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ABSTRACT OF DISSERTATION 

WEEKLY CONTROL OF ALPINE SEASONAL RESERVOIR 

In the present research a technique was developed to maximize the 

returns from the operation of a seasonal alpine reservoir for the 

production of electrical energy. The emphasis rests on a comprehensive 

approach to the problem, and the following fields were considered: 

hydrology, power economics, operation research and decision theory. 

Flow forecast can markedly improve the efficiency of reservoir 

operation. The hydrology of the concerned alpine watershed was 

thoroughly analyzed, in order to develop a runoff forecast model. 

Linear relations were established between the flow to be forecasted 

and precipitation, amount of water stored in the watershed, sum of 

degree days and annual change in glaciated area. This procedure 

performed well for runoff forecasts for periods exceeding three 

months. For periods of shorter duration, however, forecast based on 

the antecedent flow conditions performed best. 

Looked after are the successive weekly releases which maximize 

the returns resulting from the operation over a specified period of 

a reservoir of a given size. The return function depends on the 

price of the produced energy. To take into account implicitly the 

variations with time of the demand, the energy price was assumed to 

vary during the week exponentially with the weekly amount of release. 

Furthermore a monthly price variation was superimposed on the weekly 

price variation. 

The solution technique to determine the optimal releases 

strategy was first developed for the deterministic case. It is 

based on the solution of the system of equations given by the 
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Kuhn-T~ker conditions. As the direct solution of this system of 

equatiQUs was complicated, the following alternative approach was 

devise4. The operation period was divided into two parts, the drawdown 

phase, and the refill phas.e. For eaeh of these· phases, the system of 

equations given by the Kuhn-Tucker conditions was solved by successive 

approxt.ations, the physical constraints being first ignored, and then 

introduced in a stepwise way. Finally the two phases were linked 

tosetber and th• optimality of the: solution checked. The advance 

b0111ledge of the approxillate natu:re of the optimal releases sequence 

allowed to reduce· to a minimum the guesswork and the number of itera-

tions aecessary to arrive at the optimum. 

Stochastic :reservoir operation was solved by introducing the 

notion of expec·ted fUture return of storage, developed by Masse. A 

relation could thfta be established between this variable and some 

relevant hydrologie variables. With this approach, it is possible to 

take into account the magnitude of the forecasted inflow in the 

decision process. 

The application or the developed techBique to a seasonal reservoir 

fed by an alpine watershed showed that the method was both feasible and 

attractive. By takina into account the properties of the optimal 

solution, it was possible to reduce substantially the amount of 

computation. 

Prederic Laufer 
Civil !Bgineering Department 
Colorado State University 
Port QQllins, Colorado 80523 
SJ>riac .. 1977 
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Chapter 1 

INTRODUCTION 

The Second World Congress on Water Resources was held in New Delhi 

in December 1975. A rapid glance through the addresses and articles of 

invited personalities and a quick look through the delivered papers 

indicate how vital for mankind an adequate supply of water is and how 

involved and difficult the management of this resource can be. 

Although water is used for different purposes, the problems to be 

solved remain more or less the same. It consists in meeting the human 

needs for water in an optimal way. This problem is not trivial because 

both the availability of water and the demand for water vary throughout 

the year. Furthermore these variations are most often not in phase and 

partially random. Hence the present research will restrict itself to 

the problem of optimal use of water for energy production, but the 

methodology followed remains quite general and applies to many water 

resources problems. 

At the Second World Congress on Water Resources, about 600 papers 

by experts from 43 countries were received for consideration, and many 

other congresses were held in 1975 on this topic. This shows how 

active research is but also raises the question of the utility of 

starting a new research work in this field. 

A thorough literature review in the field of water resources 

reveals that the related research went through different stages and 

concerned itself with different areas. These activities occurred 

either concurrently or one after the other, but rarely they happened 

one with the other. Seldom the information and experience gained from 

one stage or field were taken into account to solve problems of the 
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next stages or of the nearby fields. Hence there is a need today for 

a global approach to water resources problems and for an integration of 

the knowledge existing today. And this is the purpose of the present 

research. 

The first researchers directed their efforts towards the 

determination of design criteria for reservoirs built for well 

specified purposes. Only recently they have started to look into 

the problem of the operation of these reservoirs. Furthermore, 

they based at the beginning their computations on the assumption 

that the inflows sequences are known in advance. Today, one begins 

to give a greater attention to the stochastic nature of the inflows 

to the reservoirs. These different aspects or stages of the basic 

problem are closely related to each other. However researchers 

rarely took this fact into account. 

Water resources problems touch many areas. One can, however, 

distinguish two main fields. The first one deals with the availability 

of water, and the second one, with the determination of the returns 

produced by the use of water. These last years, hydrology and 

operation research have experienced tremendous developments and very 

sophisticated methods have been produced. But seldom advanced tech­

niques from the two fields can be used concurrently with great 

efficiency; rarely the pieces of the puzzle fit together. 

If one considers the field of operation research for itself, the 

same situation appears. Sophisticated mathematical tools exist but 

they cannot be used in practical cases because they lead to cumbersome 

computations, or because the very nature of the problem under con­

sideration precludes their application. On the other side, real world 



3 

problems are often much constrained and present special features which 

allow rather fast to obtain at least an approximate solution of the 

problem. 

These facts induced the author to start a research work where all 

the aspects of a water resources problem would be considered. The 

aim is then to shape each relevant element in such a way that it fits 

optimally in the puzzle represented by the problem to be solved. 

The problem studied here deals with the optimal control of an 

alpine seasonal reservoir for the production of electrical energy. 

The dimensions of the reservoir, the characteristics of the power 

scheme and the inflow pattern are given. The task is to determine 

the successive releases from the reservoir in such a way that the 

annual returns resulting from the reservoir operation are maximized. 

The solution of real-world optimization problems quite often 

requires computations-stages, where trial and error approaches must 

be used. To avoid these stages, we shall try to simplify the com­

plicated relations which relate inflows to optimal releases, in such a 

way that they can be solved algebraically. This can be achieved by 

introducing in these relations the characteristics of the optimal 

solution. This procedure will be applied for deterministic reservoir 

operation as well as for stochastic reservoir operation. 

Before starting this research work, the author had many discus­

sions with reservoir operators working for Swiss public utilities. 

These discussions indicated that there was a real need to study this 

problem in a systematic way. Also the influence of the randomness of 

the inflow on Teservoir operation should be considered, as well as the 

potentialities of runoff forecasts. 
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This study is also challenging because it gives the opportunity 

to integrate the different fields concerned: meteorology, glaciology, 

hydrology, hydroelectric power technology, economics, statistics and 

operation research. Also special efforts will be devoted to the 

identification of those elements which give some indications about the 

nature of the optimal solution. 

The very nature of the problem under consideration supplies the 

structure of the outline. The second chapter deals with the hydrology 

of the contributing watershed, and the third one defines the objective 

function. In the fourth chapter, the methodology for reservoir opera­

tion is derived, assuming that the complete inflows sequence is known 

in advance, while the fifth chapter shows the extension of the derived 

methodology to the cases of stochastic reservoir operation with and 

without flow forecast. 

Most of the reservoirs recently built in Switzerland lie at an 

elevation exceeding 1600 m (5250 ft) which implies that they are all 

located in the Alps. The hydrology of these catchments is intricate 

as rain, snow, ice and temperature are involved in the runoff pro­

ducing phenomena. The lack of reliable data further complicated the 

hydrologic analyses. Nevertheless runoff forecast models for 

durations equal or exceeding three months could be established. For 

this purpose, linear regression equations were determined which relate 

the runoff to be forecasted with the antecedent precipitation and with 

the antecedent runoff. Unfortunately, due to the relative large 

amount of summer rain, the reliability of these forecasts is low. 

Better results were obtained for the forecast of runoff for periods of 

shorter duration, using the Markov property of the flows. 
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The power market in Switzerland has features of its own. Striking 

is the existence of many independent utilities which follow their own 

pricing policy. Yet it was all the same possible to establish a 

realistic function which relates the unit energy price to the weekly 

release from the reservoir. This function, an exponential curve, 

which takes into account the hourly, weekly and monthly variations 

in the energy price, leads to a nonlinear objective function. 

Deterministic reservoir operation was studied first. Besides the 

fact that the annual water balance equation must be satisfied, two 

other types of physical constraints may apply: in any week, no 

water can be released if the reservoir is empty, and no water can be 

stored if the reservoir is full. Hence the problem consists in 

optimizing a nonlinear objective function subject to linear constraints. 

The system of equations given by the Kuhn-Tucker conditions was too 

complicated to be solved directly. Consequently, the following 

alternative approach was devised. The annual operation of the reservoir 

was divided into two partial operation periods, the drawdown phase and 

the refill phase. For each of these phases, the system of equations 

given by the Kuhn-Tucker conditions was derived, ignoring the 

physical constraints of the system. This way of doing led to simple 

functional relations between the optimal release of any given week and 

the inflow recorded from the beginning of the same week to the end of 

the considered phase. In a second step, the first ignored constraints 

were progressively introduced in each operation phase and the releases 

strategy, corrected if necessary. Finally, the two phases were 

linked together and the optimality of the computed solution checked. 

Computational experience confirmed that this procedure leads lastly 

to the desired solution. 
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The notion of future marginal return of storage developed by Masse 

enabled an easy transition from deterministic to stochastic reservoir 

operation. For, according to Masse, the instantaneous marginal return 

of the optimal weekly release must be equal to the expected future 

marginal return of the storage. A systematic analysis of the computer 

runs performed in the deterministic case indicated that, for a given 

date and reservoir content, a simple relation exists between the inflow 

recorded from the given date to the end of the considered phase, and 

the corresponding future marginal return of storage. The determination 

of this relation permitted to compute the future marginal return of 

storage for any magnitude of the relevant inflow, and consequently the 

expected value looked after. With the derived relation, it was also 

possible to incorporate the runoff forecast into the decision process. 

The last chapter summarizes the research work, deals with the 

evaluation of the derived solution technique and shows the possible 

fields of application. 

The results of this research indicate quite clearly that complex 

looking problems can be solved with simple mathematical tools, provided 

that one tries to understand the basic underlying mechanisms. In these 

last years, too much emphasis has been given to theoretical and com­

puter oriented solutions. One should again in the future, stress and 

consider the importance of the physical nature of the problem. 



Chapter 2 

HYDROLOGY 

The optimization technique to be used to control a reservoir 

depends greatly on the hydrologic characteristics of the related 

drainage area. Hydrology determines magnitude and succession of the 

reservoir inflows. It comes in at the planning stage, for the 

selection of the optimal reservoir capacity, as well as during the 

operation period, for the determination of the optimal releases 

sequence. Consequently it must be studied first. 

To put the problem into its natural backgroun~Chapter 2 begins 

with a short description of the physical geography of Switzerland. 

This part is followed by the presentation of the criteria used to 

select the test watershed. Then the physical elements involved in 

the runoff process are analyzed separately. The chapter ends with 

the establishment of water balance and prediction equations for the 

test watershed. 

2.1 Physical Geography of Switzerland 

2.1.1 Topography. Switzerland covers 41,300 sq km 

(16,000 sq mi), that is a little more than one-sixth of the area of 

Colorado and can be divided into three main regions (Fig. 2.1). Two 

of them, the Jura and the Alps are mountainous, the third one, the 

so-called Midlands, consists of alluvial plains and hills. The 

Jura forms the border with France in the western and the northern 

part of the country; it covers one-sixth of the territory with 

peaks between 1,000 and 1,700 m (3,300 and 5,000 ft respectively). 

The Alps divide Switzerland into two parts; they extend from west to 
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east over about half of the country. They show quite a few peaks 

exceeding 4,000 m (13,000 ft). The Midlands lie in between, on the 

northern side of the Alps, at an elevation between 300 and 600 m 

(1,000 and 2,000 ft respectively). 

2.1.2 Climate. The vast mass of the Alps and the related 

variations in altitude and in exposure account for the unusual 

diversity of the climate. On the whole it is continental. The 

average annual temperature stays around 8.5° Celsius (47°F) at 

500 m (1,640 ft); at 2,500 m (8,200 ft) it drops to -1.8° Celsius 

(29°F). In summer some regions enjoy a very mild climate but the 

perennial snow is encountered between 2,500 and 2,800 m (8,200 and 

9,200 ft respectively) and about 1,500 sq km (600 sq mi) are covered 

by glaciers. 

The average annual precipitation for the whole country amounts 

to about 1,500 mrn (59 in.); its areal distributions are much affected 

by the presence of the Jura and the Alps. However throughout the 

year, the precipitation is roughly evenly distributed. The minimum 

monthly values are recorded in winter, the maximum ones in summer. 

2.1.3 Hydrography. The waters in Switzerland flow to four main 

river systems. The most important one is the Rhine River Basin which 

drains 68 percent of the area, then comes the Rhone River Basin with 

18 percent, followed by the Po River Basin with 9 percent and 

finally the Danube River Basin with 5 percent (Fig. 2.1). The 

average annual runoff depth equals 1,030 mrn (41 in.). This leads to 

a runoff coefficient of 0.70. 

The annual flow pattern is related, among others, to the annual 

precipitation cycle and to the snow and icemelt phenomena. 
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Parde {1955), recognizing this fact, has classified river regimes with 

appreciable snow cover influence on the basis of a coefficient which 

represents the percentage of the warm season flow contributed by 

meltwater. For Switzerland he arrived at the five following sub­

divisions: "Pluvio-nival," "nivo-pluvial," "transition to nival," 

"pure nival," to "nivo glacial," and "glacial" regime. In the 

"pluvio-nival" regime the computed coefficient ranges between 6 and 

14 percent, in the "glacial" regime it exceeds 51 percent. As most 

storage reservoirs in Switzerland are located at elevations ex­

ceeding 1,500 m (4,900 ft) only the last three regimes are of 

interest. 

2.2 Description of the Selected Watershed 

2.2.1 Selection criteria. The watershed selected to test the 

optimization method must satisfy some criteria. First its hydrology 

must be similar to that of the basins where most of the seasonal 

storage reservoirs were erected. In Switzerland these basins belong 

either to the subalpine or to the alpine range. Alpine here means 

situated above the tree line. Second, the basin must be homogeneous 

in order to allow reliable runoff forecasts. Third, and most important, 

a sufficient amount of runoff, rainfall, temperature, and topo­

graphical data must be available. 

This criterion caused the greatest problems as the flows of many 

rivers have been modified during the last decades by the construction 

of diversions. All the drainage basins of the existing reservoirs 

had to be eliminated, mainly because the available runoff series were 

too short or the virgin flows were difficult to reestablish. 
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Consequently a basin had to be selected without an existing 

reservoir: Hinterrhein at Hinterrhein. 

Concerning the third criterion, the following remarks are of 

interest. The gauging station of Hinterrhein has been in operation 

since 1945 and the records are rated as good. Besides the precipita­

tion gauges located in the main and in the nearby valleys a few 

totalizers were established about forty years ago at high elevation. 

Also snow courses have been taken regularly since the early sixties. 

Finally some topographical data on the glaciers of the watershed have 

been collected since the end of the nineteenth century. Hence from 

the point of view of availability of data the situation seems to be 

quite good. 

2.2.2 Physical characteristics of the Hinterrhein watershed at 

Hinterrhein. One usually considers the Hinterrhein 

River as the actual origin of the Rhine River. The catchment of the 

selected gauging station covers 53.7 sq km (20.66 sq mi) of which 

17.3 percent were covered by glaciers in 1962. Its drainage area is 

comprised between latitude north 46° 28' and 46° 34' and longitude 

east 9° 02' and 9° 13' (Fig. 2. 2). 

The highest point, the Rheinwaldhorn, exceeds 3,400 m 

(11, 150 ft) while the gauging station lies at 1, 583 m (5, 194 ft) close 

to the northern entrance of the San Bernardino Tunnel which joins the 

northern with the southern part of Switzerland. According to the 

hypsographic curve (Fig. 2.3) the average elevation amounts to 2,380 m 

(7,808 ft) and more than 70 percent of the catchment lie below 

2,600 m (8,530 ft). 
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The river itself originates at about 2,400 m (7,874 ft) at the 

lower end of the Paradies Glacier. It then flows with a gross stream 

channel slope of 4.7 percent (Widmoser, 1974) in a steep and narrow 

valley. Towards the lower end of the drainage basin the channel 

slope decreases and the valley widens. 

The vegetation is of the alpine type. Although small woods can 

be fo•nd near Hinterrhein Village most of the catchment is covered 

with grass, isolated trees, and bushes. As the elevation increases 

the trees and later on the bushes progressively disappear. At the 

highest elevations even grass becomes sparse; there the slopes are 

very steep and rocks prevail. 

Quite a few glaciers exist in the Hinterrhein catchment. The 

two most important ones are the Paradies and the Zapport Glacier. 

The Paradies Glacier, the actual source of the Rhine, occupies the 

upper end of the valley; the Zapport Glacier extends over the highest 

reaches of the right side and on the left side there are only a couple 

of glaciers of smaller extent. In 1962 these glaciers covered a little 

more than 9 sq km (3.46 sq mi). Their average elevation amount-d to 

about 2,850 m (9,350 ft). 

2.2.3 River regime. It is typically alpine or according to 

Parde's classification "nivo-glacial." The precipitation is evenly 

distributed throughout the year but the runoff is mainly concentrated 

during the summer months. This shows the importance of temperature. 

Table 2.1 gives the location of the 0° Celsius isotherm and the lower 

limit of the snow cover during the year for regions situated on the 

northern side of the Alps (Lugeon, 1928). 



Table 2.1 

Average Monthly Elevation of Isotherm Zero and of Lower Limit of Snow Cover 

Month Oct Nov Dec Jan Feb Mar Apr May June July Aug Sept 

Isotherm Zero 2350 1300 - - 700 1150 1900 2550 3100 3700 3650 3350 
....... 

Lower Limit 1650 1300 650 600 600 750 1000 1400 1950 2450 2700 2350 U1 

Snow Cover 

Elevations are given in m 
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From October to March precipitation is stored as snow and ice 

and the resulting runoff is small. In April the isotherm 0° Celsius 

reaches the lower area of the watershed and snowmelt is started; 

it reaches its maximum rate in June. Glaciermelt starts later and 

is responsible for the high flows registered in July, August and even 

in September. Finally the summer rains also contribute to the runoff. 

Hence, the total summer flows result from the superposition of three 

different phenomena. 

The maximum annual flow equals 1.7 times the minimum annual 

flow for the period with available records. The seasonal distribu­

tion of flows is even more remarkable. Winter runoff barely reaches 

14 percent of the annual total. The minimum occurs in February. 

From that moment on runoff increases until July or August when the 

daily peaks can be quite high. Then starts the recession which ends 

in February. 

2.3 Precipitation 

2.3.1 General pattern. Cyclonic type precipitation brings the 

greatest amount of moisture into the area under study. Most often 

these air masses originate either from the Atlantic Ocean or from the 

Mediterranean Sea. However the resulting precipitation within the 

catchment itself is small because the Hinterrhein Valley lies across 

the most frequent wind directions and because it is sheltered from the 

same winds by high mountain ranges. As cyclonic type precipitation 

covers in general large area~ good correlations should exist between 

the records of nearby stations. 
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With increasing elevation a larger percentage of precipitation 

falls as snow. Lliboutry (1965) indicates that at 1,500 m (4,900 ft), 

40 percent of the annual precipitation falls as snow, at 2,000 m 

(6,500 ft), 60 percent, at 2,500 m (8,200 ft), 75 percent, at 3,000 m 

(9,800 ft), 90 percent and finally at 3,500 m (11,500 ft), 96 percent. 

This is important for two reasons. First it is well-known that 

the reliability of a precipitation gauge decreases as the amount of 

catch from snow increases; generally such gauges tend to underestimate 

the real precipitation. Hence here, records coming from stations 

located at high elevation should be considered with care. Second, 

the percentage of precipitation fallen as snow influences greatly the 

magnitude of the terms appearing in the energy balance equation. 

Many researchers (see bibliographies given by Kubat, 1972 and 

Havlik, 1969) have studied in the last thirty years the relations 

existing between elevation and precipitation. Some of them even 

tried to prove the existence of an altitude above which precipitation 

should decrease. The lack of gauges at high elevations complicated 

the solution of the problem. However today the idea of an elevation 

with maximum rain has been abandoned and it is generally admitted that 

precipitation increases roughly linearly and constantly with elevation. 

The process of rain formation and the available records justify this 

conclusion. For orographic effect plays a most important role in 

cyclonic type precipitation. On his side Havlik (1969) studied 

thoroughly the existing data of rain gauges of the Alps. He showed 

that the variations in mean annual rainfall between stations are 

directly related to the corresponding elevation changes. Yet Havlik 
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does not exclude the existence of local conditions which might infirm 

his general law. 

The data series of the recording gauge of Hinterrhein Village 

shows an annual average of 1,732 mm precipitation (68 in.) for the 

period 1901-1940. It also indicates that summer is the most frequent 

wettest season followed by fall and spring. Winter is the driest one. 

The relevant figures appear in Table 2.2. 

Unfortunately the highest recording rain gauge of the valley is 

located at the lower end of the catchment under study which shows the 

importance of the above analysis of the effects of elevation on 

rainfall. 

2.3.2 Analysis of data. The Hinterrhein Valley is particularly 

well equipped with recording rain gauges: in the catchment itself, 

Hinterrhein Village; further downstream, Splugen and Andeer; and in 

two nearby valleys, Vals, Inner-Ferrera and Avers am Bach. These six 

stations provide for a good regional coverage. Furthermore six non­

recording gauges were installed at high elevation. Location and 

characteristics of these stations can be found in Table 2.3 and in 

Fig. 2.4. 

Of the six selected recording precipitation gauges only two, 

Splugen and Hinterrhein, present gaps in their records. The missing 

values were determined by linear regressions with the four remaining 

stations with complete series. The obtained correlation coefficient 

for annual precipitation exceeds in both cases 0.92 for a sample 

equal or greater than eighteen. The major computed statistical 

parameters (mean, variance and coefficient of variation) appear in 

Table 2.4. 



Table 2.2 

Average Monthly and Quarterly Precipitation of Hinterrhein 

A. Monthly Averages 
1901 - 1940 

Month Oct Nov Dec Jan Feb Mar April May June 

Precipitation 201 151 98 68 77 131 141 161 160 

Precipitation is given in mm 

B. Quarterly Averages 
1901 - 1940 

Period Oct to Dec Jan to March April to June July to Sept 

Precipitation 450 276 462 544 

Precipitation is given in mm 

July Aug 

188 185 

Total 

1732 

Sept 

171 

...... 
(,0 
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Table 2.3 

List of Selected Precipitation Gauges 

Station Name 

Va1s 

Hinterrhein 

Spliigen 

Avers 

Innerferrera 

An deer 

Station Name 

A. Recording Gauges 
1945 - 1974 

B. 

Elevation 
m 

1290 

1619 

1460 

1960 

1475 

980 

Totalizers 
1945 - 1973 

Elevation 
m 

Gemskanzel-Rheinwaldfirn 2916 

Aelpetlistock 2393 

Muotaulta-Annarosa 2800 

Crapet Prassignola 2650 

Piz Curver 2810 

Piz Scalotta 2965 

Years With 
Incomplete Records 

1949, 52, 53, 1962-68 

1968, 69 

Years With 
Missing Records 

1945, 47, 52, 53, 54 

1964 

1945, 59 

1966, 67 
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Table 2.4 

Annual Precipitation: Main Statistics 

A. Recording Gauges 
1945 - 1974 

Station Name Elevation Mean Stand. Dev. Coeff. of Var. 
m mm mm 

An deer 980 931 159 0.171 

Vals 1290 1050 191 0.182 

Sp1iigen 1460 1239 226 0.182 

Innerferrera 1475 1199 219 0.183 

Hinterrhein 1619 1610 311 0.193 

Avers 1960 1031 165 0.160 

B. Totalizers 
1945 - 1973 

Station Name Elevation Mean Stand. Dev. Coeff. of Var. 
m mm mm 

Aelpetlistock 2393 1695 341 0.201 

Crapet 2650 1476 252 0.171 

Muotaulta-Annarosa 2800 1395 227 0.163 

Gemskanze1-Rheinwaldfirn 2916 1417 328 0.231 

Piz Curv~r 2810 1068 219 0.205 

Piz Sca1otta 2970 1355 243 0.179 
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The performed analyses call for the subsequent comments. The 

available records are representative and reliable. The high correla­

tion coefficients existing between the records of the selected rain 

gauges confirm that the areal precipitation distribution is homogeneous. 

Also the influence of elevation on the annual precipitation becomes 

apparent. However the available data show the complexity of the 

problem (Table 2.4). The trend is quite obvious for Andeer, Splugen, 

and Hinterrhein but it is not at all evident for Andeer, Inner-Ferrera 

and Vals. Hence, it seems difficult to extrapolate from these data 

what is really happening in the higher ranges of the watershed. 

The nonrecording gauges might perhaps give a hint in this 

respect. For four of them the long-term annual average lies around 

1,400 mm (55 in.) while for the other two it is markedly different. 

This difference may result from local factors and it was decided to 

eliminate the gauges of Aelpetlistock and Piz Curver (Table 2.4). 

Although the four remaining stations behave identically on the average, 

substantial differences were registered in single years so that the 

annual correlation coefficients between stations dropped to 0.74. 

The low recorded water depths are striking. Even if one assumes 

that they are off by about 20 percent the real value would then lie 

around 1,800 mm. This would imply a very small increase from the 

1,732 mm of Hinterrhein. As a summary, the information coming from 

nonrecording gauges is not very reliable and cannot be used here. It 

supplies, however, qualitative indications. 

2.3.3 Precipitation index. What procedures should be used to 

determine the areal precipitation depth of the catchment? Hinterrhein 

Village, the highest recording station in the valley, lies at the 
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lower end of the catchment. According to the trend prevailing in the 

Alps the areal precipitation should be greater than the value recorded 

at Hinterrhein Village, but by how much? 

In 1949 Uttinger published an isohyetal map for Switzerland. It 

gives for the upper ranges of the catchment under study values ex­

ceeding 2,500 mm a year. The data registered after the publication 

of this map, especially those of Gemskanzel, contradict these figures. 

Hence this map is of no use here. Furthermore the existence of gaps 

in its record series does not allow the selection of Hinterrhein 

Village as a bench station for the estimation of areal rainfall. 

The solution consists of abandoning the idea of evaluating the 

areal rainfall which was replaced with another variable--the precipi­

tation index. By definition it is the arithmetic mean of the values 

recorded at the six selected rain gauges. The number of considered 

stations is large enough to eliminate local influences and to set 

forth regional trends. Unfortuantely this approach implies that in 

the subsequent analyses no water balance equation can be established 

for the concerned watershed. 

According to Tables 2.5 and 2.6 the annual precipitation index 

varies between 715 and 1,584 nnn with an average of 1,163 mm. The 

coefficient of variation is of the same order of magnitude for the 

different periods except for the sununer quarter which experiences 

the greatest vllriat:iuns... Pigme 2.5 shows the annual precipitation 

index as a function of time and the related five-year moving average 

scheme. No major trend could be detected. Finally, the normal 

distribution fits well the recorded annual, semiannual and quarterly 



Table 2.5 

Precipitation Index: Main Statistics 

1945 - 1974 

Period Oct to March April to June July to Sept April to Sept Oct to Sept 

Mean 406 342 416 757 1163 

Stand. Dev. 121 60 157 178 196 

Coeff. Var. 0.298 0.176 0.378 0.236 0.169 N 
Vl 

Min. 204 194 181 375 715 

Max. 666 484 807 1096 1584 

Precipitation is given in mm 
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Table 2.6 

Precipitation Index: Quarterly and Annual Values 

1946 - 1974 

Annual 
Year Oct to Apr to July to April to Oct to 5 Years 

March June Sept Sept Sept Mov. Aver. 
mm nun nun nun nun mm 

1946 459 484 439 922 1381 
47 308 312 391 704 1011 
48 340 339 415 754 1094 1075 
49 204 307 204 511 715 1085 

1950 424 371 378 751 1175 1132 
51 666 353 410 764 1430 1119 
52 431 321 496 817 1248 1241 
53 374 300 353 653 1027 1201 
54 321 423 579 1002 1323 1164 
55 451 298 229 527 978 1123 
56 274 317 655 972 1246 1169 
57 244 358 437 795 1039 1081 
58 379 353 525 879 1258 1202 
59 510 194 181 375 885 1189 

1960 488 286 807 1096 1584 1178 
61 654 319 207 526 1180 1184 
62 416 298 269 568 984 1225 
63 311 413 561 975 1286 1177 
64 536 315 241 555 1090 1173 
65 339 263 744 1006 1345 1279 
66 312 378 470 848 1160 1304 
67 612 393 512 905 1516 1312 
68 528 416 464 879 1407 1266 
69 403 432 296 729 1132 1242 

1970 476 289 349 638 1114 1123 
71 433 332 276 608 1041 1054 
72 289 354 282 634 923 1046 
73 220 391 447 840 1060 

1974 362 295 435 732 1094 
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valueJ Wigs. 2.6, 2.7 and 2.8). Statistically these variables can 

also be considered as independent from one another (Table 2.7). 

As a conclusion, a fair amount of reliable information on 

precipitation exists in the Hinterrhein Valley. The selected six rain 

gauges provide a good areal coverage and allow the computation of a 

representative precipitation index. 

2.4 Temperature 

2.4.1 Methodology. The elevation range of the Hinterrhein watershed 

is such that snowmelt and glaciermelt play an important role in the 

water cycle. Many different and complex processes influence the 

production rate of meltwater, the most important one being heat 

transfer. Absorbed solar radiation, net longwave radiation exchange 

between the snowpack and its environment, convective heat transfer 

from the air, latent heat of vaporization released by the condensate, 

conduction of heat from underground and heat content of rainwater 

are some of the heat sources which must be taken into account. 

Although not all the factors just mentioned are of equal 

importance even the determination of only some of these parameters 

would require a prohibitive amount of instruments. If it seems still 

possible to measure many variables in a small size experimental water­

shed, this endeavor becomes impossible for a watershed like the one 

under consideration. Fortunately teaperature is a good index of the 

heat transfer processes associated with snowaelt (U.S. Anny Corps of 

Engineers, 1956). This variable is easy to measure so that this kind 

of data should be widely available. It explains why temperature 
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Table 2.7 

Correlation Coefficients between Annual, Seasonal and Quarterly Values 

1945 - 1974 

Pairs of Periods 

Annual Corr. (Apr to Sept - (Apr to June) - (July to Sept) 
Coeff. (Oct to March) (Oct to March) (Apr to June) 

Precipitation - 0.104 - 0.180 - 0.070 0.171 
(.M 
N 

Number of 
Dearee Days - 0.015 - - 0.391 

Runoff 0.009 - 0.183 - 0.016 0. 271 
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indexes are the most widely used methods of computing snow and 

glaciermelt. 

The degree-day method has been retained quite often as an index 

and it will also be our approach here. Because snow and glaciermelt 

result directly from the heat transfer from the air in excess of 

0° Celsius, the degree-day method postulates that the daily production 

rate of snowmelt is proportional to the number of degree-days above 

freezing. 

2.4.2 Selection of the bench station. At high elevations only 

a few sites have been recording temperature for more than twenty years. 

Santis (elevation 2,500 m) and Weissfluhjoch-Davos (elevation 2,680 m) 

are two of the most important ones in Switzerland. The record series 

from Santis presents the disadvantage that some modifications were 

introduced in 1960 into the measuring technique which caused a 

systematic shift in the records. Furthermore Santis is located 

far away from the watershed under study. Consequently the station of 

Weissfluhjoch-Davos was retained. It lies within 60 km of Hinterrhein 

catchment so that the data of this station are also valid for this 

area. Anyway according to Hoinkes (1968) temperature prevailing at 

elevations exceeding 2,000 m is nearly the same all over the 

Alps and is not much affected by local conditions. 

2.4.3 Analysis of data. The temperature readings occur three 

times a day, namely at 7:30, 13:00, and 21:30. According to 

Zingg (1951) the mean daily temperature computed as: 

T7:30 + Tl3:00 + 2·T21:30 
T = 4 (2-1) 
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gives the best correlation with the snowmelt mechanism. For 

Weissfluhjoch-Davos the average sum of positive degrees for the 

period 1951-60 (Zingg, 1961) appears in Table 2.8. 

Hence at 2,680 m melting starts only in May. It reaches its 

full strength in July and August. Local snowmelting can still occur 

in October but often the glaciers are already frozen by mid September. 

The main statistical parameters of the sum of positive degrees 

appear in Table 2.9 while the basic data appear in Table 2.10. The 

missing values were obtained by extrapolation from the records of 

Santis. Figure 2.9 shows the time series of the annual sum of 

positive degree days and the corresponding 5 years moving average 

scheme. No strong trend could be detected. The normal distribution 

provides a good fit to the different data series which can be 

considered as statistically independent from one another (Figs. 2.10, 

2.11, and 2.12, Table 2.7). 

Of interest is not only the sum of positive degrees at one 

point but over the whole range covered by the watershed. Usually one 

assumes that temperature varies linearly with elevation at a rate of 

0.65° Celsius per 100m (Zingg, 1951). Because of the presence of 

negative values the sum of positive degrees does not vary exactly 

linearly with elevation. However, the linearity holds approximately 

for a small range like between about 2,500 and 2,800 m (Zingg, 1951). 

2.5 Glaeier 

2.5.1 Scope of the work. Glaciers play an important role in the 

hydrology of alpine rivers. Kasser (1955) indicates that for the 

Rhone at Porte du Scex (catchment 5,220 sq km, glaciated area 



Table 2.8 

Average Number of Degree Days of Weissfluhjoch-Davos 

1951 - 1960 

Period Oct Nov Dec Jan Feb Mar Apr May June July Aug Sept Total 

Number of 
Degree Days 45 6 1 - 2 1 3 39 95 168 166 122 648 

(.N 

in degrees Celsius V1 



Table 2.9 

Number of Degree Days: Main Statistics 

1945 - 1974 

Period April to June July to Sept Sept April to Sept Oct to Sept 

Mean 138 451 119 589 655 

Stand. Dev. 40.5 78.2 42.5 101.2 100.5 (.N 

"' 
Coeff. Var. 0.29 0.17 0.36 0.17 0.15 

Min. 65 306 35 442 472 

Max. 271 578 205 849 887 

in degrees Celsius 
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Table 2.10 

Number of Degree Days: Monthly, Quarterly and Annual Values 

Hydr. April to July to April to Oct to 5 Year 
Year June Sept Sept Sept Sept Mov. Aver. 

oc oc oc oc oc oc 

1946 144 450 125.3 594 608 
47 271 578 152.9 849 887 
48 127 405 129.8 532 613 752 
49 157 544 181.9 701 787 766 

1950 217 548 90.4 765 867 724 
51 111 495 145.5 606 676 732 
52 155 484 34.5 639 676 687 
53 140 496 140.0 636 654 621 
54 125 348 136.3 472 560 598 
55 107 354 90.6 461 539 573 
56 75 446 157.9 521 563 601 
57 122 371 87.0 493 548 629 
58 157 558 162.3 714 795 624 
59 149 494 147.3 643 698 640 

1960 151 306 54.6 457 515 665 
61 132 496 205.2 628 642 643 
62 111 493 124.2 604 675 650 
63 129 485 123.0 614 687 641 
64 193 484 133.5 676 729 638 
65 137 309 50.3 446 472 639 
66 153 384 156.1 536 626 619 
67 118 485 100.8 603 683 606 
68 142 316 68.6 458 587 649 
59 128 451 132.4 579 660 666 

1970 111 467 143.4 578 690 638 
71 112 521 90.0 633 711 668 
72 92 350 37.9 442 542 650 
73 171 512 147.7 683 737 
74 65 459 114 .. 4 524 569 
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16 percent), the contributions of the glaciers amount to 11 percent of 

the summer runoff. It is consequently absolutely necessary to acquaint 

ourselves with their properties and characteristics. The section 

starts with a brief description of glaciology in Switzerland, continues 

with a qualitative and quantitative analyses of glacier activities, and 

ends with the application of the gained knowledge to the catchment of 

Hinterrhein. 

2.5.2 Glaciology in Switzerland. The glaciated areas of the 

Alps are remnants from the Wurm glaciation. It occurred thousands 

of years ago and covered most of Switzerland. Since then the ice 

has been steadily retreating with some smaller advances excepted. 

The earliest indications concerning the extension of the 

glaciated area in Switzerland go back to 1876. At that date this 

area was evaluated at 1,895 sq km (733 sq mi) of which 663 sq km 

(255 sq mi) belonged to the Rhine catchment (Mercanton, 1958). The 

surveying done for the new national map (1934) supplied the following 

new values: 1,581 sq km (610 sq mi) and 548 sq km (211 sq mi) 

respectively. For Switzerland the retreat within 58 years amounts 

to 14.8 percent of the total area. For the Rhine catchment the 

corresponding figure is a little higher: 17.4 percent. 

The average elevation of the lower end of all the glacier 

tongues retreated by about 90 m between 1876 and 1934. In the 

thirties it comprised between 1,450 and 1,950 m (4,750 ft and 6,400 ft 

respectively). The most frequently recorded values lay around 

2,500 m (8,200 ft). 

Systematic surveys were started two decades ago. Today length 

and elevation variations as well as aerial photographs are taken 
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each year for nearly all the glaciers. Furthermore mass balances 

(see next section) which require detailed studies of area and 

elevation changes are computed regularly for some of them. Finally 

experimental watersheds were established on a glacier. 

2.5.3 Qualitative analysis of glacier activities. In the 

Handbook of Applied Hydrology (1964) glacier is defined as "a body 

of ice originating on land by the recrystallization of snow or other 

forms of solid precipitation and showing evidence of past or present 

flow." The author continues in the following way, "···however many 

glaciologists hold to a more stringent definition. In order to 

qualify as a glacier an ice mass must have: 1) an area where snow or 

ice usually accumulates in excess of melting and 2) another area where 

the wastage of snow or ice usually exceeds the accumulation, and there 

must be 3) a slow transfer of mass by creep from the first region to 

the second." This lengthy definition shows clearly that many complex 

factors interact. Especially, as compared to snowmelt, one more 

parameter comes into play: the mass flow. 

Schematically one can explain the formation of glaciers in the 

following way. The last glaciation in the Alps was initiated some 

thousands of years ago by a gradual decrease in temperature. As a 

consequence the heat available in summer was no longer sufficient 

to melt everywhere the snow fallen during the preceding winter 

season. Snow began to accumulate in layers roughly parallel to the 

prevailing topography. With the increase of snow depth two phenomena 

occurred: first the snow of the bottom layers was transformed into 

ice through compaction and seco~d the whole mass became unstable 

and started to move down into the valley. This ice mass flow 
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continued until it reached areas where the available summer heat was 

sufficient to melt away all the incoming ice flow. 

According to this explanation, snowfall exceeds snowmelt in 

the upper portion of the glacier, in the lower portion the opposite 

is true. One calls the upper zone the accumulation zone and the 

lower one the ablation zone. They are separated by the firn limit 

where accumulation equals ablation. The firn limit is also the 

highest level to which the winter snow cover retreats during summer 

and as such changes from year to year. 

All the glaciers of the Alps are temperate glaciers: the ice 

temperature is everywhere at the melting point except for the top 

layers which more or less follow the thermal cycle of the air. 

Hence glaciers are extremely sensitive to climatic changes. They 

grow or retreat according to the changing energy and moisture inputs. 

To quantify these movements one computes their mass balance. It is 

defined as the net quantity of water gain or loss occurring in a 

glacier over a specified duration. If the mass balance is nil the 

glacier is said to be in equilibrium. In the Alps the mass balance 

has been mostly negative for the last hundred years. 

Meltwater does not come equally from all the zones. The 

highest areas do not contribute at all, even in summer, as the 

snow melted during the day freezes again at night. If the highest 

contributing zones lie just above the firn limit the greatest 

quantity of water is in fact supplied by the glacier tongue which 

is completely thawed in summer. 

A complicated drainage system exists on and in the glacier. As 

ice is impervious meltwater flows first on the surface in small 
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channels. These channels end into pits through which the water reaches 

the bottom and the glacier stream. Each year, in spring, this complex 

intra-glacial network must be rebuilt; it takes time, which explains 

why extensive glaciermelt starts so late in the season. Also a cold 

spell in September can completely stop the meltwater flow although 

later on temperature is again above the freezing point. 

2.5.4 quantitative analysis of glacier activities. The 

international hydrologic decade gave a new impulse to the alpine 

glaciology. The researchers mainly addressed themselves to the col­

lection of new data and to the scientific analysis of the glacial 

phenomena. Of special interest for the present study we shall 

present the results of three research teams. In Switzerland, 

Zingg, Kasser and Lang; in Austria, Hoinkes and Lang. 

To get familiar with the magnitude of the variables involved 

some data about the most important parameters are given hereafter. 

They come from the best surveyed glaciers of Switzerland and Austria. 

The first information deals with area changes (Table 2.11). 

For the Aletschglacier the mass balance was 17 times negative 

and 11 times positive from 1945-46 to 1972-73. For the 

Hintereisferner glacier it was 12 times negative and 5 times 

positive for the period 1952-53/1967-68. Finally Table 2.12 

gives the variation of the firn line elevation for some Swiss 

glaciers. 

The just given numbers confirm that the mechanisms involved 

are complex. Each glacier behaves in its own way. It may even 

behave differently from year to year. 



Date 

1933 

1962 
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Table 2.11 

Area Changes of Glaciers 

A. Glacier of Aletsch 

Area 
krn2 

135.27 

127.27 

Percentage Decrease 
in Area 

5.9 

3.6 

1971 122.64 

Date 

1953 

1968 

B. Glacier of Hintereisferner 

10.24 

9.03 

Percentage Decrease 
in Area 

11.8 



Table 2.12 

Annual Elevation Variations of the Firn Limits of Some Glaciers 

Glacier: Gries Linunern Silvretta Hintereisferner 

1959 - 60 - 2720 - 2880 

60 - 61 - 2650 2740 2940 

61 - 62 3130 2840 3150 3080 

62 - 63 2840 2750 2900 3010 

63 - 64 2900 2950 3160 3180 

64 - 65 2770 2510 2490 2770 

65 - 66 2780 2420 2510 2850 

66 - 67 2800 2860 2715 2920 ~ 
""'-~ 

67 - 68 2710 2530 2645 2850 

68 - 69 2740 2740 2800 2960 

69 - 70 3040 2820 2730 

70 - 71 3030 2930 2880 

71 - 72 2680 2750 2800 

72 - 73 3070 2900 2980 

Elevations are given in m 
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Fortunately the laws governing some parts of the glacial 

mechanisms are simpler. Hence, according to Zingg (1951), the 

following relation exists between produced meltwater and positive 

degree-days: 

D = 4.5 • Td (2-2) 

where D is the depth of melted water in mms and Td the sum of 

positive degree-days. 

This relation was established on an experimental watershed, 

situated close to the station of Weissfluhjoch-Davos at 2,540 m. 

Obviously the proportionality factors depend on the prevailing 

local conditions and may be different for ice and for snow. 

Lang (1967) analyzed the relation existing between glacier 

runoff and related meteorological factors. The basic data came from 

an experimental watershed on the Aletsch Glacier (elev. 2,200 m, 

area 4,480 sq m) and from the corresponding total drainage basin, 

global radiation turned out to be the best indicator for glacier 

runoff. Temperature, however, gave the best correlation with the 

flows of the complete drainage basin. 

Finally Kasser (1955) made extensive studies with the catchment 

of the Rhone River at Porte du Scex (5,220 sq km, glaciation 16 

percent). Kasser used the fonnula developed by Zingg to evaluate 

the contribution from the glaciated area. He obtained a correlation 

coefficient of 0.80 for a regression between annual runoff, related 

precipitation and glaciermelt. He also mentioned that the change 

in glaciated area had a non-negligible affect on the total amount 

of seasonal runoff. 
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2.5.5 Glaciers of the Hinterrhein catchment. Unfortunately not 

much information is avaiable. The Paradies and the Zapport Glacier 

form most of the glaciated area. In Table 2.13 figure the length 

and elevation variations of the tongue of the Paradies Glacier from 

1876 up to today. In 1876, the glaciers covered 17.60 sq km 

(6.8 sq mi), by 1933, this area amounted to 11.88 sq km (4.58 sq mi) 

and in 1962 only 9.29 sq km (3.58 sq mi) were still glaciated. These 

figures correspond to a reduction of the glaciated area of 32.5 per­

cent for the first period, and of 21.7 percent for the second period. 

Compared to the other Swiss glaciers, this decrease in area is 

exceptionally high. Furthermore, according to Table 2.13, the 

Paradies Glacier has nearly constantly retreated since 1933. No 

information exists about mass balance and firn limit. The firn 

limit should lie between 2,800 (9,200 ft) and 3,000 m (9,850 ft). 

The last column of Table 2.13 supplies the computed glaciated 

areas. The areal changes were taken proportional to the length 

variations. It is a crude approximation, but with the available 

information, no other alternative exists. This is especially true 

because the data collected on other glaciers cannot be transferred 

to the Hinterrhein catchment. 

2.6 Runoff 

2.6.1 Annual, seasonal, quarterly and monthly flows. Runoff is 

the final result of the action of temperature on snow and on glaciers, 

and of the watershed on rain. In this part however, as far as 

possible, the runoff phenomenon is considered for itself. The rela­

tionships existing between the different elementary cycles will be 

studied later on. 
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Table 2.13 

Glaciated Area of Hinterrhein: Main Characteristics 

Date Elev. Lower Annual Cumulated Measured Computed 
End of Horizontal Horizontal Glaciated Glaciated 

Glacier Retreat Retreat Area Area 
m m m km2 km2 

1876 2213 17.600 
1933 2308 11.880 
1945 227 227 11.125 

46 14 11.079 
47 46 10.926 
48 62 10.720 
49 4 10.706 

1950 82 10.434 
51 10.366 
52 61.5 10.297 
53 10.229 
54 20 10.163 
55 53.5 9.985 
56 2355 40 9.852 
57 2357 33.5 9.741 
58 2358 16 9.687 
59 2359 31 9.584 

1960 37.5 9.522 
61 2360.5 9.460 
62 2363 51 779 9.290 9.290 
63 2361 48.5 9.129 
64 48 9.049 
65 2363 8.969 
66 2365 25 8.886 
67 2365 2 8.879 
68 2365 -11.5 8.918 
69 2356 10 8.884 

1970 2358 14 8.838 
71 2362 43.7 8.693 
72 2362 o.o 8.693 
73 2362 9.0 8.663 

1974 2362 10.6 978.3 8.627 
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The hydrologic year starts on October 1st, and ends on 

September 30th of the following year. The Hinterrhein River carries 

on the average 106 million cubic meters (3,750 million ft 3) yearly 

(Fig. 2.13). Of this amount, 12 percent are recorded in the winter, 

and 88 percent in the summer semester (Table 2.14); the months of 

July, August and September yield themselves 51 percent of the annual 

flow. Actually the flow regime is typical of an alpine river. The 

discharges are low from December to March; April and May show a 

substantial increase while the highest values are registered from 

June to August. September can bring occasionally high flows and 

October and November are transition months. The Table 2.16 visualizes 

this fact. 

The normal distribution provides a good fit to annual and 

semiannual, and quarterly flows (Table 2.15, Fig. 2.14, 2.15 and 

2.16). For the periods just mentioned, the flows are all statistically 

independent from one another (Table 2.7). Only the successive 

monthly flows show significant correlation coefficients (Table 2.17). 

Their variations with time present an interesting pattern. The cor­

relation coefficient is minimum in November and in May, and maximum 

in January and in September. Between these extreme points, it in­

creases and decreases regularly. Noteworthy is the negative correla­

tion coefficient between the monthly flows of May and June. 

2.6.2 Weekly flows. To obtain a better insight into the annual 

flow cycle and its mechanisms, it is absolutely necessary to 

consider weekly discharges. Actually this time step is ideal; it 

eliminates the random components of the time series, while it still 

preserves the basic trends. 
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Table 2.14 

Runoff: Main Statistical Parameters 

1945 - 1974 

Winter Flows April-June July-Sept April-Sept Annual Flows 

Average 12.796 39.159 54.077 93.236 106.032 

Stand. Dev. 4.813 5.952 11.420 14.231 14.303 

Coeff. Var. 0.376 0.152 0.211 0 .. 153 0.135 

Min. 6.246 50.609 77.683 70.932 77.891 VI 
~ 

Max. 23.467 26.179 38.995 117.868 128.081 

All the numbers are given in millions m 3 
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Table 2.15 

Runoff: Quarterly, Seasonal and Annual Values 

Year Oct to April to July to April to Annual 5 Year 
March June Sept Sept Mov. Aver. 

106m3 106m3 106m3 106m3 106m3 106m3 

1946 12.377 43.475 69.777 113.252 125.629 
47 7.789 48.532 57.094 105.626 113.415 
48 9.781 39.790 54.802 94.592 104.373 109.49 
49 9.250 31.729 41.733 73.462 82.712 109.79 

1950 12.812 50.609 57.912 108.521 121.333 111.56 
51 9.246 47.589 70.279 117.868 127.114 111.58 
52 15.380 47.107 59.804 106.911 122.291 118 .. 88 
53 16.406 34.468 53.567 88.035 104.441 111.90 
54 23.467 37.746 58.011 95.757 119.224 109.09 
55 7.801 39.456 39.182 78.638 86.439 103.88 
56 9.171 26.179 77.683 103.862 113.033 105.25 
57 11.195 39.049 46.020 85.069 96.264 100.08 
58 11.049 41.390 58.838 100.228 111.277 107.01 
59 22.218 32 .. 166 38.995 71.161 93.379 106.03 

1960 9.404 45.041 66.673 111.714 121.118 103.83 
61 21.086 40.754 46.255 87.009 108.095 105.78 
62 14.326 29.973 40.959 70.932 85.258 107 .. 54 
63 6.246 40.688 74.116 114.804 121.050 103.22 
64 17.728 45.094 39.348 84.442 102.170 100.91 
65 10.783 34.518 54.246 88.764 99.547 109.48 
66 11.961 40.780 43.789 84.569 96.530 109.61 
67 18.401 38.697 71.163 109.860 128.081 108.74 
68 17.928 45.592 58.224 103.816 121.744 109.90 
69 16.530 36.825 44.447 81.272 97.802 109.92 

1970 8.657 38.931 57.776 96.707 105.364 99.88 
71 14.176 35.176 47.254 82.430 96.606 94.58 
72 6.286 32.366 39.239 71.605 77.891 94.52 
73 6.854 37.633 50.764 88.397 95.251 
74 12.769 34.334 50.380 84.714 97.483 



Table 2.16 

Runoff: Average Monthly Values 

1945 - 1974 

Period Oct Nov Dec Jan Feb March April May June July Aug 

Runoff 1.94 1.10 0.60 0.42 0.32 0.38 1.31 4.84 8.78 8.56 7.21 

Numbers are given in m3/s 

Sept 

4.61 

VI 
VI 
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Table 2.17 

Runoff: Correlation Coefficient between Successive Monthly Flows 

1945 - 1974 

Pair of Months Correlation Coefficient 

Oct - Sept 0.381 

Nov - Oct 0.172 

Dec - Nov 0.619 

Jan - Dec 0.754 

Feb - Jan 0.720 

Mar - Feb 0.469 

April - Mar 0.296 

May - April 0.107 

June - May -0.144 

July - June 0.190 

Aug - July 0.394 

Sept - Aug 0.526 
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Table 2.18 and 2.19 contain the main statistical parameters of 

this Yariable. The mean value reaches its minimum at the end of 

February, and its maximum between the end of June and beginning of 

July. The mean value decreases and increases regularly during most of 

the ylar, except for the period of June to August where it stays 

relatively constant. 

the links existing between the successive weekly flows change 

within the year. Tables 2.18 and 2.19 display the computed lag one 

autocorrelation coefficient of the weekly flows and the corresponding 

five year moving average scheme. The annual variation of this 

variable is related to the annual temperature cycle. For the auto­

correlation coefficient increases from mid-October on and reaches its 

maximum in the second half of winter, when temperature is minimum. 

At that date, discharge depends mainly on the antecedent runoff. 

Then the autocorrelation coefficient starts decreasing and reaches its 

lowest value, when temperature is highest. In summer, runoff results 

mainly from glaciermelt, which is directly controlled by the prevailing 

air temperature. As temperature fluctuates greatly from day to day, 

the resulting runoff undergoes the same changes. On the whole, the 

autocorrelation is low. Remarkable is the apparent contradiction 

between the variations of the monthly and of the weekly correlation 

coefficients. 

The selection of the appropriate statistical distribution for 

weekly flows caused some problems. When the hydrometeorological 

conditions are hoaogeneous like in winter and in summer, the normal 

distribution provides a good fit. In early fall and in spring, how­

ever, the available data samples are not always homogeneous. In fall, 
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Table 2.18 

Runoff: Main Statistics of Weekly Flows 

Winter Semester 

Week Mean Stand. Coeff. Min. Max. Corr. Mov. Aver. 
Index Dev. Var. Coeff. Corr. Coeff. 

106m3 106m3 106m3 106m3 

1 1.687 1.481 0.878 0.533 7.245 0.70 
2 1.170 0.937 0.801 0.430 4.805 0.25 
3 1.012 1.063 1.050 0.366 5.251 0.74 0.51 
4 0. 943 0.793 0.841 0.307 3.436 0.41 0.49 
5 0.943 0.922 0.978 0.222 4.062 0.45 0.58 
6 0.758 0.627 0.827 0.187 3.141 0.59 0.60 
7 0.681 0.453 0.665 0.253 2.157 0.73 0.71 
8 0.560 0.339 0.605 0.229 2.053 0.81 0.80 
9 0.459 0.143 0.312 0.213 0.782 0.95 0.87 

10 0.417 0.117 0.281 0.196 0.619 0.92 0.91 
11 0.385 0.117 0.304 0.179 0.621 0.92 0.94 
12 0.334 0.093 0.278 0.158 0.562 0.96 0.94 
13 0.307 0.087 0.283 0.145 0.504 0.94 0.94 
14 0.293 0.087 0.297 0.143 0.444 0.95 0.95 
15 0.276 0.077 0.279 0.146 0.410 0.94 0.94 
16 0.257 0.071 0.276 0.143 0.407 0.95 0.93 
17 0.237 0.069 0.291 0.131 0.407 0.92 0.94 
18 0.219 0.065 0.297 0.127 0.384 0.91 0.95 
19 0.203 0.066 0.325 0.118 0.378 0.97 9.93 
20 0.192 0.071 0.370 0.096 0.369 0.98 0.93 
21 0.191 0.076 0.398 0.073 0.391 0.87 0.93 
22 0.187 0.066 0.353 0.074 0.333 0.93 0.89 
23 0.190 0.067 0.353 0.089 0.322 0.90 0.86 
24 0.204 0.084 0.412 0.101 0.410 0.78 0.83 
25 0.241 0.105 0.436 0.107 0.532 0.81 0.78 
26 0.310 0.123 0.397 0.115 0.644 0.75 0.72 
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Table 2.19 

Runoff: Main Statistics of Weekly Flows 

Sununer Semester 

Week Mean Stand. Coeff. Min. Max. Corr. Mov. Aver. 
Index Dev. Var. Coeff. Corr. Coeff. 

106m3 106m3 106m3 106m3 

27 0.466 0.244 0.524 0.126 1.042 0.75 0.72 
28 0.598 0.406 0.679 0.157 2.189 0.67 0.71 
29 0.880 0.491 (}.558 0.240 2.059 0.59 0.66 
30 1.107 0.623 o;.s63 0.307 2.676 0.72 0.63 
ll 1.623 1.105 0.681 0.473 5.187 0.58 0.56 
32 2.417 1.106 0.458 o. 785 4.534 0.61 0.53 
33 3.167 1.563 0.494 0.880 6.000 0.30 0.41 
34 3.152 1.388 0.440 1.426 7.395 0.42 0.38 
35 4.170 1.740 0.417 1.790 9.253 0.15 0.32 
36 4.530 1.540 0.340 1.460 7.243 0.43 0.39 
37 4. 870 1.785 0.367 2.253 8.558 0.28 0.36 
38 6.046 1.828 0.302 2.256 10.558 0.67 0.42 
39 6.113 2.105 0.344 2.400 11.474 0.27 0.41 
40 5.532 1.843 0.333 1.880 9.167 0.45 0.41 
41 5.476 1.857 0.339 2.002 8.700 0.40 0.31 
42 5.485 1.857 0.339 3.203 12.438 0.27 0.35 
43 4.615 1.169 0.253 2.233 7.542 0.16 0.37 
44 4.308 1.197 0.278 2.592 6.985 0.46 0.33 
45 5.093 2.091 0.411 2.034 11.631 0.57 0.30 
46 4.451 1.840 0.413 1.896 10.368 0.21 0,.35 
47 4.120 1.782 0.433 1.648 9.510 0.10 0.36 
48 3.645 2.189 0.601 1.658 13.669 0.43 0.30 
49 3.768 2.073 o.sso 1.389 9.231 0.51 0.27 
so 2.991 1.792 0.599 1.146 9.701 0.23 0.31 
51 2.628 1.930 0.734 0.953 11.006, 0.10 0.31 
52 1.888 1.223 0.648 0.768 7.012 0.30 

0.43 
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for instance, many realizations of a sample belong to the recession 

part of the hydrograph, but a few may correspond to the high glacier­

melt flows. On the other hand in spring, most of the recorded values 

are quite low because snowmelt has not yet started, but for some 

others, snowmelt is already going on in its full strength. This 

situation shows the drawbacks of dating the flows according to the 

calendar year. A method as proposed by Laufer (1972), which consists 

of dating the flows according to the time to peak would surely 

eliminate some of the difficulties. Here, the best procedure, at 

least theoretically, consists of fitting two distribution curves 

for the data: one for the lower values, and another one for the 

higher values. Practically, however, so few data fall into the 

second category, that it is not possible to fit a curve to them. 

Hence a single distribution curve was fitted to the data, namely 

the lognormal. On the whole it works quite satisfactorily 

(Fig. 2.17). 

2.6.3 Recession curve A typical hydrograph consists of a 

rising limb, a crest segment and a falling limb or recession. The 

prevailing meteorology during snowmelt determines mainly the 

character of the rising limb. The recession curve, on the other 

side, results from the withdrawal of water from storage within the 

basin, and hence markedly influenced by the basin characteristics. 

Eight years were randomly selected. Figure 2.18 presents 

the corresponding recession curves during winter, on a weekly basis. 

Four of them show an identical shape with about equal rate of flow 

decreases; three others have amazing shapes. Furthermore the initial 

and final date of the recession curve vary from year to year. 
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Hence, it seems difficult to establish reliable runoff forecast 

during winter, on the basis of this procedure. The amount of work 

implied would be considerable, and the resulting gain in information, 

small. 

2.6.4 Date of minimum and maximum weekly flows. The minimum 

weekly flow occurs between mid-February and mid-March. Its magnitude 

ranges between 0.073 (2.58 million ft 3) and 0.301 million cubic 

.eters (10.6 million ft3). No relation seems to exist between the 

date of occurrence of this minimum and its corresponding magnitude. 

The maximum weekly flow takes place between the middle of June 

and the middle of July. Its value oscillates between 7.0 and 8.0 

million of cUbic meters (24.8 and 28.2 million ft 3 respectively). 

Isolated peaks were registered in late August or September. 

Generally these peaks were of higher magnitude, from 9.0 to 11.0 

million of cubic meters {31.8 and 39 million ft 3). 

2.7 Water Balance Equations 

2.7.1 Water cycle. Before establishing the relations which 

exist between the different variables involved in the runoff process, 

let us recall briefly the water cycle of an alpine watershed. If 

one considers the catchment as a closed system, precipitation is then 

its input, and runoff~ its main output. However temperature 

completely controls the output rate. 

In winter and until late into spring. the input occurs mainly 

as snow. After its deposition on the ground, snow undergoes different 

physical transformations, called ripening, which cause among others 

an increase in its density. In fact snowmelt cannot start before 

ripening has taken place. 
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Generally this happens in April, when the 0° Celsius isotherm 

has reached the lower end of the catchment. The area where snow is 

melting extends as temperature further increases. However snowmelt 

can be momentarily stopped by the occurrence of sudden cold spells. 

Nevertheless more than enough energy is available on the average is 

melt away continuously the snow of the lower ranges of the catchment. 

During· that period, the input plays a minor role. 

Although the 0° Celsius isotherm reaches the lower end of the 

glacier tongue already in May, glacier starts contributing appreciably 

to runoff only in summer. For the months of May and June are used 

to rebuild the glacier drainage system which was destroyed during 

the preceding winter. In summer, the input plays progressively a 

greater role, as the input is immediately melted, so that it reaches 

the channel system fast. Hence runoff is closely related to 

temperature. 

What happens in September is quite complex. A series of cold 

days at the beginning of the month, stops glaciermelt definitively 

for the season, although high temperatures may be recorded later on. 

on the other hand, if it is constantly warm, the ablation may become 

quite extensive; as the drainage system already exists. Consequently 

not only the total energy input is of importance but also its 

distribution within the month. The same applies for precipitation. 

The elevation range of the watershed is such that no appreciable 

interannual storage of precipitation exists, except when it has 

snowed in the second half of September. In these situations the 

fallen snow reaches the river only in the following year. 
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t~mperature starts decreasing in fall. The 0° Celsius isotherm 

comes down into the valley and the watershed is progressively frozen. 

Runoff diminishes parallel to this decrease in temperature. Only in 

isolated years a sudden warm spell caused a short increase in runoff. 

Winte~ flows result essentially from glacier ice melted through 

friction and earth heat. 

Losses occur in two forms: infiltration and evapotranspiration. 

Here infiltration is not important and it is assumed that the annual 

change in underground storage is negligible. 

The importance of evapotranspiration is also difficult to 

·evaluate. Experimental data exist for lower elevated regions. These 

values were extrapolated for alpine watersheds, taking into account 

the lower annual average temperature and the smaller vegetation cover. 

On the other side, values computed from water balance equations 

appear in literature. Kasser (1965), for example, computed a 

average annual evapotranspiration of 350 mm for the alpine watershed 

of Mattmark (65 km2, glaciation 39 percent~ average elevation 2,850 ~}. 

Other authors found values around 200 mm. As of today it is not 

possible to determine exactly the value of this variable. Hence it 

will appear only implicitly in the subsequent computations. 

2. 7. 2 Selected hydrologic model. Many methods exist to relate 

runoff with the variables involved in its formation. The nature 

of tile plwnaeDa. the purpose of t:he stlllly and the available data 

makes one approach more attractive than other ones. Here a simple 

and robust technique is required. 

The multiple linear-regression tecbaique was selected after 

examination of different possibilities. In hydrology this 
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statistical tool has been extensively used mainly because of its 

simplicity, its power and flexibility. It consists in investigating 

the relationship existing between a dependent variable, in our case, 

runoff, and a group of independent variables, in our case, precipita-

tion, snowmelt and glaciermelt. The general equation of a multiple 

linear regression involving p independent variables is 

••• + b X p p 
(2-3) 

in which a 

coefficients. 

is the intercept and b1,b2, ••• ,bp' the regression 

Furthermore, Y represents the runoff during a specified 

period, or the output of the system, and x1,x2, ••• ,Xp' the input. 

The period of analysis is arbitrary, but it should respect the 

physical nature of the phenomena. The comparison of inputs and out-

puts over a hydrologic year is the best choice, shorter periods, 

however, can also lead to good results. 

As only some of the variables involved in the runoff process 

were retained, it was not possible to establish a deterministic 

relation between inputs and outputs. Hence the standard least 

squares method was used to estimate the intercept and the regression 

coefficients. The R, the correlation coefficient, measures the 

goodness of the selected model. Finally R2, called the coefficient 

of determination, gives the percentage of the total variance of 

the output explained by the inputs. 

Another way to test the goodness of the selected model is to 

compute Y, the estimated output, on the basis of the derived 

equation, and to compare it with Y, the effective output. The 
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diffe~ence of these two values appears often in the literature as e, 

and is called residual or lack of fit: 

£ = y - y (2-4) 

The sum of the residuals from the available data sample must always 

be equal to zero. Residuals, however may show interesting statistical 

·properties, which often give some clues to the nature of the studied 

phenomena. Generally the model can be considered as good if the 

residuals are randomly distributed. 

In the subsequent paragraphs, regression equations were 

established on an annual, semiannual and quarterly basis. 

2.7.3 Annual water balance. In the simplest model annual 

runoff, the output, was regressed against annual precipitation index, 

the input. The equation reads as follows: 

(2-5) 

where 

Y = annual runoff, in millimeters 

x1 = annual precipitation index in millimeters 

The computed correlation coefficient amounts to 0.83 (Table 2.20, 

Fig. 2.19, Fig. 2.20). This procedure implies that the influences of 

temperature and of glaciermelt are negligible, and that all the 

precipitation fallen during the hydrologic year appears as runoff 

in the same year. 

The last assumption should be correct on the average. For 

about 72 percent of the catchment lies below 2,600 m. At this 



Table 2.20 

Water Balance Equation 

y xl x2 a bl b2 Stand Corr. 
Error Coeff. mm mm Percent 

Ql0,9 pl0,9 - 666.61 1.125 - 7.5 0.83 

QlO 9 pl0,9 
4.5•AG.Q,•Td,4,9 

- 85.97 1.288 1.172 4.4 0.94 , A 

Q4,9 plO 9-2/ 3•Ql0 3 
4.5•AG.Q,•Td 4 9 

- 94.03 1.265 1.166 4.8 0.95 , , , , A 
"'-J 
01 

Q4 6 plO 6- 2/ 3•Ql0 3 T +155.51 0.563 1.759 7.6 0.86 
' 

, , d,4,6 

Q7,9 P7,9 
4.5·AG.Q,·Td27.z9 + 87.80 1.157 1.194 12.3 0.81 

A 

Q7 9 pl0,9-2/ 3·Ql0,6 
4.5·AG.Q,•Td 7 9 

-150.63 1.198 1.463 8.0 0.92 ' ' ' A 

Runoff and precipitation in millimeters 

Q .. = Runoff from ith h .th month of calendar year l,J mont to J 

Standard Form of Equation: y = a + b1 x1 + b2 x2 
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elevation, snow melts completely until middle of July, and appears 

again on the ground only in the middle of October. Hence perennial 

snow plays a minor role in this watershed. Only snow fallen in late 

September may sometimes not have time to melt completely until the 

end of September. 

To test the first assumption, the residuals were plotted in 

different ways. A systematic trend appeared when the residuals 

were plotted as a function of time. The values of the earlier years 

were systematically positive, the ones corresponding to the recent 

years, systematically negative (Fig. 2.21). This may have been 

caused by the decrease in glaciated area. 

In the final model, an additional independent variable which 

represents the contribution to runoff of the glaciers was introduced 

into the equation. It is defined as follows: 

where 

(2-6) 

x2 = annual amount of meltwater produced by the glaciers 
in millimeters 

4.5 = degree day factor 

A t = glaciated area of the catchment g 

A = catchment area 

Td = number of degree days from April to September 

Three points should be mentioned concerning this expression. The 

glaciated area changes each year, according to the figures given in 

Table 2.8. The exact value of the degree day factor is not known; 

the selected number corresponds to the most frequently encountered 
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value in the literature. And finally it was assumed that the whole 

glacier was contributing to snowmelt. 

The regression equation reads as: 

(2-7) 

The cpmputed correlation coefficient amounts to 0.94; a net improvement 

from the previous case (Table 2.20). Figure 2.22 shows the residuals 

plotted as a function of time. The previously noticed trend no longer 

exists. However the plot of the five year moving average scheme 

revealed another one of smaller amplitude and period. 

To explain this new pattern, the years with greatest negative 

and positive residuals were analyzed separately. The recorded 

greatest negative residuals corresponded essentially to two categories 

of years. In the first category, large amounts of snow had fallen at 

the very end of September, which could not melt till the end of the 

hydrologic year. In the second category, a long series of cold days 

had happened at the beginning of September, which definitively stopped 

the glaciermelt. On the other hand, the highest positive residuals 

coincided with the years where the temperature recorded in September 

was continuously high. This led to an excessive glaciermelt. 

As a summary, precipitation index and the sum of degree days 

explain well the recorded variations in runoff. The obtained 

precision is sufficient and the computed residuals, quite low. With 

this approach, however, it is not possible at all to model the 

complex phenomena happening in September. This would require a lot 

more data, and is beyond the scope of this study. 
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4.7.4 Seasonal and quarterly water balances. The analyses of 

the preceding section indicated that reliable relations exist between 

annual precipitations, glaciermelt and runoff. The same approach with 

minor modifications was used to establish relations on a seasonal 

and quarterly basis. 

Seasonal runoff is defined as the flow taking place between 

April 1 and the end of September. The main difficulty lies in the 

determination of the amount of water stored as snow in the watershed 

on April 1. Theoretically it is the difference between winter 

precipitation and winter runoff. However the exact areal winter 

precipitation depth is not known. It must amount approximately to 

1.5 times the computed precipitation index. Hence, to avoid the 

occurrence of negative storage values, winter flows were first 

divided by 1.5 and then subtracted from winter precipitation. Note 

that the least squares method is rather insensitive to variations in 

the value of this factor. 

The regression equation reads as follows: 

(2-8) 

where: 

Y = runoff from April to September in millimeters 

x1 = precipitation index from April to September increased 
by the amount of water stored as snow in the 
catchment as of April 1 (Table 2.20) 

X2 = contribution from glaciermelt (Table 2.20) 

The computed correlation coefficient amounts to 0.95 (Table 2.20). 

The plot of the residuals versus time is similar to the one cor-

responding to the annual balance equation (Fig. 2.23). 



" Y-Y,mm 

+ 300 

+ 200 

+tOO 

:!:o 

-100 

-200 

-300 I I I I I e I I I I I I I I I I I I I I I 1 I 1 I 1 1 1 I .... 1950 1910 

Time, 1ear 
1170 1174 

Fig. 2. 2 3 Precipitation - Glaciermelt- Runoff Model, Plot of Residuals 

for Summer Values 

00 
(.N 



84 

~om April to June, runoff results mainly from snowmelt. 

Consequently the definition of the second independent variable was 

modified, as it is not known which part of the watershed really 

contributes to snowmelt: 

x2 = 4.5 • Td (2-9) 

where 

Td = number of degree days from April to June 

And the equation reads as follows: 

(2-10) 

with x1 = water stored as snow in the catchment as of April 1, 
increased by the precipitation index from April to 
June (Table 2.20) 

x2 = contribution from snowmelt 

The correlation coefficient is equal to 0.86 (Table 2.20). The end of 

June is an arbitrary cutting-point, hence the lower correlation 

coefficient. On the average, snowmelt is still going on, and glacier-

melt has already started. Surprisingly, the plot of residuals versus 

time no longer exhibits the trend noted in the other cases (Fig. 2.24). 

This seems to prove that the trend is strongly connected with the 

phenomena occurring in the second half of summer. 

The last computed regression deals with the flows of July to 

September. In a first attempt, runoff was related to the precipita-

tion and the sum of degree days of the period considered. A low 

correlation coefficient resulted from this procedure. This confirms 

that at the beginning of July, not all the snow has melted, and 
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seasonal storage plays still an important role. Hence the following 

terms were considered: 

y = a + b1 x1 + b2 x2 (2-11) 

where: 

y = runoff from July to September 

xl = water stored in the catchment as of July 1 increased 
by the precipitation index from July to September 
(Table 2. 20) 

x2 = contribution from glaciermelt (Table 2. 20) 

The computed correlation coefficient amounts to 0.92 and the plot of 

the residuals versus time shows again the trend noticed for the annual 

flow (Fig. 2.25, Table 2.20). 

2.7.5 Discussion of results. Considering the nature of the 

problem and the small amount of data available, the performance of the 

selected model is very good. Difficulties appeared only with the 

modeling of the runoff phenomena in September. 

On an annual basis, precipitation explains 69 percent of the 

runoff variance. Hence it plays the most important role, followed 

by temperature and change in glaciated area. For the period of 

April to June, however, temperature comes first, while precipitation 

has a minor influence and glacial contributions are not significant 

at all. Most of the runoff comes from storage. The situation 

ch8:ftges again in the summer quarter. Pre.eipitation and glaciermelt 

become determinant, as at that date of the year, most of the storage 

has been exhausted. The weekly and monthly autocorrelation 
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coefficients vary within the the year according to a pattern which 

confirms the preceding remarks. 

In spring, the weekly autocorrelation coefficient decreases 

with time because the relative contribution of base flow to runoff 

diminishes. Also temperature becomes more and more a critical 

parameter, as snowmelt reaches higher elevations where the prevailing 

climate is much cooler. The opposite trend recorded for monthly 

values result essentially from the inadequacy of the calendar year 

divisions to model some hydrologic phenomena. In March and during 

the first half of April, discharge is still low; it starts increasing 

in the second half of April. The magnitude of this increase changes 

from year to year. In fact May is the first month where snowmelt has 

been going on continuously. Hence the highest correlation coefficient 

is obtained between the months May and June. Its negative sign 

indicates that during these two months, runoff originates essentially 

from storage. Depending on the rate of snowmelt in May, more or less 

stored water is available for the runoff in June. 

In summer, temperature controls the contribution of glaciermelt. 

The weekly variations in temperature during this period may be quite 

important, hence the low autocorrelation coefficients. On a monthly 

basis however, some of these variations are smoothed out. Furthermore 

the increase with time in the monthly autocorrelation coefficients 

reflects the inertia of the glaciermelt process. 

2.8 Runoff Forecast Models 

2.8.1 Preliminary remarks. It seems reasonable to assume that 

the knowledge in advance of the reservoir inflows can increase the 
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efficiency of its operation. In fact, depending on the period of year, 

seasonal, quarterly, monthly and weekly flow forecasts may be needed. 

This will be shown in the next chapters. For the time being it is 

sufficient to know that different types of forecast are required. 

The approach followed to forecast runoff changes from case to 

case. A method adequate for seasonal flow forecast may completely 

fail for weekly flow forecast, and vice-versa. Hence to be complete, 

many situations should be studied, which is beyond the scope of this 

reasearch. However, here, only the most typical cases were retained 

and analyzed. 

2.8.2 Runoff forecasts for a duration of three months and more. 

One needs this type of forecast for the summer semester. The water 

balance equations established in Section 2.7 supply all the required 

information. According to Eq. 2-3, the general equations reads as: 

(2-12) 

where Y represents now the runoff during the period of forecast, 

starting from the date the forecast is done, like 3,4, ... , or 6 months, 

and x1,x2, .•• Xp different physical variables related to the runoff 

process, like precipitation and temperature. At the date the forecast 

is done, some of the variables of Eq. 2-12 are known, some are not. 

The unknown variables appear with their expected value, that is as a 

constant. The constant terms can be regrouped. If, for example, one 

assumes that to X are not known at the date the forecast is 
p 

done, the modified equation reads as follows: 
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+ ••• + b x p p 

As in Section 2.7, the reliability of the forecast model is 

(2-13) 

(2-14) 

obtained by computing Y, the estimated output, on the basis of the 

derived equation, and to compare it with Y, the real output. The 

difference between these two values is called £, the residual or 

lack of fit. But the residuals play also another important role. 

They supply all the information which is needed to generate synthetic 

data. For this purpose one must know the standard deviation and the 

statistical distribution followed by the residuals. The two examples 

presented hereafter illustrate the just developed theory. 

The first example deals with the runoff forecast for the 

period April 1 to September 30. If the annual precipitation is 

divided up into a winter and a summer component, the water balance 

equation becomes: 

where 

(2-15) 

Y = runoff from April 1 to September 30 

x1 = winter storage, or winter precipitation index minus 
a fraction of winter runoff 

x2 = summer precipitation index 

X3 = number of degree days from April 1 to September 30 
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However as of April 1, neither summer precipitation, nor number of 

degree days are known, so that these two variables appear in the 

regression equation with their expected value: 

The constant terms are grouped under 

equation is 

a 
0 

so that the final 

(2-16) 

(2-17) 

The results appear in Table 2.21. The correlation coefficient amounts 

to 0.46, which is rather low. According to Figure 2.26 the residuals 

follow a normal distribution. 

The second example deals with the forecast of the runoff for the 

period July 1 to September 30. Here again, the precipitation index 

is divided into two components, the first one representing the 

precipitation from October to June 30, and the second one, the 

precipitation from July 1 to September 30. The modified water 

balance equation is then: 

(2-18) 

where 

Y = runoff from July 1 to September 30 

x1 = water stored as precipitation in the watershed, or 
precipitation index from October to June 30 minus 
a fraction of the runoff during the same period 

X2 = precipitation index from July 1 to September 30 

x3 = number of degree days for July 1 to September 30 



Table 2.21 

Runoff Forecast Equations 
y xl x2 a bl b2 eorr. 

0 Coeff. 
mrn mrn mrn 

Q4;9 pl0,3-2/ 3·Ql0,3 - 1434.13 1.224 - 0.46 

Q4 6 pl0,3-2/ 3•Ql0,3 - 594.71 0.546 - 0.42 , 

Q7,9 p10,6_2, 3·Ql0,6 - 902.21 1.028 - 0.38 

Q7,9 Q6 Q5 617.51 9.851 12.719 0.30 
~ 
N 

Q8,9 Q7 Q6 172.07 15.270 2.253 0.45 

Q9 Q8 Q7 3.166 6.760 3.650 0.56 

Q4 q26 q25 27.877 188.212 -123.054 0.59 

R,nq1 R,nq52 R,nq51 - 8.287 10.615 9.907 0.74 

R,nq27 1nq26 R,nq25 4.320 23.613 - 5.698 0.84 

Runoff and precipitation in millimeters 

Q .. = runoff from ith to jth month of the calendar year 
1,J 

Standard Form of Equation: 

q. 1 
= weekly runoff during ith week of the water year y = ao + bl xl + b2 x2 
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As of July 1, the summer quarter precipitation and the corresponding 

number of degree days are not known. These two variables enter the 

equation with their expected value, so that we have now: 

y = ao + bl xl (2-19) 

The correlation coefficient amounts to only 0.38 (Table 2.21) which 

shows the limits of this approach. The residuals are normally 

distributed (Fig. 2.27). 

2.8.3 Runoff forecasts for periods of one, two and three months. 

The approach based on the water balance equation performed poorly for 

quarterly runoff forecasts. Different facts led to this poor result. 

First, the selected period, July 1 to September 30 does not correspond 

to a well-defined phase of the runoff cycle. This implies that the 

identification of the state of the watershed as of July 1 is complex. 

In fact it requires a large amount of data coming directly from the 

watershed itself; and these data are not available. Second, at that 

period of the year, the amount of water stored as snow in the 

catchment is small. 

The approach followed here takes into account that linear 

relations exist between the successively recorded monthly flows. 

The general equation which expresses these relations reads as 

where 

Y = monthly, bimonthly, or quarterly flow to be 
forecasted 

x1 = runoff during the month preceding the date of the 
forecast 

(2-20) 
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x2 = runoff during the month preceding the month which 
corresponds to the variable x1• 

The terms, a, b1 and b2 are determined by the least squares method 

as for the water balance equations. Finally residuals can also be 

computed as this relation is established on a statistical basis. 

With this method, forecast for the runoff from July 1 to 

September 30, from August 1 to September 30, and for September were 

established. From Table 2.21 one can see that the correlation 

coefficients vary between 0.30 and 0.56. The residuals follow a 

normal distribution. 

The forecast for the runoff of April represents a special case. 

It is based on the flows occurring during the last two weeks of 

March (Table 2.21). 

2.8.4 Runoff forecast for weekly flows. The performance of 

the method based on monthly flows improved as the length of the 

forecast period decreased. It seems then logical to extend this 

approach to weekly flows forecast. The general equation is: 

where 

Y = natural logarithm of the weekly flow to be forecast 

x1 = natural logarithm of the runoff during the week 
preceding the date to the forecast 

x2 = natural logarithm of the runoff during the week 
preceding the week corresponding to variable x1• 

In this case the logarithms are used because the weekly runoff 

is lognormally distributed. This approach was applied for the 
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forecast of weekly runoff in April and in October. In both cases, the 

residuals are normally distributed, and the correlation coefficient, 

quite high (Fig. 2.28, 2.29, Table 2.21). 

2.9 Final Remarks 

For the basin under study, precipitation, snow and glaciermelt 

form the inputs, while temperature completely controls runoff, the 

output. Runoff is concentrated in summer when temperature is highest. 

The variations in discharges during September, which is partly 

responsible for the interannual runoff fluctuations, result also from 

temperature. 

Water balance equations relating runoff to precipitation, snow 

and glaciermelt led to good results. This fact confirms the 

validity of the assumption of linearity between the effects of 

the retained variables. Furthermore the water balance equations 

allowed the establishment of flow forecast equations for the summer 

season. However for short periods, the flow forecast equations 

should be based on the Markov property of the runoff process. This 

approach worked quite well for the forecast weekly flows. 

The information gained in this chapter on runoff phenomena will 

be used to select and develop the reservoir operation model. 
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Chapter 3 

ECONOMICS OF POWER PRODUCTION 

This chapter deals with the specification of the technical and 

economical characteristics of the power plant selected for the case 

study. It begins with the analysis of the Swiss power demand curve. 

After a brief description of the existing Swiss electrical network, 

a typical storage scheme is selected. The chapter ends with the 

determination of the energy price function and of the related 

return function. 

3.1 Analysis of the Demand Curve 

Electric energy plays an important role in Switzerland. In the 

water year 1973-74, public and private utilities supplied 34,095 GWh, 

which represents about 17 percent of the total gross annual primary 

energy consumption. 

The existing statistics on energy consumption classify the users 

into seven categories. Category 1 encompasses domestic users and the 

service sector. It is a heterogeneous sector which contains the 

following groups: households, schools and hospitals, office buildings, 

stores and warehouses, factories with less than 20 employees, and 

small farms. The other categories are more homogeneous. Hence 

category 2 groups the general industries, while the electrical, thermal 

and chemical industries can be found in category 3. The railways 

appear under category 4, the electrical boilers, under category 5, 

the pumped storage schemes under category 6 and the losses under 

category 7. 
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According to Table 3.1, the households and the services sector 

represent the greatest users with 47 percent of the total annual 

consumption. They are followed by the general industries, with 

19 percent, and by the electrical, thermal and chemical industries, 

with 14 percent of the annual total consumption. 

To analyze the monthly variations of the energy consumption, 

it is sufficient to consider two groups. The first one corresponds 

to the first category, and the second one to all the other categories. 

In the first group, energy is mainly used for lighting, for heating, 

and for small electric appliances. Accordingly, the highest demand 

occurs in winter, from December to January, and the lowest demand, in 

summer from July to August. The differences between the minimum and 

the maximum monthly consumption amounts to roughly 30 percent of the 

average annual consumption. For the second group, energy is used to 

produce mechanical energy and the electric consumption is related to 

the industrial activity of the country. The annual low is reached 

during the summer vacations, and the maximum in winter. The overall 

variations, however are small and stay within a bandwidth of 20 per­

cent of the average annual value. The aggregate variation in total 

energy consumption follows the same pattern during the year. On the 

whole it is higher in winter, and smaller in summer. If 100 is 

taken as the annual average, the monthly consumption varies between 

91 and 108. 

The industrial activity is not constant during a month, not 

even during a week or a day. On Saturdays and Sundays, factories 

are closed, and during the day, there are working hours. Hence the 
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Table 3.1 

Electrical Energy Consumption in Switzerland for the 
Hydrologic Year 1973/74. Data taken from the 

Bulletin SEV/VSE, 66, 3, 8 February 1975 

Group Consumption 
in GWh in % 

Household + Services 15,998 47 

General Industries 6,662 19 

Electr., Chemical, Thermal 
Industries 4,655 14 

Railways 2,001 6 

Electric Boilers 55 

Pumped Storage Schemes 1,613 5 

Losses 3,111 9 

Total 34,095 100 
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energy demand can be characterized by a curve with annual, monthly, 

weekly and daily cyclic components. This fact plays an important role 

in the production of the energy itself as well as in the determination 

of the prices at which the produced energy is sold. 

3.2 Electricity Production System 

Different types of power stations are in operation to produce most 

efficiently the energy required by the consumers: run of river, 

storage, pumped storage, thermal and nuclear power plants. Table 3.2 

shows their relative importance within the Swiss network. Note that 

pumped storage developments do not figure separately. Hence 78 percent 

of the produced annual energy comes from hydropower. Of these 

78 percent, 49 percent is supplied by run of river plants, and 

29 percent by storage schemes. 

Table 3.3 shows the production pattern on a seasonal basis. The 

figures for the run of river plants call for no special comments. As 

expected, they produce less power in winter than in summer. Concerning 

the thermal and nuclear power plants, one should remember that, as 

there is an excess of power supply in summer, all the maintenance 

operations on these schemes are scheduled, whenever possible for that 

period. The values obtained for the storage schemes are a little 

surprising, at least at the first glance. In fact they result from the 

limited storage capacity of the reservoirs. Water has to be released 

in summer to avoid spillage. 

Monthly production figures for the storage schemes appear on 

Table 3.4. They are high in winter and during snowmelt, and low in 
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Table 3.2 

Annual Electricity Production of Swiss Power 
Plants for the Hydrologic Year 1973/74. Data 

Taken from Bulletin SEV/VSE, 66, 11, 7 June 1975. 

Type of Plant 

Run of River 

Storage 

Thermal & Nuclear 

Total 

Production 
in GWh in % 

18,291 49 

10,631 29 

8,326 22 

37,248 100 



Type of Plant 

Run of River 

Storage 

Nuclear + Thermal 

Total 

Table 3.3 

Semiannual Electricity Production of Swiss Power Plants for 
the Hydrologic Year 1973/74. Data taken from 

Bulletin ASE/UCS 66, 3, 8 February 1975 

Production 

Winter Summer 
in GWh in % in GWh in % 

7,573 41 10,718 59 

5,530 52 5,101 48 

4,801 58 3,525 42 

17,904 48 19,344 52 

Total 
in GWh in % 

18,291 100 

10,631 100 

8,326 100 ~ 

0 
Vl 

37.248 100 
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Table 3.4 

Monthly Electricity Production of Swiss Storage Schemes 
for the Hydrologic Year 1973/74. Data taken from 

Bulletin SEV/VSE 66, 9, 3 May 1975. 

Month Production 
in GWh in 

October 383 4 

November 876 8 

December 835 8 

January 1159 11 

February 1118 10 

March 1162 11 

April 744 7 

May 328 3 

June to September 4026 38 

Total 10631 100 

% 
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May and October, just before, respectively just after, the snowmelt 

process. 

The demand curve is satisfied in the following way. Thermr.l 

and nuclear stations operate as far as possible at the installed 

capacity throughout the year; they supply part of the base load. 

Run of river plants supply the remaining part of the base load; 

however their production rate depends on the available inflows which 

undergo strong seasonal variations. Pumped storage schemes cover the 

peak loads. The storage plants have a far more complex role, which 

is furthermore constantly modified as the configuration of the 

production system and its relation to the demand curve change. First 

they transfer energy from summer to winter, as they store water in 

summer when demand is low, and release it in winter when demand is 

high. Second they are used as a network regulator and as a reserve 

in case of breakdowns. 

3.3 Electrical Distribution System 

About 1,200 utilities supply Switzerland with electrical 

energy. Nearly each of them has its own sources of energy, its 

distribution network, its pricing policy and its consumers. They 

constitute a heterogeneous group. However the ten most important 

utilities supply 70 percent of the energy and their networks are 

interconnected. Hence similitudes exist all the same between them 

and some general patterns of organizations can be identified. 

Today there are two large groups of producers and distributors: 

purely private undertakings and state owned undertakings. Both 

groups get their energy from three different sources. First, they 
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may own completely some power stations which they are free to operate 

as they want. Second, many recent hydro-schemes were built in partner­

ship as these schemes required for their construction great capital 

outlays which could not be provided by a single utility. Many 

combinations have resulted from both state and private organizations 

participating in the same schemes. Most often, all the partners have 

the same rights and obligations in operating the power plant, in 

proportion to their financial contribution. However they are not 

completely free to produce energy how and whenever they want. They 

have to take into account the wishes of the other partners of the 

pool. Third, utilities can buy energy directly on the power market. 

For this purpose, they may sign contracts among themselves to buy or 

to sell fixed quantities of energy at fixed prices for a given period. 

These contracts are on a long, middle or short-term basis. For very 

short terms, energy is sold, according to the laws of supply and 

demand. 

From these considerations, it results that the determination of 

precise and unique energy prices is difficult, if not impossible. The 

existence of many independent utilities, competing against each other, 

further complicates this problem as they are reluctant to give 

information on this topic. 

3.4 Selection of the Power Scheme 

As no existing power plant could be found with enough available 

hydrological and meteorological data, a fictitious one had to be 

defined which represents a more or less typical case. The material 

contained in the preceding section supplies the basic information. 
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However some further points have to be discussed, before we can 

describe the selected power scheme. 

In the Swiss Alps, there are numerous small valleys located at 

high altitude and separated by mountain chains. This configuration 

led to the construction of regional schemes. Numerous diversions and 

tunnels collect the water in different valleys and over a wide area 

and bring it to the reservoir. The power producing system itself 

is much simpler: penstocks or pressure shafts connected to power 

plants in one or two stages and with no important intermediate 

pond. The total gross head ranges from 200 to 1,000 m. Values between 

400 and 600 m are the most frquent ones for the Rhine Valley 

(Eidg. Verkehrs-und Energiewirtschafts-Departement, 1973). 

The storage capacity of the reservoir is also an important 

factor to consider. The average ratio between the reservoir capacity 

and the related mean annual inflow was computed for the thirty-one 

main alpine schemes with seasonal reservoir (see preceding reference). 

On the average, the storage capacity equals half the mean annual 

inflow. But for the more recent developments, the storage capacity 

is slightly greater, about 70 percent of the inflows. On the other 

hand, Varlet (1966) tried to define mathematically the capacity of 

the reservoir which allows for a complete regulation of the annual 

flow. He showed that for watersheds lying above 1,800 m, with more 

than two-thirds of the annual runoff taking place within the three 

summer months, the storage volume should be equal to 40 percent of 

the annual inflow. If one excludes the summer months from the 

regulation, the reservoir capacity must amount to 60 percent of the 
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annual inflows. Hence the results of Varlet's computations coincide 

well with the situation prevailing in Switzerland. 

The last parameter to consider is the average annual duration 

of operation in hours. These figures vary within a great range for 

the existing st.orage system (Harry 1957, Leuthold). Most often, 

however, they oscillate between 2,500 and over 3,000 hours. 

The layout of the selected power scheme appears in Fig. 3.1. 

It consists of a reservoir with a capacity of 72 million cubic meters, 

a penstock and a power station. The maximum head amounts to 486 m 

when the reservoir is full, the minimum head, to 418 m, when the 

reservoir is empty. Fig. 3.2 shows the reservoir content versus 

elevation curve~ It was adapted from an existing scheme. On Fig. 3.3 

appears the gross energy rate function, which gives the gross 

quantity of energy produced by the release of one unit of water 

through the turbines for a specified reservoir content. As the 

losses resulting from power production are assumed to be constant, the 

net quantity of energy produced is obtained by multiplying the values 

of Fig. 3.3 by 0.85. The most important characteristics of the 

scheme are summed up in Table 3.5. 

3.5 Selection of the Energy Prices 

Two sources were considered to determine the energy prices to 

use in this study: the energy demand and supply curves and the 

available literature on pricing policy. 

As explained earlier, the demand for energy changes over the 

year, during the week and during the day. The same remark applies 

for the energy supply. However the variations of these two variables 



16t8 m 

Tun n-e I ---- ---- ------\ E ej 1--' 
1--' 

co U) 
1--' 

co 
Penstock/\ 

~ ~ 

II II 
)( 

c 0 

E E 
.c. .c. 

Ill • 

/ 
Power Station 

Fig. 3.1 Selected Power Scheme 



112 

E .. 
c: 
0 ... 
0 
> • w 

0 0 0 0 0 0 0 0 • ... • ., • .., N 
!! • !! !! !! ~ !! !! -

0 ,.... 

0 
(,0 

0 
10 

0 
<lit 

0 
If) 

0 
N 

2 

0 

If) 

e 
(I) 

c: 
0 

·e 
Q) 

0' 
0 ... 
0 -Cl) 

Q) 

> 
'-
:3 

(.) 

c: 
0 ... 
0 
> 
Q) 

LIJ 

Cit 
:I • '-• > ... 
c: • ... 
c: 
0 

(.) 

.... 
·c; 
> ... • .. • a: 

C\1 ,., 
0 

iL 



113 

"' ..... 
0 ..... 

0 • 



114 

Table 3.5 

Characteristics of Selected Power Scheme 
Data were Kindly Supplied by Elektrizitatswerke der Stadt Zurich 

Variable Symbol Magnitude Units 

Catchment Area A 53.7 km2 

Average Annual Inflow Q 106.106 3 m 

Storage Capacity s 72.106 3 m 

Design Release 10 3 m /s 

Maximum Head h 486 m max 

Minimum Head h. 418 m m1n 

Max. of Energy Rate 

Function ehd (s ) max 1.321 KWh/m3 

Min. of Energy Rate 

Function ehd (s . ) 1.136 KWh/m3 
m1n 

Average Annual 

Duration of Operation 3000 Hours 
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are not necessarily in phase so that, at least theoretically, there 

exist periods where the demand is in excess and vice-versa, periods 

where the supply is in excess. This situation must necessarily have 

an effect on the prices. Hence, according to the law of supply and 

demand, energy should be priced higher in winter than in summer. 

Furthermore, during the week, it should be cheaper on Saturday and 

Sunday than during the working days. Finally prices should also vary 

during the day. This is the qualitative information obtained from the 

analysis of the energy demand and supply curves. 

The existing literature was screened and the contents of the 

available articles were compared among each other (Devantery, 1950; 

Harry, 1957; Galli, 1965; Frankhauser, 1972 etc.). On the whole, they 

showed a good concordance. Although some small differences appeared, 

general trends could be set forth, which confirmed the conclusions 

drawn in the preceding paragraph. So, for example, many authors 

propose the use of 3 classes of price during the working days, and only 

2 for the weekend. Based on these analyses, the following approach 

was selected. 

As the week is the smallest time step considered in this study, 

the prices were compiled on a weekly basis. During the 5 working days, 

peak prices are charged during 3.5 hours per day, off-peak prices, 

during 7.5 hours per day, the night prices, during 13 hours per day. 

On Saturdays and Sundays, only 2 categories apply: off-peak prices 

during 8 hours per day and night prices during 16 hours per day. 

After combining the equivalent prices on a weekly basis and after 

ordering them according to their magnitude, Fig. 3.4 was obtained. 
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Together with Table 3.6, it gives the full information on the selected 

prices. A quick computation indicates that the average weekly price 

for one KWh amounts to 2.5 cents. 

On more variation comes into play: the monthly one. Table 3.7 

shows the monthly pattern of energy price changes. They were selected 

in such a way that the average annual price amounts to 2.5 cents per 

KWh. Furthermore the average winter price is twice the summer price, 

ratio often used in practice. 

3.6 Return Function 

The formulation of the return function depends on the selection 

of the time grid. This quantity can be any value between one hour and 

one year, but the orientation of the present studies reduces a great 

deal the choice. 

The reservoir operation requires a grid width smaller than one 

month in order to obtain reliable and precise results. On the other 

hand, time steps equal to or shorter than one day cannot be considered 

in this study, as nonhydrologic factors like availability of turbines, 

cost of starting or stopping them, load of the distribution system, 

etc., begin to play an important role. Gathering information on these 

problems is beyond the scope of this research. It appears then that 

a time step of a week is a good choice. The results are precise, and 

the electro-technical problems are not yet determinant. Consequently 

a time step of one week will be retained for all further studies. 

To determine the return function, two more assumptions are 

necessary. First, one assumes that water is drawn from the reservoir 

at a constant rate (10 m3/s), which implies that there exists a 



Category 

Weekdays Peak 

(5 days) Off-peak 

Night 

Week~nd Off-peak 

(2 Qa.ys) Night 

Weekly Averages -

Table 3.6 

Selected Energy Prices 

Price 
Cents/KWh 

4.45 

3.50 

1.70 

2.75 

1.65 

2.5 

Duration 
in Bours/Day in Hours/Week 

3.5 17.5 

7.5 37.5 

13.0 65.0 ...... 
...... 
00 

8.0 16.0 

16.0 32.0 

- 168 



Month 

October 

November 

December 

January 

February 

March 

Winter 

April 

May 

June 

July 

August 

September 

Summer 

Year 
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Table 3. 7 

Average Monthly Prices of Electricity 
(Adapted from II. Frankhause~, 1972) 

Price 
in Cents/KWh 

2.84 

3.28 

3.66 

3.77 

3.66 

3.32 

3.42 

2.30 

1.56 

1.11 

1.11 

1.48 

1.95 

1.58 

2.50 
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unique relation between weekly hours of operation of the turbines and 

the total volume of water released in the corresponding period. 

Second, we assume that the distribution of the releases during the 

week is performed in an optimal way. This means that water is first 

released during the periods where the energy is most expensive. 

Hence, as the amount of water released during a week increases, the 

corresponding return per KWh produced diminishes (law of diminishing 

returns). These two assumptions allowed to establish a relation 

between weekly hours of operation of the power plant and weekly 

releases, and consequently between weekly releases and energy 

prices (Fig. 3.5). 

We decided to fit a continuous curve to the price diagram of 

Fig. 3.5, to make the computation easier. The curve to be selected 

had to lead to an average weekly price of 2.5 cents per KWh and 

to provide a good approximation to the existing diagram. The 

exponential curve of Fig. 3.6 performed best. This choice is 

further justified by the fact that quite often time decaying phenomena 

of the type appearing here (law of diminishing returns) are modeled 

by exponential functions. Hence, 

where 

X 

Pr (x) = 4.73·e- 4 •2 (3-1) 

Pr {x) = Marginal price in cents of one KWh corresponding 
to a specified total weekly release 

X = total weekly release in million m3 
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However the prices change throughout the year, so that the complete 

relation reads as follows: 

where 

Pr. (x.) 
1 1 

Pr. (x.) 
1 1 

4.73 p 
= 2.50 • rmonth j ·e 

x. 
1 

- 4.2 
(3-2) 

= Marginal price in cents of one KWh corresponding 

to a specified total release in the ith week 

Prmonth j =Average monthly price, according to Table 3.7 

T 1 1 . "11. 3 d . h .th k x. = ota re ease 1n m1 1on m ur1ng t e 1 wee 
1 

i = running index for the weeks 

j = running index for the months 

The return from a release during a specified week is 

B (i, s., x.) = 
1 1 

6 
z 

lQ • Oo85 • 4.73 Pr 
2 • 50 • month j 

ehd (si)·e- 4.2 dz (3-3) 

where 

B(i, 

s. 
1 

z 

s.' x.) 
l. 1 

= return resulting from a given release in 

the ith week and for a specified reservoir 
content, in cents 

= energy rate function, in KWh/m3 

. th . th k . = storage content 1n e 1 wee , 1n 
.11. 3 m1 1on m 

= dummy variable for the amount of water 

1 d d . h . th k . . 11 . 3 re ease ur1ng t e 1 wee 1n m1 1on m 

The factor 0.85 is introduced to convert gross into net energy, 

and the factor 106 , to be systematic with the units. 
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This expression can be simplified. The variation in head during 

a week is small as compared to the total head. One does not make a 

great error if it is taken as a constant equal to the average of the 

initial and final head of the considered period. Hence Eq. 3-3 

reads as 

where 

B (i, s., x.) = 
1 1 

z 
- 4.2 d e z (3-4) 

ehd(s1 ) =Average value of the energy rate function during 

h . th k . KWh/ 3 t e 1 wee , 1n rn 

To alleviate the writing a new expression, a (s.), is introduced, 
1 

so that 

where 

B· (i, x., s.) = 
1 1 

cs.) 
1 t 

z 
e- 4 •2 dz (3-5) 

0 

If one operates the reservoir over a complete year, the total 

annual return V amounts to 

52 
! I (i. x •• s .. ) 

.. 1 :1 1 1= 
(3-6) 

Now all the variables necessary for the computations are defined and 

the computations am be started. 
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3.7 Concluding Remarks 

The Swiss production and distribution network for electrical 

energy has a pattern of its own. As far as possible it was tried to 

respect its characteristics. However, this does not mean that the 

methodology to be developed in the subsequent chapters is not general; 

on the contrary. For, the selected method rests on quite general 

principles; the particular nature of the return function introduces 

here and there only some computational simplifications. 



Chapter 4 

DETERMINISTIC RESERVOIR OPERATION 

Deterministic reservoir operation is the topic of this chapter. 

It starts with the review of the existing theorems on nonlinear 

optimization and with the formulation of the problem to be solved. 

Then, on the basis of the results from preliminary computations, a 

new solution technique is proposed. The chapter ends with the 

application of this method to numerous cases, in order to evaluate 

its performance. 

4.1 Introduction 

Required is the construction of an optimal storage policy. To 

this end, the model was taken as simple as possible but still 

including the main features of the problem. It comprises a single 

storage reservoir with a hydroelectric plant, a sequence of inflows 

and a set of price functions for the produced electric energy. The 

water year is broken up into 52 weeks, or time intervals, starting 

from October 1 and ending on September 30 of the following year. At 

the beginning of each week a decision must be made about storage use 

in that interval, taking into account the current reservoir level. It 

is done in such a way that the returns from the energy produced during 

the rest of the year's operation get maximum. In this chapter, the 

sequence of weekly inflows for the year under study is supposed to be 

known in advance. 

The new method, which will be quite general, will be tested on a 

particular case. Chapter 3 supplied the characteristics of the 

selected reservoir and power plant, as well as the benefit functions 
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associated with the weekly releases. The discharges of the 

Hinterrhein River recorded at Hinterrhein from 1945 to 1974 

constituted the inflows to the model. 

The achievements of the computer industry about one decade ago 

made possible the application of many new and quite involved 

mathematical techniques. The whole operation research field 

experienced then a tremendous development, which was also stimulated 

by the theoretical studies of researchers such as Dantzig (1963), 

Bellman (1957, 1962), and Kuhn and Tucker (1950). 

Two directions were mainly followed: a purely theoretical one 

and a trial and error oriented one. The purely theoretical approach 

found relatively few application fields as in real world problems it 

led quite often to unmanageable situations, despite the great power 

of the computer. On the other hand, the trial and error oriented 

approach flourished all over the world. It tries to reach the optimal 

solution by proceeding by successive approximations. However, more 

and more, the physical nature of the problem got forgotten. The 

most explicit example of this trend is supplied by dynamic programming 

(Warren Hall, 1966) where the optimal solution is obtained by an 

enlightened enumeration of all the possible solutions. 

Today it is time to go back and to introduce again into the 

solution technique the physical nature of the problem under study. 

Operation research should be considered as for what it is: a tool 

among others. 

In this respect, French researchers followed an interesting path. 

Varlet (1923), Boulinier (1943), Giguet (1945), and Masse (1946) 

derived reservoir operating rules directly based on the physical 



128 

nature of the problem. They arrived, in simple cases, at usable 

results. For more complicated cases, however, they had again to 

rely on trial and error methods. This was especially true for real 

world problems (see Appendix A). 

The purpose here is to show that a more efficient combination of 

the theoretical and of the experimental approaches is possible. The 

theoretical path will be followed as far as possible, in order to 

reduce to a minimum the guesswork 

4.2 Kuhn-Tucker Conditions 

The optimization problem consists in maximizing a nonlinear 

objective function, the variables of which are subject to linear 

equality and inequality constraints. It can be formulated as: 

subject to (4-1) 

g. (x1,x2, ••• ,x) > 0 for j = 1, m, 
J n -

where x1,x2, ••• ,xn are the n unknown decision variables, and 

g1 (x1,x2, ••• ,xn)' g2 (x1,x2, ••• ,xn) and ~ (x1,x2, ••• ,xn) the m 

constraints. 

Stark (1972) suggested to classify the methods for solving 

nonlinear optimization problems into two broad categories: the 

classicial techniques and the search techniques. Classical 

optimization seeks optimal solutions by solving systems of equations, 

while search techniques proceed iteratively by successive approxima­

tions. Here we shall apply the first approach. 
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Assume for a while that the objective function V (x1,x2, ••• ,xn) 

is unconstrained, that means that the n variables can vary without 

any restriction. For the problem 

calculus yields easily the necessary conditions for an optimal 

solution: 

av 
ax. 

1 I * = 0, fori= 1,2, ••• ,n, x. 
1 

(4-2) 

(4-3) 

where I * implies evaluation at the optimal solution. Hence the x. 
1 

first derivative must vanish. Furthermore if the objective function 

is known to be strictly concave, the solution is also a global 

optimum. 

Unconstrained problems occur infrequently in the real world. 

An objective function with variables subject to a series of equality 

constraints represents the first generalization of the unconstrained 

case: 

(4-4) 

In this case, one can form a so-called Lagrangian expression with the 

property that any values of the variables which maximize the original 

objective function subject to its equality constraints will also 

maximize the value of the Lagrangian function. The Lagrangian form 

is obtained by multiplying each equality constraint gj (x1,x2, ••• ,xn) 

by its own so-called Lagrange multiplier A., an artificial variable, 
J 
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and by fdding the resulting product to the original objective function. 

Hence the new optimization problem becomes: 

where 

(4-5) 

The constrained problem has been changed into an unconstrained one, 

at the cost of m additional variables, the Lagrange multipliers. 

Again, at the optimum, the first derivatives must vanish: 

~- 2Y- + I A •• agj 
ax. - ax. . 

1 
J ax. 

1 1 J= 1 X~ 
1 

= 0, i = 1,2, ••• ,n 

aL a A. = g. (x1 ,x2 , ••• ,xn) = 0 j = 1,2, ••• ,m 
J J 

(4-6) 

Solving this system of equations yields the desired solution. Note 

that the second set of conditions are automatically satisfied. 

H. W. Kuhn and A. W. Tucker (1950) made the most important 

contributions in the field of nonlinear optimization. They extended 

the Lagrange multipliers technique to the situations where the 

decision variables are subject to inequality constraints. According 

to them, the necessary conditions for an optimum to the problem 

formulated at the beginning of this section (Eq. 4-1) are: 
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* av m a g. 
1. If x. > 0, --+ I A. • .....:1. 

1 ax. ax. * 1 j=l J 1 x. 

* av m 
2. If x. = o, --+ l A. • 

1 ax. J 1 j=l 

* * * 3. If A. > o, g. (xl ,x2, . • • xn) 
J J 

* * * 4. If A. = 0, g. (x1,x, ••• ,xn) 
J J 

* s. x. > 0; i = 1,2, ••• ,n 
1 -

6. A.::_ 0; j = 1,2, ••• ,m 
J 

1 

a g. 
_J 
ax. * 1 x. 

1 

= 0; j 

> O· 
' 

j -

= O· 
' 

i = 1,2, ••• ,n 

< 0; i = 1,2, ••• ,n - (4-7) 

= 1,2, ••.• ,m 

= 1,2, ••• ,m 

If the objective function is concave, these conditions are sufficient. 

As compared to the classical Lagrange multiplier approach, there are 

two new conditions (Eqs. 4-2 and 4-4), which take into account the 

possibility that the maximum may occur at a boundary rather than at an 

interior point. Suppose for example that we are at an interior point. 

Then, as x. 
1 

can take on any value, av;ax. must vanish in order to 
1 

have an optimum (Eq. 4-1). On the other hand, assume that the maximum 

is at a corner, for example x. = 0. 
1 

The partial derivative av;ax. 
1 

can either be zero, negative or positive. Of the 3 possibilities only 

the last one is not possible, as an increase in x. would lead to an 
1 

increase in V, the return function. Hence the partial derivative 

must be equal or smaller than zero, as indicated by Eq. 4-2. 

Equation 4-3 stipulates that a given constraint equation is tight, and 

that the corresponding Lagrange multiplier is greater than zero. If 

the constraint equation is not tight, the associated Lagrange 
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multip1ier vanishes. Finally Eqs. 4-5 and 4-6 express the 

nonnegativity of the variable xi and of the Lagrange multipliers 

A.. • 
J 

Theoretically the formulation of the Kuhn-Tucker conditions is 

a great contribution to the solution of nonlinear models. It is 

especially useful to test whether an available solution is optimal. 

However the search of solution according to this method may become 

quite tedious. The system of equations may be of higher dimension, 

and the associated equations, nonlinear. Often, more than one 

solution set exists and the optimal solution must be determined by 

successive eliminations of the unfeasible ones. Quite a formidable 

task if the number of variables is large. 

4.3 Problem Formulation 

The optimization problem is first brought into its canonical 

form. The associated Kuhn-Tucker conditions are derived in the second 

part. The section ends with some considerations on the complexity of 

the determinations of the optimal solution. 

The objective function is given by the sum of the returns 

resulting from the weekly water releases during the period of 

operation. Hence, 

where 

B. (i, 1 x.' 1 s.) = 1 

B. (i, 
1 

6 - . ri 10 •a.(s.) 1 1 
0 

e 

s.). 
1 

- z/4.2 
dz (4-8) 

The index i refers to the ith week of the water year. According 

h b . h . . . h kth to t e a ove notat1on, t e reservo1r operat1on starts 1n t e 
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week of the water year. The term x. represents the water release 
1 

f th . d . h . th k d - th d. rom e reservo1r ur1ng t e 1 wee, an s., e correspon 1ng 
1 

average reservoir content. The term a.(s .) is an aggregate factor. 
1 1 

For a given week and reservoir content, it is obtained by multiplying 

the energy produced by a unit release of water by the associated 

maximum energy price (Table 3.6 and Table 3.7). 

During the reservoir operation, there are some physical 

boundaries which must be observed. Water releases cannot exceed 

the inflows when the reservoir is empty, and the releases must be 

at least equal to the inflows when the reservoir is full. Further-

more for the period of operation, the mass balance equation must.be 

satisfied. These remarks lead to three types of constraints. 

First, there is an equality constraint. It expresses that for 

the period of reservoir operation, the sum of the total inflow and of 

the initial storage is equal to the sum of the total release and of 

the final storage: 

52 
sk + L 

i=k 
q. = 

1 
(4-9) 

where sk stands for the reservoir content at the beginning of the 

th k week, or initial storage. Similarly s53 stands for the final 

storage. The corresponding standard equation form is, 

52 
q. - I 

1 i=k 
x. = 0 

1 
(4-10) 

The second type of constraint equations stipulates that in any 

week, the release must be smaller or at most equal to the sum of the 

storage available at the beginning of the week and of the inflow 
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during the same period. We shall call these constraints, release 

constraints: 

j j -1 

x. < sk + L q. - I x., j = k, 51 
J - • k 1 . -k 1 1= 1= 

(4-11) 

or in standard form: 

j j 

sk + l q. - I x. > 0, j = k,51 
. k 1 1-1= i=k 

(4-12) 

The third type of constraints indicates that the storage in the 

reservoir cannot exceed the reservoir capacity (storage constraints): 

where 

on the 

s 

j j 

sk + L q. - I x. < S, j = k,51 
. k 1 . -k 1 -1= 1= 

represents the reservoir capacity. Bringing 

right-hand side yields the standard form: 

j j 

s - sk - I q. + I x. > 0, j = k,51 
i=k 1 i=k 1-

(4-13) 

all the terms 

(4-14) 

Hence we are confronted with a nonlinear optimization problem, 

subject to equality and inequality constraints: 

52 
s.t. sk - s53 + I 

i=k 

j j 

52 
q. - I x. = o 

1 i~k 1 

sk + L q. - L x. > 0, j = k,Sl 
.k 1 .k 1-1= 1= 

j j 

8 - sk - L qi + L x. > 0, j = k,51 
i=k i=k 1 -

x. > 0, i = k,52 
1-

-z/4.2 
dz 

(4-15) 
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The procedure described in the preceding section can be applied. 

The Lagrangian form is then: 

52 
'i 
i=k 

• Jxi a. (s.) 
1 1 

0 

-z/4.2 d e z 

52 52 
+ A(Sk - s53 + }. qi - I x.) 

i=k i=k 1 
(4-16) 

51 j j 

+ I ej·(sk + I q. - I x.) 
j=k i=k 1 i=k 1 

51 j j 

+ I y .• (S - sk - l qi + I x.) 
j=k J i=k i=k 1 

In this formulation, A is the Lagrange multiplier for the mass 

balance equation, s., for the release constraints, and y., for the 
J J 

storage constraints. The index k refers to the week where the 

reservoir operation is started. The associated Kuhn-Tucker 

conditions are: 

-x./4.2 51 51 
1. a.(s.)•e 1 A 'i s. I 0 i k,52; I 0. - - + y. = = x. 

1 1 j=i J j=i J 1 

-x./4.2 51 51 
2. a..(s.)·e 1 A I s. }. 0 i k,52; 0 - - + y. < = x. = 

1 1 j=i J j=i J 1 

52 52 
3'. sk - s53 + I qi I x. = 0 

i=k i=k 1 

j j 

3". sk + I q. - I x. = 0 j = k,51, e. > 0 ( 4-17) 
i=k 1 i=k 1 J 
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4'. 

4". 

5. 

6. 

j j 

s - sk >.: qi + L x. = 0 
i=k i=k 1 

j j 

sk + I q. I x. > 0 j 
. k 1 1 1= i=k 

j j 

s - I q. + >.: x. > sk - . k 1 1-1= i=k 

x. > 0 i I; k,52 
1-

A,B.,y. > 0 j = k,Sl 
J J 
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j = k,51, y. > 0 
J 

= k,51, (3. = 0 
J 

0 j = k,51, y. = 0 
J 

To simplify the writing, the asterisk relating to the optimal 

value of xi has been omitted. Equation 1 applies when the optimal 

value of a given x. is an interior point. In that case, the partial 
1 

derivative of the return function versus th& given variable must vanish. 

If, on the contrary, the optimum is on a boundary, Eq. 2 holds. For 

tight constraints, Eq. 3 must be satisfied, for loose constraints, 

Eq. 4 holds. 

For k=l, there are 155 unknowns, even 156 if one considers 

that the final storage is not necessarily known in advance. The 

resolution of this formidable looking system of equations is 

further complicated by the presence of nonlinear terms. Yet the 

solution can be found algebraically, but it is time consuming and 

not efficient. Hence our task now consists in trying to simplify 

the basic system of equations, in order to determine the variables 

in an easier way. 
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4.4 Preliminary Developments 

4.4.1 Scope and purpose of the preliminary studies. The 

relations derived under Section 4.3 are too cumbersome to be solved 

directly. They must be modified and simplified in such a way that they 

become easily tractable. To assess the possibilities of simplification 

of the basic equations, and to familiarize ourselves with the problem, 

numerous preliminary computations were performed. They consisted in 

determining more or less intuitively optimal release strategies for 

different types of reservoir, and for varying initial and final 

storages. For all the cases studied, the operation was done for a 

complete water year. The value of the index k (see Section 4.3) is 

thus set equal to 1. This section summarizes the results of these 

analyses. 

It starts with the annual operation of a reservoir with infinite 

storage capacity. Then, progressively, the simplifying assumptions 

are eliminated until the case under study corresponds to the one we 

must solve. No quantitative information will be given hereafter. 

The emphasis rests on the physical understanding of the reservoir 

control problem. Proofs and derivations of equation will be 

restricted to a minimum. This section should supply the physical 

and intuitive background on which the solution technique will be 

built. The related mathematical derivations will appear in a later 

section. 

4.4.2 Reservoir of infinite capacity with known final storage. 

The simplest possible case consists of a reservoir which can store 

and release any amount of water. Furthermore, we assume that the 
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reservoir is full at the beginning and at the end of the water year. 

The problem reduces then to the optimal redistribution over the year, 

of the inflows. Mathematically the problem becomes: 

52 
L lo6 • 

i=l 

52 52 
s.t. s 1 - s53 + L qi - L x. = 0 

i=l i=l l. 

-z/4. 2 
a.(s.)•e 

l. l. 
dz 

(4-18) 

The release and storage constraints have disappeared and only the 

annual mass balance equality constraint remains. The related Kuhn-

Tucker conditions are: 

1. 
_ -xi/4.2 

a.(s.)•e -A= 0 i = 1,52 if x. ; 0 
l. l. 1 

-x./4.2 
2. a. (s.) •e l. A < 0 i 1,52 if 0 (4-19) = x. = 

l. l. l. 

52 52 
3. sl - s53 + I q. - I x. = 0 

i=l 1 i=l l. 

Equation 1 expresses that the partial derivative of the Lagrangian 

form vanishes for those variables which, at the optimal, constitute 

an interior point. For those variables which at the optimal are at 

a corner, the partial derivatives must be smaller or equal to zero 

(Eq. 2). The annual water balance equation is given by Eq. 3. As by 

assumption initial and final content are identical, the above conditions 

become: 

1. 
-x./4.2 

- l. a.(s.)•e =A i = 1,52 x.; 0 
l. l. l. 

52 (4-20) 

3. I x. = 
i=l l. 
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Hence the Kuhn-Tucker conditions reduce to simple and easily tractable 

equations, quite a change from the cumbersome system of equations of 

Section 4.4.3! Furthermore the derived equations attach interesting 

properties to the optimal strategy. 

First, as indicated by Eq. 1 of (4-20), the Lagrange multiplier 

A represents the marginal value of the returns from the weekly 

releases. Second, in fact a corollary of the first property, the 

marginal value of the return of the different releases are constant 

throughout the year. Or, in other words, a release strategy is 

optimal, when the marginal returns of the releases are equal. Third 

the Lagrange multiplier A has a further important meaning. It can 

be considered as the marginal cost of honoring a constraint, cost 

meaning here loss in the value of the objective function. Hence in 

this case it represents the total derivative of the maximum value of 

the objective function with respect to a relaxation in the water 

balance equation. 

The determination of the optimal sequence of releases presents no 

difficulty, as the system of equations (4-20) can be solved alge-

braically. The introduction of the natural logarithms into the first 

equation of (4-20) yields: 

-x. 
4

1

2 = ln A- ln a.(s.) i = 1,52 
• 1 1 

which substituted into the second equation of (4-20), leads to: 

52 
4.2 • I 

i=l 
In a.(s.) - 4.2 ·52 • ln A= 

1 1 

(4-21) 
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52 52 
4.2 ~ ln al..(sl..) - l q. 

l. i=l i=l 
ln A = ------~~--~~---------4.2 • 52 

from which the values of the x. l. are easily computed. 

(4-22) 

The terms a. (s.) l. l. 
of Eq. 4-22 depend on the successive weekly 

reservoir contents reached during the year. However this parameter 

is not known in advance. We have to proceed by iteration. An initial 

reservoir content curve for the whole period of operation is selected, 

which allows to determine the optimal Lagrange multiplier and the 

associated releases. With the obtained releases, a new reservoir con-

tent curve is computed which is then compared to the preceding one. 

If both curves are not too different, the optimum is reached. On the 

contrary, the computation is repeated with the new curve, as initial 

reservoir content curve. The procedure is repeated until both initial 

and final curves are identical. 

The computations showed interesting properties of the optimal 

reservoir content curve. As the energy price is higher in winter 

than in summer, the releases concentrated mainly in winter, while 

the reservoir was filled in summer (Fig. 4.1). This implies that for 

a real reservoir, the release constraints would have been violated 

in late winter and in spring. Also, for the cases studied, the 

optimal reservoir content curves in winter, and ·the date when the 

minimum contents were recorded, are much less dependent on the in-

flows than the corresponding summer reserv.oir content curves. 

Finally, initial and final storage influence the release strategy only 

locally. 
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Hence the selection of a reservoir with infinite capacity allowed 

to simplify drastically the Kuhn-Tucker conditions, and to set forth 

some interesting properties of the optimal solution. In the next 

subsections, the problem will be progressively complicated, and we 

shall follow what happens to the just derived properties. 

4.4.3 Reservoir of finite capacity under simplified conditions. 

The behavior of a real reservoir is analyzed here. However the weekly 

inflows are assumed to vary smoothly during the year, and in such a 

way, that only one release constraint becomes tight during the 

annual operation. This tight constraint corresponds to the week in 

which the reservoir gets empty. Furthermore we suppose that the 

reservoir gets empty at the end of the 28th week, and that it is 

again full at the end of the water year. 

Compared to the previous case, one more constraint comes into 

play. It expresses that the reservoir gets empty at the end of 

the 28th week. Hence the optimization problem is: 

Max. V (xl ,x2' • • • ,x52) = 

s.t. sl 

28 
sl + ~ 

i=l 

52 
- s53 + ~ q. -

i=l 1 

q. -
1 

28 
r x. = o 

i=l 1 

52 x. 

~ 10
6 . f ~ (s )· -z/4.2 a. . e 

i=l 1 1 

0 

52 
~ x. = 0 

i=l 1 

dz 

(4-23) 
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The associated Kuhn-Tucker conditions become: 

-x./4.2 
1 a) 1 

A - e28 0 i < 28 =I 0 a. e - = x. 
1 1 

-x./4.2 
b) 1 

A 0 i > 28 'I 0 a. e - = x. 
1 1 

-x./4.2 
2 a) 1 

- A e28 < 0 i < 28 0 (4-24) a. •e x. = 
1 1 

-x./4.2 
- A < 0 i > 28 x. = 0 b) 1 a. •e 1 

1 

52 52 
3 a) 51 553 + 2 q. 2 x. = 0 

i=l 1 i=l 1 

28 28 
b) 51 + 2 q. - I x. = 0 

i=l 1 i=l 1 

The just established relation looks similar to those of subsection 

4.4.1; two supplementary conditions have appeared, however, which 

result from the additional release constraint equation. The 

relations given under (1) can be rewritten as follows: 

-x./4.2 , 
1 = 1\. a. •e 

1 

i < 28 x. > 0 
1 

i > 28 x. > 0 
1 

(4-25) 

Hence it seems that the annual reservoir operation can be divided 

into two periods, each one being characterized by a different but 

constant value of the marginal returns of the release. 

In the cases studied, the sequences of weekly releases follow 

a well-defined pattern. In winter, they are greater than the 

corresponding inflows, in summer, smaller. Furthermore, the 

reservoir content diminishes regularly starting from October until 
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the middle of April; from; from that date on, it increases again 

regularly. All these remarks suggest to break down the operation of 

the reservoir into two periods. The first period, called by 

definition the drawdown phase, lasts from October 1 until the 

reservoir content is minimum. The second one, called the refill 

phase, begins in the week the reservoir content is minimum, and 

lasts until the end of September (Fig. 4.2). 

According to the equations of (4-25), the marginal value of 

the. releases stays constant during the drawdown phase and is equal 

to the sum of the two Lagrange multipliers A, and B •• 
J 

The same 

property holds during the refill phase. But the marginal value of 

the release is equal to A, and is consequently smaller than that 

of the drawdown phase as A and e. 
J 

are both positive. He.Jlce 

the properties derived in subsection 4.4.1 are still valid; but they 

apply only to part of the annual operation. 

The date the reservoir gets empty, or the date of emptiness, 

plays an important role, as it allows to break down the main problem 

into two subproblems. At the beginning of this subsection, we 

assumed that this date was known in advance. However, sensitivity 

analyses on this parameter showed that this variable is very stable. 

In fact, as a first approximation, it can be considered as a constant. 

The exact determination will be given later on. For the time being, 

we shall c.ontinue to assume that we know its exact value in advance. 

4.4.4 Reservoir of finite capacity with known final conditions. 

The optimization problem is considered here in its entire generality 

except for the assumption that the final condition is known. It is 

the existence of tight constraints which makes the problem under 
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study intricate. The advance knowledge of which ones are tight would 

greatly diminish the amount of work. Yet the optimal solution 

possesses some further properties which help to reduce the 

computational burden. 

Assume for a while that the optimal releases strategy for a 

complete year has been determined, and that it was found that the 

reservoir is full at the beginning of the 1st, 3rd, 50th and 53rd 

week, and empty at the beginning of the 31st and 33rd week. The 

optimization problem is: 

52 
I. 106 • 

i=l 

52 52 
s.t. s1 - s 53 + L qi - l xi = 0 

i=l i=l 

30 30 
sl + L q. - L x. = o 

i=l 1 i=l 1 

32 32 
sl + L q. I x. = 0 

i=l 1 i=l 1 

2 2 
s - sl - l. q. + I x. 

i=l 1 i=l 1 

49 49 
s ~ sl - L q. + I x. 

i=l 1 i=l 1 

= 0 

= 0 

(- ) -z/4.2 d a. s. •e z 
1 1 

(4-26) 

The first constraint expresses the annual water balance constraint. 

The two next ones are release constraints for the two weeks when the 

reservoir is empty. And the last two equations represent storage 

constraints for the weeks when the reservoir is full. The associated 

Kuhn-Tucker conditions follow hereafter: 
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-x1/4.2 
- A + Y49 - e32 - e3o + Y2 0 a. •e = 1 

-x2/4.2 
A + Y49 - e32 - e3o + Y2 0 a.2•e - = 

= 0 

(4-27) 

= 0 

= 0 

The just written equations express that the partial derivatives of the 

Lagrangian form must vanish for the optimal solution. However these 

equations apply only if the associated release is different from zero. 
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In the negative, the concerned relation becomes an inequality. If, 

for example, the release of the 34th week equals zero, then we have: 

(4-28) 

Note that we did not repeat here the relations associated with the 

partial derivatives of the objective function with respect to the 

Lagrange multipliers. In fact, they are identical to the constraint 

equations given under (4-26). 

A closer look at these relations suggests that the marginal value 

of the releases varies during the year according to a definite pattern. 

Remembering that the Lagrange multipliers are always greater or equal 

to zero, it appears that the marginal return of the releases is 

maximum during the weeks of the drawdown phase when the reservoir is 

neither empty nor full. On the other hand, the marginal values of the 

releases is minimum during the weeks of the refill phase when the 

reservoir is neither full nor empty. For the complete year, the 

following pattern exists. The marginal value of the weekly releases 

increases from October 1 on until it reaches its maximum value. It 

stays then constant as long as the reservoir is not empty. After the 

date of emptiness, however, it decreases until it hits its lowest 

value. It remains at this value until the reservoir is full, and the 

cycle is repeated (Fig. 4.3). Although established on the basis of a 

particular example, this property is quite general. It stipulates that 

for an optimal solution, no release can be modified without either 

violating a constraint, or diminishing the total return. The just 

developed property is important to determine whether a strategy is 

optimal or not. 
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What happened to the basic properties of the optimal strategy 

described in subsection 4.4.2? They still hold, if we restrict their 

application to those parts of the drawdown and refill phases, for which 

the reservoir is neither full or empty. 

The main purpose of seasonal storage schemes is to store water in 

summer in order to release it in winter. This fact implies that the 

reservoir content changes within the year roughly according to the 

same pattern. The highest level is reached at the end of summer, the 

minimum one, in the middle of spring; and in between, it decreases or 

increases more or less regularly depending on the inflows sequence. 

Accordingly, storage constraint equations can be tight most probably 

only in September or October, and the release constraint equation, in 

April and May. Furthermore computational experience shows that these 

constraints do not modify markedly the overall shape of the optimal 

reservoir content curve. Hence it should be possible to obtain a 

solution very close to the optimum by simply ignoring all the constraint 

equations, except the water balance equation and the one associated 

with the date the reservoir gets the first tiine empty. The optimal 

solution is then computed by successive improvement of the nearly 

optimal solution. 

4.4.5 Final storage. The last important: point to study concerns 

the determination of the reservoir content at t:h~ end of the operation 

period. In most of the preceding exarrpJ :::5, ·~ l:e -rt-servoir was assumed 

to be full at the end of the water year. Is th2t necessarily true? 

The selected reservoir belongs to the category of so-called 

seasonal reservoir, which means that water is transferred only from 
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one season to the other. There is no carry-over storage. The 

regulation takes place within the year and the total annual releases 

are equal to the total annual inflows. Hence if the reservoir is full 

at the start of the operation, it will again be full at the end of 

the operation. 

However, it does not always work that way. If during reservoir 

operation, a wet winter follows a dry summer it seems reasonable to 

give up the idea of filling completely the reservoir by September 30. 

Furthermore, we know that the marginal value of the weekly releases 

vary within the year according to a definite pattern. Especially 

this variable takes on its minimum value during the refill phase. 

As a consequence, the marginal value of the release of the last week 

of the water year must be smaller, or at most equal to that of the 

first week of the following year. In other words, the final storage 

depends on what is happening in the following year. 

The capacity of the existing Swiss seasonal storage reservoir 

is so small as compared to the average annual inflows, that for an 

optimal strategy the reservoir is very often full at the end of the 

year. This fact suggests the following methodology. In a first step, 

the reservoir is taken as full on September 30, and the optimal 

strategy is determined accordingly. In a second step, the final 

reservoir content is modified until the marginal value of the release 

of the last week of the year is smaller or equal to that of the first 

week in the new year. 

Complete information on this topic, especially on the 

characteristics of the following year, will be given later. For the 
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present time, it suffices to remember that the final storage depends 

on what is happening in the following year, and that is determined 

by successive approximations. 

4.5 Solution Technique 

4.5.1 Outline of the methodology. The objective is to construct 

an optimal release policy for the selected power scheme. The duration 

of operation corresponds to the water year and the releases are 

determined on a weekly basis. According to the preceding discussions, 

the solution of the system of equations resulting from the Kuhn-Tucker 

conditions yields the optimal release policy. However this system of 

equations is too complicated to be solved directly. Hence, based on 

the derivations of Section 4.4.4, the following solution technique is 

proposed. 

At the beginning of the computations we temporarily assume that 

the reservoir is full at the end of the water year. Furthermore, an 

initial reservoir content curve is selected which represents the 

storage level reached at the beginning of each week of the year. These 

assumptions allow us to compute the initial energy rate function and 

to determine the week when the reservoir gets empty. 

The water year is then divided into two parts. The period 

preceding the week in which the reservoir is empty corresponds to the 

drawdown phase. The optimal strategy is determined separately for 

each phase. To this end, they are first computed assuming that no 

constraints are binding. In a second step, the constraints are 

progressively introduced and, if necessary, the initial strategy is 

modified until no more constraints are violated. 
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The next step consists of assessing the final storage. For this 

purpose, the marginal return from the release of the last week of the 

operation period is compared to the average marginal return from the 

release of the first week of the water year. The average marginal 

return represents the marginal return which is obtained on the average 

from the release of the first week of the water year. If the value 

of the refill phase is higher, the final storage must be decreased, 

if it is lower the final storage must be increased until, for an 

identical storage, both values are identical. 

Once these operations have been performed, drawdown and refill 

phase are linked together. Two things can happen. Either the condi­

tions of optimality for the complete year are still satisfied, or not. 

In the first case, we proceed to the following step, in the latter 

case, the date of emptiness must be modified and the release strategy, 

must be determined again according to this new date. 

Finally, the reservoir content curve resulting from the optimal 

release strategy is computed and compared to the initial one. If the 

two curves are markedly different, computations are repeated, using the 

resulting storage curve as initial curve. This procedure is applied 

until both curves are roughly identical. 

The different steps are described in more detail in the following 

subsections. 

4.5.2 Date of emptiness. The drawdown phase ends at the end of 

the week for which the reservoir ends up empty for the first time. 

This date must be known before the optimization procedure is started, 

to render possible the partition of the reservoir operation period, 
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into &rawdown and refill phases. Fortunately a mathematical expression 

can be derived to compute this date. Furthermore this parameter does 

not vary greatly from case to case. 

Quite generally, an optimal release strategy is such that any 

feasible modification in the magnitude of the computed releases leads 

to a 4ecrease in the total returns. Hence, if we assume that the 

reservoir gets empty in the week preceding, or following the date of 

emptiness corresponding to the optimal strategy, the total benefit 

must also decrease, so that the optimal strategy yields for the 

drawdown phase, the highest possible value for the marginal returns 

of the releases. 

For the calculation of the date of emptiness, one considers only 

the drawdown phase. The assumptions that the reservoir is empty at the 

beginning of the R.th week, that the correct energy rate function is 

available, and that no constraints are tight, lead to the following 

optimization problem: 

s.t. 
t-1 

sl + L 
i=l 

q. -
1 

t-1 
L 

i=l 

t-1 

6 -10 • a.(s.) • 
1 1 

}: x. = o 
i=l l. 

-z/4.2 e dz 

(4-29) 

The equality constraint postulates that the reservoir is empty at the 

beginning of the tth week. According to Section 4.4.3, the 

associated Kuhn-Tucker conditions are: 



-x./4.2 
1. a..(s.)·e 1 

1 1 

-x./4.2 
2. a..(s.)·e 1 

1 1 

t-1 t-1 
3. s. + 

1 2 
i=l 

q. -
1 I 

i=l 
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A~ = 0 xi , 0 i = 1, t - 1 

Ad < 0 x = 0 i = 1, t - 1 
t - i 

x. = 0 
1 

(4-30) 

The ~ of the Lagrange multiplier A~ which represents also the 

marginal value of the releases indicates that the reservoir is empty 

th at the beginning of the t week, while d refers to the drawdown 

cycle. 

The introduction of the natural logarithms into the first 

equation gives: 

x. = 4.2 (ln a.. - ln Ad) x. , 0 i = 1, t - 1 
1 1 t 1 

With this expression, the releases 

third equation of (4-30) so that: 

x. are eliminated from the 
1 

= 4 • 2 ( ~ - 1) • [4 . 2 t I 1 tn a. . - s . -· t I 1 q . ] , x. I 0 
i=l 1 1 i=l 1 1 

(4-31) 

(4-32) 

The obtained solution is feasible provided that none of the 

constraint equations are violated. In a first approximation, the 

influence of the storage constraints on the date of emptiness is 

neglected, so that only the control of the release constraints 

remains. As the monthly energy price decreases markedly in spring, 

the release constraint for the last week of the drawdown phase is 

the most stringent one. Hence the computed solution is feasible, 

if for the week under consideration, the release exceeds the inflow. 
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On the contrary, water would have been released in the previous weeks, 

which was not yet in the reservoir. 

The same computations are done assuming that the reservoir gets 

empty one week later. If the corresponding Lagrange multiplier 

A~+l is smaller than A~ , then the reservoir gets empty in the ~th 

week for the optimal strategy. In the negative, the date of emptiness 

is delayed by one more week, and the same computations are repeated 

until the following condition is satisfied: 

> (4-33) 

The fulfillment of this condition expresses that the highest possible 

value for the Lagrange multiplier has been obtained. 

The derived expression for the determination of the date of 

emptiness of the reservoir holds only if the initial assumptions are 

satisfied. It may well happen that the existence of tight storage 

constraints, and the real storage content curve lead to a different 

value of this parameter. However computational experience showed that 

this seldom happened. 

At this stage of the computations, the water year is divided 

into drawdown and refill phases, according to the information given 

by this section. 

4.5.3 Drawdown phase. Required is an optimal release strategy 

for the drawdown phase. The initial storage and the weekly inflows 

sequence are known, whereas the duration of the drawdown phase was 

computed in the preceding subsection. Making the assumption that no 

constraints are tight reduces the problem to: 



R.-1 
s.t. s 1 + L 

i=l 
q. -

1 
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R.-1 
L 

i=l 

R.-1 
I x. = o 

i=l 1 

6 -10 • a.(s.) 
1 1 

x. 

I 
1 

-z/4.2 d • e z 

0 

(4-34) 

According to Section 4.4.3, the relevant Kuhn-Tucker conditions are: 

1. 
-x./4.2 

a. •e 1 

1 

-x./4.2 
2. a. •e 1 

3. 

1 

s. + 
1 

R.-1 
L 

i=l 
q. -

1 

I o i = 1, R.-1 

A~ ~ 0 xi = 0 i = 1, R.-1 

R.-1 
L 

i=l 
x. = 0 

1 

(4-35) 

These equations are identical to those derived under subsection 4.5.2. 

Hence, after different modifications of the basic relations (see 

subsection 4.5.2), we have: 

d x. = 4.2•[ln a. (s.) - ln A0 ] 
1 1 1 N 

R.-1 R.-1 
sl + l qi - l 

i=l i=l 
x. = 0 

1 

The expression for ln Ad obtained in subsection 4.5.2 is 
R. 

introduced into the first equation, so that: 

i = 1, R.-1 

(4-36) 

(4-37) 
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This formula determines all the releases for the drawdown 

phase. 

Such a simple solution results directly from the assumption 

that no constraints are tight. Quite a change from the cumbersome 

system of equations given in Section 4.4.3. Of course the just 

computed releases are not necessarily feasible and they will be 

corrected later on, if necessary. However it is more efficient 

to proceed by successive approximations, than to try to solve 

directly the original system of equations. 

4.5.4 Refill phase . After introduction of the correct initial 

and final conditions into the mass balance equation, the releases for 

the refill phase are computed in the same way as those of the draw-

down phase. Here the reservoir is empty at the start of the opera-

tion and full at the end of the water year. The optimization problem 

consists then in: 

52 52 
s.t. - s 53 + 2 q. - 2 

i=R. l. i=R. 

52 
2 106 • a.(s.) • 

i=R. 1 1 

x. = 0 
l. 

The associated Kuhn-Tucker conditions (see Section 4.4.3) are: 

-x./4.2 
).f I. a. (s.) •e l. 0 , 0 i R-,52 = x. = 

l. l. 1 l. 

-x./4.2 ).f < 0 x. = 0 i = 1,52 a. (s.) •e l. 2. R.- l. 
l. l. 

52 52 
3. -s53 + 2 q. - }: x. = 0 

i=1 l. i=t 1 

dz 

( 4-38) 

(4-2)9) 
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Applying the same transformations to relation 1 and 3 yields: 

1 
4.2[52-(i-1)] 

and 

52 

52 
~ in a i + s 53 -

i=i 
I q. 52 ] 

i- i 1 

(4-40) 

~553 + 
52 ] I q. + 4.2[52-(i-l)]in a. - 4.2 L in a. i = i,52 1 1 . i 1 i=i 1= 

The remarks done at the end of subsection 4.5.3 apply here also. 

Furthermore, one should remember that the derived releases result 

from the assumption that the reservoir is full at the end of the 

operation. This restriction will be eliminated in one of the 

following steps. 

4.5.5 Introduction of the constraints- equations. At this 

stage of the computations, there exist two optimal strategies, 

one for the drawdown, and one for the refill phase. The next 

step consists in checking whether the release strategies violate 

any constraint and, if necessary, in correcting it in such a way 

that the incriminated constraint is no longer violated. The 

methodology followed to correct the releases is identical for 

both operation phases. 

a) Drawdown phase, storage constraint. Figure 4.4 shows 

the correction procedure. The constraints equations are satisfied 

step by step, starting from the beginning of the operation period. 

In the selected example, the release strategy violates the storage 

constraint in the second and in the third week. 



160 

@) Storage 

72 
Gf ......,_ ________ A I 1 1-1 

t ' 

Orawdown curve/ 

I 2 3 4 5 10 I 2 3 4 5 10 

Time in week Time in week 

® Storage . 
Res. capac1ty 

Ad 

12, 'Ad 

d 
1,2,1-1 

ll 1 
' 

Drawdown curve/ 

I 2 3 4 5 to I 2 3 4 5 10 

Time in weeks Time in weeks 

@ Storage 

7 a ~-......:--LR!!.:~pacltt._ A.d 
-------- I, 3, 1-1 

d 1
1 2 ' 

Drawdown curve I 

I 2 3 4 5 fO I 2 I 4 5 10 

Time rn W'8eks Time in weeks 

Fig. 4. 4 Drawdown Phase' Sattlfact~n of Storage Constraints 



161 

We begin by increasing the release of the first week so that 

the reservoir is just full in the second week. The procedure of 

subsection 4.5.3 is applied to compute the releases for the 

remaining weeks, starting the operation in the second week with a 

full reservoir. Diagram b shows the newly determined reservoir 

content curve. 

As the storage constraint for the third week is still violated, 

the same procedure is repeated but this time for the second week. 

We continue in the same way until no more constraints are violated. 

The release strategy available from the third week on is 

optimal. For, as the marginal value of the release for the period 

(1,3) is lower than that of the following periods, water should be 

transferred from the period (1,3) to the period (3,1); but this is 

not possible without violating a constraint. Hence the strategy from 

the third week on is optimal. 

The optimality conditions are also applied to the releases of 

the first subperiod. If necessary they are modified. 

b) Refill phase, release constraint. The releases are 

successively corrected until no more constraints are violated 

(see Fig. 4.5). Here again, the strategy is optimal for the 

period {1+2,52) as no water can be transferred from the region of low 

marginal value, to the region of high marginal value. 

c) Refill phase, storage constraint. The same methodology 

holds and Fig. 4.6 supplies the necessary information. 

4.5.6 Final storage. We are now in a position to relax the 

restriction on the final storage. To this end, the yeaT under study 

is linked to another year, but which one? 
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The hydrology of the selected watershed does not allow to 

forecast in early summer the inflows of the forthcoming winter and 

summer. This fact justifies the selection of a year which corresponds 

to an average hydrologic condition. Actually the inflows of the 

second year should be such that the marginal returns of the associated 

releases are equivalent to the average of the marginal returns 

obtained from the reservoir operation over many years. To use a term 

which will be defined in Chapter 5, the marginal value of the 

releases of the second year, must correspond to the expected marginal 

value. Computations showed that a year with weekly inflows equal 

to the corresponding average of the recorded values satisfies the 

above condition. Consequently the year under study will be linked 

to a so-called average year. 

The procedure becomes now obvious. The marginal return of the 

last week of operation is compared to that of the first week in the 

following year, and for a full reservoir. If the first one is 

smaller than the latter one, the reservoir should remain full. In 

the contrary, the final storage should be decreased until both 

marginal returns become equal. 

The conditions of optimality are satisfied. For a reservoir 

content smaller than the reservoir capacity, both marginal values 

are equal, and no transfer of water is necessary. For a full 

reservoir, water should be transferred from the period with low 

marginal returns to that of high marginal returns, but this is not 

possible without violating the constraints (Fig. 4.7). 
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4.5.7 Linkage of the drawdown to the refill phase. After the 

separate determination of the optimal sequence of releases, the draw­

down phase is linked to the refill phase. The computed release 

strategies must satisfy one condition to be optimal: the marginal 

value of the release of the last week of the drawdown phase must be 

greater, or at least equal to that of the following week. In this 

situation, it is no longer possible to transfer water from the region 

of low marginal value to that of high marginal value: 

(4-41) 

If this condition is not satisfied, then either the reservoir gets 

empty in a later week, or it does not get empty at all. The latter 

situation arises, if the magnitude of the summer inflows is small as 

compared to that of the winter inflows. 

4.5.8 Optimal strategy. Finally the computed reservoir content 

curve is compared to the initial one. If the two curves are not too 

different from each other, and if the marginal values of the releases 

vary according to the required patterns (see Section 4.4), the 

problem is solved. However, in all the cases studied, a second 

iteration was necessary. In the second iteration, the new initial 

reservoir content curve corresponds to the curve obtained at the end 

of the first run. 

4.5.9 Concluding remarks. The methodology just described seems 

to be lengthy and complicated. This wrong impression results from 

two reasons. First, the methodology was developed here in such a way 

that the described steps correspond to the routines of the computer 

program. Second, all the special cases which might come up have been 
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mentioned. In reality, however, they seldom occur, or at least not 

at the same time. 

Computational experience showed that in most cases, the first 

guess of the date of emptiness was the correct one. Furthermore, 

the reservoir nearly always got empty and the storage constraints 

rarely got tight during the drawdown phase. These facts which are 

directly related to the hydrologic, constructive and economical 

characteristics of the hydropower plant, reduced substantially the 

amount of computations and made the methodology quite attractive. 

4.6 Computer Program and Case Study 

4.6.1 Introductory remarks. The computer program follows 

exactly the methodology developed in the preceding sections. It 

contains a main program and nine subroutines. On the whole, the 

division into subroutines is identical to the division of 

Section 4.5 into subsections. 

To illustrate the computational procedures, a simple example 

is worked through. The selected inflows sequence corresponds to 

the mean values for the period of 1945 to 1974, and the reservoir 

is taken as full at the beginning of the water year. It is a 

simple case but nevertheless it shows the essential features of 

the program. 

4.6.2 Preparatory routines. Under this heading are grouped 

the routines which perform computations not directly related to 

the optimization procedure. 

if desired, the input data. 

Routine LOFl reads and prints out, 

Among them are the weekly inflows 

sequence, the characteristics of the hydroelectric scheme, the set 
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of eno~gy prices and some indications concerning the initial reservoir 

content curve. 

On the basis of this information, LOF2 establishes the initial 

reservoir content curve and LOF3 computes accordingly the energy rate 

function. The relevant data appear in Tables 4.1 and 4.2. 

4.6.3 Routine LOF4. It determines the date of emptiness 

according to the formula given by Eq. 4-32. Assuming that the reservoir 

is full at the start of the operation and empty at the beginning of 

the 31st week, this formula leads to: 

i 1 A31 = 4•2 • 30 (4.2 • 55.924 - 72.000 - 15.707) (4-42) 

The inflows and the reservoir content are given in million m3• The 

term 55.924 represents the sum of the in a.(s.), 72.000, the initial 
1 1 

reservoir content, and 15.707, the inflows during the drawdown phase. 

The same computations were repeated for a date of emptiness occurring 

in the 30th and the 32nd week. The results follow hereafter: 

A~O = 3.214, A~1 = 3.216, A~2 = 3.177 cents/m3 (4-43) 

Hence the highest marginal returns from the releases are obtained when 

the reservoir is empty at the beginning of the 31st week. Furthermore 

for a marginal value of 3.177, the reservoir content is negative in 

the 31st week. 

4.6.4 Routine LOFS. This routine is identical for the drawdown 

and refill phase. It determines the optimal sequence of releases 

according to Eq. 4-37 for the case that neither storage, nor release 

constraints are tight. The release for the first week of the year is 

obtained as follows: 



Table 4.1 

Annual Reservoir Operation with Average Inflows 
Drawdown Phase, First Iteration 

Week LOFL LOF1 LOF2 LOF3 LOF3 LOF4 LOPS LOF7 LOF7 
Index q. Pr. s. ehd a. A x. x. s. 

l. J l. l. l. l. l. 

106 m3 Cents/KWh 106 m3 KWh/m3 Cts·KWh/m 3 Cts/m 3 106 m3 106 m3 106 m 3 

1 1.687 2.84 70.800 1.319 6.025 3.216 2.637 2.637 71.525 

5 0.943 3.09 61.200 1.302 6.470 tf 2.937 2.937 65.350 

9 0.459 3.39 51.600 1.283 6.995 " 3.264 3.264 55.480 

13 0.307 3.66 42.000 1.262 7.430 3.216 3.517 3.517 42.952 
...... 

17 0.237 3.77 32.400 1.240 7.516 " 3.565 3.565 29.718 0\ 
\0 

21 0.191 3.66 22.800 1.216 7.152 " 3.357 3.357 16.816 

25 0.241 3.32 13.200 1.188 6.340 ft 2.851 2.852 5.571 

29 0.880 2.30 3.600 1.154 4.263 3.216 1.184 1.184 0.188 

31 0.000 0.000 

1 A= ~ - -- • [4.2 · 55.924- 72- 15.707] 



Table 4.2 

Annual Reservoir Operation with Average Inflows 
Refill Phase, First Iteration 

Week LOFl LOFl LOF2 LOF3 LOF3 LOF4 LOF5 LOF6 LOF7 LOF7 
Index q. Pr. s. ehd a. A x. x. x. s. 

1 J 1 1 1 1 1 1 

106 m3 Cents/KWh 106 m 3 KWh/m3 Cts·KWh/m 3 Cts/m3 106 m3 Cts/m3 106 m 3 106 m3 

31 1.623 1.77 1.636 1.145 3.255 2.402 1.276 2.385 1.306 0.158 

33 3.167 1.56 8.182 1.171 2.938 2.402 0.846 " 0.876 3.053 

37 4.870 1.11 21.274 1.211 2.162 " 0.000 " 0.000 16.998 

41 5.476 1.11 34.366 1.245 2.221 2.402 0.000 2.385 0.000 39.852 ...... 
""'-.~ 

45 5.093 1.48 47.458 1.274 3.033 " 0.980 " 1.010 58.534 0 

49 3.768 1.95 60.550 1.301 4.079 " 2.225 2.385 2.255 70.191 

52 1.888 1.95 70.364 1.319 4.135 2.402 2.281 2.638 1.888 72.000 

53 72.000 72.000 

1 ). = . - -- (4.2 • 15.157 + 72.000 - 88.209) 
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1 x1 = 30 [72.000 + 15.707 + 4.2 • 30 • 1.796- 4.2 • 55.924] 

and 

x = 2.637 • 106 m3 
1 (4-44) 

For the refill phase, a slight modification must be introduced into 

the general procedure. Equation 4-40 holds only for weeks with 

releases greater than zero. It may happen however that no water should 

be released during some weeks. In these cases, the concerned weeks 

just drop out of the equation. Hence in the selected example, there 

are only 14 weeks with releases greater than zero (Table 4.2). 

4.6.5 Routine LOF6. The constraints are introduced in this 

routine stepwise and chronologically. For this purpose, one divides 

the phase under study into two parts. A first subperiod, where the 

constraints are tight, and a second one, where they are loose. The 

constraints are introduced successively until the reservoir content 

curve stays completely within the limits of the reservoir, and in 

such a way that the strategy for the second period is always optimal 

(see Section 4.5.5 and Fig. 4.4, 4.5, and 4.6). 

It so happens that no constraints are violated during the 

drawdown phase. For the refill phase, the reservoir content exceeds 

its capacity at the beginning of the 52nd week. Hence the reservoir 

content is set to the reservoir capacity at the beginning, assuming 

that the reservoir operation ends at the beginning of the 52nd week. 

The recomputed value of the marginal return is then: 

1 = 4.2 • 13 (-4.2 • 15.157 - 72 + 88.209) = 2.385 Cents/m3 

(4-45) 
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The ~lated reservoir content curve does not violate anymore any 

constraint, and we can proceed to the next step. 

4.6.6 Routine LOF7. This routine checks separately for the two 

phases whether the computed strategies are optimal. If it is not the 

case, the releases are modified until the Kuhn-Tucker conditions are 

satisfied. The releases had to be recomputed most often for the 

subperiods with tight constraints. In the application problem, the 

releases as obtained from LOF6 were optimal, so that no corrections 

were required. 

4.6.7 Routine LOF8. It links the refill phase to the drawdown 

phase of the following year, to determine the optimal storage on 

September 30th. To this end, the marginal return of the last week 

of September is compared to that of the first week of October, for 

identical content and according to the procedure developed in 

Section 4.5. Here marginal value A31 , 52 , 2.638, is smaller than 

-d the marginal return A , which in this example is equivalent to 

d A31 , or 3.216. Hence the reservoir must b0 full at the end of the 

water year, quite a logical conclusion. For the reservoir in question 

was designed for seasonal regulation and consequently should get full 

when average hydrologic conditions prevail. In the contrary there 

would be a waste of storage. 

4.6.8 Main program and routine LOF9. 

are coupled together in the main program. 

Drawdown and refill phase 

d If the computed A31 , 31 , 

f is greater than A31 , 32 , the date of emptiness has been selected 

correctly and the problem is solved. This is what happened in the 

present case study as 3.216 is greater than 2.385. In the opposite, 

the computation should have been started again from the beginning, 
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with a later date of emptiness. Routine LOF9 has been written to take 

care of the case when the reservoir does not get empty. 

In the last step, the resulting reservoir content curve is 

compared to the initial one. If the difference between them is too 

important, then a new iteration must be started using the resulting 

reservoir content curve as initial one. Two iterations are enough 

to reach an adequate precision, as indicated by the computed 

example (Table 4.3 and 4.4 and Fig. 4.8). Figure 4.9 shows the 

optimal strategies for different initial contents, and Table 4.5 

the associated marginal returns of the releases. 

4.7 Results and Evaluation 

4.7.1 Purpose and scope of the applications. The just described 

solution technique was applied to different cases. These applications 

confirmed the soundness of the assumptions on which the solution 

technique is based. Furthermore they set forth some properties of 

the optimal solution which helped to speed up the computations and 

gave some indications concerning the path to follow for the reservoir 

operation under uncertainty. 

The system consisted of the hydro-power plant and of the 

reservoir described in Chapter 3, while the gauging station of 

Hinterrhein supplied the required inflows. 

The reservoir was operated first for the 29 years of available 

records, starting on October 1 with a full reservoir. Then, to 

assess the influence of the initial condition, we performed two 

additional series of runs with each a different initial storage. 

Finally we also varied the duration of operation, which ranged from 

a complete year to three months. The list of runs appear on 



Table 4.3 

Annual Reservoir Operation with Average Inflows 
Drawdown Phase, Second Iteration 

Week LOF1 LOFl LOF2 LOF3 LOF3 LOF4 LOF5 LOF7 LOF7 
Index q. Pr. s. ehd a. A x. x. s. 

1 J 1 1 1 1 1 

106 m3 Cents/KWh 106 m3 KWh/m3 Cts·KWh/m3 Cts/m 3 106 m3 106 m3 106 m3 

1 1.687 2.84 71.525 1.320 6.030 3.198 2.663 2.663 71.512 

5 0.943 3.09 65.350 1.310 6.507 " 2.983 2.983 65.184 

9 0.459 3.39 55.480 1.291 7.037 " 3.312 3.312 55.118 

13 0.307 3.66 42.952 1.264 7.442 3.198 3.547 3.547 42.429 
"""' ....... 

17 0.237 3.77 29.718 1.234 7.476 " 3.566 3.566 29.133 ~ 

21 0.191 3.66 16.816 1.198 7.053 " 3.321 3.321 16.298 

25 0,241 3.32 5.571 1.161 6.199 " 2.779 2.779 5.266 

29 0.880 2.30 0.188 1.136 4.205 3.198 1.149 1.149 0.173 

31 0.000 0.000 



Table 4.4 

Annual Reservoir Operation with Average Inflows 
Refill Phase, Second Iteration 

Week LOFl LOFl LOF2 LOF3 LOF3 LOF4 LOFS LOF6 LOF7 LOF7 
Index q. Pr. s. ehd a. A x. x. X. s. 

1 J 1 1 1 1 1 1 

106 m3 Cents/KWh 106 m3 KWh/m3 Cts·KWh/m3 Cts/m 3 106 m 3 Cts/m3 106 m3 106 m3 

31 1.623 1.77 0.158 1.136 3.235 2.409 1.239 2.392 1.269 0.177 

33 3.167 1.56 3.053 1.151 2.885 " 0.757 " 0.787 3.211 

37 4.870 1.11 16.988 1.199 2.140 " 0.000 " 0.000 17.369 

41 5.476 1.11 39.852 1.258 2.245 2.409 0.000 2.392 0.000 40.233 
1-' 

45 5.093 1.48 58.534 1.297 3.087 " 1.042 " 1.072 58.824 
-....] 
U1 

49 3.768 1.95 70.191 1.318 4.134 " 2.268 2.392 2.298 70.256 

52 1.88 1.95 72.000 1.321 4.143 2.409 2.277 2.643 1.888 72.000 

53 72.000 72.000 
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Table 4.5 

Annual Reservoir Operation with Average Inflows 
Marginal Value of Releases during Drawdown Phase 

and Date of Emptiness 

Initial Storage Marginal Return Date of Emptiness 

106 m3 Cents/m 3 Week Index 

72 3.198 31 

70 3.245 30 

68 3.293 30 

66 3.341 30 

64 3.391 30 

62 3.442 29 

60 3.495 29 

58 3.548 29 

56 3.603 29 

54 3.658 28 

52 3.716 28 

50 3.775 27 
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Table 4.6. The selection of the reservoir operation durations and of 

the initial contents were done in such a way that the applications 

covered all the cases with which a reservoir operator has to deal in 

real life. 

The present section begins with the analysis of the results from 

the annual reservoir operation with maximum initial storage. Then 

follows the discussion of the influence of the initial condition on 

the optimal strategy. The section ends with the presentation of the 

effects of the duration of operation. 

4.7.2 Date of emptiness. Starting with maximum storage, the 

reservoir content dropped to zero at least once during the annual 

control in 25 out of 29 years. In the remaining four years, the 

reservoir never got empty and the marginal value of the releases 

stayed constant throughout the year. 

These special cases happened when for instance a dry summer 

followed a wet winter. Consequently the marginal returns of the 

drawdown releases were unusually low, and those of the refill phase, 

unusually high, so that both could become equal without violating 

any constraint. Accordingly the ratio: 

Sum of refill releases 
Sum of drawdown releases (4-46) 

is a first rough indicator of whether a reservoir gets empty or not. 

The smaller its value, the higher the probability that it gets empty. 

However this is only a gross approximation, as not only the 

total amounts of releases play a role but also their distribution 

within their respective phases. If high inflows occur at the 

beginning of winter, or at the end of summer, while the reservoir 
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is still full, respectively already full, they cannot be stored and 

must be released immediately. Hence they do not have any bearing 

on the determination of the marginal value of the releases of their 

respective phase. Accordingly, the following ratio is a better 

indicator of whether the reservoir gets empty or not: 

Sum of refill releases with constant marginal returns 
Sum of drawdown releases with constant marginal returns (4-47) 

Two remarks result from this relation: the importance of the initial 

condition and the fact that both winter and summer inflows must be 

known to tell with certainty whether a reservoir gets empty during 

the annual operation. 

The approximate equation derived in Section 4.4 (Eq. 4-32) to 

determine the date of emptiness proved to be powerful. It failed 

to give the correct answer in a couple of cases only. Also this date 

did not vary greatly from year to year. The reservoir was empty 

15 times on April 29, 4 times on April 15, and' 2 times on April 8. 

This is a small scatter. 

The date the reservoir gets the first time empty depends on the 

relative magnitude of the weekly inflows in April. The inflows during 

the week preceding the date of emptiness were always much smaller 

than those of the following week. 

Quite often, the refill cycle did not start immediately after the 

date of emptiness, and the reservoir remained empty during a couple 

of weeks. In two cases even, the actual refill phase began only in 

the middle of May. 

4.7.3 Final storage. The final storage amounted to the maximum 

reservoir capacity in 18 out of 29 years. Furthermore for 7 of the 
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remaining 11 years, it exceeded 99 percent of the reservoir capacity. 

The lowest obtained level corresponded to a little more than 

65 "11" 3 
m1 10n m • 

The maximum storage was reached quite often before the end of 

the water year. September 15 and 22 were the most frequently 

recorded dates, whereas September 1 was the earliest one. 

4.7.4 Drawdown phase. The computed drawdown curves did not 

differ greatly from each other. They were on the whole smooth 

and similar in their shape. These characteristics result from the 

secondary role played by the inflows which represent only a small 

fraction of the total quantity of water released during the draw-

down phase. Actually one can divide the drawdown curve roughly into 

three parts (Fig. 4.10). 

The first one lasts from the beginning of October until about 

mid November. It corresponds to the period where the greatest 

variations in the drawdown curve are recorded. The reservoir is 

nearly full and the inflows during October can in some cases markedly 

influence the release strategy. If there is no more storage space 

available the incoming water must be immediately released. Further-

more, the inflows themselves undergo great variations in this time of 

the year, as depending on the prevailing temperature, glaciermelt 

is either completely stopped or still going on. It follows from these 

remarks that the reservoir may still be full in mid-November. 

The second part lasts from mid-November until mid-March. A 

nearly constant rate of reservoir content decrease with time charac-

terizes this part of the curve. This rate of decrease is greater 

for years with large storage in November, than for years with low 
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storage i~ November, so that as time passes, the reservoir content 

curves from the different years get closer to each other. 

The third part covers the last four to six weeks of the 

drawdown phase. The rate of decrease of the reservoir content 

changes completely and becomes such that the tangent to the reser­

voir content curve becomes horizontal on the date on which the 

reservoir is empty. The strategy in these weeks is markedly 

influenced by the associated inflows sequence. 

The analysis of the release sequences confirmed these remarks 

(Table 4.7). The greatest variations in the releases were recorded 

during the first weeks of operation. However, they were much smaller 

from mid-November on. The range of the releases obtained for a given 

week and for 29 years amounted to about 25 percent of the corres­

ponding average value. The related standard deviation was equal to 

5 percent of the average release. Towards the end of the drawdown 

phase, the variations in the releases obtained for the different 

years increased again but stayed smaller than the ones recorded in 

October. Hence even within the drawdown phase, the determination of 

the releases obey to different rules. 

In 24 out of 29 cases, storage constraints were never tight 

during the drawdown phase. Hence most often the marginal value 

of the returns stayed constant during that phase. However, in the 

most general case, the value of this parameter first increases 

until the last binding constraint has been reached; from that 

moment on it stays constant until the reservoir is empty. 

4.7.5 Refill phase. The situation here differs completely 

from the preceding case. Inflows play an important role as the 



Week Date 
Index Aver. 

1 1 Oct 2.968 

14 31 Dec 3.590 

27 1 Apr 1.147 

40 1 July 0.251 

52 22 Sept 1.593 

Table 4.7 

Annual Reservoir Operation with Maximum Initial Storage 
Summary of the Results 

Releases Reservoir Content Return 
C1 Min. Max. Aver. (] Min. Max. Aver. (] Min. Max. 

106 m3 106 m3 106 m3 

0.957 2.406 61048 72.000 - 72.000 72.000 

0.163 3.358 3.938 41.013 2.105 37.963 45.815 

0.151 0.932 1.325 2.172 1.342 0.403 6.156 4.691 0.330 4.068 5.214 

0.377 0.000 1.346 31.721 4.481 16.805 41.012 

0.609 0.848 2.972 

Statistics are based on 29 years of records 

*The date is that of the first day of the week 
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operation starts with an empty reservoir. Hence the shape of the 

reservoiT content curve becomes irregular and great variations may 

exist from one year to another. However one can again divide the 

refill phase into three subperiods, of which the first and the last 

one are not always present (Fig. 4.10). 

The first subperiod corresponds to the time when the reservoir 

is empty. It may last up to four weeks. Two opposite facts cause 

this situation. First, in a wet summer, there is no hurry in starting 

to fill immediately the reservoir, as more than enough water is 

available in June, July and August to do so. Second, the reservoir 

stays also empty for a longer period when the inflows after the date 

of emptiness are quite small; in this case the incoming water is 

immediately released. These remarks imply that the releases of the 

first subperiod depend on the total summer inflows as well as on the 

weekly inflows. 

The second subperiod covers the weeks during which the reservoir 

is neither full nor empty. Its duration changes from year to year. 

The releases are mostly small and the shape of the refill curve 

depends directly on the inflows sequence, so that sudden jumps may 

appear in it, depending on the prevailing hydrology. However initial 

and final conditions play a minor role. 

The third subperiod extends over the last four weeks of reservoir 

operation. Then the reservoir stays close to its maximum, so that 

the magnitude of the inflows determines the releases. The water coming 

from high inflows must be immediately released, as no storage space is 

available. 

The releases of the refill phase undergo greater variations than 

those of the drawdown phase. Yet the same general trend exists. For 
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the available sample, the variations in the release associated to a 

given week are smallest from mid-June to mid-August; they increase as 

one moves towards the beginning and the end of the operation period 

(Table 4.7). 

The marginal value of the returns follow a typical pattern of 

variation during the refill phase. It decreases just after the date 

of emptiness until it reaches its minimum, which corresponds to the 

actual refill phase. It increases again as soon as the maximum storage 

capacity has been hit. 

4.7.6 Initial condition. The initial storage affects the form of 

the optimal release strategy. To set forth these influences, the reser­

voir was first operated for the complete year and for the available 

inflows sequences but with three different initial conditions. The 

performed computations showed the importance of the date of emptiness. 

Usually the release strategy after this date was independent from the 

initial condition, so that the date of emptiness is really a cutting­

point for reservoir operation. Furthermore, the differences between 

the drawdown curves corresponding to the selected initial conditions 

decreased with time. They were maximum at the start of the operation, 

and nil when the reservoir was empty. Accordingly, the releases 

differed most at the beginning of the drawdown phase. Finally for 

identical inflows sequence, the reservoir got empty earlier with 

lower initial storage (Fig. 4.9). 

The reservoir was also operated for periods shorter than a year. 

In these cases, the preceding conclusions must be modified a little. 

For if the initial storage was extremely large, the reservoir no 

longer got empty and the influence of the initial condition was felt 
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over th• entire period of operation. On the other hand, the reservoir 

did not Jet full in late September if the operation was started after 

April with a low initial storage (Fig. 4.11 and Table 4.8). 

4.7.7 Returns. The program was run for four durations of 

operation with each three initial conditions. The average returns 

resulting from the 12 studied cases were tabulated and compared among 

each other (Table 4.9). The standard deviation of the average revenue 

was smallest for the annual operation, where it amounted to 7-8 per­

cent of the corresponding mean value. In fact the absolute value of 

the standard deviation was about the same for an operation over 52, 39 

and 26 weeks. The greatest variations were observed for the operation 

over 13 weeks (Fig. 4.12, 4.13, 4.14 and 4.15). 

4.8 Conclusions 

A general system of equations to solve the problem of annual 

reservoir operation was established at the beginning of the Chapter. 

The nature of this control problem allowed to simplify the basic 

system of equations. Especially the year was broken down into two 

parts, the drawdown and the refill phase, which could then be optimized 

separately. Once the solutions for the two periods were found, the 

two phases were coupled together, and the Kuhn-Tucker conditions 

checked. The so obtained release strategy is the solution to the 

initial problem. 

The computer program developed according to this methodology was 

tested on the available 29 years of records. The tests were successful. 

The simplifying assumptions which led to quite simple mathematical 

expressions for the initial solution, supplied release strategies which 

in most cases lay close to the optimal one. Also enlightened guess of 
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Duration of 
Operation 

Weeks 

52 

52 

52 

49 

49 

49 

26 

26 

26 

13 

13 

13 

Start of 
Operation 

1 October 

" 
1 October 

31 December 

" 
31 December 

1 April 

" 
1 April 

1 July 

" 
1 July 

Table 4.8 

Average Releases Obtained for Selected Weeks 

Initial 
Storage 

106 m3 

72.000 

66.000 

60.000 

48.809 

40.809 

32.809 

7.569 

1.569 

0.000 

39.963 

31.963 

23.963 

Average Releases 
1 Oct 31 Dec 1 Apr 

106 m3 

2.928 3.590 1.147 

2.446 3.399 0.968 

2.237 3.195 0.787 

- 4.036 1.567 

- 3.583 1.139 

- 3.071 0.683 

- - 2.222 

- - 1.077 

- - 0.440 

- - -
- - -
- - -

1 July 22 Sept 

0.251 1.593 
n 1.590 

0.251 1.583 

0.251 1.612 

" 1.592 

0.251 1.584 

0.251 1.614 

" 1.586 

0.251 1.584 

0.780 1.718 

0.326 1.518 

0.119 1.390 

Average is based on 29 years of records 

....... 
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Table 4.9 

Computed Average Returns 

Duration of Start of Initial Returns 
Operation Operation Storage Aver. 0 

Weeks 106 m3 106 Fr 106 Fr 

52 1 October 72.000 4.691 0.330 

" " 66.000 4.481 0.328 

52 1 October 60.000 4.258 0.329 

39 31 December 48.809 2.999 0.336 

" " 40.809 2.736 0.323 

39 31 December 32.809 2.448 0.306 

26 1 April 7.569 0.828 0.324 

" " 1.569 0.690 0.305 

26 1 April 0.000 0.637 0.303 

13 1 July 39.963 0.571 0.224 

" " 31.963 0.414 0.236 

13 1 July 23.963 0.294 0.200 

Statistics are based on 29 years of records 
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of the initial reservoir content curve reduced further the amount of 

computations. Finally the performed runs conveyed a host of interesting 

information. 

The properties of the optimal trajectories change within the year. 

During Uhe drawdown phase, the inflows play a secondary role. Hence 

the drawdown curves from the available inflows sequences lie close to 

each other in their middle part; they differ only at their ends. 

During the refill phase, however, the inflows play an important role 

and substantial differences between the reservoir content curves 

corresponding to the available records exist. They are generally 

greatest at the beginning and at the end of the refill phase. 

For reservoir operation under uncertainty, it is important to know 

the relations existing between the optimal releases and some parameters. 

These relations are not simple and furthermore their nature changes 

over the year. The initial storage influences markedly the strategy 

in the drawdown phase, whereas the total inflows during the summer 

semester are determinant for the refill phase. However from September 

to October, and from the middle of March, to the middle of May, the 

magnitude of the weekly inflows plays an important role. 

With the gained experience, we are now in a good position to 

tackle the problem of stochastic reservoir operation. 



Chapter 5 

STOCHASTIC RESERVOIR OPERATION 

Up to now, we assumed that the complete sequence of future weekly 

inflows was known at the moment the release strategy was determined. 

Though unrealistic, this assumption allowed to establish interesting 

properties of the optimal solution. The situation in the real world, 

however, is different. While operating an existing reservoir, we do 

not know the future inflow; at most we can guess more or less 

successfully what it will be. Hence a new parameter, the uncertainty 

about the magnitude of future inflow comes into play. 

The notions of risk and uncertainty are introduced first. Then 

follows a short review of the techniques employed in the water resources 

field to cope with this problem, and the description of the method 

retained in this study. The chapter ends with the application to the 

cases with and without flow prediction. 

5.1 Decision Theory 

5.1.1 Risk and uncertainty. Masse (1946a) and Maas et al. (1962) 

adequately treated this topic. What follows is largely inspired from 

their work. 

In some problems, the exact consequences of an action cannot be 

told in advance. What will finally happen, depends in fact on data 

not available at the time the decision was taken. In these situations 

we are faced with uncertainty. 

An alternative, however, must be chosen, its consequences being 

known or not. A course of actions must be selected. The decision 

maker then takes a risk, as he does not know with certainty what 
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the consequences of his decision will be. The risk may be small or 

greati it may imply losses of foregone benefits. 

Decision theory developed models to help persons confronted with 

these problems. One point, however, should be kept in mind. The 

decision maker must first define his own attitude towards risk, 

regardless of the complexity and reliability of the existing models. 

The models show only the consequences of different decisions with the 

associated risks and then the person concerned selects a course of 

action depending on his attitude towards risk. Hence a subjective 

element will always be present in problems dealing with uncertainty. 

5.1.2 Traditional approaches. In water resources problems, the 

state of nature markedly influences the outcome of an adopted course of 

aetion. Although the state of nature is not known at the time the 

alternative is selected, one can beforehand establish a list of all 

the possible states of nature along with their likelihood, and deter­

mine the consequences each one would have on any course of action. 

The final step consists then in selecting that alternative with the 

most desirable outcome. 

Different selection criteria exist. The so-called traditional 

ones do not take into account the likelihood of the state of nature. 

Two of them are shortly presented hereafter. 

In the approach based on the principle of maximum returns, one 

deter.aines first for each alternative the minimum returns it 

guarantees whatever the state of nature. One selects in a second 

step that alternative with the highest minimum return. This approach 

is too pessimistic as it considers for each decision only the worst 

possible consequence. Furthermore irrelevant considerations may 

affect the outcome of the selection. 
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In the approach based on the minimax risk principle, the 

alternative with the smallest risk involved is preferred. Maas et al. 

(1962) define in this case "the risk of any combination of a decision 

and a state of nature by the excess of the maximum return attainable 

in that state of nature over the return that actually results from a 

given decision in that state of nature." Here again there are some 

weaknesses, the most important one being that the alternatives in 

presence affect the decision. 

5.1.3 Expected value approach. Often the likelihood of an event, 

which is measured by the probability of its occurrence, is known and 

therefore it is quite natural to introduce it into the decision 

process. 

The first moment, or expected value plays an important role in 

decision theory. It is defined as: 

E (X) = I p .. x. 
. 1 1 
1 

h . h . th "bl f d h were x. 1st e 1 poss1 e outcome o an event an p., t e 
1 1 

(S-1) 

probability of its occurrence. The summation extends over the com-

plete set of possible outcomes. The expected value is a good 

measure of central tendency. Yet, it suffers from an important 

drawback, as it gives no information about the spread of the 

outcomes of an event. 

Hence, even though two decisions give rise to the same expected 

value, one may be definitely preferred, if the standard deviation 

of its outcomes is smaller. Furthermore, many persons are ready to 

settle for a decision with a smaller expected value provided that 

the spread of the related outcomes is reduced. This attitude, which 
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is currently followed in the field of insurance, allows to reduce the 

severity of the greatest possible losses. Many techniques were devised 

to quantify this attitude: certainty equivalent, gamblers indifference 

map, risk discounting, and so on. But the expected value approach 

seems still to be the most widely used method in the water resoltrces 

field. Why? 

The expected value approach leads to reasonable decisions, whenever 

the actuarial risk situation prevails. This situation arises whenever 

one has to take concurrently many decisions which are similar in their 

nature and independent from one another, and when one is more interested 

in the overall consequences of one's decisions. Actually this is the 

case in the field of water resources, as will be shown later. 

5.1.4 Expected value approach and reservoir operation. We must 

deal with two kinds of uncertainty while operating a reservoir. 

The input into the system, and the required output from the system 

are random. Here, however, the demand is considered as deterministic 

so that only the hydrologic uncertainty of the inflow remains. 

The climate in Switzerland is such that the interannual variations 

in runoff are small. The ratio between the maximum and the minimum 

recorded annual flow does not exceed 1.7. Hence the spread of the 

inflows is small and we are in a favorable situation to apply the 

expected value approach. 

Seasonal reservoirs may play different roles within a power 

producing system (See Chapter 3). Despite the existences of these 

different roles, the expected value method still applies. For the 

value of the sold energy, that is its price, implicitly reflects the 

prevailing role played by the reservoir. Energy is expensive when 
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the offer is small and the risk of shortage high. Also a cautious 

operator will value energy during a period of possible shortage much 

higher than what an operator would do, who likes to take risks. 

furthermore a reservoir operator is always free to select the decision 

which he finds most appropriate. In this situation, the present 

method would just help him in the evaluation of the different alter­

natives. 

Other arguments speak for the expected value approach. Power 

utilities often own many reservoirs, in which case they are in an 

actuarial risk situation. On the other hand, a company may own only 

one reservoir but then is interested in maximizing the returns over 

the entire life span of the reservoir. Here again, actuarial risk 

situation prevails. 

Hence in this study, we shall cope with uncertainty by using the 

expected value approach. This method presents many advantages, we 

are however aware of its limits. 

5.2 Operation Research and Uncertainty 

5.2.1 Literature review. The mere decision to select the 

criterion of the expected value to weigh the merits of alternatives 

does not solve the problem itself. Many papers (Takeuchi, 1972) 

have been published these last years in the area of stochastic opti­

mization. Two facts may have caused this abundance of articles. 

Either the problem is difficult and requires to be solved by the 

joint efforts of many researchers, or no general method exists and 

each case asks for a special treatment. In reality, the truth lies 

in between. Hence only the methodologies relevant for the case under 

study will be reviewed here. Roefs (1968) prepared a good summary of 

the existing procedures, which Croley (1972) took over and completed. 
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~ording to Roefs, two basic methods exist to solve stochastic 

optimization problems: Implicit Stochastic Optimization (ISO) and 

Explicit Stochastic Optimization (ESO). Croley himself has added 

a third one, which is in fact a combination of ISO and of ESO: the 

Alternative Stochastic Optimization (ASO) technique. 

Monte Carlo Dynamic Programming introduced by Young (1967) belongs 

to the first category. To optimize the operation of a reservoir under 

uncert.ainty, Young applies first a deterministic optimization technique 

to each of the many available inflows sequences. The related optimal 

sets of releases are recorded. In a second step, the computed releases 

are related to some variables like storage, or inflows, that have an 

influence on the release strategy and that describe the state of the 

system. Multiple linear regression analysis is most often used in the 

second step. Finally, the established relations supply the information 

required to operate the reservoir. 

In the second technique, one introduces the probability 

distribution of the inputs directly into the optimization procedure. 

Stochastic Linear Programming developed by Manne (1960) characterizes 

well this approach. Manne looks for that set of probabilities which 

maximize the expected total benefit of reservoir operation. The 

solution of ESO consists of a table of optimal decisions indexed on 

the reservoir content and on the amount of previous inflow. 

Finally Croley proposes a combination of both methods. First, 

as in ISO, the returns of the reservoir are optimized successively 

for various input samples, and then related release strategies are 

recorded. Second, this time as in ESO, one evaluates the distribution 

of the decisions corresponding to the first stage of the operation 
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period. Then an appropriate decision, corresponding either to the mean, 

mode or median of the obtained statistical distribution, is selected, 

which applied to the system brings it to the beginning of the second 

stage. One repeats the same procedure for the second and all the 

following stages. Finally relations are established between decision 

and relevant state variables as in ISO. To reduce the burden of 

computations, the system is operated, in each case, only over a 

reduced period instead of the complete one. 

5.2.2 Evaluation of the reviewed methods. As the ISO technique 

relies heavily on simulation, the problem does not have to be 

solvable by analytical techniques. So input time series with long 

persistence can be handled without problems. The application of 

ISO may require a lot of computations. However the real difficulties 

and drawbacks of this method appear in the last step, when relations 

are established between decision variables and relevant parameters 

describing the state of the system. 

What are the relevant state variables? What type of relations 

select? Multiple linear models were quite often used. But these 

models suffer from important drawbacks. The reliability of the 

established relation decreases sharply for values of the state 

variables which are much greater or smaller than their means. 

Furthermore they ignore completely the physical characteristics 

of the problem under study. 

The ESO method has some definite advantages over the ISO method. 

As the probability of the input is introduced directly into the 

computation scheme, it is no longer necessary to calculate problematic 

multivariate regression equations. Unfortunately this procedure leads 
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to unmanageable difficulties as soon as the system, or the hydrology of 

the associated inputs becomes complicated. When the successive inputs 

into the system are highly correlated, tremendous computer storage is 

required. The same remark holds if the inputs cover a wide range. 

Croley combined both methods in an optimal way and he arrived 

at a better procedure. A high amount of computations is the cost 

for this improvement. To cope with this drawback Croley applied the 

deterministic optimization technique to the system for only a part 

of the operation period. The duration of the reduced operation period 

is selected in such a way that the resulting benefits are not too 

different from those obtained from an operation over the complete time 

span. This artifice may reduce substantially the amount of 

computations in some cases. Here however it brings small gains. 

Finally Croley could not avoid the last controversial step of ISO, 

where decision variables are related to state variables. 

For our purpose the following points from these techniques will 

be retained. As proposed by Young, we shall operate the reservoir for 

several samples of inflows sequences, and we shall consider in each 

run, as done by Croley, only the decision corresponding to the first 

stage of the operation period. But we want to eliminate completely 

the step of the ISO technique dealing with multiple linear regressions 

and try to introduce into the solution technique, the physical 

properties of the optimal solution. To do this, some additional 

notions are needed. 

5.2.3 Masse's principles of optimality. Masse (1946a) showed 

that in deterministic reservoir operation, the marginal instantaneous 

return of the current release equals the marginal future return of the 



205 

current storage, also called marginal value of the stored water. 

The following examples illustrate this principle. 

Assume first that the marginal instantaneous benefit of the 

current release is smaller than the marginal future return of the 

current storage. The associated strategy cannot be optimal, as a 

reduction in the current release leads to an increase of the benefit 

resulting from reservoir operation. The spared water, when released 

in a later period, will yield a higher marginal instantaneous benefit 

because, by hypothesis, the related marginal return is higher. Hence 

this shifting of water brings some gains. 

Assume on the other hand that the marginal instantaneous benefit 

of the current release is greater than the marginal future return of 

the current storage. Here again the associated strategy cannot be 

optimal, as an increase in the current release leads to an increase 

of the benefit resulting from reservoir operation. If more water 

is released in the current period and if less water is stored for future 

use, the overall consequence of this shifting of water is an increase 

of the total benefits. 

Hence the optimum is reached when no transfer of water from one 

period of time to another one can bring any gain, or when both 

marginal values are equal. An important property is related to this 

principle. 

Let us define the trajectory of the water levels, as the curve 

representing the successive levels reached by the water surface in 

the reservoir during the operation period. Quite naturally, the 

optimal trajectory is that reservoir content curve, which results 

from the application to the system of a sequence of optimal decisions. 
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Then the following property holds. The optimal trajectory is such that 

the marginal future return of the storage levels reached during the 

operation of the reservoir is constant. This property however holds 

only when the reservoir is neither full nor empty. 

Masse (1946b) also generalized the principle of optimality for the 

case of stochastic optimization. The term marginal future benefit is 

replaced by the term expected marginal future benefit of storage. Hence 

(Morel-Seytoux, 1974) "at the optimum the marginal instantaneous benefit 

of the release equals the marginal future expected benefit of the storage." 

Hence in stochastic optimization, the major problem becomes the 

determination of the expected future benefit associated with a given 

initial storage s .. 
1 

We shall deal with this problem in the next 

subsection. 

5.2.4 Expected marginal future benefit of storage. Different 

variables affect the expected future benefit of storage. Obviously 

the maximum reservoir storage capacity, the price of the energy and 

the inflow plays a major role. However if these variables are 

held constant, the expected future benefit of storage is a function 

of the date of the year and of the considered reservoir content. 

Date and reservoir content will be taken as parameters in the sub-

sequent studies. Hence the final aim consists in establishing a 

two-dimensional grid which represents the expected future benefit 

of storage as a function of time and of reservoir content. 

Two paths stay open to achieve this goal. One can proceed 

either on a theoretical, or on an experimental basis. Masse 

followed the theoretical approach and obtained closed form solutions 

for simple reservoir systems and inflow sequences. However the 
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problem becomes soon unmanageable when the inflows sequences present 

strong persistence. Consequently here, the variable looked after will 

be determined experimentally. 

The expected future benefit of a given storage and for a given 

date is obtained as follows. The selected storage is taken as 

initial storage and the reservoir is operated in an optimal way 

starting from the selected date until the end of the water year. 

The obtained marginal benefit of storage is recorded. This procedure 

is repeated for the available, recorded or simulated inflows sequences. 

Finally the expected value of the so obtained sample of marginal bene­

fits is taken. One proceeds in the same way for all the other grid 

points. 

5.2.5 Evaluation of the proposed method. At this point, all 

the elements necessary to apply the proposed stochastic optimization 

technique have been defined separately, so that it is time now to 

put the puzzle together. 

We face the following situation. We must be able to decide at 

the beginning of any week of the water year how much water should be 

released during the coming week, so that the returns from the energy 

produced during the rest of the year's operation get maximum. The 

content of the reservoir at the date of the decision, and the 

antecedent flows sequence are known, while the magnitude of the flow 

following the date of the decision is not known. 

The stochastic optimization problem is solved in two steps. 

First, the marginal value of the releases and the expected future 

benefit of storage are determined separately. Table 3.7 and 

Figs. 3.3 and 3.6 supply all the information necessary to evaluate 

the marginal return of the releases as a function of the amount of 
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water released during one week. On the other hand, as indicated in 

the preceding subsection, the expected future marginal return of 

storage must be calculated for 52 dates and for different storage 

contents. Once these operations have been performed, we can proceed 

to the second step. It consists in selecting the required weekly 

release in such a way that Mass~'s principle of optimality is 

satisfied. What have we achieved? 

First the computer program developed in Chapter 4 can be used 

to evaluate the expected future benefit of storage. As the 

technique proposed in Chapter 4 is very efficient, this property 

is of great importance. Furthermore the information gained from 

the runs performed according to the list of Table 4.6 are still 

relevant for the present problem. Second the future marginal return 

of storage is an attractive variable to work with. It has a concrete 

physical meaning so that we always know what we are doing. Third, 

we systematically work with benefits. The transfer back into the 

decision domain occurs in the last step only. This way of doing is 

consistent and saves time. Fourth, as will be shown later, this method 

can be easily modified to take into account runoff forecasts. 

Finally, up to now no multiple linear regression techniques were used. 

But all these advantages are compensated by a tremendous amount 

of computations. If 15 different initial storages are retained per 

date, then we must perform 15 times 52 weeks x 29 years runs, which 

amotmts to more than 23,000 runs. This is simply not possible. 

Hence the purpose of the forthcoming sections is to develop 

shortcut techniques to reduce the computational burden. A special 
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effort will be done to incorporate into the solution technique the 

physical properties of the optimal solution. 

5.3 Stochastic Reservoir Operation without Flow Forecast 

5.3.1 Preliminary remarks. Why at all deal with this case? 

Why not immediately introduce the runoff prediction model into the 

computations scheme? Strong arguments plead for the present approach. 

Before tackling complicated problems, it is absolutely necessary to 

master the simple ones. Furthermore, for some parts of the year it 

is not possible to establish reliable runoff forecasts. Finally it 

may be interesting to compare the merits of both methods. 

In the stochastic case, a computed optimal decision is the best 

one only with a given probability. It does not always lead to the 

maximum return. Most often, when the inflows sequence which was 

unknown at the moment the decision was taken becomes known, it will 

then be possible to determine an alternative decision which yields 

higher return. But this fact does not question the validity of 

the approach followed here, which by definition leads on the average 

to the best results. Consequently its merits can and must be evaluated 

only after many decisions of the same kind have been taken. 

Also one cannot compute an optimal release strategy for the 

complete reservoir operation period when the magnitude of the future 

inflow is not known. The nature of the optimal decision changes 

constantly as time goes on and more information becomes available. 

Hence the optimal weekly releases must be determined successively 

from one week to another, taking into account each time all the 

information which is available. 
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5.3.2 Outline of the methodology. As indicated in Section 5.2, 

the purpose of the present chapter is to compute the expected future 

marginal return of storage for different dates of the year and for 

different initial reservoir contents. Table 5.1 gives the list of all 

the performed computer runs. According to this Table, some of the 

initial dates considered here correspond to those selected to test 

the computer program. These dates are well spread over the year and 

should encompass all the special cases which might be encountered while 

determining the expected future benefit of storage. The number and 

the nature of the chosen initial reservoir contents are such that they 

should enable us to set forth the special features of the problem. 

Hence the reservoir was operated for each of the selected initial 

storages from the initial date to the end of the water year. This 

procedure was repeated for the available 29 inflow sequences. Finally 

we calculated the expected value of the so obtained sample of future 

marginal return of storage. 

In the solution technique developed in Chapter 4, the reservoir 

operation period was divided into drawdown and refill phase. This 

procedure allowed to compute separately the optimal sequence of 

releases for both phases. In addition, a linear relation could be 

established between the natural logarithm of the marginal value of 

the release and the sum of the releases during the concerned phase, and 

a term related to the storage levels corresponding to the optimal 

reservoir content curve. This relation will be extensively used in 

the subsequent paragraphs, as it allows to reduce substantially the 

amount of computations required to estimate the expected future 

marginal return of storage. 



Table 5.1 

Stochastic Reservoir Operation, List of Computed Cases 

Initial 
Initial Storage x 106 3 Date m 

October 1 72.000 69.000 66.000 63.000 60.000 

December 31 48.809 44.809 40.809 36.809 32.809 

April 1 7.569 4.569 1.569 0.000 
N ..... 

July 1 39.963 35.963 31.963 27.963 23.963 ..... 
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The presentation of this topic follows the outline of Chapter 4. 

Hence we shall deal first with the drawdown phase and second with the 

refill phase. Then we shall consider the so called special cases which 

arise when the reservoir is full or nearly empty. The numerical 

applications are grouped together and appear after the theoretical 

derivations. 

5.3.3 Drawdown phase. Assuming that the reservoir operation 

is started on the kth week with an initial storage sk, we 

obtained in Section 4.5.2 (Eq. 4-32), the following equation: 

(5-2) 

d where AR.,k represents the marginal value of the release of the 

kth week, provided that the reservoir gets empty at the beginning of 

the tth week, (t-k), the number of weeks during the drawdown phase, 

- th . d • h . th k (- ) th si' e average reservo1r content ur1ng t e 1 wee , ai si • e 

product of the energy equivalent for the average storage si of 

1 m3 of water and of the prevailing energy price (see Section 3.6, 

Eq. 3-5), and the last term, the total inflow during the drawdown 

phase. This relation holds as long as no storage constraints are 

active during the drawdown phase, and only if the reservoir is 

empty at the beginning of the R.th week. 

d In fact At,k is equal to the future marginal return of storage 

which we are looking for. From now on, we shall refer to this 

variable as A~ , where k denotes the day under consideration, and 
""'sk 

sk, the corresponding initial storage; d indicates that we are in the 

drawdown phase. 
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To determine the expected future marginal benefit of storage, 

it is then sufficient to evaluate successively for each of the 

d available inflows sequences the value of A~,k and to take the 

expected value of the so obtained data sample. However the same 

result can also be obtained analytically in a much simpler way. 

For this purpose, let us rewrite Eq. S-2 as: 

where 

and 

~-1 
L ~na. 

i=k 1 

ad = (~-k) 

-1 
bd = 4.2(~-k) 

(s.) 
1 

4.2 (~-k) 

(S-3) 

The term Qk,~-l represents the cumulative inflow recorded during 

the drawdown phase. 

Now if we assume for a while that the date the reservoir is empty 

and the optimal drawdown curve are independent of the inflows sequence, 

then ad and bd become a constant and the natural logarithm of the 

future marginal return of storage varies linearly with the inflow 

Qk,~-l· Furthermore, as Qk,~-l, which represents the inflow inte­

grated over several weeks, is approximately normally distributed, 

the logarithms of the future marginal return of storage are also 

normally distributed. Finally, according to the reproductive 

properties of the normal distribution, we have: 

(S-4) 
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and 

(S-5) 

where B [ ••• ] and Var [···] mean the expected value and the variance 

of the expression in the brackets, respectively. 

Consequently it should be possible with the help of the just 

derived relation, to compute analytically the expected future marginal 

benefit of storage, without operating the reservoir for all the 

existing inflows sequences. This fact would represent a tremendous 

gain in computations time. 

But the derivation of this important property was made possible 

only by the existence of restrictive assumptions. We want to show now 

that these assumptions are not as restrictive as they seem to be at 

the first glance. 

First, concerning the date on which the reservoir gets the first 

time empty, the analysis performed in Chapter 4 indicated that this 

parameter can be considered as a constant, at least in the first 

approximation. Hence one can expect that this assumption has a 

negligible influence on the determination of the expected marginal 

value of storage. 

Second, we assumed that the sum of the natural logarithm of the 

terms a.(s.) was a constant. The optimal drawdown curve depends, 
1 1 

at least theoretically, on the inflows sequence. The calculations 

done in Chapter 4 however showed that the variations from one inflow 

sequence to another in the shape of the optimal drawdown curve were 

relatively small. As the logarithm of the terms a. (s.) 
1 1 

enters 

relation S-3, the variations under consideration are further reduced. 
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So, for example, the value of this parameter changes by 10 percent if 

for a given date one passes from an empty to a full reservoir. This 

proves that the different reservoir trajectories do not affect much 

the final value of the sum of the natural logarithm of the term 

ai(si). Hence this second assumption is also not restrictive. 

More severe though are the limitations resulting from the 

assumptions that no storage constraints are binding, and that the 

reservoir always gets empty. These cases will be treated separately 

later, so that we can ignore them now. 

Consequently for most of the situations prevailing during the 

drawdown phase, the expected future marginal benefit of storage can 

be computed directly with the help of a simple relation. The most 

important terms appearing in this relation are the expected value of 

the relevant inflows sequence and a variable related to the optimal 

drawdown curve corresponding to the sequence of average inflows. 

5.3.4 Refill phase. An expression relating marginal value of 

releases with some parameters of the optimal reservoir content curve 

was also developed for the refill phase (Section 4.5.4, Eq. 4-40). 

It reads as follows: 

(5-6) 

where Af represents the future marginal benefit of storage for the 
k,sk 

week k and initial storage sk' s53' the final storage, si, the 

· · h · th k c- ) h average reservo1r content 1n t e 1 wee , a. s. , t e product of 
1 1 

the energy equivalent for the average storage -s. 
1 

of 1 m3 of water, 

and of the prevailing energy price (see Eq. 3-5), and q., the inflow 
1 

d . h . th k ur1ng t e 1 wee . This equation is rewritten as: 



where 

~d 

52 
l 

i=k 
tna.(s.) 

1 1 

53-k 

-1 
bf = 4.2(53-k) 
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(5-7) 

+ 4.2(53-k) 

The term f refers to the refill phase while Qk, 52 stands for 

the inflow recorded during the refill phase. In words, the natural 

logarithm of the future return of storage varies linearly with the 

inflow recorded during the refill phase. 

But this linear relation holds only if the following conditions 

are satisfied: full reservoir at the end of the operation period, no 

active storage or release constraints, and optimal reservoir content 

curves not too different from each other. 

According to the information supplied by the computer runs of the 

deterministic case, these conditions are satisfied when average flow 

condition prevails. However, if the inflow recorded during the refill 

phase is low, the reservoir may not get full at the end of the water 

year, while, if the inflow recorded during the refill phase is high, 

the reservoir gets full before the end of the water year. Furthermore 

the optimal refill curves corresponding to different inflow sequences 

may differ widely among each other as they depend directly on the 

inflows sequences, which themselves vary greatly. 

These facts limit the application of the just derived formula 

more seriously than was the case in the drawdown phase. We expect 
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nevertheless that it provides a good approximation for the expected 

future marginal benefit of storage: 

(5-8) 

The future marginal benefits of storage follow a log-normal 

distribution in the drawdown phase, and the same property should 

exist in the refill phase. As the linear relation which allowed to 

derive this property holds only for average inflows sequences, the 

future marginal benefits of storage follow a log-normal distribution 

in their central range. What happens at the extremes? 

Let us gradually diminish the magnitude of the inflow during the 

refill phase and see what happens. As the inflow decreases, the 

amount of water released decreases also, while the marginal future 

benefit of storage increases. Soon the situation will come up 

where the reservoir will not get full at the end of the water year. 

From that moment on, the rate of increase of A{,sk decreases. 

Actually an upper boundary for this parameter exists. Theoretically 

it cannot exceed the product of the maximum price of a KWh times 

the energy equivalent for the relevant reservoir content of one m3 

of water. Practically it is related to the minimum possible reservoir 

content reached at the end of the water year. 

On the other hand, let us now gradually increase the magnitude 

of the inflow during the refill phase. As the inflow increases the 

amount of water released increases also, while the marginal future 

benefit of storage decreases. Soon, the reservoir gets full earlier 

than the end of the water year, and the rate of increase of Af 
k,sk 

decreases. Here a lower boundary for this parameter exists, which 
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theoretically corresponds to the maximum quantity of water which can 

be released through the power plant. 

Hence the underlying distribution curve of the future marginal 

return of storage must exhibit these properties. The four parameters 

log-normal distribution curve fulfills these conditions. This distri-

bution curve is bounded on both sides and, as suggested by its name, 

is defined by four parameters: Mean, standard deviation, upper and 

lower boundaries. In the case under study, the following expression 

is normally distributed: 

~n (5-9) 

where Af and 
k,sk,min are the lower, and upper boundary, 

respectively. 

Generally the use of this type of curves requires a great amount 

of work. Especially the determination of the upper and lower boundary 

is tedious. Here though, the problem is simpler as the physical 

nature of the problem allows a good first guess of the value of the 

boundaries. The minimum reservoir content at the end of the year 

defines the upper boundary, and the largest weekly release in summer, 

the lower boundary. The situation is further simplified by the fact 

that the expected future marginal return of storage is rather in-

sensitive to the exact determination of these boundaries. 

Upper and lower boundary depend on the considered date and 

initial storage. Their effects and relative importance vary. If 

the initial reservoir content is relatively low, essentially the upper 

boundary comes into play. Inversely if the initial reservoir content 
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is relatively high, the opposite is true. Also there must exist a 

content for which both boundaries are equally unimportant. 

The knowledge that the future marginal benefits of storage 

resulting from different inflow sequences follow a well defined 

distribution curve is here important for two reasons. First it allows 

to check the validity of Eq. 5-7, as the expected future marginal 

return of storage can be computed in two different ways: on the 

basis of Eq. 5-8 and through the relevant distribution curve. Second 

it permits to establish a relation between inflow and associated 

marginal future benefit of storage. To each probability level, 

correspond a specified amount of inflow during the period of 

reservoir operation, and a value for the future marginal return of 

storage, so that the two variables are related on a statistical basis. 

Hence once the probability distributions of both variables have been 

determined, one can derive one variable from the other and vice-versa. 

Hence, in the refill phase as in the drawdown phase, a simple 

relation could be established between inflow and future marginal 

return of storage. The computations involved to arrive at this 

result were though more complicated. 

5.3.5 Mixed strategy situation. Relations 5-3 and 5-7 hold each 

separately either for the drawdown, or for the refill phase. Yet 

situations may arise where it is not known in advance whether the 

reservoir stays in the refill, or in the drawdown phase. So, for 

instance, with April 1 as an initial date, the reservoir never gets 

empty during the operation period for some inflows sequences and 

the equation for the refill phase applies. On the other hand, for 

other inflows sequences, it gets empty and the equation for the 
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drawdown phase applies. For cases similar to the one just described, 

we shall talk of mixed strategy situations as two types of release 

strategy must be considered to determine the optimal release. 

If the reservoir gets empty, the following relation (see Section 

5.3.3, Eq. 5-3) holds: 

R.-1 
2 R.na. (s.) 

i=k 1 1 

R.-k 4. 2 (R.-k) 
1 

4.2(R.-k) • Qk,R.-1 {5-10) 

where R. stands for the assumed date of emptiness, and Qk,R.-l' for 

the inflow recorded from date k until the date the reservoir is 

empty. 

If the reservoir doe~ not get empty, the subsequent relation (see 

Section 5.3.4, Eq. 5-7) applies: 

52 
l R.na. (s.) 

f i=k 1 1 s53-sk 
R.nAk,sk = ---=5-=3--::-kr-- + 4.2(53-k) 

1 
4.2(53-k) . Qk,52 (5-11) 

where Qk, 52 stands for the inflow recorded from date k until the 

end of the water year. 

The future marginal return of storage is computed according to 

both formulas and the highest obtained value is retained, as the return 

must be maximum. Hence, if the computed' value of Adk exceeds the 
,sk 

one obtained for Af , the reservoir stays in the drawdown phase 
k,sk 

for the given inflows sequence, and vice-versa. 

The expected future marginal return of storage results from the 

combination of these two strategies. Depending on the statistical 

characteristics of the inflows sequences Qk,R.-l and Qk, 52 , one 
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strategy will apply more or less often than the other one. 

Consequently the following expression can be written for the expected 

value of the logarithm of the future marginal return of storage: 

E [i.nAk, 5J = p·E [i-nA~, 5J + q • E [i-nA~, 5J (5-12) 

with 

p + q = 1 

where p stands for the probability that the formula for the drawdown 

phase holds, and q, for the probability that the formula for the 

refill phase holds. The last steps of the computations consist then 

in the determination of the values of p and of the two expected 

future marginal returns of storage. 

To evaluate p, consider the limiting case where both formulas 

lead to the same value of the future marginal return of storage. 

This happens when for the optimal strategy, the reservoir just gets 

empty, and when no release constraint affects the magnitude of the 

releases. As both future marginal returns are equal, the two 

equations can be combined and, solving for Qk, 52 , one obtains: 

[ 
r2 

R.na. (s~) R,r 
1 

R.na. (s~) 
f i=k 1 1 i=k 1 1 

Qk,52 = 4• 2. (53-k). + (53-k) (R.-k) 

s~3 - sk sk ] (53-k) d 
+ 4.2· (53-k) + 4.2(1-k) + (R.-k) . Qk,R.-1 

(5-13) 

The terms indexed with a small f are related to the refill phase, and 

those indexed with a small d, to the drawdown phase. 

d This equation indicates that for each value of Qk,R.-l' corresponds 

f f 
a value of Qk, 52 called by definition Qk, 52 ,limit' such that the 
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. 1.f Qf reservo1r gets empty k, 52 exceeds f 
Qk,52,limit" Furthermore, 

the p~ability that the reservoir gets empty is obtained by 

d 
integrating out the inflow Qk,t-l: 

(5-14) 

The term f (·) represents the probability distribution of the inflow 

Q~,t-l• The computations are straightforward but may become quite 

tedious. 

Computational experience indicated that for the cases under 

consideration, the future marginal returns of storage are log-

normally distributed. Hence, at least theoretically Eq. 5-10 and 

d 5-11 can be used to evaluate the expected values of Ak and 
,sk 

f -d of Ak , provided that the correct values for Qk,t-l and for 
,sk 

-f Qk, 52 are introduced into the respective equation. Practically 

however, the determination of Q~,t-l 
as tedious as the computations of p. 

-f and of Qk, 52 may become 

Consequently in a mixed strategy situation it is simpler to 

determine the expected future marginal return of storage on the 

basis of the results obtained from the fictive reservoir operation 

for different inflows sequences. 

5.3.6 Full or nearly full reservoir. The methodology developed 

in Section 5.3.3 for the drawdown phase holds only if no storage 

constraints are binding. The procedure to follow when such a 

situation arises, appears hereafter. 
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In September or October, the reservoir is usually full or nearly 

full. Sometimes, high inflows are recorded during this period and 

water must be released from the reservoir, regardless of what the 

optimal strategy would be, just to avoid overtopping of the reservoir. 

Although these situations do not happen often, they must be considered, 

as they affect the magnitude of the expected future marginal benefit 

of storage. 

Basically, we are again faced with a mixed strategy situation, as 

either the general theory as developed under Section 5.3.3 applies, 

or the one to be derived hereafter. If the general theory holds, the 

following relation leads to the optimal strategy: 

1 = --~~~ 
4.2(~-k) 

~-1 ~-1 J l ~na.(s.)-sk- l q1. 
k 1 1 i=k 

(5-15) 

If the inflow during the kth week is high, the reservoir capacity 

may be exceeded at the end of that week. To avoid this, the following 

water balance equation must be satisfied: 

which expresses the release xk must be selected in such a way that 

the reservoir content at the end of the considered week is smaller or 

at most equal to the reservoir capacity. At the limit, we have: 

To determine the corresponding marginal return of the release, one 

multiplies the right hand side of Eq. 3-1 by ak(sk) and replace 

xk in the same equation by the right hand side of expression 5-17 

so that: 
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{5-18) 

which is in fact the second relation looked after. 

As long as the value for the marginal future return of storage 

given by Eq. 5-18 is greater than that of Eq. 5-15, the general 

theory holds, in the opposite Eq. 5-18 applies. 

Note that theoretically a storage constraint may become binding 

later, like in week k+2, or k.:.3, etc. This situation however 

happened extremely seldom and did not affect greatly the value of the 

expected future marginal return of storage. Hence it can be ignored. 

From this stage of the computations on, the procedure is identical 

to the one developed in the preceding subsection. It will therefore 

not be repeated. 

5.3.7 Empty reservoir. The last point to deal with concerns the 

week of the year, when the reservoir is empty. While studying the 

results of deterministic reservoir operation, we noticed that quite 

often the reservoir remained empty for more than one week. This 

period corresponds again to a mixed strategy situation as either the 

reservoir is empty a further week, or it stays in the drawdown phase 

or in the refill phase. If the reservoir stays in the drawdown phase, 

relation 5-2 holds: 

(5-19) 

where sk does not appear, as its value is equal to zero. 

If the reservoir is in the refill phase, relation 5-6 holds: 

(5-20) 
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If the reservoir stays empty one more week, the weekly release 

is equal to the weekly inflow, which, according to Eq. 4-21, 

leads to the following expression for the future marginal return 

of storage: 

qk 
= tna.k(sk) - -4.2 (5-21) 

The future marginal return of storage is computed according to 

the three formulas, and the highest of the obtained values is retained. 

This way of doing makes impossible the violation of the release 

constraint. The further steps are identical to those described in 

Section 5.3.5. 

We have now reviewed the most important cases which confront the 

reservoir operator. To substantiate the theoretical derivations, 

we shall present in the forthcoming subsection, some numerical 

examples. 

5.3.8 Applications. The purpose here is to show that the results 

of the numerical applications confirm the developed theory and that 

the derived methodology is both feasible and attractive. These 

examples should also indicate the order of magnitude of the variables 

involved. The reservoir was operated for four initial dates and for 

five initial contents per selected date. These cases cover the whole 

range of situations which may happen during the operation of a 

reservoir. They appear in the same order as in the theoretical 

derivations. 

a) Drawdown phase. The situation existing on December 31 and, 

to a smaller extent, on October 1, is typical for that case. Tables 

5.2, 5.3, 5.5 and 5.6 display the computed future marginal returns of 
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storage while Table 5.4 and 5.7 supply the corresponding expected 

values. Typical distributions curve of this variable appear on 

Figs. 5.1 and 5.2. 

The spread of the computed future marginal returns of storage 

is quite small, if the cases corresponding to the two highest 

initial storages of October 1 are excluded. This fact confirms 

that during the drawdown phase, the release strategy is primarily 

influenced by the reservoir content prevailing on the decision date, 

whereas the associated inflows sequence plays a secondary role. 

Normal and log-normal distribution curves provide an equally good fit 

to the computed future marginal returns of storage. 

b) Refill phase. This case is well characterized by the 

situation existing when reservoir operation is started on July 1. 

Tables 5.8 and 5.9 show the computed future marginal returns of 

storage and Table 5.10, the expected values obtained according to 

different methods. Figs. 5.3, 5.6 and 5.9 display the fitted 

probability distributions while the relations between marginal future 

returns of storage and associated inflows appear on Figs. 5.4, 

5.5, 5.7, 5.8, 5.10 and 5.11. 

Compared to the drawdown phase, the spread of the calculated 

marginal values is much greater. The four parameters log-normal 

distribution provides a good fit for nearly the complete range of 

available data. The influence of the upper and lower boundary 

becomes evident as normal, log-normal and four parameters log-normal 

distributions lead to different expected future returns of storage. 

However these differences decrease as the initial storage increases, 

which indicates that the influence of the boundaries on the expected 
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Table 5.2 

Future Marginal Return of Storage, Values Computed for October 1 

Initial Storage 76.000 69.000 66.000 63.000 60.000 

x 106 rn3 x 106 rn3 6 x 10 rn 3 6 x 10 rn 3 x 106 rn3 

Cents/rn 3 Cents/rn 3 Cents/rn 3 Cents/rn 3 Cents/rn3 

1946 3.160 3.242 3.320 3.400 3.483 
47 3.308 3.385 3.463 3 .. 545 3.631 
48 3.250 3.325 3.402 3.481 3.561 
49 3.304 3.354 3.432 3.512 3.593 

1950 3.223 3.292 3.362 3.434 3.507 
51 3.311 3.384 3.460 3.536 3.614 
52 3.117 3.190 3.264 3.340 3.417 
53 3.088 3.157 3.227 3.299 3.371 
54 2.876 3.043 3.109 3.175 3.244 
55 3.346 3.417 3.491 3,. 564 3.643 
56 3.328 3.399 3.472 3.545 3.621 
57 3.248 3.318 3.389 3.463 3.540 
58 3.282 3.352 3.424 3.497 3.573 
59 1.420 2.052 2.927 3.292 3.253 

1960 3.256 3.332 3.412 3.495 3.579 
61 2.407 3.016 3.089 3.164 3 .. 241 
62 3.286 3.314 3.342 3.402 3.478 
63 3.379 3.455 3.535 3.617 3.701 
64 3.093 3.159 3.225 3.294 3.371 
65 3.277 3.347 3.419 3.492 3.566 
66 2.079 3.305 3.377 3.449 3.526 
67 3.100 3.167 3.235 3.304 3.376 
68 2.429 3.126 3.196 3.270 3.346 
69 3.155 3.223 3.293 3.363 3.435 

1970 3.338 3.410 3.485 3.561 3.641 
71 3.151 3.224 3.299 3.376 3.454 
72 3.357 3.417 3.492 3.580 3.670 
73 3.398 3.471 3.546 3.621 3.698 

1974 3.181 3.249 3.325 3.402 3.481 



Table 5.3 

Future Marginal Return of Storage, Main Statistics Computed for October 1 

Initial Storage 72.000 69.000 66.000 63.000 60.000 
6 x 10 m 3 x 106 m3 6 x 10 m 3 6 x 10 m 3 x 106 m3 

Average 3.067 3.246 3.345 3.432 3.504 

Stand. dev. 0.440 0.258 0.144 0.125 0.134 

Coeff. var. 0.143 0.079 0.043 0.036 0.038 N 
(.N 
1.0 

Min. 1.420 2.052 2.927 3.164 3.241 

Max. 3.398 3.471 3.546 3.621 3.701 

All the numbers are given in Cents/m3 



Table 5.4 

Future Marginal Return of Storage, Expected Values Computed for 
October 1, according to Different Methods 

Distribution 
Curve 

Normal 

Log-Normal 

Log-Normal* 

Log-Normal** 

Storage 
n 72.000 

x 106 m3 

29 3.067 

29 3.025 

24 3.237 

5 2.186 

Marg. Ret. Stor. 
for Aver. Infl. - 3.198 

Storage 
n 69.000 

x 106 m3 

29 3.246 

29 3.233 

28 3.286 

1 2.052 

3.269 

Storage 
n 66.000 

x 106 m3 

29 3.345 

29 3.342 

28 3.358 

1 2,927 

3.341 

Storage 
n 63.000 

x 106 m3 

29 3.432 

29 3.428 

29 3.428 

3.416 

n 

29 

29 

29 

Storage 
60.000 

x 106 m3 

3.504 

3.501 

3.501 

3.495 

All the numbers are given in Cents/m3 

* For the cases where reservoir content is smaller than 72.000 x 106 m3 on October 8 

**For the cases where reservoir content is equal to 72.000 x 106 m3 on October 8 

N 
~ 
0 
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Table 5.5 

Future Marginal Return of Storage, 
Values Computed for December 31 

Initial 48.809 44.809 40.809 36.809 32.809 
Storage 

x 106 m3 x 106 m3 x 106 m3 6 x 10 m 3 x 106 m3 

Cents/m 3 Cents/m 3 Cents/m 3 Cents/m 3 Cents/m3 

1946 2.772 2.941 3.131 3.336 3.563 
47 2.866 3.035 3.219 3.415 3.631 
48 2.789 2.947 3.116 3.304 3.504 
49 3.202 3.249 3.296 3.419 3.626 

1950 2.883 3.036 3.196 3.364 3.541 
51 2.932 3.087 3.251 3.429 3.621 
52 2.815 2.980 3.161 3.353 3.556 
53 2.827 2.976 3.141 3.318 3.524 
54 2.878 3.031 3.191 3.359 3.535 
55 3.012 3.122 3.287 3.460 3.646 
56 2.961 3.118 3.283 3.456 3.637 
57 2.889 3.042 3.203 3.371 3.559 
58 2.942 3.098 3.262 3.433 3.617 
59 3.214 3.261 3.309 3.358 3.520 

1960 2.871 3.023 3.182 3.369 3.589 
61 2.775 2.900 3.090 3.293 3.514 
62 3.225 3.272 3.321 3.420 3.612 
63 2.973 3.130 3.300 3.489 3.700 
64 2.916 3.071 3.232 3.418 3.625 
65 2.959 3.116 3.280 3.453 3.634 
66 2.924 3.079 3.241 3.412 3.602 
67 2.921 3.076 3.239 3.409 3.587 
68 2.794 2.953 3.120 3.304 3.504 
69 2.982 3.140 3.306 3.480 3.664 

1970 2.976 3.133 3.299 3.475 3.670 
71 2.853 2.957 3.136 3.326 3.527 
72 3.226 3.273 3.322 3.387 3.593 
73 3.016 3.176 3.344 3.520 3.704 
74 2.859 3.010 3.168 3.347 3.550 



Table 5.6 

Future Marginal Return of Storage, Main Statistics Computed for December 31 

Initial Storage 48.809 44.809 40.809 36.809 32.809 

x 106 m3 x 106 m3 x 106 m3 x 106 m3 x 106 m 3 

Average 2.940 3.077 3.228 3.396 3.592 

Stand. dev. 0.132 0.103 0.074 0.061 0.058 

Coeff. var. 0.045 0.033 0.023 0.018 0.016 
N 
~ 

Min. 2.772 2.900 3.090 3.293 3.504 N 

Max. 3.226 3.273 3.344 3.520 3.704 

All the numbers are given in Cents/m3 



Distribution 
Curve 

Nonnal 

Log-Normal 

Table 5.7 

Future Marginal Return of Storage, Expected Values Computed for 
December 31, according to Different Methods 

Storage Storage Storage Storage 
48.809 44.809 40.809 36.809 

x 106 m3 x 106 m3 x 106 m3 x 106 m3 

2.940 3.077 3.228 3.396 

2.937 3.075 3.228 3.395 

Storage 
32.809 

x 106 m3 

3.592 

3.591 

All the numbers are given in Cents/m3 

N 
~ 
(,;~ 
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Table 5.8 

Future Marginal Return of Storage, Value Computed 

for July 1, in Cents/m3 

Initial 39.963 35.963 31.963 27.963 23.963 
Storate 106 m3 106 m 3 106 m3 106 m 3 106 m 3 

1946 1.469 1.596 1.726 1.862 2.009 
47 1.768 1.959 2.170 2.482 2.754 
48 1.828 2.004 2.196 2.518 2.906 
49 2.710 3.040 3.252 3.335 3.442 

1950 1.782 1.944 2.113 2.325 2.626 
51 1.346 1.491 1.652 1.813 1.970 
52 1.737 1.888 2.052 2.232 2.516 
53 2.073 2.224 2.441 2.706 3.036 
54 1.824 1.982 2.138 2.346 2.635 
55 2.806 3.225 3.306 3.391 3.481 
56 1.146 1.256 1.377 1.509 1.654 
57 2.158 2.490 3.022 3.248 3.331 
58 1.830 1.976 2.132 2.331 2.615 
59 2.938 3.228 3.309 3.394 3.484 

1960 1.595 1.722 1.858 2.005 2.153 
61 2.279 2.653 3.000 3.243 3.325 
62 2.655 3.069 3.269 3.352 3.440 
63 1.216 1.333 1.462 1.602 1.756 
64 2.854 3.221 3.303 3.387 3.476 
65 2.038 2.186 2.388 2.646 2.964 
66 2.456 2.821 3.212 3.293 3.377 
67 1.352 1.482 1.625 1.782 1.953 
68 1.850 1.997 2.155 2.361 2.651 
69 2.383 2.732 3.182 3.280 3.363 

1970 1.814 1.971 2.143 2.368 2.6$9 
71 2.099 2.371 2.779 3.223 3.305 
72 2.775 3.224 3.306 3.389 3.480 
73 2.067 2.312 2.591 2.936 3.232 

1974 2.007 2.201 2.516 2.943 3.240 



Table 5.9 

Future Marginal Return of Storage, Main Statistics Computed for July 1 

Initial Storage 39.963 35.963 31.963 27.963 23.963 

x 106 m3 x 106 m 3 x 106 m 3 x 106 m3 x 106 m3 

Average 2.029 2.262 2.447 2.666 2.856 

Stand. dev. 0.507 0.605 0.626 0.619 0.584 

Coeff. var. 0.250 0.267 0.256 0.232 0.204 

Min. 1.146 1.256 1.377 1.509 1.654 
N 
.+:;.. 
(J1 

Max. 2.938 3.228 3.306 3.394 3.481 

All the numbers are given in Cents/m3 
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Table 5.10 

Future Marginal Return of Storage, Expected Values 
Computed for July 1, according to Different Methods 

Initial Storage 

Normal distribution 

Log.•Normal distr. 

.Four par. log-norm. 
distr .. 

Uppe1r boundary 

Upper boundary 

Linear relation* 

Least squares** 

39.963 31.963 23.963 

106 m3 106 m3 106 m3 

2.029 2.447 2.856 

1.967 2.368 2.790 

1.951 2.498 2.959 

3.250 3.400 3.560 

1.120 1.360 1.600 

2.028 2.414 3.001 

1.998 2.441 2.84~ 

All the numbers are given in Cents/m3 

* Computed according to the formula E[tnA!o ] = af+bf· Q40 , 52 ,s4G 

**Obtained from the linear regression between 
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value of storage depends on the initial content. It suggests also that 

the upper boundary plays a more important role than the lower boundary. 

Finally the expected future marginal return of storage derived from 

Eq. 5-7 lies remarkably close to the corresponding value given by 

the four parameters log-normal distribution. This is a very important 

result as it allows to reduce greatly the amount of computations 

required to determine the expected future marginal returns of storage. 

The relation established between inflow and associated future 

marginal return of storage on the basis of their respective distribution 

curves provides a fair fit to the "experimental" data. The fit is 

best for the lowest initial storage. On the whole, the reliability 

of the determined relation is roughly constant for the whole range of 

data, including the tails. Some of the recorded discrepancies between 

"experimental" and theoretical results can be explained by the fact 

that the original inflow sample is not exactly normally distributed. 

Also the four parameters log-normal distribution is not flexible 

enough to follow all the changes in curvature of the "experimental" 

distribution curve. 

A linear regression equation was computed between the natural 

logarithm of the future marginal returns of storage and the related 

inflows, to assess the merits of the just derived theoretical curve. 

As expected, the "least squares" curve fails completely to reproduce 

the situation prevailing for extreme data. It provides however a 

good fit for the central range of the experimental data, and when the 

boundaries play a secondary role. 

c) Mixed strategy situation. To illustrate this case, we shall 

consider the situation existing when the reservoir operation is 
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started on April 1. Table 5.11 and 5.12 contain the computed future 

marginal returns of storage while Table 5.13 supplies the corresponding 

expected values. Figs. 5.12, 5.16 and 5.20 show the fitted distribution 

curves, two for each initial storage, and Figs. 5.13, 5.14, 5.15, 5.17, 

5.18, 5.19, 5.21, 5.22, 5.23, the relation existing between the future 

marginal return of storage and the corresponding relevant hydrologic 

variable. 

The sample of marginal values of storage was divided into two 

groups, depending on whether or not the reservoir got empty for the 

associated optimal trajectory. The log-normal distribution provided a 

good fit to each group of data. This happened mainly because upper 

and lower boundary play here a secondary role. In fact the mixed 

strategy situation prevents the occurrence of extreme cases. If for 

example the inflow recorded from the start of the reservoir operation 

until the end of the water year is low in a given year, the reservoir 

does not get empty. If it would all the same have been empty, the 

corresponding future marginal value of storage would have been much 

lower. The expected values derived from Eq. 5-10 and 5-11 lie quite 

close to those obtained from the distribution curves. 

Generally a definite relation exists between future marginal 

return of storage and the inflow recorded from the start of the 

reservoir operation until the end of the water year. However this 

relation holds only for the smaller values of the considered inflow. 

As indicated by the relevant figures, above a certain inflow level, 

the future marginal returns of storage seem to be randomly distributed. 

These points correspond to the case where the reservoir gets empty. 
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Table 5.11 

Future Marginal Return of Storage, Values Computed for April 1 

Initial 7.569 4.569 1.569 0.000 
Storage x 10

6 
m3 x 106 m3 x 106 m 3 6 x 10 m 3 

Cents/m 3 Cents/m3 Cents/m 3 Cents/m 3 

1946 1.957 2.266 2.693 3.460 
47 2.028 2.362 2.999 3.714 
48 2.250 2.492 3.045 3.638 
49 3.209 3.258 3.309 3.746 

1950 2.441 2.879 3.421 3.828 
51 2.445 2.880 3.459 3.977 
52 2.040 2.425 3.101 3.811 
53 2.549 2.640 3.036 3.427 
54 2.442 2.838 3.373 3.691 
55 2.868 3.026 3.404 3.862 
56 2.569 2.961 3.519 3.936 
57 2.560 2.794 3.320 3.723 
58 2.499 2.970 3.530 3.982 
59 3.248 3.299 3.353 3.659 

1960 2.267 2.600 3.075 3.690 
61 2.571 2.682 2.792 3.429 
62 3.251 3.302 3.439 3.995 
63 2.352 2.796 3.357 4.077 
64 2.652 2.750 3.268 3.960 
65 2.509 2.878 3.420 3.771 
66 2.642 2.799 3.326 3.834 
67 2.481 2.894 3.439 3.931 
68 2.090 2.454 3.095 3.667 
69 2.769 2.958 3.516 4.016 

1970 2.540 2.946 3.526 4.045 
71 2.685 2.814 3.120 3.934 
72 3.241 3.293 3.346 3.482 
73 2.547 3.027 3.598 3.948 

1974 2.603 2.718 3.121 3.633 



Table 5.12 

Future Marginal Return of Storage, Main Statistics Computed for April 1 

Initial Storage 7.569 4.569 1.569 0.000 

x 106 m3 x 106 m3 x 106 m3 x 106 m3 

Average 2.562 2.828 3.276 3.788 

Stand. dev. 0.350 0.273 0.227 0.190 

Coeff. Var. 0.137 0.097 0.069 0.050 
N 

1.957 2.266 2.693 3.427 (}\ 
N Min. 

Max. 3.251 3.302 3.598 4.077 

All the numbers are given in Cents/m3 



Table 5.13 

Future Marginal Return of Storage, Expected Values Computed for 
April 1, according to Different Methods 

Distribution Storage Storage Storage 
Curve n 7.569 n 4.569 n 1.569 n 

106 m3 106 m3 106 m3 

Normal 29 2.562 29 2.828 29 3.276 29 

Log Normal 29 2.540 29 2.815 29 3.268 27 

Log Normala 12 2.374 20 2.739 25 3.280 

Log Normal b 17 2.664 9 2.991 4 3.191 

Log Normal c 12 2.377 

Log Normal d 17 2.670 

All the numbers are given in Cents/m3 

a) For the cases where the reservoir gets empty 

b) For the cases where the reservoir does not get empty 

c) Computed according to the Formula ~ d J _, 
E tnA27,7.569 = ad - bd Q27,30 

d) Computed according to the Formula E [tnA~7 '7. 5~9] 
_, 

= af- bf Q27,52 

Storage 
0.000 

106 m3 

3.788 

N 
0\ 
<.N 
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Aceordingly, these data points should be plotted against the 

inflow recorded from the start of the operation until the date the 

reservoir is empty, and then a new trend appears. 

As the boundaries play a secondary role, the fit provided by the 

linear regression approach is nearly equivalent to the one provided 

by the relation based on the respective distribution curves of the 

involved variables. Yet both relations are only valid in the central 

portion of the available data. 

The probability that for a given initial storage, the reservoir 

gets empty, was also evaluated. Obviously, the higher the initial 

content, the lower the probability that the reservoir gets empty. 

d) Full or nearly full reservoir. This situation arises for 

example on October 1, when the initial storage exceeds 69 million m3. 

As indicated in Section 5.3.6, two types of decision may apply. 

Accordingly the available sample of future marginal returns of storage 

is divided into two groups. In the first group belong all the cases 

for which no storage constraints are active, in the second one, all 

the cases for which the reservoir is still full at the end of the first 

week. Fig. 5.24 shows the fitted log-normal distribution. 

e) Empty reservoir. The last case to deal with concerns what 

happens when the reservoir is empty. If April 1 is selected as 

initial date, most probably the reservoir will be again empty at the 

beginning of the following week, as on the average, the reservoir 

remains empty until the end of April. Fig. 5.26 shows that the 

releases are independent from the corresponding inflows recorded 

between April 1 and the end of the water year. However if we relate 

the release with the corresponding weekly inflow a definite trend 
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appears (Fig. 5.27). The reservoir was never in the refill phase and 

eight times in the drawdown phase. The log-normal distribution 

provided a good fit to the computed future marginal returns of 

storage (Fig. 5.25). 

5.3.9 Summary and outlook. Reservoir operation under uncertain 

future requires the determination of the expected future marginal return 

of storage. The computations performed to this end showed tha• the 

factors which have an influence on this variable change during the 

year. The water year can be roughly divided into three main periods. 

From October to the end of February, the drawdown phase prevails, while 

from May to September, the refill phase prevails. In May and April, 

the reservoir is in mixed strategy situation as either the drawdown, 

or the refill phase may apply. Finally special cases arise in September 

or October when the reservoir is nearly full, and in April, when the 

reservoir is empty. 

Two linear expressions relating inflow during the relevant phase 

and natural logarithm of the associated future marginal return of 

storage could be established. The first relation holds for the draw­

down phase, the second one, for the refill phase. Furthermore, for 

these two phases it is possible with the help of these relations to 

estimate directly the expected future marginal return of storage. 

The calculation of this expected value requires only the knowledge 

of the optimum reservoir content curve corresponding to the sequence 

of average inflows. This property allows to compute the expected 

future marginal return of storage much faster than what was 

anticipated at the beginning of this section. Unfortunately the 

situation is not simple when mixed strategy situation prevails, or 

when the reservoir is nearly full, full or empty. 
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The final aim of this reserach is to introduce runoff forecast into 

the decision process. Yet before forecasting the magnitude of a 

variable, one must assess which variables are relevant for the deter­

mination of a release. The just performed analyses supply important 

information on this topic. 

In winter, for a given date and initial storage, the inflow from 

that date until the end of April is relevant. However computations 

showed that the spread of the future marginal returns of storage 

corresponding to different inflows sequences is very small, so that for 

practical purposes, one can consider that the optimal release strategy 

depends only on the initial date and on the initial storage. 

In late spring and summer, the inflow from the date under 

consideration until the end of the water year are relevant whereas 

the distribution of these inflows within this period plays a secondary 

role. Also a reliable relation exists between this variable and the 

corresponding future marginal return of storage. 

The most complicated situation arises in March or April when 

anyone of the three following variables can be important: inflow from 

the date the reservoir operation is started until the date the reser­

voir is empty, or inflow recorded from the same initial date until 

the end of the water year, or inflow recorded during the week follow­

ing the decision day. 

Finally the inflow during the week following the decision day 

can also become relevant in September or October when the reservoir 

is nearly full. 

Hence, depending on the date considered, different types of 

forecast must be done. The steps involved in the stochastic opti­

mization with flow forecast are described in the next section~ 
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5.4 Stochastic Reservoir Operation with Flow Forecast 

5.4.1 Principles of hydrologic forecasting. As already mentioned, 

the parameters relevant for optimal reservoir operation change within the 

year. In late fall and winter, the inflow Qk,t is determinant; in 

early spring, either Qk,t' or Qk, 52 , or qk; in late spring, Qk, 52 , 

and in early fall qk, where k stands for the initial date of reser­

voir operation, and t, for the week on which the reservoir gets empty. 

To obtain the most efficient strategy, these parameters should be 

known at the date the release strategy is selected. The complexity of 

the runoff process makes impossible the supply of such an information. 

The hydrologic models developed in Chapter 2 allow however the 

determination of the approximate value of the relevant parameters, 

along with an estimation of the reliability of the supplied information. 

The established linear runoff forecast models relate either weekly 

and monthly inflow with the inflow of the two preceding weeks, or 

monthly inflow with the inflow of the two preceding months, or 

quarterly and semi-annual inflow with meteorological variables (see 

Table 2.21). As these forecast equations contain variables which 

are known at that date, they can be rewritten in the following way: 

Y = Y + € (5-22) t 

where Y stands for the hydrologic variable to be forecasted. The 

influence of the variables known at the date of the forecast appear in 

Y, whereas the influence of the other terms appear in et. Hence the 

forecast equation is made of a so-called deterministic component 

Y, and of a stochastic component, Et. The stochastic component 
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Et follows in all the cases considered here a normal distribution 

with ~an equal to zero and well specified standard deviation at: 

(5-23) 

A~tually the standard deviation at expresses the reliability 

of the forecast. The greater its value, the smaller the reliability 

of the forecast, and vice-versa. In any case, it should be smaller 

than that of the recorded data sample of the variable to be predicted. 

Hence the forecasted variable still remains a random variable follow­

ing the same type of statistical distribution as the original variable, 

only its expected value and standard deviation are different. And this 

remark is the key to the solution of the present problem. 

5.4.2 Outline of the methodology. Twenty nine years of records 

exist at the selected gauging station. In fact one can consider these 

records as a sample belonging to a special forecast, namely to the 

one where forecasted mean and variance are equal to those of the 

recorded data. Hence the methodology derived in Section four still 

applies; only the appropriate statistical parameters must be intro­

duced into the relevant equations. Here, mean and variance are given 

by the forecast equation, in Section four, they came from the available 

records. But the major difference results from the fact that no inflow 

data sample corresponding to the forecasted mean and variance anymore 

exists. And the following question arises: is the available informa­

tion sufficient to derive the optimal release strategy? Yes the 

existing information is sufficient, except when the reservoir is in 

mixed strategy situation. In these cases additional information is 

needed and it is obtained by making extensive use of simulation. 
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The purpose of simulation is, among others, to establish 

experimentally some properties of a phenomenon which cannot be 

derived analytically because of the complexity of the problem. In 

the present situation, it consists of generating artificial samples 

of the forecasted hydrologic variable. Once the synthetic data have 

been generated, the problem is identical to that studied in Section 

three. That is the future marginal return corresponding to each of 

the generated inflow data can be computed, the appropriate distri­

bution curve, fitted, the expected value of future marginal return, 

evaluated, and the corresponding release determined. The computation 

steps appear in details in the forthcoming subsections. 

5.4.3 Drawdown phase. The inflow during the period extending 

from the date the forecast is done until the date the reservoir gets 

empty becomes the relevant parameter during the drawdown phase. 

However, as during the greatest part of the drawdown phase the 

magnitude of the inflow is small as compared to the prevailing storage, 

the inflow plays a secondary role and release depends practically 

solely on the initial storage. Only in early spring, when the 

reservoir content is low does the inflow play an important role. This 

corresponds in fact to the period when the reservoir is in mixed 

strategy situation. The forthcoming derivations apply to this case. 

The equation to forecast the relevant hydrologic parameter reads 

as: 

(5-24) 

where Y stands for Qk,t' x1, for the inflow during the week (k-1), 

and x2, for the inflow during the week (k-2). Associated with this 

equation is Et' the residual, which is normally distributed, with 
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mean zero and standard deviation at. Equation 5-24 supplies the 

expected value, and at, the standard deviation of the forecasted 

Qk 1 , so that: 
' 

with 

y = y + € 
t 

(5-25) 

The required sample of Qk,t is obtained with the help of a random 

number generator or from a table of random normally distributed numbers 

(Rand Corporation, 1955). Then the relation established in Section 

5.3 (Fig. 5.18, Fig. 5.22) supply the future marginal return of storage 

corresponding to each of the generated inflow data Qk 
1

. As no 
' 

boundaries are relevant here, the future expected marginal return of 

storage is easily computed. 

5.4.4 Refill phase. The total inflow recorded during the period 

extending from the initial date to the end of the water year plays 

the major role here. Depending on the length of the forecast period, 

different types of runoff models were used. For periods exceeding two 

months, the following type of relation was retained: 

(5-26) 

where Y stands for Qk, 52 or the inflow to be forecasted, x1, for 

the amount of water stored in the watershed at the date of the forecast, 

and a
0

, the constant term. 

If the length of the forecast period is smaller than two months, 

the Markov property of the runoff is used, and the typical equation 

reads as 
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where Y stands for Qk, 52 , for example one month, and x1 and x2, 

for the monthly flow recorded during the two months preceding the 

date of the forecast. 

However, both equations reduce to 

(5-28) 

Here again Y represents the influence of the deterministic component 

of the model and is equivalent to the expected value of the forecasted 

variable, whereas Et is a normally distributed variable with zero 

mean and standard deviation crt, which corresponds to the standard 

deviation of the predicted variable. A sample of inflow data Qk,S2 

with the required statistical properties is easily generated on the 

basis of the available information. 

The subsequent steps are identical to those of the drawdown phase 

namely: determination of the future marginal return of storage 

corresponding to each generated value of Qk, 52 , and computations of 

the expected value. Note that the upper and lower boundaries of the 

future marginal return of storage depend only on the initial content, 

which simplifies greatly the fitting of the four parameter log-normal 

distribution. 

However a shortcut exists, when the reservoir is in the refill 

phase. In these situations, the relation drawn on Figs. 5.4, 5.7 and 

5.10 supply directly the marginal return looked after and it is no 

longer necessary to generate synthetic values for the inflow Qk, 52 . 

It suffices to look on these graphs for the future marginal return of 
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storage corresponding to the expected value of the forecasted inflow. 

The so obtained number is the value we are looking for. 

In mixed strategy situation though, simulation is necessary. The 

fact that the future marginal return of storage is log-normally 

distributed introduces some simplifications into the computations. 

5.4.5 Mixed strategy situation. As indicated earlier, two 

different operation rules may apply at the beginning of spring, depend­

ing on whether or not the reservoir gets empty during the water year. 

Hence two samples of inflow data are generated concurrently, one 

representing the inflow from the initial date until the end of the 

water year, and the other one, the inflow from the initial date until 

the date on which the reservoir is empty. The two future marginal 

returns on storage corresponding to each pair of generated inflow 

data are computed and the highest obtained value is retained. This 

operation is repeated for the whole sample of generated data. Finally 

the weighted expected value is evaluated. The details of the just 

described computations appear in subsections 5.4.3 and 5.4.4. 

5.4.6 Full or nearly full reservoir. At the beginning of fall 

the inflow during the week following the initial date k becomes 

determinant, if it exceeds a specified threshold. Here again, the 

easiest way consists in generating weekly inflow data. The relevant 

forecast equation is: 

(5-29) 

with Y standing for the natural logarithm of the inflow during the 

week k, x1, for the natural logarithm of the inflow during the week 

(k-1) and x2, for the natural logarithm of the inflow during the week 

(k-2). 
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This equation must now be reduced to its standard form: 

(5-30) 

which allows the generation of the required weekly inflow data sample. 

From this point on, the methodology follows the steps outlined in 

subsection 5.3.6. The reservoir is in a mixed strategy situation. If 

the generated inflow is smaller than the threshold, the release is a 

constant, independent from the weekly inflow, if it is greater, the 

release is such that the reservoir just becomes full at the end of the 

following week. The future marginal return of storage results directly 

from these considerations and finally the weighted expected value is 

evaluated. 

5.4.7 Empty reservoir. In April, when the reservoir is empty, 

three situations can occur: either the reservoir stays in the drawdown 

phase, or in the refill phase, or it stays empty one more week. 

Accordingly different parameters may become relevant: Qk, Qk, 52 or 

qk. It is again a mixed strategy situation and three samples of inflow 

must be generated. The relevant forecast equations have already been 

described in a section of Chapter 2 and in subsection 5.4.3, 5.4.4 and 

5.4.6. Once the inflow data have been generated, the future marginal 

returns of storage are determined by a group of three and the highest 

value is retained. This operation is repeated for the whole sample 

and finally the weighted expected value is evaluated. 

5.4.8 Applications. Some typical cases will be worked through 

in this subsection to show the steps involved in the determination of 

the optimal releases. The water year 1947-48 was selected to perform 

these applications. It represents average hydrologic conditions. 
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The chosen initial date and initial storage correspond to those of the 

examples of subsection 5.3.8. 

a) Drawdown phase. The computations carried through in the 

preceding section indicated that the optimal releases could be con-

sidered as independent from the inflows sequence. Hence it is not 

worthwhile to establish runoff forecasts for this phase. An exception 

to this statement constitutes what happens in April, when the reservoir 

is nearly empty. This case will be analyzed later. 

b) Refill phase. This case is well characterized by the situation 

existing when reservoir operation is started on July 1. The relevant 

parameter is the inflow recorded during the months of July, August 

and September. According to Table 2.21, the relevant forecast 

equation reads as: 

QJuly,Sept = 902 •21 + 1•028 (POct,June - 0·667 ~ct,June) + Et {5-31) 

As P0 t J amounts to 679 mm, and o_ t J , to 923 mm, one obtains: c , une 'Oc , une 

QJuly,Sept = 1025.454 + Et in mm (5-32) 

with 

Et - N(O, 192.865) (5-33) 

This equation leads to an expected inflow of 55.067 million m3 which is 

not too different from 54.077 million m3, the sample average. This 

fact results directly from the low correlation coefficient existing 

between the dependent and the independent variables. Table 5.14 shows 

the generated sample of inflows 

Depending on the initial storage, Fig. 5.4, 5.7 or 5.10 is used 

to compute the future marginal returns of storage. Fig. 5.28, 5.29 
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and 5.30 display the fitted distribution curves, and Table 5.14 and 

5.18 the obtained expected future marginal return of storage. Note 

that in this case, simulation is not necessary and that the same 

result could have been obtained by determining the future marginal 

return of storage corresponding to the expected value of the forecasted 

inflow Q40 , 52 • 

c) Mixed strategy situation. Reservoir operation when started 

on April 1 illustrates well this case. Two parameters can be 

determinant: either Q27 , 52 , the inflow from April to September, or 

Q27 , 30 , the inflow during April. The following forecast equation 

applies in the first case (see Table 2.21): 

QA . 1 S = 1434.13 + 1.224 (P0 t M h - 0.667 0_ t M h) + et pr1 , ept c , arc 'Oc , arc 

(5-33) 

As POct,March amounts to 340 mm and %ct,March to 182 mm, we obtain 

QApril,Sept = 1762.557 + et in mm 

with (5-34) 

et ~ N(O, 230.076) 

In the second case, the forecast equation reads as: 

QApril = 1.497 - 6.608 q26 + 10.107 q25 (5-35) 

knowing that q26 amounted to 0.532 million m3 and q25 , to 0.644 

"11" 3 b . m1 1on m one o ta1ns: 

QApril = 4· 490 + et 

with (5-36) 

et ~ N(O, 1.147) 
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Table 5.14 

Future Marginal Return of Storage, Values Computed 
for 1948, July 1 

QJuly,Sept 
Af 
40,39.963 

Af 
40,31.963 

Af 
40,23.963 

x 106 m3 Cents/m 3 

1 59.677 1.65 2.03 2.52 
2 37.089 2.88 3.31 3.48 
3 37.508 2.87 3.29 3.47 
4 65.300 1.43 1.68 2.15 
5 45.066 2.49 3.08 3.37 
6 58.134 1.72 2.08 2.64 
7 53.008 2.01 2.58 2.99 
8 56.827 1.79 2.27 2.75 
9 57.384 1.77 2.22 2.70 

10 60.296 1.61 1.98 2.47 
11 52.337 2.05 2.62 3.03 
12 36.723 2.89 3.31 3.49 
13 55.702 1.85 2.37 2.83 
14 40.559 2.75 3.25 3.45 
15 52.014 2.07 2.63 3.05 
16 50.471 2.15 2.76 3.15 
17 81.080 1.17 1.39 1.67 
18 66.155 1.40 1.65 2.09 
19 53.758 1.97 2.50 2.96 
20 47.289 2.35 2.95 3.27 
21 56.696 1.80 2.27 2.75 
22 53.278 1.98 2.55 2.97 
23 76.416 1.22 1.43 1.73 
24 50.384 2.16 2.77 3.15 
25 49.486 2.22 2.83 3.19 
26 66.163 1.40 1.65 2.09 
27 55.414 1.87 2.39 2.85 
28 50.436 2.17 2.76 3.15 
29 55.074 1.89 2.40 2.87 
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Table 5-15 displays the generated inflow samples and the 

corresponding future marginal return of storage. Depending on the 

intiial storage, Figure 5.14, 5.18 or 5.22 was used to compute the 

future marginal return of storage if the reservoir was in the draw­

down phase, and Fig. 5.13, 5.17, or 5.20 if the reservoir was in the 

refill phase. The results are summed up in Table 5.18. 

d) Full or nearly full reservoir. October 1 is here the 

selected initial date while the initial storage equals 72 million m3 • 

The relevant parameter is q
1

, the inflow during the week following 

the start of the reservoir operation. The following prediction 

equation applies (see Table 2.21): 

!nq1 = -0.445 + 0.570 1nq52 + 0.532 tnq51 + et 

As for q52 and q51 , an inflow of 2.386 and 2.196 million m3 

respectively was recorded, the prediction equation reduces to 

with 

et ~ N(0,0460) 

(5-37) 

(5-38) 

Table 5.17 displays the generated samples of inflows and the 

computed future marginal return of storage. As usually the reservoir 

stays empty until the end of April, and due to the statistical pro­

perties of the generated hydrologic variables, the refill phase was 

never started here. Table 5.18 summarizes the computations 

results. 
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Table 5.15 

Future Marginal Return of Storage 
Value Computed for April 1 

QApr,Sept QApr. ).£ 
27,7.569 

Ad 
27,7.569 

Af 
27,4.569 

).d 
27,4.569 

x 106 m3 x 106 m3 Cents/m 3 

1 92.648 3.149 2.37 2.62 
2 74.659 5.400 3.05 3.15 
3 99.320 4.934 2.16 2.43 
4 93.945 3.977 2.33 2.52 
5 111.403 4.836 2.09 2.44 
6 83.307 5.706 2.71 2.81 
7 94.798 2.909 2.31 2.65 
8 83.394 4.150 2.71 2.81 
9 109.933 4.681 2.10 2.45 

10 77.550 2.895 2.93 3.03 
11 82.801 5.971 2.73 2.83 
12 103.681 4.652 2.10 2.45 
13 103.508 1.964 2.40 2.84 
14 74.473 4.136 3.07 3.16 
15 108.413 3.931 2.15 2.53 
16 108.870 3.935 2.15 2.53 
17 70.693 3.977 3.23 3.35 
18 99.406 3.240 2.23 2.61 
19 81.269 3.912 2.78 2.88 
20 90.782 5.386 2.44 2.52 
21 102.136 4.757 2.08 2.44 
22 96.144 6.477 2.27 2.35 
23 106.028 4.312 2.13 2.50 
24 76.450 5.199 2.97 3.08 
25 84.135 3.425 2.67 2.77 
26 97.244 3.112 2.23 2.63 
27 110.291 4.181 2.14 2.50 
28 87.557 4.067 2.58 2.65 
29 87.632 6.655 2.58 2.65 
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Table 5.16 

Future Marginal Return of Storage, Values Computed 
for 1948, April 1, Empty Reservoir 

* 
QApril,Sept QApril q27 Ad 

27,0.000 
Ad 
27,0.000 

x 106 m3 6 x 10 m 3 x 106 m3 Cents/m 3 Cents/m 3 

1 92.648 3.149 0.818 3.485 
2 74.659 5.400 0.684 3.570 
3 99.320 4.934 0.634 3.612 
4 93.945 3.977 0.810 3.464 
5 111.403 4.836 0.803 3.470 
6 83.307 5.706 0.521 3.711 
7 94.798 2.909 1.055 3.535 
8 83.394 4.150 2.249 3.284 
9 109.933 4.681 .954 3.347 

10 77.550 2.895 1.027 3.538 
11 82.081 5.971 1.076 3.252 
12 103.681 4.652 0.844 3.436 
13 103.508 1.964 0.777 3.740 
14 74.473 4.136 1.074 3.286 
15 108.413 3.931 0.630 3.616 
16 108.870 3.935 0.753 3.511 
17 70.693 3.977 1.343 3.318 
18 99.406 3.240 0.721 3.538 
19 81.269 3.912 1. 218 3.331 
20 90.782 5.386 1.159 3.188 
21 102.136 4.757 0.964 3.339 
22 96.144 6.477 0.981 3.326 
23 106.028 4.312 1.266 3.252 
24 76.450 5.199 0.693 3.562 
25 84.135 3.425 1.012 3.429 
26 97.244 3.112 1.109 3.493 
27 110.291 4.181 0.633 3.613 
28 87.557 4.067 1.112 3.300 
29 87.632 6.655 0.736 3.526 

*The values of this column correspond to the case where q27 is 
determinant. 
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Table 5.17 

Future Marginal Return of Storage 
Values Computed for 1948, October 1 

ql Ad Ad 

x 106 m3 1,72.000 3 1,72.000 
Cents/m 

1 1.932 3.237 
2 1.638 3.237 
3 2.933 2.999 
4 2.427 3.237 
5 1.038 3.237 
6 2.314 " 
7 2.587 " 
8 0.866 " 
9 1.206 3.237 

10 2.800 3.098 
11 1.313 3.237 
12 0.911 " 
13 1.058 " 
14 1.595 3.237 
15 2.824 3.080 
16 0.770 3.237 
17 1.531 " 
18 0.925 " 
19 2.446 " 
20 1.791 " 
21 0.765 " 
22 0.985 " 
23 2.091 " 
24 1.336 3.237 
25 2.830 3.076 
26 1.734 3.237 
27 1.706 3.237 
28 4.045 2.303 
29 1.625 3.237 
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Table 5.18 

Comparison of the Future Marginal Return of Storage 
Computed according to Different Methods, Year 1948 

Marginal Value of Storage 

Initial Initial Deterministic Stochastic Stochastic 
Date Content Case without with 

x 106 m3 Forecast Forecast 

Cents/m 3 

Oct. 1 72.000 3.250 3.025 3.181 

April 1 7.569 2.250 2.540 2.460 

" 4.569 2.492 2.815 2.689 

April 1 0.000 3.628 3.268 3.446 

July 1 39.963 1.828 1.951 1.921 

" 31.963 2.196 2.498 2.452 

July 1 23.963 2.906 2.959 2.900 
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5.4.9 Summary. The methodology developed in the course of 

this chapter is so flexible that it allowed without major problems 

the introduction of the runoff forecasts into the optimization scheme. 

Hence the outline of this section follows exactly that of the preceding 

section. 

Only the dimension of the problem increased by one, so that the 

problem became three-dimensional: date, storage and forecasted inflow. 

As a consequence, computational difficulties appeared which required the 

introduction of the simulation technique. This technique had to be 

applied whenever the reservoir is in mixed strategy situation. However, 

for all the other cases, the introduction of the runoff forecast pre­

sented no difficulties, the more so because the relations established 

in Section 5.3 between relevant hydrologic parameters and future 

marginal return of storage could be used directly. 

The last question to answer concerns the performance of this 

approach. This question cannot be answered definitely here. Many 

more computation would be required and the outcome of these analyses 

depends also on the hydrology of the watershed under consideration. 

We shall now just mention some trends which appeared while the 

reservoir was operated with the runoff of the selected watershed. 

Runoff forecasts led to an increase in the efficiency of reservoir 

operation mainly in mixed strategy situations. This fact resulted 

from the good reliability of the related runoff forecasts. However 

the gains due to runoff forecasts were smaller in the refill phase, 

as the reliability of the hydrologic forecast model is quite low. 

Finally runoff forecasts bring no substantial gains in the drawdown 

phase. 
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5.5 Final Remarks 

The method developed to solve the problem of deterministic reservoir 

operation allowed to derive an efficient and reliable procedure to 

operate the reservoir under uncertainty. This procedure makes full 

use of the basic properties of the optimal trajectory. For the deter­

mination of the optimal releases, the water year was divided into 

different periods, for which relations were established between optimal 

releases and relevant hydrologic parameters. The great advantage of 

the derived relations is that they are reliable for the complete range 

of the relevant hydrologic variables. Furthermore they permit the 

introduction of the runoff forecasts without major difficulties. 

Different factors made this positive result possible. Some of 

them are common to nearly all the reservoir operation problems, some 

result from the particular nature of the problem studied here. 

Common to all the reservoir operation problems are the fact that the 

reservoir stays successively in the drawdown and in the refill phase, 

and that in these periods, different parameters are relevant. On 

the other hand, however, the hydrology, the energy rate function and 

the price of the produced energy are specific to the problem under 

study. Despite of the existence of these special features, we claim 

that the methodology is quite general. The complete evaluation of 

the generality of the derived methodology appears in the next chapter. 



Chapter 6 

SUMMARY, RECOMMENDATIONS AND CONCLUSIONS 

The results of the computations presented in the preceding chapters 

show that the aims of the present research have been fulfilled. A 

thorough analysis of the hydrologic characteristics of the reservoir 

inflows and of the return function, and the study of the reservoir opera­

tion mechanisms led to the development of an original solution technique. 

The solution technique for deterministic reservoir operation results 

directly from the hydrologic, technical and economical characteristics 

of the system under consideration. As the date when the reservoir gets 

empty the first time does not change much from one sequence of weekly 

inflows to another, the annual reservoir operation can be broken down 

into two parts. The first part, the drawdown phase, covers the period 

preceding the date of first emptiness of the reservoir; the second part, 

the refill phase, covers the period following the date of first emptiness 

of the reservoir. To further reduce the amount of computations, the 

physical constraints of the system are first ignored. The optimal 

sequence of releases is then determined separately for both phases by 

solving the system of equations given by the Kuhn Tucker conditions. In 

a second step, the physical constraints are reintroduced into the compu­

tations and the release strategy is modified if necessary. Finally both 

phases are linked together and, if required, the release strategy is 

again modified to fit this new situation. However, because the date of 

first emptiness of the reservoir is nearly independent from the magnitude 

of the inflow, and because the physical constraints of the system affect 

the nature of the optimal release strategy only during a few weeks of 

the year, the solution obtained in the first stage of the computations 



292 

is very close to the optimal one. Hence most often only a few 

iterati~ns are necessary to arrive at the final optimal solution. 

For stochastic reservoir operation without flow forecast the notion 

of future marginal return of the storage is introduced. A release 

during a given week is optimal if its instantaneous marginal return is 

equal to the expected future marginal return of the storage. The 

analyses of the cases studied in the deterministic situation revealed 

that depending on the date and reservoir content considered, the future 

marginal return of the storage is related to a different but well 

specified parameter. Hence during the drawdown phase, the relevant 

parameter is the inflow recorded between the selected date and the date 

of first emptiness of the reservoir; during the refill phase, it is the 

inflow recorded between the selected date and the end of the water year. 

Furthermore, the natural logarithms of the future marginal return of 

the storage follow a normal distribution in the drawdown phase, and a 

four parameter normal distribution in the refill phase. The determina­

tion of the expected values looked after presents no special difficulties. 

A complication arises however in April and May, when the reservoir is 

nearly empty. In these cases, the reservoir can either be in the 

drawdown or in the refill phase. One says then that the reservoir is in 

a mixed strategy situation. The natural logarithms of the future 

marginal return of storage are distributed according to two different 

normal distributions, depending on whether they belong to the drawdown, 

or to the refill phase. The same kind of situation prevails in September 

or October, when the reservoir is nearly full. 

The introduction of the runoff forecast into the decision process 

involved no major difficulties. For the refill phase, the existing 
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relation between future marginal return of storage and relevant inflow 

variable supplies directly for any forecast magnitude of inflow, the 

corresponding future marginal return of the storage. For the drawdown 

phase, the same type of approach applies. However, as the inflow plays 

only a minor role as compared to that of the initial storage, the runoff 

forecast brings only small gains. In a mixed strategy situation, it is 

necessary to generate an artificial sample for each of the two relevant 

inflow variables, to determine the corresponding future marginal return 

of the storage, to select by pairs the highest obtained value, and then 

to compute the expected value of the so obtained sample of future 

marginal returns of the storage. The same procedure must be followed 

when the reservoir is nearly full, that is in September and October. 

The advantages of the derived method are as follows. By taking 

into account the hydrologic, technical and economical aspects of the 

problem, it was possible to simplify drastically the system of equations 

given by the Kuhn Tucker conditions, and to solve the original problem 

by a successive approximations technique. However it is not a trial and 

error approach, as the optimal solution is reached by a systematic 

correction of the initial unfeasible strategy. Also the use of the 

notion of future marginal return of the storage allows to pass easily 

from deterministic to stochastic reservoir operation without flow fore­

cast, and from stochastic reservoir operation without flow forecast to 

stochastic reservoir operation with flow forecast. Furthermore, the 

functional relations established between future marginal return of the 

storage and relevant inflow variable exhibit a reliability which stays 

constant for the complete range covered by the relevant hydrologic 

parameter. 
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The methodology developed here is complete and makes possible an 

optimal ~peration of the reservoir. However, due to the limited amount 

of time available, some points could not be studied in the desired depth. 

Hence the availability or the search for additional meteorological and 

hydro,lo~c data should lead to more reliable forecasts, especially for 

periods ~f short duration. On the other hand, concerning reservoir 

operation, the following point deserves closer consideration: the 

relation existing in the refill phase between the total inflow and the 

future marginal return of storage. Also a more refined theoretical 

development may lead in mixed strategy situation to a solution technique 

which does not require the use of simulation in stochastic reservoir 

operation with flow forecast. Of interest would be the evaluation of 

the gains brought about by the introduction of the runoff forecasts into 

the optimization procedure. Finally adaptive optimization procedure 

could also be considered. 

A point not mentioned up to now deals with the comparison of the 

release strategy obtained with the present solution technique with 

those established by some public and private Swiss utilities. This 

task was finally abandoned because of the great amount of work required 

to obtain meaningful results. First no dam exists in the watershed 

under study, so that the problem of correlation existing between the 

runoff of different watersheds immediately arises. Second, meetings 

with representatives of different utilities showed that not one, but 

many methodologies exist in Switzerland. Which one should then be used 

for comparison purposes? One, or all of them? Third, breakdown, 

unavailability of turbines, fluctuations of energy prices, changes in 

the structure of the power network markedly influence the release 
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strategy, so that different release strategies cannot be directly 

compared. Hence meaningful comparisons involving not too much work are 

only possible for average conditions. But this is of little interest, 

as reservoir operation under average conditions presents no major 

difficulty. 

As already mentioned, the derived solution technique is tailored to 

the power system under consideration, so that the legitimate question 

of the generality of the derived methodology arises. The different 

points involved will be reviewed one after the other in the following 

paragraphs. 

The hydrology of alpine watersheds is such that 61 percent of the 

annual runoff takes place within 3 months, while the contributions of 

the six winter months amount to only 12 percent of the annual discharge. 

This situation is extremely favorable for dividing the reservoir opera­

tion into drawdown and refill phase. However one should keep in mind 

that this feature is not peculiar to alpine watersheds. Many rivers 

of the world present this feature, although it may not always be so 

marked. Furthermore this very characteristic makes the construction of 

a reservoir interesting; if the natural flows of a river were already 

regulated, or nearly regulated, the construction of a reservoir would 

bring no great gain. Hence one can assume that for most rivers which 

feed reservoirs, one shall encounter runoff conditions similar to those 

of alpine watersheds. 

The energy price function comes into play in two places of the 

optimization procedure. First, the difference in prices existing between 

winter and summer increases the tendency, already given by the hydrology, 

of the reservoir to be empty every year nearly at the same date. 
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Smaller differences between winter and summer energy prices can imply 

a greater variation in the date of emptiness. This fact however does 

not question the validity of the derived method; at most it may compli­

cate it a little. On the other hand, one should remember that the 

existence of differences in winter and summer energy prices makes the 

construc·tion of a reservoir attractive. Second, with the selected 

energy price function, an exponential curve, interesting mathematical 

properties could be established for the optimal strategy. Of course, 

the energy price function is not necessarily an exponential curve; yet, 

even if this is not the case, it should he possible to derive interesting 

mathematical relations between optimal releases and some hydrologic 

variables. The computations may be more involved, but the procedure 

remains the same. 

The solution technique holds for any reservoir capacity, provided 

that the reservoir was built for seasonal regulation. In the selected 

example, the minimum and maximum possible head differ by only 17 percent. 

This property reduces the number of iterations required to reach the 

optimal solution. Hence one should expect slower convergence to the 

optimum for run of the river schemes, but the general methodology is 

still valid. 

The time step retained in this research amounts to one week. 

Obviously it can be decreased or increased without major difficulties. 

As pointed out in the introduction, the present research restricted 

itself to the problem of reservoir operation for the production of 

electrical energy. Clearly the same methodology applies for reservoir 

operation for irrigation or flood control. The only prerequisite is 

that an adequate objective function exists. 



297 

Finally the notion of expected future marginal return of storage 

allows quite easily the extension of the present method to the cases 

where more than one reservoir exists in the concerned system. 

Consequently the methodology derived in this research is quite 

general, as it lends itself to many different applications without 

major modifications. Furthermore the results of this study confirm 

that a thorough understanding of the processes involved in reservoir 

operation problems is quite rewarding. It allows tailoring the solution 

technique to the problem at hand and hence a high computational 

efficiency is reached. 
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APPENDIX A 

The solution technique developed in Chapter 4 is partly based on 

ideas contained in three French papers dealing with reservoir operation 

problems. Hereafter, these ideas will be shortly presented and discussed. 

The oldest of these papers was published in 1923 by Varlet. It 

deals with the regulation of the flows of a river, on which a reservoir 

has been built. The aim is to release water from the reservoir in such 

a way that the resulting river flow is regulated as much as possible. 

To achieve this goal, Varlet, as Rippl did (1883), proposed a graphical 

procedure based on the extensive use of mass curves. His method consists 

in plotting twice the cumulated inflows to the reservoir (Y-axis) as a 

function of time (X-axis). The origin of the first mass curve corresponds 

to the origin of the axes, whereas the origin of the second mass curve 

is shifted downward on the Y-axis by a quantity equal to the reservoir 

capacity (Fig. A.l). 

Any state of the reservoir, characterized by a date and the storage 

level reached at that date can be represented by a point in the XY plane. 

Furthermore the drawn mass curves are such that any state, which can 

possibly be reached by the reservoir during its operation must correspond 

to a point located within the area limited by the two mass curves. For 

when the reservoir is empty, the representative point lies on the upper 

curve, and when the reservoir is full, it lies on the lower curve. 

Finally, the succession of levels hit by the reservoir during its opera­

tion is represented by a continuous curve located within the enclosed 

area. 

Hence if initial and final reservoir contents are known in advance, 

the reservoir control problem boils down to the determination of the 
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Fig. A.1 Optimal Reservoir Content Curve according to Varlet 
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optimal curve which joins the two extreme points. For this purpose, 

Varlet cieveloped the method of the "fil tendu." This method assimilates 

the reservoir content curve to a thread and, according to Varlet, the 

optimal reservoir content curve is obtained by stretching the thread 

,between the two extreme points. 

The approach described above leads to two important properties of 

the optimal solution. First, as shown by Figure A.l, the optimal reser­

voir content curve is made of straight parts separated by curved ones. 

In other words, periods with constant releases alternate with periods 

with varying releases. Second, as a corollary to the first property, it 

appears that it is not always possible to regulate completely the flows 

of a river with a given reservoir. 

One can use Varlet's approach to optimize the ene~y production of 

a hydro-power scheme, provided that the following additional assumptions 

are stipulated. The utility concerned is only interested in the produc­

tion of firm energy, which it sells at a constant price. Also the head 

on the turbines does not vary with time. These assumptions markedly 

reduce the field of applications of Varlet's method. Nevertheless the 

idea of the "fil tendu" conveys an intuitive idea of what the optimal 

solution is. It also indicates that during the period of operation, the 

reservoir passes through different phases and finally it shows the role 

played by the initial and final conditions. 

Boulinier took over and developed the .ideas set forth by Varlet. 

In an interesting article published in 1943, he applies this method to 

the control of the level of Lake Geneva. The level of Lake Geneva, 

according to an international treaty, can fluctuate only within a range 

of about 2 meters. Furthermore, downstream of the gates which control 
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the lake level, there exists a run of the river power scheme, the energy 

production of which should be maximized. Hence the problem consists of 

maintaining the lake level within the range defined by the international 

treaty and in maximizing the energy output of the power scheme. It is 

in fact a multi-purpose optimization problem. 

Boulinier solved this problem in a stepwise procedure. He determined 

first for each day of the year the lake level at which the gates should 

be opened, in order to make sure that the maximum level would not be 

exceeded at a later date. This succession of levels specifies along with 

the minimum level the range within which Lake Geneva can be controlled 

for power production purposes only. 

In the second step, Boulinier optimized the firm energy output of 

the hydro-power plant. Using Varlet's method, he computed for a given 

sequence of inflows a curve representing, as a function of time, the 

minimum lake levels which guarantee a given firm release. He repeated 

the same procedure for different annual inflow sequences and determined 

the envelop curve of the obtained minimum levels. Finally, these compu­

tations were performed for different amounts of firm releases. The 

operation rule consists then in maintaining the lake level always above 

the appropriate minimum levels envelop curve (Fig. A.2). 

However the strategy just described applies only when the lake level 

stays close to the critical levels. If enough water is available, the 

present strategy is of no use. As a third step, Boulinier introduced a 

new condition into the problem. The power plant has a limited capacity 

and spills occur each time the release exceeds this value. Consequently, 

as a new condition, Bqulinier stipulated that the amounts of spills must 

be minimized. To satisfy this condition, Boulinier in much the same way 



Critical Lake Level Curve 

For a Firm Release of 400 m3/s 
I 

Lake Level, 
0 

g ~ 0 

m. a. s.l. ~ ~ ~ ~ 2 ~ ~ ~ .- I~ 

372.50 I \I \ • \ \ \I \: I I. I \) I I I I I 

372.00 ... 
250 

230 

371.50 ,. 

3 71 • 30 I « I ......... I 7ft, I u .. I • I I 'I , I .c I I , I I 

J F I M AIMIJ J A S I 0 I N I 0 

Time 

Fig. A.2 Lake of Geneva: Critical Lake Level Curve 

for Different Firm Releases (after Boulinier) 

-250 
230 

_....200 

VI 
0 
0\ 



307 

as before, determined the envelop curve of the maximum lake levels, 

above which the release should be set equal to the power station capacity. 

At this stage of the computations, two limiting lake level curves 

exist which indicate the release strategy to follow in extreme situations. 

Unfortunately both curves are of no use for situations corresponding to 

neither of the extreme cases. Boulinier, though, was not very explicit 

about what to do in these cases. 

The present article is instructive in many respects. To begin with, 

it represents an application of Varlet's approach and shows quite clearly 

its limitations. Although Boulinier indicated ways of introducing head 

and energy price variations into the computations, this path does not 

seem promising to solve real world problems. 

Yet this method is most important to understand the mechanisms of 

reservoir operation. The nature and the characteristics of the optimal 

solution is clearly displayed, as well as the effect of the initial and 

final conditions. Furthermore the present procedure proved that the 

reservoir, during the period of operation, goes through different 

phases. Phases with constant releases alternate with phases with vary­

ing releases. There exists also periods, where the optimal strategy is 

independent from initial and final conditions. 

Giguet (1945), conscious of the limitations of the preceding 

approach, started from a completely different point. Right at the 

beginning of his article, he introduced a new variable u, called the 

marginal utility of the release. It represents the return produced by 

the release of an amount dz of water. Hence the instantaneous return 

produced by an instantaneous release x of water during a period of 

time dt amounts to 



X 

J u dz 
0 
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and the total return resulting from reservoir operation for a 

duration tl equals 

tl x(t) 

(A-1) 

u = J J udzdt (A-2) 

0 0 

Hence the problem to be solved consists in determining the sequence 

of releases x(t), in such a way that the value of U is maximized. 

To stay as general as possible, Giguet assumed that the marginal utility 

of the release was a function of time, release, reservoir content, and 

prevailing meteorology. 

According to Giguet, reservoir control for energy production 

reduces to transferring water from those periods where the marginal 

utility of the release is low to those where the marginal utility is 

high. However this transfer of water is not always possible. This 

fact led Giguet to divide the reservoir operation period into different 

phases. Whenever the water transfer is possible without any restriction, 

Giguet said that the reservoir is in a "regime equilibre," while when 

this is not the case, he said that the reservoir is in a "regime bloque." 

For the situation where the reservoir is in a "regime bloque," he intro-

duced some further subdivisions, depending on whether the reservoir is 

full or empty at that time. 

After these introductory considerations, Giguet derived a series 

of rules and theorems which stipulate the conditions which must be satis-

fied in order for a release strategy to be optimal. Among others, he 

proved that for an optimal solution, the marginal utility of the releases 

varies with time according to a well specified pattern. 
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Furthermore Giguet introduced two special marginal utility 

functions. The first one, u , represents the marginal utility when the 
0 

release is equal to zero, the second one, u1, the marginal utility when 

the release is set equal to the reservoir inflow. 

Finally he derived the optimal release strategy on an annual basis 

for the case where is a sinusoidal function. As shown by Figure A.3, 

the optimal release strategy is made of branches where the marginal re-

turn of the releases is either decreasing or increasing, separated by 

periods where the marginal return of the releases is constant. 

Compared to the previous methodology, there is a tremendous 

improvement. Most important, the present method can accommodate cases 

where the marginal return of the release is not a constant. Note that 

Varlet's approach leads to the same results whenever the marginal return 

of the release is a constant. 

The drawbacks of Giguet's approach are that the determination of 

the optimal solution requires a certain amount of trial and error, and 

that it is a deterministic method. Finally no attention has been given 

to the role and the influence of the initial and final conditions on 

reservoir operation rules. 

The three reviewed papers contain original ideas on the solution of 

reservoir operation problems. The first two provide an intuitive idea 

of the properties and nature of the optimal reservoir content curve. 

The last one, more theoretical and more general, sets forth interesting 

properties of the marginal return of the successive releases. The three 

papers, combined together, give a good understanding of the reservoir 

operation problem. 
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However, if they show well the properties of the optimal solution, 

they fail, though, to indicate a systematic and efficient way to get at 

it. Hence the purpose of the present research was to derive from the 

available information a methodology which leads as directly as possible 

to the optimal solution. 
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