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ABSTRACT OF DISSERTATION 

EARLY DETECTION AND RAPID ASSESSMENT OF INVASIVE ORGANISMS: 
GLOBAL CLIMATE CHANGE, ANOTHER PERSPECTIVE 

Invasive species alter native species assemblages, effect ecosystem processes, and 

threaten biodiversity worldwide. Early detection and rapid assessment will help stem the 

problem, focusing managers attention on newly established invasive species before they 

spread. This is a big task requiring a coordinated effort and a centralized data sharing 

effort. One tool that can be used in this effort is Geographic Information Systems (GIS). 

GIS can be used to create potential distribution maps for all manner of taxa, including 

plants, animals, and diseases, and may perform well in early detection and rapid 

assessment of invasive species. As an example application, I created maps of potential 

spread of the cane toad (Bufo marinus) in the southeastern United States at an 8-digit 

Hydrologic Unit Code (HUC) level using regression and environmental envelope 

techniques. Equipped with this potential map, resource managers can target field surveys 

to areas most vulnerable to invasion. 

However, there is a general need in invasive species research to quantify the 

potential habitat of many invasive plant species. I was interested in modeling the shifts in 

suitable habitat over time, environmental space, and climate change. I used 4-km2 climate 
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scenarios projected to the years 2020 and 2035 for the continental United States, to 

examine potential invasive species habitat distributions. I used maximum entropy 

modeling (Maxent) to create three models for 12 invasive plant species: (1) current 

potential habitat suitability; (2) potential habitat suitability in 2020; and (3) potential 

habitat suitability in 2035. These models showed areas where habitat suitability remains 

stable, increases, or decreases with climate change. Area under the receiver operating 

characteristic curve (AUC) values for the models ranged from 0.92 for Pennisetum 

ciliare to 0.70 for Lonicera japonica, with 10 of the 12 being above 0.83 suggesting 

strong and predictable species-environment matching. Change in area between the 

current potential habitat and the year 2035 ranged from a potential habitat loss of about 

217,000 km for Cirsium arvense, to a potential habitat gain of about 133,000 km for 

Microstegium vimineum. These results have important implications for developing a 

triage approach to invasive species management under varying rates of climate change. 

Tracy R. Holcombe 
Graduate Degree Program in Ecology 

Colorado State University 
Fort Collins, Colorado 80523 

Summer 2009 

IV 



A C K N O W L E D G E M E N T S 

I would like to thank the United States Geological Survey for their funding of this 

research, and the USGS Fort Collins Science Center and the Natural Resource Ecology 

Laboratory at Colorado State University for providing logistical support. My advisors, 

Thomas J. Stohlgren and Melinda Laituri, and committee members, Cynthia Brown and 

K. George Beck, have contributed significantly to my training and understanding of 

ecology. My co-workers Paul Evangelista, Catherine Jarnevich, Sunil Kumar, Greg 

Newman, Jim Graham, Dave Barnett, Alycia Crall, Sara Simonson, and all of my office 

mates helped in many aspects of this research. My family and community of friends have 

provided wonderful support to help me arrive at this place in my life, I owe them a debt 

of gratitude. And the support that I have received from my husband over the last couple 

of years and especially the last few months has been amazing, thank you Brian. To all I 

am grateful. 

v 



TABLE OF CONTENTS 

Page 

ABSTRACT OF DISSERTATION iii 
ACKNOWLEDGEMENTS v 
LIST OF TABLES viii 
LIST OF FIGURES ix 
Introduction to the Dissertation 12 

Literature Cited 16 
Chapter 1: Detection/Early Warning 18 

Introduction 19 
Fire as a metaphor for invasion 20 
Definitions 21 

Early Detection and Rapid Assessment 24 
Guiding Principles for Early Detection and Rapid Assessment 26 

Data and Information Management 27 
Global and Regional Invasive Species Databases 28 
Species Reporting Requirements 32 

Conclusions 33 
Literature Cited 35 

Chapter 2: GIS Applications in invasive species management and research 41 
Abstract: 42 
Introduction 43 
How GIS can be used 45 

Viewdata 45 
Data summary 45 
Field data - points, lines, and polygons 46 
Simple GIS models 47 
Statistical models 48 
Regression models 49 
The Envelope Model 50 
GIS on the web 52 

Conclusions 52 
Literature Cited 54 

Chapter 3: From Points to Forecasts: Predicting Invasive Species Habitat Suitability in 
the Near Term 60 

Abstract 61 
Introduction 62 
Methods 65 

Data 65 
Modeling techniques 67 

Results 69 
Example 70 
Invasibility Index Map 72 

Discussion 72 

VI 



Climate scenarios 75 
Invasibility Index 76 
Utility of this approach 76 

Conclusions 77 
Literature Cited 84 

Conclusions to the Dissertation 87 
Literature Cited 90 

Compiled Literature Cited 91 
Appendix A: List of data sources 97 
Appendix B: Data distribution, spread model, and invasibility for the 12 species in 
Chapter 3 100 

vn 



LIST OF TABLES 

Page 

Table 1. Suggested information to provide to rapid assessment teams 37 
Table 2. Generic species reporting requirements, *=required field 38 
Table 3. Commonly used species environmental matching models for predicting species 

distributions 59 
Table 4. Species modeled. The sample size is the number of points used, after duplicates 

were removed. The training Area Under the Curve (AUC) measures model 
performance of 70% of the data. The Test AUC measures model performance on 
the remaining 30% of the data. The Threshold value uses the 10 percentile logistic 
threshold to distinguish between potentially suitable or unsuitable habitat. The area 
on the leading edge of the invasion is the area of potential habitat that has shifted 
from potentially unsuitable to potentially suitable between the current model and the 
2035 model. The area on the trailing edge of the invasion is the area of habitat that 
has shifted from potentially suitable habitat to potentially unsuitable habitat between 
the current model and the 2035 model 79 

Table 5. Top predictors by percent contributed to the model 80 

viii 



LIST OF FIGURES 

Page 

Figure 1. A. Local invasions involve a harmful species moving within a single country, 
state, or county to a new area within that country, state or county. B. Global or 
intercontinental scale invasions pertain to a harmful species moving between 
countries, often over an ocean 39 

Figure 2. In this conceptual model of invasion the past shows where a species may have 
been introduced. The present shows where the species is when it is first found. 
Priority survey sites are areas between two close invasions, contain/control sites are 
large patches, and priority eradication sites are areas of small populations. If these 
sites are prioritized expediently the damage can be minimized and money saved. 
Without prioritization species will continue to spread and cause more ecological and 
financial burden. The concept of this figure applies equally well to plants, animals 
and diseases 40 

Figure 3. Patterns of (A.) native and (B.) non-indigenous fish by six digit HUC drainage 
(Stohlgren et al. 2006; used with permission). Numbers in the legend represent 
number of species 56 

Figure 4. Regression model of Bufo marinus showing low, medium, and high likelihood 
of suitable habitat in each eight digit HUC 57 

Figure 5. Envelope model of Bufo marinus showing the number of parameters in each 
eight digit HUC that could contain the species 58 

Figure 6. Potential habitat suitability modeling process for Lepedium latifolium. A. 
Distribution of data points. Bl. Current potential habitat suitability, 2. Potential 
habitat suitability in 2020, 3. Potential habitat suitability in 2035. C. Scenario model 
showing stable potential suitable habitat in yellow, decreasing potential habitat 
suitability in blue, and increasing potential habitat suitability in red. D. Invasion 
index with colors on the red end of the spectrum closer to potential seed source and 
colors on the blue end of the spectrum farther away. In the entire figure grey 
represents unsuitable habitat and black represents clamping, or areas the model was 
extended beyond the environmental space it was trained on 80 

Figure 7. Response curves of the most influential predictors. A) Mean Diurnal Range, 
B) Precipitation of warmest quarter, C) Minimum temperature of coldest month, D) 
Mean temperature of wettest quarter 82 

Figure 8. Invasibility Index. Colors on the red end of the spectrum are closer to known 
seed sources, colors on the blue end of the spectrum are farther away. Grey 
represents unsuitable habitat, black represents areas of clamping, or where the model 
was extended beyond the environmental space it was trained on 83 

Figure 9. Lepidium latifolium models. A. Point distribution, B. Scenario model 
showing stable potential suitable habitat in yellow, decreasing potential habitat 
suitability in blue, and increasing potential habitat suitability in red, C. Invasion 
index with colors on the red end of the spectrum closer to potential seed source and 
colors on the blue end of the spectrum farther away. In the entire figure grey 

ix 



represents unsuitable habitat and black represents clamping, or areas the model was 
extended beyond the environmental space it was trained on 101 

Figure 10 Bromus tectorum models. A. Point distribution, B. Scenario model showing 
stable potential suitable habitat in yellow, decreasing potential habitat suitability in 
blue, and increasing potential habitat suitability in red, C. Invasion index with colors 
on the red end of the spectrum closer to potential seed source and colors on the blue 
end of the spectrum farther away. In the entire figure grey represents unsuitable 
habitat and black represents clamping, or areas the model was extended beyond the 
environmental space it was trained on 102 

Figure 11. Carduus nutans models. A. Point distribution, B. Scenario model showing 
stable potential suitable habitat in yellow, decreasing potential habitat suitability in 
blue, and increasing potential habitat suitability in red, C. Invasion index with colors 
on the red end of the spectrum closer to potential seed source and colors on the blue 
end of the spectrum farther away. In the entire figure grey represents unsuitable 
habitat and black represents clamping, or areas the model was extended beyond the 
environmental space it was trained on 103 

Figure 12 Celastrus orbiculatus models. A. Point distribution, B. Scenario model 
showing stable potential suitable habitat in yellow, decreasing potential habitat 
suitability in blue, and increasing potential habitat suitability in red, C. Invasion 
index with colors on the red end of the spectrum closer to potential seed source and 
colors on the blue end of the spectrum farther away. In the entire figure grey 
represents unsuitable habitat and black represents clamping, or areas the model was 
extended beyond the environmental space it was trained on 104 

Figure 13. Centaurea stoebe models. A. Point distribution, B. Scenario model showing 
stable potential suitable habitat in yellow, decreasing potential habitat suitability in 
blue, and increasing potential habitat suitability in red, C. Invasion index with colors 
on the red end of the spectrum closer to potential seed source and colors on the blue 
end of the spectrum farther away. In the entire figure grey represents unsuitable 
habitat and black represents clamping, or areas the model was extended beyond the 
environmental space it was trained on 105 

Figure 14. Cirsium arvense models. A. Point distribution, B. Scenario model showing 
stable potential suitable habitat in yellow, decreasing potential habitat suitability in 
blue, and increasing potential habitat suitability in red, C Invasion index with colors 
on the red end of the spectrum closer to potential seed source and colors on the blue 
end of the spectrum farther away. In the entire figure grey represents unsuitable 
habitat and black represents clamping, or areas the model was extended beyond the 
environmental space it was trained on 106 

Figure 15. Cynoglossum officinale models. A. Point distribution, B. Scenario model 
showing stable potential suitable habitat in yellow, decreasing potential habitat 
suitability in blue, and increasing potential habitat suitability in red, C. Invasion 
index with colors on the red end of the spectrum closer to potential seed source and 
colors on the blue end of the spectrum farther away. In the entire figure grey 
represents unsuitable habitat and black represents clamping, or areas the model was 
extended beyond the environmental space it was trained on 107 

Figure 16. Linaria dalmatica models. A. Point distribution, B. Scenario model showing 
stable potential suitable habitat in yellow, decreasing potential habitat suitability in 

x 



blue, and increasing potential habitat suitability in red, C. Invasion index with colors 
on the red end of the spectrum closer to potential seed source and colors on the blue 
end of the spectrum farther away. In the entire figure grey represents unsuitable 
habitat and black represents clamping, or areas the model was extended beyond the 
environmental space it was trained on 108 

Figure 17. Lonicera japonica models. A. Point distribution, B. Scenario model showing 
stable potential suitable habitat in yellow, decreasing potential habitat suitability in 
blue, and increasing potential habitat suitability in red, C. Invasion index with colors 
on the red end of the spectrum closer to potential seed source and colors on the blue 
end of the spectrum farther away. In the entire figure grey represents unsuitable 
habitat and black represents clamping, or areas the model was extended beyond the 
environmental space it was trained on 109 

Figure 18. Lythrum salicaria models. A. Point distribution, B. Scenario model showing 
stable potential suitable habitat in yellow, decreasing potential habitat suitability in 
blue, and increasing potential habitat suitability in red, C. Invasion index with colors 
on the red end of the spectrum closer to potential seed source and colors on the blue 
end of the spectrum farther away. In the entire figure grey represents unsuitable 
habitat and black represents clamping, or areas the model was extended beyond the 
environmental space it was trained on 110 

Figure 19. Microstegium vimineum models. A. Point distribution, B. Scenario model 
showing stable potential suitable habitat in yellow, decreasing potential habitat 
suitability in blue, and increasing potential habitat suitability in red, C. Invasion 
index with colors on the red end of the spectrum closer to potential seed source and 
colors on the blue end of the spectrum farther away. In the entire figure grey 
represents unsuitable habitat and black represents clamping, or areas the model was 
extended beyond the environmental space it was trained on 111 

Figure 20. Pennisetum ciliare models. A. Point distribution, B. Scenario model 
showing stable potential suitable habitat in yellow, decreasing potential habitat 
suitability in blue, and increasing potential habitat suitability in red, C. Invasion 
index with colors on the red end of the spectrum closer to potential seed source and 
colors on the blue end of the spectrum farther away. In the entire figure grey 
represents unsuitable habitat and black represents clamping, or areas the model was 
extended beyond the environmental space it was trained on 112 

XI 



Introduction to the Dissertation 

12 



Invasive species alter native species assemblages (Stohlgren et al. 2008), effect 

ecosystem processes (Loreau et al. 2001), and threaten biodiversity worldwide (Wilcove 

et al. 1998). Invasive plants threaten native species, habitats, and ecological systems. 

Their ability to compete and displace native species alters hydrologic and nutrient cycles, 

and changes fire and other disturbance regimes. They crowd out native species and can 

be very dominant in systems where they are adventive. 

As trade and travel increase, so do the opportunities for new invasions (Hodkinson and 

Thompson 1997, Mack and Lonsdale 2001). Early detection of invasive species is 

important to keep these invasions to a minimum (Moody and Mack 1988, Rejmanek and 

Pitcairn 2002). If we are aware of new invasions, we can quickly set priorities for 

containment and control (Byers et al. 2002). Awareness plays a vital role in slowing the 

spread of invasive species. In the United States, land managers do not know what species 

have invaded in their neighboring management systems (Crosier and Stohlgren 2004). 

This is a large issue that can only be approached with a centralized planning effort and 

the capability to share and manage invasive species information. 

The issue of invasive species is compounded by climate change. It remains unclear what 

will happen to the habitat distribution of species as the climate changes worldwide 

(Marshall et al. 2008). Habitats themselves will be shifting; it follows that the species 

that live in those climates will move with them. It is expected that some species 
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distributions will spread and increase while others may contract, or not spread at all 

(Bradley et al. 2009). 

With this dissertation I addressed the question of early detection and rapid assessment. 

With the first chapter on detection and early warning of invasive species, I addressed the 

need to develop a centralized consensus model for early detection and rapid assessment. 

Invasive species are a large issue that requires a well executed centralized plan of action. 

I specifically addressed data collection, data sharing, and centralized databases on the 

internet. 

With chapter two, I discussed how Geographic Information Systems (GIS) can be used to 

assist with the early detection of invasive species. In the past, a simple display of the 

data was considered a very useful tool. As computing power increased over the years, 

our ability to utilize computer models has improved. In addition to an overview of the 

use of GIS in early detection, I compared two models oiBufo marinus (cane toad) habitat 

in the southwestern United States as a first approximation of how far this species may 

spread. These models were at a very coarse 8-digit Hydrologic Unit Code scale, but they 

provided a preliminary map of species habitat in the southwest. 

The third chapter of this dissertation addressed habitat suitability on a finer scale, 

covering the continental United States. I examined 12 invasive plants, determining their 

current suitable habitat using Climate Envelope Models ((Hijmans and Graham 2006). I 

used these same models to analyze how the habitat of these species will change with 
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climate change in the near term. This provided an initial model at a management scale, 

using climate change to examine the leading and trailing edges of the invasion. 
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Chapter 1: Detection/Early Warning 



Introduction 

It is well known that invasive species are a problem of epidemic proportions around the 

world, causing economic losses of up to $120 billion per year in the USA alone (Pimentel 

et al. 2005). As trade and travel across international boundaries increase, so do invasions 

(Mack and Lonsdale 2001). Early detection and rapid response are effective strategies to 

minimize the impacts that invasive species have on economies and on ecosystems that 

they invade (Rejmanek and Pitcairn 2002). Because the task of invasive species control 

can sometimes be daunting, managers need to be able to set priorities for prevention and 

control of these organisms (Byers et al. 2002). It is important to obtain accurate 

assessments of location and abundance of invasive species so that managers can set these 

priorities and have the information to quickly and effectively combat the invaders. It is 

also important to identify barriers to invasion and habitats where an invasive species 

cannot persist or cause much harm. 

To be informed in the initial stages of a species on the way to becoming a successful 

invader, we need early detection. Early detection is a very low probability event that is 

critically dependent on adequate surveillance. It involves sampling strategies sufficiently 

rigorous to detect incursions at sufficient frequency and, assuming a response program, to 

influence the chance of establishment and spread. 

In our quest for early detection techniques, it is important to remember that invaders can 

be any type of organism from microbes to mammals and come in many forms. We need 

to be aware of plants, animals, insects, pathogens and parasites that can all be invasive or 
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be vectors for invasions. Examples of these include plague (Yersinia pestis), West Nile 

Virus (Flavivirus sp), gorse (Ulex europaeus), common cord-grass (Spartina anglica), 

nutria (Myocastor coypus) and sudden oak death (Phytophthora ramorum). There are 

many well know examples of invasive plants and animals, including feral pigs (Sus 

scrofa), miconia (Miconia calvescens), red imported fire ant (Solenopsis invicta) and 

starlings (Sturnus vulgaris). Fish examples include western mosquito fish (Gambusia 

affinis), carp (Cyprinus carpio), brown trout (Salmo trutta), and Nile perch (Lates 

niloticus). The spread of these notorious examples would have been minimized and costs 

reduced with early detection and rapid assessment. 

Fire as a metaphor for invasion 

A metaphor that has been applied to invasive species is wildfire (Dewey and Andersen 

2004). Wildfires sometimes grow large by sending out sparks that start small spot fires in 

places where conditions are right for fire to spread. Wildland firefighters know this and 

try to extinguish spot fires expediently, preventing the fire from growing larger. Even if 

the fire is already fairly large, wildland firefighters will make spot fires a priority over the 

large burning mass that may be too large to slow under current conditions. It is always 

best to detect the fire early and prevent it from spreading. This model of movement also 

applies well to invasions. Invasive organisms put out progeny, similar to sparks, which 

may move far from the parent, furthering its invasion potential. If invasive species 

managers, with limited resources, focus first on these smaller invasions this may do more 

to slow the spread of an invasive species than trying to tackle large well established 
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invasions (Rejmanek and Pitcairn 2002). The challenges are how to find these small 

invasions of cryptic species, and to assess the risks and threats of each invader. 

Definitions 

The terms "early detection" and "rapid response" were defined by Worall (2002) as: 

Early detection, as applied to invasive species, is a comprehensive, integrated 

system of active or passive surveillance to find and verify the identity of new 

invasive species as early after entry as possible, when eradication and control are 

still feasible and less costly. It may be targeted at areas where introductions are 

likely (such as near to pathways of introduction) and in sensitive ecosystems 

where impacts are likely to be great or invasion is likely to be rapid. 

Rapid response is a systematic effort to eradicate, contain or control 

invasive species while the infestation is still localized. It may be 

implemented in response to new introductions or to isolated infestations of 

a previously established, nonnative organism. Preliminary assessment and 

subsequent monitoring may be part of the response. It is based on a 

system and infrastructure, organized in advance so that the response is 

rapid and efficient. 

While this chapter will focus on rapid assessment more than rapid response to 

invasive species, there are two important points that are made in this rapid 

response definition. One is that preliminary assessment must be part of the 
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response. This is a crucial step to take once a species has been detected. If the 

situation is not quickly inventoried, patches or individuals may be missed and the 

opportunity of catching the species while the invasion is small may be lost. The 

second important point in the Worall (2002) definition of rapid response is that of 

having the infrastructure already in place. Early detection and rapid assessment 

require frequent monitoring, which does require effort, a strategy, and funding. It 

may be possible to organize a group of volunteers to conduct monitoring, but in 

many cases someone needs to be hired to carry out this task. In general this is 

much less expensive than the alternative of doing nothing and letting the species 

spread. The mimosa tree (Mimosa pigra) in Australia illustrates this well (Cook et 

al. 1996). A small stand of mimosa trees were found in Kakadu National Park 

(KNP) in 1983. The staff at KNP immediately sent out a team to find any mimosa 

trees in the park and intervene. There are now occasional reports of a tree found 

in the park that are quickly eliminated, but no large stands. The program costs the 

park about $2 per hectare per year. In a nearby floodplain called Oenpelli a stand 

of about 200 ha was found at about the same time. The response was not as swift 

and by the year 1990 the infestation covered about 8,200 ha of the floodplain. A 

control effort was finally undertaken and a very large aerial spray operation was 

carried out. The spray program cost $220 per ha per year for 5 years to get the tree 

under control. Now they, like KNP, spend about $2 per ha per year for 

maintenance. This is a clear example of the costs associated with neglecting rapid 

response. 
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There are two distinct types of invasion that should be recognized when discussing early 

detection (Figure 1). The first type of invasion is one in which a native species moves 

within its own native country, state or habitat. If it moves to an area where it did not 

previously exist it can be considered as invading that area. For example, many game fish 

species in the western USA are non-native transplants. These fish disturb the native 

ecology of the western lakes, yet they have remained in their country of origin. 

The second type of invasion crosses international borders and oceans, often moving 

between similar ecological zones. Tamarisk {Tamarix sp.), which comes from very arid 

regions of the Middle East and Asia, exemplifies this. It has invaded the southwestern 

United States in a climate similar to its native range (Di Tomaso 1998). It is possible for 

invasions such as this one to be intercepted at the borders of the country (Lodge et al. 

2006). 

Land managers could benefit from accurate maps showing current distributions and local 

and sub-regional models of potential habitats of invaders to address both of these types of 

invasion. Knowing current species distribution would help land managers concentrate on 

the frontier of invasion and control small invasions in new areas separate from larger 

invasions. Identifying these small, isolated areas would be beneficial because the most 

effective time for control is when an invasion is small (Rejmanek and Pitcairn 2002). 

Determining the potential distribution of invasions would help managers focus on the 

areas at a high risk of being invaded, aiding in early detection/rapid response of new 

areas being invaded (Stohlgren and Schnase 2006). 
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Early Detection and Rapid Assessment 

Basic components of an Early Detection and Rapid Response (EDRR) program include: 

1. access to current and reliable scientific and management information 

2. ability to identify species quickly 

3. a functional risk assessment plan 

4. mechanisms in place to coordinate a control effort 

5. providing adequate technical assistance (e.g. quarantine, monitoring, 

information sharing, research and development, and technology transfer) 

and rapid access to stable funding for accelerated research of invasive 

species biology, survey methods, and eradication options. The system's 

success will depend in part on public participation in efforts to report and 

respond to invasions. 

Each of these elements, particularly 1 and 2, are important to an early detection and rapid 

response program. One tool that can aid in those specific processes is 'watch lists'. Watch 

lists are list of species that are either nearby, or known to invade similar habitats to the 

area of the list. For example, caulerpa seaweed (Caulerpa taxifolia), an aggressive 

invader introduced to the Mediterranean around 1984, was placed on the US Federal 

Noxious Weed list in 1999 by the Southern California Caulerpa Action Team, a watch 

group for early detection of this detrimental organism (Anderson 2005). When it was 

found offshore of California, US in June 2000 there was already infrastructure in place 

and action was taken to eradicate the plant within 17 days of its discovery. This was 

probably due to a well prepared action and assessment team and the fact that the plant 
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was on a watch list before it even entered the country. It is important to know about the 

biology of an invader before it arrives so that when it appears you can be prepared with 

strategies and have already determined potential habitat and effects. Ideally, countries 

would share information about their invaders with each other, but unfortunately official 

reporting (e.g., to the United Nations Convention on Biodiversity) is very limited, and the 

global-scale invasive species information exchange systems that collect and share this 

information do not receive sufficient financial support. 

Westbrooks (2003) defines the essential attributes of an early detection/rapid assessment 

program similarly as; including aids for species identification, authentication/verification 

of new field observations, reporting records, maintaining a database of species 

occurrences and locations, alerting appropriate officials and rapid response teams, and 

monitoring management actions. Simple EDRA programs have been developed for 

selected taxa in some local areas using these principles. For example, the US state of 

Wisconsin has an early detection program for purple loosestrife {Lythrum salicaria) 

whereby public service announcements prompt television viewers to call in purple 

loosestrife locations to a hotline with awaiting weed coordinators. This system 

incorporates adding new information to a database as soon as a specimen is found with 

alerting the appropriate officials so that a response team can be notified. 

Additional aspects of EDRA components have recently been added for: user ID and 

validation, reporting, expert verification, occurrence database, and rapid assessment 

(Simpson et al. 2006). This paper highlights the importance of a centralized data sharing 
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system. The authors also mention the importance of species profiles on the web for quick 

identification of new invaders, biological and ecological information, global distribution 

with details about instances of invasion, and information about management options, 

including case studies of early detection and rapid response. 

Guiding Principles for Early Detection and Rapid Assessment 

Suggested Guiding Principles are as follows: 

1. An early detection program must be fully integrated into a comprehensive, 

science-based research and management program that coordinates aspects of 

prevention, early detection and rapid assessment, research, surveys and 

monitoring, and outreach and reporting. 

2. The database of observations must remain in the public domain with free and 

open access to unclassified, peer-reviewed data. 

3. Because many aspects of an EDRA program require extensive research and 

development (e.g. integrating millions of field observations with remotely 

sensed information and new forecasting tools; greatly improved information 

technologies; and high-performance computing), basic research and a 

scientific method must underpin the design, testing, and phased 

implementation of the program and these programs must be developed prior to 

new invasions. 

4. The long-term success of any national or international EDRA program is 

dependent on a long-term commitment of funding, personnel, and equipment 

of all key components in the system, plus the continued cooperation of many 
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government and non-government organizations, engaged volunteers, and 

public acceptance. 

5. It would be impossible to create a comprehensive EDRA program for the 

thousands of species on Earth. For any country (or region within a country) it 

might be more realistic to focus preliminary efforts on those top priority 

species that are identified as serious potential invaders. Once the system is 

more fully tested, it could be expanded to cover more species. 

Data and Information Management 

Data and information management represent the single greatest challenge of an effective 

EDRA program. Information is needed on probable and current species distribution and 

abundance, habitat suitability, and containment strategies and techniques. High 

resolution maps, and models of current and potential spread of harmful species and their 

effects, which are being used in developed countries to assess and manage invasive 

species problems, can be used to provide insights into invasion ecology and to develop 

guidelines for response options for those facing similar problems in other parts of the 

world. Based on US surveys of resource managers and the public, there is an 

unprecedented need for a "comprehensive, integrated system" for early detection, and "a 

systematic effort to scope the severity of the issue" for rapid assessment (Stohlgren and 

Schnase 2006). 
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Global and Regional Invasive Species Databases 

Biological invasion is a global problem so it is clear that global-scale clearinghouses that 

share data from all over the world are a crucial component of any effective response. 

Existing global-scale systems include the Global Invasive Species Database (GISD; 

www.issg.org/database), which has comprehensive information on more than 500 of the 

world's worst invasive species; the Global Register of Invasive Species (GRIS), which 

provides the names and full taxonomy of all known invasive species, along with 

geographic records of introduction and invasion: and the Global Invasive Species 

Information System (GISIN), which is developing a system for the exchange of invasive 

species data and information between local, national, regional and international databases 

over the internet. The Global Organism Detection and Monitoring system (GODM) of the 

US National Institute of Invasive Species Science (NIISS; www.niiss.org), and the 

International Nonindigenous Species Database Network (NISbase; www.nisbase.org) 

include global information and CAB International (www.cabi.org) will launch the first 

phase of their Invasive Species Compendium in 2008. Regional information systems 

include Delivering Alien Invasive Species Inventories for Europe (DAISIE; 

www.europe-aliens.org) and I3N, the invasive species thematic network of the Inter-

American Biodiversity Information Network (IABIN; http://i3n.iabin.net/). 

All of these databases provide data free to the public, but have limited access to those 

contributing to the system to ensure data quality. Websites such as these are a great 

benefit to early detection and rapid assessment. They have the potential to form a global 

network of information on all harmful invasive plants, animals, and pathogens (especially 
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if geographic information gaps are addressed and if they become providers of data to the 

Global Invasive Species Information System (GISIN)). Here we specifically outline the 

components and potential uses of the GODM system to illustrate how databases can be 

used in early detection and rapid assessment. All of these components may not be 

available in each system but they all represent great future potential. 

1. User ID/Tracking: This first step involves users that may contribute data 

registering with the website and entering contact information that includes 

their name, email address, location, and level of expertise (specifically 

regarding the information about to be entered). This is important so that the 

information entered can be tracked to its source and checked for reliability. 

2. Verify Records and "First Alert": Only a limited number of well trained 

users and coordinators may enter data into the system. The user may wish to 

exclude suspect data in analyses, mapping, and modeling by selecting data 

that are confidently identified. Location data are matched with other known 

reported locations and modeled distributions - this step allows for detection of 

novel, urgent species establishments in new habitats, ecosystems, counties, or 

states. After taxonomic identifications are verified, novel/urgent observations 

of occurrences can be sent to officials or agencies responsible for sending 

specific alerts. 

3. Taking in New Information: New records are systematically added. 

Metadata need to accompany all data. Ancillary data (e.g. soil texture, land 

use characteristics, etc.) should be available for any data points collected in 

the field. All data are screened for quality (measures within acceptable 
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ranges), stamped with a "certainty-level," and then served on the web for 

public consumption or download. 

4. Rapid Assessment, Data Synergy, Invasive Species Forecasting System: 

This point illustrates the real power of having multiple databases on the 

internet. Datasets from one database can be linked with datasets from other 

inventory and monitoring programs to map the current distribution and 

abundance of a target species or multiple species. Simple, "first approximation 

maps" derived from a choice of several commonly used species distribution 

models (e.g. multiple logistic regression, classification trees) using multiple 

datasets can be created. For some very common, less-harmful species (e.g. 

dandelion (Taraxacum sp.), lady bug beetle (Coccinella sp.)), distribution 

maps may be all the "modeling" that is needed. For newly detected species, 

species on "noxious" or "invasive" lists, or watch-list species, more advanced 

modeling could be performed. Potential distributions can be modeled from 

occurrence and abundance data, ancillary data, and remotely sensed data to 

produce maps of probable/potential distribution and abundance, habitat 

vulnerability analysis, and uncertainty analysis (Stohlgren and Schnase 2006). 

Modeled information and species attribute data can be used to create "second 

approximation models" of potential rates of spread, and corridors and barriers 

to invasion. The current distribution and abundance data can be overlaid on 

the model outputs and habitat maps to identify priority survey, control, and 

restoration sites. All data and model outputs can be served on the web, and all 

data and metadata associated with selected models can be archived. 
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5. Rapid Response and Monitoring Effectiveness: Based on new reports and 

modeled outputs of distribution and abundance, habitat vulnerability, potential 

spread rate, and risks, alerts can be targeted to authorities and to groups of 

concerned citizens where appropriate. Typically, "exotic invasive 

management teams" can be provided with a location and a method of 

extermination. We suggest a more sophisticated use of rapid response teams 

where far more information is provided to the team to maximize efficiency 

(Table 1). 

A first critical step here is to serve, store, and share monitoring data to use in an adaptive 

management framework when combating invasive species. Initial control efforts may not 

be successful, and vulnerable habitats may be quickly re-invaded from seeds, other 

propagules, or source populations nearby. Thus, rapid assessment is an iterative process 

improved by careful monitoring and information sharing (Stohlgren and Schnase 2006). 

A second critical step is to use predictive spatial models to revise maps of current and 

potential species distributions and abundance to select the next highest priority control 

sites in a strategic manner. This step may include isolating source populations from 

vulnerable habitats by concentrating on corridors of invasion or two-pronged attacks on 

both well-established source populations and newly invading sub-populations (Figure 2). 

Each habitat must be prioritized and acted upon according to the priority it is assigned. A 

key feature here is documenting all management actions to better understand the invasion 

process and to be able to extrapolate successful actions to additional species and habitats. 
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This will improve costs of future control and restoration efforts, while tracking 

performance measures and overall cost effectiveness. 

Researchers and modelers must also track the accuracy and utility of modeling 

capabilities for early detection and rapid assessment and document the economic and 

environmental savings by using modeling products. Likewise, we must document 

customer satisfaction in the use of modeling products to improve decision support. 

Determining the spatial extent and severity of invasions is of utmost importance 

(Simberloff et al. 2005). Unfortunately, ground surveys of each invasive species require 

large amounts of time and funding, and most managers do not have the resources 

required to complete the task. Statistical techniques linked to targeted field surveys may 

achieve fairly accurate measurements of potential distributions in large areas. These 

models produce maps of habitat suitability or barriers to invasion. The information 

contained in remotely sensed images can be used in these spatial models of habitat 

suitability (Reich et al. (1998, 2004), Crosier (2004a), Barnett et al. (2007). These 

models provide information on the potential habitat of an organism with minimal field 

data on newly invading species. These methods could prove invaluable for targeted early 

detection surveys. 

Species Reporting Requirements 

While most would agree that reporting new locations of harmful invasive species is 

important, there are a few published recommended data requirements for early detection. 
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Extreme minimum requirements include 'who, what, when, and where' data (Table 2, 

required fields), sometimes referred to as the Dublin Core (See 

http://www.gisinetwork.org/Documents/GISINProc2004HTML/GISINProc20041.html 

and http://dublincore.org/). This general advice could be greatly improved by an 

understanding of the potential to model species distribution and abundance data in space 

and time. For example, ancillary data on abundance, dominant native species present, 

other non-native species present, environmental data (e.g. soils or disturbance 

information for plants, water depth for fish, nest tree species for birds, etc.) and 

noticeably absent native and non-native species can be extremely important information 

in predictive modeling (Table 2; Morisette et al. (2006). 

Conclusions 

Early detection and rapid assessment linked with response could be the most effective 

tools that land managers have to stop an invasion before it becomes an ecological and 

economic nightmare. A relatively modest investment in existing global-scale information 

exchange systems will provide the world with access to information about all known 

invaders. "Watch lists' should be created, maintained and updated for local areas. When 

information is obtained about a particular invasive species in a local area, it should be 

shared on global websites and with local land managers so that others can benefit from 

this knowledge. It is important to look at the habitat that surrounds an area and determine 

what species are possible invaders and survey for them. Probable distribution models and 

habitat suitability maps should be used, and surveys conducted along corridors and entry 
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points for invasion. Early detection and rapid assessment is a very effective tool when 

used efficiently. 

34 



Literature Cited 

Anderson, L. W. J. 2005. California's reaction to Caulerpa taxifolia: A model for invasive 
species rapid response. Biological Invasions 7:1003-1016. 

Barnett, D. T., T. J. Stohlgren, C. S. Jarnevich, G. W. Chong, J. A. Ericson, T. R. Davern, 
and S. E. Simonson. 2007. The art and science of weed mapping. Environmental 
Monitoring and Assessment 132:235-252. 

Byers, J. E., S. Reichard, J. M. Randall, I. M. Parker, C. S. Smith, W. M. Lonsdale, I. A. 
E. Atkinson, T. R. Seastedt, M. Williamson, E. Chornesky, and D. Hayes. 2002. 
Directing research to reduce the impacts of nonindigenous species. Conservation 
Biology 16:630-640. 

Cook, G. D., S. A. Setterfield, and J. P. Maddison. 1996. Shrub invasion of a tropical 
wetland: Implications for weed management. Ecological Applications 6:531-537. 

Crosier, C. S. 2004. Synergistic methods to generate predictive models at large spatial 
extents and fine resolution. Colorado State University, Fort Collins. 

Dewey, S. A. and K. A. Andersen. 2004. Strategies for early detection - Using the 
wildfire model. Pages 1396-1399. Weed Sci Soc Amer. 

Di Tomaso, J. M. 1998. Impact, biology, and ecology of saltcedar (Tamarix spp.) in the 
southwestern United States. Weed Technology 12:326-336. 

Lodge, D. M., S. Williams, H. J. Maclsaac, K. R. Hayes, B. Leung, S. Reichard, R. N. 
Mack, P. B. Moyle, M. Smith, D. A. Andow, J. T. Carlton, and A. McMichael. 
2006. Biological invasions: Recommendations for US policy and management. 
Ecological Applications 16:2035-2054. 

Mack, R. N. and W. M. Lonsdale. 2001. Humans as global plant dispersers: Getting more 
than we bargained for. Bioscience 51:95-102. 

Morisette, J. T., C. S. Jarnevich, A. Ullah, W. J. Cai, J. A. Pedelty, J. E. Gentle, T. J. 
Stohlgren, and J. L. Schnase. 2006. A tamarisk habitat suitability map for the 
continental United States. Frontiers in Ecology and the Environment 4:11-17. 

Pimentel, D., R. Zuniga, and D. Morrison. 2005. Update on the environmental and 
economic costs associated with alien-invasive species in the United States. 
Ecological Economics 52:273-288. 

Reich, R. M. and V. A. Bravo. 1998. Integrating spatial statistics with GIS and remote 
sensing in designing multiresource inventories. Pages 202-207 in North America 
Science Symposium: Toward a unified framework for inventorying and monitorin 
forest ecosystem resources. USDA Rocky Mountain Research Station 
Proceedings, RMRS-P-12, Guadalajara, Jalisco, Mexico. 

Reich, R. M., J. E. Lundquist, and V. A. Bravo. 2004. Spatial models for estimating fuel 
loads in the Black Hills, South Dakota, USA. International Journal of Wildland 
Fire 13:119-129. 

Rejmanek, M. and M. J. Pitcairn. 2002. When is eradication of exotic pest plants a 
realistic goal? Pages 249-253 in C. R. Veitch and M. N. Clout, editors. Turning 
the tide: the eradication of invasive species. IUCN SSC Invasive Species 
Specialist Group, IUCN, Gland, Switzerland and Cambridge, UK. 



Simberloff, D., I. M. Parker, and P. N. Windle. 2005. Introduced species policy, 
management, and future research needs. Frontiers in Ecology and the 
Environment 3:12-20. 

Simpson, A., E. Sellers, A. Grosse, and Y. Xie. 2006. Essential elements of online 
information networks on invasive alien species. Biological Invasions 8:1579-
1587. 

Stohlgren, T. J. and J. L. Schnase. 2006. Risk analysis for biological hazards: What we 
need to know about invasive species. Risk Analysis 26:163-173. 

Westbrooks, R. 2003. A National Early Detection and Rapid Response System for 
Invasive Plants in the United States: Conceptual Design. Federal Interagency 
Committee for the Management of Noxious and Exotic Weeds (FICMNEW). 

Worall, J. 2002. Review of Systems for Early Detection and Rapid Response. U.S. 
Department of Agriculture, Forest Service, Forest Health Protection. Report for 
the National Invasive Species Council. 

36 



Table 1. Suggested information to provide to rapid assessment teams 

Information Provided 

Species identification aids 

Accurate location data of known 

occurrences and predictive models of target 

species, information on other highly 

invasive species in the local area, and high 

probability sites nearby and along the route 

to the primary site. 

Comparable (standardized) monitoring 

protocols. 

Instructions to upload data into a 

distributed database to share information 

on what techniques work best in different 

habitats under a variety of conditions. 

Reasoning 

To effectively target cryptic invasive 

species rather than look-alikes. 

Improves cost-effectiveness of rapid 

assessment efforts, while reducing 

propagule pressure and source populations 

nearby. 

To help quantify "what works, where," 

share success stories, and document 

performance goals. 

Improve accountability and data sharing for 

better predictive modeling, early detection, 

and restoration. 



Table 2. Generic species reporting requirements, *=required field. 

Data Field 
Recorder Name* 
Date* 
Time* 
Y coordinate* 

X coordinate* 

Species* 

Abundance 
Location certainty 
Area surveyed around point 

Dominant native species 
present 
Other non-native species 
present 
Other non-native species 
noticeably absent 
Comments 

Example 
Chuck Darwin 
July 17, 2005 
17:35 
4405547 

106442 

Spotted knapweed 

10 
±10 
40 

Pinus ponderosa 

Bromus tectorum 

Yellow sweet clover 

Old field 

Comments 
Observer 

24 hour clock 
Exact UTM Northing or 
Longitude 
Exact UTM Easting or 
Latitude 
Genus, species, or common 
name 
Count or % foliar cover 
m (Specify meters or feet) 
m2 (Specify units as m2, ft2, 
ac, or ha) 
Genus, species, or common 
name 
Genus, species, or common 
name 
Genus, species, or common 
name 
Any helpful ancillary 
information 



Figure 1. A. Local invasions involve a harmful species moving within a single country, 
state, or county to a new area within that country, state or county. B. Global or 
intercontinental scale invasions pertain to a harmful species moving between countries, 
often over an ocean. 



Figure 2. In this conceptual model of invasion the past shows where a species may have 
been introduced. The present shows where the species is when it is first found. Priority 
survey sites are areas between two close invasions, contain/control sites are large patches, 
and priority eradication sites are areas of small populations. If these sites are prioritized 
expediently the damage can be minimized and money saved. Without prioritization 
species will continue to spread and cause more ecological and financial burden. The 
concept of this figure applies equally well to plants, animals and diseases. 

Future with Prioritization 



Chapter 2: GIS Applications in invasive species management and 
research 



Abstract: Geographical Information Systems (GIS) are powerful tools in the field of 

invasive species management. They can be used to create potential distribution maps for 

all manner of taxa, including plants, animals, and diseases. GIS may perform well in 

early detection and rapid assessment of invasive species. I used GIS applications to 

investigate species richness and patterns of invasion in fish in the United States at the 6-

digit Hydrologic Unit Code (HUC) level. As an example application, I also created maps 

of potential spread of the cane toad (Bufo marinus) in the southeastern United States at an 

8-digit Hydrologic Unit Code (HUC) level using its current range and regression and 

environmental envelope techniques. Equipped with this potential map, resource 

managers can target their field surveys to the areas most vulnerable to invasion. With 

advances in GIS technology, maps, data, and many of these techniques can be found on 

websites such as the National Institute of Invasive Species Science (www.NIISS.org'). 

Such websites provide a forum for data sharing and analysis that is an invaluable service 

to the invasive species community. 
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Introduction 

The primary purposes of Geographic Information Systems (GIS) and Global Positioning 

Systems (GPS) are to provide a mechanism to digitally pinpoint a location on Earth, view 

that location on a map, and use that location and data in spatial analyses. Using a 

network of satellites, satellite receivers, and mapping software, we are able to quickly and 

easily produce maps and conduct spatial analyses that would otherwise be difficult or 

impossible to produce. GIS serves as a data storage and analysis device for spatial data, 

making data easy to view and manipulate. 

Health care, agriculture, environmental industries and ecology are a few of many 

industries that have been positively altered by the advent of GIS. The large spatial 

databases that GIS can help create allow companies to track their hard goods and can 

allow farmers to determine which areas of their fields need more fertilizer, eliminating 

the need to add fertilizer to the entire field. Ecological data often contain a spatial 

component. Where an animal spends its time and the patterns of its movements can be 

important clues to its biology. This type of information provides insight to expanding 

distributions and provides watch lists of spreading invasive species to managers for early 

detection and rapid response. 

GIS can be a useful tool in the field of invasive vertebrates, especially in the areas of 

early detection and rapid assessment. Species distributions are largely determined by the 
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environment. A growing number of statistical models, called Species Environmental 

Matching (SEM) models are being used to determine the current and potential 

distributions and abundances of invasive species (Stohlgren and Schnase 2006). These 

models relate observed species distributions to environmental (climatic, topographic, 

edaphic) envelopes and then, assuming the same stable relationships, project their spatial 

shifts (local, enrichment, or extinction) in response to envelope changes under current 

conditions. These environmental envelopes, arranged along a gradient from proximal to 

distal predictors, have direct or indirect effects on species establishment and survival 

(Austin 2002). These types of models are either created in GIS or can be displayed in 

GIS once created, giving a visual representation of the environmental envelope of 

potential habitat or abundance. 

An important consideration for invasive species is that recent invaders may not have 

filled all suitable habitats, while species naturalized long ago may have filled a larger 

proportion of suitable habitat. Defining where a species may survive depends heavily on 

being able to determine its habitat. Technological advances in GIS make this more 

readily accessible to the general public. Data such as elevation, vegetation type, and 

climate information are now available for free on the internet, often paired with websites 

that allow you to view and utilize the information. 
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How GIS can be used 

View data 

One very basic and effective way to use GIS is to view data with it. Many datasets are 

very large and difficult to visualize as a table of numbers. When viewed spatially these 

data often makes more sense. Stohlgren et al. (2006a) combined native and non-

indigenous fish datasets from NatureServe.org and the USGS Florida Integrated Science 

Center's Non-Indigenous Aquatic Species database and used them to examine numbers 

of native and non-indigenous species in each 6-digit HUC area (Figure 3). Without 

performing any analyses on the data, they found that a large majority of the native fish in 

the United States are centered throughout the Midwest and South Central areas of the 

country. The non-indigenous fish have higher numbers in the Western and Eastern parts 

of the US. These patterns were ascertained without conducting any analysis, proving that 

even simple display of the data in a spatial format can be a useful endeavor. 

Data summary 

GIS can also be helpful in summarizing large datasets to be used to model habitat quality 

and distribution. Very often data layers such as digital elevation models (DEM) are used 

in modeling because they provide a large amount of environmental information. These 
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layers are available for free via the internet, often at either 10- or 30-m2 resolutions. 

While these resolutions provide a lot of information on a fine scale, this fine scale is not 

always necessary, especially if the model to be created is at a coarser scale, like a 

watershed, county, or state. In these situations, GIS can be used to summarize data, 

simplifying them into a useful form for the resolution of interest. The Spatial Analyst 

module of ArcGIS 9 (ESRI2004) has a function called zonal statistics that will calculate 

summary statistics from a raster layer like elevation for a large polygonal area like a 

county, extracting the average, minimum or maximum, and range for each polygon 

(county). Additionally, GIS can be used to retrieve the value for a specific point in the 

DEM so that the entire surface does not have to be stored. These functions make the 

retrieval of dependant data for models readily accessible. 

Field data - points, lines, and polygons 

Spatial field data can be displayed and managed in a GIS. The data are stored in one of 

three formats: points, lines, or polygons. Plots or locations of any individual organism 

are examples of points. These are discrete one-dimensional places in space where there 

is an item of interest. Lines include rivers, transects, or roads - basically any linear 

representation of interest. Polygons represent an area of interest, like a stand of trees, an 

area of habitat, or a lake. These data types are an excellent medium for recording 

presence and absence of a species because they are discreet. Additional attribute data 

may be added to a location, including presence or absence. 
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Lines give similar amounts of information, again lending themselves well to presence, 

absence, and a few additional attributes. Polygons are unique because they cover an area, 

which can contain additional information such as abundance or percent cover. These data 

can be collected in the field using either paper maps to establish location or with a GPS 

device to collect the data and download it to a computer. 

Simple GIS models 

GIS can be used to create simple analyses such as buffers and thiessen polygons. A 

buffer can be created around points, lines, or polygons. It is a new polygon of a specified 

distance from the original feature (circle around a point, or polygon around a line or 

polygon) that encompasses the original feature. Any GIS program can create this buffer 

around points, lines, or polygons to be used for various reasons such as surrogates for 

habitat for a poorly studied species. Buffers could also define potential habitat for 

species that have a very specific distance they can be from a given feature such as water. 

Buffers are a commonly used transformation of original spatial data. 

Another analysis performed by GIS is the creation of thiessen polygons, sometimes 

known as voronoi polygons. Theissen polygons are shapes created around a group of 

points, one polygon for each point. These polygons are created around each point in such 

a way that every place lies within the polygon of the point to which it is nearest. The 

easiest way to think about this is with fast food delivery areas. A fast food pizza chain 

would divide a city into thiessen polygons, only delivering to customers that were closer 
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to them than they were to the next restaurant. For a wildlife example, if there were 

twelve nests in an area, polygons would be formed around those twelve nests so that 

every place on the landscape falls into the polygon associated with the closest nest. This 

tool has obvious application to studying territorial animals. Data collected on nest 

locations, could be used to generate thiessen polygons surrounding each nest, and this 

area would estimate territory range. Buffers and thiessen polygons are a couple of the 

many possible examples of simple operations that can be done using a GIS. Now we will 

examine some models that are more complex. 

Statistical models 

I review potential habitat models in this section. These statistical models use data for a 

species current distribution to try to predict potential habitat. Conceptually, the Species 

Environmental Matching (SEM) models assume the fitted observational relationships to 

be an adequate representation of the realized niche of the species under a stable 

equilibrium or quasi-equilibrium constraint. As such, the SEM result is only a first 

approximation of future distributions of individual species (Pearson and Dawson 2003), 

which are determined also by other processes such as dispersal, adaptation, competition, 

succession, fire and grazing pressure (Austin 2002). Still, an innovative integrated model 

may contribute considerably to a robust early warning system for decision makers to 

design more effective management and control strategies for invasive species. In short, 

we will be better able to manage and assess risks associated with invasive species, 

because risk assessments require accurate modeling of current and potential species 

distributions (Stohlgren and Schnase 2006). 
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There exist numerous challenges in the traditional SEM or niche-based modeling of 

current and future species distributions (see reviews by Pearson and Dawson 2003, 

Soberon and Peterson 2005, Elith et al. 2006, Guisan et al. 2006, Heikkinen et al. 2006, 

Hijmans and Graham 2006, Pearson et al. 2006, Beaumont et al. 2007). These challenges 

have not prevented scientists and resource managers from refining, testing, and using 

SEMs in their work. No two models are identical, and each has advantages and 

disadvantages (Table 3). 

Regression models 

Logistic regression is a type of Generalized Linear Model appropriate for data with a 

binary distribution such as species presence or absence (McCullagh and Nelder 1989). 

The output from logistic regression models can be taken from the statistical package and 

used in GIS to create a visual representation of the model created. I have done this with 

data obtained from the USGS Florida Integrated Science Center's Non-Indigenous 

Aquatic Species database on the invasive cane toad (Bufo marinus). The cane toad has 

become established in the United States and has invaded several watersheds in Florida. I 

employed logistic regression with Systat 11.0 (SSI 2004) using minimum temperature, 

minimum radiation, mean temperature, maximum temperature, maximum humidity, and 

maximum growing degree days as a predictor variables to determine how much potential 

habitat there is for the cane toad in the Southeastern US. I conducted a step-wise 

generalized linear model, and only minimum temperature was selected as a significant 
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variable. The results of the regression had a high predictive power with a McFadden's 

Rho Squared value of 0.92. When the equation from the GLM results were implemented 

in the GIS, the map showed that the cane toad had realized most of its suitable habitat in 

the Florida area, with only a few un-invaded areas left in high and medium habitat 

suitability (Figure 4). This result is a first approximation model; more data and 

ecological information on the cane toad will produce better results in the future. This 

same generation of a map by implementing a model's result in equation form can be done 

with many different types of equations. 

The Envelope Model 

The Environmental Envelope model (Holcombe et al. 2007) was developed as a rapid 

assessment technique to estimate the potential distribution of a species given its present 

locations and their associated environmental attributes. It is supported by ArcGIS 9x 

(ESRI2004) and will be available on the National Institute of Invasive Species Science 

website (www.NIISS.org). Envelope uses environmental variables, chosen by the 

modeler to be relevant to the species of interest or to species growth in general, to 

determine other locations within the environmental envelope (e.g., locations where the 

species of interest may be able to become established). For all of the locations that the 

species is present, the minimum and maximum of each independent variable are noted by 

the program. These minimum and maximum values together become the "envelope" in 

which the species can survive. For instance, if a species exists in only three counties and 

the temperature in county A is 45 degrees Fahrenheit, in county B is 40 degrees, and in 
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county C is 43 degrees, then the temperature envelope is 40 to 45 degrees. We would 

then compare the temperature for other counties to see if they fell within the range for 

potential habitats. The model can include several different environmental layers to 

determine suitable habitats, according to current information. The output of the model 

informs how many of the input variables lie within the environmental envelope of the 

species. 

I conducted this analysis on the cane toad to see what a different model may predict for 

the same species (Figure 5). I used environmental data retrieved from the Daymet 

website (http://www.daymet.org/) that was originally at a 1-km2 resolution for the 

dependant variables. I used zonal statistics in ArcGIS's Spatial Analyst (ESRI2004) to 

summarize the data for the 8-digit HUCs. Variables used included minimum radiation, 

minimum temperature, mean temperature, maximum temperature, maximum humidity, 

and growing degree days. I used the same cane toad data used in the regression model. 

The resulting map showed that as distance grows from the peninsula of Florida there are 

less and less environmental variables that fall within the cane toad's environmental 

envelope. This trend supports the regression model that showed the cane toad did not 

have much more suitable habitat than what it is already occupying. 
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GIS on the web 

Common issues confronting GIS users today include availability and user friendliness. 

GIS software is often expensive, making it difficult for many people to obtain. Another 

subset of would-be GIS users have access to the software, but do not have the time 

required to learn the software. With the advances in GIS technology these issues are 

changing. Many of the functions that are found in proprietary software can also be found 

on the internet, where the user interface is often less complex. Much of the species 

distribution data used in the examples in this paper were found and downloaded from the 

internet. Many websites, such as The National Institute of Invasive Species Science 

(www.niiss.org) are encouraging an environment of data sharing. The NIISS website 

includes an interface to upload data and a GIS interface to view data graphically, create 

models, and print and save final map products. The technology is very sophisticated and 

is open to the general user. This is the direction that GIS software is heading, reducing 

dependence on desktop GIS software in the future. 

Conclusions 

With the advances that have been made in GIS technology, it has become a useful tool 

for land managers and academics alike. It is widely used as both a tool to perform basic 

functions such as displaying data, and more complex functions like creating and 

displaying Species Environment Matching models. As we look at our computers today, 
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and continue to look to the future of GIS technologies, this is a tool that should, and 

could be used by many scientists and managers. 

53 



Literature Cited 

Austin, M. P. 2002. Spatial prediction of species distribution: an interface between 
ecological theory and statistical modelling. Ecological Modelling 157:101-118. 

Beaumont, L. J., A. J. Pitman, M. Poulsen, and L. Hughes. 2007. Where will species go? 
Incorporating new advances in climate modelling into projections of species 
distributions. Global Change Biology 13:1368-1385. 

Breiman, L., J. H. Friedman, R. A. Olshen, and C. G. Stone. 1984. Classification and 
Regression Trees. Wadsworth International Group, Belmont, California, USA. 

Busby, J. R. 1991. BIOCLIM - A bioclimate analysis and prediction system. Pages 64-68 
in C. R. M. a. M. P. Austin, editor. Nature conservation: cost effective biological 
surveys and data analysis. CSIRO, Melbourne. 

Carpenter, G., A. N. Gillison, and J. Winter. 1993. Domain - a Flexible Modeling 
Procedure for Mapping Potential Distributions of Plants and Animals. 
Biodiversity and Conservation 2:667-680. 

De'ath, G. 2007. Boosted trees for ecological modeling and prediction. Ecology 88:243-
251. 

Elith, J., C. H. Graham, R. P. Anderson, M. Dudik, S. Ferrier, A. Guisan, R. J. Hijmans, 
F. Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. 
Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. M. Overton, A. 
T. Peterson, S. J. Phillips, K. Richardson, R. Scachetti-Pereira, R. E. Schapire, J. 
Soberon, S. Williams, M. S. Wisz, and N. E. Zimmermann. 2006. Novel methods 
improve prediction of species' distributions from occurrence data. Ecography 
29:129-151. 

ESRI. 2004. ArcGIS 9.1. ESRI, Redlands, CA. 
Friedman, J. H. 2001. Greedy function approximation: A gradient boosting machine. 

Annals of Statistics 29:1189-1232. 
Guisan, A., A. Lehmann, S. Ferrier, M. Austin, J. M. C. Overton, R. Aspinall, and T. 

Hastie. 2006. Making better biogeographical predictions of species' distributions. 
Journal of Applied Ecology 43:386-392. 

Heikkinen, R. K., M. Luoto, M. B. Araujo, R. Virkkala, W. Thuiller, and M. T. Sykes. 
2006. Methods and uncertainties in bioclimatic envelope modelling under climate 
change. Progress in Physical Geography 30:751-777. 

Hijmans, R. J. and C. H. Graham. 2006. The ability of climate envelope models to predict 
the effect of climate change on species distributions. Global Change Biology 
12:2272-2281. 

Hirzel, A. H., J. Hausser, D. Chessel, and N. Pen-in. 2002. Ecological-niche factor 
analysis: How to compute habitat-suitability maps without absence data? Ecology 
83:2027-2036. 

Holcombe, T., T. J. Stohlgren, and C. Jarnevich. 2007. Invasive species management and 
research using GIS.m Managing vertebrate invasive species: proceedings of an 
international symposium, USDA/APHIS Wildlife Services, National Wildlife 
Research Center, Fort Collins, Colorado, USA. 

54 



McCullagh, P. and J. A. Nelder. 1989. Generalized linear models, 2nd edition. Chapman 
and Hall, London; New York. 

Pearson, R. G. and T. P. Dawson. 2003. Predicting the impacts of climate change on the 
distribution of species: are bioclimate envelope models useful? Global Ecology 
and Biogeography 12:361-371. 

Pearson, R. G., W. Thuiller, M. B. Araujo, E. Martinez-Meyer, L. Brotons, C. McClean, 
L. Miles, P. Segurado, T. P. Dawson, and D. C. Lees. 2006. Model-based 
uncertainty in species range prediction. Journal of Biogeography 33:1704-1711. 

Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. Maximum entropy modeling of 
species geographic distributions. Ecological Modelling 190:231-259. 

Soberon, J. and A. T. Peterson. 2005. Interpretation of models of fundamental ecological 
niche and species' distributional areas. Biodiversity Informatics 2:1-10. 

SSI. 2004. SYSTAT 11.0, Chicago, Illinois, USA. 
Stohlgren, T. J., D. Barnett, C. Flather, P. Fuller, B. Peterjohn, J. Kartesz, and L. L. 

Master. 2006. Species richness and patterns of invasion in plants, birds, and fishes 
in the United States. Biological Invasions 8:427-447. 

Stohlgren, T. J. and J. L. Schnase. 2006. Risk analysis for biological hazards: What we 
need to know about invasive species. Risk Analysis 26:163-173. 

55 



Figure 3. Patterns of (A.) native and (B.) non-indigenous fish by six digit HUC drainage 
(Stohlgren et al. 2006; used with permission). Numbers in the legend represent number 
of species. 
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Figure 4. Regression model of Bufo marinus showing low, medium, and high likelihood 
of suitable habitat in each eight digit HUC. 
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Figure 5. Envelope model of Bufo marinus showing the number of parameters in each 
eight digit HUC that could contain the species. 

58 



Table 3. Commonly used species environmental matching models for predicting species 
distributions. 

Model 
Maxent 

Classification 
and Regression 
Tree (CART) 
Boosted 
Regression 
Tree 
Logistic 
Regression 

Least square 
regression 

BIOCLIM 

DOMAIN 

ENFA (Env. 
Niche Factor 
Analysis) 
Envelope 

Citation 
(Phillips et al. 
2006) 

(Breiman et al. 
1984) 

(Friedman 2001, 
De'ath 2007) 

(McCullagh and 
Nelder 1989) 

Most statistics 
software 

(Busby 1991) 

(Carpenter et al. 
1993) 

(Hirzel et al. 
2002) 

(Jarnevich et al. 
2009) 

Advantages 
Presence only, nonlinear, 
nonparametric, not sensitive to 
multicollinearity, provides 
variables' relative importance 
(jackknifing), easy to run and 
takes less time, becoming 
popular 
Non-parametric, 
Presence/absence, easy to run 
and interpret 
Non-parametric, 
Presence/absence, limitations 
with spatial data 
Widely used, presence/absence 

Widely used, continuous 
response variable (e.g. species 
richness) 

Presence only, simple 

Presence only, simple 

Presence only 

Presence only or Absence only 
models can be run. 

Disadvantages 
Presence only (no 
consideration of 
absence data) 

Absence data 
needed 

Absence data 
needed, more 
statistical details 
Absence data 
needed, sensitive to 
multicollinearity 
Needs continuous 
response variable, 
sensitive to 
multicollinearity, 
decision about 
significance level 
(P value?) 
Presence only, does 
not use absences, 
less accurate than 
other niche models 
Presence only, does 
not use absences, 
less accurate than 
other niche models 
Presence only, does 
not use absences 

All environmental 
factors are given 
equal weighting. 
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Chapter 3: From Points to Forecasts: Predicting Invasive Species 
Habitat Suitability in the Near Term 



Abstract 

There is a general need in invasive species research to quantify the potential 

habitat of invasive plant species, especially in the face of rapid climate change. I 

used 4-km2 climate scenarios projected to the years 2020 and 2035 for the 

continental United States, to model 12 invasive plant species in the conterminous 

United States. I used maximum entropy modeling (Maxent) to create three models 

for each species: (1) current potential habitat suitability; (2) potential habitat 

suitability in 2020; and (3) potential habitat suitability in 2035. Area under the 

receiver operating characteristic curve (AUC) values for the models ranged from 

0.92 for Pennisetum ciliare to 0.70 for Lonicera japonica, with 10 of the 12 being 

above 0.83 suggesting strong and predictable species-environment matching. 

Change in area between the current potential habitat and the year 2035 ranged 

from a potential habitat loss of about 217,000 km for Cirsium arvense, to a 

potential habitat gain of about 133,000 km2 for Microstegium vimineum. These 

results have important implications for invasive species management under 

varying rates of climate change. 
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Introduction 

Invasive species are a major threat to ecosystems worldwide. They play a major role in 

displacing native species (Noonburg and Byers 2005, Snyder and Evans 2006, Anderson 

2007) and cause deterioration of many ecosystem functions (Wilcove et al. 1998, Crowl 

et al. 2008). The spread of invasive species is the second leading threat to biodiversity 

following habitat destruction (Wilcove et al. 1998), and costs the United States alone up 

to $120 billion per year (Pimentel et al. 2005). Resource managers today face the 

challenge of determining where an invasive species outbreak may occur, and where an 

invasive species will move next. 

Early detection of invasive plants is of the utmost importance, especially discovering and 

mitigating invasions when they are small (Moody and Mack 1988, Leung et al. 2002, 

Rejmanek and Pitcairn 2002). This issue becomes particularly relevant in the face of 

climate change (Vitousek et al. 1996, Thuiller et al. 2008). There is a potential for the 

area of habitat that is suitable for any given species to shift with rapid climate change. 

Those populations that are on the edges of the invasion will have the potential to move 

with the climate change. Some areas will go from being unsuitable habitat to suitable 

habitat; these areas will be the leading edge of the suitable habitat. Other areas will 

remain stable as suitable habitat, and a final area will cease to be suitable habitat (Bradley 

et al. 2009). This third category of habitat does not imply that species will cease to exist 

in these areas where it is already established, these species may persist from the seed 
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bank for many years in suitable micro-habitats within unsuitable areas for many years 

(Hampe and Petit 2005, Stohlgren et al. 2008, Thuiller et al. 2008). There is also the 

potential for an adaptable species such as a habitat generalist to continue to adapt to new 

climates and not shift at all, populations of species have the opportunity to migrate, adapt, 

or be extirpated. 

Climate Envelope Modeling (CEM) is a method to calculate potential suitable habitat. 

This method uses various algorithms to examine the habitat of a species and match that 

environmental space to areas where the species does not currently exist, locating areas of 

potential suitable habitat beyond the original data points. Hijmans and Graham (2006) 

offer an evaluation of several CEM methods. Until fairly recently this type of modeling 

was computing intense, and model creation could take days to weeks to complete. 

Increases in computing power and subsequent improvement in methods have helped 

develop the field of CEM from theory to practice. A review of the early methods of 

species distribution modeling can be found in Guisan and Zimmerman (2000). Since the 

turn of the century there has been an explosion in the methodology and abilities of 

species distribution modeling, and in the number of publications on the topic. A Web of 

Science search on "species distribution model*" from 1960 to 2000 produced 5,155 

entries while one third of that time, 2000-2009, produced double the results, 10,296 

(accessed April 23, 2009). 

Climate envelope models start from a distribution of presence points on a landscape. 

These data do have drawbacks; they do not provide any information on abundance or 
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absence of the species of interest. There also may be many gaps in the data that are used. 

Less than 1% of any landscape can be affordably measured (Stohlgren 2007), and we 

must use what data we have available. These models are a starting point in an iterative 

process, informing managers of where potential distributions may lie and giving an idea 

of where to add surveys, and where to sample in the future (Stohlgren and Schnase 2006). 

Distribution models form the basis of an excellent first approximation map that is 

especially applicable for early detection programs (Pearson and Dawson 2003). 

Many techniques of climate environment matching models for invasive species do not 

require absence data (Guisan and Thuiller 2005). This is useful for invasive species 

models because there is no guarantee that a point that is collected as an absence point is 

truly unsuitable habitat; it may be suitable, but the species has not yet germinated in or 

migrated to that location. Maximum entropy modeling (Maxent; Phillips et al. 2006) 

uses presence data and background data in lieu of true absence data. These models are 

well suited to generate maps of potential distribution and habitat suitability from current 

point distributions given the caveats above. 

Broad scale distribution models are rapidly gaining acceptance. Morisette et al. (2006) 

used climate envelope modeling to model current tamarisk potential habitat at a 1 km 

resolution for the continental United States using logistic regression with an Area Under 

the receiver operating characteristic Curve (AUC) of 0.95, but this model did not address 

climate change. A worldwide bullfrog model was created at a 10-minute resolution for 

current conditions (Ficetola et al. 2007). This model had a very wide distribution, but a 
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coarse resolution. Bradley et al. (2009) created models at a 4-km resolution using 

Mahalanobis distance for five invasive plants in the United States for the year 2100, a 

management level geographic scale, but a very coarse time scale. I integrated aspects of 

these studies, by examining a management level resolution, a country level distribution, 

and a near term time scale. 

I recognized that these maps of potential habitat suitability do not address propagule 

pressure, predation by natural enemies, or other biotic interactions (Ficetola et al. 2007). 

The next step was to examine how a species might spread and where. I used the current 

potential suitable habitat model as a mask and developed a distance from seed source 

surface as a proxy for propagule pressure, a rudimentary invasibility index to address this 

issue. 

My objectives were to: (1) provide a strategic methodology to forecast scenarios of 

potential spread based on point distributions; (2) create potential distributions of invasive 

species with Maxent and examine the relationship of these species to their environment; 

and (3) consider data gaps, distance from seed source and suitable habitat (a surrogate for 

propagule pressure) to assess risks to invasion. 

Methods 

Data 

I gathered point data for twelve invasive plant species in the continental United States 

(Table 4). These data were not exhaustive of all locations for each of these species, but 
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were the available data from accurate sources (e.g., the Biota of North America Program, 

www.BONAP.org) that I gathered for these species. There were gaps in the data; some 

areas were more completely sampled than other areas. That said, points are our first and 

best descriptors of distributions (Stohlgren and Schnase 2006). From points, I created a 

systematic methodology for assessing point distributions relative to environmental 

predictors and created models of potential suitability. 

I chose species with a broad range of current distributions, narrow to wide (Appendix A); 

recently introduced to well established; and with more than 250 known locations (Table 

4). I considered two species as habitat specialists; Lythrum salicaria as it is generally 

confined to wetlands (Galatowitsch et al. 1999); and Pennisetum ciliare being confined to 

sandy soils, that do not freeze for extended periods, with precipitation from 200 to 1200 

mm per year (Ibarraf et al. 1995). I harvested most of the species location data from on

line sources, especially the National Institute of Invasive Species Science (NIISS 2008). 

NIISS is a data clearinghouse on the internet that has quality control measures on the data 

that it ingests (Graham et al. 2007). Each data source is listed in Appendix A. 

The independent variables used for this study were 19 bioclimatic layers created using 

combinations of minimum and maximum temperatures and precipitation (Nix 1986). 

These bioclimatic layers were created as variables to capture climatic seasonality 

important for organisms. The climate variables for current conditions were from the 

DAYMET dataset for the years 1980-1997 (DAYMET 2006). The modeling resolution 

for current conditions was approximately 1-km pixels, the finest resolution I could find 
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for each of the data layers over such a broad extent. The climate projection data were 

derived from Parameter-elevation Regressions on Independent Slopes Method (PRISM) 

data at a 4-m2 resolution (PRISM data available at 

http://www.prism.oregonstate.edu/,PRISM Group , Daly et al. 2002). I used predictions 

for 2020 and 2035 created by Jarnevich and Stohlgren (2009) by extrapolating climate 

conditions from the PRISM data for 1895 to 2006. I chose years in the near future to be 

of imminent use to land managers. 

Modeling techniques 

Once the data were compiled I used maximum entropy modeling (Maxent 3.2.9; Phillips 

et al. 2006) to create three predictions for each species: (1) current potential habitat 

suitability; (2) potential habitat suitability in 2020; and (3) potential habitat suitability in 

2035. Maximum entropy modeling is a machine learning method that requires only 

presence data. This algorithm estimated potential habitat distribution by finding the 

distribution of maximum entropy, or furthest from random (Phillips et al. 2006). Maxent 

used background data, or the environmental layers as model inputs (Hijmans and Graham 

2006). The program removed duplicate records within a 1-km2 pixel. 

I tested each species for correlations between the variables using Systat v 12 (SSI 2007). 

I removed variables with correlations of r < -0.8 or r > +0.8. The remaining variables 

were clipped to the counties containing data for the species, constraining the model to 

counties of known realized habitat (Phillips et al. 2009). These variables were used to 
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train each model, creating a potential habitat suitability surface at approximately 1-km 

resolution for the current climate. I ran each model 25 times, withholding a different 

30% of the presence locations from each model run as a test dataset for model evaluation, 

and averaged the results of the runs. 

Then, I applied the model to the entire United States for the current climate and the 

climate scenarios for 2020 and 2035. For overall performance, the models were assessed 

using the Area Under the Receiver Operating Characteristic Curve, or AUC. This is a 

threshold independent indication of model performance (Phillips et al. 2006). To 

distinguish the threshold between suitable and unsuitable habitat for further analyses, I 

used the 10 percentile training presence logistic threshold as determined by Maxent 

(Table 4). This created an average potential suitability surface and a clamping surface for 

each species. The clamping surface shows the areas of the map where the model is 

extended beyond the climatic conditions that it was trained on, and can show areas that 

the model may be less reliable. I chose to mask out these locations from my analyses. 

Next, I used raster calculator in ArcMap (ESRI 2008) to calculate areas of potential 

habitat stability, potential habitat increase, and potential habitat decrease by comparing 

the current suitability map with the future suitability maps. Stable areas were defined as 

those with suitable habitat across all three time steps, habitat increase was defined as 

areas that went from unsuitable habitat in current conditions to suitable habitat in 2020 or 

2035, and habitat decrease was defined as areas that went from suitable habitat in current 

conditions to unsuitable habitat in 2020 or 2035. 
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Finally, I was interested in finding a surrogate for dispersal of the species. I did not have 

detailed data available for dispersal mechanisms of each species, so I used distance from 

known seed source, or nearest data point. For this part of the analysis, I used the 

clamping and unsuitable habitat surfaces for each species as a mask, effectively 

excluding these areas from the analysis. I used the straight line distance function in 

Spatial Analyst of ArcMap (ESRI2008) to create a surface of the distance from the 

nearest known presence point. This is a simple first order approximation of invasibility 

as defined by both suitable habitat and available propagules. 

Results 

I had a range of available sample sizes from 282 to 9517 (Table 4), all of which represent 

quite a small proportion of the land in the conterminous United States. Ten of twelve 

species modeled exhibited excellent performance with AUC values from 0.84 to 0.93 

(Swets 1988; Table 4). Both Lonicera japonica (Japaneese honeysuckle) and 

Microstegium vimineum (Japanese stiltgrass) had AUC values at or below 0.70 indicating 

only acceptable model performance. There was little variation between training data 

AUC and test data AUC, suggesting repeatable and robust models (test data included 

30% of the full suite of data). Each model run used a different 30% of the available data 

as test data, yet produced a similar result to the majority of the points modeled. The 

exception here, again, was M. vimineum which had a test AUC value 0.1 less than its 

training AUC value, possibly due to the relatively small number of data points available 

for the species. 
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The change in potentially suitable habitat area varied dramatically among species (Table 

4). The largest increase in potentially suitable habitat was about 133,000 knT for 

Microstegium vimineum, a species that has been introduced to the United States after 

1900. The largest decrease in potential suitable habitat was about 217,000 km for 

Cirsium arvense a habitat generalist. 

Example 

Space prohibits me from providing color maps of each of the 12 species modeled 

individually (but see Appendix B), so I will focus on one example, Lepidium latifolium 

(perennial pepperweed). The main concentration of the 1015 data points that I was able 

to gather on L. latifolium were in the intermountain west of the United States, with some 

additional data points in California, and a smattering of points in the Northeast. The 

current potential suitable habitat was well distributed throughout the US with large areas 

of potential habitat in the west, throughout the plains states, and a large amount of 

potential habitat in the southeastern United States in an area that was sparse of data. The 

scenario model, showing potential habitat suitability change between current and 2035, 

suggests that there are modest areas of change throughout the United States with potential 

habitat in the west becoming more dispersed and increasing and the habitat in the 

southeast remaining stable for the most part. 

In particular, the models show an overall increase in potential suitable habitat of about 

95,000 km2 in the US between now and 2035 (Table 4). The areas in red on the scenario 

model have a high potential to be the leading edge of an invasion by this species, just as 
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the areas in blue that go from being suitable to unsuitable have the potential to be the 

trailing edge of the invasion (Bradley et al. 2009; Table 4). This scenario map shows that 

areas of increased potential suitable habitat of the species are not confined to any 

particular part of the country. 

For each variable included in the models, Maxent provides a response curve allowing for 

interpretation of environmental relationships to the distribution of the species' suitable 

habitat (Figure 7). For L. latifolium, the major contributing factors associated with 

distribution include mean diurnal temperature range (24%), precipitation of the warmest 

quarter (16%), minimum temperature of the coldest month (12%), and mean temperature 

of the wettest quarter (10%; Table 5. Top predictors by percent contributed to the model). 

The response curves associated with these factors show that there may be environmental 

thresholds for the ideal growth of L. latifolium (Figure 7). For example, for mean diurnal 

range, habitat suitability was low until the range begins to increase around 15 degrees C 

and steadily increases to around 21 degrees C showing L. latifolium to have a stronger 

relationship to a larger diurnal temperature range. L. latifolium also has higher habitat 

suitability with low or high precipitation in the warmest quarter, with high minimum 

temperature of the coldest month, and with higher mean temperature of the wettest 

quarter. Almost all factors in Table 5 are related to temperature. Using these 

relationships between variables, we can learn about the environmental drivers of the 

systems that we are modeling. 
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Invasibility Index Map 

The invasibility map of L. latifolium shows this species to have less distance between 

seed sources in the west where most of the presence points were located. The midwest 

contains potential suitable habitat but very few data points, so potentially minimal 

propagule pressure, and is therefore less invasible due to distance from nearest propagule 

pressure according to this model. There are a few data points at the Virginia-Kentucky 

border that are creating a hot spot. There are also potential hot spots in the northeast. 

From my data, it appears that the bulk of the propagule pressure is in the western United 

States. Across all 12 species, the invasibility index ranges from species with a 

concentrated distribution such as Pennisetum ciliare (Buffelgrass) to a wider distribution 

such as Japanese stiltgrass (M vimineum). 

Discussion 

I achieved excellent model performance based on AUC with the data and computing 

power that are currently available, with the understanding that I did not capture every 

location of each species modeled and that the available data were not collected with 

probabilistic sampling. And for the locations for which I had data, this was still a 

resolution that may miss patchily distributed resources at the microscale, focusing mostly 

on large-scale climate patterns of the invaders (Scott et al. 2002). These models were 
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reliant not only on the quality and number of species data points available, but also on 

predictor layers used and the extent and resolution of the models being considered (Lobo 

et al. 2008). Future climate scenario models also contain their own uncertainty, 

especially concerning frequency of climate station data and interpolation techniques used 

to create a continuous surface between stations (Scott et al. 2002). I presented first 

iteration models that can point managers and field crews to gaps in information and guide 

resource managers to suitable areas to collect more information. 

This analysis defines the leading and trailing edge of invasion for these 12 species. 

Thuiller et al. (2008) suggested looking at these leading and trailing edges, and 

incorporating migration into the modeling of the leading edge and persistence into the 

modeling on the trailing edge. Finding a way to incorporate these variables into such a 

large-scale model is a challenging and worthwhile task for future analysis. 

The invasibility index is a simple distance function that does not include human 

accelerated dispersal such as commerce and trade, trucks, landscaping and disturbance 

facilitated invasion (Hodkinson and Thompson 1997, Mack and Lonsdale 2001, Reichard 

and White 2001). These are all important factors in the spread of invasive plants and 

excellent future projects. The models were also limited by the patchy nature of the 

presence data I was able to compile. Populations may exist in areas where there were 

data gaps, and these locations will be under-valued in the index. 

73 



Current species-environmental matching models performed well for this group of species 

with 10 of 12 models having AUC's indicating excellent model performance. The two 

species that did not perform as well may need additional predictor layers such as canopy 

cover, soils, or elevation. I also recognize that I had access to large amounts of data, and 

the models may not perform as well with a smaller sample size (the smallest sample size 

was 282). However, Maxent models have been used to model rare and threatened species 

using even fewer than 30 data points (Pearson et al. 2007). Additionally, due to my lack 

of absence data, I was only able to calculate AUC as a performance metric using a semi-

independent data set. Ideally, I would calculate multiple metrics and examine model 

performance across them all (Lobo et al. 2008), while using an independent data set that 

may not suffer from the same biases as the dataset used to train the model. 

However, given these caveats, this systematic approach has many advantages to resource 

managers and policy makers. The models are easily updated as information becomes 

available. Providing predictions of current habitat suitability, highlighting data gaps, and 

showing maps of clamping may entice resource managers to collect more data and amend 

the information that currently exists, allowing for the creation of even better models. 
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Climate scenarios 

Forecasts are a tricky business. This does not stop the land managers and policy makers 

from asking scientists and experts to set priorities or give guidelines for setting priorities 

for rapid response and containment of invasive species. Forecasts are simply a tool to 

assess potential spread of a species. These forecasts are particularly important for 

invasive species early in the invasion process that might not have filled all of their niches. 

For example, the model predicts that Microstegium vimineum will have 133,000 

additional km2 of potential suitable habitat by the year 2035. If land managers are able to 

keep a watch on these areas before the species spreads it may be possible to contain the 

invasion (Moody and Mack 1988). The fundamentals of early detection have not 

changed, but the habitat that is potentially suitable for species may be shifting with the 

changing climate. 

Most of the species modeled in this study were considered habitat generalists. Lobo et al. 

(2008) have claimed that Maxent models do not perform well on habitat generalists, yet 

these models did perform well. For the two species that had models that did not perform 

as well, I may need to add additional predictive layers to the model, use a different 

resolution, or even a different modeling technique. Not every species will respond to the 
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same modeling format, and there are many techniques to choose from (Guisan and 

Zimmermann 2000, Elith et al. 2006, Evangelista et al. 2008). 

Invasibility Index 

While I was not able to address biotic interaction or competition in these models, they 

could be incorporated by using predictor variables of the competition (Leathwick and 

Austin 2001, Anderson et al. 2002). However, I did make an initial attempt at addressing 

propagule pressure, by devising the invasion index and looking at distance from known 

seed source within potential suitable habitat as a proxy for propagule pressure. I 

recognize that I do not have data for every location of the species, yet these data give a 

first order approximation of invasibility. 

In addition to looking at the invasibility index, it is important to keep in mind the method 

of invasion for each species. Some invasive plant species spread primarily by runners 

and do not move very far with each season, while others spread primarily by seeds on the 

wind giving them farther reaching potential for spread. Plant dispersal is another worthy 

task of future analysis. 

Utility of this approach 

This approach provides a methodology to conduct a triage of invasive species. It has 

been established that it is cost effective and efficient to control small invasions early in 
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the process (Moody and Mack 1988), and this method gives resource managers the ability 

to assess where an invasion may move in 10 to 25 years time to determine what may 

happen in the short term (Jarnevich and Stohlgren 2009), instead of looking at the year 

2100. These models help to identify the leading edge of the invasion, the areas of new 

potential suitable habitat (Anderson et al. 2009). The leading edge is extremely 

important for watch lists, natural areas, ranches and farmers. 

This method can be useful for targeted surveys (Morisette et al. 2006) and monitoring to 

better track actual spread of species. These models also identify areas where suitable 

habitat is receding, changing to less suitable habitat, although there is little evidence that, 

once established, plants ever leave a county-sized area (Stohlgren et al. 2008). Pearson 

and Dawson (2003) discuss that bioclimatic envelope modeling has its limitations, but it 

works well as a first approximation, especially applicable for an early detection and rapid 

assessment program. 

Conclusions 

My strategy was to assess plant invasion at a broad spatial scale. These same techniques 

are applicable to natural areas, counties, and state scales. I recognized that this is an 

iterative process of invasive species mapping and modeling. Models improve with more 

data, finer resolution prediction variables, and refined climate models. Different 

modeling techniques such as ensemble models (Araujo and New 2007) may also improve 

modeling efforts. I relied on Maxent, but other models may have done as good or better 

job of modeling these species (Elith et al. 2006). I have provided a first approximation 
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model of continental US potential habitat distribution maps for 12 species at a fine 

temporal scale. I hope it will be useful. 
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Table 5. Top predictors by percent contributed to the model 

Variable Percent 
Contribution 

Mean Diurnal Range 24 
Precipitation of Warmest Quarter 16 
Min Temperature of Coldest Month 12 
Mean Temperature of Driest Quarter 10 
Mean Temperature of Wettest Quarter 10 
Mean Temperature of Warmest Quarter 8 
Precipitation of Wettest Month 7 
Precipitation Seasonality 4 
Precipitation of Driest Month 4 
Isothermality 4 

Figure 6. Potential habitat suitability modeling process for Lepedium latifolium. A. 
Distribution of data points. Bl. Current potential habitat suitability, 2. Potential habitat 
suitability in 2020, 3. Potential habitat suitability in 2035. C. Scenario model showing 
stable potential suitable habitat in yellow, decreasing potential habitat suitability in blue, 
and increasing potential habitat suitability in red. D. Invasion index with colors on the red 
end of the spectrum closer to potential seed source and colors on the blue end of the 
spectrum farther away. In the entire figure grey represents unsuitable habitat and black 
represents clamping, or areas the model was extended beyond the environmental space it 
was trained on. 
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Figure 7. Response curves of the most influential predictors. A) Mean Diurnal Range, 
B) Precipitation of warmest quarter, C) Minimum temperature of coldest month, D) Mean 
temperature of wettest quarter. 
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Early detection of invasive species is such an important task on our national agenda that 

we need a central methodology and database to manage the problem. This is not just a 

problem for land mangers, we also need policy makers to address the issue (Lodge et al. 

2006). I have outlined a system in the first chapter of this paper to deal with this problem 

that is costing the US almost $120 billion dollars each year (Pimentel et al. 2005). By 

using a centralized data collection system and defining the data that are needed, we can 

develop species watch lists and have more information on what invasive plants are 

nearest to our management units. These data, and establishing this policy, would help 

managers to set priorities for containment and control. 

With these data, we will be able to use Geographic Information Systems to conduct 

analysis from simple displays of data to climate envelope modeling. Computing power 

has come so far in recent years that we are able to carry out complex analysis using 

desktop computers. I examined the difference between a regression model and an 

environmental envelope model for Bufo marinus finding that the two models produced 

similar results on the fairly broad scale of a 8-digit HUC for the southwestern United 

States. 

Finally, I examined 12 invasive plants at a much finer scale of 4-m resolution over the 

conterminous United States at three time scales accounting for climate change in the near 

term. With these models, I found that Maxent performed robustly for 10 out of the 12 

species, with AUC values of 0.84 or higher. After accounting for clamping, areas on the 
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leading edge of the invasion ranged from small increases of approximately 20,000 km to 

larger increases of approximately 546,000 km2; on the trailing edge potential suitable 

habitat shrank anywhere from about 20,000 km2 to 451,000 km2. This led the potential 

habitat of this suite of species to have changes in area of potential suitable habitat from a 

growth of 133,000 km2 for Microstegium vimineum to a loss of potential suitable habitat 

of 217,000 km2 for Cirsium arvense. I also looked at invasibility and, according to the 

currently available data, I found some areas to be far from propagule pressure, making 

these areas more difficult to invade. Again, these are first iteration models that have room 

for improvement, and they also give land managers a place to focus their efforts, whether 

it be filling data gaps or knowing where to look for potential invasions. 

I have examined early detection and rapid assessment of invasive species at multiple 

spatial scales and addressed both policy and management methods in an effort to increase 

awareness of invasive species. 'To encourage this awareness we need to share data for 

species in centralized locations, establish watch lists, and follow through on early 

detection and rapid assessment programs. There are many data gaps to fill and potential 

invasions to catch early if we work together, increase awareness, and coordinate local and 

national scales of information, and data collection potentials. The policies, techniques, 

and technologies developed in this dissertation can be broadly applied to plants, animals, 

and pathogens worldwide. 
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Data sources used to model the twelve invasive species in Chapter 3. 

Data source Citation 
Crosier PhD - Department of Transportation 
Crosier PhD - Larimer County 
Crosier PhD - San Luis Valley 
Crosier PhD - The Nature Conservancy 
Crosier PhD - Jackson County 
Crosier PhD - Larimer County 
Crosier PhD - Otero 
Crosier PhD - Royal Gorge 
Crosier PhD - San Luis Valley 
Crosier PhD - Colorado State Parks 
Crosier PhD - CNHP 
Florida Natural Areas Inventory 
Florida Natural Areas Inventory 
The Great Lakes Indian Fish & Wildlife Commission 
Idaho State Department of Agriculture 
Invasive Plant Atlas of the MidSouth 
Invasive Plant Atlas of New England 

Montana Fish, Wildlife, and Parks 
Modified Whittaker Plot Information 
National Institute of Invasive Species 
- Air Force Academy Weed Mapping 
National Institute of Invasive Species 
- Bohemian Foundation 
National Institute of Invasive Species 
- Colorado 
National Institute of Invasive Species 
-ELK 
National Institute of Invasive Species 
- Grand Staircase Escalante National 
National Institute of Invasive Species 
- Grazing effects 
National Institute of Invasive Species 
- GVM Weed Test 
National Institute of Invasive Species 
- Hart Mountain National Antelope 
National Institute of Invasive Species 
- Highway 24 Weed Mapping 
National Institute of Invasive Species 
- Invasive Carduus Thistles 
National Institute of Invasive Species 
- National Elk Refuge 
National Institute of Invasive Species 
- National Wildlife Refuge - USGS 
National Institute of Invasive Species 
- Nevada Cheatgrass 

Science project 

Science project 

Science project 

Science project 

Science project 
Monument 
Science project 

Science project 

Science project 

Science project 

Science project 

Science project 

Science project 

Science project 

(Crosier 2004b) 
(Crosier 2004b) 
(Crosier 2004b) 
(Crosier 2004b) 
(Crosier 2004b) 
(Crosier 2004b) 
(Crosier 2004b) 
(Crosier 2004b) 
(Crosier 2004b) 
(Crosier 2004b) 
(Crosier 2004b) 

http://fnai.org/invasivespecies.cfm 
http://fnai.org/invasivespecies.cfm 
http://www.glifwc.org/ 
Invasive Species Coordinator 
http://www.gri.msstate.edu/ipams/ 
http://nbii-nin.ciesin.columbia.edu/ipane/ 
http://fwp.mt.gov/insidefwp/qis/shapefi les 

Zfasweeds.zip 
(Stohlgren et al. 2006b) 

www.NIISS.org 

www.NIISS.org 

www.NIISS.org 

www.NIISS.org 

www.NIISS.org 

www.NIISS.org 

www.NIISS.org 

www.NIISS.org 

www.NIISS.org 

www.NIISS.org 

www.NIISS.org 

www.NIISS.org 

www.NIISS.org 
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National Institute of Invasive Species Science project 
- New Invaders Watch List 
National Institute of Invasive Species Science project 
- Peterson Air Force Base Weed Mapping 
National Institute of Invasive Species Science project 
- Plains Riparian study 
National Institute of Invasive Species Science project 
- Plants of Concern 
National Institute of Invasive Species Science project 
- Pondicherry National Wildlife 
National Institute of Invasive Species Science project 
- Rocky Mountain NP LANDGAP 
National Institute of Invasive Species Science project 
- SAIN Invasive Plants 
National Institute of Invasive Species Science project 
- SE-EPPC EDDMaps 
National Institute of Invasive Species Science project 
- September 2007 Training at the ELC 
National Institute of Invasive Species Science project 
- Wisconsin Invasive Plants of the Future 
National Institute of Invasive Species Science project 
- Colorado Department of Transportation 
National Institute of Invasive Species Science project 
- Hart Mountain National Antelope 
National Institute of Invasive Species Science project 
- National Bison Range 
Personal Collection of Robert K. Peet 
Personal Collection of James F. Quinn 

Southwest Exotic Mapping Program 
Bureau of Land Management, Utah State Office 
Texaslnvasives.org 

www.NIISS.org 

www.NIISS.org 

www.NIISS.org 

www.NIISS.org 

www.NIISS.org 

www.NIISS.org 

www.NIISS.org 

www.NIISS.org 

www.NIISS.org 

www.NIISS.org 

www.NIISS.org 

www.NIISS.org 

www.NIISS.org 

The University of North Carolina at Chapel Hill 
University of California, Davis 
http://sbsc.wr.usgs.gov/research/projects/swepic/ 
swemp/swempA.asp 
Salt Lake City, UT 
http://www.texasinvasives.org/ 
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Appendix B: Data distribution, spread model, and in visibility for the 
12 species in Chapter 3 



Figure 9. Lepidium latifolium models. A. Point distribution, B. Scenario model showing stable potential 
suitable habitat in yellow, decreasing potential habitat suitability in blue, and increasing potential habitat 
suitability in red, C. Invasion index with colors on the red end of the spectrum closer to potential seed 
source and colors on the blue end of the spectrum farther away. In the entire figure grey represents 
unsuitable habitat and black represents clamping, or areas the model was extended beyond the 
environmental space it was trained on. 
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Figure 10 Bromus tectorum models. A. Point distribution, B. Scenario model showing stable potential 
suitable habitat in yellow, decreasing potential habitat suitability in blue, and increasing potential habitat 
suitability in red, C. Invasion index with colors on the red end of the spectrum closer to potential seed 
source and colors on the blue end of the spectrum farther away. In the entire figure grey represents 
unsuitable habitat and black represents clamping, or areas the model was extended beyond the 
environmental space it was trained on. 
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Figure 11. Carduus nutans models. A. Point distribution, B. Scenario model showing stable potential 
suitable habitat in yellow, decreasing potential habitat suitability in blue, and increasing potential habitat 
suitability in red, C. Invasion index with colors on the red end of the spectrum closer to potential seed 
source and colors on the blue end of the spectrum farther away. In the entire figure grey represents 
unsuitable habitat and black represents clamping, or areas the model was extended beyond the 
environmental space it was trained on. 
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Value 

I High : 600,000 

Low : 0 

Figure 12 Celastrus orbiculatus models. A. Point distribution, B. Scenario model showing stable 
potential suitable habitat in yellow, decreasing potential habitat suitability in blue, and increasing potential 
habitat suitability in red, C. Invasion index with colors on the red end of the spectrum closer to potential 
seed source and colors on the blue end of the spectrum farther away. In the entire figure grey represents 
unsuitable habitat and black represents clamping, or areas the model was extended beyond the 
environmental space it was trained on. 
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Figure 13. Centaurea stoebe models. A. Point distribution, B. Scenario model showing stable potential 
suitable habitat in yellow, decreasing potential habitat suitability in blue, and increasing potential habitat 
suitability in red, C. Invasion index with colors on the red end of the spectrum closer to potential seed 
source and colors on the blue end of the spectrum farther away. In the entire figure grey represents 
unsuitable habitat and black represents clamping, or areas the model was extended beyond the 
environmental space it was trained on. 
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Figure 14. Cirsium arvense models. A. Point distribution, B. Scenario model showing stable potential 
suitable habitat in yellow, decreasing potential habitat suitability in blue, and increasing potential habitat 
suitability in red, C Invasion index with colors on the red end of the spectrum closer to potential seed 
source and colors on the blue end of the spectrum farther away. In the entire figure grey represents 
unsuitable habitat and black represents clamping, or areas the model was extended beyond the 
environmental space it was trained on. 
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Figure 15. Cynoglossum officinale models. A. Point distribution, B. Scenario model showing stable 
potential suitable habitat in yellow, decreasing potential habitat suitability in blue, and increasing potential 
habitat suitability in red, C. Invasion index with colors on the red end of the spectrum closer to potential 
seed source and colors on the blue end of the spectrum farther away. In the entire figure grey represents 
unsuitable habitat and black represents clamping, or areas the model was extended beyond the 
environmental space it was trained on. 
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Figure 16. Linaria dalmatica models. A. Point distribution, B. Scenario model showing stable potential 
suitable habitat in yellow, decreasing potential habitat suitability in blue, and increasing potential habitat 
suitability in red, C. Invasion index with colors on the red end of the spectrum closer to potential seed 
source and colors on the blue end of the spectrum farther away. In the entire figure grey represents 
unsuitable habitat and black represents clamping, or areas the model was extended beyond the 
environmental space it was trained on. 
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Figure 17. Lonicera japonica models. A. Point distribution, B. Scenario model showing stable potential 
suitable habitat in yellow, decreasing potential habitat suitability in blue, and increasing potential habitat 
suitability in red, C. Invasion index with colors on the red end of the spectrum closer to potential seed 
source and colors on the blue end of the spectrum farther away. In the entire figure grey represents 
unsuitable habitat and black represents clamping, or areas the model was extended beyond the 
environmental space it was trained on. 
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Figure 18. Lythrum salicaria models. A. Point distribution, B. Scenario model showing stable potential 
suitable habitat in yellow, decreasing potential habitat suitability in blue, and increasing potential habitat 
suitability in red, C. Invasion index with colors on the red end of the spectrum closer to potential seed 
source and colors on the blue end of the spectrum farther away. In the entire figure grey represents 
unsuitable habitat and black represents clamping, or areas the model was extended beyond the 
environmental space it was trained on. 
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Figure 19. Microstegium vimineum models. A. Point distribution, B. Scenario model showing stable 
potential suitable habitat in yellow, decreasing potential habitat suitability in blue, and increasing potential 
habitat suitability in red, C. Invasion index with colors on the red end of the spectrum closer to potential 
seed source and colors on the blue end of the spectrum farther away. In the entire figure grey represents 
unsuitable habitat and black represents clamping, or areas the model was extended beyond the 
environmental space it was trained on. 
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Figure 20. Pennisetum ciliare models. A. Point distribution, B. Scenario model showing stable potential 
suitable habitat in yellow, decreasing potential habitat suitability in blue, and increasing potential habitat 
suitability in red, C. Invasion index with colors on the red end of the spectrum closer to potential seed 
source and colors on the blue end of the spectrum farther away. In the entire figure grey represents 
unsuitable habitat and black represents clamping, or areas the model was extended beyond the 
environmental space it was trained on. 
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