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ABSTRACT 

 

 

METHODS FOR ADVANCING AUTOMOBILE RESEARCH WITH ENERGY-USE 

SIMULATION 

 

 

Personal transportation has a large and increasing impact on people, society, and the 

environment globally.  Computational energy-use simulation is becoming a key tool for 

automotive research and development in designing efficient, sustainable, and consumer 

acceptable personal transportation systems.  Historically, research in personal transportation 

system design has not been held to the same standards as other scientific fields in that classical 

experimental design concepts have not been followed in practice.  Instead, transportation 

researchers have built their analyses around available automotive simulation tools, but 

conventional automotive simulation tools are not well-equipped to answer system-level questions 

regarding transportation system design, environmental impacts, and policy analysis. 

The proposed work in this dissertation aims to provide a means for applying more 

relevant simulation and analysis tools to these system-level research questions.  First, I describe 

the objectives and requirements of vehicle energy-use simulation and design research, and the 

tools that have been used to execute this research.  Next this dissertation develops a toolset for 

constructing system-level design studies with structured investigations and defensible hypothesis 

testing.  The roles of experimental design, optimization, concept of operations, decision support, 

and uncertainty are defined for the application of automotive energy simulation and system 

design studies. 
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The results of this work are a suite of computational design and analysis tools that can 

serve to hold automotive research to the same standard as other scientific fields while providing 

the tools necessary to complete defensible and objective design studies. 
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1 Background 

Personal transportation contributes positively to society through accelerated mobility of 

knowledge and goods as well as freedom to travel where and when desired.  The improved 

standard of living associated with personal transportation comes at the cost of increased energy 

consumption and pollution.  In the United States the demand for and affordability of personal 

transportation has led the transportation sector to be the largest greenhouse gas emitting sector as 

shown in Figure 1.  Of the four primary sectors, the transportation sector has the second highest 

energy consumption; exceeded only by the industrial sector and followed by the residential, and 

then commercial sectors. Due to the large market for personal automobiles and the high impact 

that transportation has relative to other sectors, it is important for researchers to continue to 

advance vehicle technology efficiency. 

 

Figure 1 Energy consumption (solid lines) and CO2 emissions (dashed lines) by sector in the United States. 

This research is focused on the research and design of passenger vehicles.  Passenger 

vehicles are classified as “any automobile (other than an automobile capable of off-highway 
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operation) which the National Highway Traffic Safety Administration (NHTSA) [11] decides by 

rule is manufactured primarily for use in the transportation of not more than 10 individuals.” 

(Section H of EPA DOT).  Passenger vehicles (light and medium duty) have consistently made 

up approximately 90% of the total vehicle fleet and contributed to 70%-80% of total 

transportation fuel use since the 1960’s [15]. 

Regulatory policy and the focus on advanced technology development from automotive 

manufacturers and researchers have aided in slowing the impacts of personal transportation but 

additional measures are required to provide a sustainable future.  Figure 2 shows how passenger 

vehicle Corporate Average Fuel Economy (CAFE) in the United States has progressed over time 

and will continue to encourage improved vehicle performance in the future.  A range of vehicle 

and technology developments is also shown in Figure 2 [10, 13, 14].  Advancements and changes 

in automotive technology have led to varying degrees of improvements in performance, 

efficiency, and environmental impacts.  In recent years the largest improvements have been 

shown through electrification of personal transportation and it is expected that increased use of 

electricity and other alternative energy sources will be necessary.  Simply applying non-

petroleum based fuels to transportation alone without advancement in the vehicle design as a 

whole will likely limit the possibilities for passenger automobile improvements. 
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Figure 2 Timeline of US passenger cars with technology milestones. 

Increasing amounts of resources are typically required for development as technology 

approaches theoretical operation limits for power, energy and efficiency [12].  The optimality of 

the design and the design progress becomes more and more important as a technology matures.  

The vehicle design process has become more of a systematic engineering design process in order 

to meet the increasingly stringent design requirements of modern automobiles.  The system 

engineering processes provide structure in an effort to reduce redesign or failure, thus reducing 

development costs.  As the cost, impact and demand for transportation continue to increase it 

becomes more important for systematic processes that are capable of efficiently producing robust 

vehicle designs.  Vehicle research and design has been occurring since the 1800’s with methods 

that have continuously advanced to match these demands.  Many researchers have attempted to 

quantify and improve small portions of this process in the past [34, 17, 27] but have not reached 

the extent that this research proposes. 

The demand for personal transportation in the passenger automobile sector, along with its 

associated impacts, costs, and complexities leads this research to attempt to provide a benchmark 

for automotive design research and guidance for future investigations.  The following sections 
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will outline the state of the field for automotive design and research, identify areas requiring 

improvement, propose work to fill identified areas, and provide an overview of work done to-

date. 
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2 State of the Field 

Emissions increase with the number of vehicles on the road and decrease with technology 

improvements aimed at increasing efficiency and decreasing emissions [138].  As populations 

continue to grow, more people demand transportation; 90% of which is supported by light duty 

vehicles (LDV) [10].  The high use of LDV leads to a focus on these vehicles for this research.  

Energy use simulation has been identified as an important means for improving the design and 

analysis of LDV. 

Simulation of passenger vehicles is an important system engineering process used to 

perform design, analysis, and evaluation [6, 138, 115, 81, 34].  Models used in energy-use 

simulation are created as computational mathematical emulations of systems. Models and 

simulations of passenger vehicles allow researchers to study vehicle operation without requiring 

physical system presence [57, 65, 68, 69, 49].  The simulations of interest for the research 

presented here are primarily time-dependent approximations of operation whose purposes are to 

predict vehicle energy flows and consumption [34, 44].  Energy-use specific simulation focuses 

on power flow, operational characteristics, and interactions of subsystems and components 

within the vehicle system.  An example of energy-use simulation is modeling fuel consumption 

of an engine over a defined driving pattern.  A simulation such as this allows researchers to 

evaluate how efficiently energy is used for propulsion [34].  Energy-use simulations do not 

typically cover aspects that have little effect on power management such as modeling and 

simulation of materials properties or vehicle safety systems (e.g. airbags, bumpers, seatbelts). 

A variety of modeling and simulation tools are available for performing energy-use 

simulation of vehicles [6, 23, 24, 27, 28].  The objectives of vehicle simulation vary greatly, 
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requiring advanced analysis tools to provide accurate and understandable results and 

conclusions.  Literature review shows that users commonly do not understand or correctly 

implement simulation and analysis tools for vehicle energy-use studies.  In many cases 

automotive design research uses simulation tools that are not design to answer the questions that 

are being asked of them [18, 16, 23].  For example, simulation tools created to accurately model 

the energy use of vehicle architectures with a gasoline engine are not guaranteed to be extensible 

to advanced fuels or electrified hybrid vehicles [52]. 

The large amount of effort applied to energy-use simulation of vehicles without 

understanding of the tools leads to research and development that can be scientifically 

inconclusive, irrelevant, or even incorrect.  The fault of these fallacies lie partially in the tools 

themselves, but most of the problems can be resolved through better understanding by the 

scientist or engineer performing the research and analysis. 
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3 Objective and Research Questions 

To aid in understanding and implementing the methods and tools available for vehicle 

energy-use simulation, a set of research questions have been defined.  A set of tasks is specified 

to aid in answering each of the research questions.  

The work performed in completion of the proposed dissertation will result in providing 

an answer to the research objective: 

Provide an application-specific, experimental method for conducting energy-use 

simulation of passenger vehicles. 

3.1 Research Question 1 

What are the characteristics of tools for vehicle energy-use simulation? 

Vehicle energy-use simulations have been performed with a wide range of modeling and 

simulation tools.  These simulation tools are created in software.  Over time different tools have 

been developed and refined to model specific aspects of passenger vehicles in an effort to predict 

physical operation of products.  Each tool has a designed set of assumptions, limitations, and 

applications.  To build a base for investigating vehicle energy-use simulations, the tools used 

must be identified, analyzed, and characterized.  Three tasks have been defined to identify and 

characterize vehicle energy-use simulation tools: 

1.1 Identify the tools presently used for vehicle energy-use simulation. 

1.2 Characterize simulation tools based on their formulation and application. 

1.3 Use results of task 1.1 and 1.2 to determine a comprehensive application-specific set of 

requirements for vehicle simulation tools. 
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3.2 Research Question 2 

What are the characteristics of tools presently used in analysis of vehicle energy-use 

simulation? 

After the tools used to carry out energy-use simulation have been identified and 

characterized, the analysis tools applied to the simulation tools can be studied.  Simulation tools 

alone are of little utility if they are not properly applied with associated analysis.  Many 

processes and analysis tools are available for designers and researchers to use in application to 

passenger vehicles, a few of the underutilized tools that are important to advancing the state of 

the field in vehicle energy-use simulation studies are examined through completing the five tasks 

for research question 2: 

2.1 Determine which algorithms are efficient and robust for vehicle simulation optimization 

2.2 Quantify the uncertainty in vehicle simulation. 

2.3 Characterize drive cycles as CONOP for vehicle simulations. 

2.4 Determine the effect of fleet characteristics on vehicle simulation. 

2.5 Determine the pathway for researchers to effectively apply vehicle simulation and analysis 

tools 

3.3 Research Question 3 

What is the robust, defensible, and extensible structure of a vehicle energy-use 

simulation and how can it be applied? 

Simulation tools allow for a means of conducting theoretical vehicle energy-use study, 

analysis tools allow researchers to understand and apply the simulation tools appropriately.  

Together, the simulation and analysis tools must be implemented appropriately to perform 

studies using scientific methods:  
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3.1 Provide a qualitative overview of automotive energy-use simulation methods. 

3.2 Perform a vehicle energy-use simulation study using the appropriate tools and methods. 
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4 Research 

To answer the three research questions posed for this dissertation work, each question 

and its associated tasks will be thoroughly developed, evaluated, and reviewed.  All sections will 

culminate in the synthesis of providing an application-specific experimental method for 

conducting energy-use simulation of passenger vehicles. 
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5 Simulation Tools for Automotive Energy-Use Studies (RQ1) 

What are the characteristics of tools for vehicle energy-use simulation? 

In the area of computer modeling and simulation there are many available programs and 

modeling languages from which to choose, each of them offering their own advantages and 

disadvantages.   The primary areas of interest when dealing with large amounts of modeling and 

simulation is the level of detail presented within the models and the computational time 

necessary to run simulations.  An inverse relation exists, wherein adding additional details to 

models requires more calculations and thus more computational effort.  In an effort where 

hundreds or thousands of simulations may be necessary to satisfy an optimization, even slight 

increases in simulation time can cause large increases in overall optimization efforts.  Other 

model and simulation requirements that are important include the ability of the program to allow 

for modification of the components and parameters represented and accurate calculation of the 

results attributes with appropriate precision.   

5.1 Task 1.1 Identify the tools used for vehicle energy-use simulation. 

Extensive research was performed to identify available tools for vehicle energy-use 

simulation.  These modeling and simulation tools were developed either as purchasable, open 

source or custom in-house software packages.  Additional tools exist beyond those listed in this 

section and new tools continue to be developed, particularly custom tools that are not sold or 

shared publically.  The identified sets of simulation tools are listed in Table 1 [6]. 
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Table 1 Simulation tools availability, developer, application and formulation 

Program Name Availability Developer Formulation Application 

ADVISOR  Open Source 
National Renewable Energy 

Laboratory (NREL) 
Simulink, Backward facing Vehicle system 

ADAMS/CAR  Purchasable MSC.Software Dynamic  Chassis 

Autonomie  Purchasable 
Argonne National Laboratory 

(ANL) 
Simulink GUI Vehicle system 

CAR  Custom West Virginia University 
Four architectures, Dynamic, 

Matlab 
Vehicle system 

CarSim  Purchasable AeroVironment, Inc. Vehicle Dynamics, Animations Chassis 

COOOL  Custom Colorado School of Mines 
Object-oriented optimization 

library  
Vehicle system 

CRUISE, 

DRIVE, BOOST  
Purchasable AVL Dynamic, Matlab Interface Vehicle system 

CSM HEV  Custom Colorado School of Mines Simulink Vehicle system 

Dymola  Purchasable Dassault Systems 
Modelica, object oriented, non-

causal 
Vehicle system 

EPA MOVES  Open Source 
Environmental Protection 

Agency (EPA) 
Java, MySQL Emissions 

FASTSim  Open Source 
National Renewable Energy 

Laboratory (NREL) 
Excel, lumped parameter Vehicle system 

HEVsim Custom Wayne State University 
Backwards-facing, iterative, 

LabVIEW 
Vehicle system 

HEVSIM  Custom 
Wuhan University of 

Technology 
Simulink, Forward facing Vehicle system 

HEV V-Elph  Custom Texas A & M University Simulink, Dynamic Vehicle system 

HVEC  Custom 
Lawrence Livermore National 

Laboratory 
EV and Series Hybrids Vehicle system 

LabVIEW Purchasable National Instruments Dynamic ODE solver Open 

LFM  Custom 
Electric Power Research 

Institute 

Simulink, developed vehicle 

library 
Vehicle system 

Matlab/Simulink  Purchasable Mathworks Causal, Dynamic or fixed step Open 

Modelica  Open Source The Modelica Association 
Non-causal, dynamic PDE, 

object oriented 
Open 

PAMVEC  Custom Dr. A. Simpson Excel, Lumped parameter Vehicle system 

Powell  Custom 
B. K. Powell, Ford Motor 

Company 
Quasi-static custom model Vehicle system 

PSAT  Purchasable 
Argonne National Laboratory 

(ANL) 
Simulink GUI, Forward Facing Vehicle system 

SIMPLEV  Custom 
Idaho National Laboratory 

(INL) 
Simulink, Static Maps Vehicle system 

Virtual Test Bed  Custom University of South Carolina Highly dynamic computation Vehicle system 

 

Each of the identified modeling and simulation tools has their own advantages and 

disadvantages.  Researchers are encouraged to take into consideration the requirements of their 
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studies before selecting a commercially available tool or building their own from the ground up.  

The following section will highlight some of the characteristics of these tools and discuss 

considerations researchers should take into account when evaluating and selecting tools for 

automotive energy-use studies. 

5.2 Task 1.2 Characterize simulation tools based on formulation and application. 

The lengthy list of tools found was developed for a range of specific energy-use 

simulation studies, each with different formulations and applications, as provided in Table 1 [6].  

A majority of the tools utilize Mathworks Matlab/Simulink as a computational base and are 

capable of simulating a variety of vehicle systems including powerplants, drivers, energy 

management, and controls.  Varying levels of computed dynamics are available such as static 

lumped parameter, backward facing, hybrid forward/backward facing, forward facing, quasi-

static, etc.  Highly dynamic simulations often have a high computation burden but can provide 

high fidelity. In contrast, static simulations typically require less computation but also provide 

lower fidelity. 

Extensibility, flexibility, and modifiability exist in different degrees depending on the 

simulation tool.  For example, tools developed using the Modelica standard modeling language 

(SML) are designed to be object oriented (OO); contributing to ease of modification, extension, 

and flexibility through system model blocks.  Simulation with Simulink tools can use libraries of 

standard models to provide ease of extensibility, but may sometimes have limited modifiability 

with proprietary blocks.  Some of the purchasable tools such as Autonomie have additional 

limitations for flexibility based on the included models. 

A few of the primary capabilities that are identified as important inclusions in the model 

and simulation tool selection is suggested as follows.  One of the first requirements is identifying 
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the desired question that a modeling and simulation study aims to answer.  After the general 

structure of requirements has been developed for the study, the list of potential tools can be 

reduced.  For example, if investigations of steady-state ideal energy consumption are the only 

interest, simple static models may be sufficient.  As another example, if a researcher wishes to 

determine the electrical interactions between a high voltage bus and a fuel cell system, then more 

detailed models and simulation tools will be necessary.  For modern systems engineering 

processes, including automotive design, simulation is commonly coupled with design iteration or 

optimization.  To achieve this process effectively, model tools must have modifiable and scalable 

components that can be updated throughout the optimization to represent different vehicle 

designs.  Concept of operation (CONOP) must be supplied for simulation, in many cases of 

automotive design this requires the development of representative drive cycles.  Therefore 

modeling tools must be capable of having the simulated vehicle follow some defined profile as 

accurately as possible to fulfill the testing requirements.  This list of necessities helps to form the 

general structure of these simulations by requirement. 

There is a specification paradox when the subject of simulation accuracy is considered.  

The more accurate a simulation is, the more likely it is to be complex and costly in terms of 

computational effort.  A feasible amount of time that should be allocated to running simulation 

has not been defined.  This consideration must be evaluated in conjunction with the amount of 

time required to create and simulate models with sufficient detail.  There is another concept of 

detailed design that must be considered which is the relation of model complexity to output 

accuracy.  In many modeling efforts, there exists an informational plateau will be reached in 

such a way that additional modeling detail will add very little accuracy. 
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The modeling language that has been chosen for use in this research is Modelica [100].  

The Modelica language is a free, open source language that is constantly developed and 

improved through OpenModelica [101].  As a forward dynamic tool, defined by vehicle control 

that occurs in a real-world stimulus-response manner, Modelica includes a solver developed to 

accurately and quickly solve Differential Algebraic Equations (DAE’s). Automotive models are 

comprised of DAE’s, making the OpenModelica modeling package a good fit for the automotive 

modeling and simulation [89]. Additionally, Modelica is organized as an object oriented 

language that allows for class definition of components and systems that can be replicated, 

implemented, and modified readily.   

5.3 Task 1.3 Use results of Task 1.1 and 1.2 to determine a comprehensive application-

specific set of requirements for vehicle simulation tools. 

Based on the diversity of available simulation tools, applications, and formulations; the 

requirements of the simulation tools is foreseeably diverse as well.  Some of the soft 

requirements of vehicle energy-use simulation tools match general requirements for systems 

engineering tools including flexibility, extensibility, robustness, validated, modifiable, and 

provides utility.  To better understand the requirements of these tools, vehicle energy-use 

simulations have been performed using them [2, 3, 6, 9].  Additionally, a custom vehicle 

simulation tool was developed by the author, validated, and has been applied to multiple 

published energy-use simulation studies.  A comparison of dynamic simulation of a battery 

electric vehicle (BEV) shown in Figure 3 between the author’s custom tool and EPRI’s LFM 

simulation tool. 

Although Figure 3 only shows one comparison used for validated the developed 

simulation tool, many have been performed.  Multiple levels of validation have been performed; 
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beginning at the subsystem-level (ICE, ESS, MG, etc.) and working up to subsystem interactions 

(ICE and generator, etc.) and complete vehicle architectures (BEV, CV, PHV, FCV, etc.).  Based 

on knowledge gained through the previous investigations, the simulation tool developed for this 

research retains the required level of detail for energy-use simulation studies while requiring 

minimal computational cost.  The models and simulations have also been developed to allow for 

ease of flexibility and extensibility to represent a wide range of vehicles and architectures.  

 

Figure 3 Comparison of simulated vehicle operation using EPRI's LFM and the author’s custom models for a BEV. 

From the development and use of vehicle simulation tools, and in conjunction with 

vehicle studies, requirements of vehicle simulation tools were developed.  For vehicle energy-use 

studies relevant to the system design processes, it is important for vehicle energy-use simulation 

tools to be able to represent accurately multiple levels of the vehicle from component, to 
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subsystem, and system.  It is also desirable for the tools to include system of system 

considerations such as interactions the vehicle has with its environment, markets, operators, and 

policy. 

 

Figure 4 Representation of vehicle energy-use simulation levels. 

Figure 4 provides a graphical representation of how different levels of the vehicle 

simulation interact as approaches are translated into associated attributes.  Historically, research 

begins at the vehicle or subsystem level and attempts to apply simulation and analysis tools to 

derive conclusions (research attributes) at the system level.   

The primary groups who have documented a vehicle design process with subsystem-level 

design objectives are PHEV conversion companies.  These companies have the design objective 

of using their particular battery chemistry or battery system design.  Because these PHEVs are 

conversions, the designers have no control over the other systems of the PHEV.  Battery systems 

are often shared between PHEV platforms regardless of the effect on vehicle level performance 

attributes.  Ronning [139] treads the line between component-level and vehicle-level design 

objectives by proposing engine size minimization as a design objective, subject to vehicle-level 
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constraints on performance including acceleration times.  In Figure 4, this type of study begins at 

the ‘Subsystem Design’ and subsystem-level considerations and incorrectly feeds upward to 

Vehicle Analysis and vehicle-level conclusions. 

PHEV design processes with vehicle-level design objectives have been proposed by a 

number of researchers.  Wong et al. [114] proposed that minimization of cost and maximization 

of all-electric vehicle range should be dual vehicle-level design objectives.  Balch et al. [140] 

seeks to maximize all-electric vehicle range subject to vehicle cost and vehicle performance 

constraints.  The design process used in [115] seeks to achieve certain all-electric vehicle ranges 

subject to performance constraints.  In Figure 4, this type of study begins at the vehicle-level and 

correctly used vehicle-level analysis and vehicle-level conclusions. 

PHEV design objectives that are posed at the system-level are less common.  An et al. 

[105] proposes a design process with objectives of compliance with California Zero Emission 

Vehicle (ZEV) regulations.  Meyr et al. [141] propose a design objective of net GHG reductions.  

Both of these studies begin with system-level approaches, shown in Figure 4, but the extent to 

which they are able to provide system-level and lower models and analysis is unclear. 

Overall, a majority of published vehicle design studies have design objectives that are 

posed at the vehicle-level and below.  On the basis of this review of design objectives from the 

literature it becomes evident that only through integrating component design, vehicle design, and 

systems design can systems-level design objectives be posed.  Expressing design objectives at 

the system-level is necessary to achieve the beneficial system-level vehicle attributes that have 

been proposed for advanced vehicles.  To date, the systems-level vehicle characteristics that have 

been attributed to advanced vehicles are not the result of a direct design process, they are 

byproducts of a vehicle-level design process.  In order to be able to improve the systems-level 
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attributes of vehicles we must understand the connections between the vehicle design processes 

at the three proposed levels. 

In this research, we propose that to perform system-level research requires the 

development of tools that can perform modeling at the system level.  Figure 4 also shows that 

information can only flow from higher-level sources downward and back up (loop identifiers 1 

and 2).  From this, system-level research can contribute to vehicle-level analysis {1} and then to 

subsystem analysis {2}.  Higher levels of approach and formulation inherently contain 

information about lower levels, allowing for analysis at each sub-level.  Research on a vehicle 

level can contribute to subsystem-level analysis {2}, but cannot appropriately be expanded to the 

system level without a new system-level approach. 

It is important for researchers to consider the energy-use simulation study hierarchy and 

how it applies to their research and studies.  Without correct identification of the requirements, 

methods, and results that are desired, incorrect tools may be applied; resulting in either incorrect 

or insufficient conclusions.  Using this understanding of automotive energy-use simulation 

studies, the author has developed an extensive set of vehicle models for use in studies and the 

remainder of this dissertation. 

5.4 Discussion of Research Question 1 

What are the characteristics of tools for vehicle energy-use simulation? 

Tools used for energy-use simulation of vehicle need to be available to researchers, 

understood, and have objectives and formulation that meet the requirements of desired 

investigation.  The available public and private simulation tools have different formulations 

design specifically to certain applications.  It is up to the researcher to ensure that they have 
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selected the correct tool ultimately.  As computational capabilities continue to increase, 

possibility exists to follow a few pathways: 

1. Decrease the time required to perform vehicle energy-use simulation 

2. Increase the depth (details) of vehicle energy-use simulations 

3. Increase the breadth (range of considerations) of vehicle energy-use simulation 

A combination of these pathways is also possible, the extent of the combined effect being 

limited by the allowable time and effort applied to the tools and studies and the extent of the 

increase in computation capability.  Ideal vehicle energy-use simulation would incorporate all 

capabilities explored through the tasks in research question 1 including fast simulation, highly 

detailed, large breadth of considerations, easy to use, verified, robust, dynamic, extensible, 

flexible, and modifiable to meet research objectives.  The importance of each of these 

characteristics for different studies will be investigated further in research question 2. 

The tasks completed for research question 1 provide a foundation for understanding the 

simulation tools and the studies that can be performed for automotive energy-use.  Research 

question 2 and its associated tasks will build on this foundation of tools to understand the best 

manner for applying the simulation tools and analyzing results. 
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6 Tools for Advancing Automotive Energy-Use Simulation Studies (RQ2) 

Simulations tools have proven potential to reduce the effort required to perform 

automotive research through applying systems engineering principles.  In applying scientific 

methods to automotive energy-use simulation, it is insufficient for researchers to only have an 

understanding of the modeling and simulation tools available, such as those presented in research 

question 1.  In order to effectively apply these tools to automotive energy-use simulation studies 

the simulation tools must also be paired with effective analysis tools.  Specifically, the analysis 

tools under investigation in this dissertation are: 1) optimization algorithms, 2) quantifying 

uncertainty, 3) drive cycles as CONOP, and 4) fleet-level analysis.  Although many other 

analysis tools are potentially available for application to automotive research, these tools have 

been selected for their potential to simultaneously reduce the total effort required to complete a 

study while increasing the validity and robustness of the results and conclusions. 

The following sections will provide detailed investigations of the four analysis tools 

proposed.  Each of the tools will be applied to state-of-the-art automotive energy-use simulations 

through individual studies.  The methods, results, and conclusions will be provided for each 

analysis tool such that future researchers can apply them to their own studies.  The conclusions 

of these sections will also provide recommendations.  Each of the analysis tools explored in the 

following section provides significant benefit to automotive energy-use simulation studies when 

applied appropriately. 
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6.1 Task 2.1 Determine which Algorithms are Efficient and Robust for Vehicle 

Simulation Optimization 

Optimization as a technique is very general in its use of achieving a most desirable 

solution defined within the parameters of the algorithm.  Within the umbrella of optimization 

there are many individual techniques and caveats that must be understood to improve the 

optimality of the optimization.  One reason is that different algorithms search for different trends 

within data and have different techniques for finding solutions.  Also, there are parameter values 

that define the operating conditions of each of the algorithms differently and affect their 

performance.  The principles behind this dilemma are what lead systems engineers working with 

optimizations to examine multiple optimization algorithms to understand both the techniques and 

goals of each [110]. 

 

Figure 5 Optimization process feedback loop 

In the case of complex data sets, one optimization method may result in a solution that is 

optimal within its analyzed area, by definition a local maxima or minima.  Another algorithm 

may find a completely different solution.  If these optimizations find different solutions their 

overall utility will be different between one another. It is also possible that both algorithms find 

different solutions that achieve exactly the same result, e.g. the same cost and performance in a 
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sample vehicle optimization.  If two solutions are different but result in the same thing, how does 

a designer know which is the best?  The answer can only be obtained through further 

consideration of the objectives of the design.  For example, any components from one design 

may be more difficult to obtain than another.  Validation testing performed in this study presents 

an example of multiple optimums in the following section Validation of Optimization 

Algorithms where some of the optimizations converge to similar costs but with different design 

decisions.  The solutions found in each case were optimal within their respective effort.  Through 

the utilization of multiple algorithms we can have a better understanding of what the possible 

optimum solutions are, and a better understanding of the overall design space. 

A consideration when choosing optimization algorithms is the behavior of the simulation 

and design space being used.  As was presented, there are chances for a design with multiple 

solutions.  For example, imagine a mountain range with multiple peaks of the same height and 

we are trying to find the highest point in the region.  Some design objectives may result in a 

single optimal solution.  While a technique that simply observes the slope of the land may find a 

single peak quicker, a technique that takes random sampling over the whole area may find a 

better solution, albeit slower.  These differentiations in technique describe some of the 

underlying principles in the many optimization techniques where the slope of the mountain may 

relate more directly to the slope of a cost function peaking at an optimal value.  Many other 

options such as discontinuities, “flat” areas in objective functions, and seemingly random 

distributions cause complexities in optimizations and increase the need for both an understanding 

of the design space and the different algorithms that should be utilized.  The algorithms used 

within this study that will be explored in the following sections including Divided Rectangles 

(DIRECT), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Simulated 
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Annealing (SA) [83, 123].  Between these algorithms different methods of optimization are used.  

All of the methods explored are global optimizers with derivative-free algorithms (no gradient or 

slope as the previous example mentioned).  Global searches refer to an ability to evaluate design 

variables throughout the design space.  Due to specified design criteria, global searches may or 

may not be limited to specified design spaces, in which case the global search can occur at any 

point within the design space.  All of the algorithms used are heuristic, meaning they incorporate 

methods that “learn” and make increasingly improved design decisions as the optimization 

search progresses.  The DIRECT optimization algorithm uses a deterministic method that is 

mathematically consistent whereas SA, GA and PSO all use stochastic methods.  Stochastic 

algorithms incorporate random search methods whereas deterministic algorithms are structured.  

Further explanation of the differences and unique methods of optimization for each of the 

algorithms is included in the following sections. 

6.1.1 Optimization Algorithm Methods 

6.1.1.1 Divided Rectangles 

The Divided Rectangles (DIRECT) optimization algorithm is a global search method that 

is deterministic and capable of considering design points on both a local and global scale [111].  

The DIRECT method, developed by Donald Jones, is a modification to the Lipschitizian method 

which eliminates the need to provide a Lipschitz constant, a weighting factor to determine 

emphasis on local versus global searching.  Being a deterministic global algorithm, the DIRECT 

algorithm uses previously evaluated functions to determine future search directions relative to 

design criteria [83, 123]. 

The DIRECT method starts an optimization search by first creating an n-dimensional unit 

hypercube, where n is equal to the number of design variables.  The first function evaluation is 
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performed at the center of the initial hypercube and then the cube is trisected to form three 

hyperrectangles.  A function evaluation is performed on the resulting two hyperrectangles (the 

third having been performed in the first step) and the lowest cost function is identified for 

continuation (when minimization is specified).  The hyperrectangle with the lowest function 

value is then trisected and the center points of the resulting hyperrectangles evaluated.  This 

process is continued for each iteration in so that the lowest evaluated hyperrectangle is divided to 

narrow in on the optimum point.  The trisecting and dividing of hyperrectangles is performed a 

number of times during each iteration equal to the number of different sizes of hyperrectangles.  

This is allowed by using all of the values of the Lipschitz constant.  Thus it is insured that the 

optimization is performed along both global and local paths.  A visual representation of the first 

three iterations the DIRECT algorithm optimization process for a two dimensional problem (n = 

2) is shown in Figure 6. As can be seen in the second iteration of Figure 6, two sizes of 

hyperrectangles are present and therefore eligible to be trisected further.  In the third iteration 

there are now three sizes of hyperrectangle that will be trisected, each chosen by their function 

value relative to other hyperrectangles of the same size.  The process continues until a maximum 

number of function evaluations or some other criteria such as achieving a desired minimum is 

achieved.  
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Figure 6 Graphical representation of the first three iterations of the DIRECT algorithm. 

In Figure 6, the optimal hyperrectangles selected to be trisected during iteration have 

been darkened. The DIRECT algorithm chooses different sized rectangles to achieve both a local 

and global search. Optimal hyperrectangles are chosen by having the lowest function value for 

their size as is shown in Figure 6. In Figure 6, the horizontal-axis represents the distance from 

the center to the vertex of each hyperrectangle and the vertical-axis represents objective function 

value at the center point of the corresponding hyperrectangle. 
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6.1.1.2 Genetic Algorithm 

The Genetic Algorithm (GA) used for optimization is a stochastic global search algorithm 

based on Darwin’s concept of natural selection [83, 123].  The algorithm behaves as an 

evolutionary population in which the fittest members survive and replicate and weak members 

are eliminated.  This process applies each member of the population as a set of design parameters 

which are generated and the fitness of each of these members is determined by the function 

evaluation of those design parameters for that member.  Within the algorithm several natural 

processes occur including mutation, drift, natural selection and crossovers between the members 

as new generations are created.  In Equation 1 a possible combination of genetic algorithm 

parameters is provided where   
    represents the next multi-dimensional design point,   

  

represents the previous design,   
  is other good designs found,   

  represents poor designs found 

with a random probability of being included, drift represents minute adjustments, and mutation 

allows for changes in magnitude and direction to the new design point.  Design points with good 

function values or fitness are used to produce further design points.  Design points with poor 

function values are excluded, allowing for the best design parameter points to be identified and 

used. 

Equation 1 

  
       

    
           

                     

The process begins with a set of initial design parameter points, or an initial population, 

which is then evaluated.  Based on the function values of each of the members of the population 

some are allowed to continue and produce additional design points (which are slightly different 

than the original points) while others are eliminated.  Similar to iterations in other algorithms, 

each time a new set of design points (children) is created from previously evaluated design 
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points (parents) a generation has occurred.  A graphical representation on the GA search process 

is provided in Figure 7.  The algorithm can be terminated based on a number of criteria including 

allowable number of generations, achieving a desired function value or by achieving a 

population which does not vary greatly over multiple generations.  

 

Figure 7 Genetic Algorithm search process example representation for one generation 

6.1.1.3 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a stochastic global optimization algorithm which 

utilizes swarm intelligence found in natural systems such as flocking birds, schools of fish, bee 

colonies, or herds of animals [123].  The algorithm generates a population, or swarm, of design 

points which behave as a flock within the design space searching for an optimal design solution 

relative to the objective function.  The PSO technique was developed by Kennedy and Eberhart 

in 1995 to mimic the natural interactions of members of a group in an effort to find a global best 

solution. 
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The PSO algorithm begins by defining a population size which will each stochastically 

select initial design points, also known as positions, and their objective function value will be 

calculated.  Between each of the particles a particle specific best design is identified and saved 

through the optimization (pbest) as well as a group specific best design point (gbest).  Although 

each particle is represented as being size less, each member of the swarm moves within the 

multidimensional design space in an effort to achieve a global best solution with movement 

determined by the particle’s current position, best design point locations (pbest and gbest), 

particle velocity and particle inertia.  Using an algorithm, a velocity for each member is 

determined to represent how movement will occur within the multidimensional design space; this 

is shown graphically in Figure 8 where one particle (design point) is affected by the other points 

and a stochastic parameter to determine a future position and velocity.   

 

Figure 8 Graphical representation of PSO search algorithm showing contributing movement components. 

As can be observed in Equation 2 and Equation 3, the velocity of each member of the 

swarm population is determined based on random as well as previously determined 
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characteristics of the design space from other members of the swarm.  In Equation 2, 

  
    represents the velocity of particle i at iteration n+1; α1 and α2 are weighting factors for the 

random numbers rand1 and rand2 between 0 and 1, k is a weighting function,   
  is the position 

of the particle, pbesti is the best position of particle i, and gbest is the global best position found 

by the swarm.  Equation 3 shows the relation of how particle positions are updated during 

subsequent iterations. 

Equation 2 

  
       

                    
                    

   

Equation 3 

  
       

    
    

Using the technique above, PSO searches the global design space in a combined random 

and deterministic manner which suits nonlinear multi-objective optimizations well and is able to 

achieve local and occasionally global best designs. 

6.1.1.4 Simulated Annealing 

Simulated Annealing (SA) is a stochastic global search algorithm which is designed to 

follow a process similar to annealing (cooling) of metals [83, 123].  In the SA algorithm, each 

combination of design variables is simulated to behave as an atom within the metal (design 

space) being annealed. The process is similar to a Monte Carlo simulation process initially since 

it randomly searches the global design space.  But as the system moves further along in the 

optimization each particle becomes more limited in its searchable area.  The constriction of 

searchable design space is caused by a cooling of the system which is provided by a cooling 

schedule.  The cooling continues until a minimum temperature is reached or a desired function 
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value has been achieved.  Examples of the SA optimization search method are shown in Figure 

9.  

 

Figure 9 Schematic diagram of Simulated Annealing optimization algorithm search process. 

During the initial step of a Simulated Annealing optimization process a prescribed 

number of atoms are identified which represent points within the design space.  Each of the 

function values are calculated for the atoms and potentially optimal points are remembered by 

the algorithm.  Movement of each of the atoms within the design space for continued iteration is 

determined by the temperature (T) of the system as well as random search and previously 

evaluated design point function values.  The temperature of the system is determined by a 

cooling schedule which uses the number of function evaluations that have been performed as 

well as values of different design points.  As the algorithm is meant to simulate an annealing 

process, each of the atoms move more freely when the system is at higher temperatures and settle 

into a more stable orientation as the cooling slowly occurs.  Potentially optimal points that are 

identified by the system as they are evaluated have a higher probability of being incorporated 

into future search directions as the temperature decreases.  The probability of a point being 

accepted or rejected if it is worse than a previous point is determined by the Metropolis 
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probability P criterion given in Equation 4 where f is the evaluated objective function value and 

T is the current temperature.   

Equation 4 

         
             

 
 
 

In this way the algorithm is freer to search more of the global design space and only 

becomes restricted as the algorithm nears a possible optimal design point.  The importance of 

incorporating the temperature into the determination of search criteria is that it allows the 

likelihood of being stuck in a local optimal point to be reduced.  The algorithm continues to 

search for optimum points during the cooling schedule until one of the completion criteria has 

been achieved including the system temperature reaches a predefined minimum, a maximum 

number of function evaluations have been performed, or a desired function value has been 

reached. 

6.1.2 Validation of Optimization Algorithms 

The optimization algorithms that have been selected; Simulated Annealing, Divided 

Rectangles, Genetic Algorithm, and Particle Swarm Optimization, must be tested to verify 

performance.  Each of the algorithms has previously been tested by their developers to verify that 

they are capable of identifying local minima in a global search optimization given a sufficient 

number of function evaluations.  Some of the tests performed included running each optimization 

on field standard test functions such as the “Six Hump Camel”, “Rosenbrock”, and “Goldstein-

Price” which each contain multiple local minima, global minima, and dimensions [123].   

Of primary importance for validation in this study is the performance of the optimization 

algorithms using vehicle simulations.  Previous work performed by Gao (et al.) [123] tested the 

performance of each of the four algorithms selected in optimizing a six dimensional vehicle 
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design problem during 400 function evaluations using a parallel type vehicle architecture.  The 

design variables used in the optimizations performed by Gao included both controller specific 

and component specific applications which were Battery State of Charge Maximum, Battery 

State of Charge Minimum, ICE Power Limit, EM Power Limit, Final Drive Ratio, and Batter 

Number of Cells.  The design space upper and lower bounds are shown in Table 2.   

Table 2 Design variable allowable ranges for optimization algorithm performance comparison. 

 Max SOC Min SOC Engine (kW) Motor (kW) Fd ESS Cells 

Upper 0.9 0.4 100 80 4.0 350 

Lower 0.6 0.2 40 10 2.0 150 

 

Although all of the design variables are quantitative by definition, some of the component 

variables may be considered to be more qualitative because they define limitations on the 

components (in the case of Motor and Engine power limits) instead of constant operating 

parameters.   

6.1.3 Optimization Algorithm Performance 

The results of Gao’s optimization algorithm performance comparison over the 400 

function evaluations allowed show that the Simulated Annealing (SA) algorithm performing the 

best by achieving the highest objective function value, for a maximizing optimization, with 

DIRECT, GA, and PSO following in respective order.  

In an effort to replicate the algorithm comparison performed by Gao using PSAT, the 

same design variables and vehicle architecture (a parallel hybrid electric vehicle (HEV) were 

used to perform a multiple algorithm optimization of vehicle simulations using custom vehicle 

models.  Although the exact specifications of the base vehicle used by Gao were not known, the 

same design space limitations were implemented to define lower and upper bounds for each of 
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the design variables.  Using identical base vehicles is not a crucial factor for this comparison 

since the goal is to compare the overall performance of each of the algorithms on a simulation 

based vehicular optimization.  The results of the optimization algorithm performance test 

performed for the work done in this paper is presented in Figure 10. 

 

Figure 10 Comparison of optimization algorithm performance 

The specific values of the objective functions are not directly comparable between the 

two algorithm performance test efforts due to the differences in vehicle type used, but the overall 

trends of each of the algorithms is meaningful.  The results of a comparison between the two 

optimization algorithm performance tests show that in both cases the Simulated Annealing (SA) 

algorithm was able to achieve the highest objective function value while Particle Swarm 
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Optimization achieved the lowest maximum objective function value over the observed number 

of function evaluations.  It is also observed that if the performance tests had been limited to 

fewer function evaluations, such as 100 iterations, the results of the comparison would have been 

different since the profiles of each algorithm varies.  A comparison of the final decision variable 

selections and objective function values is provided in Table 3 and Table 4 to compare the 

selections made by each of the algorithms from both the previous study performed by Gao and 

the current study. 

Table 3 Results of BMG Optimization Algorithm Performance Test 

 

Maximum  

Objective 

Value 

Function 

Evaluations 

at Max 

Value 

Max SOC 

Allowable 

Min SOC 

Allowable 

Max 

Engine 

Power 

(kW) 

Max 

Motor 

Power 

(kW) 

Final 

Drive 

Ratio 

Number 

of 

Battery 

Cells 

DIRECT 57.80 250 0.75 0.21 82.9 68.5 3.00 250 

SA 72.20 375 0.77 0.20 85.3 79.2 2.55 215 

PSO 51.79 228 0.90 0.20 71.2 71.9 3.03 286 

GA 62.39 388 0.72 0.21 85.8 74.4 2.87 165 

Table 4 Results of Gao’s Optimization Performance Test 

 

Maximum  

Objective 

Value 

Function 

Evaluations 

at Max 

Value
1
 

Max SOC 

Allowable 

Min SOC 

Allowable 

Max 

Engine 

Power 

(kW) 

Max 

Motor 

Power 

(kW) 

Final 

Drive 

Ratio 

Number 

of 

Battery 

Cells 

DIRECT 39.64 310 0.84 0.25 83.1 20.2 3.90 245 

SA 40.37 400 0.78 0.22 82.4 21.9 4.00 311 

PSO 37.60 390 0.78 0.26 87.1 14.8 3.42 238 

GA 37.10 395 0.89 0.34 95.5 24.2 3.49 300 

 

                                                 

1
 Approximate value 
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When considering the profiles of each of the optimizations, it is important to remember 

that there are many operational parameters that define the methods that each of the algorithms 

invoke as presented in section 6.1.1.  The specific parameters used for each of the algorithms in 

previous work are unknown, making it difficult to create optimizations that perform in the exact 

same manner when comparing optimization performance.  In addition to unknown algorithm 

parameters, the nature of each of the algorithms to implement random searching allows for 

additional variation between results, even when optimizations are performed under identical 

conditions. 

6.1.4 Optimization Algorithm Consistency 

When considering the validation and performance characterization of optimization 

algorithms it is important to test for consistency.  The heuristic-stochastic methods implemented 

in the SA, PSO, and GA provides a chance for the algorithms to perform differently on 

subsequent optimizations even when identical design space, objectives, and constraints are used.  

Although the algorithms were initially classified based on performance in the preceding section, 

additional optimizations were performed using each of the algorithms on a different design 

simulation to observe repeated performance for consistency.  The DIRECT optimization 

algorithm is included in the following analysis simply for basis comparison.  The deterministic 

method implemented by DIRECT ensures that identical optimization search paths will be used 

on subsequent optimization runs of the same design space.  Therefore, the DIRECT optimization 

algorithm can be considered to have 100% consistency because the same solution will always be 

found for a given number of function evaluations of identical simulations and design spaces. 

Two primary observations are desired through the additional optimizations; the 

consistency of the final solutions as well as consistency of the overall optimization profile trace; 
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and does the algorithm perform with consistent advancement for continued iteration or simply 

get lucky occasionally?  Together these performance metrics allow for a qualification of each 

algorithm’s robustness to the complex design space.  Because of the stochastic nature of the 

algorithms there is a possibility that the algorithms may begin their search in a highly desired 

area, but also the possibility that they may begin in an undesirable design.  The examples where 

the algorithms begin in the poor design areas are of much more interest for performance 

comparisons.  If the algorithm can consistently identify more desirable designs when starting in a 

poor design area, it is more likely to achieve good designs in future efforts.  In contrast, an 

optimization that begins its search in a desirable design area, although it started there randomly, 

cannot be evaluated effectively for performance.  This consideration is made since each of the 

stochastic methods has equal probability of starting in the more desirable design locations if they 

use the same random number distributions.  The performance evaluations are based on the 

learning and advancement ability of the algorithms rather than initial design decisions. 
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Figure 11 Consistency of optimization algorithms for the same design space 

To achieve a usable representation of each algorithms consistency and performance, three 

identical optimization runs were performed on identical vehicle simulations.  The results of these 

runs are contained in Figure 11.  Observing the results of the consistency comparison shows that 

the Simulated Annealing and Genetic algorithms perform well and final designs have similar 

cost values across the same algorithms.  This performance is desirable especially when combined 

with different design paths taken for the three optimizations for each algorithm, each with 

varying speeds at which they approach the identified optimum.  As was discussed previously, 

even though the Particle Swarm Optimization has one instance that achieves a higher objective 

value than the other two, it can be seen that this design was located early in the search and may 
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be attributed to the random search methods.  In general the PSO algorithm performs poorly on 

the sample design problem. 

The validation of the optimization algorithms show that the Simulated Annealing 

algorithm performs the best both in terms of objective function value achieved and consistency.  

The Genetic Algorithm performs the second best with similar consistency but lower objective 

values identified.  Divided Rectangles shows perfect consistency but achieves the second lowest 

final objective function value over the number of function evaluations observed.  The Particle 

Swarm Optimization performs the poorest over the design space and function evaluations used in 

the validation.  Simulated Annealing will be used in the following sections because of its 

performance and consistency during the validation. 

6.1.5 Results and Discussion 

As an exploratory demonstration effort into direct comparison of hybrid vehicles through 

simulation optimization four vehicle architecture types (series, parallel and power split HEVs 

and a CV) have been optimized independently.  To perform this optimization, identical SA 

algorithms and cost functions were implemented in the optimizations of each architecture type.  

The SA algorithm was selected for this study based on previous observations of its performance 

in a similar design space.  Each of the vehicles feasible design space constraints included 

performance criteria such as zero to sixty mile per hour time, zero to eighty mile per hour time, 

forty to sixty mile per hour time, and maximum acceleration achieved.  The values of the 

performance criteria are provided in Table 5. 

Table 5 Performance Requirements used in sample optimization comparison. 

0-60mph 0-80mph 40-60mph Max Acceleration 

≤ 14sec ≤ 22sec ≤ 5sec ≥ 2.0 m/sec2 
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The ability for the simulated vehicle design to achieve the above criteria was combined 

with the additional cost function components.  The combined cost function included a 

summation of vehicle component costs as well as fuel costs incurred over a five year period 

based on the fuel economy calculated from each simulation.  Vehicle glider costs are considered 

constant and not incorporated into total cost.  The five year time frame was chosen to represent a 

common single ownership period, although the simulation could easily be modified to represent 

any time frame.  Each of the simulations was allowed to converge when the cost failed to 

improve more than $50 over 100 iterations and only if the SA algorithm temperature was below 

a certain level.  Although additional iterations may show improved solutions, the information 

available at the chosen convergence is sufficient to make preliminary analysis of the data to 

show the utility of using the methods outlined in this work.  Definitive optimization efforts for 

specific vehicle types and constraints may wish to increase the convergence criteria to allow for 

more possible iterations. 

6.1.6 Design Space Analysis 

One of the advantages of performing optimizations of the selected vehicles is increasing 

the amount of information about the designs within the provided design space.  By performing 

many simulations, with global optimization efforts covering a wide range of designs within the 

design space, interpretive mappings of the design space can be made.  With these maps it is 

possible to identify specific regions of the design space which may be desirable or undesirable 

relative to the defined objectives.  Additionally, preliminary observations of the design space 

mappings allow for quasi-validation of the necessity for utilization of the heuristic-stochastic 

optimization algorithm as opposed to other algorithms such as gradient based or statistical 
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optimizers.  Observations of nonlinearities, multiple minima and maxima, as well as an 

integration of the objective function as it is defined allow for a classification of the design space. 

 

Figure 12 Scatterplot matrix of feasible (black) and infeasible (red) designs for a parallel vehicle optimization 

The first step taken for analysis of the design space is to observe the regions of the design 

space searched by the optimization algorithm as well as identifying feasible and infeasible design 

regions within the designs space that affect the algorithm’s search paths.  Scatter plots of the 

observed design variables through the optimization for feasible and infeasible designs as defined 

by the performance constraints are provided in Figure 12.  The design points provided in this 

comparison show that the infeasible regions are located throughout the design space instead of 
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being restricted to limited regions for most of the design variables.  This scattering of infeasible 

designs throughout causes additionally complexity in the design space as there is a decreased 

probability of accurately being able to locate feasible designs solely based on previously 

evaluated design points. 

 

Figure 13 Consistency comparison for three Simulated Annealing optimizations 

By extending the analysis of the design space to include the two other SA optimizations 

performed for the consistency comparison provided in section Optimization Algorithm 

Consistency, we can observe the regions that each optimization searched.  As mentioned 

previously, all three of the algorithms achieved similar final objective function values as is 

shown in Figure 13.  Additionally, since the SA optimization shown in red in both Figure 13 and 
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Figure 14 achieved more desirable objective function values early in the search, it limited its 

search areas to those that exceeded its already found designs.  In comparison the other two SA 

optimizations shown in black and blue in Figure 13 and Figure 14 search much broader ranges of 

the design space before converging.  It should be noted that in Figure 14 many of the designs 

selected by the SA optimization indicated with black markers are covered by similar designs 

selected by the SA optimization indicated with blue markers. 

 

Figure 14 Design space search areas for Simulated Annealing optimization consistency comparison with colors 

representing different optimization runs. 

By applying a Neural Network model to the output data from the optimization of the 

parallel vehicle architecture discussed in the past design space analysis examples we can create a 
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relatively accurate (R
2
=0.93) depiction of the effects of different design variable combinations 

on the objective function value.  Two examples of “slices” of this design space mapping are 

provided in Figure 15 and Figure 16 which compare Number of Battery Cells vs. Final Drive 

Ratio vs. Cost and Engine Max Torque vs. Motor Max Torque vs. Cost, respectively. It can be 

identified graphically in these figures that there exist multiple contours contributing to multiple 

local minima and local maxima for some variable combinations and relatively smooth design 

spaces for other variable combinations.  

 

Figure 15 Contour selection of the parallel architecture design space for Number of Battery Cells vs. Final Drive Ratio vs. 

Cost 
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Figure 16 Contour selection of the parallel architecture design space for Engine Max Torque vs. Motor Max Torque vs. 

Cost 

Combining the analysis performed of the design space relative to areas searched, 

contours, and the objective function formulation we can make a qualitative characterization.  The 

objective function used for the parallel vehicle architecture optimization example discussed 

throughout the design space analysis uses constraints on the vehicle performance which classifies 

a vehicle as feasible if they meet the performance requirements and infeasible if they fail to meet 

the requirements, even infinitesimally.  This requirement classifies the objective function as type 

“1-H” according to Messac [125].  Together, the objective function classification, design space 

search areas, and the design space sample contours all contribute to validation that global 

heuristic and stochastic search methods should be applied.  Specifically, optimizations solely 

based on objective function gradient values may get stuck in local minima and unable to locate 

additional improved designs.  Gradient based optimizations would only be capable of achieving a 
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desirable design within the design space shown if it were lucky enough to begin its search near 

the desired local minima. 

6.1.7 Design Results Analysis 

With the increased amount of information available as outputs of the simulation 

optimization in contrast to common vehicle design methods, improved design analysis and 

decisions can be made.  Although concepts can be formulated quickly in conventional vehicle 

design engineering, decision making and continued iteration towards improved design can be 

very costly.  By including additional considerations and efforts up front in the design process 

through system engineering methods, reduced risk will result.  Through the simulation 

optimization techniques, desirable optimum designs within selected design space can be quickly 

identified as well as observing alternative designs in the immediate surroundings of the optimum.   

The search methods implemented by all of the optimization algorithms under 

consideration ensures that increased amounts of design searching will occur at identified 

desirable solutions.  Because of this increase in search around these areas, additional information 

is available near the identified optimum.  In addition to providing an optimal design, the 

alternative designs identified near the optimum can allow for flexibility in the vehicle design if 

there are any incorporated objectives and constraints after the initial needs analysis has been 

defined [71].  These alternative designs are an important design inclusion as they can alleviate 

the need to return to the needs analysis phase if any alternative designs can accommodate the 

modified objectives.  

6.1.7.1 Design Variable Effects Analysis 

A representation of the design variables used in each of the optimizations for the Parallel, 

Series, Power Split, Conventional Vehicle, and Fuel Cell architecture types are shown in Figure 
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17, Figure 18, Figure 19, Figure 20, and Figure 21.  Statistical information of the optimized 

vehicle is visible in these figures where the mean, standard deviations, and ranges of each design 

variable for a chosen cost range are represented.  The design variables were used in the 

optimizations were Maximum allowable Battery State of Charge (SOC Max), Minimum 

allowable Battery SOC (SOC Min), Maximum Engine Torque (T Engine), Maximum Electric 

Motor Torque (T Motor), Final Drive Ratio (FDR), Battery Power (Batt Pow), Battery Energy 

(Batt Ener), Power Split planetary Ratio (PRS), Continuously Variable Transmission starting 

Ratio (CVTR), and Fuel Cell Power (FC Power).  The SOC design variables were used as 

controller constraints to determine the range of usable batter depth of discharge during the charge 

sustaining operation.  Operational speed ranges for the EM and ICE are held constant through the 

optimization.  The number of design points included in each of the statistical representations is 

also provided in Figure 17, Figure 18, Figure 19, Figure 20, and Figure 21.  

 

Figure 17 Design variable values vs. cost for Parallel hybrid vehicle architecture. 
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Figure 18 Design variable values vs. cost for Series hybrid vehicle architecture. 

 

 

Figure 19 Design variable values vs. cost for Power Split hybrid vehicle architecture 
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Figure 20 Design variable values vs. cost for a Conventional Vehicle 

 

 

Figure 21 Design variable values vs. cost for a Fuel Cell Vehicle 

The specific designs variables that were selected as local minima by each of the 

optimizations are provided in Table 6.  It is important to note that the optimizations use 

continuous design variables; leading into the possible need to observe variability at constant total 

cost so that real components can be created if the chosen component design value is not currently 

available.  Changing design variable values may require a need to increase cost to create a “real” 
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vehicle.  As is visible in Figure 17, Figure 18, Figure 19, Figure 20, and Figure 21, some of the 

design variables have larger ranges of values at each of the cost ranges (shown by the range and 

standard deviation lines), and may be able to represent multiple configurations for relatively no 

change in component and fuel costs. 

Table 6 Comparison of Final Optimization Design Variable Selections 

Vehicle Total 

Cost  

($) 

Fuel 

(mpg) 

SOC 

Max 

(%) 

SOC 

Min 

(%) 

Engine 

Torque 

(Nm) 

Motor 

Torque 

(Nm) 

FDR 

(Ratio) 

Battery 

Power 

(kW) 

Battery 

Energy 

(kWhr) 

Parallel 7,682 63 65.9 7.0 184 80 4.99 45.7 2.32 

Series 9,569 >>100 94.7 19.1 1 406 3.02 53.6 4.31 

Power 

Split 
9,302 >100 84.2 16.7 65 212 4.37 40.2 4.58 

CV 3,827 39 NA NA 108 NA 10.5 NA NA 

FCV 8,3955 58
2
 NA NA 33

3
 230 5.37 24.8 3.08 

For the optimizations performed degradation of battery is not measured; limiting the SOC to 

certain ranges.  This is not considered for this study but can be implemented in a future study.  Increased 

costs associated with changing the allowable ranges of battery SOC can be observed in Figure 17, Figure 

18, and Figure 19.  It is also apparent from the high fuel economy of the chosen optimum Series and 

Power Split vehicle designs that a charge depleting vehicle has been created, or is trending towards 

creation as battery energy becomes greater than fuel energy used.  Even with the increased charge 

depleting operation of the Series and Power Split vehicles, their total costs are greater than that of the 

optimal Parallel vehicle identified and all of the vehicles are more expensive than the optimized 

Conventional Vehicle.  The optimized Fuel Cell vehicle has a price mid-range between the other vehicle 

designs but exhibits the added benefit of being insensitive to gasoline costs, which will be explored 

further in section 4.2.3 Design Sensitivity Analysis.  

                                                 

2 Miles per kilogram 

3 Fuel cell kW
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6.1.7.2 Design Sensitivity Analysis 

When discussing the results of any design effort, particularly in optimization, it is useful 

to understand the sensitivity of the final design.  As an example exploration of the sensitivity of 

the vehicles the results of a sensitivity analysis are presented for design selections of the optimal 

design variables as well as assumptions that are made.  Assumptions made for gasoline fueling 

costs as well as ownership time period are provided and analyzed for sensitivity to variation. 

To perform a sensitivity analysis on the optimal design variables, each design variable 

was modified independently of the others and re-simulated to observe the effects on the total 

vehicle costs for the study presented previously.  Design variables were observed for changes 

+1% and -1% of the optimally chosen values, results are shown in Figure 22, Figure 23, and 

Figure 24.  All operational constraints for the designs such as performance are preserved for the 

sensitivity analysis.  

 

Figure 22 Sensitivity of Parallel vehicle cost to optimal design variable 
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Figure 23 Sensitivity of Series vehicle cost to optimal design variable 

 

Figure 24 Sensitivity of Power Split vehicle cost to optimal design variable 

It can be observed in Figure 22, Figure 23, and Figure 24 that some of the design 

variables exhibit optimality conditions, such as most of the Parallel vehicle design variables and 

the Final Drive Ratio in the Power Split vehicle, where any change in design value causes an 

increase in the total vehicle cost.  In contrast, some of the observed sensitivity shows room for 

additional improvement.  The significance of the observed improvements is that the selected 

design variables are not global optimum but instead were optimal considering the convergence 

criteria.  Additionally, it should be noted in the Series vehicle sensitivity analysis that the values 

represented as changing +1% for total cost in fact are infeasible as the resulting costs are much 

greater than +1%.  Design variables which do not show values for the optimal sensitivity analysis 
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do not show significant sensitivity to 1% perturbation and may be candidates for alternative 

optimal designs. 

A sensitivity investigation provided in Figure 25 as an extrapolation of the five year cost 

ownership period optimization (at $3.00/gallon of gasoline) includes three and ten year periods 

considering fuel costs ranging from $2.00/gallon to $5.00/gallon.  Performing direct 

optimizations for different fuel costs and ownership periods may yield different answers due to 

differing proportional cost contributions.  The sensitivity analysis provides a basis for 

comparison and further understanding of the effects of the design as it has been defined.  Figure 

25 shows a relative cost/benefit interaction for owners of the vehicles if they are to sell their 

vehicle early or keep it for longer (assuming constant 12k miles a year of travel).  For example, 

the total costs of the Parallel and Series type vehicles invert as the fuel costs reach $4.00/gallon 

for a five year ownership period.  Conventional vehicles are shown to be the most sensitive to 

both ownership period and fuel costs as the slopes and intersects vary the greatest.  In contrast, 

Series vehicles show very little sensitivity due to low fuel consumption and Fuel Cell vehicles 

are insensitive to gasoline prices for this representation. 

 

Figure 25 Sensitivity of chosen optimum designs to ownership period and fuel costs. 
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Sensitivity of additional considerations such as inflation rate and component costs can be 

performed in similar manners to those provided above but are not provided in this study.  In the 

case of component cost models, relative sensitivity of each optimal component selection can be 

observed in the figures provided in the previous sections, where components with higher cost 

contributions are likely more sensitive to variation in component cost assumptions. 

All of the analysis performed on the sample vehicles, through simulation optimization, 

shows the utility of utilizing the optimization tools with well formulated cost functions.  Future 

efforts to improve the control strategies and further refine the design variables, constraints, and 

objectives selection can result in increased understanding of any complex hybrid vehicle system 

and design space.  This aids in decision making.  The specific vehicle design results found 

through the vehicle optimizations are not intended to represent finality for all vehicles of that 

architecture type, but simply to allow for a comparison in designs for the constraints formulated 

in this study. 

6.1.7.3 Expanded Optimization Convergence for Alternate Vehicle Model 

Although this section has explored simulation optimization using multiple algorithms, the 

optimality of the identified optimized designs is unknown.  To improve upon the previously 

obtained knowledge base, an additional set of optimizations will be performed while allowing 

the algorithms to perform a much more thorough search of the design space. 

Previous optimization efforts allowed the algorithms to perform 500 function calls for 

simulating a HEV with a parallel architecture.  In this section, a parallel HEV will also be used, 

but with different control strategies, design space limitations, and design variables.  The specific 

differences between the two vehicle models and cost functions are inconsequential as the 

objective of this research is to identify optimization algorithms that are robust to automotive 
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simulation and analysis methods.  For this section, the four previous investigated optimization 

algorithms will be allowed to perform 50x more iterations, with a maximum of 25,000 iterations 

per optimized vehicle.   

Each algorithm is applied to the same vehicle model and run for three separate 

optimizations to allow for both performance and consistency comparison.  As mentioned in the 

previous sections, DIRECT is only run once since it is a deterministic algorithm.  The results of 

the simulation optimizations are presented in Figure 26.   

 

Figure 26 Extended optimization run (function calls on logarithmic scale). 

It can be observed in Figure 26 that once again Simulated Annealing (SA) is able to 

quickly and consistently identify optimized designs.  The Genetic Algorithm (GA) is also able to 

achieve high performance but is less consistent and takes more functions calls than SA.  When 

observing Figure 26 it is important to note that a logarithmic scale is used for function calls (x-
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axis), demonstrating that it takes approximately 2,000 function calls for GA to reach some of the 

same solution space as SA.  For this model and cost function formulation, DIRECT is able to 

quickly take the lead in performance (~100 function calls) but falls behind shortly thereafter 

(~200 function calls) as it’s deterministic approach requires it to investigate more ‘poor designs’ 

instead of focusing more on low-cost regions of the design space. 

6.1.8 Optimization Algorithm Conclusions 

Vehicle design is a resource intensive process; incorporating hybridization introduces 

additional design complexities.  By applying systems engineering methods such as objective 

identification and optimization up-front in the design process it is likely that a desirable solution 

will be achieved with minimal costs in both time and effort.  Through the use of defensible 

vehicle system simulation, aggregate objective cost functions as system engineering tools can be 

incorporated to build a better understanding of the design space.  Although implementing 

simulation optimization into vehicular design is not a new concept, applications and utility have 

been expanded to include additional areas which increase understanding and ability to implement 

complex designs.  A few of the possible assessments that can be taken from a simulation 

optimization comparison have been provided for sample vehicle architectures, control styles, 

objectives, and constraints.   

A set of vehicle design tools including models, simulations, and optimizations have been 

presented and explored: providing benefits to future design efforts. Between the four 

optimization algorithms tested, Simulated Annealing and Genetic Algorithm optimization show 

more promising performance but function differently within different design efforts. 

With proper models, simulations, optimization algorithms, and cost functions almost any 

vehicle system and design goals can be represented. Future work can be developed to assist 
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designers by analyzing the complex design interactions.  This provides not only a reduction of 

the resources necessary to design an automobile, but also improves the implementation of design 

objectives in the design construction process. 

6.2 Task 2.2 Quantify the Uncertainty in Vehicle Simulation 

The design of vehicles, particularly hybrid and other advanced technology vehicles, is 

typically complex and benefits from systems engineering processes.  Vehicle modeling and 

simulation have become increasingly important system design tools to improve the accuracy, 

repeatability, and flexibility of the design process.    In developing vehicle computational models 

and simulation, there is an inevitable compromise between the level of detail and the 

development/computational cost.  The tradeoff is specific to the requirements of each vehicle 

design effort.  The assumptions and detail limitations used for vehicle simulations lead to a 

varying degree of result uncertainty for each design effort.  This paper provides a literature 

review to investigate the state of the art vehicle simulation methods, and quantifies the 

uncertainty associated with components that are commonly allocated uncertainty.  By 

understanding the inaccuracies and inconsistencies within these studies, improved simulation 

methods can be proposed.  The consequences or accuracy of common assumptions are 

determined which will aid future simulation efforts as well as provide metrics for evaluating the 

appropriateness of past efforts.  The results of this paper will aid future simulation design efforts 

and can begin to define standards by which simulation design studies are conducted. 

6.2.1 Introduction to Uncertainty in Vehicle Simulation 

Computational modeling continues to play an increasing role in the automotive design, 

development, and evaluation process.  As vehicle technologies advance at a quick rate, 

researchers and manufacturers are challenged with not only keeping up with the state of the art, 
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but also predicting and allowing for future design implementations.  Computer based simulation 

plays an important role in supporting advancement of vehicle technology by assisting in systems 

engineering design processes.  As the level of detail included in vehicle models increases, so 

does the accuracy of the results; but commonly at the cost of increased computational or system 

development time. 

Many modeling tools have been used to simulate a wide range of vehicle types, 

technologies, and operational characteristics.  Different objectives of these simulations can 

support different levels of detail and therefore acceptable uncertainty in the results.  It is a 

requirement of the simulation end-user to account for the uncertainty that exists within the 

systems considered and to understand how uncertainty will contribute to the conclusions of any 

particular study.  Simulations are commonly designed to represent a specific functional 

characteristic of the vehicles well, but can commonly be misconstrued to represent a wider range 

of operations than originally intended or validated.  As these simulation tools continue to see 

more use in the academic and industrial automotive design world, they are subjected to more 

rigorous considerations and applications.  The demand for high level details is pushed by an 

increase in systems engineering design methods that rely heavily on long design explorations 

through computational based models. 

Uncertainty exists in all simulations.  The magnitude of this uncertainty must be 

considered in comparison to the breadth of the results.  A number of steps can be taken to 

evaluate an appropriate method for defining the uncertainty and associating it correctly to the 

simulation outcomes.  The first step in determining uncertainty in a simulation is to classify the 

type of study being performed.  From the type of study performed, objective outputs should be 

defined.  The combination of study and objective type guides the study towards a set of 
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simulation tools that have been specifically designed for that application (whether they exist or 

not).  The second step of determining uncertainty is to define the systems under consideration 

and their respective data flows (inputs and outputs).  The third step requires a detailed evaluation 

of the equations, assumptions, and parameters implemented in the simulation.  The final step 

requires a validation of the system relative to the type of system and study originally defined.  

Only after each of these steps have been completed by the simulation developer and approved by 

the simulation user can the uncertainty of the vehicle simulation be accurately quantified.  Each 

of these steps will be discussed in further detail in the following sections. 

6.2.2 General Purpose of Automotive Design Studies 

The first step in evaluating uncertainty in vehicle simulation studies is to determine the 

type of study being performed.  The type of study can most easily be classified based on its 

purpose.  Within each of the study types, a different set of considerations must be applied to the 

uncertainty characteristics.  Simulation studies can be classified into three main types: 

 Technical rankings 

 Representations of futures 

 System development and exploration 

As a subset of each of the three simulations types listed, simulations studies can be 

performed based on optimization techniques, design of experiments (DoE) parametric methods, 

or fixed-point formulations [16].  Optimization techniques can include a variety of algorithms 

ranging from linear programming to stochastic algorithms [6, 17].  Optimizations commonly 

define an objective and perform simulation iterations to approach the objective within a specified 

set of solution requirements.  DoE parametric methods operate as design space examination 

approaches that provide a uniform evaluation of a specified range of parameters, inputs, or 
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assumptions.  Optimizations commonly differ from DoE studies as the number of simulation 

iterations increases, wherein optimizations continuously focus their design explorations and DoE 

studies remain consistently distributed.  Fixed-point formulation studies rely on one or a few pre-

determined design space points and usually include much fewer simulation iterations.  Fixed-

point studies most commonly apply to simulation of a pre-specified system with no design 

exploration.  

Technical ranking (TR) studies consist of simulation efforts aiming to evaluate vehicle 

options in relation to one another.  One or many objective evaluation metrics such as fuel 

economy, system efficiency, total cost of ownership (TCO), or greenhouse gas emissions (GHG), 

have commonly been used in previous vehicle simulation studies [5, 9,106, 138].  As with each 

of the three study types, TR can be performed as an optimization, DoE, or fixed-point study.  

Optimization TR studies consist of multiple independent optimization of systems such that 

optimal designs in different categories can be compared.  DoE TR studies are performed 

similarly to optimization TR studies but with a more generalized design space consideration.  

Fixed-point TR studies intend to compare specific vehicle components or designs such as 

comparing a specific conventional gasoline vehicle with its matching hybrid model.  The TR 

studies can be particularly sensitive to parameter value specifications but less sensitive to model 

structure.  Details of these sensitivities and sources of uncertainty will be discussed in later 

sections. 

Representations of futures (RoF) studies intend to provide predictions of future 

technology.  These studies can exist in a variety of subsets including economic feasibility, 

technology limits, technology goals, policy fulfillment, and environmental and social interaction 

to name a few [18, 19].  RoF studies rely heavily on time sensitive predictions that are proposed 
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to represent a projected future scenario.  This type of study usually exists with an initial base 

simulation for the state of the art (SoA) technology and extends to a future time.  Validation of 

RoF study can only accurately be performed as time progresses, but are commonly tested based 

on historical cases.  RoF studies are asserted to be most sensitive to uncertainty in the 

assumptions made about future scenarios and definition of the technology SoA. 

System development and exploration (SDE) studies aim to investigate the function of the 

vehicle or its subsystems.  SDE studies can include such factors as controller development 

strategies, component design specifications, trade-off analysis, and scenario implementation.  

The scenario implementation discussed in the SDE section differs from scenarios from the RoF 

section as SDE scenarios are based on an available operational environment test case (i.e. 

different drive cycles) and RoF scenarios are based in a future condition.  SDE studies can 

commonly be associated with Hardware in the Loop (HIL) development and testing.  Model 

structure, including levels or detail, and equation specification, are much more sensitive sources 

of uncertainty for SDE studies than in the other two study types discussed. 

6.2.3 Simulation Tools 

Simulation studies can be performed using a number of commercially available and 

custom vehicle simulation tools.  In most cases, each specific tool has been created with the 

intent of fulfilling a design study type need, but there are alternative options for combining 

multiple tools or developing a custom tool to meet study specifications.  The methods used to 

develop different simulation tools differ in many ways including numerical solvers, direction of 

information flow, level or detail, organizational structure, and simulated system type.  A few of 

the available simulation tools available as well as their background formulations are detailed in 

this section. 
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A multitude of simulation tools are currently available for design studies.  One of the 

primary differences between these tools is the direction of information flow, or causality.  

Simulations for vehicles can exist in three configurations: forward facing, backward facing, or 

non-causal (acausal).  All three of these simulation types operate in a time progressive manner, 

the direction of information flow refers to data within the model. 

Forward facing simulations of vehicle systems refers to a model where controls and 

operation of the subsystems operate in a time-progressive feedback manner.  For example, a 

forward facing vehicle simulation of an electric vehicle driving on a dynamometer schedule 

would follow the information path shown in Figure 27.  A dynamometer drive cycle velocity 

demand is fed to a system driver that provides a desired torque or throttle demand to the 

controller.  The controller evaluates system limits and transmits the driver demand to the 

propulsion unit.  The propulsion unit supplies tractive effort based on its limited operating 

conditions as well as calculation of resource/energy use.  The resulting vehicle velocity is fed 

back to the driver and deviations can be accounted for in future commands.  Forward facing 

simulations are generally representative of physical vehicle control systems, and are commonly 

used for controls development and HIL testing. 

 

Figure 27 Forward facing simulation flow diagram 
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Backward facing simulations of vehicles have a similar general structure as forward 

facing simulations, but with different information flows.  In backward facing simulations, shown 

in Figure 28, it is assumed that a propulsive unit meets drive commands, and energy use can be 

calculated from the required tractive effort.  Backward facing simulations are typically less 

computationally expensive than forward facing simulations due to a lack of information feedback 

and complex controls.  It is more difficult for backward facing simulations to calculate maximum 

vehicle performance, such as maximum acceleration, because the simulations are not designed to 

predict operation of the components at their limits. 

 

Figure 28 Backward facing simulation flow diagram 

Non-causal simulations use a combination of forward and backward facing causality 

information flow.  In some systems this can be implemented through switching calculation type.  

For example switching information can occur when a backward facing simulation reaches an 

event in the vehicle simulation where a required component operation is unavailable (e.g. a 

motor reaches its peak torque).  In this case the drive cycle may not be met and continued 

simulation will require additional controller functionality to get the vehicle operation back on 

track – which occurs in a forward facing manner until normal operation resumes.  An alternative 

non-causal simulation tool may have a combination of forward and backward facing calculations 
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simultaneously.  For example, controllers send commands in a causal information direction, but 

power flows through an epicyclical gear (planetary) in multiple directions. 

Each of the simulation tools available differs in calculation methods and considerations.  

Table 1 provides a compiled list of some of the simulation tools, the developer of the 

simulations, and a little information about the simulation methods.  Tools should be selected 

depending on the type of simulation being performed.  Additional aspects of each of the 

simulation tools and how they relate to the uncertainty of the vehicle simulations will be 

described in later sections. 

6.2.4 Types of Uncertainty 

Uncertainty has classically been defined in many different ways depending on the 

systems that provide and measure the uncertainty [37].  The primary focus of this section is to 

understand the uncertainty that exists in vehicle simulations studies.  Vehicle simulation studies 

most directly relate to uncertainties in simulation and computation methods, data acquisition 

from physical systems, and equation formulation.  Secondary sources of uncertainty such as 

environmental random conditions, human error, and future forecasting must also be included but 

interact with the system at a higher level and can be ignored for some studies. 

Uncertainty in vehicle simulations has been classified into three groups [26]: 

 Type-1 uncertainty: Variability of input or parameters.  Type-1 uncertainty is usually 

handled by providing distribution functions of the defined inputs and parameters when 

available. 

 Type-2 uncertainty: Similar to Type-1 uncertainty where variability exists in the inputs 

and parameters but without a known distribution.  Fuzzy logic and evidence theory have 

been used for solutions.  
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 Type-3 uncertainty: Uncertainty from an unknown process.  This type of uncertainty is 

the most difficult to find solutions for. 

Uncertainty can also be classified as either aleatory or epistemic [37].  Aleatory 

uncertainty pertains to information that can be represented by a distribution; epistemic refers to 

completely unknown factors.  Type-1 uncertainty can be classified as aleatory, Type-3 

uncertainty can be classified as epistemic, with enough testing it is likely that Type-2 uncertainty 

can also be described using a distribution of data; classifying it in the aleatory uncertainty.  

Measuring error and uncertainty should include an understanding of the accuracy and 

precision of the data sets, wherein accuracy represents the measured difference between a 

predicted and measured value, precisions compares the distribution of the predicted and 

measured values.  Models and simulations can be accurate without being precise or vice-versa.  

The measures of accuracy and precision can aid in identifying the sources of uncertainty.  For 

example, an inaccurate but precise simulation may account for input distributions well, but use a 

parameter value that deviates from the value that should be used. 

Control and dynamic systems define uncertainty by a difference between models and 

reality [37].  Error is the measure of the difference between some observed value and its 

prediction from a model or simulation.  The uncertainty of simulations can be determined 

through combining the input parameter distributions, validation error, numerical approximations, 

and the other uncertainty types as presented in the following sections of this paper.   

6.2.5 Sources of Uncertainty 

Uncertainty in vehicle simulation studies usually occurs from multiple sources.  It is the 

responsibility of researchers to identify the primary sources of uncertainty in the simulation 

methods they are using and ensure that the uncertainty is properly accounted for in the 
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simulation and results.  A few of the identifiable sources of uncertainty include: system 

dynamics, numerical methods, parameters, assumptions, and validation criteria [38].  These five 

sources of uncertainty each fit into different portions of a simulation study as shown in Figure 

29. 

 

Figure 29 Sources of uncertainty in vehicle simulation. 

6.2.5.1 System Dynamics Uncertainty 

Real world systems are highly dynamic.  As these systems are modeled in a 

computational domain considerations must be made as to the frequency of solving different 

system equations.  Continuous time step and fixed time step computational solvers have been 

used in vehicle simulation studies and will be discussed in more detail.  Before selecting which 

solver should be used, an understanding of the rate of variable change in dynamic systems must 

be considered. 

In the real world, changes in systems occur at an infinitesimally small time scale.  A 

common way of considering these systems is to make measurements of the systems based on 

common unit measurements.  For example, even though ambient temperature can be measured to 

as many significant figures as the measurement device allows, for vehicle systems only two 

significant figures are commonly used because the performance of most automotive systems is 

insensitive to small changes in temperature.  This means that the computation of the ambient 
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temperature in a vehicle system simulation only needs to occur such that changes can be 

accounted for at the specified level of detail.    

Table 7 dynamic time scales for fuel cell vehicles systems and hybrid vehicle 

Fuel Cell 

Vehicle System 

Dynamic Time 

Scale 
 HEV System 

Dynamic Time 

Scale 

Electrochemistry 1xE-19 seconds  Pedal position 1xE-3 seconds 

Hydrogen and 

air manifolds 
1xE-1 seconds  Vehicle speeds 1xE-1 seconds 

Flow control 1xE0 seconds  ICE speed 1xE-2 seconds 

Vehicle inertial 

dynamics 
1xE1 seconds  EM speed 1xE-2 seconds 

Cell and stack 

temperature 
1xE2 seconds  EM torque 1xE-2 seconds 

 

One way of determining the level of detail considered in system dynamics is to evaluate 

the compounded effect on computational solutions.  Significant figure inclusion should be 

determined such that effects can be measured in the outputs and the magnitude of the uncertainty 

is less than the dynamic detail.  For example, measuring the same ambient temperature 

introduced above to five significant figures is unnecessary if the uncertainty occurs up to one 

significant figure.  Table 7 provides a few suggested dynamic time scales for system simulation 

from fuel cell [39] and hybrid electric vehicles [40].  Dynamic time scales should be determined 

for each calculation made in a simulation.  As an example, a DC/DC converter operating at 50 

kHz should not be modeled to provide dynamic output at 1Hz.  Some subsystem time scales are 

more immediately identifiable such as Internal Combustion Engine (ICE) torque slew rates and 

switching frequencies, where others such as electrochemical reaction rates and thermodynamic 

interactions can be complex to implement without high levels of detail. 
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Figure 30 Comparison of simulation time step effect on power requirements. 

Uncertainty occurs in dynamic vehicle simulation studies when the time scale of the 

systems is not accounted for.  If the simulation calculation occurs at a slower rate than the 

dynamics of the system, then functional details can be lost.  Loss of detail in the vehicle 

simulation leads to uncertainty.  For example, if electric motor (EM) torque output is simulated 

at 0.5 Hz and the motor is capable of performing at 1 Hz, then important operational 

characteristics of the EM system may be absent from the simulation results.  Figure 30 shows a 

sample comparison of a typical compact vehicle simulated on the FUDS 505 drive cycle at 

different frequencies (1Hz base frequency).  Table 8 shows the results of the vehicle simulation 

from Figure 30.  It can be seen that removing dynamics from the system greatly influences 

energy use of the simulation, but does not affect the total distance traveled as much. It should be 

noted that both the energy and distance observed are calculated by cumulative integration of 

other values.  The difference in dynamic influence is directly related to the rates at which each 

sub-value changes (power and velocity).   
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Table 8 Comparison of dynamic frequency effects on energy use and distance traveled. 

Dynamic Frequency 
Energy (kWh) Distance (km) 

Value Error Value Error 

1 Hz 0.4879 - 5.77 - 

0.5 Hz 0.2261 54% 5.77 0.01% 

0.2 Hz 0.0733 85% 5.79 -0.31% 

0.1 Hz 0.0325 93% 5.81 -0.78% 

 

A simplified comparison of simulation uncertainty incorporating system dynamics and 

simulation calculation causality is shown in Figure 31.  The uncertainty shown in Figure 31 is 

representative of validation error values found for simulation tools in each category when 

evaluating the prediction of simulated vehicle MPG.  It can be seen in Figure 31 that as the 

complexity of the system dynamics and the model increases, the simulation uncertainty 

decreases, but at a decaying rate.  The decaying rate exemplifies the diminishing returns on 

accuracy for increased simulation tool complexity. 

 

Figure 31 Comparison of relative uncertainty associated with simulation methods for MPG. 
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6.2.5.2 Numerical Methods Uncertainty 

The numerical methods used to define a vehicle simulation can greatly affect the 

uncertainty of the solutions.  The specific numerical methods discussed in this section pertain to 

the numerical approximation of physical systems as well as the simulation solvers used to 

perform the computations [41]. 

Numerical approximation of real systems must occur in vehicle simulations.  On a broad 

spectrum, any equation used to describe a physical system is in some way an approximation.  

Equations are defined for systems based on an inability to disprove, not on the ability to prove.  

Equations ranging from Kirkoff’s Laws for electrical systems to aerodynamic drag are all 

approximations of real systems and have some inherent uncertainty, albeit usually very small.  

Progressing beyond physical system equations, it is not uncommon for vehicle system models to 

incorporate additional system numerical approximation such as quasi-static lookup tables and 

functional surface fits.  When using these approximations the data supplied to formulating the 

initial approximation is finite and unable to represent every possible operational state of the 

system.  For example, lookup tables are commonly used for efficiency approximation of ICE 

operation.  Data points are supplied from test benches at finite points along predetermined 

dimensions such as speed and load.  Although the data points may be considered to have low 

uncertainty based on the data acquisition method used, the operation of the ICE at conditions that 

lie between data points provide some level of uncertainty.  It is usually the case that a very 

limited number of data points are supplied to these maps that immediately reduces the accuracy 

of the simulation, as data located between measured points is probabilistic.  Increasing the 

density of the data points taken can improve accuracy but can never absolutely match the 

operation of the physical system even in steady state considerations.  A study performed by 
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Echter [42] compares test data with simulated engine fuel maps for large diesels.  Using only the 

engine subcomponents of the model, and feeding the test data engine speed and load directly into 

the simulation, fuel consumption (L/100km) errors averaging 2.7% up to 7.7% were found.  

These errors have been associated directly with missed system dynamics due to the numerical 

approximation of the system. 

As was mentioned previously in this paper, simulation tools can use fixed or continuous 

time step equation solvers.  Fixed time step solvers take predefined advancements in simulation 

time space and calculate solutions to the modeled equations at each progressive state.  Variable 

time step solvers have the ability to dynamically calculate the necessary time step required to 

complete a calculation based on the dynamic response of the system.  Systems and events that 

exhibit fast response, such as in hydraulic or electrochemical systems, can be calculated with 

appropriate computation when necessary since the time step taken is continuously changing to 

either increase or decrease the time scale considered.  Variable time step solution methods 

commonly require increased amounts of computation when compared to fixed time step systems, 

although limits to the scale of step taken can be applied to reduce this [43]. 

An example of a widely used vehicle simulation tool is Matlab/Simulink.  Simulink has a 

variety of built in solver options including fixed and continuous time steps.  Within the 

continuous time step simulation solvers, tests have been performed and recommendations made 

as to which systems the solvers should be used in.  A simple comparison of the solvers available 

in Simulink is shown in Table 9 [40].  Many of the solvers available for vehicle simulation have 

calculation error tolerances that can be set by the user.  These tolerances are used to determine 

calculation convergence at each time step for variable time step simulations.  Simulations should 
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be considered to always have uncertainty greater than the calculation error tolerance because of 

the compounding effect of solver error and other simulation uncertainty sources. 

Table 9 Available Matlab/Simulink solvers and description of use. 

Solver 
Problem 

Type 

Order of 

Accuracy 
When to Use 

ode45 Non-stiff Medium 
Most of the time. This should be the first solver to 

try. 

ode23 Non-stiff Low 
For problems with crude error tolerances or for 

solving moderately stiff problems. 

ode113 Non-stiff Low to high 
For problems with stringent error tolerances or for 

solving computationally intensive problems. 

ode15s Stiff Low to medium If ode45 is slow because the problem is stiff. 

ode23s Stiff Low 
If using crude error tolerances to solve stiff 

systems and the mass matrix is constant. 

ode23t 
Moderately 

stiff 
Low 

For moderately stiff problems if you need a 

solution without numerical damping. 

ode23tb Stiff Low 
If using crude error tolerances to solve stiff 

problems. 

 

To demonstrate the numerical uncertainty found using different numerical solvers, a 

Matlab/Simulink demo simulation was used.  The demo simulation was developed to represent a 

HEV powertrain.  The EM was observed operating over 100 seconds of a FUDS drive cycle for 

three different solvers.  The energy use results of the simulations are shown in Table 10.  

Although the errors are fairly low, it should be noted that these are integrated values.  The errors 

present in the example simulations would continue to propagate as longer dynamic simulations 

progress.  The ode113 solver calculated value is set as the base value because of its claim for 

high accuracy. 
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Table 10 Energy use of an EM using different numerical solvers. 

Solver Amp-Seconds Difference 

ode113 6.5614 - 

ode45 6.5626 -0.019% 

ode23s 6.5145 0.714% 

 

6.2.5.3 Parameter Definition Uncertainty 

Depending on the study, uncertainty can come from a variety of sources.  Parameters 

used in a simulation have error resulting from the measurement of the representative vehicle (i.e. 

mass or frontal area). Also, evaluation metric parameters such as component costs or upstream 

GHG emissions may contain error.  Identifying errors within simulation, after simulation, or in 

both situations is a necessary task to quantifying the total simulation study uncertainty [16, 44].  

Sources or parameter uncertainty can occur through the measurement of the parameter and in the 

definition and implementation of the parameter. 

Parameter uncertainty that occurs on the input side of the simulation is associated with 

the definition of parameter values to be used in the simulation [45].  This source of uncertainty 

can arise from an inability to accurately measure a desired parameter, such as a fluid heat 

capacitance, without allocating for a wide range of assumptions.  These types of parameter 

definitions are commonly prescribed at standard operating conditions for the vehicle system, but 

must be identified as sources of uncertainty, particularly if the system encounters non-standard 

operating conditions.  Additionally, there is a source of uncertainty when taking measurements 

of desired parameters in that the specific measurement may not apply correctly to future systems 

[44].  An example of this can be presented though manufacturing inconsistencies of hybrid 

vehicle systems.  When automotive battery packs are manufactured, individual cells are 

combined to form a completed unit.  Due to manufacturing methods and material variation, the 
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exact power and energy capacity of each cell may be slightly different.  To minimize cell failure 

due to imbalances within the pack, each cell is sorted according to its performance and alike cells 

are combined to form a battery pack.  This method attempts to minimize inconsistency between 

successive battery pack characteristics, but the inconsistency cannot be eliminated. 

Implementation of parameters in vehicle simulation studies is a source for uncertainty in 

addition to the formulation of the parameters through measurement.  Improved methods of 

allocating uncertainty exist in parameter definition such as applying a distribution to a given 

parameter.  But, if the applied distribution is not used in the simulation study the uncertainty of 

the results increases.  Approximations are not uncommon in parameter definition, but should be 

used sparingly and impacts should be measured.  One common source of approximation 

uncertainty for parameters is scaling functions [46].  Many vehicle simulation tools allow for 

subsystem components to be scaled based on a defined factor, for example EM power scaling.  

The amount of uncertainty propagated through the simulation is sensitive to the inclusion of 

important factors in the scaling approximation.  In the previous EM example where performance 

maps are used, if the motor power rating is scaled, correct peak torques, corner speed, efficiency, 

mass, and inertia calculations should also be performed to determine new operational 

characteristics.  Although these scaling factors can be helpful in approximating a range of 

systems, as was discussed in the Numerical Methods Uncertainty section, uncertainty increases 

as data approximations are used further away from the measured values. 

As an example of the effects of input parameter uncertainty, a midsized HEV was 

modeled using Autonomie simulated over the HWFET drive cycle.  With the model, three 

simulations were run using the default ICE power and scaled powers 5% greater and 5% less 

than the default value.  The resulting changes in MPG, CO2 emissions, and electricity use are 
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shown in Figure 32.  For changes in ICE power of 5%, all of the observed simulation results 

changed less than 1.5%; each with different magnitudes depending how sensitive the calculation 

is to the input parameter under consideration.  Parameter uncertainty for model inputs can be 

accounted for most easily by including parameter distributions.  Delorme [18] uses the input 

parameter distributions in a RoF studies to compare possible future fuels for passenger vehicles, 

accounting for uncertainty in the prediction of future technology scenarios. 

 

Figure 32 Autonomie input parameter (ICE Power) variation effects. 

6.2.5.4 Uncertainty Associated with Assumptions and Simplifications 

A few of the sources of uncertainty in vehicle simulations associated with assumption 

include constraints, initial and boundary conditions, and stochastic environments.  To improve 

simulation, boundary conditions can be applied to vehicle simulation subsystems and 

components to either limit operation based on control strategy, or to enforce physical limitations 

that have been observed during data acquisition but have not accurately been modeled.  An 

example of boundary conditions includes ICE fuel injection rates.  In vehicle simulations without 

highly detailed ICE models fuel rate functions or quasi-static maps have been used [42].  To 

account for situations where the engine may behave differently than standard conditions allow, 



76 

 

such as over speeding or rotating backwards, constraints are applied to mitigate inaccuracy [44].  

These constraints may not be physically accurate of the system being modeled. 

Another type of uncertainty associated with constraints assumptions involves the design 

space.  When DoE and optimization design studies are performed there is a possibility that limits 

will be applied to the allowable range of design variables [6].  Occasionally these assumed 

limitations can have functional requirements, such as having an ICE with a negative power 

rating, but other times they may intend to limit the scope of the design space exploration such as 

not considering an ICE greater than 400 kW.  Uncertainty in design space limitations of the 

second type can be identified particularly in RoF and TR studies because possible desirable 

designs may be excluded from the study unintentionally. 

Initial conditions and simulation environment assumptions affect study uncertainty 

similar to parametric definitions, but differ in application due to increased amounts of 

randomness.  One common example of this type of uncertainty lies in vehicle-road interactions.  

Many vehicle simulation design studies assume a uniform road surface with ideal friction 

interactions.  More advanced vehicle models attempt to simulate road slip conditions such as 

uniform pavement, gravel, or even ice but require higher computational costs due to increased 

detail.  Exclusion of stochastic road environment conditions has been shown to cause certain 

amounts of uncertainty in many of the design objectives such as fuel economy, controls system 

design, and system robustness.  In reality minor imperfections cause systems such as traction 

control to function that can greatly change vehicle operational characteristics.  External 

dynamics such as cornering, which cause power distribution changes in the differential, are 

usually neglected.  Most simulations are assumed to occur in a straight line over drive schedules 

that are not representative of realistic vehicle operation. Gopal et al shows with multiple 
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simulation tools that curved vehicle paths can reduce vehicle fuel economy (MPG) by ~25% for 

the same operating speed [27]. 

6.2.5.5 Validation Criteria Uncertainty 

An area of uncertainty that can be easily overlooked is the evaluation of vehicle 

simulations with validation criteria.  Whether validation of a simulation is considered at the 

subsystem component of vehicle system level, uncertainty must be considered on both the model 

side and the physical system side [41].  The uncertainty that can be associated with data 

acquisition from physical systems was already discussed briefly throughout previous paragraphs.  

Validation criteria uncertainty sources are more concerned with the methods of validation.  

When performing simulation validation, it is not enough to just compare simulation and 

test data graphically.  Graphical comparisons of data sets may appear reassuring to an observer, 

but offer no mathematical basis for an accurate validation.  Advancing slightly beyond simple 

graphical comparison, linear fitting of simulated and test data correlations can offer a metric for 

measuring accuracy and precision of simulation tools.  Statistical t-tests and p-value analysis 

offers another metric for analysis.  Rebba et al [47] suggests the use of Bayesian methods to 

ensure statistical comparisons between test and simulation data that is defensible.  Very few of 

the vehicle design simulation tools and studies examined as background for this paper included 

statistically defensible validation methods beyond visual comparison. 

The method of simulation validation performed should always be associated with the 

objective outputs of the simulation study.  For example, if a study is focused on evaluating fuel 

economy of different vehicle designs, then the simulations should be validated through 

comparisons of simulated and real vehicle fuel economy.  Brooker et al [30] show validation 

performed for NREL’s Future Automotive Systems Technology Simulator (FASTSim) using a 
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variety of vehicle architectures, allowing for extensibility of applying the simulation tool to 

many vehicles.  All except for one of the vehicle validated for FASTSim produced fuel 

consumption errors within 10% as shown in Figure 33.  As another example, if a design study 

aims to conduct control system development, then validation should be performed on the 

physical system relative to changes in control strategy.  For a controls system validation, it is 

likely that time and event specific operation should be validated instead of only end-of-test 

accumulated values such as fuel economy.  Mismatching of simulation validation criteria with 

study objectives can be identified as a major source of uncertainty in many studies.  For example, 

the vehicle modeling and simulation tools ADVISOR and PSAT have been developed and 

validated with vehicle fuel economy studies [22, 34, 48].  Researchers and other vehicle 

simulators continue to perform studies on vehicle control system development with the 

simulation tools listed above, without proper validation of the simulations representing their 

systems. 

 

Figure 33 Validation of FASTSim for fuel economy (image courtesy Aaron Brooker, NREL). 
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A second validation criteria area of uncertainty lies in the correctness of the criteria.  A 

prominent example is the simulation of vehicles over limited drive cycles.  Studies that conduct 

vehicle simulation over drive cycles must be careful to consider that the results are only 

representative of the drive conditions simulated.  Thus, a study performed for vehicles operating 

on a city driving schedule cannot claim that the results are representative for all operating 

conditions.  Additionally, the validation of simulation using driving cycles is difficult because of 

experimental uncertainty including human error.  Unless validation vehicle systems are tested 

solely with HIL and computer controls, dynamometer or real world driving should be considered 

a source of uncertainty when comparing simulation and physical validation criteria.  

A few simulation tools have been validated using other simulations tools [34, 49, 50].  

This approach can be successful if the validation criteria for the original simulation tool and the 

second simulation tool match, but can lead to increased uncertainty if not.  When simulation 

models are validated using other simulation models, there is an advantage of being able to 

compare transient simulation values directly and observe more variables than may be available 

from vehicle testing efforts.  The problem with compounding validation is that uncertainty can 

be misleading.  For example, PAMVEC was validated using ADVISOR [34].  There was a 20% 

error between ADVISOR’s total energy use calculations and PAMVEC’s simulation of similar 

vehicles.  ADVISOR is claimed to have 10% uncertainty for total energy use, creating the 

potential for ~30% total energy use uncertainty through error compounding in the two simulation 

tools.  To reduce this uncertainty PAMVEC was also validated using vehicle test data, showing 

~10% error for fuel consumption (MPG equivalent) for a fuel cell HEV.  
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6.2.6 Measurement of Uncertainty 

Uncertainty should be measured based on the objective evaluation metric.  Within the 

vehicle study type performed, objectives should have been defined at the beginning of the study 

process.  The same metrics that are being used to quantify the outcome of the simulations should 

be used for validation and uncertainty quantification. 

Researchers using vehicle simulation tools should be aware of the uncertainty that exists 

in the models they incorporate into studies.  A broad investigation to find documentation for 

validation and uncertainty in different simulations tools returns limited information.  Table 11 

lists a few of the validation error values for different simulation tools.  The objective evaluation 

metric used to perform the validation for each tool is also listed.  In each validation case, 

different assumptions are inherent such as the drive cycle used, environmental conditions, 

etcetera; the assumptions are not included in Table 11 and should be investigated for specific 

studies. 

Table 11 Validation errors found for specific metrics of different simulation tools. 

Simulation Tool Objective Evaluation Metric Validation Error 

ADVISOR [ 22, 34] Wh/mi, MPG 10%, 5% 

AVL CRUISE [28, 51] 0-60, CO2, L/100km 2%, 3%, 3% 

CAR [24] CV MPG, HEV MPG 10%, 1% 

CarSim [22] Wh/mi 5% 

EPA MOVES [29] Emissions 10% 

FASTSim [30] MPG 10% 

HEVSIM [31] Transient Values 5% 

HVEC [33] MPG, Acceleration 10%, 10% 

Modelica [6] Wh/mi, MPG 5%, 5% 

PAMVEC [34] Wh/mi, MPG 20%, 10% 

PSAT [48] CV MPG, HEV MPG 2%, 5% 
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The simulation tools listed in Table 11 have been used in a variety of vehicle design 

studies.  A few of the studies that have been documented in literature are listed in Table 12 along 

with the design objective evaluation metrics, simulation tools, and results margins.  The results 

margins for these studies represent the difference between design options within the study.  For 

some of the studies the option is choosing between vehicle technologies or fuels, for others it can 

be improved control methods over a baseline vehicle, etc.  The results margin is important in 

these studies because in order for the researcher to present a valid conclusion, the difference 

between two design options must be greater than the uncertainty for the respective simulation 

tool.  If the results margin is comparable in magnitude to the validation error (and thus the 

uncertainty) then there is a probability that the results of the study may be subsumed by 

simulation uncertainty.  Figure 34 shows a graphical representation of how results margins and 

simulation uncertainty interact to determine validity of solutions.  The existence of the non-

conclusive region for the overlapping uncertainty within the results margin is undesirable.  Fully 

defensible solutions would not contain a non-conclusive region. 

Table 12 Comparison of vehicle simulation studies and results margins. 

Study 
Objective Evaluation 

Metric 
Simulation Tool Results Margins 

Demirdoven [52] WTW Fuel ADVISOR 5% 

Wu [53] Drivetrain Cost ADVISOR 10% 

Gao [54] City MPG, Hwy MPG ADVISOR 23%, 7% 

Wipke [23] MPG ADVISOR 17%-24% 

Sangtarash [55] L/100km AVL CRUISE 12%-34% 

Ye [56] Fuel Economy LabVIEW 17% 

Geller [5] Wh/mi, MPG Modelica 20% 

Simpson [34] Energy (Wh/km) PAMVEC 10% 

Delorme [18] L/100km (2008 to 2045) PSAT 25% 

Sharer [48] Wh/mi Elec, Wh/mi Gas PSAT 8%, 13% 
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Figure 34 Evaluation of vehicle design improvement results margins and uncertainty for a design metric (ex. MPG). 

One issue that arises in some of the simulation validation is the fine tuning of systems to 

get the desired results (fuel economy, acceleration, etc.).  For example, controller parameters 

may be optimized so that a vehicle model with a simple controller produces results closely 

matching test data, when in fact the actual vehicle control system is likely to be much more 

complex.  Although the tuning of the system may work well for a single case, it is not necessarily 

representative of real vehicle operation.  For example, Cao [57] presents validations methods for 

PSAT using a PHEV converted Toyota Prius.  The standard PSAT PHEV Prius model has 9% 

error for fuel consumption (L/100km) for CD operation, but with fine tuning of control strategy 

the error is reduced.  The limited nature of the test case control tuning may lead to increased 

errors in other facets of the simulation such as different drive cycles. 

Compounding uncertainty exists as design processes build upon one another. Uncertainty 

present in different portions of the simulation is combined together and is likely to culminate in 

amplification of result uncertainty.  This effect increasingly promotes proper understanding of 

the uncertainty included in the simulations used to perform vehicle studies.  A graphic 

representation of the uncertainty propagation through a simulation study is provided in Figure 

35. Propagation of uncertainty in complex vehicle models can only be determined directly from 
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the models being used.  Some combinations of uncertainty can lead to increases in result 

uncertainty.  By limiting the sources of uncertainty that are introduced to a study, the overall 

results uncertainty can also be controlled. 

 

Figure 35 Representation of uncertainty propagation in vehicle simulation studies.  Different portions of studies (blue 

squares) contribute different sources of uncertainty (white squares). 

6.2.7 Discussion 

By considering the sources of uncertainty in vehicle simulation studies we can understand 

more quantitatively the capabilities and weaknesses of vehicle simulation studies that have been 

performed.  Investigation of previous vehicle design studies shows a lack of uncertainty 

consideration.  Scientifically valid studies should include an accurate account of all information 

sources so that the uncertainty can be quantified.  By including all of the uncertainty types 

presented in this paper (dynamics, numerical methods, parameter definition, 

assumptions/simplifications, and validation) future vehicle simulation studies can be improved.  

It is the job of the simulations tool developer to fully document the uncertainty that exists within 

their system, and the job of the researcher and simulation tool user to account for this uncertainty 

in conclusions that they develop. 

One example of how the use of uncertainty consideration can improve a simulation study 

(other than just providing defensibility) is in simulation optimization.  One of the major factors 

in performing an optimization is determination of convergence criteria.  If the objective function 

metric has predetermined uncertainty, then the progression of the optimization should be 
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considered converged when the difference between current iteration and the optimal answer are 

within the uncertainty range.  Fellini [20] uses ADVISOR to optimize fuel economy, as an 

example, and should have set the optimization convergence criteria to be 5% (to be consistent 

with validation error and uncertainty).  Accurate determination of the convergence criteria will 

affect the iterations necessary to complete the optimization and may even have changed the 

solution if the convergence criterion was set too broad.  

Based on the information compiled through the development of this paper, the sources of 

uncertainty in vehicle simulation can be ranked according to their influence on uncertainty (% 

error).  Figure 36 shows each of the five sources of uncertainty ranked from greatest to least 

influence.  The ranking of the uncertainty sources is not definitive as each source has a 

probability of being either high or low depending on how they are applied.  For example, even 

through Assumptions and Simplifications are ranked as contributing relatively high uncertainty, 

a researcher could develop highly detailed models that include few assumptions.  The order of 

influence proposed incorporates finding based on literature and investigations from available 

sources as an average uncertainty found in each of the uncertainty sources.  

 

Figure 36 Ranking of influence for sources of uncertainty in vehicle simulations. 

6.2.8 Summary of Uncertainty Quantification 

As demand for vehicle simulation increases in both academic and professional areas, so 

does the requirement for accuracy within the simulations.  To improve the accuracy of these 

vehicle simulations, researchers must account for uncertainty.  Uncertainty can come from a 
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wide range of sources throughout the simulation study process beginning at the determination of 

the type of study being performed and progressing through the evaluation of the study results.  

This paper quantifies the different types of uncertainty that exists within state of the art vehicle 

simulation studies and identifies areas that are important for future studies to consider.  An 

extensive literature review has been performed and the combined conclusions of numerous 

sources have been integrated with author viewpoints to develop and broaden understanding of 

uncertainty in vehicle simulation studies. 

6.3 Task 2.3 Characterize Drive Cycles as CONOP for Vehicle Simulations 

System design tools including simulation and component optimization are an increasingly 

important component of the vehicle design process, placing more emphasis on early stages of 

design to reduce redesign and enable more robust design.  This study focuses on the energy use 

and power management simulations used in vehicle design and optimization.  Vehicle 

performance is most often evaluated in simulation, physical testing, and certification using drive 

cycle cases (also known as dynamometer schedules or drive schedules).  In vehicle optimization 

studies, the information included in each drive cycle has been shown to influence the attributes 

of the optimized vehicle, and including more drive cycles in simulation optimizations has been 

shown to improve the robustness of the optimized design.  This paper aims to quantitatively 

understand the effect of drive cycles on optimization in vehicle design and to specify drive 

cycles that can lead to robust vehicle design with minimal simulation.  Two investigations are 

performed in service of this objective; Investigation 1 tests how different combinations of drive 

cycles affect optimized vehicle performance and design variables; Investigation 2 evaluates the 

use of stochastic drive cycles for improving the robustness of vehicle designs without adding 

computational cost to the design and optimization process. 
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6.3.1 Introduction to Drive Cycles as CONOP 

Researchers commonly use dynamometer driving schedules as Concept of Operation 

(CONOP) for evaluating vehicle designs [58].  These driving schedules intend to characterize 

real-world driving and are the basis of tests used to measure the energy consumption of vehicles 

[59].  Driving schedules have been selected and standardized over time to provide a prediction of 

real-world operation, and to convey information on fueling costs, energy use, and emissions.  

The design, test, and calibration procedures used by major automotive manufacturers incorporate 

additional requirements beyond performance on commonly used drive cycles [34]. 

Vehicle system designers have difficulty in determining which driving schedules to 

consider in vehicle simulation and design processes [60, 61, 62, 63].  Many published design 

studies limit their scope by limiting the CONOP for vehicles to one or two driving cycles [34, 

53, 62, 64 - 82].  Optimizing components and vehicle-level performance over this limited set of 

driving cycles can lead to less robust designs [54, 17], but increasing the number of cycles over 

which the vehicle will be evaluated adds to the simulation and design effort.  This becomes 

especially relevant when optimization is introduced into the design process, commonly requiring 

significantly more simulation iterations [6, 83, 84]. 

The objectives of vehicle simulation research in literature range from detailed case 

studies to large-scale design space explorations [67, 71, 72].  Incorporating optimization into 

vehicle simulation studies has been shown to enable more rigorous comparison of vehicle 

designs within what is often a multimodal, nonlinear design space [58, 85, 86].  Previous work 

has shown that the characteristics of optimized simulated vehicles can change depending on the 

drive cycle considered [6].  Methods for simulation and optimization need to be developed that 

can provide robust and near-optimal vehicle designs while reducing computational costs. 
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To increase the robustness of the simulation and optimization paradigm for vehicle 

design studies, this paper analyzes the role of driving schedules in these studies.  We present 

background information about the drive cycles, simulation tools and optimization methods used 

to conduct two experimental investigations.  Investigation 1 compares the results of vehicle 

simulation and optimization for six standard drive cycles.  The objectives of Investigation 1 are 

to determine how many drive cycles should be used to carry out a robust and defensible 

simulation optimization design study, and to analyze the dependency of optimized vehicle fuel 

economy (FE) and design variables on the drive cycles over which vehicle operation is 

optimized. 

Investigation 2 evaluates the use of stochastic drive cycles derived from the information 

available in standard drive cycles.  The discussion section describes that using Markov Chain 

drive cycles for simulation and optimization studies provides robust vehicle designs at reduced 

computational costs.  The paper concludes that vehicle design studies that include simulation and 

optimization should incorporate stochastic drive cycles to improve robustness and reduce 

computational costs. 

6.3.2 Background for Drive Cycle Characterization 

The following sections describe the selection of drive cycles used throughout this study, 

simulation tools, optimization algorithm formulation, and the vehicle model. 

6.3.2.1 Standard Drive Cycles 

Vehicle simulation studies commonly use pre-defined drive cycles so that results are 

reproducible and comparable to laboratory tests.  These drive cycles are most often formulated as 

time-series of vehicle velocity objectives.  As a system-level CONOP for many design studies, 
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the drive cycle selected for simulation can have a strong influence on the observed performance 

of the vehicle and on the characteristics of the resulting vehicle design. 

Of 33 reviewed studies [34, 53, 62, 64 - 82], the most commonly used drive cycles (in 

order from highest to lowest frequency) were Urban Dynamometer Driving Schedule (UDDS), 

Federal Highway Driving Schedule (FHDS), Aggressive Supplemental Federal Test Procedure 

(US06), New European Driving Cycle (NEDC), New York City Cycle (NYCC), and the Air 

Conditioning Supplemental Federal Test Procedure (SC03) [87].  Other cycles, such as the 

Unified Driving Schedule (LA92), Japanese 10.15, and custom cycles were used at lower 

frequencies.  The observed frequencies of the cycles used in the surveyed simulation studies are 

shown in Figure 37.  These 6 cycles are the chosen for further investigation in this study. 

 

Figure 37 Frequency of drive cycle observations in simulation studies. 

Many of these drive cycles are popular for vehicle simulation because of their association 

with vehicle FE and emissions regulation policies.  The UDDS and FHDS make up the US 

Environmental Protection Agency’s (EPA) test procedure prior to 2007.  The US EPA presently 

uses a 5-cycle test procedure to evaluate all production vehicles.  The 5-cycle procedure includes 

the UDDS, FHDS, US06 and SC03 cycles and a cold weather version of the UDDS test.  The 

NEDC cycle is used by the Economic Commission for Europe (ECE) Dynamometer Operating 
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Cycles for regulation of vehicle construction and is comprised of four repeated ECE-15 cycles 

followed by an Extra-Urban driving cycle (EUDC). 

The duration, distances, Characteristic Acceleration, Aerodynamic Speed, and Kinetic 

Intensity [88] of each of the six cycles used in this study are presented in Table 13
4
.  Each drive 

cycle represents different types of driving behavior with a wide range of these cycle 

characteristics available among the 6 cycles. 

Table 13 Characteristics of commonly used drive cycles 

  

UDDS  

(1) 

FHDS  

(2) 

US06   

(3) 

SC03   

(4) 

NEDC 

(5) 

NYCC 

(6) 

Max: 

Min 

Ratio 

Duration (Sec) 1880 764 600 600 1180 600 3.1:1 

Distance (km) 17.8 16.5 12.9 5.7 10.93 1.9 9.6:1 

Characteristic 

Acceleration (m/s2) 0.1764 0.0706 0.2104 0.2062 0.1122 0.3085 43:1 

Aerodynamic 

Speed (m/s) 14.81 22.75 27.75 15.26 19.08 7.76 3.6:1 

Kinetic 

Intensity (1/m) 0.8042 0.1365 0.2732 0.8850 0.3081 5.1259 37:1 

 

Figure 38 shows the dominating data points for each of the six drive cycles observed in 

this study as well as average operating points.  Similarities and differences between the cycles 

can be observed in Figure 38.  The US06 cycle almost entirely dominates each of the other 5 

cycles and has a higher average operating velocity than the UDDS, FHDS, SC03, and NYCC.  

                                                 

4 The UDDS is incorporated using the Federal Test Procedure (FTP) configuration which includes a complete UDDS (1375 

seconds) followed by repeating the first 505 seconds of the UDDS. 
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The NYCC can be seen to have uniquely low average velocity, due to its high number of stop-

and-go conditions.   

 

Figure 38 Acceleration and velocity ranges for six common drive cycles including complete-cycle averages.  Lines 

represent bounding points while circles represent average data values for each cycle. 

In summary, these six drive cycles exhibit a breadth of characteristics that will enable this 

study to understand the way that these drive cycles characteristics change the outcome of vehicle 

simulation and optimization studies.  These six drive cycles will be used throughout the 

remainder of this study as basis for the development of vehicle simulation conditions. 

6.3.2.2 Simulation and Optimization Tools 

For this study, a custom Hybrid Electric Vehicle (HEV) simulation was constructed using 

the Modelica modeling language [89].  A set of 1500 nonlinear, time variant, Differential 

Algebraic Equations (DAEs) which represent the energy transfer, dynamics and control of a 

vehicle were solved using DASSL resulting in a low-cost, open source, object-oriented vehicle 

simulation toolbox.  Verification and validation of the toolbox was performed through a 
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comparison to conventional Matlab/Simulink simulation using ordinary differential equation 

solvers [6]. 

Pre- and post-processing of simulation data, as well as computation for the vehicle design 

optimization algorithm was performed in Matlab.  A short amount of time is required at the 

beginning and end of each simulation to specify new design variables and then evaluate the 

performance of the vehicle from the result’s data.  The Simulated Annealing optimization 

algorithm was selected based on its ability to consistently identify optimized vehicle designs.  

The convergence limit for the optimization was set at 1000 iterations based on previous studies 

[6]. 

Vehicle designs were constructed as Hybrid Electric Vehicles (HEV) with a charge-

sustaining vehicle energy management strategy.  Optimization was performed using the cost 

function in Equation 5.  SOCEnd represents the final state of charge (SOC) of the vehicle at the 

end of a drive cycle, and SOCBottom represents the lower SOC control point.  Vehicles start each 

drive cycle test with an initial SOC equal to SOCBottom. 

Equation 5 

 

Equation 6 

 

Equation 7 

 

Equation 8 

 

Minimize:  𝐹  𝑙 𝐶           + 𝑆𝑂𝐶    𝑙 𝑦 + 𝐶𝑦𝑐𝑙  𝐷            𝑙 𝑦 +  𝐴𝑐𝑐 𝑙           𝑙 𝑦   

𝐹  𝑙 𝐶          =  
𝐶

 (
  
  

)
 

𝑆𝑂𝐶    𝑙 𝑦 =   
𝑆𝑂𝐶𝐸  ≥ 𝑆𝑂𝐶𝐵     0

𝑆𝑂𝐶𝐸  <  𝑆𝑂𝐶𝐵     10,000 × ( 𝑆𝑂𝐶𝐵       𝑆𝑂𝐶𝐸  + 0.1)
  

𝐶𝑦𝑐𝑙  𝐷            𝑙 𝑦 =   
𝐶𝑦𝑐𝑙  𝐷        ≤  500 0
𝐶𝑦𝑐𝑙  𝐷         >  500 100,000
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Equation 9 

 

 

Calculation of composite fuel consumption was based on Equation 6, where C represents 

the number of cycles included in the present optimization, di and gi represent the distance 

(meters) and fuel consumed (grams of gasoline) over each cycle i, respectively
5
.  Penalty was 

applied to the cost function for state of charge (SOCPenalty) via Equation 7 for each simulated 

cycle if SOCEnd <SOCBottom (where SOC ∈ [0, 1]).  SOCPenalty is normalized to the cost function 

units by a factor of     𝑆𝑂𝐶  .  If the Cycle Deviation exceeded 500 meters then the cost 

was set to 100,000 for each respective cycle i from Equation 8. .  Cycle DeviationPenalty is 

normalized by    .  Finally, if Acceleration0-60mph exceeded 14 seconds the penalty from 

Equation 5 became active, wherein AccelerationPenalty is normalized by         for the cost 

function.  Normalizing factors have no weight associated with unit conversions; instead weights 

are applied within each of the four cost contributing factors.  Weight values and constants in 

Equation 8 and Equation 9 are derived to separate penalties by an order of magnitude.  In this 

way, importance is placed on 1) meeting minimum acceleration, 2) reducing cycle deviations, 

and 3) exhibiting CS operation.  Improvements to fuel consumption (likely 1-3 significant 

figures) are only observed after a viable vehicle has been verified.  When they occur, SOC 

derived penalties have a value with 4-5 significant figures, deviation derived penalties have a 

value with 6 significant figures, and acceleration derived penalties have a value with 7+ 

significant figures. 

                                                 

5 An exception is made for the UDDS and FHDS only optimization (cycle set C=2) where the EPA 55% UDDS and 45% FHDS 

fuel consumption weighting is applied instead of the equal weighting from Equation 2. 

𝐴𝑐𝑐 𝑙           𝑙 𝑦 =   
𝐴𝑐𝑐 𝑙        0 60  ℎ ≤  14  0

𝐴𝑐𝑐 𝑙        0 60  ℎ  >  14  100,000 × (𝐴𝑐𝑐 𝑙        0 60  ℎ + 1.0)
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This formulation supports the minimization of fuel consumption over each individual 

driving cycle, rather than minimizing average fuel consumption over the set of drive cycles. The 

distributed distance-weighting of the drive cycles (Equation 6) forces the optimization algorithm 

to design vehicles that can sustain battery charge over all of the cycles included in the 

optimization set.  Other optimization formations that combine cycles in a front-to-back manner 

allow for charge-increasing and charge-decreasing cycles, resulting in poor vehicle performance 

if a driver were to operate continuously in charge-decreasing- cycles (i.e. continuous highway 

driving).  The formulation used in this study ensures optimal vehicle operation over all driving 

conditions included in each respective simulated cycle set. 

 

Figure 39 Pre-transmission parallel HEV. 

The vehicle architecture used in this study is a pre-transmission parallel hybrid electric 

vehicle with a charge-sustaining battery management strategy.  A diagram of the architecture is 

provided in Figure 39.  This architecture was selected due to its high fuel consumption reduction 

potential as a Hybrid Electric Vehicle (HEV) and because this architecture has been considered 

in many other vehicle optimization and design studies [6, 58, 71, 79, 53].  The Internal 

Combustion Engine (ICE) uses gasoline as a fuel and is mechanically coupled to the 

CVT

BM/G

ICE

Legend
M/G = Motor/Generator              Mechanical

CVT = Transmission Connection

B = Battery

ICE = Engine Electrical

FDR =  Final Drive              Connection

FDR
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Motor/Generator (M/G) in a parallel configuration.  Power flows between the ICE and M/G to 

the wheels via a Continuously Variable Transmission (CVT) and a Final Drive (FDR) 

differential.  Mechanical connections are defined using conservation of both torque and angular 

velocity between components.  Specifics of the model formulation have been described in 

previous work [6]. 

The vehicle model is comprised primarily of first principal equations governing 

conservation of energy as presented in many other research papers [65, 67, 70, 44, 49, 77, 78].  

Energy management and control of the simulated vehicle is performed via logic similar to work 

by Rizzoni [63].  Driver requests are biased towards M/G use via Equation 10 which also allows 

for regenerative braking.  TorqueMG Available is calculated within the model based on state-

dependent M/G and battery operating limits.  Battery energy is managed in the parallel vehicle 

model using a thermostat-type control that follows closely to the ICE’s Ideal Operating Line 

(IOL).  Equation 11 describes how demands to the ICE are made based on the IOL, SOC, and 

driver request.  TorqueIOL is calculated using multiple functions that increase or decrease torque 

along the IOL based on SOC to keep battery charge within SOCTop and SOCBottom.  At low 

demand the ICE is allowed to turn off to reduce idle fuel use.  Any power from the ICE in excess 

of driver request is regenerated by the M/G.  Further specifics of the model formulation have 

been described in previous work [6]. 

Equation 10 

 

Equation 11 

 
 

   𝑞  𝐼𝐶𝐸 𝑅 𝑞    =     𝑞  𝐷     𝑅 𝑞         𝑞  𝑀𝐺 𝐴   𝑙  𝑙  

   𝑞  𝐼𝐶𝐸 𝐷     =   
𝑆𝑂𝐶 ≥ 𝑆𝑂𝐶      𝑞  𝐼𝐶𝐸 𝑅 𝑞    

𝑆𝑂𝐶 < 𝑆𝑂𝐶   max⁡(   𝑞  𝐼𝐶𝐸 𝑅 𝑞    ,    𝑞  𝐼𝑂𝐿)
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Design Variables (DV) are used as modifiable inputs for the vehicle optimization.  

Together, the DV determine the specifications of the components within the simulated vehicle.  

Building upon DV used in previous studies [83, 84], ten DV were selected for optimization of 

the pre-transmission parallel HEV.  The names, short descriptions, and unit measurements for 

each of the DV are provided in Table 14.  DV allow the optimization algorithm to scale both 

physical components and control aspects of the vehicle to find the most desirable vehicle design 

and control parameters. 

Table 14 Optimization vehicle design variables with descriptions and units. 

SOC 

Bottom 

(1) 

SOC Top 

(2) 

ICE T 

set 

(3) 

MG T 

max 

(4) 

FDR 

(5) 

CVT R 

(6) 

CVT O 

(7) 

Batt P 

(8) 

Batt E 

(9) 

ICE T 

max 

(10) 

Minimum 

SOC 

control 

target  

Maximum 

SOC 

control 

target  

Engine 

torque 

default 

for CS 

Motor/ 

Generator 

maximum 

torque 

Final 

Drive 

Ratio 

Continuously 

Variable 

Transmission 

gear ratio 

scaling 

Continuously 

Variable 

Transmission 

controlled 

input angular 

velocity limit 

Battery 

Power 

rating 

Battery 

Energy 

rating 

Engine 

maximum 

torque 

% DOD % DOD N*m N*m Ratio Ratio Rad/s kW kWh N*m 

 

The DV SOC Bottom, SOC Top, and CVT O are used as controller parameters within the 

model.  These parameters define controlled operational limits of the hardware, and not the 

components of the vehicle.  Although control strategy is an important aspect for improving 

vehicle operation, it will not be explored in this study.  Numerous previous studies have 

investigated the gains achievable by advanced control strategies such as Dynamic Programming, 

Neural Networks, and stochastic control [76, 90, 93]. 

The remaining DV pertain to defining general hardware limitations.  Uncertainty is 

known to exist when scaling component models.  Specific efficiency relationships with hardware 

limitations and dynamic characteristics can vary across specific components.  As an example, 

Battery P and Batter E approximate definitions of cell number and configuration for an energy 
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storage system, but do not require a specific chemistry or cell characteristics.  For simplicity, 

consistent scaling that relies on the DV are used for all models.  More information on how the 

ten DV are used in models is available in previous work [6]. 

Simulation and optimization tools and methods have been presented as the foundation for 

performing the vehicle simulation studies.  For this study, the UDDS, FHDS, US06, SC03, 

NEDC and NYCC drive cycles are used as CONOP for optimizing parallel HEV DV for FE and 

performance.  Investigation 1 and Investigation 2 each present methods and results with the 

objective of advancing the state of the art in using drive cycles for vehicle simulation and 

optimization studies. 

6.3.3 Investigation 1: Analysis of compounding standardized drive cycles 

Investigation 1 aims to determine which of the standardized drive cycles are most 

desirable for integrated simulation and design optimization.  Previous studies have performed 

limited investigations of optimizing on drive cycles, but not more than 1- and 2-cycle sets [84].  

As additional drive cycles are included in optimization studies, information and constraints 

inherent in those cycles will become capabilities of the optimized vehicle design.  Adding more 

test cycles to an optimization study thereby increases the robustness of the optimized vehicles, 

but at an increased computational cost.  This investigation seeks to quantify this tradeoff between 

increasing the robustness of vehicle designs by adding drive cycles as additional CONOP, and 

minimizing simulation time by minimizing the number of drive cycles considered. 

6.3.3.1 Methods for Investigation 1 

The six drive cycles analyzed in the background section of this paper are to be used as 

CONOP in vehicle simulation and optimization.  To perform the investigation, cycle sets are 

created that are composed of various numbers of these drive cycles.  With this method, the first 
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set of optimized vehicles was simulated using only the UDDS (1-cycle set).  The second set of 

optimized vehicles was simulated on the UDDS and on the FHDS (2-cycle set).  This process 

continued until the sixth set of optimized vehicles that was simulated on the UDDS, FHDS, 

US06, SC03, NEDC, and NYCC (6-cycle set). 

Six independent optimizations to minimize fuel consumption were performed on each set 

of cycles.  In total, over 150,000 drive cycles were simulated to provide data for Investigation 1, 

requiring over 2,500 CPU hours of simulation.  All optimizations started with the same initial 

design point and different optimization algorithm random number seeds for consistency. 

The objective function and penalties in Equation 5 through Equation 9 were used in the 

Simulated Annealing optimization algorithm.  Less than 5% deviation in FE was observed for 

the final 100 iterations from each of the six design samples for each respective cycle set.  The 

low variance in optimized design FE over the last 10% of the 1000 iterations supports the 

selection of convergence criteria used in this study [4]. 

6.3.3.2 Results for Investigation 1 

The following results show the effects of compounding drive cycles on integrated vehicle 

simulation and optimization.  Cycle sets are labeled according to the number of compounded 

cycles that are included in the optimizations, based on the order from Table 13.  Six optimization 

design samples were performed on each of the drive cycle sets to provide statistically 

comparable data.  The six cycle sets, each with six respective design samples, resulted in a total 

of 36 optimized vehicles.  Computational costs increase with increasing simulated time as 

determined by the cycles included in each cycle set. 
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6.3.3.2.1 Optimized Vehicle Fuel Economy on the 6-Cycle sets 

The optimized results for each of the cycle sets and optimization runs were analyzed 

based on FE (a scaled inverse of the cost function in Equation 5).  Both the observed objective 

function FE and a City/Highway FE (C/H FE) mix (55% UDDS and 45% FHDS) were used for 

results comparisons.  The C/H FE metric is included in this study so as to provide a consistent 

metric for evaluating vehicles as additional drive cycles are included in the optimization.  The 

objective function metric used in Equation 5 changes the weighting applied to the simulated FE 

for each cycle to provide equivalent importance to each drive cycle.  The objective function 

balances performance over all of the cycles included in the optimization so that the optimized 

vehicle will perform economically during all driving conditions. The mean and standard 

deviation for each of the cycle sets and each FE formulation are displayed in Figure 40.  For both 

FE formulations the effects of using more than just the city and highway simulations in 

optimization can be observed. 

As the number of cycles included in the optimization increase, from left to right in Figure 

40, total average fuel economy for both the C/H FE and objective function formulations tend to 

decrease.  The standard deviation of the samples also increases as the number of cycles 

increases, demonstrating increased variance of the optimized vehicle design as additional 

operating characteristics are applied to the vehicle’s operation.  Standard deviations increase 

from ~2% of the mean for the 1-cycle set to ~6% of the mean fuel economy for the 6-cycle set.  

The decrease in C/H FE with increasing cycle set number demonstrates that as the relative 

weighting of the UDDS and FHDS in the objective function decreases, the optimized vehicle 

designs show reduced performance on the C/H segments and an increased variance within the 

designs’ C/H FE.   
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Figure 40 Simulation design optimization results showing optimized observations of fuel economy (mpg) for different 

increasing cycle inclusions.  Observations shown for designed fuel economy over all included cycles based on the 

respective objective function and City/Highway formulation per cycle sets. 

The first objective of Investigation 1 is to determine how many drive cycles should be 

used to carry out a robust and defensible simulation optimization design study.  Figure 41 shows 

the Students’ t test p-values when comparing all optimized vehicle performances using the C/H 

FE metric to the standard 2-cycle optimization set (“City/Highway”, e.g. cycles 2&3, 2&4, 2&5, 

and 2&6).  Also shown in Figure 41 are the p-values for a progressive comparison of the 

population of optimized vehicle fuel economy performances between cycle set n and cycle set 

n+1 (“Progressive”, e.g. cycles 2&3, 3&4, 4&5, and 5&6).  A high p-value between any two 

cycle sets would show a high confidence that the two optimized vehicle designs are not of 

significantly different populations (null hypothesis: difference of means is equal to zero). 

As an example, a high p-value is shown between cycle sets three (US06) and four (SC03) 

for the progressive comparison method.  This high p-value indicates that there is an insignificant 

change in simulated fuel economy between vehicles optimized over cycle set 3 (UDDS, FHDS, 

and US06) and vehicles optimized over cycle set 4 (UDDS, FHDS, US06 and SC03).  In other 
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words, the addition of the SC03 cycle does not significantly affect the FE results of the 

optimization when used in conjunction with the UDDS and FHDS.  Similarly, the comparisons 

between C/H optimized FE and the FE of vehicles optimized over cycle sets 3, 4, and 5 shows 

that there are small but not negligible differences between the FE of vehicles optimized over 

many cycle sets and those optimized over only the C/H cycles.  The addition of the NEDC (cycle 

five) is the only set that shows increased similarity to the C/H 2-cycle set, all other cycle 

additions decrease p-value C/H FE.  This effect supports similarities found between the NEDC, 

UDDS, and FHDS cycles in previous studies [84]. 

  

Figure 41 P-value of data set comparisons for FE between optimized design sets.  All values based on C/H fuel economy 

comparisons.  The City/Highway p-values compare each cycle set with the 2-cycle set, “Progressive” p-values compare 

between adjacent cycle sets. 

The results presented in Figure 40 and Figure 41 demonstrate that the fuel economy of 

vehicles optimized over the first 2 cycles are statistically distinguishable from the fuel economy 

of vehicles optimized over six cycles when FE is compared using a C/H FE metric.  To display 

the effect that additional drive cycles have on the overall FE of the optimized vehicle, Figure 42 

shows the average FE for each drive cycle over each optimization cycle set.  Figure 42 

demonstrates that additional cycles progressively reduce the mean fuel economy achievable on 
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each cycle, creating a spiral towards lower fuel economy as the number of cycles considered as 

CONOP increases.  The scale of the FE reduction for increasing cycle sets is on the order of 

~10% of the highest observed FE. 

Decreasing FEs over compounding drive cycles should not be perceived as inferior 

vehicle designs.  Instead, vehicles optimized over the broad range of conditions included in the 

6-cycle set exhibit state of charge algorithms that are more robust to various driving conditions.  

For instance, vehicles that were optimized on the 1-cycle and 2-cycle sets were incapable of 

maintaining SOC on some of the other cycles.  Figure 40 and Figure 42 serve to quantify this 

tradeoff between vehicle robustness and fuel economy performance.   

 

Figure 42 Radial plot of mean fuel economy on each cycle, separated by the number of cycles included in the optimization 

run. 

In summary, the results of Investigation 1 show that if the only vehicle performance 

metric of interest is C/H FE, vehicle optimization studies will find no significant benefit from 

optimizing over more than the UDDS and FHDS cycles (2-cycle set).  On the other hand, if the 

objective of the vehicle design study includes the development of vehicle designs whose fuel 
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economy is robust to various driving conditions, optimization over more cycles can result in 

significantly different fuel economy than optimization over fewer cycles. 

6.3.3.2.2 Optimized Vehicle Design Variables on the 6-Cycle sets 

Systems engineering-based vehicle design studies often incorporate decision variables 

based on more than just the vehicle FE [53, 58, 18, 80].  Design considerations such as 

manufacturing costs, total cost of ownership (TCO), and manufacturability are dependent on the 

components used to construct the vehicle.  The sizes and specification of these components are 

controlled in vehicle simulation and optimization studies through the set of DV.  Based on results 

present in Section 3.2.1, we have demonstrated that more robust vehicle designs can be created 

by optimizing vehicle performance over more drive cycles.  In this section, we compare the DV 

among vehicles optimized over different drive cycle sets to understand the role of the DV in 

determining robust FE performance. 

The DV of the optimized vehicles are presented in Figure 43 to demonstrate the vehicle-

subsystem effects of multi-cycle optimization.  The 10 optimized DV shown in Figure 43 are 

presented as normalized values within each DV’s observed range.  Each variable is plotted for all 

cycle sets with the mean and standard deviation.  The p-value for the cycle set in comparison 

with the 2-cycle set is shown to accentuate design deviations (associated with low p-values) from 

the standard C/H optimized vehicle. 

We can identify from Figure 43 that some of the optimization drive cycle sets have DV 

similar to the C/H 2-cycle set while others are much different.  Some of the DV, such as final 

drive ratio (FDR), change very little as the number of cycles in the sets increases (indicated 

quantitatively by high p-value across cycle set comparisons).  The optimized values of DV such 
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as peak motor torque (MG T max) and engine peak torque (ICE T max vary depending on the 

drive cycles over which the vehicle FE is optimized. 

More generally, these results show that vehicle design studies which would like to 

consider metrics of performance that are related to the value of the DV (i.e. manufacturing cost, 

or TCO) must choose the cycle sets over which the vehicle will be optimized with care.  The 

optimized values of the DV are strong functions of the number and types of cycles considered for 

optimization. 
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Figure 43 Optimized vehicle design variables for each of the optimized cycle sets.  Crosses represent mean values and 

range expresses +/-1 one standard deviation from the mean.  Values are normalized to the searched design space range. P-

values are relative to the 2-cycle C/H optimized designs (e.g. comparison of cycle set 1&2, 2&3, 2&4, 2&5, 2&6). 

Investigation 1 has analyzed and quantified the dependence of optimized vehicle FE 

performance and DV values on the number and type of drive cycles applied as CONOP to a 

vehicle simulation and optimization design study.  Results show that studies focused on FE, 

particularly for city and highway performance, will see little change as additional drive cycles 
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are incorporated.  Studies only interested in city and highway FE should optimize vehicles over 

only the UDDS, FHDS, and the US06 cycles.  These recommendations confirm those of 

previous work by Wipke et al [84] while providing additional breadth of drive cycle sets and 

depth of analysis.  In contrast, vehicle design studies that would like to include system-level 

criteria that might be dependent on vehicle DV have a higher sensitivity to the cycle sets chosen 

for optimization.  Including additional drive cycles as CONOP in vehicle simulation and 

optimization studies has more effect on vehicle design than on vehicle performance and will 

incur additional computational costs.  To effectively model the design of robust vehicles, all 

drive cycles that represent expected driving conditions should be used in simulation and 

optimization. 

6.3.4 Investigation 2: Analysis of non-standard drive cycles 

The outcome of Investigation 1 confirms that the results of vehicle simulation and 

optimization studies are dependent on the drive cycles used as CONOP and that higher 

computational costs will be necessary for the design of vehicle to broader FE and design 

objectives.  Investigation 2 aims to show whether vehicles optimized over condensed, stochastic 

drive cycles can replicate the vehicle design and performance results from the more 

computationally expensive 6-cycle set optimization at lower computational costs. 

Stochastic drive cycles are hypothesized to offer two distinct advantages: 1) reduce the 

simulation time required to obtain optimized vehicles and 2) eliminate event-specific vehicle 

design optimization. 

Although each of the 6 drive cycles studied in Investigation 1 has different cycle-average 

characteristics, there are events across cycles that closely relate to one another.  By combining 

the information of events from all six drive cycles it is possible to create custom non-standard 
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cycles that convey the same information to the simulation and optimization process using fewer 

data points, and therefore at a reduced computational cost. 

Using standardized drive cycles in simulation optimization studies can result in 

unintended over-optimization for specific drive cycle events.  This over-optimization occurs 

when a specified vehicle has been designed to operate ideally for the specific order of conditions 

that exist in a cycle.  An example of this is when HEV battery packs are optimized to have just 

enough power to meet the high demand portion of the UDDS or just enough energy to charge 

deplete until the deceleration and regenerative braking section at the end of the FHDS.  When 

vehicles are over-optimized in this manner, it can result in undesirable reduced performance 

when the vehicle is operated on other cycles or in real-world situations.  To reduce the issues 

associated with the use of common drive cycles, stochastically determined cycles may be able to 

generate unique driving schedules each time the vehicle is simulated without changing the 

fundamental dynamics of the cycles. 

6.3.4.1 Methods for Investigation 2 

Markov Chains were selected as the method for generating statistically representative 

stochastic data series based on the results of previous vehicle studies [60, 90].  Markov Chains 

are defined as a collection of random variables having the property that, given the present, the 

future is conditionally independent of the past [91].  For vehicle driving applications, Markov 

Chains can be created by statistically observing occurrences of simultaneous acceleration and 

velocity in a progressive time series over the course of the standard drive cycle.  To construct a 

drive cycle from these observations, the current state of acceleration and velocity can be used to 

provide the probability of a subsequent state.  By incorporating each of the continuous time-
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series states for all six of the drive cycles into the Markov Chain transitional probability matrix, 

stochastic drive cycles can be generated [60, 90]. 

6.3.4.1.1 Markov Cycle Production 

A transitional probability matrix was developed based on the information available in all 

of the six drive cycles used in Investigation 1.  To create the matrix, an algorithm steps through 

each of the driving cycles and tallies occurrences of states in a multi-dimensional matrix as 

shown in Equation 12.  P_count is the matrix of occurrence tallies, and P is the transitional 

probability matrix, as shown in Equation 13 such that max(P) < = 1.  The cumsum of P_count is 

calculated by continuously summing tally values in a manner similar to English reading; left to 

right, top to bottom.  In this manner P(row = 1,col =1) = min(P) and P(row = N,col = M) = 

max(P).  The index k identifies the time step of the cycle under observation.  Using the Markov 

Chain methodology, k and k-1 are continuously mapped to present and previous states, 

respectively.  At each time step in the cycle, the tally matrix P_count is updated, P can be 

updated after all cycle data has been obtained. 

Equation 12 

 

Equation 13 

 
P_count and P, both N by M matrices, exist as cells in a larger N by M matrix where N 

and M describe the length of the velocity vector v and acceleration vector a, respectively.  

Vectors v and a are calculated based on the observable range of data for vehicle top speed and 

maximum/minimum acceleration capabilities, respectably.  All of the observed drive cycles have 

an observed minimum velocity of 0 m/s and otherwise operate in the forward direction.  As an 
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example, the velocity vector v for the US06 cycle could be 0:0.1:36 because the top speed 

observed on the US06 cycle is 35.89 m/s.  In this manner, probabilities of transition can be 

accessed by indexing the super-matrix stricture and locating the cell matrix of likely transitional 

states as shown in Figure 44.  It should be noted that transitional probability matrices can be 

created based on any set of velocity and acceleration time-series data, allowing for stochastic 

cycles that are representative of any drive cycle.  For this investigation, an observed-to-stochastic 

probability ratio of 2.5x10
8
: 1 was used, providing a very low probability that any unobserved 

states would spontaneously occur. 

 

Figure 44 Structural representation of transitional probability matrices. 

After the matrix structure P was updated with the information present in the six standard 

drive cycles used in this study, stochastic number generators were used to create new 

representative cycles from Equation 14.  X represents a uniformly generated random number [0-

1].  Based on the present vehicle acceleration and velocity state in the generated cycle, the 

transitional probability matrix can be used to determine a subsequent state.  All of the cycles 

created for this study begin with an initial resting state: zero velocity and zero acceleration.  
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Post-processing of the created drive cycle data set ensures that extreme combinations of 

acceleration and velocity as well as negative velocities do not occur.
6
 

Equation 14 

 
For this study, drive cycles were created for a given duration rather than for a given 

distance.  This formulation was chosen so that an equal number of time-series events are used in 

all cycles.  With this method there is no guarantee that the cycles will end with a stopped vehicle, 

which is not common in conventional driving schedules but is entirely acceptable for simulation 

studies. 

A distance-specific weighting was applied to the occurrence of events within each 

incorporated cycle to provide a closer approximation of the cycle weightings used in the 6-cycle 

set objective function.  Shorter cycles were allocated a proportional increase in significance by 

multiplying the occurrence of states in the Markov Chain observations from Equation 6.  This 

method approximates the observation of cycle-specific states that would occur if all cycles were 

of equivalent distance and thus equivalent importance in the objective function.  The method of 

weighting importance of drive cycles is extensible to approximate any other cycle weightings 

desired by vehicle designers. 

6.3.4.1.2 Implementing Stochastic Cycles 

Implementing stochastically created drive cycles generates a problem not observed when 

using standardized cycles.  With stochastic cycles, a probability exists of creating drive cycles 

with relatively “easier” or “harder” characteristics.  Inconsistent cycles result in an inconsistent 

                                                 

6 Comparing Equation 7 and 8 shows that the transitional probability matrix shifts from [k-1 and k] to [k and k+1], respectively 

as the method changes from creating the matrix based on observations to using the matrix to predict new cycles. 

   +1 ,   +1 = 𝑙 𝑐     [ min(   +1 ,  +1|  ,  
  𝑋 +1) ≥ 0] 
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evaluation of different vehicle designs.  For example, a poor design may exhibit the same FE on 

an “easier” cycle as a better design would on a different “harder” cycle.  To understand what 

makes up these characteristics of drive cycles, they have been characterized by O’Keefe [88] 

using three metrics: characteristic acceleration, aerodynamic velocity, and their dependent 

Kinetic Intensity (KI).  KI is calculated as a ratio of characteristic acceleration to aerodynamic 

velocity.  Kinetic Intensity is identified as the defensible metric to quantify the intensity of a 

driving profile and is shown to have a positive correlation with fuel consumption in vehicles.  

Variability in power and energy demands between simulations was reduced by selecting 

Markov-Cycles with KI equal to that of the combined six cycles (±0.01 1/m). 

 

Figure 45 Convergence criteria for Markov cycles. Normalized FE vs. optimization iterations (a) and cycle characteristics 

vs. cycle duration (seconds) (b). 

Various convergence criteria were investigated to ensure appropriate implementation of 

the Markov Chain stochastic cycles.  Figure 45 shows the convergence considerations: iterations 

in optimization (a) and cycle duration (b).  These convergence criteria were selected due to their 

importance in satisfying the interests of the investigation.  The achieved optimized FE as a 

function of iteration number is shown in Figure 45 (a).  The average optimization exceeded 90% 

of the final optimized value in fewer than 500 iterations; all except one of the six optimizations 

exceeded 95% of the optimized FE in 1000 iterations.  Comparing 1,000-iteration and 2,500-

iteration Markov-Cycle optimized designs, a maximum difference of 1.05 MPG was found.  The 

1,000-iteration and 2,500-iteration optimized vehicles had an average FE difference of 0.3 MPG 

Chosen number 

of Iterations
Chosen Cycle 

Durationa. b.
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and a p-value of 0.82.  The highest optimized DV difference between 1,000-iterations and 2,500-

iterations is DV-3 (ICE T set) with 11% change in mean DV value.  Average change is 2.87% 

between 1,000-iteration and 2,500-iteration DV.  As a result of these considerations, 1,000 

iterations were selected for the Markov-Cycle optimizations. 

As has been demonstrated by other studies, Markov drive cycles exhibit the 

characteristics of the original cycles [60].  Figure 45 (b) shows the progression of median 

characteristic acceleration, aerodynamic velocity, and kinetic intensity for 100 Markov cycles, as 

a function of Markov-Cycle duration.  Values in Figure 45 (b) are normalized based on the 

characteristics of the composite 6-cycle set test.  As the Markov-Cycle duration approaches the 

duration of the composite 6-cycle set, their characteristics converge.  The diminishing returns on 

cycle characteristics for increasing simulated time can be seen for simulations greater than ~1000 

seconds in duration.  As an approximation of this return, Markov-Cycle duration of 1880 seconds 

was selected, matching the duration of the UDDS.  This allows for a Markov drive cycle 

implementation that retains a majority of the characteristics of the originally investigated 6 

cycles while reducing the total simulated (and thus computational) time relative to the 6 cycle 

set. 

Before each and every simulation performed in Investigation 2, a new unique Markov 

cycle is generated.  Computational time required to generate each Markov cycle is minor when 

compared with computational time for each simulation (~1x10
6
:1 simulation-to-generation 

computational time ratio).  This approach results in no two iteration’s cycle having identical 

profiles, but the characteristics of all cycles are closely matched.   
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6.3.4.2 Results for Investigation 2 

The objective of Investigation 2 is to show that these stochastically created cycles can 

accurately approximate the 6-cycle set’s characteristics and optimized vehicle design results with 

reduced computational costs.  Using the Markov cycles with transitional states based on the 

distance-weighted 6 cycles, six independent vehicle design optimizations were performed.  Each 

iteration of the optimizations simulated a uniquely generated Markov cycle.  Optimized vehicle 

FE performance and resulting vehicle design variables were evaluated for each optimization 

study. 

6.3.4.2.1 Optimized Vehicle Fuel Economy on Markov cycles 

The first objective of Investigation 2 is to demonstrate that the Markov-Cycle optimized 

vehicles have the same characteristics and performance as vehicles optimized over the entire 6-

cycle set.  To form this comparison, Investigation 2 measures and analyzes 4 metrics of 

characteristics and performance 1) weighted C/H FE, 2) FE over each drive cycle, 3) dynamic 

powertrain function, and 4) robustness to drive cycle starting point. 

To demonstrate the performance of Markov-Cycles, the first comparison is between each 

cycle set’s optimized FE with the Markov-Cycle optimized FE.  The highest correlation for both 

C/H and composite objective function FE derivations appears with the 6-cycle set optimized 

vehicles at p=0.69 for C/H and p=0.81 for the objective function (inverse of Equation 1).  The 

high p-value for the six optimized vehicle design’s FE indicates that the Markov-Cycle 

optimized vehicles are highly similar to the 6-cycle set optimized vehicles in terms of composite 

FE performance. 

To further investigate the performance of the Markov-Cycle optimized vehicles, Figure 

46 compares the FE of the vehicles optimized over the 6-cycle set and the vehicles optimized 
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over the Markov-Cycles on the basis of their FE over each of the six independent drive cycles.  

The FE performance matches closely indicating that the Markov-Cycles are robust surrogate 

CONOP models for the 6 drive cycles.  The UDDS and FHDS cycles have the largest differences 

between the 6-cycle set and Markov-Cycle optimized vehicle performance, but each difference is 

less than 2.8 MPG (<5%).  When compared with Figure 42, Figure 46 demonstrates that the FE 

for all six of the drive cycles is most closely matched by the Markov-Cycle optimization than 

any other cycle set.  Figure 46 shows that Markov-Cycle optimized vehicles retain the cycle-

specific FE of the 6-cycle set optimized vehicles. 

 

Figure 46 Box plot of FE on each drive cycle for the 6-cycle set and Markov optimizations.  Median, 25th and 75th 

percentiles, data range and outliers are represented. 

The operational characteristics of the vehicles optimized using different cycle sets is 

shown in Figure 47 where the engine torque and battery SOC are plotted for vehicles over the 

duration of the UDDS.  The Markov cycle optimized vehicle’s operation is more closely related 

to the vehicle optimized on 6 cycles, than it is to the operation of the vehicle optimized on a 

single UDDS cycle.  It can also be seen that the Markov and 6-cycle vehicles’ engine operates in 
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a load-following manner as evidenced by the small changes in battery SOC that occur over the 

drive cycle.  This can be contrasted to the steady-state operation of the engine in the optimized 1-

cycle vehicle, as evidenced by the larger changes in battery SOC and smaller changes in engine 

torque over the duration of the drive cycle.  It is likely that the load-following control strategy is 

what allows the Markov and 6-cycle optimized vehicles to perform more robustly under different 

driving conditions.   

 

Figure 47 Overlay of engine torque and battery state of charge over the UDDS for vehicles optimized over 1 cycle, 6 

cycles, and using Markov cycles. 

6.3.4.2.2 Evaluation of Robustness 

A vehicle’s ultimate ability can be quantified by the extent of different states that it can 

successfully operate in.  For this purpose, a state is defined based on the Markov-Chain 

formulation of four conditions: present and preceding acceleration and velocity.  Increasing cycle 

sets has the potential to increase observed states that can be optimized for.  While controls 
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modification can ensure a vehicle reaches all of its hardware-limited states, expansion into 

additional states requires increasing component specifications.  Higher cycle sets have more 

states than lower cycle sets.  Vehicles optimized for multiple cycles include the requirements to 

perform in simulation over these additional state conditions. 

Vehicle design robustness can be achieved through a combination of hardware selection 

and control method development.  As described in Investigation 1, vehicles optimized for fewer 

cycle sets (1-cycle set and 2-cycle set) have optimized power (ICE, MG and Battery) 

specifications lower than higher cycle sets and were unable to complete cycles beyond those 

optimized on.  It is reasonable to assume that the control method implemented in this study is too 

simple to allow the vehicles to exhibit their ultimate ability.  Vehicle-specific control method 

improvement may prove to allow additional optimized vehicles to complete all 6 cycles.  This 

study uses a consistent control method across all optimized vehicles and shifts the focus for 

robustness to hardware-based limitations.  As vehicles optimized on the Markov and 6-cycle set 

include the most required states, they offer the highest potential for hardware-based robustness. 

Vehicles optimized on the 3-cycle set and above all exhibited the ability to complete all 6 

cycles.  To additionally test the robustness of the vehicle designs, each of the optimized vehicles 

was simulated over the 6-cycle set starting at points in the cycle different than the standard 

starting point.  Using the same cycles but starting at different starting points (each simulated 

vehicle started at the same new point for each cycle for consistency) retains all of the information 

present within the cycle but demonstrates the sensitivity of optimized vehicle designs to end-of-

cycle boundary conditions.  All of the six Markov and six 6-cycle set optimized vehicles were 

able to maintain SOC on all but one of the cycles while the 3-cycle set optimized vehicles had 

four failures (of 6 samples) due to low SOC.  All of the Markov, 6-cycle set, and 3-cycle set 
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vehicles were able to maintain SOC on all six cycles when simulated from the standard cycle 

starting points.  This ability demonstrates that the robustness of performance and controllability 

that the 6-cycle optimized vehicles are able to achieve is maintained through the use of 

condensed cycles. 

These comparisons demonstrate that the FE performance, control system function, and 

robustness characteristics of the Markov-Cycle optimized vehicles are indistinguishable from 

those of the 6-cycle optimized vehicles. 

6.3.4.2.3 Optimized Vehicle Design Variables on Markov cycles 

Although the FE of Markov-Cycle optimized vehicles is comparable to the FE of 6-cycle 

set optimized vehicles, the results of Investigation 1 have shown that the value of DV can be 

sensitive to optimization CONOP.  The DV for the optimized Markov-Cycle vehicles must show 

a correlation with the optimized 6-cycle vehicles to demonstrate equivalent utility between the 

two approaches. 

Comparison of the ten design variables used in this study show that high p-values are 

observed between the optimized Markov vehicles and the 6-cycle set optimized vehicle designs.  

To demonstrate the correlation of DV, Figure 48 shows DV statistics for both Markov-Cycle 

optimized vehicles and 6-cycle set optimized vehicles.  Nine of the ten DV for the 6-cycle set 

optimized vehicles have less than 10% difference with the Markov-Cycle optimized vehicles.  

All of the DV of Markov-Cycle optimized vehicles have p-value correlations with the DV of 6-

cycle set optimized vehicles above 0.1, eight of which are above 0.2. The average p-value 

between Markov-Cycle optimized designs and 6-cycle set optimized designs is 0.49. 



117 

 

 

Figure 48 Comparison of design variables between Markov-Cycle and 6-cycle set optimized vehicles using box plots.  

Median, 25th and 75th percentiles, data range and outliers are represented. 

6.3.4.2.4 Computational Advantages 

The Markov-Cycle optimization completed ~2.8x faster for this study than the complete 

6-cycle set optimization with comparable results.  The average computation time required for 

each cycle’s simulation is provided in Table 15.  To assist in understanding why it is possible to 

reduce the computation time using Markov Cycles, Table 15 also provides the number of 

discrete acceleration vs. velocity states observed in each cycle.  When Table 15 is compared with 

the duration of each cycle in Table 13, it can be seen that all cycles have reoccurring states and 

also that reoccurring states exist across different cycles. Over 50% of the states observed for the 

6-cycle set are repetitions.  Using the Markov-Cycles provides statistically similar state 

occurrences in a reduced simulation time. 
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Table 15 Distinct states and observed computation time for each of the drive cycles investigated. 

 UDDS FHDS US06 SC03 NEDC NYCC 6-cycle Markov 

Distinct States 856 320 503 427 189 369 2427 2427
7
 

Computation 

Time (Seconds) 
519 242 176 163 336 132 1567 563 

 

Observing all of the DV and performance metrics surveyed for this study, the Markov-

Cycle optimized vehicles show a high level of similarity with the 6-cycle set optimized vehicles, 

producing robust vehicle designs with less computational cost. 

6.3.5 Discussion 

To date, many HEV design studies have optimized vehicle simulations using a limited set 

of drive cycles [34, 53, 62, 64 - 82].  Investigations 1 and 2 of this paper have shown that the 

energy-use performance and optimized vehicle components used in these designs are highly 

dependent on the cycle-sets used as CONOP in each study.  Vehicle design processes using 

fewer drive cycles produce vehicles designs that are less robust to diverse driving characteristics.  

Stochastic drive cycles offer the robustness of using multiple cycles in vehicle simulation 

optimization and with lower computational costs. 

To aid in the application of the simulation and optimization tools presented in this paper, 

the assumptions and limitations applied when investigating standardized and condensed drive 

cycles as CONOP are discussed here.  Uncertainty within the study and additional application 

considerations are offered. 

                                                 

7 Presents number of available states.  Due to stochastic state selection, actual number of observed states per cycle may be lower. 
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6.3.5.1 Uncertainty, Variability and Error 

Many state of the art vehicle design studies do not appropriately document the 

uncertainty, variability, and error associated with their design efforts.  This study has 

demonstrated that uncertainty exists in all aspects of vehicle simulation, optimization and 

comparison.  To aid future researchers in understanding and trusting the results presented in this 

study, all analysis and comparisons have been fully documented and presented here including 

uncertainty.  Consideration of this uncertainty brings to question the error, uncertainty, and 

statistical comparisons that are required to draw conclusions from vehicle design studies.  Based 

on the results of this study, we can now understand the uncertainty that is associated with the 

results of vehicle simulation and optimization design studies.  For this section p-values below 

0.05 are considered significantly different (at a 95% confidence level, α = 0.05) [59] assuming a 

normal distribution of values.   

Typically, vehicle simulation tools observe uncertainty in calculated output (e.g. MPG or 

GHG emissions) from 5% to 20% [4].  An uncertainty of ~5% for FE has been measured for the 

simulation and optimization tools used in Investigations 1 and 2 [4].  Additionally, design 

variable definitions can have associated uncertainty ranging from 1% to 20% [44].  Both of these 

factors decrease the correlation required for acceptably accurate results and thus increase the 

validity of the methods proposed in this paper.  The results of Investigation 1 show, in Figure 40, 

that increasing the number of cycles included in the optimization also increases the performance 

variability within each results set.  Figure 49 shows the variability for each of the optimized 

cycle-sets FE presented as the proportion of the standard deviation to the mean.  The Markov-

Cycle variability for both the C/H and Cost Function quantifications are lower than the 6-cycle 

set and on par with 3-cycle and 4-cycle sets. 
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Figure 49 Relative measured uncertainty in optimized designs for a variety of FE metrics compared among the six cycle 

sets and Markov-Cycle optimized vehicles 

Investigation 1 can now be reexamined to determine the accuracy of the conclusions.  In 

Figure 41, the lowest p-value comparing cycle set’s FE for the C/H formulation is between the 2-

cycle set and 6-cycle set at 0.032, all others are higher than 0.10.  Between progressive cycle 

sets, the 5-cycle set and 6-cycle set show the lowest p-value at 0.007, all others are above 0.25.  

These comparisons with high p-values do not support rejection of the null hypothesis, suggesting 

that (for instance) the mean FE for the 3-cycle-optimized vehicles is not different than the mean 

of the 2-cycle-optimized vehicles.  Between the progressive cycle-sets, as the number of cycles 

included increases, only the 6-cycle set supports rejection of the null hypothesis, suggesting that 

2-cycle-optimized and 6-cycle-optimized vehicles do not have the same mean FE.  Using a 95% 

confidence interval, only two of the ten DV (DV 2 & DV 8) is significantly different between the 

Markov-Cycle and 6-cycle set optimizations.  At a 99% confidence level (α = 0.01), all design 

variable comparisons would fail to reject the null hypothesis, suggesting that these same DV 

comparisons are insignificantly different. 



121 

 

6.3.5.2 EPA and Standardized Testing 

To show the extensibility of the condensed cycles used in Investigation 2, the FE results 

are applied using metric of comparison different than either the C/H FE or cost function FE.  For 

example, an important FE metric is the EPA 5-Cycle weighted FE, used for vehicle sticker 

labeling [59]. Vehicle design performance was approximated using the proportional fuel 

consumption weightings for the Three-Bag FTP at 75°F found in the EPA documentation.  

Ambient temperature effects are not included in the vehicle model; therefore fuel consumption 

for cold-start portions of the test procedure are approximated using suggested EPA methods [59]. 

For this metric of comparison, the Markov-Cycle optimized vehicles perform most 

similarly to the 6-cycle set optimized vehicles, with p-values above 0.15.  In contrast, the 

comparison between Markov-Cycle optimized vehicles and the 4-cycle set optimized vehicles 

FE has p-values below 0.01. 

These comparisons show that the similarities between the stochastic drive cycle 

optimized vehicles, and the 6-cycle optimized vehicles exist not only for those metrics of 

comparison that are explicit inputs to the optimization routine, but also exists for metrics of 

comparison outside of the original objective function. 

6.3.5.3 Comparison to Previous Studies 

When vehicle simulation and optimization studies are used as inputs to a subsequent 

detailed vehicle design process, the fidelity with which the simulation and optimization tools can 

represent the performance of the vehicle is of high importance.  Accurately approximation of 

vehicle attributes reduces the probability of redesign.  To test the utility of using condensed 

Markov-Cycle simulation optimization, a comparison can be made with previous design study 

methods and a high volume production HEV, the Toyota Prius (MY2012).  A study presented by 
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Gao et. al. [83] performed simulation optimization on pre-transmission parallel HEV.  Within the 

Gao et. al. study, models and algorithms similar to those used in this paper were applied.  As 

with many of the studies examined through the literature review, only the UDDS and FHDS 

drive cycles were used by Gao et. al. as CONOP.  The vehicle attributes presented in Figure 50 

are the ratio of ICE power to total tractive power (% ICE), total tractive power to weight ratio 

(kW/gram), and FE to weight ratio (MPG/gram).  The weight ratios are included to minimize 

effects from assumptions made to model the chassis in each study.  The HEV designed by 

Toyota (which likely included design and testing CONOP beyond the 2-cycle set) has attributes 

more similar to the optimized 6-cycle set and Markov-Cycle found in Investigations 1 and 2 than 

to the optimized Gao et. al. and 2-cycle set vehicles.  This comparison demonstrates the 

relatively weak correlation that exists between the outputs of simulation and optimization-based 

design studies and real-world OEM vehicles, and suggests that including more drive cycles as 

CONOP (and the condensed Markov-Cycle versions) will allow design studies to more closely 

approximate real-world OEM design results. 
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Figure 50 Comparison of optimized vehicle attributes. 

6.3.6 Conclusions 

The methods shown in Investigations 1 and 2 of this paper will assist automotive 

designers in determining appropriate drive cycles for simulation optimization.  Investigation 1 

systematically compared HEV designs optimized on the UDDS, FHDS, US06, SC03, NEDC, 

and NYCC standard dynamometer driving cycles.  Results of Investigation 1 show that City 

(UDDS) and Highway (FHDS) rated FE does not change significantly when additional drive 

cycles are added to the optimization.  In contrast, the vehicle design variables (and subsequent 

analyses dependent on their values) are highly dependent on the types of drive cycles used in the 

optimization.  Investigation 1 shows that to design an optimized HEV capable of robust 

operation over a variety of different driving conditions, as many drive cycles as are available 

should be included in the vehicle design study. 

Investigation 2 presented an alternative method of simulating drive cycles in a condensed 

manner and with reduced computational costs.  The methods used in this paper also offer an 

additional advantage of reducing cycle-specific event dependence, allowing optimized HEV to 
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operate more consistently in un-modeled or off-design driving conditions.  The methods of 

Investigation 2 can be applied to any combination of drive cycles.  The stochastically derived 

cycles, as shown in Investigation 2, can allow future vehicle design studies to improve the 

robustness of their optimized vehicles while simultaneously reducing the computational costs 

associated with the design process. 

Overall, the use of simulation and optimization in vehicle design studies will improve the 

consistency, applicability and utility of simulation within the vehicle design process.  By seeking 

to experimentally and empirically understand the dependency of vehicle design on the best 

practices in the simulation field, this study contributes to the improvement of both vehicle 

simulation efforts and their dependent conclusions. 

6.4 Task 2.4 Determine the effect of fleet characteristics on vehicle simulation. 

Automobiles have been classified into various groupings over the years to provide 

divisions for policy and consumer perspective.  The present automotive classifications are not 

well suited to account for design and technology improvements over time.  Restricting 

automotive classification to only a few metrics has forced agencies to update their classifications 

by including new groups as markets and fleets change.  In the U.S., the Environmental Protection 

Agency (EPA) classifies passenger cars based on their passenger and luggage volume while 

trucks are classified based on their weight.  To aid in restricting the scope of automotive studies, 

many researchers apply automotive classifications to provide distinction between different 

automobile types, while avoiding the comprehensive modeling of every vehicle make and model.  

Some policy, energy, and technology studies choose a single carline in their analysis [138] where 

other chose a carline per each vehicle class included [106, 115].  In many cases these studies fail 

to consider the representativeness of selected automobile carlines within its fleet.  The choice of 
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representative automobiles in fleet-level technology studies needs to be determined in terms of: 

similarity of the automobile’s characteristics to others in the same group, applicability of the 

automobile’s technology to others in the same group, and effectiveness of this automobile’s 

technology to the group.  In this study we are proposing a new automotive classification that 

groups automobiles with similar characteristics including a variety of engineering design 

parameters and fuel economy.  These classifications will be intended for application to fleet-level 

automobile fuel economy studies.  Based on the identified automobile groups, the most 

representative carline per each group will be selected and the measure of technology 

effectiveness on this automobile will be tested and compared to the overall group and entire U.S. 

fleet.  The results of this study will improve the effort required to measure the affect and impact 

of technology and design improvement while simultaneously increasing the robustness of 

automotive classification over time. 

6.4.1 Introduction 

Automotive design studies are important to advancing the state of the field.  To provide 

structure for understanding differences between automobiles, classification methods are used.  

The prevalent method of reliance on the existing automotive classification has a drawback.   

Historically most U.S. studies use EPA classifications
8
 that rely on passenger/luggage volume 

and weight, but there is low correlation between these characteristics and metrics of interest to 

the vehicle design and simulation community, including Fuel Economy (FE).  The correlation 

                                                 

8 “How are vehicle size and classes defined?” fueleconomy.gov 
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between EPA reported FE and combined passenger and luggage volume is shown to be low in 

Figure 51.  

 

Figure 51 Low correlation between automotive interior volume and fuel economy. 

  The current classifications are designed for consumers or regulation where it is not 

meant to account for automobile design and technology improvement.  Restricting classification 

to size and weight has forced agencies to update their classification by including new classes 

over time. There is a need to reclassify automobiles by using their significant characteristics to 

better represent the fleet in automotive design and simulation studies.   

This paper proposes a new method of automotive classification based on clustering of 

technology characteristics.  This approach aims to 1) improve the state of the art for automotive 

design studies on fuel economy, GHG emissions, and other energy-use scenarios by providing 

more relevant and representative vehicle classification, and 2) reduce scope of studies by 

exploring more efficient approaches to representative automobile identification. 

6.4.2 Previous Fleet-Level Studies 

In automotive design and analysis studies, researchers have either added to or subtracted 

from the EPA classifications in order to achieve their objectives for modeling of the vehicle fleet. 
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For example, a study by Austin and Dinan added additional automobile classes (luxury small, 

and luxury large) to the EPA classification system account for variability in fuel economy and 

MSRP.  The luxury vehicles have higher prices at lower fuel economy than their mid-sized or 

full-sized class median counterparts [126]. 

In other automotive design studies, the researchers have chosen to delete many of the 

EPA classifications.  For example, in a study by the Electric Power Research Institute (EPRI) a 

Saturn SL1 was selected as a compact vehicle, Ford Explorer as a mid-size SUV and Chevrolet 

Suburban as the full-size SUV [106]. In another study a Toyota Camry was adopted as the 

representative automobile for five different technologies [138].  Neither of these studies 

presented evidence that the model they chose was representative of the automobiles they were 

attempting to represent.  Additionally, the applicability of each studied technology is unknown 

for the fleet because it is only simulated as applied to a single model.  To provide more robust 

results, researchers need to understand whether the technology is applicable to more than one 

automobile category or not.  Additionally, the representativeness of the selected model for other 

models in the fleet is unknown.  

6.4.3 Methods 

In this paper the authors propose a methodology for clustering the U.S. light duty 

automotive fleets based on available automotive characteristics.  The analysis targets 

automobiles sold in U.S. for model years (MY) 2002 and 2010.  The goal is to determine the 

minimum number of clustered automobile groups necessary to achieve certain metrics of 

representativeness of the fleet for each year.  In addition, representative carlines will be 

identified for each cluster.  Clustering approaches will be implemented using SAS while 

automobile modeling and simulation will occur in Modelica.  Four clustering methods were 
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tested and the one with best performance is promoted and used for discussion and analysis.  The 

quality and performance of each step in the analysis (clustering method, number of clusters, and 

the choice of exemplar automobiles) is reviewed.   

6.4.3.1 Database for U.S. Automotive Fleet Sales Characteristics 

U.S. vehicle model year fleets of 2002 and 2010 will be considered in this analysis.  

These MY have been selected to demonstrate fleets across multiple years that show significant 

change in market and fleet characteristics.  Example changes between MY 2002 and 2010 

include the introduction of electrified transportation and the addition of new EPA classes.   

The U.S. EPA reports the characteristics of vehicles for each nameplate such as tested 

dynamometer coefficients, fuel economy, passenger volume and luggage volume.  Not every 

nameplate was tested by the EPA for each MY, for some nameplates neither its fuel economy 

nor volume data were reported.  In addition, the sales data publically available from Autonews
9
 

is only accessible on a per-carline basis.  These limitations lead the authors to carry the analysis 

over the carlines where each carline represents the median of the nameplates.  Table 16 provides 

an overview of the data set that is used throughout this study. 

Table 16 Database overview for MY 2002 and 2010 automobiles 

 2002 2010 

Total Fleet Sales 15,291,878 11,580,715 

Nameplate EPA characteristics/ fuel 

economy 
2,364/945 3,322/1,109 

Carlines used in this analysis 190 304 

EPA Classes 13 15 

 

                                                 

9 www.autonews.com 
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6.4.3.2 Proposed Automobile Classification Method 

The proposed classification method is designed to support automotive studies related to 

energy, environment, market, and policy.  The results will be automobile clusters that classify 

vehicles based on the vehicle level characteristics: Engine Power (HP), Number of Gears 

(Gears), Estimated Test Weight (ETW), Axle Ratio (Axle), Engine/Wheel Speed Ratio (NV), 

Fuel Economy (FE), dynamometer coefficients, passenger volume, and cargo volume.   

The clustering analysis was carried out using all available automobile characteristics to 

allow for division of vehicles into groups (clusters) of automobiles that are homogenous within 

each cluster and heterogeneous among other clusters.   

The steps for this analysis are as follow: 

1. Obtain automobile sales data (nameplate) and respective characteristics for a specific 

model year (MY). 

2. Carlines are identified by class, make and model name 

3. Compose the mean value of each carline characteristics using automotive characteristics 

(HP, Gears, ETW, Axle, NV, THC, CO, CO2, NOx, TARGET_COEF_A, 

TARGET_COEF_B, TARGET_COEF_C, SET_COEF_A, SET_COEF_B, 

SET_COEF_C, FE_CTY_Unadjusted, FE_HWY_Unadjusted, Passenger_Volume, 

Luggage_Volume) 

4. Calculate the mean of each model year (2002, 2010) fleet classes (using EPA 

classification) 

5. The clustering and statistics analysis were coded in SAS (the sales number "frequency" 

for each carline has no effect on the clustering analysis, where carlines are grouped, or 

clusters the same way):  
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6. Normalize each automobile’s characteristics 

7. Select clustering procedure (Single, Complete, Average and Ward’s) 

8. Obtain a quality measures to decide on the number of clusters 

9. Interpret and profile clusters 

10. Define an exemplar carline within each cluster.  

6.4.3.3 Clustering Method 

Clustering is defined as assigning objects into groups (clusters) based on their similarity 

level of some criteria.  Many clustering methods exist and can lead to different results based on 

their formulation.  There are two type of clustering classes; Hierarchical and Non-hierarchical 

[127].  The Non-hierarchical approach requires many random starting runs since it is sensitive to 

initial starting condition where the hierarchical clustering approach can be run once for each data 

set.  In the hierarchical clustering approach a tree structure (dendrogram) with k-blocks (k: 

number of clusters) is created [128].  The k-blocks set partition for each value of k between 1 

and n, where n is the number of observations to be clustered based on the clustering method.   

In this study, I have selected to use a Non-Parametric (Hierarchical) agglomerative 

approach.  This works by building a hierarchy clusters using a bottom up approach.  Each 

observation starts as a single cluster and then pair of clusters are merged based on their similarity 

level defined by the linkage method.  The strengths with this approach are that any desired 

number of clusters can be obtained by cutting the dendrogram at the proper level. 

In our analysis we tested the performance of four methods: Single, Complete, Average, 

and Ward’s.  Figure 52 lists the classification of each type.  The following sections will provide 

an overview for each of the investigated clustering methods. 
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Figure 52 Classification of clustering types [Bernard and Downs 1992]. 

6.4.3.3.1 Single linkage method 

The single linkage method [129] is defined by the minimum of all pair-wise distances 

between points in the two clusters.  The dissimilarity between two clusters is equal to the 

minimum dissimilarity between the members of two clusters.  The distance between clusters R 

and Q is shown in Equation 15.  

Equation 15 

                𝑅                   ∈ 𝑅   ∈   

Where di,j is the distance between the ith and jth observations.  This method produces 

long, “loose” clusters and sensitive to noise and outliers.   A graphical representation of the 

Single Linkage Method is shown in Figure 53. 
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Figure 53 Single Linkage Method 

6.4.3.3.2 Complete Linkage Method 

The Complete linkage method [130] is defined by the maximum of all pair wise distances 

between points in the two clusters where the dissimilarity between two clusters equal to the 

maximum dissimilarity between the members of two clusters.  The distance between clusters R 

and Q is shown in Equation 16.  

Equation 16 

                  𝑅                   ∈ 𝑅   ∈   

This method is produces more balanced clusters (with equal diameter), less susceptible to 

noise and very tight clusters. A graphical representation of the Complete Linkage Method is 

shown in Figure 54. 

 

Figure 54 Complete Linkage Method. 
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6.4.3.3.3 Average Linkage Method 

The Average linkage method [131] is defined as the average of all pair wise distances 

between points in the two clusters where the dissimilarity between two clusters equal to the 

averaged distances of all pairs of objects (one from each cluster).  The distance between clusters 

R and Q is shown in Equation 17. 

Equation 17 

                 𝑅     
     

 𝑅    
      ∈ 𝑅   ∈   

Where |R| and |Q| equal the number of observations in cluster R and Q, respectively.  This 

method compromise between Single and Complete Link and it is less susceptible to noise and 

outliers but biased towards globular clusters.  A graphical representation of the Average Linkage 

Method is shown in Figure 55. 

 

Figure 55 Average Linkage Method. 

6.4.3.3.4 Ward’s Method 

The Ward’s method [132] is defined by the difference between the total within-cluster 

sum of squares for two clusters separately, and the within cluster sum of squares (SSE) resulting 

from merging the two clusters.  The error sum of squares is shown in Equation 18. 

Equation 18 
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𝑆𝑆𝐸      𝑦    𝑦         

  

   

 

   

 

Where yij is the jth observation in the ith cluster and ni is the number of observations in 

the ith cluster. 

This method is similar to group average and centroid distance.  As such, it is less 

susceptible to noise and outliers, is biased towards globular clusters, is a hierarchical analogue of 

k-means, and can be used to initialize k-means. 

6.4.3.3.5 Clustering Method Selection 

This study does not aim to make an exhaustive comparison between clustering methods 

but instead to choose the one with best performance as applied to the selected automotive data 

sets.  The selection process is executed by applying each method to the data sets.  The resulting 

clusters have been evaluated using the maximum distance between clusters, quality of grouping, 

grouped automobiles within each cluster, and the final median value of characteristics within 

each cluster.  The objective of the cluster evaluation is to maximize the similarity within each 

cluster and minimize similarity between clusters.   

6.4.3.4 Defining the Number of Clusters 

The four methods (Single, Complete, Average and Ward’s) were evaluated to choose the 

one with the best performance using the 2002 and 2010 MY automotive data.  The most 

desirable clustering method has been identified as the method that produce high quality clusters 

with high within-cluster similarity and low between-clusters similarity.  The methods and 

assumptions in regard to the number of clusters are tested to carry the analysis using the method 

with best performance. 
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The Semi-Partial R-squared (SPR) measures the loss of homogeneity when forming a 

new cluster from merging two clusters.  The value is small when the merging clusters are 

homogeneous and large when they are not [133].  For example, applying the Ward’s method 

shows that seven clusters are efficient because after the seventh cluster increasing the number of 

clusters will lead to a small maximum distance increase as seen in Figure 56.  Ward’s method 

joins clusters with a small number of observations, produces clusters that have with almost the 

same number of observations and very sensitive to outliers [137].  Based on the initial analysis 

the authors have chosen the Ward’s method based on its desirable performance. 

 

Figure 56 Maximum distance between clusters using the Ward’s Methods with 2010 data. 

6.4.3.5 Definition of the Exemplar Vehicle  

Each cluster will represent a group of automobiles with a high level of similarity.  A wide 

range of approaches exists for selecting exemplar automobiles within a group depending on the 
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metric of interest.  For example, if a researcher is focused on analyzing automotive acceleration 

and total power they may select exemplars based on median power rating for each cluster group.  

For this study, exemplar carlines are selected based on median sales volumes within each 

grouping.  In this manner, the characteristics of each group (Clusters or EPA Classes) are 

preserved through segregation of the clusters, and the additional factor of sales weighting can 

then be added.  Sales weighting is important to evaluation of the exemplar’s automobile’s ability 

to represent the entire U.S. fleet for a given year. 

The exemplar methodology has an important feature that allow the representative carline 

from each cluster within each fleet to be used as an exemplar in technology, fuel economy, 

performance, and emission, energy, and policy studies.  This has many advantages in regard to 

the computation time, costs and level accuracy in performing policy/energy modeling.  Including 

sales volumes into the study will demonstrate the proposed methodology’s ability to represent 

characteristics not included in the original analysis.  Exemplar automobiles have been selected 

from each cluster using median sales volume data.  The exemplar vehicle is the vehicle in each 

cluster with the highest sales volume, and is presented as the exemplar for the cluster for the 

remainder of this study. 

6.4.3.6 Modeling and Simulation Methods 

To test the performance of the clustering method for automotive classification a method 

is proposed as follows:  

1. Models of the automobile fleet must be created that can accurately simulate FE 

performance based on automobile physical characteristics.   

2. Incremental technology changes are made to the modeled vehicle fleet 
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3. Comparisons of the simulated change in FE can be made between the predicted 

EPA classified representative automobiles, cluster representative automobiles, 

and the fleet as a whole. 

4. The best classification scheme is then the classification scheme that allows for the 

lowest mean error in prediction of the fleet FE change 

Dynamic vehicle models were created using the Modelica modeling language [101].  

These dynamic models utilize a combination of physical equations and lookup tables to define 

each subsystem of the automobile.  A differential algebraic equation (DAE) solver is used to 

simulate the model using continuous time steps.  The modeled subsystems include: Internal 

Combustion Engine (ICE), Motor/Generator (MG1 & MG2), Energy Storage System (ESS), 

Transmission (Tx), Final drive differential (Fd), Clutch, supervisory controller, driver, subsystem 

controllers, electric distribution block, and the operating environment.  The automobile models 

have been designed and validated for both energy-use and vehicle dynamics [6].  Each of the 

modeled physical components has been developed with scaling parameters such that a range of 

different subsystem specifications can be represented (ex: different ESS capacity and nameplate 

power).  Automobile characteristics from EPA testing documentation (as listed in Section 6.4.3) 

are used in calculating model parameters to represent each carline in the fleet. 

 

Figure 57 Modeled vehicle architecture. 
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To approximate all of the feasible architectures from the selected automobile production 

model years, a general Series-Parallel architecture was created. The modeled architecture is 

shown in Figure 57.  By modifying the scaling components of the model this Series-Parallel 

architecture has the flexibility to exhibit characteristics of: 

 A Conventional Vehicle (CV): by sizing MG2 as zero power, sizing the ESS as a 12V 

battery, and sizing MG1 as a starter motor. 

 Pre-Transmission Parallel Hybrid: by sizing MG2 as zero power. 

 Post-Transmission Parallel Hybrid: by sizing MG1 as zero power. 

 Series Hybrid: by locking the clutch in the open position. 

 Electric Vehicle: by sizing the ICE and MG1 as zero power 

Using this method, hybrid automobiles can be represented as ranging from ‘stop-start’ to 

mild hybrid and full hybrid.  These technologies correspond to a majority of existing and 

proposed topologies for the near-term US passenger vehicle fleet [15].  The control strategy for 

the modeled vehicle biases electrical propulsion (MG2) whenever available.  A thermostat-type 

ICE control is used to maintain ESS state of charge within a specified range if in a charge 

sustaining condition as for HEV.   

6.4.3.6.1 Automobile Parameter Definition 

As mentioned previously, automotive vehicle design parameters such as total power and 

gear ratios have been obtained from the EPA dataset, and is reported for each carline.  

Unfortunately, EPA reporting is unspecific for electrified automobiles and does not include 

information on each carline’s degree of hybridization.  To translate the generalized EPA 

parameters into architecture-specific parameters the design rules in Table 17 were applied for 

vehicle models: 
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Table 17 Vehicle modeling rules used in this study 

 MG1 Power (kW) ESS Energy (kWh) 

CV 0 0 

HEV Vehicle Power 0.018* Vehicle Power/350 

EV Vehicle Power 0.3* Vehicle Power/350 

 

The above approach to modeling of HEVs and EVs allows the vehicle to have full 

performance in electric drive mode.  In the case of HEVs the ESS is scaled using a factor similar 

to that of a Toyota Prius HEV.  The EV’s ESS is scaled to a factor similar to a Nissan Leaf.  In 

all cases the ICE is set to have equivalent power as the rated vehicle power. This method results 

in more power potentially available at the wheels than the rated power (MG1 + ICE = 2 x 

Vehicle Power).  This inconsistency is overcome by initializing all HEV’s at their lower SOC set 

point and EV’s at their upper SOC set point for each simulation.  The different SOC set point 

initializations ensure that all energy for HEV’s must come from fuel.  In contrast, the energy for 

EV’s will come from the ESS. 

6.4.3.6.2 Baseline Automobile Performance Convergence 

To reduce the inaccuracies associated with applying a unified vehicle platform to the 

wide range of vehicle architectures and configuration, additional system efficiency metrics were 

added to each vehicle’s model.  Two metrics were implemented; 1) total mechanical system 

efficiency, and 2) total electrical system efficiency.  To obtain these values for each carline 

iterative simulations were performed until convergence was achieved between the reported fuel 

economy and the simulated fuel economy.  Convergence was achieved based on Equation 19 for 

each vehicle. 

Equation 19 
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 𝐹𝐸             𝐹𝐸          ≤      

 𝐹𝐸            𝐹𝐸         ≤      

 𝐹𝐸           𝐹𝐸        ≤      

      𝐼        ≥     

A comparison of reported and simulated combined City/Highway fuel economy, based on 

the simplified EPA (55% City and 45% Highway) weighting, for each of the carlines is shown in 

Figure 58.  Both the 2002 and 2010 simulated fleets independently achieved an R
2
 above 0.98. 

 

 

Figure 58 Regression of reported and simulated composite fuel economy
10

. 

It can be observed in Figure 58 that a few of the simulated automobiles did not meet the 

FE convergence criteria set by Equation 5 and instead encountered the iteration limit.  To reduce 

inconsistency potential caused by these underperforming automobile simulations, all FE 

evaluations for this study will be based on incremental changes to the simulated FE and not the 

base or reported values. 

                                                 

10 The 2010 Nissan Leaf, at 142mpg, is not shown in the regression figure. 
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6.4.4 Results of Automotive Fleet Clustering  

The following section will present the results of applying both the EPA classification 

method and the proposed clustering method to the simulated 2002 and 2010 MY fleets.  

Comparisons will be made to support the increased representativeness achievable by applying 

the proposed clustering method over previous EPA classifications.  Results will be presented 

concerning the overall baseline performance of the grouped simulated fleets and the ability of 

each method to capture fleet response to technology improvements. 

6.4.4.1 Baseline Grouping Results 

It is found that each cluster linkage method generates different dendrograms.  Based on 

the results we decided to perform the analysis using Ward’s linkage method choosing 10 

clusters.  Table 18 shows the groupings that are used for this study.  Note that the 2010 clustered 

vehicles have been grouped to the same 10 base clusters created for the 2002 vehicle fleet.  In 

this was the cluster groups will provide some level of continuity across years, similar to EPA 

classes.  Alternatively, vehicles can be re-clustered for each year’s fleet to get a more accurate 

grouping, but with less traceability and lower predictive power for future vehicles. 

Table 18 Vehicle groupings, group size, and exemplars. 

 Clusters Clusters EPA Class EPA Class 

MY of Exemplar Vehicles 2002 2010 2002 2010 

MY Used to Create Group 2002 2002 2002 2010 

Number of Groupings 10 10 13 15 

 

The cluster groupings successfully grouped vehicles based on multiple engineering 

characteristics.  In contrast to EPA classifications, the clustering method allowed vehicles of 

similar characteristics to exist in the same group even when they would otherwise be separated 
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by EPA classification.  For example, the Ward’s cluster method allows some large sedan cars, 

small SUVs and small trucks to be considered part of the same cluster group.  Sports cars and 

high performance vehicles reside primarily in another cluster group (regardless of size or 

configuration), while HEVs, EVs, and high fuel economy vehicles belong to a third cluster 

group.   

6.4.4.2 Prediction Results 

To approximate potential improvements in vehicle technology contributing to fuel 

economy, three fuel economy improving treatments were selected for analysis: 1) reduced test 

weight, 2) reduced drag, and 3) increased hybridization.  These improvements were selected to 

test characteristics that were both included in the clustering inputs (weight and dynamometer 

coefficients), and were not included (hybridization).  The reduced test weight and reduced drag 

factors are applied by reducing the EPA-reported values by 10% for each vehicle when they are 

applied to the vehicle energy-use simulation.  For the increased hybridization incremental 

technology each non-hybrid vehicle is modeled using the same design rules applied to hybrids 

from Table 17. 

To demonstrate the advantage of using clustered vehicle groupings, Figure 59 shows box 

plots of the scaled fuel economy improvement observed through each of the incremental 

technologies as applied to each vehicle for both 2002 and 2010.  The evaluation metric used in 

Figure 59 is calculated using Equation 20. 

Equation 20 

𝑆𝑐 𝑙   𝐷     𝑐                                    

Where x is the index of each of the 304 vehicles in the 2010 fleet, g is the group number 

(for either clusters or classes), and t is the technology applied to the vehicle.  The change in fuel 
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consumption for each vehicle is represented by Δgpmi (delta grams per mile).  The mean change 

in fuel consumption for each group within a technology application is represented by µ and is 

used to center the groups.  P75 represents the 75
th

 percentile of each technology application and is 

used to scale each value within a similar range. 

For each treatment in Figure 59, the distribution of the scaled distance metric is presented 

for every vehicle in the fleet. The zero value identifies the mean fuel economy improvement 

among each of the groups, and within each treatment.  Figure 59 shows that for both years and 

all technology increments the clustered groups are more centered and have less data spread than 

the comparative EPA classified vehicles.  This achieves the objective of demonstrating increased 

similarity in FE performance within groups.   

 

Figure 59 Normalized box and whisker plot of fuel economy gains from incremental technology changes by method and 

year. 

As Figure 59 shows, for all technology treatments and years except one, the clustered 

vehicles perform more similarly to the mean of their group than do the vehicles grouped by EPA 

classes.  This is particularly important when we consider that there is a better opportunity for the 

EPA classified vehicles to perform well since they have been divided into more groups (13 
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groups for 2002 and 15 groups for 2010) than the clustered vehicle groups (10 groups).  To 

strengthen this claim, Table 19 presents a comparison for the mean of all groups’ standard error 

for each of the methods.  In each case, the clustered vehicle groups have a lower mean standard 

error than their EPA classified counterpart.  The lower mean standard error implies that the 

clustered vehicles perform more closely to their group mean than EPA classified vehicles. 

Table 19 Comparison of standard errors for grouped fuel economy changes. 

Mean Standard 

Error (fuel 

reduction) 

Reduced Drag 

(90% Crr) 

Reduced Mass 

(90% GVWR) 

Hybridization 

(+MG, +ESS) 

Year 2002 2010 2002 2002 2010 2002 

Clustered 1.70% 1.64% 1.72% 1.55% 4.32% 7.49% 

EPA Classes 2.32% 1.80% 2.37% 1.71% 7.17% 9.57% 

 

The technology increment prediction results for both the 2002 and 2010 vehicle fleets 

show that using the clustering method provides a better way of grouping vehicles in relation to 

their energy-use performance.  The results shown here are strengthen by the fact that fewer 

groups are used when clustering than for comparative EPA classifications. 

6.4.5 Discussion of Automotive Fleet Clustering 

The baseline results have shown that the proposed cluster grouping method is able to 

provide higher performance for fleet representation and prediction.  The following methods will 

expand upon the benefits of incorporating automotive clustering into fleet-level automobile 

studies.  Comparisons will be made with previous studies, all of which identify automotive 

clustering as a superior method for providing robust fleet representativeness.   
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6.4.5.1 Comparing the Effect of Technology/Design Improvement between Study-Selected 

and Cluster Representative Fleets  

In the coming years, automakers will choose among a suite of technologies to devise a 

portfolio of automobiles capable of meeting the proposed CAFE regulations with minimal costs.  

In many cases, researchers and policy makers will rely on a subset of representative vehicles to 

evaluate the potential gains and limitations of technological advances.   

To approximate these studies, representative vehicles have been selected from the cluster 

groups and a 2002 EPRI study [106].  The vehicles used in the study are listed below. 

Representative clustered vehicles were selected from the top three fleet sales groups, and median 

sales vehicles within each group.  The representative vehicles from the 2002 fleet used for 

comparison are: 

 EPRI Study: Saturn SL1, Ford Explorer, and Chevrolet Suburban. 

 Clustered: Volkswagen Beetle, BMW 325, and Mercury Mountaineer 

To many observers, the representative vehicles identified using the cluster groups may 

not be as intuitive of selections as the EPRI-selected vehicles.  The validity of selecting the 

clustered vehicles can be shown through comparing the representative automobile integrated fuel 

reduction for each of the simulated technologies, as shown in Table 20.  The simulated baseline 

fuel reduction for the entire vehicle fleet (all carline-specific fuel reductions integrated over all 

vehicles sold) is also provided in Table 20.  It can be seen that for each incremental technology 

the clustered vehicles’ more closely represent the entire 2002 US vehicle fleet than the EPRI-

selected vehicles. 
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Table 20 Comparison of 2002 vehicle groups using three vehicles 

Fleet gallons per 

mile reduction  

Reduced Drag 

(90% Crr) 

Reduced Mass 

(90% GVWR) 

Hybridization 

(+MG, +ESS) 

Simulated Baseline 

Fleet 
3,491 gpmi 3,485 gpmi 61,496 gpmi 

Clustered 3 

Exemplars 
3,549 gpmi 4,079 gpmi 36,354 gpmi 

EPRI-Selected 3 

Exemplars 
3,338 gpmi 4,296 gpmi 155,780 gpmi 

 

The fleet gallons per mile reduction metric used in Table 20 is calculated using Equation 

21.  Where n is the number of vehicles in the fleet and MY Sales is the sales for each vehicle 

model during that year. 

Equation 21 

     𝑅   𝑐              𝑀  𝑆 𝑙   

 

   

 

On average, the EPRI-selected vehicles miscalculate the US fleet by 60% while clustered 

vehicles miscalculate by less than 20%.  This difference is significant when considering that 

many fuel economy studies allow 15% error as an acceptable margin when simulating fuel 

economy [4].  The ability of representative clustered vehicles to more closely approximate the 

entire vehicle fleet provides great utility to researchers by providing a reduced number of 

vehicles that should be evaluated.  As presented in previous sections of this study, ten cluster 

groups were identified as optimal for representing the vehicle fleets.  The next section will show 

how using the increased number of representative vehicles can provide an even better 

approximation of fleet performance. 
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6.4.5.2 Comparing the Effect of Technology/Design Improvement between the most 

Representative Vehicles and Fleet  

When performing evaluation of potential technology and design improvements for the 

US fleet it would be ideal to consider all vehicles sold within the fleet.  For most investigations, 

simulating the entire fleet is considered infeasible due to computational cost.  To demonstrate 

fleet-level representativeness of the clustered vehicles ideal ten cluster groups, each with a 

representative vehicle will be used in comparison with both the entire fleet and representative 

EPA classified vehicles.  To provide a more equivalent basis, the top ten sales EPA classes are 

selected from the available 13 from 2002 and 15 from 2010.  Simulated fleet-integrated fuel 

reduction (using Equation 7) for each of these methods is shown in Table 21. 

Table 21 Comparison of 2002 and 2010 using 10 vehicles. 

Fleet gallons per 

mile reduction  

Reduced Drag 

(90% Crr) 

Reduced Mass 

(90% GVWR) 

Hybridization 

(+MG, +ESS) 

Year 2002 2010 2002 2010 2002 2010 

Simulated Baseline 

Fleet 3,491 2,103 3,485 2,402 61,496 61,432 

Clustered 10 

Exemplars 3,531 2,092 3,565 1,963 58,717 53,136 

EPA Classes 10 

Exemplars 3,135 2,527 4,468 1,697 83,051 97,037 

EPRI Selected 3 

Exemplars 3,338 2,275 4,296 2,891 155,780 8,047 

 

For each of the six cases investigated, the representative clustered automobiles perform 

more similarly to the baseline fleet than either the ten EPA classed vehicles or the three EPRI-

selected automobiles.  Additionally, error from the 2002 baseline is reduced from 20% to less 

than 3% when ten representative automobiles are used instead of the previous 3 from Section 

6.4.5.1.  In comparison, the ten representative EPA classified automobiles show an average error 
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of 25% for the 2002 fleet.  This trend remains consistent for the 2010 simulated fleet wherein the 

clustered automobiles show an average error of 11%, EPA classified show 36%, and EPRI 

selected automobiles result in 38% average error. It should be noted that due to carline 

differences across years, the 2010 EPRI selected vehicles incorporates a replacement of the 

Saturn SL1 with the Chevrolet Cobalt as its General Motors platform successor in the “compact 

car” class. 

6.4.5.3 Trend in Future Automotive Design 

Grouping automobiles and identifying representative vehicles from the groups provides a 

limited amount of utility if the method cannot be extended into future scenarios.  In the case of 

EPA classifications, additional classes have been added to the groupings over the years as outlier 

carlines enter the fleet and as the overall characteristics shift within their classes.  As was 

mentioned previously, a time span of 2002 to 2010 is used in this study wherein the EPA 

classifications grew from 13 to 15. 

 

Figure 60 Comparison of group count changes from 2002 to 2010. 

To demonstrate an ability to provide time-independent trends, the automobiles grouped 

using the Ward’s Linkage clustering method for this study for both 2002 and 2010 have been 

clustered into groups defined using only the 2002 fleet.  To clarify, ten cluster groups were first 
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defined using the 2002 fleet.  Next, automobiles from the 2010 fleet were placed into the 2002 

cluster groups.  Using this method, the characteristics defining the ten cluster groups remains 

consistent over the 8-year period.  The fuel economy representativeness of the ten clustered 

groups has already been demonstrated in previous sections.  To add to this, Figure 60 shows the 

percent change in number of vehicles in each group from 2002 to 2010 for each method.  The 

reduced percentile spread of the clustered groups over classified groups shows that even as new 

vehicles enter the fleet, the cluster groupings remain relatively consistent in size.  In contrast, the 

EPA classified vehicles undergo cross-class shifting as new classes are defined and re-defined, 

resulting in more spread of change of group size.  The ability of clustered vehicles to remain 

more consistent over a significant time frame demonstrates increased robustness of the new 

method over EPA classifications. 

6.4.6 Conclusion 

This research has proposed a new method of automotive classification and demonstrated 

the new method’s potential benefits for both researchers and policy makers.  The new approach 

relies on using the Ward’s Linkage method to cluster automobiles based on their EPA-reported 

characteristics.  Ten cluster groups were identified as most desirable for this application.  This 

approach has been shown to 1) improve the state of the art for automotive fleet-level studies 

based on fuel economy by providing relevant classification, and 2) reduce the scope of studies by 

exploring more efficient approaches to representative automobile identification. 

6.5  Task 2.5 Determine the pathway for researchers to effectively apply vehicle 

simulation and analysis tools 

Although not exhaustive, many simulation tools and methods of analysis have been 

identified and explored in this research.   Each tool for simulation and analysis applies to a wide 
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range of automotive energy-use simulation studies.  The tools for simulation and analysis that 

have been explored in this section are 1) optimization algorithms, 2) uncertainty quantification, 

3) drive cycles as CONOP, and 4) fleet-level analysis.  In the process of developing research 

tools, many studies will likely encounter the situation wherein they must determine the tradeoff 

between applying additional efforts to include advanced methods such as these, and thus achieve 

higher utility results, or reduce upfront effort and achieve lower utility results.  This tradeoff 

selection process will be discussed in this section. 

All of the tools explored in this research have the ability to reduce long-term effort when 

performing scientific automotive energy-use simulation studies.  The structured tools proposed 

here typically require an incremental additional effort during the formulation of studies’ 

methods, but can achieve much more defensible, extensible, and robust results when applied.  

Evaluating which tools are most applicable to each specific study can be a difficult task.  Much 

of the guesswork can be eliminated from a study’s development by performing a thorough study 

development design process in which the available parameters, desired metrics, and predicted 

results must be determined.  The author, through extensive research and use of the simulation 

and analysis tools, has developed the following heuristics. 

6.5.1 Optimization algorithms 

Optimization should be applied more readily to high-level models when evaluation time 

is minimal.  Detailed models may benefit more readily from design of experiments and design 

space sampling; at least until the design space has been sufficiently constrained to reduce the 

scope of an optimization’s computational costs.  Stochastic optimization algorithms can cope 

with the non-linearity and complex cost functions commonly associated with automotive 

simulation research.  The simulated annealing optimization algorithm offers high rates of 
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improvement in fewer iterations if a global optimal is not required.  If global optimal values are 

necessary then DIRECT is suggested for use. 

6.5.2 Uncertainty quantification 

Uncertainty will always exist in automotive research.  It is the responsibility of 

researchers to understand the tools that they are applying and select those which minimize 

uncertainty associated with their objective metrics.  The two highest risks with insufficient 

understanding of a study’s uncertainty are 1) incorrect conclusion, and 2) incorrectly applied 

efforts.  Even by providing a general understanding of the sources of uncertainty, such as those 

provided in this research, researchers should be able to significantly reduce the potential errors in 

automotive energy-use studies.  It is not always necessary to determine the precise value of 

uncertainty and error associated with each portion of a study, overall values may be sufficient 

when they can be traced directly to the objective metrics. 

6.5.3 Drive Cycles as CONOP 

Drive cycles are most important to automotive studies when the vehicle is being 

evaluated on a system level.  Automotive subsystem research studies commonly have the ability 

to isolate the subsystem from many environmental interactions for an ideal representation.  For 

automotive research that interacts directly with the energy-use for propulsion of a vehicle, drive 

cycles can be very influential.  Producing stochastic or more advanced drive cycles is not always 

necessary, for example the case of constrained-use vehicles such as delivery trucks.  Stochastic 

drive cycles as CONOP are most effecting for vehicles with high variability in operational 

patterns such as many average passenger vehicles. 
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6.5.4 Fleet-level analysis 

Applying fleet-level analysis to automotive energy-use simulation can significantly 

reduce the computational costs required when solutions are required for a group or fleet of 

vehicles.  In the case of an individual carline’s study, fleet-level analysis will have a reduced 

benefit/effort.  Fleet-level analysis is also important for all studies attempting a representation of 

futures; wherein technologies, fuel pathways, architectures, carlines, etc. are being evaluated for 

future scenarios.  In any study that is dependent on consumer/developer-based options for 

multiple automobile types, clustering can reduce the scope of energy-use simulation that is 

required to achieve a defensibly representative solution set.  There are a variety of characteristics 

that can be selected to perform the clustering analysis for fleet grouping.  It is up to the 

researcher to apply knowledge of the interactions between automotive characteristics and 

attributes in determining which factors are necessary to define a classification of vehicle.  This 

knowledge should specifically be applied to identify which characteristics differentiate vehicles 

according to the desired evaluation metric, fuel economy is one example evaluation metric. 

6.6 Discussion of Research Question 2 

What are the characteristics of analysis tools used in vehicle energy-use simulation? 

With the increased capabilities of vehicle energy-use simulation tools and increased 

research interest in system engineering, advanced analysis tools are required to obtain pertinent 

results and provide opacity to developing conclusions.  The analysis tools investigated in this 

research include: simulation optimization, quantification of uncertainty, CONOPS, and fleet-

level characterization.  Each of these tools have been studied and applied in detailed 

investigations to determine how they can be best applied to research to improve the utility of 

solutions in an efficient manner.  The valuable analysis tools discussed in this section are 
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intended to provide direction for researchers performing automotive energy-use simulation 

studies. 

The completion of tasks associated with research question 2, in conjunction with research 

question 1, provide both a means for performing vehicle energy-use simulation and the tools and 

methods that should be applied to obtain the most efficient and useful conclusions.  This will 

contribute to answering research question 3 and the associated tasks, which focus on the 

implementation of the simulation and analysis tools investigated for this dissertation. 
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7 Synthesis of State-of-the-Art Automotive Simulation Methods (RQ3) 

7.1 Task 3.1 Provide a Qualitative Overview of Automotive Energy-Use Simulation 

Methods. 

In the previous sections of this dissertation, vehicle energy-use simulation studies have 

been shown to incorporate a range of simulation tools, analysis tools, study types, purposes, and 

industries.  To effectively implement all of the aspects of vehicle energy-use simulation 

investigated in this research, researchers must understand how they fit into the larger study 

development process.  The methods that have been investigated in this Dissertation are: 1) 

modeling and simulation tools, 2) optimization algorithms, 3) uncertainty quantification, 4) drive 

cycles as CONOP, and 5) fleet-level analysis. 

 

Figure 61 Relative occurrence of investigations within automotive energy-use simulation studies. 

Within the framework of automotive energy-use simulation studies, a variety of possible 

tools and methods exist.  Figure 61 provides a graphical representation of where the five key 

investigations from this dissertation fit into study processes.  It can be noted that most of the 

investigated tools are biased towards early stages of the study process.  Following system 

engineering principles, by applying more advanced methods early in complex processes, 

researchers can reduce the potential for re-evaluation or problem occurrence later in the process.  
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Typically, time spent early in a process is of a cheaper cost (time, effort, and monetary) than later 

in the process.  As such, by applying these advanced methods early in the study development 

process, researchers can greatly improve upon automotive energy-use simulation studies as a 

whole. 

In addition to improving the overall structure of an automotive energy-use simulation 

study, the methods and tools investigated in this dissertation also significantly reduce the 

computational cost required.  Figure 62 provides a simple quantification of two possible study 

pathways, one that uses methods in this Dissertation (top), the other using previous methods 

(bottom).  The values listed present the potential order of magnitude for simulation function calls 

when comparing studies with equivalent representativeness. 

 

Figure 62 Comparison of required simulations for two equivalent studies, one using methods proposed in this 

dissertation, the other using previous methods. 

As can be seen in Figure 62, the methods proposed in this dissertation have the potential 

to reduce the number of required simulation calls by over four orders of magnitude (10,000x) 

while retaining all information statistically.  This is significant when considering many 

automotive energy use simulations range in computational cost between seconds to hours per 

call.  The high value of the range in Figure 62 is based on the assumption that a researcher 

wishes to study automobiles on a fleet level using six drive cycles and optimization.  Figure 62 

also shows that although combining all methods investigated in this research can achieve the 
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largest reduction in efforts, each individual method can assist in reducing computational cost of 

simulation studies while maintaining or improving validity of the results. 

Having identified the advantages of using the methods proposed in this research, the 

following section will perform a comprehensive automotive energy-use simulation study that 

incorporates all methods.  The results will then be compared with a previous study of the same 

objectives that did not use the proposed methods. 

7.2 Task 3.2 Perform a vehicle energy-use simulation study using state of the art tools 

and methods. 

Many well-cited and previously trusted automotive studies could have increased their 

utility by incorporating the methods proposed in this dissertation.  To demonstrate the potential 

gains available through incorporating these methods, one such previous study will be recreated in 

part while applying the proposed methods.  The study selected was originally performed by 

Kromer and Heywood at MIT [138] and proposed to evaluate potential vehicle technology 

pathways for the near future (next 30 years).  This original study will henceforth be referred to as 

the “baseline study” for comparison.  The baseline study attempted to quantify potential 

reduction in both petroleum consumption and greenhouse gas emissions (GHG) of in-use 

vehicles for the U.S. automotive fleet through vehicle modeling and simulation. 

The following sections will first outline the methods used in the baseline study.  The 

methods for this study will then be shown to build upon the baseline study methods while 

applying the new tools proposed through the research specific to this dissertation.  Following the 

methods, a comparison will be provided between some of the primary conclusions from both the 

baseline study and this study.  Discussion and conclusions will show that by applying the 
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systematic tools proposed through this dissertation, more value can be gleamed from automotive 

research with minimal to reduced change in effort. 

7.2.1 Baseline Study Methods 

In an effort to condense the extensive methods presented in the baseline study, only those 

most relevant to the comparison presented in this dissertation will be overviewed.  To represent 

potential future automotive technologies, five pathways were selected: conventional vehicles 

(CV), hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), battery electric 

vehicles (BEV), and fuel cell vehicles (FCV).  Each of these technologies was modeled on a 

2006 Toyota Camry platform.  Each simulated vehicle architecture was required to meet the 

criteria shown in Table 22 in simulation. 

Table 22 Criteria for simulated vehicles in baseline study 

Design Criteria Value 

Acceleration (0-60mph) < 9.3seconds 

Gradeability 6% at 55mph 

Drive Cycles UDDS, HWFET, US06 

 

Using a combination of heuristics and design iteration, these constraints were met while 

simultaneously attempting to achieve desirable energy-use performance.  Vehicle mass 

considerations were taken into account, applying component-specific weight scaling based on 

respective parameters and also a glider mass compounding before simulation.  The expected 

manufacturing costs, energy consumption, and emissions were calculated for each vehicle 

technology as applied to the Camry platform for the baseline study.  For advanced technology 

vehicles (PHEV, etc.) a few (e.g. four) potential designs were considered to allow for variation in 

desirable Degree of Hybridization (DOH) and operating strategies. 
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7.2.2 Methods for this Study 

Each of the vehicle architectures used in the baseline study will also be explored for this 

study.  In addition, a fuel cell plug-in hybrid electric vehicle (FCPHEV) will also be added as a 

potential technology bridge for zero emission vehicles between battery electric vehicles and fuel 

cell vehicles.  Figure 63 shows the six vehicle architectures considered for this study. 

 

Figure 63 Vehicle architectures used in Research Question 3 

In keeping with the format of the baseline study, only parallel HEV and PHEV 

configurations will be considered because they are proposed to offer the lowest cost per 

increased efficiency potential of the gasoline hybrid architectures.   

7.2.2.1 Modeling and Simulation Platform 

In keeping with other sections of this dissertation, custom vehicle models developed by 

the author using the Modelica modeling language are used for this study.  The differential 

algebraic equation (DAE) solver DASSL was selected to compile the vehicle models for 

simulation.  Together, Modelica and DASSL offer a modeling package that can quickly solve the 

type of physical equations, control strategies, and simulation conditions commonly associated 

with automotive systems. 
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For each modeled vehicle architecture, object oriented components were implemented 

with scalable parameters.  The primary system components are listed in Table 23 with their 

abbreviations and descriptions. 

Table 23 Research question 3 modeled automotive components 

Component Description 

Internal Combustion 

Engine 
ICE 

Scalable model using max torque curve and fuel rate lookup 

table. 

Energy Storage 

System 
ESS 

Scalable model using open circuit voltage, internal charge 

resistance and internal discharge resistance curves. 

Motor/ Generator MG 
Scalable model using max torque curve and efficiency lookup 

table. 

8 Speed Transmission 8sp 

Automated manual transmission allowing for shifting with a 

clutch for reduced losses when compared to a torque converter 

transmission. 

Continuously 

Variable 

Transmission 

CVT 
Continuous gear ratio changes within a specified allowable 

range, based on input speed. 

Fuel Cell FC 

Polymer electrolyte membrane (PEM) hydrogen fuel cell.  

Scalable by number of cells, uses polarization curve and 

DC/DC converter. 

Final Drive Fd Single gear differential for transmitting torque to wheels. 

Controller and Driver Cont 
Provides requests for each of the subsystems to meet a driving 

schedule and perform energy management. 

Auxiliary Load Aux Constant load applied to low voltage bus. 

For architectures with plug-in hybrid capability (PHEV and FCPHEV), control allows for 

the vehicles to perform charge depletion with the ability to turn on fuel converting devices (FC 

and ICE) in the event that 1) more power is demanded by the motor (MG) than can be supplied 

by the energy storage system (ESS) or 2) the charge sustaining condition has been reached.  State 

of charge is sustained between 35%-85% (50% depth of discharge) for hybrid vehicles and 15%-

25% for plug-in hybrid vehicles.  These values have been selected based on common OEM 

control practices for lithium-ion ESS.  PHEV’s begin their charge depleting simulated cycle with 

100% SOC.  The conventional vehicle architecture uses an 8 speed automated manual 
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transmission (AMT) and is capable of ICE start-stop (performing fuel cut when the vehicle is 

stationary).  Each of the modeled vehicles is subjected to a continuous 500W auxiliary load. 

7.2.2.2 Optimization 

An independent optimization is performed for each of the modeled vehicles.  Based on 

the performance of stochastic optimization algorithms, as presented in Section 6.1, the simulated 

anneal algorithm was selected to perform the optimization.  The minimized cost function applied 

was specific for each vehicle due to varying operational characteristics of the architectures. Note 

that final cost function values are not comparable across architectures, only the performance of 

the optimized designs will be evaluated. The general form of the cost function is shown in 

Equation 22. 

Equation 22 

𝑀                                        𝐹  𝑙 𝐶           

Table 24 Criteria for simulated vehicles in this study 

Design Criteria Value 

Acceleration (0-60mph) < 9.3seconds 

Gradeability 6% at 55mph 

Manufacturing Cost CV = baseline, Others= baseline+$5,000 

State of Charge (CS) Min(SOC) > lower SOC set point 

Drive Cycles UDDS, HWFET, US06, SC03, NEDC, NYCC 

 

To identify only optimal vehicles able to meet the design constraints outlined in Table 24, 

severe penalty was applied on a continuous sliding scale for acceleration (PAccel), gradeability 

(PGrade), manufacturing cost (PManuf Cost), and state of charge (PSOC).  Each of the penalties was 

normalized to a unit less value that far exceeds the feasible range of fuel consumption such that 

their contributions to the cost function do not create tradeoffs.  Fuel consumption is architecture 
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specific, wherein plug-in vehicles are allocated utility factor weighting and the battery electric 

vehicle is optimized for maximum range.  State of charge penalties (PSOC) only apply to CS 

capable vehicles (HEV, PHEV, FCPHEV, and FCV) to ensure that they can operate in charge 

sustaining mode. 

The design space for the optimization is constrained to keep component parameters 

within reasonable values (e.g. ICE power cannot be less than 0kW).  Parameter limits are defined 

based on the component, and do not differ between architectures.  The design variables for 

respective subsystems are presented in Table 25.  This formulation results in a maximum of five 

design variables per architecture. 

Table 25 Subsystem design variables for optimization. 

Subsystem Design Variables for Optimization 

ICE Maximum rated power. 

FC Number of cells (maximum rated power) 

ESS Maximum power and nameplate capacity. 

MG Maximum rated power. 

8sp Gear ratios. 

CVT Initial gear ratio. 

Fd Gear ratio. 

 

7.2.2.3 Drive Cycles 

In place of the previously used city (UDDS), highway (HWFET), and US06 cycles used 

in the baseline study, this study implements stochastic Markov cycles as discussed in Section 

6.3.  To expand upon the cycle requirements of the three original cycles, the SC03, NEDC, and 

NYCC are also included in the transitional probability matrix used to create Markov cycles.  The 

expanded drive cycle considerations beyond the baseline study will aid in identifying vehicle 

more suitable for and representative of the U.S. automotive fleet.  During each iteration of the 
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vehicle optimizations, 100 unique Markov cycles are generated and the median cycle is selected 

for simulation.  For vehicles with CD/CS strategies, two separate simulations are performed on 

the same selected Markov cycle; one beginning with a fully charged ESS, and a second that 

begins at the lower SOC managing set point.  Vehicles are required to adhere to the drive cycle.  

Deviations from the drive cycle over 3mph are considered a failure to complete the cycle.  This 

limitation is based on the EPA’s 2mph allocation, which has been increased by 1mph due to 

using non-standard cycles. 

Additional simulations are performed for each vehicle to determine 0mph to 60mph 

acceleration time and gradeability.  Due to the inherent inconsistency of the Markov cycles, each 

vehicle is simulated on the standard UDDS and HWFET after achieving an optimal design such 

that they can be compared on an equivalent basis. 

7.2.2.4 Fleet Representation 

To expand upon the single vehicle selected by the baseline study (2006 Toyota Camry), 

this study incorporates the findings from Section 6.4 to provide a more representative set of 

vehicle carlines.  Vehicle fleet clustering was applied to all carlines with available characteristics 

data as reported from the EPA.  Ten clusters were found to be optimal.  The top three sales 

clusters then each had representative vehicles identified from within the cluster.  For this study, 

the three representative vehicles from the 2002 fleet are: the Volkswagen Beetle, BMW 325, and 

Mercury Mountaineer.  The 2002 fleet was selected so as not to bias results based on automotive 

technology improvements that have occurred between 2006 and the 2010 fleet (the 2010 fleet 

being the alternative from the flustering study).  Each of the three representative vehicles 

provides the baseline characteristics for the modeled and simulated architectures (3 carlines and 

6 architectures =18 optimized vehicles).   
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7.2.2.5 Model Build-Up 

To meet the requirements of the defined optimization cost function, within each function 

call calculations are performed for predicted incremental costs, added mass, and mass 

compounding effects.  Mass calculations are applied to the models before simulation such that 

design variables of architectures are directly reflected in the simulated energy consumption 

instead of performing convergence calculations post-hoc.   

The cost and mass formulations used do not represent the state of the art for automotive 

manufacturing at the time of the study.  The rapid pace of automotive technology development 

makes it difficult to keep up with changing standards, and mass and cost data for scalable 

components is rarely available from manufacturers and usually only reaches researchers a short 

while after reaching the consumer market.  The following cost and mass calculations from Table 

26 are used for each simulated vehicle.  The values have been obtained from a variety of sources 

including the baseline study [138]. 

Table 26 Subsystem design variables for optimization. 

Subsystem Cost Mass 

ICE $635 + 12 $/kW 0.604 kg/kW 

FC & H2 75 $/kW + 8 $/kWh 0.4 kg/kW + 0.476 kg/kWh 

ESS $1,230 + 175 $/kWh max(0.444 kg/kW, 0.120 kg/kWh) 

MG $355 + 20.78 $/kW 0.5 kg/kW 

Tx $50 90 kg 

Glider 2,000 $/seat 300 kg/seat 

Compound N/A 72.5% 

 

Representative vehicle cost and mass were calculated using the above formula in Table 

26 using the characteristics of the three representative vehicle carlines.  These representative 

vehicle costs and mass were also used as a preliminary check that calculated values are within 
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reasonable ranges of reported values.  Hydrogen fueled vehicles were assumed to begin with a 

capacity of 5kg onboard storage.  Although the energy use simulations and desired range 

calculations may affect this value, the contribution of this deviation to the overall vehicle cost 

and mass is minimal (less than ± 0.2% Cost, ± 0.1% Mass).  Based on previous study these 

values are orders of magnitude below the uncertainty levels for the simulated objective values. 

7.2.3 Simulation Results 

As was previously discussed, vehicles were optimized to have equivalent manufacturing 

cost and acceleration performance.  Simulation optimizations were performed on the six 

architectures, as applied to each of the three representative vehicles.  The results of the 

optimizations are presented in the following figures.  Figure 64 shows the optimized 

manufacturing cost values.  As a reminder from Table 24, all architectures except for the CV are 

allocated a $5,000 increment for advanced technology.  It can be seen in Figure 64 that most of 

the vehicles are able to identify desirable designs very near the optimal cost.  It should also be 

noted that all optimized vehicles successfully met the gradeability and 0-60mph acceleration 

requirements.  The ability of all optimized vehicles to conform to the constraints provides an 

equivalent basis for comparison. 



165 

 

 

Figure 64 Optimized manufacturing cost. 

Figure 65 presents the optimized values for battery (ESS) capacity for each of the 18 

vehicles.  Note that CVs have no onboard high voltage ESS and thus present zero values for each 

representative vehicle.  A few trends can be observed in Figure 65 such as increasing FCV ESS 

capacity with increasing vehicle size.  Some of the optimized architectures (PHV and FCPHEV) 

retain similar ESS capacities across the three representative vehicle platforms. 

 

Figure 65 Optimized battery capacity for the 18 vehicles. 

Figure 66 presents the simulated EV range for each of the vehicle architectures with a 

designed charge depleting capability.  By comparing Figure 65 and Figure 66, it can be seen that 

even though some HEV and FCV have relatively large ESS capacities, they are not allocated 
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plug-in capabilities and thus do not benefit directly from EV range.  Figure 66 also shows that 

BEV consistently are optimized for the largest EV range within their platform, and optimal EV 

range decreases with increasing vehicle size, as would be expected. 

 

Figure 66 EV range for optimized vehicles. 

For each of the architectures besides the BEV, a fuel converter is present to extend the 

vehicle’s range.  All optimized vehicle designs are required to be capable of charge sustaining 

over a single simulated cycle.  The optimized power for each of the vehicles’ fuel converters are 

presented in Figure 67.  For gasoline powered vehicles (HEV, PHV, and CV) the fuel converter 

is an ICE, for hydrogen vehicles (FCV and FCPHEV) the fuel converter is the fuel cell.  As 

would be expected, Figure 67 shows that as the vehicle size increases, so does the fuel converter 

power specification.  It can also be observed that for the largest vehicle (Mercury Mountaineer) 

the ICE hybrids are able to significantly downsize.  The PHV is capable of maintaining a 

relatively consistent ICE size across the three platforms. 
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Figure 67 Optimized fuel converter power for the 18 vehicles 

7.2.4 Discussion 

To provide similar evaluation metrics to the baseline study, calculations are performed on 

the optimized vehicles to determine greenhouse gas emission (GHG) rates and petroleum energy 

use (PEU) rates.  The conversion factors that have been applied to each of the vehicles’ energy 

use simulation results are provided in Table 27.  Values for Table 27 have been extracted from 

Argonne National Laboratory’s Greenhouse Gasses, Regulated Emissions, and Energy Use in 

Transportation (GREET) model. 

Table 27 Wheel-to-well greenhouse gas emissions and petroleum energy use allocations per fuel. 

 GHG Emission Rate Petroleum Use 

Gasoline 10,851 g/gallon 1 gal/gallon 

Hydrogen 11.8 g/gH2 9.88e-6 gal/g H2 

Electricity 398 g/kWh 1e-3 gal/kWh 

 

To calculate the rate of GHG and PEU for plug-in capable vehicles, the SAE utility factor 

(UF) weighting is applied based on EV range capabilities as presented in Figure 66.  Plug-in 

vehicles are allocated emissions UF weighted GHG and PEU for both the CD and CS portions of 
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their driving.  The GHG rate for each of the optimized vehicles is shown in Figure 68.  Similar to 

findings from the baseline study, smaller vehicles are more likely to present reduced GHG 

potential using gasoline hybrid and BEV configurations.  Additionally, larger vehicle platforms 

were not represented in the baseline study and thus did not identify the potential for FCV in large 

vehicle platforms as shown in Figure 68.  This trend is likely a resultant of the increasing ESS 

capacity for FCV with platform size.  Detailed analysis shows that the large FCV (Mercury 

Mountaineer) is operating in a semi-blended control strategy but is still able to keep the SOC 

within the specified window.  Charge balancing calculations may possibly reduce the advantage 

of the large FCV presented here. 

 

Figure 68 Optimized vehicle greenhouse gas emissions. 

Using a strategy similar to that presented for GHG rates, PEU calculations also 

incorporate utility factor weighting of both the CS and CD portions of the vehicles’ operation.  

PEU rates for each of the optimized vehicles is presented in Figure 69.  It can be observed that 

tradeoffs exist between GHG reduction and PEU reduction for vehicles such as BEV, FCV, and 

FCPHEV as they exhibit high GHG rates, but low PEU rates.  When considering both Figure 68 

and Figure 69, it can be seen that BEV dominate a majority of the designs.  
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Figure 69 Optimized vehicle petroleum energy use. 

The identification of the BEV as a potential pathway to reduce GHG and PEU across 

vehicle platforms must be coupled with the consideration for limited driving range, as presented 

in Figure 66.  Additionally, the tradeoff between GHG and PEU rates must be quantified before 

an effective evaluation of all six architectures can be achieved.  Excluding BEV from the 

evaluation temporarily, if the factors were to be evaluated on a normalized scale, FCV and 

FCPHEV can be identified as desirable vehicles for the VW Beetle platform.  FCV exhibit high 

potential in the Mercury Mountaineer platform and FCPHEV exhibit high potential in the BMW 

325 platform. 

7.2.5 Conclusions 

The baseline study shows similar trends to results found in this research for when 

considering a vehicle platform with similar characteristics (Toyota Camry and BMW 325).  This 

result alone would lead a researcher to make similar conclusions as the baseline study.  When the 

analysis is expanded to include the two additional platforms and the FCPHEV optimized in this 

study, contradictory conclusions can be drawn.  For both the smaller vehicle (VW Beetle) and 
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largest vehicle (Mercury Mariner) vehicles with plug-in capability (PHV and FCPHEV) as well 

as FCV present significant potential for both GHG and PEU reduction.  

Infrastructure and range hurdles exist for implementation of both fully electrified vehicles 

and fuel cell vehicles.  Previous research performed by the baseline study also suggested that 

manufacturing cost would be a potential hurdle for these technologies.  By applying equivalent-

cost constraints, and expanding the design space, this research has shown that plug-in and 

hydrogen fueled vehicles have desirable emissions and petroleum use characteristics.  It is likely, 

that in a infrastructure-constrained market, plug-in vehicles (of both gasoline and hydrogen) will 

act as enablers for both BEV and FCV as the pathway towards more sustainable personal 

transportation. 

7.3 Discussion of Research Question 3 

What is the robust, defensible, and extensible structure of a vehicle energy-use 

simulation and how can it be applied? 

Vehicle energy-use simulation requires researchers to acquire knowledge and experience 

with a wide range of tools.  In addition to vehicle system principles, researchers must also 

understand the many model and simulation tools available as well as the methods for applying 

and performing analysis through a defensible scientific approach.  The tools and methods that 

have been explored through research question 1 and research question 2 have been synthesized in 

research question 3 and then demonstrated in a comprehensive vehicle energy-use simulation 

study. 

The structure of a robust, defensible, and extensible structure for vehicle energy-use 

simulation has been shown to exist at a system-level.  Within the system-level approach, the 

required constructs for each simulation study can be effective identified.  Applying a simulation 
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tool capable of system-level representations is primary.  To achieve high-value results, the 

methods of uncertainty quantification, optimization, CONOP, and fleet analysis must be included 

in the research methods. 

Research question 3 has successfully implemented all of the research tools investigated 

throughout this dissertation and been practically applied to a comparable investigation with 

similar objectives.  The baseline study for comparison is highly regarded in the field but has been 

shown here to be much more computationally expensive, and less defensible, than studies 

performed in this dissertation.  The demonstrated research tools collaboratively make up the 

foundation for the advancement of future vehicle energy-use simulation studies. 
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8 Conclusion 

Many challenges exist for research and design of future passenger vehicles.  This 

dissertation has defined and completed a series of tasks to address the primary objective: 

Provide an application-specific experimental method for conducting energy-use 

simulation of passenger vehicles. 

The tools for modeling and simulation of vehicles for energy-use simulation studies have 

been identified, compared, and evaluated.  Extensive research on modeling and simulation 

approaches has enabled assessment of these tools’ strengths and weakness such that future 

researchers can select the tools appropriate for valuable studies.  Interdisciplinary expertise has 

been developed for application in the automotive field including mechanical, electrical, thermal, 

control, environmental, marketing, and policy concepts.  Based on a synthesis of requirements 

for state of the art energy-use simulation studies, a novel multi-domain modeling package was 

developed, validated, and demonstrated.  The created vehicle modeling and simulation system 

was then applied to a suite of tasks that presently challenge advancement in the field of vehicle 

simulation studies.  Optimization algorithms were identified with both deterministic and 

stochastic formulations and were evaluated on a complex multimodal simulated vehicle design 

space.  Performing optimization on an unknown design space yielded questions towards 

identifying when optimal solutions had been located.  To provide bounds to the compounding 

errors associated with the many assumptions and approximations that propagate through vehicle 

simulation, uncertainty quantification was performed for both the modeling and simulation tools.  

When optimization is applied to studies, the potential for increased quantity of system 

evaluations exists.  For each increment, system evaluation cost can be compounded by the extent 
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of conditions of operation and the number of represented vehicles.  To reduce the burden of drive 

cycles used as conditions of operation for each vehicle energy-use simulation without sacrificing 

the content of a study, a new method of stochastic drive cycles was developed and demonstrated 

to have equivalent validity as the industry-standard computationally expensive approach.  

Additionally, statistical analysis was applied to automotive fleet-level analysis to perform 

clustering and identify representative exemplars.  These representative exemplars have been 

shown to be more robust and less computationally expensive than previous industry-standard 

fleet approaches. 

Combining the knowledge and methods developed through this dissertation, 

recommendations for future researchers were synthesized.  A comprehensive vehicle energy-use 

simulation study was also performed to demonstrate the advantages of these methods when 

evaluated against studies of a similar scope.  The results of demonstrating the methods proposed 

in this dissertation exhibited the ability to now perform studies with up to a magnitude of four 

reduction in computational cost while retaining and increasing the utility of the results. 

The vehicle energy-use simulation studies performed in this dissertation represent novel 

cross-disciplinary application of scientific methods to vehicle research.  Systems engineering 

approaches have been emphasized throughout this dissertation towards improving the efficiency, 

robustness, validity, and extensibility of vehicle research.  This dissertation is specific to the 

automotive field, founded on scientific principles, and structured by experimental method.  The 

tools, methods, and analysis will prove to significantly improve the state of the field and enable 

researchers to perform advanced simulation energy-use studies for passenger vehicles. 

8.1 Contributions of this Dissertation 

The primary contributions of this dissertation are: 
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 An extensive review of automotive simulation energy-use literature 

 A qualitative identification and evaluation of the tools available for vehicle simulation 

 A modeling and simulation package capable of representing multiple vehicle 

architectures.  The package has specifically been designed and validated to be fast, 

modifiable, and extensible. 

 A quantitative assessment of multiple stochastic and deterministic global optimization 

algorithms as they apply to vehicle energy-use simulation. 

 An identification of the five sources of uncertainty in vehicle energy-use simulation and 

quantification for each source.  

 A developed novel method for condensing drive cycles as CONOP. 

 Inception for a paradigm shift of how vehicle fleets are characterized. 

 Synthesis and demonstration of the tools and methods paramount to eliminating the 

challenges presently retarding the advancement of automotive research. 

8.2 Future Work 

This dissertation builds a foundation for future vehicle energy-use simulation studies.  

The tools, methods, and analysis presented in this research do not claim to be comprehensive for 

the field.  Future research and studied that hopefully implement the methods presented here are 

likely to identify new challenges that were previously unidentified or of an insignificant 

hindrance to the research process.  As automotive technology, the consumer market, policy, and 

the global environment continue to evolve, the methods and tools must adapt with them.  A 

struggle between progressing computational processing capabilities and advanced approaches 

will continue to push the limit of the information obtainable from simulation.  When computer 

processing is the limiting factor, methods such as those developed in this dissertation will 
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prevail.  At some point, potential exists that the methods will advance to a state where they 

become the limiting factor.  Regardless of these limitations, the scope of vehicle studies must 

continue to grow and encompass increasing system-level objectives and attributes. 
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