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ABSTRACT

COMPARATIVE ANALYSIS OF Cu(InGa)Se2 SOLAR CELLS

Cu(InGa)Se2, often abbreviated CIGS, photovoltaics have proven to be a commercially

viable solar-energy conversion technology. Diverse processes have been employed in the

manufacture, with varying end products, most resulting in high efficiency. A collabora-

tive project was undertaken with several CIGS labs and industrial partners to explore

the different electrical and spatial characteristics of CIGS solar cells relative to one an-

other. Characterization methods utilized include, current-voltage measurements, quantum

efficiency, capacitance-frequency and capacitance-voltage, electroluminescence, light-beam-

induced current and Auger profiling. Specific parameters for each cell were extracted from

the measurements. Together the methods used are a tool for understanding device perfor-

mance and optimization. Efforts were made to identify strengths, similarities and differences

and to connect processing details with observed characteristics.
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Chapter 1

SOLAR POWER

1.1 The Photovoltaic Effect

The photovoltaic effect is the process by which sunlight is converted into electrical energy.

This occurs when a semiconducting material absorbs a photon’s energy and generates an

electron-hole pair. If the photon’s energy is sufficiently large, the charge carriers will move

to a higher energy state. Semiconducting materials arranged as a p-n junction collect these

energetic charge carriers and facilitate their movement as electrical current. This is the

process by which all photovoltaic solar cells operate. Mastery of this process has had a

profound impact on global energy generation. The Cu(InGa)Se2 or CIGS thin-film solar

cell, through advances in device characterization, processing, and materials, has achieved

photovoltaic conversion efficiency of over 22% [1].

1.2 The Solar Boom

In the wake of substantial evidence supporting climate change [2], solar power has gained

considerable momentum, not only becuase of its standing as an environmentally friendly

technology, but also because of financial viability, and consumer accessibility. A multi-billion

dollar industry has come to life around solar-energy technology in recent years. Manufactur-

ing costs are continually decreasing while conversion efficiency continues to improve. Grid

parity, the goal of the solar industry for decades, has been achieved in several areas and even

eclipsed with reported costs as low as $0.05/kWh [3] [4]. The state of California recently

announced that it now obtains 10% of its total energy from solar, up from 0.9% 3 years ago.

The U.S. installed 7.3 GW of solar generating capacity in 2015 to reach 27.4 GW of total

installed capacity, enough to power 5.4 million homes. The amount of capacity installed in

2015 is projected to double in 2016 [5]
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1.3 A Case for Thin-film photovoltaics

There are several types of solar energy conversion technologies. Solar-concentrators for

thermal generation have been around for decades, but are seeing a decline in growth, mostly

due to the relative success of low risk, utility-scale photovoltaics. Silicon wafer photovoltaics

is an established technology that has dominated the solar panel market for several years.

Silicon, other than being an abundant, and accessible material, has the advantage of a strong

base of R&D due to the microelectronics and computing industry. It is a well understood

material therefore high efficiency panels can be made fairly cheap. However, silicon-wafer

technology has several fundamental drawbacks that may prevent it from continued domi-

nance of the solar industry. The drawback that may prove to have the biggest impact is the

energy and time cost of producing silicon wafers. Silicon itself is a poor absorber of sun-

light due to its indirect bandgap, therefore wafers must be fairly thick. In order to collect

generated carriers the wafers must be extremely pure to collect generated electrons. Making

”solar-grade” silicon requires a large amount of energy and several steps that range from

refining the raw silicon, to making monocrystalline ingots, to machining and assembly.

Thin-film solar cells (TFSC) are an alternative that can be made only a few microns

thick, which promotes good electron collection and a small amount of material. TFSC’s are

designed to be excellent absorbers with direct band-gaps optimized to the solar spectrum.

They perform well in varying temperatures and can be deposited on a variety of surfaces,

making their applications numerous and versatile. The lower amount of materials reduces

manufacturing costs and modern deposition methods result in a reduced manufacturing time.

CdTe, amorphous silicon (a-Si), and CIGS are the current leading thin-film technologies [6].

CIGS solar-cells have long produced the highest efficiency TFSCs. Only in the last three

years has CdTe begun to produce cells with comparable efficiency.
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Chapter 2

CIGS SOLAR CELL TECHNOLOGY

2.1 CIGS

It is customary for a solar cell to be named after its absorber material. CIGS is shorthand

for Cu(InGa)Se2, which has the chalcopyrite lattice structure, a direct bandgap, and for the

cells in this study, is polycrystalline in nature. The grain boundaries of this material are

relatively benign, which is important in mitigating recombination losses. A low density of

electronically active defects at the grain surfaces due to sodium passivation of copper site

defects is the common explanation [7].

Figure 2.1: Unit cell of the chalcopyrite lattice [6]

CuInSe2 has a bandgap (Eg) of 1.035 eV at low temperature, closer to 1.0 eV at room

temp. This can be modified by the addition of Ga at In lattice sites, usually through co-

deposition with CuGaSe2 (Eg=1.68). High-efficiency cells typically have Ga/(In+Ga) ratios
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between 0.2 and 0.3, and sometimes contain sulfur, which gives room for a range of Eg:

Eg(eV ) = 1.0 + 0.13x2 + 0.08x2y + 0.13xy + 0.55x+ 0.54y (2.1)

where x=Ga/(In+Ga) and y=S/(S+Se) and is determined by a fit to experimental data [8].

2.2 Device Physics

When the p-type buffer layer and n-type CIGS absorber layer come into contact, a

p-n junction is formed. The process is outlined in fig 2.2. The p-type material, although

electrically neutral is doped to have an excess of holes (acceptor states). The n-type material,

also electrically neutral, is doped to have an excess of electrons (donor states). When the

two materials make contact, a junction forms.

Figure 2.2: a-c : p-n junction and formation of the space-charge region, d-f: corresponding

band diagrams
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Since there is a concentration gradient of charge carriers between the two materials,

electrons from the n-type material migrate to the p-type material and combine with holes,

leaving behind a positively charged ion. Holes from the p-type material migrate to the n-type

material to combine with electrons, leaving behind negatively charged ions (Fig 2.2b). This

is known as diffusion current. The accumulation of charged ions in each material creates an

electric field which is referred to as the ”built-in field”. The region the built-in field extends

over is called the space-charge region (SCR). The SCR is stabilized when the drift current

caused by the built-in field equals the diffusion current.

The width of the SCR in the p-type material Wp and in the n-type material Wn is based

on the depletion approximation, which assumes the depleted charge has a box profile and is

dependent on the doping densities, NA for acceptor impurities, and ND for donor impurities

[9].

NAWp = NDWn (2.2)

The band diagram shown in fig 2.2f is a useful way of looking at a p-n junction. A charge

carrier can either be bound to an atom (in the valence band) or able to move freely throughout

the material (in the conduction band). The Fermi-Dirac distribution describes the occupancy

of states in a material, and the Fermi level is the energy of average occupancy, essentially the

average electron energy. In an n-type semiconductor, (which has a larger concentration of free

electrons) the Fermi level lies closer to the conduction band, while in a p-type semiconductor

(low concentration of free electrons) the Fermi level lies closer to the valence band fig 2.2d.

To satisfy the zero current condition associated with thermal equilibrium, the Fermi level

throughout the sample must be constant. When put in contact, the Fermi levels of the two

materials line-up, causing a shift in band alignment fig 2.2e-f. The SCR can be looked at as

a shift in the energy bands at the junction. Electron hole pairs generated in the SCR are

swept across the band and collected at the electrical contacts. This is called drift current.

The part of the absorber that is not part of the built-in field is called the quasi neutral region

(QNR). Electron-hole pairs generated in this region are not immediately swept across the

junction. Their movement is dependent on carrier lifetime and diffusion length, also their
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direction of movement is random. Due to the absorption capability of CIGS the width of a

cell may need to be large enough to allow for a depletion region capable of collecting deeper

penetrating long wavelength photons and to avoid recombination losses that may result from

generation near the back contact junction. An example CIGS band diagram is displayed in

fig 2.3.

Figure 2.3: CIGS band diagram[10]

2.3 Device Structure

The basic CIGS thin-film cell structure can be seen in figure 2.4. CIGS cells generally

have a substrate configuration, which refers to the orientation of the cell while in operation.

The substrate material is the base or bottom of the cell. Film layers are deposited on the

substrate, and light is incident on the top side of the structure.

There are multiple options for the substrate material. Soda-lime glass is cost effective,

and the diffusion of sodium through the back contact material into the absorber provides ad-

ditional benefits, such as passivation of acceptor like defects, and suppressing the formation
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of ordered defect compounds (Wei). Aside from this, the coefficient of thermal expansion

of soda-lime glass is similar to that of CIGS, and so the cooling from crystal growth tem-

peratures causes negligible stress to either material. Flexible metallic foil is lightweight

and malleable which works with the flexible nature of CIGS cells. Additionally there are

novel plastic substrates used by several manufacturers that increase the versatility of CIGS

technology.

Figure 2.4: CIGS cell structure

The back electrical contact deposited directly on the substrate is generally sputtered

molybdenum, with a thickness dependent on sheet-resistance requirements. During deposi-

tion of CIGS an interfacial layer of MoSe2 forms, which does not degrade device performance

and may promote formation of an ohmic contact. Several methods are used to deposit 1-3

µm of p-type Cu(InGa)Se2 which will be discussed in section 2.5. A p-n heterojunction

is formed by adding an n-type layer of CdS or Zn(O,S), by chemical bath deposition or

sputtering. While CdS is good for forming a junction with CIGS, it has a band gap of 2.5

eV (λ ≈ 500 nm), which results in significant absorption of the blue photons in the solar

spectrum, and provides a non-trivial conduction band offset that impedes photocurrent fig

2.3. CdS is deposited in a very thin layer to limit the absorption losses. A high resistance

(HR), highly transmissive, ZnO window layer is commonly deposited on top of the CdS layer.
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The benefits of which could come from filling in pinholes in the thin CdS, which could form

ZnO/CIGS diodes in parallel with the CdS/CIGS junction, and adding a layer of protection

from the sputtering process. Lastly a transparent conducting oxide (TCO) layer of doped

ZnO or In2O3:Sn (ITO) is deposited to facilitate lateral current collection. Cells are typically

finished with aluminum gridlines that can be defined with photolithography or evaporation

with an aperture mask [6].

2.4 CIGS Variations

Six labs including the National Renewable Energy Laboratory (NREL) labeled A, the

Institute for Energy Convercion (IEC) labeled B, and four companies (labeled C-F) each

contributed multiple cells to this project. All cells submitted are approximately 1 cm2

or smaller and have high efficiency, in the range of 14% to 20%. Each lab builds a high

efficiency cell very differently. Table 2.1 gives a summary of the substrate used by each lab,

their absorber deposition process, absorber material, buffer material, and cell structure. The

highest efficiency cell from each lab was measured and used for comparison.

Table 2.1: Participant processing details

Lab Substrate Absorber Process Absorber Buffer Cell Structure

A Glass Co-evap. (3-Stage) Cu(InGa)Se2 CdS ZnO:Al/i-ZnO/CdS/CIGS/Mo

B Glass Co-evap. (3-Stage) (AgCu)(InGa)Se2 CdS ITO/i-ZnO/CdS/ACIGS/Mo

C Steel (R2R) Co-Sputtering Cu(InGa)Se2 CdS ZnO:Al/i-ZnO/CdS/CIGS/Mo

D Steel (R2R) Co-evap. (3-Stage) Cu(InGa)Se2 CdS ITO/i-ZnO/CdS/CIGS/Mo

E Glass Precursor Reaction Cu(InGa)(SSe)2 CdS ZnO:B/ZnO/CdS/CIGSSe/Mo

F Glass Precursor Reaction Cu(InGa)(SSe)2 Zn(O,S) ZnO:B/ZnO/Zn(O,S)/CIGSSe/Mo

Three-stage co-evaporation is a technique that involves evaporation of the different mate-

rials in three stages, often resulting in a graded bandgap. In, Ga and Se are first evaporated

in the chamber, then Cu with Se. The materials interdiffuse on the surface into CIGS. This

results in a copper rich composition. In, Ga, and Se are evaporated again in the third stage
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to result in a Cu deficient layer. A Cu deficient junction and a Cu rich bulk region have

been empirically found to make the most efficient cells [11]. Co-sputtering involves bom-

barding multiple targets with an ion beam to kick off particles in an argon or selenium rich

atmosphere. Such ejected particles are not in their thermodynamic equilibrium state and so

deposit on a substrate placed in the chamber. Precursor reaction involves deposition of a

precursor film containing Cu, In and Ga, which is then reacted at high temperatures with

H2Se and sometimes S to form Cu(InGa)Se2. There is ample room for variation of elemental

deposition in each technique by varying the elemental flux with co-evaporation, or sputter

yield.

• Lab A is the closest to the ”standard” CIGS cell of the group in that it does not use

novel materials to improve performance.

• Lab B uses silver deposited in the absorber to help increase the bandgap, and an ITO

conducting layer.

• Lab C in addition to using a flexible stainless steel substrate, deposits a Cu(InGa)Se2

through co-sputtering and uses a (ZnO:Al) layer.

• Lab D also uses roll to roll deposition onto a flexible stainless steel substrate, but with

co-evaporation, similar to cells A and B.

• Labs E and F deposit on glass through a precursor reaction. Lab F is cadmium free,

using Zn(O,S) instead of CdS. Both use a proprietary TCO layer, and both have added

sulfur in their absorber layer.

Some of the cells are more similar than others, and we will use these similarities to learn

about the impact of their differences. E and F will often be compared side-by-side because

of their similar deposition processes and similar TCO layers. Labs E and F are also the only

labs that use sulfur in their absorber layer. Labs A and B will be compared frequently to look

at the effect of Ag in the absorber layer. A and D will serve as a good comparison because

of their similar deposition processes on different substrates. Table 2.1 shows differences in
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processing and materials while the following chapters will reveal more intricate details of

processing and varying performances. Chapter 3 will deal with measurement techniques

used at Colorado State University. Results and comparison of measurements are found in

chapter 4 with interpretation and conclusions in chapter 5.
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Chapter 3

SOLAR CELL CHARACTERIZATION

This chapter will discuss electrical and spatial measurement techniques employed in this

study. Emphasis will be on the physical mechanisms behind each technique, the attainable

information, and the experimental set-ups.

3.1 Current-Density vs. Voltage

The most significant parameter associated with a solar-cell is conversion efficiency.

η =
PMP

100 mW/cm2
(3.1)

Where PMP is the maximum output power density of the cell and 100 mW/cm2 is the

approximate incident illumination power density under air mass 1.5 (AM 1.5) illumination

conditions. AM 1.5 illumination is representative of the sun’s illumination conditions on the

earths surface. It takes into account atmospheric effects on the sun’s spectra as well as angle

of incidence. Another important parameter, fill factor is,

FF =
PMP

JSC [mA/cm2] · VOC [V ]
(3.2)

where PMP is JMP ·VMP . JSC is the short-circuit current density and VOC is the open circuit

voltage. Parameters JSC , VOC , FF, and η are taken from current-density vs. voltage (JV)

measurements, in which current is measured over a changing voltage bias and normalized

to the cell area. Fig 3.1 shows a typical set of JV curves in the dark and at standard

illumination.
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Figure 3.1: Representative JV curve

In the dark there is no change in current until the voltage is sufficiently high enough

to overcome the built in field at which point current becomes exponentially large. The J-

V curve drops into the fourth quadrant when illuminated as JL (light generated current)

becomes dominant.

An important and relevant way of looking at a solar cell in terms of electrical charac-

terization, is to model the cell as a circuit. Fig 3.2 is the equivalent circuit of a solar cell.

All of the displayed parameters are measurable and have a real effect on cell operation. The

operation of this circuit is described by the diode equation:

J = J0

[

e
q(V −JRS)

nkT − 1
]

+
V − JRS

rSH
− JL (3.3)
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Figure 3.2: Equivalent circuit diagram, from[8]

JL can be described as:

JL(V) = JL0 · ηC(V) (3.4)

with JL0 being the optically limited light generated current and ηC a voltage dependent

collection function. J0 is the saturation current density given by:

J0 = J00 · exp

[

−
φb

nkT

]

(3.5)

The prefactor J00 is dependent on the specific recombination mechanism that dominates

the forward current J0. n, is the diode quality factor which ranges between 1 and 2 and is

dependent on energies of defects that act as dominant trap states. φb is the barrier height

which is the energy difference between the fermi level and the conduction band. In most

cases doping density of the absorber is large enough that it can be considered to be equal

to the bandgap. T is temperature, k is the the Stefan-Boltzman constant, q the elementary

charge, Rs and rsh are representations of the losses that occur in series or in parallel with

the primary diode respectively [12].

The J-V measurement system used in this project used a Keithley 2401 sourcemeter for

applied bias, current and voltage measurements. A xenon arc-lamp with filters is used as a

solar simulator. The system is calibrated to AM 1.5 conditions using a Si reference cell.

13



3.2 Quantum Efficiency

Quantum efficiency (QE) is a measure of the number of collected electrons to the number

of incident photons. QE measurements are commonly used to determine the losses responsi-

ble for reducing the measured Jsc from the maximum achievable photocurrent fig 3.3. When

measured at 0V bias, the integral of QE(λ) can be used to calculate Jsc:

Jsc = q ·

∫ λ=∞

0

QE(λ) · AM 1.5(λ)dλ (3.6)

where q is the elementary charge and AM 1.5 (measured in photon-flux units) is the solar

spectrum standard used in photovoltaic measurements.

Measured QE, or external QE (EQE), is that of a finished cell which does not account

for losses due to reflection. IQE or internal QE accounts for reflection losses and is defined

as QE/(1-R) (where R represents total reflection losses) and is a measure of the QE of the

absorber material rather than the entire cell. Other Jsc losses can be accounted for through

an analysis of QE measurements illustrated by fig 3.3.

QE measurements also provide an estimate of the CIGS bandgap, Eg, which can be found

by using the maximum absolute value of the derivative of QE with respect to wavelength.

Eg = max|
d(QE)

dλ
| (3.7)

This process corresponds to a sharp energy cutoff, which for graded band-gap absorbers

would be an average.

QE was measured using light from a halogen bulb, which passes through an Acton Spectra

Pro 150 monochromater. The monochromatic light is chopped by an SRS SR450 chopper

and focused on an area of the cell. The cell current output is amplified by a SRS SR570

preamplifier. The signal is measured by a SR870 lock-in amplifier, which is locked to the

chopper frequency. A 620 nm long-pass filter is inserted into the beam after the sweep passes

650 nm to remove second order monochromater peaks [13]. Reflection measurements were

made ona Perkin-Elmer Lambda 2 Spectrometer.
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Figure 3.3: QE curve from a CIGS cell w/ JSC losses labeled [1]

Above is a representative QE curve of a CIGS cell. The individual losses corresponding

to figure 3.3 are:

1. Shading from the front contacts

2. Front surface reflection

3. Absorption in the ZnO layer where Eg= 3.3 eV

4. Absorption in the CdS layer where Eg= 2.4 eV. The loss below Egap of CdS is

proportional CdS thickness, since it is commonly observed that carriers generated in

CdS are not collected

5. Incomplete CIGS absorption near the band gap. Band-gap gradients affect the steep-

ness of the curve in the long wavelength region

6. Incomplete CIGS collection which has been shown to be affected by absorber thickness.

[6]
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3.3 Capacitance Measurements

Capacitance-frequency (C-F) and capacitance-voltage (C-V) measurements work on the

principle that a p-n junction can be modeled as a parallel plate capacitor, with a capacitance

(C) of:

C(V ) =
ǫǫ0A

W(V)
(3.8)

A is cell area, W is width of the depletion region, and ǫ and ǫ0 are the permittivity of the

semiconductor material and permittivity of free space respectively. W for a one sided abrupt

junction:

W (V ) =

√

2ǫǫ0(Vbi − V)

qNp

(3.9)

where q is the elementary charge, Vbi is the built in potential, V is the applied voltage

and in CIGS cells Np is the doping concentration of the absorber layer. These types of

measurements are not definitive because of the typically large density of trap states found

in thin-film solar-cells which cause the boundary of the depletion region to be imprecise.

However, the measurements do provide approximate information. Capacitance as a function

of frequency is first measured at several voltage biases, to check for possible dispersion. A

flat area on the C-F curve where C does not vary is chosen as a stable AC frequency for use

in C-V measurements, around 50 kHz in fig 3.4.

Figure 3.4: left: Capacitance-frequency, right: A2 /C2 vs voltage of a CIGS cell
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The sudden rise in the curve close to 1000 kHz is an artifact of LC resonance due to the

inductance of the cable used. Combining eqns 3.8 and

A2

C2
=

2(Vbi − V)

qǫǫ0Np

(3.10)

The intercept of a plot of A2/C2 vs. V, fig 3.4 (right), gives Vbi, and the slope yields doping

concentration N. Since in the depletion approximation the capacitance originates solely from

the edge of the depletion region, rearrangement of eqn 3.10 to solve for Np and taking the

derivative of d(C−2)/dV and substituting in eqn 3.8:

Np =
C2

qWA
·

∆V

∆C(V)
(3.11)

We can obtain the doping concentration as a function of distance from the junction [14] [9].

A representative plot is shown in fig 3.5.

Figure 3.5: Hole density vs distance from junction

For capacitance measurements a HP 34401A multimeter, HP 4192 A LF Impedence

Analyzer and Keithley 230 power supply were used.
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3.4 Electroluminescence

The first spatial characterization method to be discussed is electroluminescence (EL).

EL is the spontaneous emission of radiation in a semiconductor as a result of injection of

free carriers. An injection current is applied to the cell and the electrons in the conduction

band recombine with holes in the valence band. Most carriers recombine non-radiatively, but

some fraction cause the emission of photons, that fraction being dependent on the material.

Put simply EL measurements treat a solar cell as an LED. A constant current is applied

to the cell and radiated photons are detected by a CCD camera. A CCD is a detector

of photon intensity rather than a spectral detector. This intensity is converted to a pixel

value and an image is assembled. Images in this study are divided by time of exposure

and represent an emission rate relating to the quality of a cell’s absorber. Analysis of EL

images can identify locations of weak activity, defects and inhomogeneities. One advantage

of EL is that measurements can be performed in a relatively small amount of time, quickly

identifying processing faults [15].

3.5 Light-Beam-Induced Current

Light beam induced current (LBIC) provides topographical performance data of the

cell. Specific details or defects can be analyzed and small areas can be isolated. For the

measurements taken in this study a 638 nm diode laser was rastered across the total cell

area and the cell current was measured. LBIC works complementary to EL in that defects

identified in EL can be looked at in depth with LBIC. LBIC measurements use an SRS

SR540 mechanical choper, a Chroma 12061 multimeter, a Thor Labs LDC 201C VLN laser

diode controller, a SR570 Preamplifier, and an SR 810 Lock-In.
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3.6 Scanning Electron Microscopy and Auger Profiling

Collaborating laboratories performed scanning electron microscopy (SEM) and Auger

emission spectroscopy (AES) measurements on representative cells from each lab in this

project. SEM imaging is divided into that making use of secondary electrons and backscat-

tered electrons, resulting in different contrasts in the images and thus providing information

on compositions, microstructures, and surface potentials. In this study SEM was used to

obtain an image of the cross-section of a cell. With this image we can get information about

a cell’s topography and composition.

AES measurements performed on a Physical Electronics 670 field-emission scanning

Auger spectrometer at NREL provide valuable insight into the makeup of each cells ab-

sorber material. The Auger profiles allow understanding of possible effects taking place at

buffer/absorber and absorber/back-contact junctions as well as the band-gap and any gra-

dients. AES utilizes the Auger effect whereby an energetic electron moves to a lower energy

state and gives its energy to another electron which is ejected from the material. Lower

energy-state vacancies in many instrument configurations are created by bombardment by

an electron beam. The ejected electrons are collected and their energies give an indication

of the elemental composition of the material. Auger is performed while sputtering through

the depth of the material and provides info on the elemental composition through the depth

of the cell [14]. Sputter rate was calibrated on a 100 Å Si wafer calibrated at 151 Å/min,

however sputter rates depend on the material and may require a correction.
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Chapter 4

MEASUREMENTS AND ANALYSIS

This chapter will look at measurement results with an emphasis on comparison between

cells, and identification of the features and mechanisms contributing to the identified param-

eters.

4.1 J-V

Table 4.1 contains some cell parameters extracted from J-V measurements as discussed

in seciton 3.1, and includes cell area. The parameters below were determined from J-V data

using the current-voltage analysis program (CurVA), developed by M.Gloeckler. CurVA uses

several different methods of plotting the diode equation for a solar cell (eqn 3.3), coherent

with the methods for extracting cell parameters found in [12].

Table 4.1: J-V performance parameters

Lab Area[cm2] VOC [mV] JSC [
mA

cm2 ] FF[%] η[%] J0[
mA

cm2 ] rsh[Ω · cm2] Rs[Ω · cm2] n

A 0.42 701 34.3 80.7 19.4 2.5e-8 1.1e4 0.3 1.3

B 0.4 742 33.0 77.8 19.1 2.9e-7 5.5e3 0.4 1.6

C 0.42 698 32.3 77.4 17.5 1.3e-6 6.3e3 0.2 1.6

D 1.0 659 35.5 68.6 16.0 1.8e-5 2.3e2 0.6 1.8

E 0.42 571 34.6 72.3 14.3 1.1e-5 2.3e3 0.8 1.5

F 0.53 669 38.3 73.2 18.8 7.5e-6 1.1e3 0.4 1.7

The current record efficiency CIGS cell is held by Solar Frontier at 22.3% [1]. While

all the cells involved in the study have relatively high efficiencies, no single manufacturer

is dominating in every category. (B) has the highest VOC which is typically coincident

with having a large band-gap, (F) has the highest JSC , typically coincident with having
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a low band-gap. (A) has the highest FF, lowest diode quality factor n, lowest value of

recombination current, J0 (eq 3.5) and highest efficiency η. Cell D performed lowest in

nearly every category. JV curves under standard illumination are shown in fig 4.1. The JV

curves for all cells are well-behaved. Neither rsh or Rs (fig 3.2) have significant impact on

the curves.

Figure 4.1: J-V under standard illumination

The Shockley-Queisser (S-Q) limit defines the theoretical maximum efficiency obtainable

by a single junction diode with band-gap energy Eg, given a set of specific assumptions.

To summarize, the assumptions are: (i) The probability of generating an electron-hole pair

for photons with energyEg is unity (ii) All photogenerated charge carriers thermalize to the

band edges (iii) The collection probability for all photo-generated electron-hole pairs is unity.
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(iv)The only loss mechanism is the spontaneous emission of photons by radiative recombi-

nation of electron-hole pairs as required to satisfy the principle of detailed balance. [11]

Figure 4.2: J-V normalized to S-Q limit

By normalizing to the S-Q limit we can see how well each cell is optimized. Stated a

different way, where each cell lies with respect to its theoretical limit. The J-V curves in

fig 4.2 are the curves from fig 4.1 that have been normalized to the S-Q limit. While each

cell in this study has very good efficiency, there is still ample room for improvement in both

JSC and VOC . JSC values of all cells corresponded to collecting 80-85% of all photons above

the band-gap. VOC values ranged between 65-80% of maximum. After normalization cell F

has the highest VOC relative to the theoretical limit. Fill factors were quite good, all within

82-95% of the maximum.
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4.2 QE and Reflection

Quantum efficiency and reflection of each cell were measured in parallel and the internal

quantum efficiencies (IQE) are compared in fig 4.3. The IQE curves for all the cells are quite

good, nearly 100% over a broad part of the solar spectrum.

Figure 4.3: Internal quantum efficiency

The most striking thing about fig 4.3 is that labs E and F have much greater QE at shorter

wavelengths. Cells B and D have the lowest performance in this area. Improved performance

above the CdS bandgap (λ <500 nm) likely has to do with buffer layer thickness. It is possible

that the addition of sulfur to the absorber in cells E and F allows for a thinner CdS layer.

It is also worth noting that the Zn(O:S) buffer layer found in cell F seems to perform about

as well as the CdS in cell E. Lab B maintians the highest QE in the mid range staying at

almost unity until about 950 nm. The well defined shoulder on the right side of cell B’s
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curve suggests good mitigation of deep penetration losses toward the back of the cell.

The fall off at longer wavelengths in each curve reflects the differences in bandgap between

cells, corresponding to eqn 3.7.

Lab F and Lab E both have gradual slopes in IQE that extend beyond measurement

capabilities, which also coincides with lower values of Eg. Though our measurements only

extend out to 1100 nm it is not an unreasonable extrapolation based on the slope of cells E

and F to say their QE is non-zero out to 1200 nm. Both show signs of incomplete collection

at longer wavelengths with cell F performing much better.

Table 4.2: JSC losses[mA
cm2 ]

Lab EQE
g [eV] Jidealsc JQE

SC Reflection Window Deep Penetration

A 1.17 39.7 35.5 1.2 1.7 1.3

B 1.22 37.6 33.6 1.5 2.1 0.5

C 1.22 37.7 33.2 1.6 1.3 1.6

D 1.18 39.3 34.1 1.5 2.0 1.5

E 1.09 43.0 36.8 3.2 0.1 3.0

F 1.05 45.3 41.4 1.8 0.3 1.8

Table 4.2 quantifies the values of Jsc losses by type of loss in accordance with fig 3.3.

Jidealsc is the value of Jsc derived from bandgap:

JidealSC = q ·

∫ λg

0

AM 1.5(λ)dλ (4.1)

and

JidealSC = JQE
SC + Reflection +Window + Deep Penetration (4.2)

Where λg is the equivalent Eg wavelength. Reflection, corresponds to losses from grid shading

and reflection, and was measured from 400 nm to λg. Window corresponds to buffer layer,

window layer and TCO absorption, and represents losses from 400 nm to 650 nm. Deep

penetration corresponds to incomplete absorption losses from 650 nm to λg. Cell E in

24



particular stands out as having the highest reflection, deep penetration and total Jsc losses,

but the lowest window losses, by a significant margin in each case.

4.3 Capacitance

C-V measurements were taken in general at 50 kHz AC voltage as determined from C-F

data. From eq. 3.10 the slope of a plot of (A/C)2 vs. V fig 4.4 reveals relative doping

concentration. Cells C, E and F form fairly straight lines and thus seem to have somewhat

uniform doping concentrations. Attempts were made to take each cell from a reverse bias

voltage of -1V to a forward bias voltage of 1 V. Most cells could only be biased to ∼ 0.6 V

forward bias, however in the case of cell D, large negative or forward biases were beyond the

cell’s capability. Diode quality factor (n) for cell D was the highest measured in J-V. Since n

is indicative of trap state concentration, poor performance as a capacitor is to be expected.

Note that the plot of cell B is not included as it is a decade larger than the rest of the group,

though its general shape is similar to cell C.

Figure 4.4: A2 /C2 vs Voltage
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Figure 4.5: Hole Density vs Distance from Junction

Fig 4.5 shows Np vs. W with locations where V=0 marked on each curve. Areas to the

left of the marker are forward biased, and those to the right are reverse biased. The plots

coincide with what was seen in fig 4.4. The low diode quality factor of cell A may contribute

to the overall shape and smoothness of the curve. Np is fairly flat for cells B, C, E, and F.

Cell D has quite a large amount of uncertainty in the data. Cell B has lower capacitance,

which, according to eq. 3.8 coincides with having a large W. For five of the cells, the hole

density was in the low-to-mid 1016 cm−3 range with corresponding depletion widths (W) of

0.3 to 0.4 µm. Cell B, had a much lower hole density (low 1015 range) and a value of W near

1 µm. This is not conclusive evidence of having a large depletion region but would coincide

with Cell B having low deep penetration losses and the thickest absorber layer.
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4.4 Electroluminescence

EL measurements were generally quite uniform. The contact probe can be seen in the

middle right area of each cell, or middle bottom of cell D. In each cell there is a recognizable

drop-off in applied voltage moving away from the gridlines due to sheet resistance. It is

less apparent in poorer performing cells C and E. Defects can be seen in nearly every cell,

those on the right hand side of fig 4.6 being more obvious. Cell D which has a stainless steel

substrate has defects that span the length of the cell. Cell F has what would appear to be

issues with breaks in one gridline in the upper left section of the cell, as does cell A in the

center gridline. These breaks may account for significant losses in collection.

Scale in units of log10[counts/s/(mA/cm2)]

Figure 4.6: Electroluminescence images at 40 mA

cm2
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Note the different intensity scales accompanying each cell. A, B and C are on the same

scale, so comparison of those three shows that cell B had a much higher rate of emission

than the others due to its relative brightness. It was so much higher that it was imaged for

a decade less time because the detector became saturated. Cells D and F are on the same

scale and show similar intensity. Cell E’s low rate of emission coincides with a low VOC .

Figure 4.7: Normalized EL vs. VOC

EL has been shown to be exponentially proportional to VOC with slope = q/kbT [16].

Fig 4.7 shows that the cells in this study generally abide by that relationship with some

deviation due to the range of Eg’s found in this study which fall near the detection limits of

the CCD camera.
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4.5 LBIC

QE measurements revealed that IQE was approximately 99% for each cell at 638 nm and

as such LBIC measurements are normalized to this value. Low-resolution LBIC maps are

displayed in fig 4.8 in which devices were rastered at a 50-µm step size at 0-V bias with a

100-µm laser spot size.

Figure 4.8: LBIC displayed in %QE

LBIC confirms the some of the defects found in EL as well as helps to identify and explain

others. The lines on cell D are clear in EL and though faint can be seen in LBIC. Cell B has

a curved line in LBIC that does not appear in EL. EL measurements were performed first so

there is the possibility of a new scratch due to handling. The grid disconnect in the upper

left area of cell F which is clearly shown in EL, is apparent in LBIC, though it seems to be

farther to the left hand side. This indicates that there may be another break in the gridline.
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4.6 SEM

Figure 4.9: SEM images on representative absorber samples from four manufacturers. All

images are on the same size scale, and the average absorber thickness measured from each

image is as indicated. Compiled by R. Garris

Scanning electron microscopy (SEM) images were collected on representative cells chosen

from four of the groups. Results are displayed in fig 4.9. Thickness shown on each image is

an average value. Each image is displayed on the same size scale, with the image dimensions

being 2.4 µm wide and 4.5 µm high. Except for sample C the images were collected on

bare absorbers prepared by etching the TCO window and buffer layers from finished devices.

Samples C and D (those prepared on stainless steel substrates) were prepared for imaging

by cutting through the film and were imaged at a small angle. The remaining samples A

and B, were prepared by a standard cleave.

The samples deposited by co-evaporation (A,B,D) and co-sputtering (C) show large grain

structure, and clean interfaces between the absorber and the Mo. The samples deposited by

precursor reaction, and containing sulfur (not shown) show smaller grain size and voids at

the interface between the absorber and Mo.

4.7 Auger

Samples were prepared for Auger by etching off the buffer, window and TCO layers.

Table 4.3 lists atomic concentrations near the front of the absorber and near the back.
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There is no AES profile for sample B (sample containing silver) because high photocon-

ductivity caused a large amount of charging during the measurements and prevented any

reasonable data from being obtained.

Table 4.3: Uncorrected atomic concentrations. Concentrations from: Near front→Near back.

Front is 5-10 min avg ∼ 50 nm : Back is nearing Mo interface : III=In+Ga, VI=Se+S

Lab Cu% In% Ga% Se% S% Ga/III S/VI

A 25→ 26 21→ 17 6→ 10 48→ 47 NA 22→ 37 NA

C 25→ 25 17→ 11 8→ 13 49→ 51 NA 32→ 54 NA

D 27→ 27 18→ 13 6→ 11 49→ 48 NA 25→ 54 NA

E 26→ 25 23→ 9 3→ 12 34→ 31 14→ 23 11→ 57 29→ 42

F 25→ 24 22→ 14 2→ 10 32→ 38 19→ 13 8→ 44 37→ 34

Fig 4.10 shows Auger profiling for four of the samples used in this project. Cells A and

C use the same absorber material but their atomic concentrations are quite different. They

both show Cu deficient regions at the surface. The Ga/III ratio in cell C is much higher

throughout, which is a likely contributor to higher Eg. Cell D (not pictured) has similar

concentrations to cell C. Cells E and F see a larger amount of sulfur at the front and back of

the cell, with a smaller S-region in the middle. In all cells we see some In, Ga concentration

crossover (the lower concentration becomes the higher concentration) toward the back of the

cell. Cell F interestingly has In, Ga, S crossover in the absorber. Cells E and F have an

interesting featurein their profiles where several things happen at one point: (1) There is a

maxima in sulfur concentration. (2) There is In/Ga crossover. (3) There is a local minimum

in selenium content.
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Figure 4.10: Auger atomic profiles

Using Eq 2.1 and Auger elemental concentration data, the bandgap profile can be ob-

tained. These results are displayed in fig 4.11. Bandgap grading in some cases has shown

to have a significant effect on cell parameters. There is some degree of grading in each cell,

the most obvious being in the cells containing sulfur. It can have the effect of mitigating

recombination current Jo in two different ways. Front grading, near the interface, typically

involves increasing the band gap through decreasing EV (fig 2.2). This limits interface re-

combination and preferentially absorbs blue photons near the front, deeper penetrating red

photons are only absorbed further in. Back grading, near the back contact interface typically

involves increasing the band gap through increasing Ec. This limits Jo at the back contact

[8]. From fig 4.11, cells E and F have front and back Eg grading. Studies have shown sulfur

to improve junction quality, and to possibly decrease EV [17], [18], [19].
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Bandgap grading can be informative as to the electrical parameters Voc and Jsc. Voc de-

pends strongly on the effective bandgap where photons are absorbed, while Jsc is a function

of the minimum bandgap. [20]

Figure 4.11: Bandgap profiling of cells A,C,D,E, and F. Data are unavailable for lab B. 0

corresponds to the top (sunny side) of the cell. 120 corresponds to reaching the Mo back

contact. Here bandgap grading can be seen to different degrees. Eg comes from Eq

Cells A, C, and D employ increasing bandgap toward the back contact. In fact the band

gap of these cells mirror the gradient of the gallium ratios. Cell A has a minimum where

the band-gap decreases just past the junction, and then continuously rises toward the back.

Cell C shows a graded band-gap that is lower at the front, flat throught the middle and

then steeply increases toward the back. Cell D shows a nearly uniform gradient from front

to back. Cells E and F employ grading at the front and back. The grading in these cells

is due to both the gallium and the sulfur content, though it seems to more strongly be a

function of sulfur concentration. The band-gap gradient nearly mirrors the sulfur content

33



in coth cells E and F. The gallium content has a constantly increasing slope from front to

back. The sulfur content forms a U-shape in cell E. A similar shape is seen in cell F but

the slope of the ”U” closer to the back has a much gentler slope. A possible conclusion from

comparing fig 4.10 and fig 4.11 could be that E and F use sulfur in an attempt to increase the

bandgap in the front of the cell and sulfur and gallium to increase the bandgap in the back.

Considering this against the typical strategy of bandgap grading described by [8], the data

may suggest that sulfur is being used to decrease EV and Ga is being used to increase EC .

While Auger profiling is informative to the general pattern of grading, it should be noted

that there is a large degree of uncertainty due to the different sputtering rates involved with

different materials.
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Chapter 5

SUMMARY

This purpose of this chapter is to tie together complementary observations, data and

inconsistencies. Several trends have become apparent through the course of this study.

Those cells containing sulfur have been able to make high performance cells, with rel-

atively low bandgaps. Through front and back grading, novel TCO materials, and in the

case of cell F, through using Zn(O,S) as the buffer layer. The Eg of Zn(O,S) is about 2.8-3.6

eV depending on the oxygen content which is coincident with good transmision of the solar

spectum. Cell F consistently outperformed cell E. Cell F has a lower J0, which based on QE

measurements, seems to be due at least partially to better mitigation of recombination in the

back of the cell. Though cell F performs well it is likely experiencing significant collection

losses due to poor gridlines.

A discrepancy that should be noted is found upon comparison of tables 4.1 and 4.2 which

shows JSC values from QE and from J-V measurements are not fully consistent. This is to

be expected as the two measurements are essentially measuring different things. In J-V the

entire device is measured while in QE the monochromatic light is only incident on a small

section of the cell, ideally away from gridlines and visible defects. The values measured from

QE are higher, which is logical as losses due to grid shading are not accounted for. JSC from

J-V will increase by using active area instead of total device area. The exception to the trend

of higher JSC from QE is cell D in which the value from QE is lower. QE was performed on

several cells from Lab D, and similar low QE values were seen. In both J-V and QE, cell F

has the largest value of JSC , and cell C has the lowest value.

It is worth discussing the observed differences in VOC , and the trends by which partic-

ipants in this study have followed toward attempting to maximize this parameter. A high

VOC , is in many cases obtained by having a large doping density [21]. Fig 4.5 shows cells
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A,C,D,E, have approximately the same value in low 1016 cm−3. Cell B has the lowest dop-

ing density of the group; low 1015 cm−3. Cell B has a comparatively large depletion region

which coincides with the depletion approximation, eq 2.2. IQE and J-V measurements in-

dicate that it has a comparatively low JSC , which is a comparable parameter to JL. By

combining equations 3.3 and 3.5 we can obtain:

VOC =
Eg

q
−

nkT

q
· ln

(

J00
JL

)

(5.1)

Cell B has a large value for Eg and a small value for J0, both are influential toward a large

VOC . The large depletion region improves collection, and the thick absorber region limits

recombination toward the back of the cell, decreasing J00. This is evident in IQE, fig 4.3, in

which deep penetration losses of cell B are the lowest in the group.

Despite having the same Eg as cell C, cell B has a greater VOC by 50 mV, this may be at

least partially due to having a better value for J0 which may be influenced by the increased

absorber thickness (by ∼ 1.4 µm), and larger depletion region.

Using the same logic, from SEM we saw that cell D has one of the smaller absorber

thicknesses, which may relate to the small depletion region seen in C-V, deep penetration

losses seen in IQE and a relatively poor value of J0. In the same way that cell B has a large

VOC a similar conclusion can be drawn as to why cell D should have a relatively small VOC .

Cell B has similar processing to cell A, though it has a larger VOC by 40 mV. Although

cell A has a smaller J0 the larger contributor in eq 5.1 is the difference in Eg.

Cells A and C have similar values of VOC but the lower bandgap of cell A is mitigated

by having a much better value for J0, (and hence fill-factor) making cell A a much better

performer.

Comparison of cells A and D strengthens this arguement by showing that though they

have a similar bandgap and overall processing, cell A achieves a greater VOC by again having

a much smaller J0. J-V measurements reveal that cell A has the largest shunting resistance

and the highest diode quality factor n, which are indicators of a quality absorber with low

recombination.
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This analysis points to Eg being the more significant parameter influencing VOC , with J0

as a good indicator of cell performance.

One aspect that has not been discussed, (because it is unknown) is if the cells deposited

on steel have any sodium added to their deposition process. Sodium is known to have several

beneficial effects on cell performance that cells deposited on soda-lime glass obtain from the

substrate itself [6].

Fig 5.1 is a plot of VOC vs Eg which serves as a helpful diagram of relative cell perfor-

mance. From eq. 5.1, a large Eg should entail a large VOC and this relationship should be

linear with a slope of one. Cells A and B lie on on roughly the same line with slope of one.

Cells C, D and E do approximately the same thing. Cell F is an outlier in that it has a large

Voc relative to its Eg. As Cell F has the lowest Eg and highest JSC it is likely doing very

well with the second term of eq 5.1. One thing that is clear in this study is that there is not

a clean relationship between Eg and VOC that is applicable to all the cells in this study.

Figure 5.1: VOC vs Eg
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This study highlighted specific strengths, similarities, and differences in modern CIGS

solar cells. It has been shown that various deposition techniques, and material selections

can produce solar cells with significantly different parameters. Several plots in this study

demonstrate the wide range of CIGS cells that have high efficiency. The use of sulfur has

shown to be beneficial in CIGS cells when used with bandgap grading. Combined with

novel TCO materials, high performance solar-cells can be made. Benefits were seen from

cells having larger Eg and smaller values of J0 and n. Each technology leaves ample room

for improvement in cell performance. By participating in collaborative projects, the collec-

tive knowledge of the field can be reigned in, to the benefit of industry and the scientific

community. Overall the study provided a fairly comprehensive look at the state of CIGS

solar-cells.
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