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ABSTRACT 
 
 
 

EFFECTS OF MONENSIN SODIUM, PLANT EXTRACTS AND INJECTABLE TRACE 

MINERALS ON FEEDLOT PERFORMANCE, FERTILITY AND MORBIDITY OF BEEF 

CATTLE 

 
 

Two studies were conducted to evaluate the effects monensin sodium, plant extracts, and 

injectable trace minerals on heifer and bull fertility, and calf feedlot performance and morbidity.  

In the first study, Angus heifers (n = 107; 259.3 ± 21.0 d of age), blocked by weaning 

BW (262.7 ± 29.9 kg; d -19), were randomly assigned to treatments in a 2 x 2 factorial design, 

where all heifers received the same basal ration consisting of a 30% CP liquid supplement 

containing 200 mg/0.45 kg monensin sodium. Treatments were applied daily to the basal ration 

as topdressed supplements and were fed at a rate of 0.32 kg·hd-1·d-1. Treatments were as follows:  

1) high level of monensin sodium (MON), where monensin sodium was topdressed at 200 

mg·hd-1·d-1, 2) low level of monensin sodium plus the plant extracts cinnamaldehyde, capsicum 

oleoresin and eugenol (CCE), where plant extracts were topdressed at 11,000 mg·hd-1·d-1, 3) 

control (CON),  low level of monensin sodium without topdressed supplements, or 4) high levels 

of monensin sodium with plant extracts (COMB), where monensin sodium was topdressed at 

200 mg·hd-1·d-1 and plant extracts were topdressed at 11,000 mg·hd-1·d-1.  

In both studies, heifers were weighed and estrus detection patch status was recorded 

every 11 d. Age at puberty was determined by patch status and was recorded as the d the patch 

was first activated. A 14 d CIDR-PG-AI protocol was utilized to inseminate heifers, when heifers 

were 427.3 ± 21.0 d of age. In the 14 d CIDR-PG-AI, a controlled internal drug release device 

(CIDR) was inserted 33 d prior to AI and removed 14 d later. Prostaglandin was injected 16 d 
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after CIDR removal, and heifers were inseminated 3 d later. Heifers were placed with bulls for 

natural service 21 d post AI. Pregnancy was determined 56 d post AI via ultrasound and 178 d 

post AI via rectal palpation. Calving records were used to validate ultrasound results.  

In the first study, there were no treatment main effects for initial or final BW (P > 0.05). 

There were no interactions between the main effects of monensin sodium fed at high 

concentrations and plant extracts for any feedlot or fertility performance variable (P > 0.05); 

however, there was a main effect of high levels of monensin sodium for heifer DMI from d 0 to 8 

and d 8 to 15, where MON and COMB heifers had reduced DMI compared to CCE and CON 

heifers (P = 0.05). From d 11 to 22 and d 44 to 66, heifers that received plant extracts (CCE and 

COMB) had lower ADG than CON and MON heifers (P = 0.05). Feed efficiency tended (P = 

0.08) to be improved in heifers fed high levels of monensin sodium (MON and COMB) 

compared to heifers fed low levels of monensin sodium (CCE and CON); however overall DMI, 

ADG, age at puberty and pregnancy rate were not affected by the main effects of high levels of 

monensin sodium or plant extracts (P > 0.05).  

In the second study, Angus bulls (n = 31, yr 1; n = 35, yr 2), heifers (n = 107) and steers 

(n = 105) were randomly assigned a treatment at weaning (278.6 ± 35.0 kg; 241.0 ± 19.6 d): 1) 

control (CON), no injection, or 2) injectable trace minerals (MIN), which included Cu, Zn, Se 

and Mn. The MIN treatment was administered at weaning (d 0) and again on d 64 (yr 1) and d 

110 (yr 2) to bulls, and at weaning (d -19) and on d 135 to heifers. The second injections were 80 

(yr 1) or 38 d (yr 2) prior to bull breeding soundness exams and 33 d prior to heifer AI. Steers 

received only the initial injection at weaning. Injections were administered at 1 mL/45.4 kg of 

BW at weaning and 1 mL/68.0 kg of BW prior to breeding soundness exams and AI, as per the 

product label. Bulls in both years exhibited no differences in overall ADG based on treatment (P 
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> 0.05); however, MIN bulls had reduced ADG from d 64 to 113 (P = 0.05) versus CON. Steer 

and heifer ADG was not different across treatments (P > 0.05). Incidence of morbidity was not 

different among treatments for any class of cattle (P > 0.05).  

A licensed veterinarian performed the breeding soundness exams and Computer-Assisted 

Sperm Analysis was performed to analyze sperm motility, velocity, straightness and linearity 

objectively. Motility and morphology from breeding soundness exams were not effected by MIN 

(P > 0.05); however, in yr 2 there was a tendency for sperm from MIN bulls to have a higher 

percentage of secondary defects (P = 0.08). Sperm beat cross frequency was greater in CON in 

yr 2 (P < 0.01), and tended to be greater in CON in yr 1 (P = 0.10). Progressive velocity of 

sperm was greater in CON in yr 2 (P < 0.05). Neither BCS nor age at puberty in heifers was 

affected by treatment (P > 0.05).  These results suggest there is no benefit to newly weaned calf 

performance or morbidity, or yearling bull or heifer fertility, when supplementing cattle with 

injectable trace minerals at weaning.  

Key Words: ADG, beef cattle, fertility, monensin sodium, plant extracts, trace minerals  
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CHAPTER I 

REVIEW OF LITERATURE 

SECTION I: MONENSIN & PLANT EXTRACTS 

 
 

Introduction 

Proper nutrition and management are vital to the profitability and productivity of cow- 

calf operations. The greatest influence on the profitability of cow-calf operations is the 

percentage of cows in the herd that become pregnant and calve every 12 months (Bohnert and 

Cooke, 2012). Age at which beef heifers obtain puberty is a major determining factor of their 

potential lifetime productivity (Schillo et al., 1992). Current beef management practices in the 

United States aim for heifers to calve by two years of age (Funston and Deutscher, 2004). Feed 

resources account for one of the greatest costs of production while developing heifers (Clark et 

al., 2005). Heifers reaching a BW of 50 to 57% of their mature body weight, in comparison to 

the traditional target weight of 60 to 65% by the breeding season can reduce development costs 

without impairing reproductive performance (Funston and Deutscher, 2004). Increasing ADG 

and improving feed efficiency can aid in heifers reaching target breeding weight at a younger 

age.  

Ionophores, such as monensin sodium, have been used in beef diets due to their ability to 

increase feed efficiency and nutrient utilization (Bergen and Bates, 1984). When monensin 

sodium is fed in the diet,  feed conversion increases, propionate to acetate ratio increases, and 

protein degradation decreases (Raun, 1990).  Monensin sodium has also been shown to decrease 

the age of puberty (Lalman et al., 1993; Moseley et al., 1982; Purvis and Whittier, 1996) and 

increase first service conception rate in heifers (Purvis and Whittier, 1996). However, there is 
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some controversy over feeding monensin sodium due to classification as an antibiotic (Edrington 

et al., 2003). 

With this in mind, researchers have discovered that natural plant extracts have some 

antimicrobial properties that may allow manipulation of microbial activity in the rumen, making 

them a potential alternative to ionophores (Benchaar et al., 2008). Plant extracts, such as 

cinnamaldehyde, capsicum oleoresin and eugenol, have been studied both in vivo and in vitro 

(Cardozo et al, 2006; Yang et al, 2010a; Yang et al, 2010b). Preliminary research has shown 

increased ADG (Geraci et al., 2012), decreased dry matter and water intake (Cardozo et al., 

2006), and reduced ruminal crude protein (CP) degradation with the supplementation of plant 

extracts (Yang et al., 2010a). There is little information known on how plant extracts may effect 

the age of puberty or pregnancy rates in beef heifers.  

Overall, research has indicated that animal productivity may be improved through the use 

of metabolic enhancing supplements such as monensin sodium, and that plant extracts may 

potentially be utilized to improve animal performance in place of the ionophores currently used 

in production today.  

Monensin Sodium 

 Monensin sodium (C36H61O11Na) is a biologically active compound produced by 

Streptomyces cinnamonensis (Hanley and Hoehn, 1967). Monensin sodium was originally used 

as a coccidiostat for poultry, and in December of 1975 it was registered with the commercial 

name Rumensin® (Elanco Products Co., a division of Eli-Lily, Indianapolis, IN) for improving 

feed efficiency in feedlot cattle (Tedeschi, Fox and Tylutki, 2003).  

Ionophores, such as monensin sodium, have been found to favorably alter ruminal 

functions and improve feed efficiency in beef cattle. Improved productive efficiency is achieved 
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by increasing energy metabolism, improving nitrogen metabolism and inhibiting feedlot 

disorders such as bloat and lactic acidosis (Bergen and Bates, 1984). These improvements may 

occur in the ruminant animal by shifting rumen fermentation to increase ruminal propionic acid 

yield, decrease methanogenesis, decrease rapid ruminal proteolysis and decrease deamination of 

dietary proteins.  

Mode of Action 

 Monensin sodium, in its anionic form, binds with a metal cation, such as Na+, creating a 

lipophilic, cation-ionophore complex allowing for increased diffusion across the cell membrane 

(Ochinnikov et al., 1979; Bergen and Bates, 1984). Absorption of monensin sodium only occurs 

when it is protonated, either by H+ or a metal cation. Sandeaux et al. (1982) measured Na+ 

transport by monensin sodium under two different experimental conditions: 1) constant pH and 

differing concentrations of Na+ on either side of the membrane, and 2) constant Na+ 

concentration and differing pH levels on either side of the membrane. Researchers determined 

that Na+ and H+ move across the membrane in opposite directions of each other, dependent on 

the chemical potentials of each molecule (Bergen and Bates, 1984). Monensin sodium can effect 

this ion flux because it is considered to be a cation–H+ antiporter (Harold, 1972).  

Mediation of Na+-H+ exchange by monensin sodium is primarily due to its high affinity 

(10 times greater) for Na+, compared to K+ (Pressman, 1976). The Na+/K+ ATPase enzyme is the 

primary transport system in eukaryotic cytoplasmic membranes (DeVoe, 1974) and establishes a 

Na+ gradient by exchanging 2 K+ molecules and 3 Na+ molecules through the Na+/K+ pump 

(Bergen and Bates, 1984). Ionophores disrupt normal function of the Na+/K+ pump, which 

disrupts the cellular solute uptake of other enzymes dependent on ion gradients. This interruption 

of movement across the membrane results in increased energy expenditure by cells (Bergen and 
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Bates, 1984). However, some cells cannot meet this energy demand due to dependence on 

substrate level phosphorylation of ATP, resulting in impaired cell division (Bergen and Bates, 

1984). 

Gram positive bacteria depend on substrate level phosphorylation for ATP and are 

therefore inhibited by ionophores, such as monensin sodium. Gram negative bacteria, in 

comparison, are not as sensitive to the effects of ionophores and can flourish within the rumen 

(Tedeschi, Fox and Tylutki, 2003). Increasing numbers of gram negative bacteria  in the rumen 

can change the fermentation process, leading to an improvement in energy and nitrogen 

utilization. 

Effects on Volatile Fatty Acids 

Acetate, butyrate and propionate are the three principal VFAs found in the ruminant. 

Volatile fatty acids are produced from the fermentation of carbohydrates by the bacteria and 

protozoa in the rumen under anaerobic conditions. Volatile fatty acids provide the energy (ATP) 

to cows and bacteria for synthesizing protein from ammonia (Endecott and VanSaun, 2012). 

Microbes in the rumen obtain ammonia from the fermentation of proteins or from non-protein 

sources of nitrogen, such as urea. 

Gram negative bacteria, many of which can survive the influences of monensin sodium, 

have the distinctive property of containing fumarate reductase (Kroger, 1977). Fumarate 

reductase is important in ruminal fermentation because it accounts for the shift in molar 

proportions of volatile fatty acids (VFA) towards propionic acid (Scheifinger and Wolin, 1973). 

Fumarate reductase achieves this shift by producing succinate from fumarate, which is later 

metabolized to propionate. 
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Propionate is the only volatile fatty acid (VFA) that can be utilized in gluconeogenesis, 

and is the major source (70%) of glycogen and glucose in the ruminant animal (Reece, 2009). 

Propionate’s unique 3-Carbon structure allows it to enter the Citric Acid Cycle as an 

intermediate (succinate). Reece (2009) further explained that acetate (2C) and butyrate (4C) may 

only enter the Citric Acid Cycle as acetyl-CoA. This does provide some additional energy, 

however, a sufficient amount of oxaloacetate(OAA)  must be present to react with acetyl-CoA to 

form citrate and start the TCA cycle. Excessive accumulation of acetyl-CoA leads to the 

production of ketone bodies, and potentially ketosis. Supplementing monensin sodium can lead 

to a favorable decrease in butyrate as well as a decrease in the acetate to propionate ratio without 

effecting the total VFA production (Richardson et al., 1976; Moseley et al, 1977; Boling et al., 

1977; McCartor et al., 1979). 

Recognizing that propionate is a major precursor for glucose, a 1978 study examined how 

monensin sodium would effect the propionate, and in turn, blood glucose concentrations in 

ruminants (Van Maanen et al., 1978). Researchers in this study used 4 fistulated steers and two 

successive rations, one that was high roughage and the second that was high concentrate. 

Feeding 150 mg·d-1 of monensin sodium resulted in an increase of propionate for both ration 

formulations however did not alter blood glucose concentration. Van Maanen et al., (1978) 

observed a numerical increase in the blood glucose entry rates. Raun et al. (1976), also reported 

that blood glucose concentration was not changed. Glucose concentration does not serve as an 

accurate means of determining glucose turnover. Additionally, researchers predict that the 

remaining propionate not converted to glucose may be used for CO2 production, synthesis of 

additional compounds or compensation for the reduced acetate production (Van Maanen, 1978).  
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Moseley et al. (1977) analyzed the effects of monensin sodium in heifers that were 

randomly assigned to feedlot confinement, full time pasture grazing or  part time confinement 

and part time grazing. Heifers that were assigned to part time grazing and monensin sodium 

supplement exhibited a 11.2% decrease in ruminal acetic acid (P < 0.05), 23.5% decrease in 

butyric acid (P < 0.05) and a 30.9% increase in propionic acid (P <0.05) when compared to the 

control heifers. Moreover, heifers assigned to dry lot confinement and monensin sodium had 

similar total VFA concentrations, decreased acetate and butyrate concentrations (P < 0.05), and 

increased propionate concentration compared to the control (P < 0.005) (Moseley et al.,1977). 

Similarly, McCartor et al. (1979), researched the effects of monensin sodium in an 80% 

roughage, 20% concentrate diet, against the same 80:20 ration without monensin sodium 

(control) and a 50:50 ration without monensin sodium. Total VFA concentration was not effected 

by treatment (P > 0.10), however the monensin sodium and 50:50 treatments increased 

propionate molar concentrations (P < 0.01) and decreased molar acetate concentrations (P < 

0.05) compared to the control.  

Steers on a finishing ration and fed 33 ppm monensin sodium showed that acetate 

decreased by 16%, butyrate decreased by 46% and propionate increased by 75% compared to a 

control group of steers that did not receive monensin sodium (P < 0.001) (Perry et al., 1976). 

Boling et al. (1977) examined the effects of dosage of monensin sodium (0, 100, 200 or 300 mg) 

on VFA production and found that molar percentages of acetate and butyrate decreased and 

propionate increased as the dose amount of monensin fed increased. Additionally, in an in vitro 

study, utilizing dual-flow continuous culture fermenters with rumen fluid from two cows on a 

50% concentrate ration, researchers found that the addition of monensin sodium increased the 
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proportion of propionate (P < 0.001) and decreased the proportions of acetate and butyrate (P < 

0.001) (Lourenco, et al., 2008).  

The effects of monensin sodium on VFA production have been well documented and its 

mode of action within the rumen is fairly well understood, however altering VFA concentration 

is not the only means by which monensin sodium can achieve improved efficiency in beef cattle 

(Schelling, 1984).  

Effects on Methane Production 

 With a growing concern for methane produced by livestock and the influence toward 

greenhouse gases (Tedeschi, Fox and Tylutki, 2003), there is a focus on the relationship of total 

methane production as a proportion of energy intake associated with production (Baker, 1999). 

Methanogens, organisms naturally existing in the rumen microbial ecosystem, use hydrogen and 

carbon dioxide to produce methane. These methanogens rely on other rumen populations to 

replenish the hydrogen used for methanogensis. It was proposed that the patterns of VFA and 

methane production could be altered when the rate of fermentation in the rumen was high 

because other rumen microbial populations would out-compete methanogens for the metabolic 

hydrogen they required for methanogenesis (Baker, 1997). Monensin sodium has been noted for 

its capability to manipulate the VFA and methanogensis production patterns by selecting against 

hydrogen-producing rumen bacteria and selecting for succinate-forming bacteria (Chen and 

Wolin, 1979). As previously stated, succinate can later be metabolized to propionate (Scheifinger 

and Wolin, 1973). Propionate has been found to reduce methane (CH4) production by conserving 

hydrogen for its own formation, compared to its VFA counterparts, acetate and butyrate which 

tend to promote CH4 production (Wolin, 1960). It is more beneficial to the animal to form 

propionate for further use as energy and gluconeogenesis, rather than create CH4 to be expended. 
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It is also thought that the reduction in methanogensis, through the use of an ionophore such as 

monesin sodium, was not solely due to the increase in propionate production but also a decrease 

in feed intake (Johnson et al., 1994). Furthermore, while monensin sodium allows for a 

consistent decrease in methane production, it accounts for only a small response and slight 

improvement in the efficiency of animal production (Schelling, 1984).  

Effects on Protein Bypass 

 Bypassing the rumen and allowing for different digestion and absorption sites within the 

ruminant animal can increase animal performance (Chalupa, 1974). Efficiency of feed utilization 

can be determined by examining the site of digestion in the gastrointestinal tract (Roger and 

Davis, 1982). Nutrients that can be enzymatically digested post-ruminally can improve animal 

performance by bypassing the normal fermentation energy losses that would typically occur 

when dietary protein is converted to microbial protein in the rumen (Black, 1971). Microbial 

proteins synthesized in the rumen and undegraded or protected proteins that bypass the rumen 

can supply amino acids to be absorbed by the small intestine (Chalupa, 1974). Absorption in the 

small intestine may be beneficial to growing animals (Yang et al., 2010a).  

 Protein bypass and improved nitrogen utilization has been observed when monensin 

sodium is incorporated in the diet. A protein-sparing effect has also been reported by numerous 

studies (Hanson and Klopfenstein, 1979; Mies et al., 1979;). Poos et al., (1979) and Rogers and 

Davis (1982) described this effect as a result of decreased bacteria nitrogen passing to the lower 

gastrointestinal tract, in combination with an increase in dietary nitrogen passing through to the 

abomasum. If the abomasum contains a decreased amount of microbial nitrogen, this reflects a 

decrease in ruminal microbial protein synthesis (Whetstone et al., 1981).  
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Crude protein digestion was improved by feeding monensin sodium to cattle on a 50% 

concentrate-50% roughage ration and may in part be attributed to the reduction in feed intake 

(Rogers and Davis, 1982). However, when fed to cattle on a 90% concentrate diet, crude protein 

digestion was not improved, although it was numerically increased (Muntifering et al., 1980). 

Faulkner et al. (1985) also noted that monensin sodium had differing effects on animal 

performance when fed a high-fiber diet. Similarly, Poos et al. (1979) suggested that monensin 

sodium fed at 200 mg·hd-1·d-1 would reduce microbial protein synthesis and increase dietary 

protein ruminal bypass. However, Faulkner et al. (1985) saw no differences in protein bypass 

and concluded that cattle should instead be fed 100 mg·hd-1·d-1 when receiving a high fiber diet 

to improve nutrient utilization. Dose and diet may be influential factors for the effects of 

monensin sodium on nutrient efficiency. 

 Steers fed monensin sodium on a distiller grain diet exhibited increased concentration of 

essential and nonessential amino acids in the abomasum (P < 0.05; Poos et al., 1979). In contrast 

however, Whetstone et al. (1981) and Faulkner et al. (1985) found that amino acids were not 

effected by monensin sodium and that amino acid catabolism was in fact inhibited and the rate of 

catabolism was exceeded by the proteolysis rate.  

 While the mechanism for monensin sodium to impact protein bypass is still unclear and 

results are not in agreement, but it does appear that overall monensin sodium has the potential to 

decrease proteolysis and deamination of protein in the rumen (Whetstone et al., 1981; Rogers 

and Davis, 1982). A decrease in ruminal degradation would allow for more protein to be 

absorbed in the lower digestive tract and would in turn improve nutrient utilization and animal 

performance (Whetstone et al., 1981). 
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Effects on Feedlot Performance 

 In a dosage (0, 25, 50 or 100 mg) response study, steers on a finishing ration that were 

supplemented with 50 or 100 mg monensin sodium were reported to have higher (P < 0.01) 

average daily gain (ADG) than the control group or steers fed 25 mg·d-1 monensin sodium 

(Boling et al., 1977).  Additionally, Potter et al. (1974) reported that cattle fed 100 or 200 mg·d-1  

monensin sodium per head daily had higher ADG than cattle fed a control (P < 0.01). Oliver 

(1975) also found that all cattle fed monensin sodium (0, 25, 50, 100 or 200 mg·d-1) exhibited 

greater gains than controls (P < 0.05) when cattle were on pasture. Dosage response to monensin 

sodium also reflected a decrease in feed intake as monensin sodium level increased, and as a 

result improved feed efficiency (P < 0.01) compared to control cattle (Boling et al., 1977).  

 In addition to a dosage response, a period response was also noted. For the first 59 d of 

the experiment, heifers that were fed monensin sodium while grazing pasture demonstrated 

greater gains than the controls (P < 0.01) (Moseley et al., 1977). However from d 60 to 158, the 

authors reported that all heifers gained at nearly identical rates. This disagrees with the increased 

gains exhibited by cattle fed monensin sodium grazing Coastal bermudagrass pastures (Oliver, 

1975). Nevertheless, Moseley et al. (1977) pointed out that heifers were on a part time grazing 

diet which consisted of low quality forage, indicating that heifers fed monensin sodium were 

better able to utilize the available forage, making them more efficient. 

In a feedlot setting, monensin sodium reduced feed intake by 10.9% compared to controls 

(Moseley et al., 1977). Nevertheless, the improved dry matter intake did not compensate for the 

similar ADG reported over the course of the experiment and as a result feed efficiency was not 

different between treatments due to monensin sodium supplementation (Moseley et al., 1977). 

Likewise, a high roughage feedlot study reported no differences in ADG, feed intake or feed 
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efficiency for heifers fed monensin sodium (P > 0.05) (McCartor et al., 1979). Yang et al. 

(2010b) fed 330 mg·d-1 to steers also found that monensin sodium supplementation had no 

differences in feed intake or efficiency compared to control steers.  

When monensin sodium was fed in block form to finishing beef steers there were no 

effects on ADG, feed intake or feed efficiency (Berger et al., 1981). However, monensin sodium 

fed as part of the ration, instead of as a supplement block, resulted in a decreased feed intake and 

4% increased feed efficiency compared to control steers (Berger et al., 1981). Similarly, a study 

analyzing the effects of gradual versus total introduction of monensin sodium into a finishing 

ration, found that monensin sodium severely decreased feed intake during the second 28 d period 

of the trial in which control cattle consumed 60% more feed than monensin fed cattle (Perry et 

al., 1976). Nearly identical gains, with a lesser feed intake than control cattle demonstrated a 

10% less dry matter intake per kilogram of gain compared to the control group, implying that 

monensin sodium fed steers may have been more efficient in nutrient utilization (Perry et al., 

1976). Similarly, heifers in a feedlot experiment were found to have reduced feed intake and 

improved nutrient utilization (P < 0.05), resulting in a greater overall feed efficiency (P < 0.05) 

if they were fed an ionophone (Purvis and Whittier, 1996).  

Effects on Pubertal Onset and Pregnancy 

 Heifers that conceive earlier at first breeding, calve earlier in the season, and therefore 

wean heavier calves and potentially more calves throughout their productive lifetime (Lesmeister 

et al., 1973). Monensin sodium has been shown to reduce age of puberty in beef females, 

demonstrating that the percentage of heifers that can be bred to calve by 24 months of age can be 

increased (McCartor et al., 1979). Hereford, Brahman and F-1 crossed heifers revealed that 

pubertal onset could be decreased by 14 d (Moseley et al., 1977). In this experiment, 92% of 
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heifers that received monensin sodium supplementation reached puberty compared to only 58% 

of heifers fed the control. Conception rates were numerically higher from monensin sodium 

heifers compared to controls, in which 55% of monensin sodium heifers successfully conceived 

compared to only 47% of control heifers. McCartor et al. (1979) also observed that while heifer 

conception rates were not statistically different (P > 0.05), monensin sodium heifers achieved 

puberty 29 d earlier and 17 kg lighter than control heifers (P < 0.009). Likewise Purvis and 

Whittier (1996) reported that heifers fed an ionophore attained puberty 8 d earlier and 10 kg 

lighter (P < 0.05) and tended to have higher first service conception rates compared to control 

heifers (P = 0.12). Without effecting body weight and composition, Meinert et al. (1992) found 

that Holstein heifers fed monensin sodium exhibited reduced puberty by 15 d for heavy weight 

heifers and 24 d for light weight heifers. In contrast to all the previously mentioned data, English 

crossbred heifers fed a grass hay and barley straw ration demonstrated similar results for age of 

puberty and conception rates regardless of monensin sodium supplementation or no 

supplementation (Lalman et al., 1993). The reduced response to monensin sodium may be 

accounted for by the modest rate of gain utilized to develop these heifers. Nevertheless, 

monensin sodium has been shown to decrease age of puberty and possibly increase conception 

rates in beef females fed higher concentrate diets. This is beneficial to producers who can now 

decrease their input costs, while breeding and calving out their heifers earlier, allowing for more 

productivity from their females.   

An Issue with Monensin Sodium 

Considering previous research and the understanding the mechanism by which monensin 

sodium performs within the ruminant animal, it can be concluded that monensin sodium does not 

have deleterious effects on animal performance or reproduction (Moseley et al., 1977) and may 
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in fact be beneficial to achieving greater animal efficiency. However, monensin sodium is still 

considered to be an antibiotic (Edrington et al., 2003). Therefore, more research is being 

conducted to see if there are potential substitutes to feeding ionophores to cattle. Natural plant 

extracts have demonstrated some similar effects on animal performance, compared to 

ionophores, and are being considered as potential substitute supplements. 

 

Plant Extracts: Cinnamaldehyde, Eugenol and Capsicum Oleoresin 

 Essential from medicinal, edible and herbal plants can be extracted from the leaves, 

flowers, seeds, roots, stem and bark (Benchaar et al., 2008) through steam distillation or solvent 

extractions (Greathead, 2003). These compounds, dependent on metabolic pathway of synthesis, 

are classified as either terpenoids or phenylpropanoids (Calsamiglia et al., 2007). Terpenoids 

have a basic 5 carbon structure and phenylpropanoids have a chain of 3 carbons attached to an 

aromatic ring. Terpenoids and phyenylpropanoids interact with the cell membrane and work 

against bacteria (Griffin et al., 1999; Dorman and Deans, 2000). This interaction results in a loss 

of membrane stability, leakage of ions across the membrane and a decrease in the 

transmembrane ion gradient. Large amounts of energy are diverted to this function and bacteria 

growth is slowed (Griffin et al., 1999). Changing the bacterial populations within a ruminant 

animal subsequently changes the fermentation process, which may be beneficial to improving 

nutrient utilization in ruminants (Calsamiglia et al., 2007).  

 RumeNext® (ADM Alliance Nutrition Inc., Quincy, IL) is a newer product being tested 

to evaluate the effects of plant extracts on beef cattle performance. The primary ingredients in 

RumeNext® are cinnamaldehyde, eugenol and capsicum oleoresin. Cinnamaldehyde, (C9H8O), 

is a phenylpropanoid with antimicrobial activities and is the main active component (75%) of 
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cinnamon oil, Cinnmomum cassia (Calsamiglia et al., 2007). Eugenol, (C10H12O2) is a phenolic 

compound that appears to have antimicrobial properties against bacteria. It is the main active 

component in clove buds (85%). Capsicum oleoresin, capsicum annun ssp., is the main active 

component in chili peppers and belongs to the tetraterpenoid family. Although research has 

reported that plant extracts may be favorable to animal performance, most of the data reported 

differs dependent on specific extract or combination of extracts used, dosage of extracts fed, 

species utilized and dietary treatment (Meyer et al., 2009).  

Effects on Volatile Fatty Acids 

 A reduction in the production of VFA would be unfavorable to the animal (Busquet et al., 

2005) because VFA represent the main supply of metabolizable energy as they are the end 

products of microbial fermentation in the rumen (Van Soest, 1982). Total VFA concentration 

was not effected in an in vitro experiment using eugenol and cinnamaldehyde at low doses (75 

mg·kg-1), suggesting that the plant extract additives used did not modify diet fermentation and 

energy availability (Busquet et al., 2005). In contrast, Busquet et al. (2006) found that 

cinnamaldehyde and eugenol applied in vitro at high doses (3,000 mg/L) detrimentally decreased 

total VFA production, while capsicum oil had very small and non-significant effects on total 

VFA production. Similarly, Oh et al. (1967) observed inhibition of microbial fermentation at 

high dose supplementation of plant extracts.  

Plant extracts have also been observed as being pH dependent (Cardozo et al., 2005). 

Decreasing pH from 7.0 to 5.5 resulted in lower total VFA concentrations (P < 0.05). At a pH of 

5.5 and 7.0 high doses of  cinnamaldehyde, eugenol and capsicum (300 mg/L) all resulted in a 

strong inhibition of total VFA concentration (P < 0.05).  At a pH of 7.0, cinnamaldehyde and 

capsicum used at low doses (0.3, 3 and 30 mg/L) decreased total VFA production compared to 
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the control (P < 0.05). In contrast, at low doses (0.3, 3 and 30 mg/L), eugenol had no effect on 

total VFA concentration. Cardozo et al. (2005) also observed that at the lower pH of 5.5 and low 

doses (0.3, 3 and 30 mg/L), cinnamaldehyde, eugeol and capsicum, increased total VFA 

concentration (P < 0.05).  

 While in vitro studies are helpful in screening the effects of plant extracts on ruminal 

fermentation, there are some limitations to these methods and in vivo studies need to be taken 

into account (Calsamiglia et al., 2007). In fistulated heifers on a 90% concentrate diet, 

cinnamaldehyde and eugenol fed in combination had no effects on total VFA production 

(Cardozo et al., 2006). Similarly, heifers on an 80% concentrate diet supplemented with low, 

medium or high doses of cinnamaldhyde (400, 800 or 1600 mg·d-1, respectively) exhibited no 

changes in total VFA concentration compared to a control group of heifers not supplemented 

with cinnamaldhyde (Yang et al., 2010a). Moreover, steers on a finishing ration supplemented 

with a combination of cinnamaldehyde, capsicum and eugenol did not have different total VFA 

concentrations compared to steers that were supplemented with the ionophore, monensin sodium 

(Geraci et al., 2012).  

 Proportions of VFA, such as acetate, butyrate and propionate, were not effected due to 

the supplementation of plant extracts fed in vivo (Cardozo et al., 2006; Yang et al., 2010a; Geraci 

et al., 2012). In contrast, an in vitro experiment with eight dual flow culture fermenters observed 

that clove bud oil increased the molar proportion of butyrate, lowered the molar proportion of 

acetate and increased the proportion of propionate, resulting in a reduced acetate to propionate 

ratio (Busquet et al., 2005). This study also reported that cinnamaldehyde numerically decreased 

the molar proportion of acetate and increased the butyrate proportion, however it had no effect 

on the proportion of propionate. Busquet et al. (2006) found that the effects cinnamaldehyde and 
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eugenol had on the proportions of acetate, butyrate and propionate produced were dosage 

dependent. The effects of cinnamaldehyde, eugenol and capsicum on individual VFA 

proportions are additionally found to be pH dependent (Cardozo et al., 2005).  

Effects on Ammonia Nitrogen Concentration 

 A decrease in ammonia N concentration would suggest that deamination activity has been 

reduced, whereas an increase in ammonia N concentration would imply deamination activity has 

been stimulated (Cardozo et al., 2005). Cinnamaldehyde and capsicum reduced ammonia N 

concentration and eugenol increased ammonia N concentration despite dosage supplied or pH 

environment when utilized in vitro (Cardozo et al., 2005). In contrast, cinnamaldehyde, eugenol 

and capsicum decreased ammonia N concentration only at higher dosages (300 and 3,000 mg/L) 

(Busquet et al., 2006). In vivo studies have observed that a combination of cinnamaldehyde and 

eugenol decreased the ammonia N concentration compared to the control (Cardozo et al., 2006) 

or compared to monensin sodium (Geraci et al., 2012), suggesting that deamination activity was 

inhibited.  

Effects on Feedlot Performance 

 Supplementation of cinnamaldehyde to cattle on high grain diets effected feed intake in a 

dose dependent manner (Yang et al., 2010a). Cattle fed cinnamaldehyde at 400 mg·d-1 exhibited 

a slight increase (P < 0.09) in dry matter intake compared to cattle supplemented at 1600 mg·d-1 

which showed a slight decrease in dry matter intake. In agreement with these results, Cardozo et 

al. (2006) reported that heifers fed a combination of cinnamaldehyde and eugenol at 270 mg·d-1 

(P < 0.03) or capsicum at 1000 mg·d-1 (P < 0.05) exhibited decreased dry matter and water 

intake compared to a control. Another feedlot study reported that dry matter intake was only 

favorably effected by cinnamaldehyde for the first 4 weeks of the experiment, at which point 
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intake was then relatively stable and there were no differences between cinnamaldehyde 

supplemented steers or control steers throughout the end of the trial (Yang et al., 2010b).  

When comparing monensin sodium to plant extracts, steers that received a combination 

of cinnamaldehyde, eugenol and capsicum had similar dry matter intakes to monensin sodium 

fed steers (Geraci et al., 2012). Researchers in this study were surprised by this outcome, yet 

acknowledged that there is limited data directly comparing plant extracts to monensin sodium 

therefore it is unknown if these results were expected. Geraci et al. (2012) observed that steers 

fed a combination of the plant extracts increased ADG by 16% during the later part of the study 

compared to monensin sodium steers. The increased ADG during the last half of the experiment, 

and the similar dry matter intake between plant extract and monensin sodium fed steers resulted 

in a treatment by period interaction, however there were no treatment effects on overall feed to 

gain efficiency. Similarly, finishing steers fed increasing levels of cinnamaldehyde exhibited no 

overall improvement in ADG except during the first time period in which ADG was 

quadratically effected by cinnamaldehyde dose level (Yang et al., 2010b). Feed efficiency in 

those first 28 d was also improved due to increasing levels of cinnamaldehyde in the diet. Feed 

efficiency was only then quadratically effected by dosage level from d 29-56 and d 85-112, 

however overall cinnamaldhyde supplementation did not effect feed efficiency.  

Effects Pubertal Onset and Pregnancy 

 Bigler (2014) utilized beef heifers in 2 consecutive years to examine the effects of plant 

extracts on age of puberty and conception rates. In the first year, there were no differences 

between treatment groups, however in the second year, heifers that received plant extracts had 

reduced age of puberty compared to control heifers. Additionally, Bigler (2014) reported that 

neither pregnancy rates nor the percentage of heifers to calve within the first 21 d of the calving 
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season were different between heifers that received plant extracts and those that were fed 

monensin sodium.  

Rationale for Current Experiment 

Unfortunately there is limited literature on the effects of plant extracts on feedlot 

performance and in the literature published there appears to be conflicting results. The influence 

on feedlot performance seems to be effected by plant extract source, combination of extracts, 

dosage of extracts, time period and dietary treatment (Cardozo et al., 2006; Yang et al., 2010a; 

Yang et al., 2010b; Geraci et al., 2012). It is also difficult to understand the exact mode of action 

a combination of plant extracts perform within the rumen environment; as well as to explain how 

a combination of extracts may lose their efficacy at some point in time due to the adaptive 

functions of the microbial ecosystem (Calsamiglia et al., 2007).  

Currently, there is little published literature regarding the effects of plant extracts, 

specifically cinnamaldehyde, eugenol and capsicum, on pubertal onset or conception rates in 

beef heifers. Utilizing a natural form of an ionophore to decrease age and weight of puberty in 

heifers could be beneficial to producers for achieving greater herd productivity and efficiency, all 

the while improving public perception of cattle production.  

Furthermore, additional research is warranted to observe the mode of action of plant 

extracts in the rumen, analyze plant extracts effects on feedlot performance, pubertal onset and 

conception rates and evaluate the potential utilization of plant extracts as a substitute for 

ionophores such as monensin sodium. 

 

 

 



19 

 

SECTION II: TRACE MINERALS  

COPPER, ZINC, SELENIUM AND MANGANESE 
 
 
 

Introduction 

 Minerals are essential to animal health, growth and reproductive performance. Structural, 

physiological, catalytic and regulatory functions that occur within the animal body rely on 

minerals and their existence in body tissues and cells (Underwood and Suttle, 1999). Because 

these functions are dependent on minerals for proper activity, such as tissue growth, enzyme and 

immune function, homeostasis and hormone regulation, it is vital that mineral concentrations are 

managed in narrow margins (Underwood and Suttle, 1999). Unbalanced or improper mineral 

intake can lead to metabolic disease or toxicity, as well as reduced animal performance or health 

(Paterson and Engle, 2005).  

Mineral requirements vary by stage of production for the animal (ie: maintenance, growth 

or reproduction) (Underwood and Suttle, 1999). When minerals are required at greater than 100 

mg/kg diet, they are classified as macro minerals; whereas minerals required at less than 100 

mg/kg diet are micro, or trace, minerals (McDowell, 1992). There are at least 17 minerals that 

are considered to be essential for beef cattle according to the NRC (1996). Phosphorus, 

potassium, sulfur, magnesium, sodium, chlorine and calcium are macro minerals which must be 

sufficiently supplied in beef cattle diets (NRC, 1996). The trace minerals essential for beef cattle 

are chromium, cobalt, copper, iodine, iron, manganese, molybdenum, nickel, selenium and zinc 

(NRC, 1996). Unfortunately, cattle diets do not always supply sufficient amounts of minerals to 

adequately meet the body’s demand (Pogge et al., 2012). Minerals can be supplemented to cattle 
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by mixing them in a ration, providing them to animals free choice or administering them via 

bolus or injectable sources.  

Dietary mineral sources are often subjected to antagonists (ie: Mo, Fe, or S) present in the 

diet and can therefore result in decreased mineral absorption (Spears, 1996). Research indicates 

that the ability to avoid these dietary antagonists and the detrimental effects of decreased mineral 

absorption in the ruminant could help to improve animal health and productivity (Richeson and 

Kegley, 2011). Use of injectable minerals may be advantageous to bypass the negative 

interactions occurring in the gastrointestinal tract because upon injection the minerals would be 

directly circulated throughout the bloodstream and incorporated into cells as needed (Berry et al., 

2000). The remaining minerals that are not immediately utilized by cells would be filtered 

through the liver for storage or excretion from the body (Suttle, 1987).  

A current commercially available source of injectable trace minerals is the product 

commonly known as MultiMin® (MultiMin® USA, Fort Collins, CO). MultiMin® provides 60 

mg/mL zinc (Zn), 15 mg/ mL copper (Cu), 10 mg/ml manganese (Mn) and 5 mg/mL selenium 

(Se).  

Acknowledging that proper mineral supplementation is a necessity for successful animal 

production, research has indicated that utilizing injectable trace minerals in beef cattle may have 

advantageous effects on animal health, growth and performance. Although all macro and micro 

minerals are equally important to animal productivity, this review will focus solely on the 4 trace 

minerals Cu, Zn, Se and Mn, as they are the minerals that make up the mineral supplement 

MultiMin®. 
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Trace Minerals: Cu, Zn, Se and Mn 

The four main functions of minerals include: 1) structural components of body organs, 

tissues, molecules and membranes; 2) maintenance of physiological processes such as osmotic 

pressure, acid-base balance, membrane permeability and tissue irritability; 3) catalyst for enzyme 

and hormone systems and component of metalloenzymes; and 4) regulation of cell replication 

and differentiation (Underwood and Suttle, 1999). Copper, zinc, selenium and manganese, the 

four trace minerals focused on in this review, are all considered to be important metalloenzymes 

in livestock (Underwood and Suttle, 1999).  

Trace mineral deficiencies have a significant impact on the functions occurring within the 

animal body and may occur in one of two ways: 1) a primary deficiency which is due to 

inadequate amount, availability or intake from the environment, or 2) a secondary deficiency 

which is caused by the presence of one or more antagonists that reduce the availability of the 

trace mineral (Ahola, 2004). Trace mineral deficiencies, toxicities or imbalances require the 

animal to metabolically compensate for the nutrient deviation, leading to the manifestation of 

metabolic diseases that are capable of decreasing energy metabolism, immune function and 

overall animal performance (McDowell, 1989; Underwood and Suttle, 1999). Each mineral, Cu, 

Zn, Se and Mn, is uniquely utilized within the animal body and thus its deficiencies or toxicities 

result in varying diseases or illnesses.  

Copper 

 Copper is essential for reproduction, bone development, growth, connective-tissue 

development and pigmentation of hair, fleece and feathers (Underwood and Suttle, 1999). While 

it is still under investigation, it appears that Cu is important to erythropoieses function due to a 

mechanism in which it can impair the transport of iron (Suttle, 1987). Copper is important for 
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development of the central nervous system as well as a normal functioning immune system 

(Underwood and Suttle, 1999). Copper is surpassed only by Zn in the number of enzymes it is 

responsible for activating (Underwood and Suttle, 1999). Among the enzymes requiring Cu for 

activation are tyrosinase (pigmentation), lysyl oxidase (connective-tissue development), 

ceruloplasmin (erythropoiesis), Cu-Zn superoxide dismutase (oxidant protection), cytochrome c 

oxidase (electron transport chain), and peptidylglycine-α-amidating monooxygenase (brain 

function) (Underwood and Suttle, 1999).  

 The primary organ for Cu storage is the liver and thus the first biochemical change to be 

seen when an animal is deprived of Cu would be a decline in liver Cu concentrations 

(Underwood and Suttle, 1999). Molybdenum, a common antagonist, when in the presence of 

sulfate, can also decrease the deposition of Cu into organs (Paterson and Engle, 2005). Sulfur, 

iron and calcium will also influence absorption of Cu in the ruminant animal (Underwood and 

Suttle, 1999). 

 Clinical manifestations of Cu deficiencies can result in anaemia, bone disorders, 

connective-tissue disorders, cardiac lesions, neonatal ataxia, depigmentation, scours and 

diarrhea, infertility, susceptibility to infections or mortality (Underwood and Suttle, 1999). 

Conversely, it is pertinent to remember that Cu at high enough levels can be toxic to cattle, 

causing nausea, vomiting, abdominal pain, convulsions, paralysis and death (Paterson and Engle, 

2005).  

Zinc 

 While Zn is widely distributed throughout the animal body, the highest concentrations of 

Zn were found in the following locations, listed from highest to lowest concentrations: pancreas, 

liver, pituitary gland, kidney and adrenal gland (McDowell, 1992). Additionally, research has 
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shown that the testicles and accessory sex glands contain high concentrations of zinc as well 

(McDowell, 1992). Unfortunately, the ability to store Zn in a form that can later be mobilized is 

poorly developed in the animal body (Paterson and Engle, 2005). 

Zinc metalloenzymes, retinene reductase and alcohol dehydrogenase, are involved in the 

process of converting vitamin A alcohol (retinol) to vitamin A aldehyde (retinene), a process that 

is vital to normal vision (Underwood and Suttle, 1999). Likewise, Zn plays vital roles in 

digestion, glycolysis, DNA synthesis, nucleic acid metabolism and protein metabolism, roles 

derived from its effects on gene expression (Chesters, 1992). Zinc is involved in regulation of 

appetite, and thus a reduced appetite is one of the initial clinical signs of a Zn deficiency 

(Paterson and Engle, 2005). Inflammation of the nose and mouth with submucous hemorrhages, 

unthrify appearance, rough hair coats, stiffness of joints with swelling of feet, cracks in the 

coronary bands and dry scaly skin on the ears are additional clinical signs of Zn deprivation 

(McDowell, 1992). Zinc deficiency can additionally result in retardation, subnormal growth, 

reduced fertility, and impaired immune function (Underwood and Suttle, 1999). 

Selenium 

 Interestingly, in the 1930s Se was only of interest because it was thought to be a toxic 

element that made animals lose their hair, nails and hooves (McDowell, 1992). Selenium wasn’t 

considered to be beneficial to livestock until some 20 years later when research showed that Se 

helped to prevent liver necrosis in swine and muscular dystrophy in calves (McDowell, 1992). 

Additionally, Se is vital for growth, fertility, disease prevention, immune function, 

cardiovascular disease, gastrointestinal function and thyroid function (Underwood and Suttle, 

1999; Kumar and Priyadarsini, 2014). Selenium and Vitamin E are often utilized together and are 
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considered to be closely linked because they both protect biological membranes from 

degeneration and without them tissues would breakdown (Paterson and Engle, 2005).  

In ruminants, a Se deficiency often leads to white muscle disease, or muscular dystrophy, 

which is a degeneration of the striated muscles (Paterson and Engle, 2005). Deprivation of Se 

may also lead to anemia, lowered fertility, embryonic loss and retained placenta (Underwood and 

Suttle, 1999). Animals that are suffering from Se toxicity will have loss of appetite, lack of 

thriftiness, cirrhosis of the liver, loss of hair, lameness and elongated hooves (McDowell, 1992).  

Manganese 

 Although Mn is implicated in many of the same processes as Cu and Zn, it is diverse in 

that it is widely distributed in cells and tissues throughout the body at very low concentrations 

(Corah and Arthington, 1993). Manganese metalloenzymes are involved in many functions of the 

body such as bone and cartilage development (glycosyl transferase), blood clotting 

(prothrombin), lipid and carbohydrate metabolism (pyruvate carboxylase) and oxidant resistance 

(superoxide dismutases) (Underwood and Suttle, 1999). Reproductively, it has been suggested 

that Mn may be essential for normal ovarian function (Hidiroglou, 1975), and that Mn 

deprivation may be associated with the anestrus condition in cattle (Maas, 1987). Deficiencies in 

magnesium can lead to ataxia, impaired growth, defective ovulation and testicular degeneration 

(Underwood and Suttle, 1999). 

The Immune System 

 Health is a term that describes a subjective observation of an animals’ general appearance 

along with a few clinical measurements such as rectal temperature or serum profiles (Galyean et 

al., 1999). Immunity refers to the manner in which an animals’ body reacts to foreign substances 

(Abbas et al., 1991). The primary goal of the immune system is to recognize and defend itself 
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against bacteria, viruses and other foreign substances, also known as antigens, that may be 

harmful to the body (Ahola and Engle, 2012).  

Calves initially receive immunity through the immunoglobulins passed to them in utero 

through the dam’s placental barrier and then once they are born from the immunoglobulins 

provided in the dam’s colostrum (Reece, 2009). Cattle producers typically take advantage of a 

calf’s ability to recognize and respond to antigens by vaccinating them at branding or weaning 

(Ahola and Engle, 2012). Vaccinations are comprised of only a small dose of the antigenic 

substance so that the calf will not get mortally ill but will be able to hastily and efficiently 

stimulate an immune response the next time the antigen is present (Ahola and Engle, 2012).  

A primary immune response would occur when it is the first time the immune system is 

responding to the antigen; whereas a secondary response is a response to an antigen that has 

previously been responded to, such as at vaccination (Ahola and Engle, 2012). Typically 

secondary responses are quicker, larger and more efficient when responding to the antigen. 

Immunity is classified as either innate (natural) or acquired (specific) (Galyean et al., 

1999). Innate immunity is a non-specific response in which phagocytes such as macrophages, 

neutrophils and natural killer cells attack the foreign antigen (Abbas et al., 1991). Aquired 

immunity is either: 1) humoral, in which B-lymphocytes respond to antigens by becoming 

antibody producing cells or memory cells to provide defense against the foreign substance, or 2) 

cell mediated, where defense against the extracellular pathogen is brought upon by T-

lymphocytes (Galyean et al., 1999). Furthermore, to efficiently produce the antibodies and 

lymphocytes necessary to stimulate an immune response proper plane of nutrition is vital (Ahola 

and Engle, 2012). Minerals such as Cu, Zn, Se and Mn are imperative to physiological activities 
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including antioxidant systems, energy production, protein synthesis and membrane integrity 

(Nockels and Whittier, 1995). 

Effects on Animal Morbidity and Mortality  

 Morbidity and mortality resulting from bovine respiratory disease (BRD) in newly 

weaned and received cattle continues to be the most significant health and economic problem 

facing the U.S. beef industry (Duff and Galyean, 2007). Newly weaned calves transported to the 

feedlot are exposed to numerous, possibly new, infectious substances. Additionally, the weaning 

and transportation processes increase the stress of the animal resulting in depressed  

immunological function to the antigens they encounter (Blecha et al., 1984; Paterson and Engle, 

2005).  

Injection of the required trace minerals Cu, Zn, Se and Mn at initial processing may be 

advantageous to animal performance by ensuring that newly received, stressed cattle have 

necessary trace minerals readily available to them (Berry et al., 2000).  It has also been suggested 

that administering trace minerals concurrently with vaccinations enhances the production of 

neutralizing antibodies to that vaccine antigen (Arthington and Havenga, 2012). Research has 

found that the injectable trace minerals increased humoral immune response to antigens and 

increased acute phase protein concentrations in weaned and transport stressed calves (Arthington 

et al., 2014b). Richeson et al. (2011) reported that utilizing the injectable trace mineral during 

processing of stressed calves improved BRD morbidity upon arrival in the feedlot and 

throughout the feeding period. The reduced treatment and retreatment incidences of cattle while 

in the feedlot resulted in decreased antibiotic costs over the entire feeding period (Richeson et 

al., 2011).   
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 In contrast to these results, research has indicated that a lifetime supplementation of Cu, 

Zn and Mn, administered in combination and maintained at levels above deficiency, have little 

impact on performance and health of feedlot cattle (Ahola et al., 2005). This study analyzed the 

effects of mineral supplementation starting as a neonate and ending through the finishing phase 

of production. Mineral supplementation had no impact on humoral or cell mediated responses, 

morbidity or number of times cattle were treated. Additionally, administering Cu, Zn, Mn and Co 

at the NRC (1996) recommended level, 2 times above, or 3 times above the NRC 

recommendation had little impact on overall morbidity, incidence of respiratory disease, foot rot, 

bloat or percentage of times feedlot steers required retreatment (Rhoads et al., 2003).  

Utilizing an injectable trace mineral with Cu, Zn, Se and Mn 28 d prior to weaning in 

calves also exposed to a free choice mineral had no influence on calf health (Kegley et al., 2011). 

Researchers implicated that the free choice mineral may have played a role in their results. 

However, when calves did not receive free choice mineral and were injected with trace minerals 

90 d pre-weaning and again at weaning, there were still no differences found between calves that 

received treatment and those that did not (Gadberry and Simon, 2012).  

 The effects of minerals on morbidity and mortality in cattle are contradicting and may be 

due to the differences in initial mineral status, vaccination protocols, class of cattle or diet 

provided. Future research should attempt to use similar backgrounded cattle and experimental 

environments, units and design, in order to allow for more consistency in results and a better 

understanding of trace minerals within beef cattle. 

Effects on Feedlot Performance 

 Proper growth in beef cattle is vital to the animal’s feedlot performance and in turn, the 

producer’s profitability. Trace minerals are important for the growth of livestock because of their 
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involvement in biochemical processes such as bone, muscle and skeletal development 

(Underwood and Suttle, 1999). The trace minerals Cu, Zn, Se and Mn have been evaluated to 

observe their effects on calf feedlot performance when administered prior to weaning, at 

weaning, upon arrival to the feedlot and during shipping.  

Calves that received the injectable trace mineral 150 d and again 50 d prior to weaning 

did not show improved ADG compared to control calves (Arthington et al., 2014b). Likewise, 

injecting Cu deficient calves 28 d prior to weaning with Cu, Zn, Se and Mn did not influence 

ADG (Kegley et al., 2011). Calves in both studies were additionally supplied with unlimited 

access to minerals, which may have provided for adequate mineral intake for both supplemented 

and control treatment groups.  

Administration of injectable trace minerals Cu, Zn, Se and Mn upon entering the feedlot 

has been found to improve overall ADG and feed efficiency (Richeson and Kegley, 2011). Beef 

heifer calves served as a control or received one of two levels of trace minerals. Heifers in both 

the high and low mineral level treatment groups gained 0.18 to 0.19 kg per kilogram of feed 

consumed compared to control heifers which gained 0.16 kg per kilogram of feed consumed. In 

contradiction to this, bull calves that received trace mineral injections upon arrival to the feedlot 

showed no improvement in feed conversion when compared to their control contrasts (Berry et 

al., 2000). Bulls did have a tendency to exhibit improved ADG if they received trace minerals, 

however there was also a period of increased DMI which may account for the lack of differences 

seen in overall feed efficiency between treatments. Differences between studies could be due to 

class of cattle or prior mineral status. 

Heifers that received pre-weaning injectable trace minerals were shipped 1,600 km to a 

feedlot where they were then given another injection upon arrival (Arthington et al., 2014b). 
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Heifers were monitored for the first 14 d for improvement or decline in feedlot performance. 

Supplemented heifers had reduced ADG over the 14 d period when compared to non-

supplemented heifers. In another experiment involving cattle shipping, researchers implemented 

an 84 d depletion period in which they utilized dietary antagonist to induce mild mineral 

deficiencies in growing and finishing steers (Genther ande Hansen, 2014). Throughout the 

depletion period, there were no treatment effects on ADG, DMI or G:F. Two d after shipment, an 

equal number of steers on the control and deficient diets were injected with Cu, Zn, Se and Mn. 

During the repletion period, steers that were deficient and received an injection of mineral had 

greater ADG compared to those steers which were deficient but did not receive the injection. 

Steers on the control diet exhibited no differences in ADG despite mineral injection or lack 

thereof. These results are consistent with Engle et al. (1995) who noted that Zn depletion 

decreased gain by an average of 45.6%, but upon Zn repletion there were no evident differences 

in gain. 

Additionally, organic trace mineral supplementation improved growth performance of 

shipping stressed calves compared to inorganic supplemented calves (Kegley et al., 2012). 

During the receiving period calves were supplemented with inorganic or organic forms of Cu, 

Zn, Mn and Co in the diet. Organic supplemented calves had a 4.6 kg greater final weight and a 

0.11 kg greater ADG than inorganic supplemented calves. These results agree with Dorton et al. 

(2006) who found that weaned calves supplemented with organic trace minerals for 30 d and 

then shipped to the feedlot had greater ADG than steers that were fed inorganic trace minerals. In 

contrast, for the first 56 d in the feedlot calves supplemented with organic or inorganic Cu, Zn 

and Mn exhibited no differences in BW, ADG or DMI (Ahola et al., 2005). Also for the finishing 

phase (140 to 181 d), no effect of mineral source on ADG was observed (Ahola et al., 2005). 
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However, researchers in this study did find that there was a tendency for supplemented cattle to 

have increased DMI compared to non-supplemented cattle. Non-supplemented cattle therefore 

had greater feed efficiency than organic supplemented cattle, and organic supplemented cattle 

were more efficient with feed conversion compared to inorganic supplemented cattle.  

The research regarding utilization of Cu, Zn, Mn and Se to influence feedlot performance 

is variable and limited. Time of mineral injection, along with mineral source and combination of 

minerals used appear to influence the effects on cattle growth and performance, however more 

research is needed to better understand these impacts.  

Effects on Bull Fertility 

 Bull fertility is often overlooked and the emphasis of calf production tends to be placed 

more on female reproductive performance (Cooke, 2012).This is unfortunate because bull 

infertility would result in multiple calf losses compared to one cow’s infertility which would 

only result in the loss of a single calf (Cooke, 2012). Bull infertility could be detrimental to a 

producer’s profitability, especially if the producer is not achieving the output of calves expected. 

Fertilization failure can be due to the lack of normal viable sperm reaching the ova, age, disease, 

injury, unsoundness or malnutrition (Burns et al., 2010; Cooke, 2012). Therefore, breeding 

soundness exams and analysis of sperm should be performed prior to the breeding season in 

order to ensure high pregnancy rates in females (Cooke, 2012). Additionally, adequate nutrition 

and mineral supplementation is essential to reproductive performance.  

 Spermatogenesis, or sperm production, requires approximately 60 d in bulls (Rowe et al., 

2011). With this in mind, researchers supplemented bulls with inorganic or organic mineral 

treatments 60 d prior to beginning the experiment and then throughout the 9 week study on 

semen quality and production analysis (Rowe et al., 2011). The 9 week period was chosen to 
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represent another 60 d spermatogenesis phase in order to accurately identify the effects of 

minerals on sperm production. Sperm motility is one of the most important factors effecting bull 

fertility (Rowe et al., 2011). Bulls subjected to organic Zn, Cu, Mn and Co had 65.5% motile 

sperm compared to 56.1% motile sperm exhibited by bulls fed the inorganic minerals (Rowe et 

al., 2011). Organic mineral supplemented bulls also had higher percentages of progressive motile 

sperm (47.0%) and motile sperm with rapid motility (62.3%) in comparison to inorganic 

supplemented bulls (38.4%, 52.8%, respectively) (Rowe et al., 2011).  Rowe et al. (2011) also 

reported that progressive and motile sperm percentages after thawing semen samples remained 

greater for bulls receiving organic minerals versus those receiving inorganic minerals. Similarly, 

crossbred bulls that received only organic Zn outperformed bulls supplemented with inorganic 

Zn by exhibiting increased ejaculate volume, sperm concentration, percent live sperm and 

percent motility (Kumar et al., 2006). Researchers inferred that this result may be due to the fact 

that organic Zn had more bioavailability than inorganic Zn, and therefore allowed for better 

absorption, distribution and uptake of Zn, improving its effects (Kumar et al., 2006).  

Similarly, in vitro studies have observed that utilizing solely Mn improved semen quality 

(Bansal and Bilaspuri, 2008).  Manganese is a chain-breaking antioxidant (Cavallini et al., 1984). 

An antioxidant that is capable of reducing oxidative stress and improving sperm motility could 

be beneficial to managing male infertility (Verma and Kanwar, 1999).  Results have indicated 

that Mn (60, 100 or 200 µM) efficiently reduced the oxidative stress caused by ferrous ascorbate 

and improved sperm motility and viability in crossbred bull semen samples utilized in vitro 

(Bansal and Bilaspuri, 2008). In fact, motility, morphology and viability were all improved upon 

the addition of Mn in untreated samples and ferrous ascorbate treated samples (Bansal and 

Bilaspuri, 2008). Although Mn appears to improve sperm quality in vitro, research has also 
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indicated that Mn supplementation level in diets needs to be carefully managed (Reis et al., 

2014).  This is a challenging concept because many countries have naturally occurring 

concentrations of Mn that already exceed NRC (2000) requirements 30-fold, and then feed 

manufacturers add Mn to mineral supplements increasing the level of Mn in cattle diets even 

more. Moreover, Reis et al. (2014) found that Mn fed at greater than 540 mg/kg resulted in 

detrimental effects to the integrity of the plasma and acrosomal membranes of bull sperm. 

 The individual use, combination of minerals or method of mineral administration may 

have varying effects on bull semen characteristics. For example, ram lambs receiving soluble 

boluses of Zn, Co and Se exhibited increased motility, proportion of live sperm and proportion of 

intact membranes when compared to an non-supplemented group of rams (Kendall et al., 2000). 

In contradiction to these results, another experiment utilized an injectable source of Cu, Zn, Mn 

and Se and reported no difference in sperm quality between mineral treated and untreated bulls 

(Kirchhoff et al., 2015). Additionally, the injectable mineral had no influence on the semen trace 

mineral concentration (Kirchhoff et al., 2015).  

Injecting Se alone into dairy bulls with marginal Se status had no effects on sperm quality 

(Bartle et al., 1980). However, researchers in this study found that Se levels in the blood were 4 

times greater in bulls that received the injection compared to those that did not (Bartle et al., 

1980). Likewise, the semen Se concentration was 2.5 times greater for treated bulls versus 

untreated bulls. The semen Se concentration was 10 times greater than the Se blood levels in 

both treated and untreated bulls. Although Bartle et al. (1980) could not determine what 

accounted for this significant increase in semen selenium, it appears that the male reproductive 

system does have a high affinity for Se and may be the preferred organ system for Se metabolism 

(Bartle et al., 1980). Segerson and Johnson (1981) found that the reproductive tract of the beef 
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bull is capable of concentrating high levels of selenium. Serum Se concentrations were highly 

correlated to Se concentrations in the seminal vesicle and testis tissue, extended semen, 

supernatant sample and seminal plasma portion of semen sample, as well as the kidney and liver 

(Segerson and Johnson, 1981). In rats, it has been reported that testicular and epididymal 

function were also extremely sensitive to Se deficiencies (Wu et al., 1969). Despite Se 

concentration improving in reproductive tissues, the sperm concentration in the testis and caput, 

corpus and caudal epididymis were not different between bulls injected with Se and bulls left 

non-supplemented (Segerson and Johnson, 1981). Likewise, Se treatment did not improve sperm 

cell viability or Se concentration (Segerson and Johnson, 1981). 

While it appears that trace minerals play a role in bull fertility, results from various 

studies tend to disagree. Also, the current literature published on the effects of mineral 

supplementation, in particular the combination of Cu, Zn, Mn and Se, directly on bull fertility is 

limited. Therefore additional research is necessary to understanding the impact of these 4 trace 

minerals on bulls.  

Effects on Cow and Heifer Fertility 

 The reproductive efficiency of a beef female can be determined by factors such as age of 

puberty and first conception, duration of post-partum anestrus, total lifetime productivity and 

total weight of calves weaned (Burns et al., 2010). Dietary Cu, Zn and Mn are important to 

reproduction, and dietary Cu and Zn are often found in levels below those recommended for 

breeding cattle and thus should be supplemented in the diet (NRC, 1996).  

Research has indicated that supplementing crossbred heifers with dietary Cu, Zn and Mn 

had no impact on age of puberty (Grings et al., 1999). Age of puberty was instead influenced by 

sire breed, age of dam (Grings et al.,1999), and the use of a progestin implantation (Grings et al., 
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1998). Although supplementation of Cu, Zn and Mn did not effect the percentage of heifers 

pregnant (Grings et al., 1999), the combination of Cu, Zn, Mn and Se supplemented to virgin 

beef heifers through an injectable source improved overall pregnancy rate (93.0%) compared to 

the control set of heifers (83.0%) (Brasche, 2014). Brasche (2014) also reported that while there 

was a mineral treatment by synchronization protocol interaction for heifers conceiving to AI, 

there were no differences between supplemented and control heifers within the 5 d Co-Synch 

plus CIDR protocol or within the 14 d CIDR-PG protocol. Additionally, lactating beef cows on 

Florida pastures administered injectable trace minerals exhibited increased pregnancy rates as 

BCS increased, however, in contrast to previous results, mineral supplementation did not effect 

this outcome (Arthington et al., 2014a). 

Previous researchers suggested that administering an injectable trace mineral source 30 d 

prior to the breeding season may improve reproductive performance in heifers (Brasche, 2014). 

However, other researchers found that utilizing the same injectable trace minerals in beef cows, 

30 d prior to breeding and again 30 d prior to calving, had no effect on reproductive performance 

for a two year period (Whitworth et al., 2014). Authors in this study noted that these cows had 

additional access to free choice minerals and that their initial mineral status was unknown. This 

indicates that it is possible for future results to differ if the initial mineral status was observed 

and mineral intake was controlled.  

When observing cows that were not exposed to free choice mineral supplementation, and 

only received the injectable source of minerals, supplemented cows did not exhibit differences in 

pregnancy rate, post-partum interval or BCS at weaning, calving or rebreeding in comparison to 

non-injected cows (Gadberry and Simon, 2012). Although previous research has indicated that 

supplementation of Cu, Zn, Mn and Se in conjunction with Vitamin E can improve reproductive 
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performance (Ishak et al., 1983), injectable Cu, Zn, Mn and Se administered with Vitamin E to 

beef cows did not improve post-partum interval or conception rates (Daugherty et al., 2002),  

Interestingly, one injection of trace minerals before breeding had no beneficial effects on 

first service conception rates in intensely managed dairy cows, however when dairy cows 

received 2 injections (one before calving and one before breeding) they exhibited lower 

conception at first service (Vanegas et al., 2004). Researchers originally thought that these 

unique results were due to retained placentas or mastitis in cows, however when the data was 

analyzed there were no differences among these illnesses prior to breeding. The physiological 

activity that caused these results is unknown and further research is warranted to explain what 

occurred.  

Ahola et al. (2004) noted that mineral source (organic or inorganic) may influence 

pregnancy rate to AI in beef cattle. This was a 2 year study in which cows received no 

supplement (control) or received free choice mineral (organic or inorganic) at NRC 

recommended concentrations of Cu, Mn and Zn. In the first year organic supplemented cows 

tended to have higher pregnancy rates than inorganic supplemented cows. Only in the second 

year did both groups of supplemented cows have higher pregnancy rates than control cows. 

Combining both years, supplemented cows tended to have higher 60 d pregnancy rates than 

control cows. In contrast, feeding Cu alone, or Cu with Zn, did not improve 60 d pregnancy rates 

in supplemented cows compared to control cows (Muehlenbein et al., 2001). While there is a 

source effect on pregnancy in beef cows, it also appears there may be an interaction between the 

combination of minerals utilized that influences attainment of pregnancy. Additionally, source 

and level of minerals supplied to the animal may also impact pregnancy rates. For example, 

organic and inorganic Cu, Co, Mn and Zn supplied above nutrient requirements reduced 



36 

 

reproductive performance (Olson et al., 1999).  Organic supplemented cows conceived later than 

inorganic supplemented or control cows. Incidence of organic and inorganic supplemented cows 

not being pregnant was greater than for control cows.  Researchers believed that the cows 

utilized in this study had adequate mineral supplementation (as seen by the control cows), and 

that excess supplementation of trace minerals may cause imbalances or toxicities that result in 

reduced reproductive performance (Olson et al., 1999).  

It appears female fertility is influenced differently depending on the source, level and 

combination of minerals supplemented to cattle. More research should be conducted to analyze 

how these characteristics may benefit or hinder female reproductive performance. 

Rationale for Current Experiment 

 It is known that trace minerals are vital to animal productivity, however the effects of 

trace minerals on animal health and performance differ depending on the source (organic or 

inorganic), administration (dietary, bolus, injectable) or combination of minerals utilized. 

Research has indicated that the use of injectable minerals may be advantageous to bypass dietary 

antagonists within the gastrointestinal tract, because upon injection the minerals would be 

directly circulated throughout the bloodstream and incorporated into cells as needed (Berry et al., 

2000). By increasing mineral absorption and utilization, animal health and productivity may also 

be improved (Richeson and Kegley, 2011). Unfortunately, the current literature regarding 

injectable trace minerals is limited and contradicting.  

 Moreover, further research is warranted to determine the effects of injectable trace 

minerals in cattle, in particular, on fertility in yearling bulls and heifers, as well as feedlot 

performance and morbidity in newly received beef calves.  
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CHAPTER II 

 

EFFECTS OF HIGH LEVELS OF MONENSIN SODIUM AND PLANT EXTRACTS 

CINNAMALDEHYDE, CAPSICUM OLEORESIN AND EUGENOL ON BEEF HEIFER 

FEEDLOT AND REPRODUCTIVE PERFORMANCE 

 

SUMMARY 
 
 
 

The objectives of this study were to determine the effects of high levels of monensin 

sodium fed with or without the plant extracts cinnamaldehyde, capsicum oleoresin and eugenol 

on ADG, feed efficiency, age at puberty and pregnancy rate in developing beef heifers. In mid-

October, Angus heifers (n = 107; 259.3 ± 20.98 d of age), blocked by weaning BW (262.7 ± 

29.85 kg; d -19), were randomly assigned to treatments in a 2 x 2 factorial design, where all 

heifers received the same basal ration consisting of a 30% CP liquid supplement containing 200 

mg/0.45 kg monensin sodium. Treatments were applied daily to the basal ration as topdressed 

supplements and were fed at a rate of 0.32 kg·hd-1·d-1. Treatments were as follows:  1) high level 

of monensin sodium (MON), where monensin sodium was topdressed at 200 mg·hd-1·d-1, 2) low 

level of monensin sodium plus the plant extracts cinnamaldehyde, capsicum oleoresin and 

eugenol (CCE), where plant extracts were topdressed at 11,000 mg·hd-1·d-1, 3) control (CON),  

low level of monensin sodium without topdressed supplements, or 4) high levels of monensin 

sodium with plant extracts (COMB), where monensin sodium was topdressed at 200 mg·hd-1·d-1 

and plant extracts were topdressed at 11,000 mg·hd-1·d-1. Heifers were weighed and estrus 

detection patch status was recorded every 11 d. Age at puberty was determined by patch status 



53 

 

and recorded as the d the patch was first activated. A 14 d CIDR-PG-AI protocol was utilized to 

inseminate heifers, when heifers were 427.3 ± 20.98 d of age. In the 14 d CIDR-PG-AI, a 

controlled internal drug release device (CIDR) was inserted 33 d prior to AI and removed 14 d 

later. Prostaglandin-F-2α was injected 16 d after CIDR removal and heifers were inseminated 3 d 

later. Heifers were placed with bulls for natural service 21 d post AI. Pregnancy was determined 

56 d post AI via ultrasound and 178 d post AI via rectal palpation. Calving records were used to 

validate ultrasound results. There were no differences between treatments for initial or final BW 

(P > 0.05). There were no interactions between the main effects of monensin sodium fed at high 

concentrations and plant extracts for any feedlot or fertility performance variable (P > 0.05); 

however, there was a main effect of high levels of monensin sodium for heifer DMI from d 0 to 8 

and d 8 to 15, where heifers fed high levels of monensin sodium had reduced DMI compared to 

heifers fed low levels of monensin sodium (P = 0.05). From d 11 to 22 and d 44 to 66, heifers 

that received plant extracts (CCE and COMB) had lower ADG than heifers that did  not receive 

plant extracts (P = 0.05). Feed efficiency tended (P = 0.08) to be improved in heifers fed high 

levels of monensin sodium (MON and COMB) compared to heifers fed low levels of monensin 

sodium (CCE and CON); however overall DMI, ADG, age at puberty and pregnancy rate were 

not affected by the main effects of high levels of monensin sodium or plant extracts (P > 0.05).  

Key Words: beef heifer development, feed efficiency, monensin sodium, plant extracts, puberty 

 

INTRODUCTION 
 
 
 

Current beef management practices in the United States include heifers calving by 2 yr of 

age (Funston and Deutscher, 2004). One of the greatest costs of developing heifers is feed 
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resources (Clark et al., 2005). Heifers reaching a BW of 50 to 57% of their mature BW, in 

comparison to the traditional target weight of 60 to 65%, by breeding season can reduce 

development costs without impairing reproductive performance (Funston and Deutscher, 2004). 

Increasing ADG and improving feed efficiency can aid in heifers reaching target breeding weight 

at a younger age while also decreasing feed input costs. 

Ionophores, such as monensin sodium, have been used in beef cattle rations to improve 

feed efficiency and nutrient utilization (Bergen and Bates, 1984). Monensin sodium has been 

found to improve feed conversion (Raun, 1990), decrease age at puberty (Moseley et al., 1982; 

Lalman et al., 1993) and increase first service pregnancy rate (Purvis and Whittier, 1996). Plant 

extracts have also demonstrated antimicrobial properties that may allow manipulation of 

microbial activity in the rumen (Benchaar et al., 2008). Plant extracts have been found to 

improve ADG by 16% (Geraci et al., 2012) and reduce DMI when fed to cattle on high 

concentrate diets (Cardozo et al., 2006). Unfortunately, there is limited published literature 

regarding the effects of plant extracts on animal performance and fertility. The objectives of this 

study were to evaluate the effects of high levels of monensin sodium, fed with or without the 

plant extracts cinnamaldehyde, capsicum oleoresin and eugenol, on ADG, feed efficiency, age at 

puberty and pregnancy in beef heifers. 

 

MATERIALS AND METHODS 
 
 
 

Experimental procedures conducted with animals were approved by the Institutional 

Animal Care and Use Committee at Colorado State University prior to initiation of the study. 
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Experimental Design 

Angus heifers (n = 107; 259.3 ± 20.98 d of age), blocked by weaning BW (262.7 ± 29.85 

kg; d -19), were randomly assigned to treatments using a random number generator. Pens were 

488 m2 with 6 or 7 heifers and were also randomly assigned a treatment. All heifers received the 

same basal ration (Table 2.1) consisting of a 30% CP liquid supplement containing 200 mg/0.45 

kg monensin sodium. Treatments were applied daily to the basal ration as topdressed 

supplements and were fed at a rate of 0.32 kg·hd-1·d-1. There were 4 replicates per treatment. In a 

2 x 2 factorial design, the treatments were: 1) high level of monensin sodium (MON), where 

monensin sodium was topdressed at 200 mg·hd-1·d-1, 2) low level of monensin sodium plus the 

plant extracts cinnamaldehyde, capsicum oleoresin and eugenol (CCE), where plant extracts 

were topdressed at 11,000 mg·hd-1·d-1 (RumeNext®, ADM Alliance Nutrition Inc., Quincy, IL), 

3) control (CON), low level of monensin sodium without topdressed supplements, or 4) high 

levels of monensin sodium with plant extracts (COMB), where monensin sodium was 

topdressed at 200 mg·hd-1·d-1 and plant extracts were topdressed at 11,000 mg·hd-1·d-1. These 

dosage levels were recommended by ADM Alliance Nutrition (Archer Daniels Midland Inc.). 

Researchers were unaware of the monensin supplied in the basal ration and it was unintentionally 

used. It is important to note that results from Fischer et al. (2014) are therefore inaccurate. 

Data Collection 

Feed refusals were estimated and recorded and feed offered was adjusted daily based on 

evaluation by a trained bunk reader to minimize feed refusals. Feed samples and orts were 

collected weekly and intake was calculated on a DM basis by pen. The DM and nutrient analysis 

was performed by a private laboratory (SDK Laboratories, Hutchinson, KS). 
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Heifers were weighed every 11 d to measure ADG. Estrus detection patches (Estrotect™ 

Heat Detector, Rockway Inc., Spring Valley, WI) were applied on d 0. Patch status was recorded 

every 11 d as activated, not activated or missing. Missing patches were not considered activated, 

and if a patch was missing, it was replaced with a new patch. Age at puberty was estimated based 

on patch status and recorded as the d that the patch was first activated. A 14 d CIDR-PG-AI 

protocol was utilized to inseminate heifers on d 168, when heifers were 427.3 ± 20.98 d of age. 

In the 14 d CIDR-PG-AI, a controlled internal drug release device (CIDR) was inserted 33 d 

prior to AI and removed 14 d later. Prostaglandin-F-2α was injected 16 d after CIDR removal and 

heifers were inseminated 3 d later. Heifers were placed with bulls for natural service 21 d post 

AI. Pregnancy was determined via ultrasound at 56 d post AI and again at 178 d post AI via 

rectal palpation. Calving records were used to validate ultrasound results. 

Chute exit velocity was observed every 11 d using an infrared sensor timing system 

(FarmTek Inc., North Wylie, TX) in order to evaluate the effects of plant extracts on heifer 

behavior. The first sensor was placed 1.83 m from the front of the chute, and the second sensor 

was 3.66 m from the front of the chute. Velocity was measured in m/s as the time it took heifers 

to move from the first to second sensor after exiting the chute.  

Data Analysis 

Average daily gain, DMI, G:F, chute exit velocity, age at puberty, BCS, pregnancy rate 

and d of calving season were analyzed using a mixed model and the GLIMMIX procedure of 

SAS (SAS Institute Inc., Cary, NC). Pen was the experimental unit. Feedlot performance data 

were analyzed by periods of time since previous research had found differences in the effects of 

monensin sodium (Moseley et al., 1977) and plant extracts over time (Yang et al., 2010b; Geraci 

et al., 2012). The model included treatment as a fixed effect. Predictor variables included BW, 
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BCS, age, AI tech and sire, depending on the variable analyzed. If predictor variables were 

considered to have an effect (P ≤ 0.10), they were left in the model statement. 

 

RESULTS AND DISCUSSION 
 
 
 

Feedlot Performance 

There were no time x treatment interactions or interactions between the main effects of 

high levels of monensin sodium and plant extracts for any feedlot performance variable (P > 

0.05; Table 2.2). Heifers fed high levels of monensin sodium had reduced DMI from d 0 to 8 and 

d 8 to 15 compared to heifers that were fed low levels of monensin sodium (P = 0.05). From d 15 

to the end of the experiment, there were no additional period differences between treatments for 

DMI (P > 0.05). There was a plant extracts main effect on ADG from d 11 to 22 and d 44 to 66, 

in which heifers fed plant extracts had lower ADG compared to heifers that did not receive plant 

extracts (P = 0.05). Overall DMI and ADG was not affected by the main effects of monensin 

sodium fed at high levels or plant extracts (P > 0.05). Heifers that were supplemented with high 

levels of monensin sodium tended to have improved G:F compared to low level monensin 

sodium supplemented heifers (P = 0.08).  

In agreement with the current study, Yang et al. (2010b) supplemented steers on a 

finishing ration with 330 mg·hd-1·d-1 monensin sodium and found that steers had a 17% decrease 

in DMI for the first wk of the experiment compared to the wk prior to starting the experiment. 

The authors reported that after wk 1, and for the duration of the experiment, monensin sodium 

fed steers did not have different feed intake compared to control cattle. While a reduction in DMI 

can benefit animals starting a new ration, by aiding in the reduction of feedlot disorders such as 
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lactic acidosis or bloat (Yang et al., 2010b), this effect is more valuable for animals on high 

concentrate diets. In the current study, heifers were fed a receiving ration and maximum intake 

was desired. Regardless, DMI results from the current study were not surprising, since several 

studies have observed that cattle fed monensin sodium had reduced DMI compared to control 

cattle (Moesely et al., 1977; Benchaar et al., 2006). Additionally, researchers fed steers 0, 25, 50 

or 100 mg monensin sodium and found that feed intake tended to be decreased as monensin 

sodium dosage increased (Boling et al., 1977). In contrast to the previously mentioned studies, a 

feedlot efficiency study utilizing 0, 100, 500 or 750 mg·hd-1·d-1 monensin sodium found that 

there were no differences in feed intake between supplementing cattle with 0, 100 or 500 mg·hd-

1·d-1 (Raun et al., 1976). However, the authors reported that cattle feed intake was reduced by the 

750 mg·hd-1·d-1 dosage level. Raun et al. (1976) concluded that the optimal dosage of monensin 

sodium was between 0 and 500 mg. 

Yang et al. (2010b) observed the effects of 400, 800 or 1,600 mg·hd-1·d-1 cinnamaldehyde 

on cattle intake. Contrary to the current study, the authors reported that steers supplemented with 

800 or 1,600 mg·hd-1·d-1 cinnamaldehyde had reduced DMI for the first wk of the study 

compared to the week prior to starting the experiment. Additionally, the authors reported that 

DMI for steers supplemented with 400 mg·hd-1·d-1 cinnamaldehyde was not effected for the first 

wk of the experiment; however, after wk 1, DMI continuously increased until reaching a plateau 

at wk 4. Yang et al. (2010b) reported that after d 29, through the end of the experiment, there 

were no differences between cinnamaldehyde supplemented cattle and control cattle. These 

results are inconsistent with the current experiment, in which CCE had no effects on overall DMI 

or period DMI. Perhaps plant extracts have different effects on cattle fed finishing versus 

receiving rations. Additionally, Yang et al. (2010b) observed a tendency for DMI to be effected 
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by level of cinnamaldehyde over the entire experiment. The authors used a much lower dosage of 

plant extract compared to the current experiment and observed fluctuations in DMI. Dosage may 

influence the effects of plant extracts on cattle intake. This statement appears to have merit based 

on another study by Yang et al. (2010), which also found that a lower dose of cinnamaldehyde 

(400 mg·hd-1·d-1) tended to increase DMI, whereas higher doses, such as 800 mg·hd-1·d-1 and 

1,600 mg·hd-1·d-1 cinnamaldehyde, tended to decrease DMI (Yang et al., 2010). While dosage 

could be another explanation for the different effects of plant extracts on DMI found by Yang et 

al. (2010b) and those of the current study, it is unclear how the 11,000 mg·hd-1·d-1 level of CCE 

had no effect when the increase in dosage appeared to decrease intake for Yang et al. (2010; 

2010b). It is also possible that Yang et al. (2010b) saw different effects on DMI because of the 

author’s sole use of cinnamaldehyde compared to the combination of cinnamaldehyde, capsicum 

oleoresin and eugenol used in the current study. In support of this, Cardozo et al. (2006) 

observed the effects of capsicum oil by itself and a mixture of cinnamaldehyde and eugenol on 

DMI in Holstein heifers fed a high concentrate diet and reported that intake was changed 

depending on the extracts used. The authors found that cinnamaldehyde and eugenol maintained 

or reduced DMI, whereas capsicum oil increased DMI. The effects observed by Cardozo et al. 

(2006) could help explain the results found in the current study. Perhaps the 3 extracts, when 

used in combination, balanced each other and resulted in the impartial effects on DMI. It is 

probable that the monensin sodium provided in the basal ration to heifers in the current 

experiment also counteracted any effect the plant extracts may have had on heifer DMI. Both the 

high and low dosages of monensin sodium used in the current study are lower than 500 mg·hd-

1·d-1 utilized by Raun et al. (1976). Raun et al., (1976) found that supplementing cattle with 

monensin sodium between 0 and 500 mg·hd-1·d-1 had no effect on DMI. 
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Consistent with the current experiment, Lalman et al. (1993) observed the effects of 

monensin sodium on crossbred beef heifers’ ADG. Over a 120 d experiment, the authors found 

that heifers supplemented with 200 mg·hd-1·d-1 monensin sodium did not have improved ADG 

compared to control heifers. Similarly, the current study did not find an effect of monensin 

sodium on ADG, regardless of dosage. In contrast, Boling et al. (1977) grazed steers for a 140 d 

trial and found that steers fed 50 or 100 mg·hd-1·d-1 monensin sodium had greater ADG 

compared to those fed 0 or 25 mg·hd-1·d-1 monensin sodium. The current study utilized dosages 

greater than Boling et al., (1977) indicating that monensin sodium may lose efficacy for 

improving ADG at higher dosages. However, Moseley et al. (1977) supplemented beef heifers 

with higher dosages than Boling et al. (1977; 200 mg·hd-1·d-1) and reported that heifers fed 

monensin sodium had higher ADG for the first 59 d of the experiment compared to control 

heifers. The CON treatment of the current study utilized 200 mg·hd-1·d-1 monensin sodium, 

however there was no effect found. Previous research, along with the current study, indicate that 

monensin sodium may lose efficacy for improving ADG somewhere between 200 and 400 

mg·hd-1·d-1. 

The current study found that there was a main effect of plant extracts on ADG. Geraci et 

al. (2012) compared the effects of monensin sodium (46.7 mg/kg) and a mixture of plant extracts 

(266 mg·hd-1·d-1 cinnamaldehyde and eugenol, and 133 mg·hd-1·d-1 capsicum oleoresin) on ADG 

of feedlot steers. The authors reported that animals receiving plant extracts had 16% higher ADG 

compared to those receiving monensin sodium. The authors also noted that ADG was only 

different among treatments at the end of the study from d 45 to 84. These results are not 

consistent with the current study, which observed that heifers supplemented with plant extracts 

had reduced ADG from d 11 to 22 and d 44 to 66 compared to heifers not supplemented with 
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plant extracts, regardless of monensin sodium supplementation. The variation in these results 

could be due to the lower dosage of plant extracts used by Geraci et al. (2012), or the fact that 

monensin sodium was included in all treatments in the current study.  

In a plant extract dosage response study, Yang et al. (2010b) found that cattle 

supplemented with 400 mg·hd-1·d-1 cinnamaldehyde tended to have higher ADG than control 

cattle or cattle supplemented with high doses of cinnamaldehyde (800 or 1,600 mg·hd-1·d-1). 

However, unlike Geraci et al. (2012) who observed plant extract effects from d 45 to 84, Yang et 

al. (2010b) observed the plant extract effects from d 0 to 28. Both of these experiments fed cattle 

high concentrate diets; however, steers in Yang et al. (2010b) had an initial BW of 390 ± 25.2 

kg, whereas steers in Geraci et al. (2012) had an initial BW of 141 ± 6.6 kg. This information 

suggests there may be a dosage effect on the administration of plant extracts based on kg of BW 

instead of kg per animal. Additionally, different treatment effects may be observed between 

previous research, and the current experiment, because of the combination of plant extracts 

cinnmaldehyde, capsicum oleoresin and eugenol (Geraci et al., 2012), versus the sole use of 

cinnamaldehyde (Yang et al., 2010b). 

Monensin sodium has not been found to improve feed efficiency in cattle when fed at 

rates greater than 360 mg·hd-1·d-1 (Elanco Animal Health, Greenfield, IN); however the current 

study administered monensin sodium at a rate greater than 360 mg·hd-1·d-1 and found that heifers 

tended to have an improved feed efficiency. In the current experiment, heifers supplemented 

with high levels of monensin sodium (MON and COMB) tended to have better feed efficiency 

than heifers supplemented with low levels of monensin sodium (CCE and CON; P = 0.08). This 

result could be due to the decreased DMI that MON and COMB heifers demonstrated during 

specific time periods throughout the study. Consistent with the current experiment, Moseley et 
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al. (1977) also reported that monensin sodium supplemented heifers had a period of increased 

ADG and decreased DMI; however, those heifers were not more efficient than control heifers. 

Moseley et al. (1977) used 200 mg·hd-1·d-1 monensin sodium and a high roughage diet, whereas 

the current experiment used 200 mg·hd-1·d-1 as the low level of monensin and 400 mg·hd-1·d-1 as 

the high level monensin sodium. 

Contrary to the current experiment, Yang et al. (2010b) did not observe improved feed 

efficiency in finishing steers supplemented with 330 mg·hd-1·d-1 monensin sodium compared to 

control steers. This brings into question if there may be a dosage effect of monensin sodium on 

feed efficiency. However, Raun et al. (1976) observed the effects of monensin sodium 

supplemented at 0, 100, 500 or 750 mg·hd-1·d-1 and reported that there were no differences in 

efficiency between cattle supplemented with any dosage of monensin sodium. Additionally, the 

authors made it clear that steers supplemented with monensin sodium were more efficient than 

their control cohorts. Similarly, Boling et al. (1977) supplemented finishing steers with 0, 25, 50 

or 100 mg·hd-1·d-1 monensin sodium and found that while feed intake tended to decrease as level 

of monensin sodium increased, feed efficiency was improved in cattle by all levels of monensin 

sodium compared to controls.  

Geraci et al. (2012) also studied the effects of monensin sodium and the plant extracts 

cinnamaldehyde, eugenol and capsicum on efficiency of beef cattle. However, unlike the current 

study, the authors did not find that monensin sodium improved feed efficiency compared to plant 

extracts. Because steers had similar DMI throughout the entire 84 d study and plant extract 

supplemented steers had increased ADG for the second half of the experiment (Geraci et al., 

2012), it would not have been surprising for plant extract supplemented steers to be more 

efficient than monensin sodium supplemented steers. However, the authors reported that the 
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overall feed efficiency between plant extract and monensin sodium supplemented steers was not 

different. The current experiment may have observed an effect of monensin sodium on feed 

efficiency, where Geraci et al. (2012) did not, due to the use of a much lower dosage of 

monensin sodium (400 mg·hd-1·d-1  versus 46.7 mg/kg). 

Consistent with the current experiment, Yang et al. (2010b) found that supplementing 

cattle with a plant extract had no effect on overall feed efficiency. However, the authors did 

report that from d 0 to 28, increasing dose of cinnamaldehyde (400, 800 or 1,600 mg·hd-1·d-1) 

decreased feed efficiency compared to controls. This effect was then changed from d 29 to 56, in 

which the high dose of cinnamaldehyde had greater G:F than the low or medium doses. Benchaar 

et al. (2006) also observed that higher dosages (2000 versus 4000 mg·hd-1·d-1) of eugenol, 

thymol, vanillin and limonene depressed feed efficiency of beef cattle fed a total mixed ration. 

The authors reported that overall feed efficiency was not different between cattle that were 

supplemented with eugenol, thymol, vanillin and limonene versus control cattle, which is 

consistent with the current experiment.  

Animal Behavior  

There was no interaction between high levels of monensin sodium and the plant extract 

treatments, nor were there main effects of high level monensin sodium or plant extracts on exit 

velocity by d or overall exit velocity (P > 0.05; Table 2.4). There was a time x treatment 

interation for d 44 (P = 0.01); however, the reason for this interaction is unclear.  

 Chute exit velocity was measured to evaluate heifer’s escape inclination to assess 

whether or not treatment effected animal behavior. Bigler (2014), similar to the current study, 

observed the effects of monensin sodium and plant extract cinnamaldehyde, capsicum oleoresin 

and eugenol on chute exit velocity in Angus heifers. The author reported that while initial and 
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mid-point exit velocities were not different among treatments, monensin sodium supplemented 

heifers had a reduced final exit velocity when compared to plant extract, plant extract and 

monensin sodium, and control supplemented heifers. (Bigler, 2014). To date there is very little 

literature about the effects of monensin sodium and plant extracts on animal behavior, therefore, 

more research should be conducted to better understand these effects.  

Reproductive Performance 

There were no interactions between the main effects of high levels of monensin sodium 

(MON) or plant extracts (CCE) for any reproductive variables (P > 0.05; Table 2.3). There were 

no treatment effects for age at puberty, BCS, pregnancy to AI, season long pregnancy rate or day 

of calving season (P > 0.05).  

Consistent with the current experiment, Bigler (2014) reported that there were no 

differences in heifer age at puberty when supplemented with 200 mg·hd-1·d-1 monensin sodium, 

1,100 mg·hd-1·d-1 plant extracts (cinnmaldehyde, capsicum oleoresin and eugenol), a 

combination of monensin sodium (200 mg·hd-1·d-1) and plant extracts (1,100 mg·hd-1·d-1) or a 

control. However, in yr 2 of an experiment by Bigler (2014), using the same treatments with a 

different dose, the author reported that heifers supplemented with monensin sodium (200 mg·hd-

1·d-1), plant extracts (1,400 mg·hd-1·d-1) or a combination of monensin sodium (200 mg·hd-1·d-1) 

and plant extracts (1,100 mg·hd-1·d-1), had decreased age at puberty when compared to control 

heifers. The difference in results between years could have been due to a dosage effect of plant 

extracts (Yang et al., 2010). 

Similar to the second experiment by Bigler (2014), several other experiments have 

reported a decrease in age at puberty when heifers were supplemented with monensin sodium 

(Moseley et al.; 1977; McCartor et al., 1979; Moseley et al.1982; Lalman et al., 1993; and Purvis 
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and Whittier, 1996). One possible explanation for not observing a difference in age at puberty in 

the current study may be that as a result of genetic selection for younger age at puberty in beef 

heifers by selection pressure on bull scrotal circumference, puberty in heifers is now occurring at 

an age younger than the threshold that was previously overcome nutritionally by feeding an 

ionophore.  This argument appears to have merit based on reported age of puberty of 377 d in 

1982 (Moseley et al., 1982) and 369 d as reported by Lalman et al (1993) in heifers fed monensin 

sodium, while the age at puberty in heifers in the current study was an average of 315 d, an 

approximate 60 d decrease.  A second explanation for no observed difference in age of puberty 

in the current study may be that the method used to detect age at puberty (activated estrus 

detection patches monitored at 11 d intervals) was not efficient to identify differences between 

heifers fed monensin, plant extracts or a combination of the 2, compared to control heifers.  

Contrary to the current experiment, Purvis and Whittier (1996) reported that heifers 

supplemented with an ionophore tended to have higher first service conception rates compared to 

control heifers. The authors noted that this improvement was likely due to an increased number 

of ionophore supplemented heifers being pubertal prior to the breeding season. Similarly, 

Moseley et al., (1977) observed that 92% of monensin sodium supplemented heifers reached 

puberty compared to only 58% of control heifers; however the authors also noted that there was 

not a difference in pregnancy to AI, despite the higher percentage of pubertal heifers. 

There was no significant difference in the number of d into the calving season in which 

heifers calved (P > 0.05) in the current experiment. Similarly, Bigler (2014) found that the 

supplementation of plant extracts or monensin sodium did not effect the number of females to 

calve within the first 21 d of the calving season. Regardless, it would be beneficial for heifers to 
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calve earlier in the calving season so that they can have a longer post partum interval and have 

more time to regain condition for rebreeding. 

Unfortunately, there is limited published literature on the effects of plants extracts on 

beef female reproductive performance; therefore, more research should be conducted to better 

understand these effects.  

 

IMPLICATIONS 
 
 
 

Results observed in this study indicate that there are no differences in the level of 

monensin sodium supplemented, with or without the plant extracts cinnamaldehyde, capsicum 

oleoresin and eugenol, for beef heifer feedlot or reproductive performance. Research has 

indicated that plant extracts utilized on their own may improve cattle performance; however, 

results vary dependent on plant extract or combination of plant extracts, dosage and class of 

cattle used. Further research should be conducted on plant extract’s mode of actions and 

pathways within the ruminant animal, to better understand their effects on feedlot performance, 

age at puberty and pregnancy in heifers. Gathering this information could be valuable to animal 

scientists, as well as producers, looking to decrease input costs for heifer development. Previous 

research has clearly demonstrated improvements in ADG, feed to gain ratio and age at puberty in 

heifers fed monensin sodium, yet this effect was not observed in heifers fed monensin sodium in 

this study. Therefore, caution should be used in making conclusive changes in nutritional 

management or adoption of plant extracts in heifer development programs based solely on this 

study. 
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Table 2.1. Ingredient composition and proximate analysis of the basal diet, and monensin 
sodium and plant extract supplements, fed to developing beef heifers (DM basis) 

 
Item (%) 

Ingredient1  

 
Wheat straw, ground 18.26 

 
Alfalfa hay, ground 16.92 

 
Corn silage 33.48 

 
Whole corn 17.83 

 
Dried distillers grain 10.00 

 
Liquid supplement2 3.50 

Proximate analysis3  

 
DM, % 67.97 

 
CP, % 32.03 

 

NEG, Mcal/kg 0.97 

 

NEM, Mcal/kg 1.68 

 
TDN, % 67.98 

 
ADF, % 29.21 

Supplement4  

 
CP, % 26.00 

 
Crude fat, % 9.50 

 
Crude fiber, % 12.50 

 
Ca, % 2.75 

 
P, % 0.75 

 
Salt, % 6.00 

______________________________________________________________________________ 
1 Basal diet composition  
2 30% CP liquid supplement containing 200 mg/0.45kg monensin, 0.60% P, 4.00 ppm Co, 220.0 
ppm Cu, 6.00 ppm I, 699.0 ppm Mn, 998.0 Zn, 3.30 ppm Se, 110,231 IU/kg vitamin A, 27,557 
IU/kg vitamin D and 110 IU/lb vitamin E.  

3 DM basis 
4 Supplement composition: monensin sodium at 200 mg·hd-1·d-1, plant extracts cinnamaldehyde, 
capsicum oleoresin and eugenol (RumeNext®, ADM Alliance Nutrition Inc., Quincy, IL) at 
11,000 mg·hd-1·d-1, combination of monensin sodium and plant extracts delivered at 200 mg·hd-

1·d-1 and 11,000 mg·hd-1·d-1, respectively, or control, which included neither monensin sodium 
nor plant extracts. Treatments fed at a rate of 0.32 kg·hd-1·d-1. Supplement minerals included: K, 
Mg, Mn, Zn, Co, Cu, I, Se, vitamin A and vitamin E, in very discrete amounts. 
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Table 2.2. Least squares means for DMI and ADG in developing heifers fed a high roughage diet supplemented with high or 
low levels monensin sodium, with or without the plant extracts cinnamaldehyde, capsicum oleoresin and eugenol, from d 0 to 84 
 

  
Treatment1 

 
               P= 

Item 
 

MON CCE CON COMB SEM INT2  MON3 
    

CCE4 

n 27 27 26 27 
    Initial BW, kg 280.79 278.14 280.05 285.97 6.415 0.59 0.52 0.80 

Final BW, kg 363.66 350.84 361.29 361.45 8.206 0.63 0.45 0.46 
DMI5, kg 

        
 

d 0 to 8 4.98 5.78 5.56 4.88 0.335 0.64 0.05 0.86 

 
d 8 to 15 4.87 5.76 6.03 4.67 0.529 0.95 0.05 0.67 

 
d 15 to 22 5.55 6.17 7.84 5.61 0.878 0.34 0.13 0.38 

 
d 22 to 32 7.90 8.17 8.62 8.49 2.021 0.80 0.92 0.97 

 
d 32 to 38 7.83 8.23 8.59 8.73 1.986 0.76 0.95 0.89 

 
d 38 to 43 6.69 6.53 7.20 6.71 0.414 0.42 0.71 0.45 

 
d 43 to 50 7.49 7.52 8.02 7.71 0.540 0.52 0.76 0.80 

 
d 50 to 57 8.44 8.32 8.99 8.71 0.586 0.43 0.90 0.74 

 
d 57 to 64 9.12 9.55 9.71 9.71 0.646 0.57 0.74 0.74 

 
d 64 to 71 9.38 10.11 10.18 9.79 0.732 0.75 0.46 0.82 

 
d 71 to d 84 9.83 10.11 10.17 10.35 0.766 0.71 0.95 0.77 

Overall DMI, kg 7.46 7.84 8.26 7.76 0.640 0.58 0.50 0.92 
ADG6, kg 

        
 

d 0 to 11 1.75 1.97 2.02 1.84 0.203 0.75 0.35 0.92 

 
d 11 to 22 0.44 -0.04 0.48 0.24 0.165 0.36 0.47 0.05 

 
d 22 to 33 0.98 1.15 0.93 1.06 0.252 0.79 0.93 0.58 

 
d 33 to 44 0.69 0.62 0.54 0.91 0.366 0.85 0.56 0.69 

 
d 44 to 667 1.21 0.78 1.04 0.87 0.141 0.78 0.39 0.05 

 
d 66 to 77 1.12 0.90 1.06 0.94 0.240 0.96 0.85 0.50 

 
d 77 to 84 0.19 0.69 0.19 0.41 0.401 0.73 0.72 0.39 

Overall ADG, kg 1.04 1.02 1.04 1.08 0.098 0.77 0.76 0.88 
G:F8 0.10 0.09 0.08 0.10 0.002 0.68 0.08 0.77 

______________________________________________________________________________
1 All heifers received a basal ration with a 30% CP liquid supplement containing 200 mg/0.45 kg monensin sodium. Treatments 
were applied daily as topdressed supplements and fed at a rate of 0.32 kg·hd-1·d-1. Treatments:  1) high level of monensin sodium 
(MON), where monensin sodium was topdressed at 200 mg·hd-1·d-1, 2) low level of monensin sodium plus the plant extracts 
cinnamaldehyde, capsicum oleoresin and eugenol (CCE), where plant extracts were topdressed at 11,000 mg·hd-1·d-1, 3) control 
(CON),  low level of monensin sodium without topdressed supplements, or 4) high levels of monensin sodium with plant extracts 
(COMB), where monensin sodium was topdressed at 200 mg·hd-1·d-1 and plant extracts were topdressed at 11,000 mg·hd-1·d-1. 
2 Interaction between the main effects of MON and the main effects of CCE 
3 Main effects of MON 
4 Main effects of CCE 
5Treatment x time interaction for DMI (P = 0.99) 
6 Treatment x time interaction for ADG (P = 0.98) 
7 ADG was calculated from d 44 to d 66, omitting d 55 data due to malfunctions with the scale. 
8 Calculated from heifers overall ADG (d 0 to 84) and average DMI. 
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Table 2.3. Least squares means for age at puberty and pregnancy rate in developing heifers fed a 
high roughage diet supplemented with high or low levels of monensin sodium, with or without 
the plant extracts cinnamaldehyde, capsicum oleoresin and eugenol, from d 0 to 84 
 

  
Treatment1 

 
P = 

Item 
 

MON CCE CON COMB SEM INT2 MON3 CCE4 

n 27 27 26 27 
    

Age at puberty5, d 322.9 313.9 314.2 310.2 5.49 0.29 0.67 0.26 
BCS6 at breeding 6.04 5.94 5.92 5.91 0.122 0.56 0.70 0.67 

Pregnant to AI7, % 63.85 71.61 61.13 75.87 0.083 0.93 0.68 0.18 
Season long pregnancy rate8, % 95.83 95.65 90.91 100 0.043 0.95 0.28 0.30 
Day of calving season9, d 19.3 16.6 19.0 18.6 47.93 0.99 0.99 0.99 
______________________________________________________________________________
1 All heifers received a basal ration with a 30% CP liquid supplement containing 200 mg/0.45 kg 
monensin sodium. Treatments were applied daily as topdressed supplements and fed at a rate of 
0.32 kg·hd-1·d-1. Treatments:  1) high level of monensin sodium (MON), where monensin 
sodium was topdressed at 200 mg·hd-1·d-1, 2) low level of monensin sodium plus the plant 
extracts cinnamaldehyde, capsicum oleoresin and eugenol (CCE), where plant extracts were 
topdressed at 11,000 mg·hd-1·d-1, 3) control (CON),  low level of monensin sodium without 
topdressed supplements, or 4) high levels of monensin sodium with plant extracts (COMB), 
where monensin sodium was topdressed at 200 mg·hd-1·d-1 and plant extracts were topdressed at 
11,000 mg·hd-1·d-1 
2 Interaction between the main effects of MON and the main effects of CCE 
3 Main effects of MON 
4 Main effects of CCE 
5Age at puberty determined by estrus detection patches (Estrotect™ Heat Detector, Rockway 
Inc., Spring Valley, WI) applied on day 0 and recorded every 11 d as activated, not activated or 
missing. 
6 Analyzed using the 9-point scale, where 1=thin and 9=obese (Richards et al., 1986). 
7 Heifers were estrus synchronized and inseminated using a 14 d CIDR-PG-AI protocol, in which 
a CIDR was inserted 33 d prior to artificial insemination and removed 14 d later. Prostaglandin 
was injected 16 d after CIDR removal and heifers were inseminated 3 d later (d 168). Pregnancy 
to AI was determined via ultrasound at 56 d post AI. 
8 Season long pregnancy rate was determined via rectal palpation 178 d post AI. 
9 d 0 = date first calf was born among heifers. 
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Table 2.4. Least squares means for chute exit velocity of developing heifers fed a high roughage 
diet supplemented with high or low levels of monensin sodium, with or without the plant extracts 
cinnamaldehyde, capsicum oleoresin and eugenol, from d 0 to 84 
 

  
Treatment1 

 
P = 

Item 
 

MON CCE CON COMB SEM INT2 MON3 CCE4 

n 27 27 26 27 
    Exit velocity5,6, m/s 

        
 

d 11 0.89 0.99 0.94 0.86 0.104 0.70 0.39 0.89 

 
d 22 0.65 0.65 0.60 0.55 0.071 0.33 0.79 0.75 

 
d 33 0.73 0.75 0.84 0.68 0.117 0.88 0.47 0.58 

 
d 44 1.20 1.62 0.83 1.23 0.393 0.36 0.97 0.32 

 
d 55 0.79 0.82 0.97 0.75 0.113 0.64 0.28 0.42 

 
d 66 0.89 0.92 0.95 0.94 0.120 0.74 0.89 0.90 

 
d 77 0.84 0.84 1.04 0.83 0.102 0.36 0.31 0.29 

 
d 84 0.67 0.84 0.73 0.72 0.136 0.83 0.53 0.54 

Avg. velocity, m/s 0.83 0.92 0.86 0.82 0.083 0.66 0.43 0.76 
______________________________________________________________________________
1 All heifers received a basal ration with a 30% CP liquid supplement containing 200 mg/0.45 kg 
monensin sodium. Treatments were applied daily as topdressed supplements and fed at a rate of 
0.32 kg·hd-1·d-1. Treatments:  1) high level of monensin sodium (MON), where monensin 
sodium was topdressed at 200 mg·hd-1·d-1, 2) low level of monensin sodium plus the plant 
extracts cinnamaldehyde, capsicum oleoresin and eugenol (CCE), where plant extracts were 
topdressed at 11,000 mg·hd-1·d-1, 3) control (CON),  low level of monensin sodium without 
topdressed supplements, or 4) high levels of monensin sodium with plant extracts (COMB), 
where monensin sodium was topdressed at 200 mg·hd-1·d-1 and plant extracts were topdressed at 
11,000 mg·hd-1·d-1. 
2 Interaction between the main effects of MON and the main effects of CCE 
3 Main effects of MON 
4 Main effects of CCE 
5Measured over a distance from 1.83 m in front of chute to a point 3.66 m from front of chute, 
using an infrared sensor timing system (FarmTek Inc., North Wylie, TX). 
6 Treatment x time interaction for exit velocity (P = 0.60) 
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CHAPTER III 

 

EFFECTS OF INJECTABLE TRACE MINERALS ON WEANED CALF 

PERFORMANCE AND MORBIDITY, AND YEARLING BULL AND HEIFER 

FERTILITY 

 

SUMMARY 
 
 
 

The objectives of this experiment were to determine the effects of an injectable trace 

mineral on newly weaned calf performance and morbidity and yearling bull and heifer fertility. 

Over 2 yr, Angus bulls (n = 31, yr 1; n = 35, yr 2), heifers (n = 107, yr 1) and steers (n = 105, yr 

1) were utilized. Cattle were randomly assigned a treatment at weaning (278.6 ± 35.0 kg; 241.0 ± 

19.6 d): 1) control (CON), no injection, or 2) injectable trace minerals (MIN), which included 

Cu, Zn, Se and Mn. The MIN treatment was administered at weaning (d 0) and again on d 64 (yr 

1) and d 110 (yr 2) to bulls, and at weaning (d -19) and on d 135 to heifers. Treatment 

administration corresponded to 80 (yr 1) or 38 d (yr 2) prior to the breeding soundness exams in 

bulls and 33 d prior to heifer AI.  Bulls in both yr exhibited no differences in overall ADG based 

on treatment (P > 0.05); however, MIN bulls had reduced ADG from d 64 to 113 (P = 0.05) vs. 

CON bulls. Steer and heifer ADG was not different across treatments (P > 0.05). Incidence of 

morbidity was not different among treatments for any class of cattle (P > 0.05). A licensed 

veterinarian performed breeding soundness exams, and Computer-Assisted Sperm Analysis was 

used to analyze sperm motility, velocity, straightness and linearity objectively. Motility and 

morphology from breeding soundness exams were not affected by MIN (P > 0.05); however, in 
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yr 2 there was a tendency (P = 0.08) for sperm from MIN bulls to have a higher percentage of 

secondary defects. Sperm beat cross frequency was greater in CON bulls in yr 2 (P < 0.01), and 

tended to be greater in CON bulls in yr 1 (P = 0.10) than MIN bulls. Progressive velocity of 

sperm was greater in CON bulls in yr 2 (P < 0.05) than MIN bulls. Neither BCS nor age at 

puberty in heifers were affected by treatment (P > 0.05).  Results suggest there was no benefit to 

newly weaned calf performance, morbidity, or yearling bull or heifer fertility, when 

supplementing well nourished and managed cattle with injectable trace minerals at weaning.  

Keywords: ADG, age at puberty, beef cattle, fertility, morbidity, trace minerals 

 

INTRODUCTION 
 
 
 

Trace minerals are essential to animal health, growth and reproductive performance 

(Underwood and Suttle, 1999). Cattle can be administered supplemental trace minerals through 

dietary, oral bolus, or injectable methods. Unfortunately, providing minerals in the diet can be 

challenging because dietary minerals are subject to antagonists present in the diet and can 

therefore result in decreased mineral absorption (Spears, 1996). Additionally, stressed cattle 

often have reduced feed intake, causing reduced mineral intake (Galyean et al., 1999). 

Consequently, animal performance may be impaired (Spears and Kegley, 2002).  

Administration of injectable trace minerals may avoid the detrimental interaction between 

minerals and antagonists in the gastrointestinal tract, since injected minerals circulate through the 

bloodstream (Berry et al., 2000). This process may benefit animal health and productivity 

(Richeson and Kegley, 2011). The authors reported that administering injectable trace minerals 

(Cu, Zn, Mn and Se) to stressed calves improved morbidity and decreased antibiotic costs 
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compared to control cattle. Beef heifers injected with trace minerals upon entering the feedlot 

had improved overall ADG and feed efficiency in comparison to control heifers (Richeson and 

Kegley, 2011). Relative to reproduction, supplementing mature bulls with trace minerals (Cu, 

Zn, Mn and Co) can improve sperm motility (Rowe et al., 2011); and injecting heifers with Cu, 

Zn, Mn and Se can improve pregnancy rates (Brasche, 2014). 

The objectives of the current study were to evaluate the effects of the injectable trace 

minerals Cu, Zn, Se and Mn on newly weaned calf performance and morbidity, and yearling bull 

and heifer fertility. 

 

MATERIALS AND METHODS 
 
 
 

Experimental procedures conducted with animals were approved by the Institutional 

Animal Care and Use Committee at Colorado State University prior to initiation of the study. 

Experimental Design 

Angus bulls (n = 31, yr 1; n = 35, yr 2), heifers (n = 107) and steers (n = 105) from the 

same source and of genetic similarity were utilized over a 2-yr period. In mid-October, bulls, 

heifers and steers were weaned and randomly assigned to a treatment: 1) control (CON), no 

injection, or 2) trace mineral injection of 60 mg/mL Zn, 15 mg/mL Cu, 10 mg/mL Mn and 5 

mg/mL Se (MIN; MultiMin®, MultiMin USA, Fort Collins, CO). The MIN treatment was 

administered at weaning (d 0) and again on d 64 (yr 1) and d 110 (yr 2) to bulls, and at weaning 

(d -19) and on d 135 to heifers. The second injections corresponded to 80 (yr 1) or 38 d (yr 2) 

prior to bull breeding soundness exams (BSE) and 33 d prior to heifer AI. Steers received only 

the initial injection at weaning. Injections were administered at 1 mL/45.4 kg of BW at weaning 
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and 1 mL/68.0 kg of BW prior to breeding soundness exams and AI, as per the product label. 

Immediately after weaning, all cattle were shipped 57 km to Colorado State University 

Agriculture Research, Development and Education Center (ARDEC) in Fort Collins.  

Feedlot Performance 

In both years, bulls were housed together in a single 804 m2 pen. In yr 1 bulls (312.0 ± 

19.45 kg) were fed an approximate 70% roughage, 30 % concentrate diet (Table 3.1). Bulls in yr 

1 were transitioned from a receiving ration to a developing bull ration 80 d after weaning. In yr 

2, bulls (306.8 ± 14.41 kg) received an approximate 50% roughage, 50% concentrate diet (Table 

3.1). Bulls in yr 2 were transitioned to a developing bull ration 46 d after weaning. Bulls in both 

yr were weighed on d 0, 64, 113 and 144 (yr 1 only) or 148 (yr 2 only). 

In yr 1, steers (275.2 ± 36.32 kg) were housed in the same feedlot pen as bulls until d 28, 

at which point steers were shipped 195 km to Colorado State University’s Eastern Colorado 

Research Center (ECRC) located in Akron, CO. Steers were then housed in 3 feedlot pens with 

35 or 36 steers per pen. Steers were castrated prior to shipment to ECRC. All steers were 

transitioned to a finishing ration by d 62. At the beginning of the finishing phase, initial (d 62), 

mid (d 123) and final (d 195 or 216) BW were recorded.  Steers were harvested based on a 

visual, subjective evaluation by trained professionals after 146 or 170 d on the finishing ration. 

Total BW gain and d on feed were also calculated for each steer. 

From d 0 to 84, heifers (259.3 ± 20.98 kg) were housed in 488 m2 pens with 6 or 7 heifers 

per pen. Shortly after d 84, heifers were transported back to the ranch of origin and maintained 

on pasture until AI . In the feedlot, all heifers received a high roughage diet (Table 3.1). Feed 

refusals were estimated and recorded and feed offered was adjusted daily based on evaluation by 

a trained bunk reader to minimize feed refusals. Feed samples and orts were collected weekly 
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and intake was calculated on a DM basis. The DM and nutrient analysis were performed by a 

private laboratory (SDK Laboratories, Hutchinson, KS). Additionally, heifers were weighed 

every 11 d. 

Morbidity 

Morbidity was evaluated daily by trained health professionals. If clinical signs existed, 

including droopy or dull appearance, abnormal nasal discharge, coughing, hard breathing, 

presence of abscesses, lameness or a rectal temperature exceeding 40ºC, cattle were treated 

according to a preplanned antibiotic regimen created by the Livestock Medicine Department of 

the Colorado State University Veterinary Teaching Hospital. All illnesses or lameness were 

recorded and monitored.  

Fertility 

 Breeding soundness exams were performed in early March when bulls were 390.3 ± 

10.63 (yr 1) or 394.8 ± 14.72 d (yr 2) of age. Breeding soundness exams occurred at the ARDEC 

working facility and were performed by a licensed veterinarian to analyze bull soundness, scrotal 

circumference (SC), percent motile sperm (MOT), percent normal sperm (NORM), percent of 

sperm with primary defects (PRI), and percent of sperm with secondary defects (SEC). Semen 

samples were collected from bulls into small plastic bags via electroejaculation. Samples were 

placed in a 37ºC water bath until visually analyzed under a microscope by the veterinarian. 

Semen samples were replaced in the warm water bath and remained there until they were 

transported to the laboratory for further analysis. A Styrofoam box that contained 2 freezer gel 

packs warmed to 37ºC was used to transport samples from the working facility to the laboratory. 

Samples were transported to the laboratory approximately every h. In the laboratory, ends were 

cut off the plastic sample bags and drained into pre-weighed 15 mL conical tubes at room 
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temperature. Sample volume (VOL) was determined by weighing the filled tubes and subtracting 

the tube weight, and by using 1 mL of semen = 1 g of liquid weight. Concentration (CONC) of 

samples was determined using a spectrophotometer. If sample concentration was higher than 30 

to 50 million sperm/mL, Tyrode’s albumen lactate pyruvate was added to the sample to dilute it. 

Samples had to have concentrations 25 to 30 million cells/mL; otherwise the concentration was 

too high for accurate evaluation of sperm motility with Computer Assisted Sperm Analysis 

(CASA). The CASA was performed to objectively analyze percent motile sperm (CMOT), 

percent progressive sperm (PROG), sperm path velocity (VAP), sperm progressive velocity 

(VSL), sperm track speed (VCL), sperm lateral amplitude (ALH), sperm beat cross frequency 

(BCF), sperm straightness (STR) and sperm linearity (LIN).   

Estrus detection patches (Estrotect™ Heat Detector, Rockway Inc., Spring Valley, WI) 

were applied to all heifers on d 0. Patch status was recorded every 11 d as activated, not activated 

or missing. If a patch was missing at the time of BW was collected every 11 d, it was replaced 

with a new patch. Age at puberty was determined to be the date that a heifer’s patch was first 

observed as activated. A 14 d CIDR-PG-AI protocol was utilized to inseminate heifers on d 168, 

when heifers were 427.3 ± 20.98 d of age. In the 14 d CIDR-PG-AI, a controlled internal drug 

release device (CIDR) was inserted 33 d prior to AI and removed 14 d later. Prostaglandin F-2α 

(PG) was injected 16 d after CIDR removal, and heifers were mass inseminated 3 d later. 

Pregnancy was determined via ultrasound at 56 d post AI and again at 178 d post AI via rectal 

palpation. Heifers were placed with bulls for natural service 21 d post AI. Calving records were 

used to validate ultrasound results. 
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Data Analysis 

 Breeding soundness exam and CASA traits, heifer fertility, feedlot performance and 

morbidity were analyzed using a mixed model and the GLIMMIX procedure of SAS (SAS 

Institute Inc., Cary, NC). Each model included treatment as a fixed effect. Animal was the 

experimental unit. Bull fertility data were analyzed separately by yr since the second MIN 

injection was given at a different d prior to BSE in each yr. There was a yr x treatment 

interaction for bull BW and ADG, thus performance data were analyzed separately. Morbidity 

data for bulls were pooled and analyzed across yr since there was no time x treatment interaction. 

Predictor variables included final BW, ADG, SC, DMI, G:F, BCS, sire, age, or AI technician 

depending on the response variable being analyzed. Initial BW was used as a covariate for bull 

ADG and BW gain in yr 1 to account for the unexplained difference in initial BW (P < 0.05) 

between treatments. A repeated measures statement was used to account for any time x treatment 

interactions for BW data. For all data, if predictor variables were considered to have an effect (P 

≤ 0.10), they remained in the model statement. Spearman and Pearson correlations were 

calculated in SAS for sperm motility from the BSE and CASA analyses. 

 

RESULTS AND DISCUSSION 
 
 
 

Bull, Heifer and Steer Feedlot Performance  

Because there was a yr x treatment interaction (P > 0.05) for bull BW and ADG, data 

from yr 1 and yr 2 were analyzed separately. Initial BW between CON and MIN bulls were 

different in yr 1 (P < 0.01), but not yr 2 (P > 0.05; Table 3.2). Ideally, bulls would have been 

blocked by BW and then randomly assigned CON or MIN treatment to account for variation in 
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initial BW; unfortunately, this was not possible due to facilities used at weaning. To account for 

treatment effects over time, a repeated measures statement was used (Table 3.2). With repeated 

measures, there were time effects on d 144 BW and overall ADG in both yr (P <0.01); however, 

in both yr there were no treatment effects or time x treatment interactions (P > 0.05).  

Steers in the current study exhibited no differences between treatments for initial BW (d 

0), d 123 BW, final BW (d 195 or 216), overall ADG (from d 62 to 195 or 216) or total BW gain 

(P > 0.05; Table 3.3). However, MIN steers had lower d 62 BW at the start of the finishing phase 

when compared to CON cohorts (P = 0.04). Also, there was a trend (P = 0.07) for MIN steers to 

have fewer d on feed than CON steers. Because there was no difference between treatments for 

ADG or final BW, it is unclear why MIN steers had lighter initial BW yet similar final BW and 

reduced d on feed in the current study. There were no treatment effects for initial BW, final BW, 

overall ADG, average DMI or G:F for beef heifers (P > 0.05; Table 3.4). 

In agreement with the current study, Brangus-crossbred calves that received three 1 mL 

subcutaneous trace mineral injection formulated at 15 mg/mL Cu, 60 mg/mL Zn, 5 mg/mL Se 

and 10 mg/mL Mn did not have improved overall ADG compared to control calves (Arthington 

et al., 2014b). The authors administered injections within 24 h of birth and then again 

approximately 150 and 50 d prior to weaning (d 250), when calves were 100 and 200 d of age. 

Average daily gain was calculated from BW recorded at birth and on d 100, 150, 200 and 250. 

Likewise, administering injectable trace minerals Cu, Zn, Se and Mn at 1 mL/45.36 kg of BW, 

with the same formulation as Arthington et al. (2014b), only 28 d prior to weaning had no effect 

on BW or overall ADG in crossbred steer and heifer calves (Kegley et al., 2011). Crossbred 

calves were fence-line weaned in a bermudagrass and fescue pasture adjacent their mothers until 

42 d post weaning at which point they were moved to wheat pasture for a grazing phase (Kegley 
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et al., 2011).  The authors calculated ADG from initiation of the study (d 0) to weaning, from 

weaning to 28 and 42 d post weaning, for the 154-d period on wheat pasture, and for overall 

ADG from d 0 to 224. Both Kegley et al. (2011) and Arthington et al. (2014b) reported that 

calves were also provided ad libitum access to loose minerals, which may have provided 

adequate mineral intake for both injected and control calves. Cattle in the current study were not 

provided ad libitum access to trace minerals; however, there were trace minerals present in their 

diet, which may have allowed adequate intake (Table 3.1). 

Inconsistent with the current study, crossbred bull calves that received a 3 mL injection 

of a solution containing 10 mg/mL Cu, 20 mg/mL Zn, 5mg/mL Se, and 20 mg/mL Mn upon 

arrival to the feedlot showed a tendency for improvement in overall ADG from d 0-42 (Berry et 

al., 2000). The authors found no other differences between mineral injected and control bulls for 

period ADG or BW recorded on d 0, 14, 28 and 42. Although the current study also administered 

trace minerals the same day cattle were transported to the feedlot, results from Berry et al. (2000) 

through a 42-d period are inconsistent with the current study’s first 64-d period. Similar to Berry 

et al. (2000), a second experiment by Arthington et al. (2014b) also observed a difference 

between control and mineral injected heifers for ADG in the first 14 d after arrival to the feedlot. 

However, while Berry et al. (2000) found that mineral supplementation improved ADG, 

Arthington et al. (2014b) found that mineral injection reduced ADG compared to control cattle. 

This second experiment by Arthington et al. (2014b) used a subset of heifer calves mentioned in 

the previous paragraph. The authors reported that at weaning, heifers were held in a drylot pen 

overnight and then transported 1,600 km the following d. In addition to the 3 previous injections 

administered prior to weaning, heifers receiving minerals were given another 5 mL injection of 

Cu, Zn, Se and Mn upon arrival to the feedlot (Arthington et al., 2014b). Although the current 
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study administered injections and then transported calves 57 km, we also observed a negative 

effect of mineral injection on period ADG, much like Arthington et al., (2014b). However, in the 

current study, there were no differences between treatments for ADG immediately following 

transportation. In fact, the only difference in ADG in the current study was in yr 2 from d 64 to 

113, where MIN bulls had reduced ADG compared to CON bulls (P = 0.05). The reduced ADG 

immediately following arrival to a feedlot may be explained by shipping stress; however, the 

reason for a reduction in ADG during the middle portion of the current study, 64 d post shipment 

to the feedlot, remains unclear. The reduced ADG from d 64 to 113 in the current study was also 

difficult to explain because there were no differences between CON and MIN bulls in yr 2 for 

BW at d 64 or 113 (P > 0.05). 

In contrast to Arthington et al. (2014b), Kegley et al. (2011) and the current study, 

Richeson and Kegley (2011) reported that heifers receiving injectable Cu, Zn, Se and Mn after 

shipment to the feedlot had increased overall ADG and feed efficiency. Richeson and Kegley 

(2011) blocked heifers by initial BW and then randomly allocated them to a treatment: 1) 

injectable mineral solution containing 20 mg/mL Zn, 20 mg/mL Mn, 10 mg/mL Cu and 5 

mg/mL Se given at 1 mL/45 kg of BW; 2) injectable mineral solution containing 48 mg/mL Zn, 

10 mg/mL Mn, 16 mg/mL Cu and 5 mg/mL Se given at 1 mL/45 kg of BW; or 3) no injection. In 

contrast to Arthington et al. (2014b), Richeson and Kegley (2011) mineral and control heifers did 

not have different ADG from d 0 to 14. However, similar to Berry et al. (2000), heifers that 

received either trace mineral treatment in the Richeson and Kegley (2011) experiment had 

improved ADG from d 0 to 55 in comparison to controls. Richeson and Kegley (2011) also 

reported that both mineral injected heifer treatment groups had increased overall DMI from d 0 

to 55 compared to control heifers. This contradicts results from the current study in which overall 
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DMI from d 0 to 84 was not affected by mineral treatment.  Additionally, heifers injected with 

trace mineral in the Richeson and Kegley (2011) gained 0.18 kg or 0.19 kg BW/kg feed fed, and 

control heifers gained 0.16 kg BW/kg feed fed. The G:F values reported by Richeson and Kegley 

(2011) were higher than the G:F values observed in the current study for MIN and CON 

treatments. The differences between Richeson and Kegley (2011) and the current study could be 

due to variation in cattle management. For example, the ration used by Richeson and Kegley 

(2011) was 93.2% DM, consisting mainly of 54.5% cracked corn, 28.0% cottonseed hulls and 

11.5% soybean meal, whereas the diet in the current study was 67.9% DM consisting of 33.5% 

corn silage, 17.8% corn, 18.3% wheat straw and 16.9% alfalfa (Table 3.1). Moreover, while 

Richeson and Kegley (2011) injected heifers with the same dosage used for the first injection in 

the current study, they only injected heifers once, whereas heifers were injected twice in the 

current study. Additionally, the concentration of Cu, Zn, and Mn in the injectable trace mineral 

solution for the current study was different than the concentrations utilized by Richeson and 

Kegley (2011). The authors used a solution containing 10 mg/mL Cu, 20 mg/mL Zn, 20 mg/mL 

Mn and 5 mg/mL Se or 16 mg/mL Cu, 48 mg/mL Zn, 10 mg/mL Mn and 5 mg/mL Se. 

Genther and Hansen (2014) evaluated the effect of an injectable trace mineral solution 

containing 15 mg/mL Cu, 60 mg/mL Zn, 5 mg/mL Se and 10 mg/mL Mn upon shipment of 

steers with an induced mild mineral deficiency. The authors indicated that steers were weighed 

every 28 d for an 84-d depletion period, in which half the steers received a ration supplemented 

with Fe and Mo as dietary antagonists to induce a mineral deficiency.  Steers were shipped for 20 

h on d 88, weighed on d 90 and 91 and injected with trace minerals on d 91 for the initiation of 

the repletion period (Genther and Hansen, 2014). According to the authors, during the mineral 

depletion stage, there were no treatment effects for ADG, DMI or G:F. However, steers that were 
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previously considered mineral deficient and then received a 1 mL/68.0 kg of BW trace mineral 

injection 2 d after shipping, exhibited greater ADG compared to deficient steers that were not 

injected (Genther and Hansen, 2014). The authors also stated that control steers (with no induced 

depletion) were not affected regardless of injectable mineral supplementation. Mineral depletion 

can be detrimental to performance, as noted by Engle et al. (1995), who found that Zn depletion 

decreased gain by 45.6%; however, upon Zn repletion there were no differences in gain between 

cattle. Results from Genther and Hansen (2014) and Engle et al. (1995) suggest that trace 

mineral supplementation may only be beneficial in mineral deficient cattle. Unfortunately, the 

initial and final mineral status of cattle in the current study were not evaluated. Prior to arrival at 

the feedlot, cattle in the current study were exposed to an ad libitum standard mineral block 

fortified with extra Cu. Additionally, the minerals supplied in the diet were provided at adequate 

levels for proper cattle health (NRC, 1996). It is probable that there were no observed effects on 

cattle feedlot performance in the current study because cattle already had sufficient mineral 

status. 

Bull, Heifer and Steer Morbidity 

There were no differences (P > 0.05) between MIN and CON cattle for the number of 

times bulls, steers or heifers were treated, or the illnesses in which they were treated for (Tables 

3.5, 3.6 and 3.7, respectively), except for the percentage of heifers that received no treatment for 

any illness over the course of the study (P = 0.03). In the current study a larger proportion of 

CON heifers never received treatment when compared to MIN heifers. Contrary to the current 

study, Richeson and Kegley (2011) observed that administering injectable trace minerals Cu, Zn, 

Se and Mn at initial processing of calves into the feedlot improved morbidity and sequentially 

reduced antibiotic costs compared to control calves. The authors may have observed different 
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results for morbidity compared to the current study because they used injections containing 

either 20 mg/mL Zn, 20 mg/mL Mn, 10 mg/mL Cu and 5 mg/mL Se or 48 mg/mL Zn, 10 mg/mL 

Mn, 16 mg/mL Cu and 5 mg/mL Se, neither of which are the same mineral concentration used in 

the current study. 

Injecting cattle prior to weaning and feedlot arrival may not provide any benefit to calf 

health. Kegley et al. (2011) injected calves with Cu, Zn, Se and Mn, given at 1 mL/45.4 kg of 

BW, 28 d prior to weaning and found that calf health status was not affected by mineral 

supplementation. The authors suggested that calf health was not affected by mineral injections 

because calves were also provided ad libitum access to minerals, possibly allowing for sufficient 

mineral levels in the body. Similar to Kegley et al. (2011), cattle in the current study may have 

had sufficient mineral levels in the body because they were provided dietary trace minerals in the 

daily feedlot ration, as well as ad libitum access to a mineral block prior to weaning.   

Gadberry and Simon (2012) conducted an experiment to observe the effects on immune 

response when beef calves were not exposed to free choice mineral supplementation.  The 

authors reported that calves were injected with the trace minerals Cu, Zn, Se and Mn 90 d pre-

weaning and again at weaning. Calves whose dams either did not receive, or received, a trace 

mineral injection pre-breeding were randomly assigned to receive an injection or no injection 

within their dam treatment (Gadberry and Simon, 2012).  The authors reported that mineral 

injections did not affect immune response in calves not exposed to ad libitum mineral 

supplementation. Thus, it appears that injectable minerals may not affect morbidity regardless of 

ad libitum mineral supplementation (Kegley et al., 2011; Gadberry and Simon, 2012). It is also 

plausible that the Gadberry and Simon (2012) calves received adequate mineral supplementation 
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from range forages they were grazing. Unfortunately, initial and final mineral status of calves 

were not evaluated in either study.  

While pre-weaning and weaning injections do not appear to influence morbidity, 

continuous and lifelong mineral supplementation also does not appear to influence calf health 

(Ahola et al., 2005; Gadberry and Simon, 2012). Ahola et al. (2005) used cattle with adequate 

mineral status, according to liver and blood evaluations, to study the effects of dietary Cu, Zn 

and Mn supplemented in combination and maintained at levels above deficiency from neonatal 

through finishing phase of production. The authors observed that lifetime mineral 

supplementation at levels above deficiency did not influence morbidity or the number of times 

cattle required treatment. In addition, increasing the level of mineral supplementation to 2 or 3 

times above the recommended NRC (1996) level did not affect overall morbidity, incidence of 

respiratory disease, foot rot, bloat or the number of times feedlot cattle require treatment (Rhoads 

et al., 2003). 

Bull Fertility  

 In yr 1 and 2, BSE traits were not different between treatments (P > 0.05; Table 3.8), 

although there was a tendency (P = 0.08) for MIN bulls to have increased SEC in yr 2. Results 

from CASA indicated no differences between treatments for CMOT, PROG, VAP, VCL, ALH, 

STR, LIN, VOL or CONC (P > 0.05; Table 3.9). However, in yr 2 BCF was decreased in MIN 

(P < 0.01) vs. CON bulls, and there was a tendency (P = 0.10) for BCF to be decreased in MIN 

bulls in yr 1 vs. CON bulls. Additionally, VSL in yr 2 MIN bulls was reduced (P = 0.04) vs. 

CON bulls. Breeding soundness exam MOT was not correlated with CASA CMOT in yr 2 (r2 = 

0.18; P = 0.34); however, they were positively correlated in yr 1 (r2 = 0.60; P < 0.001). 



88 

 

Results from the current study agree with Kirchhoff et al. (2015) who used Hereford, 

Angus and Simmental yearling bulls to determine the effects of a 1 mL/45.4 kg of BW injectable 

solution containing 60 mg/mL Zn, 15 mg/mL Cu, 10 mg/mL Mn and 5 mg/mL Se on semen 

quality. The authors fed bulls a similar ration to the bull ration utilized in the current study and 

injected bulls with the same dosage and mineral concentration used in the current study. The 

researchers reported that the injectable trace minerals did not affect percent progressive sperm, 

percent normal sperm, scrotal circumference or overall percentage of bulls passing their BSE 

when compared to control bulls. Kirchoff et al. (2015) noticed that injected bulls tended to have 

greater sperm concentrations on d 42, however that effect was not observed in the current study. 

Although the current study observed a tendency for treated bulls to have increased SEC, this was 

not reported by Kirchoff et al. (2015). However, the authors reported that the overall number of 

bulls passing their breeding soundness exam, despite treatment, was relatively low, and that 

proximal and distal droplets, along with poor sperm morphology were the primary causes of 

failure (Kirchoff et al., 2015). This indicates that poor morphology across treatments was more a 

reflection on bull and sperm quality as opposed to treatment effects. Kirchoff et al. (2015) 

concluded that a trace mineral injection administered to bulls with adequate dietary trace mineral 

levels did not improve yearling bull BSE traits, which was consistent with the current study.  

  The combination of Cu, Zn, Se and Mn may have different effects compared to each  

mineral being used by itself. For example, injecting only Se in yearling Angus bulls did not 

influence sperm quality or viability when compared to a control (Segerson and Johnson, 1981). 

The authors also reported that various tissues such as the testes, epididymides and seminal 

vesicles had the capability to concentrate Se; however, the uptake of Se by spermatozoa was not 

affected. Additionally, Bartle et al. (1980) injected Holstein bulls with marginal Se status with 5 
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mg/90 kg of BW when they were approximately 19 mo of age. Injections were given again at 10, 

20 and 40 mg/90 kg of BW at wk 10, 16 and 22 to maintain high levels of Se. Semen was 

collected 3 times a wk for the first 15 wk, 4 times for the next 15 wk and 6 times the final wk to 

determine the effects of Se on semen production and quality in bulls subjected to increased 

sexual activity. Bartle et al. (1980) reported that semen Se concentrations were higher than blood 

Se concentrations in treated bulls as well as semen and blood Se concentrations of control bulls. 

The authors believed that the bovine male reproductive system must have a high affinity for Se 

and may be the preferred organ system for Se metabolism. However, the authors also reported 

that Holstein bull sperm quality was not affected by administration of Se; thus researchers 

suggested that perhaps the optimum Se status had not been reached for bulls to reach their peak 

reproductive performance. This suggestion could also be applied to the current study because Se 

was administered less frequently and in lower concentration and dosage compared to Bartle et al. 

(1980).   

Knazicka et al. (2013) utilized semen samples from mature breeding bulls to observe the 

effects of Cu concentration on seminal plasma and spermatozoa motility. The authors analyzed 

sperm using CASA and it was determined that excess Cu in seminal plasma was detrimental to 

male reproductive capacity by reducing spermatozoa count, motility, viability and morphology. 

Although sperm quality in the current study was not detrimentally impacted, it was also not 

improved by 2 trace minerals injections. Perhaps the negative effects Cu had on sperm quality in 

previous experiments were balanced by the addition of Zn, Se and Mn in the injectable mineral 

used in the current study.  

Bansal and Bilaspuri (2008) used Mn because of its molecular chain-breaking antioxidant 

capabilities. The authors evaluated the effects of Mn on crossbred bull sperm samples subjected 
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to oxidative stress inducers, such as ferrous ascorbate or ascorbic. The researchers found that Mn 

administered in vitro to semen samples reduced oxidative stress and improved sperm motility 

and viability. These results suggest that Mn would have a beneficial effect on sperm quality; 

however, that result was not observed in the current study.  It is possible Mn reacted better when 

used in vitro and directly injected into semen samples vs. Mn injected into the animal body. 

Also, Mn may have different effects in the body when used in combination with other minerals, 

such as the Cu, Zn, and Se utilized in the current study. 

Additionally, using dietary Zn by itself showed benefit to sperm quality in healthy Bos 

Taurus x Bos indicus crossbred 2 yr old bulls fed a 50:50 roughage to concentrate diet (Kumar et 

al., 2006). The authors observed that bulls supplemented with 35 or 70 ppm Zn sulfate or 35 ppm 

Zn propionate had higher ejaculate volume, sperm concentration, percent live sperm and percent 

motile sperm after a 6-mo period compared to control bulls. Results from Kumar et al. (2006) are 

not consistent with results observed in the current study. These differences could be due to 

variation in experiment period, method of administration of Zn, age and weight of bulls or 

combination of minerals used. For example, Kumar et al. (2006) used dietary Zn in 2 yr old bulls 

initially weighing 316 ± 0.77 kg for a 6-mo period, whereas the current study used injectable Cu, 

Zn, Mn and Se in yearling bulls weighing 312.0 ± 19.45 kg (yr 1) or 306.8 ± 14.41 (yr 2) for less 

than a 5-mo period. The current study collected semen samples from bulls 1 time and Kumar et 

al. (2006) collected semen samples at the start of the experiment and then 6 more times 

throughout the experiment. Kumar et al. (2006) chose a longer experiment since spermatogenesis 

in bulls was 60 d; thus allowing for the authors to observe the effects of dietary Zn for 3 sperm 

“cycles.” 
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While supplementation of minerals may affect sperm quality, it appears that mineral 

source (organic vs. inorganic) also affects sperm quality (Rowe et al., 2011). Since 

spermatogenesis in bulls takes 60 d for a complete cycle, the authors supplemented dietary 

organic trace minerals Zn, Cu, Mn and Co to mature bulls for 60 d prior to initial semen 

collection. The dietary organic minerals were continually supplemented through an additional 9 

wk semen collection period, in which semen was collected once a wk and then analyzed using 

CASA (Rowe et al., 2011). The authors reported that bulls supplemented with organic trace 

minerals had 65.5% vs. 56.1% CMOT among bulls supplemented with inorganic trace minerals. 

The authors also found that bulls supplemented with organic trace minerals had a higher percent 

of progressive and rapid sperm compared to their inorganic supplemented cohorts. 

Rowe et al. (2011) described motile sperm as those having VAP greater than 30 µm/sec 

and VSL greater than 15 µm/sec. Progressive sperm had a VAP greater than 50 µm/sec and STR 

greater than 70% (Rowe et al., 2011). Rapid sperm had a VSL greater than 50 µm/sec (Rowe et 

al., 2011). If requirements for motile, progressive or rapid sperm proposed by Rowe et al. (2011) 

were applied to the current study, CON and MIN bulls in yr 1 would have had motile sperm; 

however, it would not have been considered progressive or rapid (Table 3.9). Conversely, both 

CON and MIN bulls in yr 2 would have been considered to have motile, progressive and rapid 

sperm. Additionally, CON bulls in the current study had increased VSL compared to MIN bulls, 

indicating those bulls may have had more motile and rapid sperm, if using the guidelines of 

Rowe et al. (2011). In contradiction to Rowe et al. (2011), the current study did not observe 

treatment effects for most of the CASA components. This could be due to differences in mineral 

combination or method of administration, or CASA technology. In the current study, there were 

treatment effects on BCF, the number of times that the curvelinear path of sperm intersects the 
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average path (Amann and Waberski, 2014). It is uncertain why MIN treatment affected BCF in 

both yr and VSL in yr 2; however, it did not affect any other CASA components.  

Heifer Fertility 

 There were no differences between CON and MIN treatments for heifer BCS, age at 

puberty, AI pregnancy rate or day of calving season (P > 0.05). In a design similar to the current 

study, Brasche (2014) injected virgin, Angus-crossbred heifers 33 d prior to AI with a 0.57 mL/ 

45.5 kg of BW injectable solution containing 60 mg/mL Zn, 15 mg/mL Cu, 10 mg/mL Mn and 5 

mg/mL Se to observe effects on pregnancy rate. Heifers were synchronized to a 14 d CIDR-PG-

AI or a 5 d Co-Synch plus CIDR protocol (Brasche, 2014). For the 14 d CIDR-PG-AI, a CIDR 

was inserted 33 d prior to artificial insemination and removed 14 d later. Prostaglandin was 

injected 16 d after CIDR removal and heifers were inseminated 73 h later. For the 5 d Co-Synch 

plus CIDR protocol, a CIDR was inserted 7 d prior to AI and an injection of gonadotropin-

releasing-hormone (GnRH) was given. The CIDR was removed 5 d later and a PG injection was 

given. A second PG injection was given 5.6 h later, and heifers were inseminated 55 h after the 

last PG injection. Similar to heifers in the current study, Brasche (2014) reported that heifers 

synchronized to the 14 d CIDR-PG-AI protocol and injected with trace minerals did not have 

improved pregnancy rate to AI. However, the author also reported that when data were combined 

from heifers synchronized to both protocols, heifers injected with trace minerals had higher 

pregnancy rates (93.0%) compared to control heifers (83.0%).  

Lactating crossbred beef cows maintained on pasture in Florida also had greater 

pregnancy rates after one 5 mL injection of Cu, Zn, Se and Mn (Arthington et al., 2014a).  

However, the authors determined this improvement was not influenced by mineral injection but 

rather an increase in BCS. The BCS was determined at time of injection and therefore not 
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influenced by mineral treatment (Arthington et al., 2014a). In the current study, BCS was not 

affected by mineral injection nor did it influence pregnancy rate.   

Vanegas et al. (2004) evaluated the effects of 1 or 2 doses of an injectable trace mineral 

solution containing 10 mg/mL Cu, 20 mg/mL Zn, 5 mg/mL Se and 20 mg/mL Mn on first 

service conception rate in dairy cows. Single injections were administered to cows 38 to 45 d in 

lactation, while cows receiving the double dose were injected 2 to 3 wk prior to calving and 

again at 38 to 45 d in lactation. The authors found that injecting cows with one 5 mL dose of 

trace minerals before breeding had no benefit on first service conception rates (Vanegas et al., 

2004). Additionally, the authors reported that a 2 dose regimen, 1 injection before calving and 1 

before breeding, resulted in decreased conception rates compared to control cows. These results 

are inconsistent with the current study, in which a 2 dose regimen, 1 injection at weaning and 

one 33 d prior to breeding, did not have a detrimental effect on first service conception to AI. 

These differences could be due to differences in dosage or concentration of trace minerals 

injected, time of injection or class of cattle in which treatment was administered.  

Consistent with the current study, Grings et al. (1999) reported that neither heifer 

pregnancy rates nor age at puberty were affected by dietary supplementation of Cu, Zn and Mn. 

The authors indicated that heifers were sired by Hereford, Limousin or Piedmontese bulls, and 

age at puberty was not affected by mineral treatment but instead influenced by sire breed or age 

of dam. While age at puberty in heifers was not affected by mineral supplementation in the 

current study, breed effects were not studied because all heifers were progeny of Angus bulls and 

cows. 

 In agreement with results from the current study, injectable Cu, Zn, Se and Mn 

administered 30 d prior to breeding in crossbred beef cows had no influence on reproductive 
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performance over a 2-yr period (Whitworth et al., 2014). The authors gave the same injectable 

minerals as the current study; however, they were administered at approximately twice the 

dosage. Moreover, the authors noted that cows had additional access to ad libitum minerals, 

possibly providing adequate mineral supplementation (Whitworth et al., 2014). Heifers in the 

current study were fed additional dietary trace minerals in their daily total mixed ration, also 

suggesting their mineral intake may have been adequate for performance. This conclusion is 

uncertain because initial and final mineral status were unknown for both the Whitworth et al. 

(2014) experiment and the current study. Nevertheless, it appears that injectable minerals do not 

benefit reproductive performance in yearling beef heifers that are not known to be deficient for 

these trace minerals. 

Overall, results from the current study suggest that there is no benefit to yearling bull or 

heifer fertility, or newly weaned calf performance or morbidity, when supplementing cattle of 

unknown mineral status with injectable trace minerals. Previous research has indicated that 

mineral supplementation improved performance in deficient cattle but not in cattle with adequate 

mineral concentrations (Engle et al., 1995; Genther and Hansen, 2014). Unfortunately, initial 

mineral status of cattle in the current study was unknown. Additionally, cattle in the current 

study received minerals in their daily ration, making it plausible that minimum mineral 

requirements were met by cattle in each treatment. 

 Moreover, published literature implicates that the effects of injectable trace minerals in 

cattle vary dependent on timing of injection, number of injections, class of cattle utilized, 

additional mineral supplemented, and initial mineral status. Nevertheless, it is known that 

minerals are vital to proper health, growth and reproduction (Underwood and Suttle, 1999); 

therefore, further research should be conducted to better understand the influence of injectable 
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mineral sources on yearling bull and heifer fertility, and feedlot performance and morbidity of 

newly weaned calves. 
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Table 3.1. Ingredient composition and proximate analysis of the basal diet fed to developing heifers, and bulls, by yr (DM basis)  
 

   
Yr 1 Bulls  Yr 2 Bulls 

 
Heifers 

  
Item 

  
Receiving 

 
Developing 

 

 
Receiving 

 
Developing 

 

 
Developing 

Ingredient (%) 
 

(%) 
 

 
(%) 

 
(%) 

 

 
(%) 

 
Alfalfa hay, ground 15.29 

 
50.90 

 

 
6.34 

 
27.65 

 

 
16.92 

 
Wheat straw, ground 8.73 

 
- 

 

 
22.66 

 
- 

 

 
18.26 

 
Corn silage 37.65 

 
11.12 

 

 
13.42 

 
15.03 

 

 
33.48 

 
Cracked corn 12.91 

 
28.54 

 

 
22.25 

 
- 

 

 
- 

 
Whole corn - 

 
- 

 

 
- 

 
42.72 

 

 
17.83 

 
Dried distillers grain 23.63 

 
5.65 

 

 
29.91 

 
9.73 

 

 
10.00 

 
Supplement1 1.79 

 
3.79 

 

 
5.43 

 
4.86 

 

 
3.50 

  
Dried distillers grain, % 45.48 

 
- 

 

 
- 

 
- 

 

 
- 

  
Ground corn, % 31.11 

 
- 

 

 
- 

 
- 

 

 
- 

  
Urea, % 8.03 

 
- 

 

 
- 

 
- 

 

 
- 

  
Salt, % 5.61 

 
- 

 

 
- 

 
- 

 

 
- 

  
Limestone, % 5.56 

 
- 

 

 
- 

 
- 

 

 
- 

  
Soybean oil, % 2.00 

 
- 

 

 
- 

 
- 

 

 
- 

  
Dyna-K, % 0.80 

 
- 

 

 
- 

 
- 

 

 
- 

  
Fe sulfate, % 0.38 

 
- 

 

 
- 

 
- 

 

 
- 

  
Zn sulfate, % 0.36 

 
12.58 

 

 
12.58 

 
12.58 

 

 
12.58 

  
Cu sulfate, % 0.15 

 
2.77 

 

 
2.77 

 
2.77 

 

 
2.77 

  
Co sulfate, % - 

 
0.05 

 

 
0.05 

 
0.05 

 

 
0.05 

  
Mn sulfate, % - 

 
8.81 

 

 
8.81 

 
8.81 

 

 
8.81 

  
P, % - 

 
75.65 

 

 
75.65 

 
75.65 

 

 
75.65 

  
I, % 0.08 

 
0.08 

 

 
0.08 

 
0.08 

 

 
0.08 

  
Se, % 0.03 

 
0.04 

 

 
0.04 

 
0.04 

 

 
0.04 

  
Co carbonate, % 0.03 

 
- 

 

 
- 

 
- 

 

 
- 

  
Vitamin A, % 0.10 

 
0.005 

 

 
0.005 

 
0.005 

 

 
0.005 

  
Vitamin D, % - 

 
0.0001 

 

 
0.0001 

 
0.0001 

 

 
0.0001 

  
Vitamin E, % 0.01 

 
0.01 

 

 
0.01 

 
0.01 

 

 
0.01 

  
Monensin, g/kg 200.00 

 
0.45 

 

 
0.45 

 
0.45 

 

 
0.45 

Proximate analysis 

    

 

    

 

 

 
DM, % 54.91 

 
59.12 

 

 
70.88 

 
68.71 

 

 
67.97 

 
CP, % 14.25 

 
13.03 

 

 
15.94 

 
16.10 

 

 
32.03 

 
NEG, Mcal/kg 1.04 

 
0.88 

 

 
1.17 

 
1.15 

 

 
0.97 

 
NEM, Mcal/kg 1.76 

 
1.61 

 

 
1.90 

 
1.87 

 

 
1.68 

 
TDN, % 70.66 

 
65.26 

 

 
75.32 

 
74.63 

 

 
67.98 

 
ADF, % 26.16 

 
33.67 

 

 
19.69 

 
20.65 

 

 
29.21 

________________________________________________________________________________________________________
1 Yr 1 receiving bull ration = dry mineral supplement; Yr 1 developing bull ration, both yr 2 bull rations and heifer ration = 30% 
CP liquid supplement. 
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Table 3.2. Least squares means for BW and ADG of yearling Angus bulls given injectable trace 
minerals at weaning (d 0) and again on d 64 (yr 1) or d 110 (yr 2) 
 

    
Treatment1 

  
P = 

Item 
   

CON MIN SEM   Trt Time Trt x Time 
Yr 1 

        
 

n  
 

9 22 
     

 
BW, kg 

       
0.39 

  
Initial (d 0) 

 
298.0 317.7 4.78 

 
0.01 - 

 
  

Final (d 144) 
 

488.0 481.8 5.07 
 

0.47 <0.0001 
 

 
Overall ADG, kg 

 
1.11 1.11 0.064 

 
0.99 <0.0001 

 Yr 2 
         

 
n 

 
18 17 

     
 

BW, kg 
       

0.23 

  
Initial (d 0) 

 
306.5 306.9 5.70 

 
0.96 - 

 
  

Final (d 144) 
 

498.0 489.3 5.73 
 

0.62 <0.0001 
 

 
Overall ADG, kg 

 
1.18 1.10 0.050 

 
0.30 <0.0001 

 ________________________________________________________________________ 
1Treatments: CON = Control, no injection; MIN = mineral injection of 60 mg/mL Zn, 15 mg/ 
mL Cu, 10 mg/ml Mn and 5 mg/mL Se (MultiMin®, MultiMin USA, Fort Collins, CO). First 
injection administered at 1 mL/45.4 kg of BW and second injection at 1 mL/68.0 kg of BW. 
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Table 3.3. Least squares means for Angus steers BW and ADG from weaning to harvest after 
receiving injectable trace minerals at weaning (d 0) 
 

  
Treatment1 

  Item 
 

CON MIN SEM P = 
n 

 
50 55 

  BW, kg 
     

 
d 0 

 
276.7 273.6 5.33 0.68 

 
d 622 

 
327.1 290.2 12.27 0.04 

 
d 123 

 
476.4 471.7 6.27 0.60 

 
d 195 or 216 610.1 585.7 17.96 0.34 

Days on feed3, d 158.0 153.9 1.64 0.07 
Overall ADG4, kg/d 1.99 1.98 0.006 0.55 
Total gain4, kg 297.9 300.9 2.79 0.45 

________________________________________________________________________ 
1 Treatments: CON = Control, no injection; MIN = mineral injection of 60 mg/mL Zn, 15 mg/ 
mL Cu, 10 mg/ml Mn and 5 mg/mL Se (MultiMin®, MultiMin USA, Fort Collins, CO). First 
injection administered at 1 mL/45.4 kg of BW and second injection at 1 mL/68.0 kg of BW. 
2 Finishing phase began and lasted through d 195 or 216. 
 
3 Days on finishing ration only; 146 or 170 d total 
 
4Calculated only for finishing phase from d 62 to d 195 or 216. 
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Table 3.4. Least squares means for ADG, G:F, age at puberty and pregnancy rate in developing 
Angus heifers given injectable trace minerals at weaning (d 0) and again on d 135, which was 33 
d prior to synchronized AI  
 

 
Treatment1 

  Item CON MIN SEM P = 
n 60 47 

  Initial BW(d 0), kg 281.6 280.4 3.90 0.83 
Final BW (d 84), kg 360.9 356.4 4.83 0.51 
Overall ADG (d 0 to 84), kg/d 0.93 0.93 0.0004 0.69 
DMI (d 0 to 84), kg/d 7.87 7.81 0.16 0.80 
Overall G:F (d 0 to 84) 0.12 0.12 0.004 0.43 
BCS at breeding2 

 
6.0 5.9 0.08 0.12 

Age at puberty3, d 318.1 312.5 3.51 0.26 
Pregnant to AI4, % 66.4 70.9 0.06 0.59 
Season long pregnancy rate5, % 94.4 97.4 0.03 0.50 
Day of calving season,6 d 18.9 17.7 2.70 0.74 

________________________________________________________________________ 
1 Treatments: CON = Control, no injection; MIN = mineral injection of 60 mg/mL Zn, 15 mg/ 
mL Cu, 10 mg/ml Mn and 5 mg/mL Se (MultiMin®, MultiMin USA, Fort Collins, CO). First 
injection administered at 1 mL/45.4 kg of BW and second injection at 1 mL/68.0 kg of BW. 
2 Analyzed using the 9-point scale, where 1=thin and 9=obese (Richards et al., 1986). 
3Age at puberty determined by estrus detection patches (Estrotect™ Heat Detector, Rockway 
Inc., Spring Valley, WI) applied on day 0 and recorded every 11 d as activated, not activated or 
missing. 
4 Heifers were estrus synchronized and inseminated using a 14 d CIDR-PG-AI protocol, in which 
a CIDR was inserted 33 d prior to artificial insemination and removed 14 d later. Prostaglandin 
was injected 16 d after CIDR removal and heifers were inseminated 3 d later (d 168). Pregnancy 
to AI was determined via ultrasound at 56 d post AI. 
5 Season long pregnancy rate was determined via rectal palpation 178 d post AI. 
6 d 0 = date first calf was born among heifers. 
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Table 3.5. Least squares means for morbidity rate and diagnosis in yearling Angus bulls given 
injectable trace minerals at weaning (d 0) and again on d 64 (yr 1) or d 110 (yr 2)1 
 

 
Treatment2 

  Item CON MIN SEM P = 
n 27 39 

  No treatment, % 75.6 (19/27)3 63.0 (26/39) 0.08 0.27 
Treated one time, % 24.4 (8/27) 36.9 (13/39) 0.08 0.27 

 
Lameness4, % 37.5 (3/8) 53.9 (7/13) 0.16 0.49 

 
Respiratory4, % 37.5 (3/8) 38.5 (5/13) 0.16 0.97 

 
Other4, % 25.0 (2/8) 7.7 (1/13) 0.11 0.29 

Treated two times, % 4.9 (2/27) 12.0 (4/39) 0.05 0.32 

 
Lameness4, % 0.0 (0/2) 50.0 (2/4) 0.30 0.31 

 
Respiratory4, % 100.0 (2/2) 25.0 (1/4) 0.52 0.12 

 
Other4, % 0.0 (0/2) 25.0 (1/4) 0.26 0.54 

Treated three times, % 3.7 (1/27) 2.6 (2/39) 0.03 0.79 

 
Respiratory4, % 0.0 (0/1) 50.0 (1/2) 0.60 0.67 

 
Other4, % 100.0 (1/1) 50.0 (1/2) 0.03 0.79 

________________________________________________________________________ 
1 No treatment x yr interaction (P = 0.45) thus data were pooled across yr. 
2 Treatments: CON = Control, no injection; MIN = mineral injection of 60 mg/mL Zn, 15 mg/ 
mL Cu, 10 mg/ml Mn and 5 mg/mL Se (MultiMin®, MultiMin USA, Fort Collins, CO). First 
injection administered at 1 mL/45.4 kg of BW and second injection at 1 mL/68.0 kg of BW. 
3 (n treated/ total n) 
4 Diagnosed reason for treatment. 
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Table 3.6. Least squares means for Angus steer morbidity rate and diagnosis from weaning to 
harvest after receiving injectable trace minerals at weaning (d 0) 
 

 
Treatment1 

  Item CON MIN SEM P = 
n 50 55 

  No treatment, % 36.0 (18/50)2 41.8 (23/55) 0.07 0.55 
Treated one time, % 30.0 (15/50) 30.9 (17/55) 0.06 0.92 

 
Lameness3, % 20.0 (3/15) 11.8 (2/17) 0.09 0.54 

 
Respiratory3, % 66.7 (10/15) 82.4 (14/17) 0.11 0.32 

 
Other3, % 13.3 (2/15) 5.9 (1/17) 0.07 0.49 

Treated two times, % 2.0 (1/50) 7.3 (4/55) 0.03 0.21 

 
Respiratory3, % 0.0 (0/1) 50.0 (2/4) 0.43 0.50 

 
Other3, % 100.0 (1/1) 50.0 (2/4) 0.43 0.50 

Treated three times, % 4.0 (2/50) 3.6 (2/55) 0.03 0.92 

 
Respiratory3, % 0.0 (0/2) 50.0 (1/2) 0.35 0.42 

 
Other3, % 100.0 (2/2) 50.0 (1/2) 0.35 0.42 

________________________________________________________________________ 
1 Treatments: CON = Control, no injection; MIN = mineral injection of 60 mg/mL Zn, 15 mg/ 
mL Cu, 10 mg/ml Mn and 5 mg/mL Se (MultiMin®, MultiMin USA, Fort Collins, CO). First 
injection administered at 1 mL/45.4 kg of BW and second injection at 1 mL/68.0 kg of BW. 
2 (n treated/ total n)  
3 Diagnosed reason for treatment. 
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Table 3.7. Least squares means for morbidity rate and diagnosis in developing Angus heifers 
given injectable trace minerals at weaning (d 0) and again on d 135, which was 33 d prior to 
synchronized AI 
 

 
Treatment1 

  Item CON MIN SEM P = 
n 60 47 

  Never treated, % 91.6 (55/60)2 76.7 (36/47) 0.05 0.03 
Treated one time, % 6.7 (4/60) 14.9 (7/47) 0.04 0.17 

 
Lameness3, % 25.0 (1/4) 28.6 (2/7) 0.22 0.91 

 
Respiratory3, % 75.0 (3/4) 71.4 (5/7) 0.22 0.91 

Treated two or more times, % 1.7 (1/60) 6.4 (4/47) 0.03 0.21 

 
Lameness3, % 0.0 (0/0) 25.0 (1/4) 0.38 0.69 

 
Other3, % 100.0 (1/1) 75.0 (3/4) 0.38 0.69 

_______________________________________________________________________ 
1 Treatments: CON = Control, no injection; MIN = mineral injection of 60 mg/mL Zn, 15 mg/ 
mL Cu, 10 mg/ml Mn and 5 mg/mL Se (MultiMin®, MultiMin USA, Fort Collins, CO). First 
injection administered at 1 mL/45.4 kg of BW and second injection at 1 mL/68.0 kg of BW. 
2 (n treated/ total n) 
3 Diagnosed reason for treatment. 
 
 
 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 



103 

 

Table 3.8. Least squares means for breeding soundness exam traits in yearling Angus bulls given 
injectable trace minerals at weaning (d 0) and again on d 64 (yr 1) or 110 (yr 2), which 
corresponded to 80 (yr 1) or 38 d (yr 2) prior to breeding soundness exams  
 

 
Treatment1 

  Traits CON MIN SEM P = 

 
Yr 1 

    
  

n 9 22 
  

  
Scrotal circumference, cm 33.6 34.9 0.58 0.11 

  
Sperm motility, % 65.6 69.3 2.15 0.24 

  
Normal sperm, % 77.8 81.5 4.18 0.54 

  
Sperm with primary defects, % 16.9 14.8 32.21 0.97 

  
Sperm with secondary defects, % 5.2 4.2 0.94 0.45 

 
Yr 2 

    
  

n 18 17 
  

  
Scrotal circumference, cm 34.8 35.7 0.60 0.29 

  
Sperm motility, % 63.8 66.6 1.76 0.27 

  
Normal sperm, % 75.0 73.5 3.25 0.74 

  
Sperm with primary defects, % 20.1 19.2 3.15 0.85 

  
Sperm with secondary defects, % 4.9 7.3 0.92 0.08 

______________________________________________________________________________ 
1 Treatments: CON = Control, no injection; MIN = mineral injection of 60 mg/mL Zn, 15 mg/ 
mL Cu, 10 mg/ml Mn and 5 mg/mL Se (MultiMin®, MultiMin USA, Fort Collins, CO). First 
injection administered at 1 mL/45.4 kg of BW and second injection at 1 mL/68.0 kg of BW. 
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Table 3.9. Least squares means for Computer-Assisted Sperm Analysis traits in yearling Angus 
bulls given injectable trace minerals at weaning (d 0) and again on d 64 (yr 1) or 110 (yr 2), 
which corresponded to 80 (yr 1) or 38 d (yr 2) prior to breeding soundness exams  
 

 
Treatment1 

  Traits CON MIN SEM P = 

 
Yr 1 

    
  

n 9 22 
  

  
Motile sperm, % 73.1 63.9 6.28 0.32 

  
Progressive sperm, % 56.0 48.7 5.45 0.36 

  
Sperm path velocity, µm/s 33.66 33.86 2.08 0.95 

  
Sperm progressive velocity, µm/s 35.64 34.27 23.25 0.97 

  
Sperm track speed, µm/s 53.08 56.33 4.25 0.60 

  
Sperm lateral amplitude, µm 2.62 2.62 0.20 0.99 

  
Sperm beat frequency, Hz 18.01` 15.05 1.21 0.10 

  
Sperm straightness, % 12.4 13.5 1.16 0.51 

  
Sperm linearity, % 18.7 16.5 0.97 0.13 

  
Sperm volume, mL 4.09 4.25 0.57 0.85 

  
Concentration, x106/mL 462.3 410.9 67.12 0.60 

 
Yr 2 

    
  

n 18 17 
  

  
Motile sperm, % 35.2 29.3 6.43 0.52 

  
Progressive sperm, % 33.0 26.2 5.78 0.41 

  
Sperm path velocity, µm/s 97.45 86.10 8.20 0.34 

  
Sperm progressive velocity, µm/s 94.15 75.80 6.10 0.04 

  
Sperm track speed, µm/s 152.33 138.97 10.39 0.37 

  
Sperm lateral amplitude, µm 4.83 5.45 0.32 0.18 

  
Sperm beat frequency, Hz 38.93 31.67 1.52 < 0.01 

  
Sperm straightness, % 91.2 88.5 1.15 0.12 

  
Sperm linearity, % 66.0 59.6 13.92 0.77 

  
Sperm volume, mL 4.10 4.72 0.47 0.37 

  
Concentration, x106/mL 447.4 340.6 68.95 0.28 

______________________________________________________________________________ 
1 Treatments: CON = Control, no injection; MIN = mineral injection of 60 mg/mL Zn, 15 mg/ 
mL Cu, 10 mg/ml Mn and 5 mg/mL Se (MultiMin®, MultiMin USA, Fort Collins, CO). First 
injection administered at 1 mL/45.4 kg of BW and second injection at 1 mL/68.0 kg of BW. 
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SAS Code for Chapter II 
 
Code for analyzing heifer ADG: 
 
proc sort data=adg; 
by Tag Pen Trt; 
proc transpose data=adg out=TrData; 
by Tag Pen Trt; 
run; 
proc print; 
data TrData; 
set TrData; 
adg=Col1; 
Time=_Name_; 
if trt in (2,3) then Rs='No '; 
if trt in (1,4) then Rs='yes '; 
if trt in (1,3) then Rx='No '; 
if trt in (2,4) then Rx='Yes '; 
run; 
proc print; 
proc glimmix; 
class Trt Pen Tag Time; 
model adg= Trt|Time/ddfm=KR; 
random Pen(Trt) Tag(Pen*Trt) Time*Pen(Trt); 
lsmeans Trt|Time / pdiff; 
lsmeans trt*time / plot=meanplot (sliceby=trt join); 
slice Trt*Time/sliceby=Time pdiff; 
 
proc mixed; 
class Rs Rx Pen Tag Time; 
model adg= Rs|Rx|Time/ddfm=KR; 
random Pen(Rs*Rx) Tag(Pen*Rs*Rx) Time*Pen(Rs*Rx); 
lsmeans Rs|Rx|Time / pdiff; 
lsmeans trt*time / plot=meanplot (sliceby=trt join); 
slice Rs*Rx*Time/sliceby=Time pdiff; 
 
proc mixed; 
class Pen Rs Rx; 
model IBW= Rs|Rx; 
Random Pen(Rs*Rx) Tag(Pen*Rs*Rx); 
Lsmeans Rs|Rx / pdiff; 
run; 
proc mixed; 
class Pen Rs Rx; 
model FBW=Rs|Rx; 
Random Pen(Rs*Rx) Tag(Pen*Rs*Rx); 
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Lsmeans Rs|Rx / pdiff; 
run; 
 
Code for analyzing heifer ADG by period: 
 
proc mixed; 
class Rs Rx Pen Tag; 
model week1= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx) Tag(Pen*Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
 
proc mixed; 
class Rs Rx Pen Tag; 
model week2= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx) Tag(Pen*Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
 
proc mixed; 
class Rs Rx Pen Tag; 
model week3= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx) Tag(Pen*Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
 
proc mixed; 
class Rs Rx Pen Tag; 
model week4= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx) Tag(Pen*Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
 
proc mixed; 
class Rs Rx Pen Tag; 
model week6adj= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx) Tag(Pen*Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
 
proc mixed; 
class Rs Rx Pen Tag; 
model week7= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx) Tag(Pen*Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
 
proc mixed; 
class Rs Rx Pen Tag; 
model week8= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx) Tag(Pen*Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
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Code for analyzing heifer DMI: 
 
proc sort data=dmi; 
by Pen Trt; 
proc transpose data=dmi out=TrData; 
by Pen Trt; 
run; 
proc print; 
data TrData; 
set TrData; 
dmi=Col1; 
Time=_Name_; 
if trt in (2,3) then Rs='No '; 
if trt in (1,4) then Rs='yes '; 
if trt in (1,3) then Rx='No '; 
if trt in (2,4) then Rx='Yes '; 
run; 
proc print; 
proc glimmix; 
class Trt Pen Time; 
model dmi= Trt|Time/ddfm=KR; 
random Pen(Trt) Time*Pen(Trt); 
lsmeans Trt|Time / pdiff; 
lsmeans trt*time / plot=meanplot (sliceby=trt join); 
slice Trt*Time/sliceby=Time pdiff; 
 
proc mixed; 
class Rs Rx Pen Time; 
model dmi= Rs|Rx|Time/ddfm=KR; 
random Pen(Rs*Rx) Time*Pen(Rs*Rx); 
lsmeans Rs|Rx|Time / pdiff; 
 
Code for analyzing heifer DMI by period:  
 
proc mixed; 
class Rs Rx Pen ; 
model week1= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
 
proc mixed; 
class Rs Rx Pen ; 
model week2= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx) ; 
lsmeans Rs|Rx / pdiff; 
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proc mixed; 
class Rs Rx Pen ; 
model week3= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
 
proc mixed; 
class Rs Rx Pen ; 
model week4= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
 
proc mixed; 
class Rs Rx Pen ; 
model week5= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
 
proc mixed; 
class Rs Rx Pen; 
model week6= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
 
proc mixed; 
class Rs Rx Pen ; 
model week7= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
 
proc mixed; 
class Rs Rx Pen; 
model week8= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
 
proc mixed; 
class Rs Rx Pen; 
model week9= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
 
proc mixed; 
class Rs Rx Pen; 
model week10= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx); 
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lsmeans Rs|Rx / pdiff; 
 
proc mixed; 
class Rs Rx Pen; 
model week11= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
 
 
Code for analyzing heifer feed efficiency: 
 
proc mixed; 
class Rs Rx Pen Tag eff; 
model eff= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx) Tag(Pen*Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
 
Code for analyzing heifer reproductive performance: 
 
proc glimmix; 
class Tag Pen Rs Rx; 
model AIbred= Rs|Rx Sire /ddfm=KR; 
random Pen(Rs*Rx) Tag(Pen*Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
 
proc glimmix; 
class Tag Pen Rx Rs; 
model Seasonlong= Rx|Rs /ddfm=KR; 
random Pen(Rs*Rx) Tag(Pen*Rs*Rx); 
lsmeans Rx|Rs / pdiff; 
 
proc mixed; 
class Pen Rs Rx; 
model BCS=Rs|Rx; 
Random Pen(Rs*Rx) Tag(Pen*Rs*Rx); 
Lsmeans Rs|Rx / pdiff; 
run; 
 
proc mixed; 
class Pen Rs Rx; 
model AgeofPub=Rs|Rx; 
Random Pen(Rs*Rx) Tag(Pen*Rs*Rx); 
Lsmeans Rs|Rx / pdiff; 
run; 
 
proc glimmix; 
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class Tag Pen Rx Rs; 
model daysinseason= Rx|Rs /ddfm=KR; 
random Pen(Rs*Rx) Tag(Pen*Rs*Rx); 
lsmeans Rx|Rs / pdiff; 
 
Code for analyzing heifer exit velocity by period: 
 
proc mixed; 
class Rs Rx Pen Tag; 
model week1= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx) Tag(Pen*Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
 
proc mixed; 
class Rs Rx Pen Tag; 
model week2= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx) Tag(Pen*Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
 
proc mixed; 
class Rs Rx Pen Tag; 
model week3= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx) Tag(Pen*Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
 
proc mixed; 
class Rs Rx Pen Tag; 
model week4= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx) Tag(Pen*Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
 
proc mixed; 
class Rs Rx Pen Tag; 
model week5= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx) Tag(Pen*Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
 
proc mixed; 
class Rs Rx Pen Tag; 
model week6= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx) Tag(Pen*Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
 
proc mixed; 
class Rs Rx Pen Tag; 
model week7= Rs|Rx/ddfm=KR; 
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random Pen(Rs*Rx) Tag(Pen*Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
 
proc mixed; 
class Rs Rx Pen Tag; 
model week8= Rs|Rx/ddfm=KR; 
random Pen(Rs*Rx) Tag(Pen*Rs*Rx); 
lsmeans Rs|Rx / pdiff; 
 
Code for analyzing heifer overall velocity: 
  
proc glimmix; 
class Trt Pen Tag Time; 
model velocity= Trt|Time/ddfm=KR; 
random Pen(Trt) Tag(Pen*Trt) Time*Pen(Trt); 
lsmeans Trt|Time / pdiff; 
lsmeans trt*time / plot=meanplot (sliceby=trt join); 
slice Trt*Time/sliceby=Time pdiff; 
 
proc print; 
proc glimmix; 
class Rs Rx Pen Tag Time; 
model velocity= Rs|Rx|Time/ddfm=KR; 
random Pen(Rs*Rx) Tag(Pen*Rs*Rx) Time*Pen(Rs*Rx); 
lsmeans Rs|Rx|Time / pdiff; 
 
SAS Code for Chapter III 
 
Code for analyzing bull ADG for yr 1 and yr 2 with repeated measures: 
 
proc mixed; 
class Tag MMtrt day; 
model ADG= IBW day|MMtrt  /ddfm=KR; 
repeated day/subject=tag(MMtrt) type=sp(pow) (day) r rcorr; 
random tag; 
lsmeans day|MMtrt / pdiff; 
 
Code for analyzing bull BW gain for yr 1 and yr 2 with repeated measures: 
 
proc mixed; 
class Tag MMtrt day; 
model BW= IBW MMtrt|day  /ddfm=KR; 
repeated day/subject=tag(mmtrt) type=sp(pow) (day) r rcorr; 
random tag; 
lsmeans MMtrt|day / pdiff; 
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Code for analyzing bull ADG and BW gain for yr 1 without repeated measures: 
 
proc mixed; 
class Tag MMtrt; 
model wwd0= MMtrt  /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model wt64d= MMtrt wwd0 /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model wt113d= MMtrt wwd0 /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model wt144d= MMtrt wwd0 /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model adg064= MMtrt wwd0 /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model adg64113= MMtrt wwd0 /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model adg113144= MMtrt wwd0/ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
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model overalladg= MMtrt wwd0 /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
Code for analyzing bull ADG and BW gain for yr 2 without repeated measures: 
 
proc mixed; 
class Tag trt; 
model InWtKg= Trt /ddfm=KR; 
random tag; 
lsmeans trt / pdiff; 
 
proc mixed; 
class Tag trt; 
model d64Wt= Trt Sire  /ddfm=KR; 
random tag; 
lsmeans trt / pdiff; 
 
proc mixed; 
class Tag trt; 
model ADGd064= Trt Sire /ddfm=KR; 
random tag; 
lsmeans trt / pdiff; 
 
proc mixed; 
class Tag trt; 
model d110Wt= Trt /ddfm=KR; 
random tag; 
lsmeans trt / pdiff; 
 
proc mixed; 
class Tag trt; 
model d113Wt= Trt /ddfm=KR; 
random tag; 
lsmeans trt / pdiff; 
 
proc mixed; 
class Tag trt; 
model ADG64113= Trt AgeAtBSE /ddfm=KR; 
random tag; 
lsmeans trt / pdiff; 
 
proc mixed; 
class Tag trt; 
model FinalWtKg= Trt Sire InWtKg /ddfm=KR; 
random tag; 
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lsmeans trt / pdiff; 
 
proc mixed; 
class Tag trt; 
model ADG113148= Trt /ddfm=KR; 
random tag; 
lsmeans trt / pdiff; 
 
proc mixed; 
class Tag trt; 
model OverallADG= Trt Sire /ddfm=KR; 
random tag; 
lsmeans trt / pdiff; 
 
Code for analyzing bull CASA results in yr 1: 
 
proc mixed; 
class Tag MMtrt; 
model mot= MMtrt/ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model prog= MMtrt/ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model vap= MMtrt|sire /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model vsl= MMtrt  /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model vcl= MMtrt|sire /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
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proc mixed; 
class Tag MMtrt; 
model alh= MMtrt|sire/ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model bcf= MMtrt|sire /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model str= MMtrt/ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model lin= MMtrt|sire/ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model vol= MMtrt /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model conc= MMtrt /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
Code for analyzing bull CASA results in yr 2: 
 
proc mixed; 
class Tag MMtrt; 
model mot= MMtrt SC /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
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model prog= MMtrt SC /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model vap= MMtrt /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model vsl= MMtrt /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model vcl= MMtrt /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model alh= MMtrt /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model bcf= MMtrt  /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model str= MMtrt /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model lin= MMtrt /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
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proc mixed; 
class Tag MMtrt; 
model vol= MMtrt SC /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model conc= MMtrt /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
Code for analyzing bull BSE results in yr 1: 
 
proc mixed; 
class Tag MMtrt; 
model sc= MMtrt/ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model mot= MMtrt/ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model norm= MMtrt/ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model pri= MMtrt /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model sec= MMtrt /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
 
Code for analyzing bull BSE results in yr 2: 
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proc mixed; 
class Tag MMtrt; 
model sc= MMtrt /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model mot= MMtrt SC /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model norm= MMtrt SC /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model pri= MMtrt SC  /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model sec= MMtrt /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
Code for analyzing bull motility correlation yr 1: 
 
proc corr; 
var Gmot sire age finalwt sc fmot; 
run; 
 
proc corr spearman; 
var Gmot sire age finalwt sc fmot; 
run; 
 
Code for analyzing bull motility correlation yr 2: 
 
proc corr; 
var Gmot sire age finalwt sc fmot; 
run; 
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proc corr spearman; 
var Gmot sire age finalwt sc fmot; 
run; 
 
Code for analyzing bull morbidity: 
 
proc glimmix; 
class Tag MMtrt; 
model zerotrt= MMtrt year /ddfm=KR; 
random tag; 
lsmeans mmtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model onetrt= MMtrt year /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model twotrt= MMtrt year /ddfm=KR; 
random tag; 
lsmeans mmtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model threetrt= MMtrt /ddfm=KR; 
random tag; 
lsmeans mmtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model T1Lame= MMtrt /ddfm=KR; 
random tag; 
lsmeans mmtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model T1Resp= MMtrt /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model T1Other= MMtrt /ddfm=KR; 
random tag; 
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lsmeans mmtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model T2Lame= MMtrt /ddfm=KR; 
random tag; 
lsmeans mmtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model T2Resp= MMtrt /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model T2Other= MMtrt /ddfm=KR; 
random tag; 
lsmeans mmtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model T3Lame= MMtrt /ddfm=KR; 
random tag; 
lsmeans mmtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model T3Resp= MMtrt /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model T3Other= MMtrt /ddfm=KR; 
random tag; 
lsmeans mmtrt / pdiff; 
 
Code for analyzing heifer reproductive performance: 
 
proc glimmix; 
class Tag MMtrt; 
model AIBRED= MMtrt Sire/ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
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proc glimmix; 
class Tag MMtrt; 
model SLPREG= MMtrt sire/ddfm=KR; 
random tag; 
lsmeans mmtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model DaysinSeason= MMtrt /ddfm=KR; 
random tag; 
lsmeans mmtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt RxRsTrt; 
model BCS= MMtrt/ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt RxRsTrt; 
model ageofpuberty= MMtrt  /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
 
Code for analyzing heifer feedlot performance: 
 
 proc mixed; 
class Tag MMtrt RxRsTrt; 
model initialwtkg= MMtrt  /ddfm=KR; 
random tag pen; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt RxRsTrt; 
model finalwtkg= MMtrt  /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt RxRsTrt; 
model overalladg= MMtrt initialwtkg finalwtkg /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
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class Tag MMtrt RxRsTrt; 
model avgdmi= MMtrt /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt RxRsTrt; 
model overallgf= MMtrt RxRsTrt /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
Code for analyzing heifer morbidity:  
 
proc glimmix; 
class Tag MMtrt; 
model zerotrt= MMtrt initialwt /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model onetrt= MMtrt /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model twotrt= MMtrt /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model threetrt= MMtrt /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model t1lame= MMtrt/ddfm=KR; 
random tag; 
lsmeans mmtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model T1resp= MMtrt/ddfm=KR; 
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random tag; 
lsmeans MMtrt / pdiff; 
 
 
proc glimmix; 
class Tag MMtrt; 
model t1other= MMtrt/ddfm=KR; 
random tag; 
lsmeans mmtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model t2lame= MMtrt/ddfm=KR; 
random tag; 
lsmeans mmtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model T2resp= MMtrt/ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model t2other= MMtrt/ddfm=KR; 
random tag; 
lsmeans mmtrt / pdiff; 
 
Code for analyzing steer performance: 
 
proc mixed;  
class Tag MMtrt; 
model wwkg= MMtrt  /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model initialwt= MMtrt  /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model midwt= MMtrt /ddfm=KR; 
random tag; 
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lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model finalwt= MMtrt  /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model daysonfeed= MMtrt  /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model totalgain= MMtrt initialwt finalwt  /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc mixed; 
class Tag MMtrt; 
model adg= MMtrt finalwt daysonfeed totalgain  /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
Code for analyzing steer morbidity: 
 
proc glimmix; 
class Tag MMtrt; 
model zerotrt= MMtrt  /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model onetrt= MMtrt /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model Twotrt= MMtrt /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
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proc glimmix; 
class Tag MMtrt; 
model Threetrt= MMtrt /ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model t1lame= MMtrt/ddfm=KR; 
random tag; 
lsmeans mmtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model T1resp= MMtrt/ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model t1other= MMtrt/ddfm=KR; 
random tag; 
lsmeans mmtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model t2lame= MMtrt/ddfm=KR; 
random tag; 
lsmeans mmtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model T2resp= MMtrt/ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model t2other= MMtrt/ddfm=KR; 
random tag; 
lsmeans mmtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model t3lame= MMtrt/ddfm=KR; 
random tag; 
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lsmeans mmtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model T3resp= MMtrt/ddfm=KR; 
random tag; 
lsmeans MMtrt / pdiff; 
 
proc glimmix; 
class Tag MMtrt; 
model t3other= MMtrt/ddfm=KR; 
random tag; 
lsmeans mmtrt / pdiff 


