation-background for HYDRO before (left) and after (right) DA 

simulation 
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Figure 30 Brightness temperature map at 89GHz V for Hurricane Jimena 
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Figure 31 Horizontal cross-section of reflectivity at 1km for Background, VV, LH, and HYDRO 
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Figure 32 Horizontal cross-section of reflectivity at 7km for Background, VV, LH, and HYDRO 
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Figure 33 Scatter plot of difference between observation and analysis against difference between 
observation and background for VV including (left) and excluding(right) points that did not change 

Figure 34 Scatter plot of difference between observation and analysis against difference between 

observation and background for LH including (left) and excluding (right) points that did not change 
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In addition to evaluating the analysis result, one more experiment was conducted with 

Hurricane Jimena to evaluate if the track forecast showed any improvement. The analysis itself 

was improved most by assimilating LH or HYDRO but, which experiment would predict a more 

accurate hurricane track if the analysis is given as an initial condition to the model? The 

hurricane track for each experiment was plotted in Figure 36 every 6 hours along with the 

observed track data. Best track data was obtained from ATCF and the track of the forecast was 

determined by a minimum sea level pressure which is a good indicator for a location of the TC 

core. All experiments, including the control run, started from the same location but began to 

diverge after that. LH had the least error after 6 hours, but later it was HYDRO that approached 

closer to the best track. LH and HYDRO take turns at better forecasting the track. 

Figure 35 Scatter plot of difference between observation and analysis against difference between 
observation and background for HYDRO including (left) and excluding points that did not change 
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Figure 36 Hurricane Jimena track forecast for control, VV, LH, and HYDRO run 
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CHAPTER 5: DISCUSSION 

 

 Three experiments using VV, LH, and HYDRO were conducted to compare the impact of 

using different variables on a data assimilation system, although all variables were derived from 

the same radar observations. The key factor that controls the result of the assimilation 

experiments in this study should be the observation error. The forecast error is given by an 

ensemble forecast while the observation error is provided by the user depending on observation 

types and the algorithm used. It ultimately determines how much observation data is allowed in 

the system. Figure 37 shows Tb map of HYDRO in hurricane Pali’s case if a different 

observation error had been chosen. In this additional DA experiment, the observation error was 

decreased by 50% or 0.00005kg/kg. By decreasing the observation error, the system assigns 

more weight to the assimilated observation than the background data, but assimilates fewer 

observations because it only allows observations that are less different from the model 

background under the same QC (
|I$J K |

L
< 3) constraint. In Figure 37, the upper rainband, 

where the difference between the observations and the backgrounds was quite large, is less 

improved than the previous HYDRO run because most of the observations in that region did not 

pass the QC. At a minimum, this shows the importance of properly estimating uncertainty in 

retrieved fields. 
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There are also several points in this research that can be improved related to the 

observation operator. The assumption related to vertical grids of VV were made for simplicity, 

but it might have been more accurate to assimilate VV at its vertically staggered grid. In the case 

of LH, it was set as a control variable without taking additional covariance into account. It might 

have had a direct impact on the control variables if the equations to calculate the LH in the 

WDM6 can be used in the observation operator. However, the equations are spread out 

throughout the WDM6 scheme using a different time step depending on types of hydrometeors, 

making it difficult to incorporate in the observation operator where the different time step is not 

usually considered. Also in the WDM6 scheme, the equations contain too many variables (e.g. 

production rates of hydrometeors by various types of phase change) that should be added as 

control variables if the WDM6 scheme is used in the observation operator. This might be 

Figure 37 HYDRO run with a decreased observation error by half 
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improved if there is a simple empirical equation with several related variables that can represent 

the microphysical scheme well enough. 

Overall, LH and HYDRO runs surpassed VV. This may be due to a less linkage of a 

vertical motion in the microphysical scheme. HYDRO seems to be a little superior than LH but it 

is hard to conclude which variable is better. Similar results from LH and HYDRO in brightness 

temperature and reflectivity suggests that the two variables have the similar impact to the DA 

system. This could have been anticipated because LH and HYDRO are closely related to each 

other. The only thing that makes these two experiments different would be the computational 

time. As mentioned in Chapter 4, the number of observation for HYDRO was almost twice that 

for LH and this makes HYDRO be computationally more expensive than LH. In this sense, LH 

might be a better option if one wants to have a similar effect of assimilating HYDRO but time is 

a critical factor.  
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CHAPTER 6: SUMMARY AND CONCLUSION 

 

 Drop size distributions are a critical factor in predicting radiances and reflectivities. 

Because models and retrievals often assume different DSD, it is hard to make them consistent 

with each other. This leads to an inconsistency problem when observation data are assimilated 

into the forecast model through an observation operator with a different DSD or when products 

that were retrieved from observations with different DSDs are assimilated into the model. 

Despite the difficulty in matching DSDs between the observation and the model, the attempt to 

assimilate observations over cloudy regions continue to increase because there is valuable 

information about the scene. Observation data can be assimilated in many different ways with 

various variables, but it is not easy to find an optimal DA method and variables that can be 

assimilated to transfer information as effectively as possible.  

In this study, a method that maintains consistency in DSD between observation and 

forecast model is presented. Consistency has been ensured by using WRF model outputs to build 

a retrieval framework. Radar observations are translated into retrieved parameters by searching a 

database of model fields for which the appropriate reflectivity profile has been computed. With 

this method, each of three variables (vertical velocity, latent heating, and hydrometeor water 

contents) were retrieved, and assimilated to determine which variable has the most positive 

impact. Each DA experiment was conducted with two TC cases. LH and HYDRO had the most 

improvement in the analysis of each TC, but their results were comparable to each other in both 

cases. However, LH can be considered to be superior to HYDRO in terms of computational time 

because LH and HYDRO are so closely related to each other that it appears that the same 
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information distributed to five types of hydrometeors is compressed into one variable of latent 

heating. Both LH and HYDRO showed improvements in TC track forecast of one TC. 
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Figure 2: 

GPM satellite images for Hurricane Pali [online image]  

from https://pmm.nasa.gov/extreme-weather/gpm-spots-hurricane-pali-forming 

 

5 day track for Hurricane Pali [online image] 

 from http://www.prh.noaa.gov/cphc/tc_graphics/latest_w.php?stormid=CP012016 

 

Figure 3: 
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GPM satellite images for Hurricane Jimena [online image]  

 from https://phys.org/news/2015-09-gpm-hurricane-jimena-intense-eyewall.html 

 

5 day track for Hurricane Jimena [online image] 

 from http://www.prh.noaa.gov/cphc/tc_graphics/latest_w.php?stormid=EP132015 
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APPENDIX A 

 

 Brightness temperature and reflectivity are sensitive to the parameters of the DSD. In the 

RTM, optical properties of hydrometeors are calculated based on the assumed DSD and their 

impacts on the brightness temperature and the reflectivity can be significant. The gamma size 

distribution is one of the most common forms of DSD and its normalized form can be expressed 

as follows. 

� � = �R�(�)
�

�F

U
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The normalized intercept parameter (Nw), median volume diameter (D0), and shape parameter 

(µ) are the main parameters that define the distribution. W is water content (g/m
3
), rw is the 

density of the hydrometeor and G is the gamma function (G(x+1) = x!). 

In this appendix, each of the three DSD parameters were varied in the RTM to examine 

their impacts on brightness temperature and reflectivity of precipitating hydrometeors (rain, 

snow, and graupel). Cloud liquid water and cloud ice are defined as small particles of the 

precipitating hydrometeors that have the same optical properties in the RTM. Figures A1, A2, 

and A3 shows changes in the Tbs for the distinct GMI frequencies when water content and D0 are 

varied for rain, snow, and graupel respectively.  D0 was varied from 0.05 to 5mm while black, 

blue, and red lines respectively represent 0.1g/m
3
, 0.5g/m

3
, and 2.5g/m

3
 of total water content. 

Increasing water content directly affects the magnitude of both absorption and scattering because 

the number of drops is proportional to the water content. Rain (liquid water) has a relatively 

large imaginary part of the refractive index which is related to the absorption efficiency and this 
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makes the absorption dominate over scattering at lower frequency (10.65 and 18.7GHz). Tb 

increases slowly as the diameter increases because the absorption by raindrops increases as the 

relative size grows towards the Mie regime. Then Tb starts to decrease because scattering comes 

into play by reflecting some of the radiation coming from lower layers back toward the surface. 

Tb does not vary much at 23.8GHz because this channel is sensitive to water vapor. At the higher 

frequency (89GHz), Tb decreases by scattering but starts to increase as the diameter increases 

due to the increased amount of forward scattering. At 166GHz, it follows a similar pattern as 

89GHz but does not vary much because the channel is close to a strong water vapor absorption 

band. Finally, around 183GHz, Tb stays the same due to a saturation achieved by water vapor 

absorption. In the case of ice hydrometeors, their imaginary part of the refractive index is small 

and the absorption is almost negligible. Scattering is also small at low frequencies, leading to 

negligible Tb differences with diameter, but at 89.0GHz, scattering increases and Tb become 

quite sensitive to the diameter. Channels behave similarly at a strong water vapor absorption 

channels (166 and 183GHz) because the absorbed radiation by water vapor is scattered by ice 

hydrometeors that are located above where the weighting function peaks in water vapor. 

Compared to the water contents and the D0, Tb is less sensitive to µ for all hydrometeors. This is 

shown in Figure A4, A5, and A6.   

 

 

 

 

 

 



	 57	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1 Plots of brightness temperature for rain varied by water content (Black, blue, and 

red for 0.1kg/m3, 0.5kg/m3, and 2.5kg/m3 respectively) and the median volume diameter 
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Figure A2 Plots of brightness temperature for snow varied by water content (Black, blue, and 

red for 0.1kg/m3, 0.5kg/m3, and 2.5kg/m3 respectively) and the median volume diameter 
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Figure A3 Plots of brightness temperature for graupel varied by water content (Black, blue, and 

red for 0.1kg/m3, 0.5kg/m3, and 2.5kg/m3 respectively) and the median volume diameter 
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Figure A4 Plots of brightness temperature for rain varied by µ 
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Figure A5 Plots of brightness temperature for snow varied by µ 
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Figure A6 Plots of brightness temperature for graupel varied by µ 
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The same experiments were conducted for reflectivity of rain, snow, and graupel. They 

were examined at 13.6GHz in Ku-band and it is shown in Figure A7 and A8. The magnitude of 

the reflectivity for snow and graupel is relatively smaller than that for rain because rain 

backscatters more than ice hydrometeors at this frequency (due to the dielectric property of 

water). Reflectivity for graupel is a little bit greater than snow because it is denser. A bright band 

is caused by a large reflectivity of liquid water coating when it begins to coat large snow 

particles as they begin to melt. Varying µ does not affect reflectivity much for all the 

hydrometeors as in Tb. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 64	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A7 Plots of reflectivity for rain, snow, and graupel varied by water content (Black, blue, 

and red for 0.1kg/m3, 0.5kg/m3, and 2.5kg/m3 respectively) and the median volume diameter 
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Figure A8 Plots of reflectivity for rain, snow, and graupel varied by µ 


