
DISSERTATION

INTEGRATING DISCRETE STOCHASTIC MODELS WITH SINGLE-CELL AND

SINGLE-MOLECULE EXPERIMENTS

Submitted by

Zachary R. Fox

Graduate Degree Program in Bioengineering

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Summer 2019

Doctoral Committee:

Advisor: Brian Munsky

Laurie Stargell

Jesse Wilson

Ashok Prasad



Copyright by Zachary R. Fox 2019

All Rights Reserved



ABSTRACT

INTEGRATING DISCRETE STOCHASTIC MODELS WITH SINGLE-CELL AND

SINGLE-MOLECULE EXPERIMENTS

Modern biological experiments can capture the behaviors of single biomolecules within single

cells. Much like Robert Brown looking at pollen grains in water, experimentalists have noticed that

individual cells that are genetically identical behave seemingly randomly in the way they carry out

their most basic functions. The field of stochastic single-cell biology has been focused developing

mathematical and computational tools to understand how cells try to buffer or even make use of

such fluctuations, and the technologies to measure such fluctuations has vastly improved in recent

years. This dissertation is focused on developing new methods to analyze modern single-cell

and single-molecule biological data with discrete stochastic models of the underlying processes,

such as stochastic gene expression and single-mRNA translation. The methods developed here

emphasize a strong link between model and experiment to help understand, design, and eventually

control biological systems at the single-cell level.
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Chapter 1

Introduction

Many physical, chemical, and biological processes are characterized by discrete particles that

randomly fluctuate in space, time, or number. These microscopic fluctuations often provide the

key to understand and modify mechanisms that control macroscopic phenomena. By and large,

stochastic fluctuations in discrete numbers of specific genes, RNA, or proteins across genetically

identical populations of cells play an important role in the understanding of gene regulation [1–5].

As an example, consider the fate of the bacteria E. coli, in which a small, seemingly random

subset of the population is in a persistent state that can evade antibiotic treatment [6]. This is often

thought of as a bet-hedging strategy, as the persistent cells are able to survive attacks at the cost of

slower growth and division, while the remainder of the population is able to grow and divide while

remaining vulnerable to attack [6–8]. However, what molecular mechanisms determine which cells

become persistent, and which grow and divide?

To solve this kind of question, it is important to understand the underlying stochastic pro-

cesses that influence critical biological systems. Only recently have modern experimental tech-

niques, such as flow cytometry, single-cell RNA sequencing, and single-molecule fluorescence

in-situ hybridization (smFISH) [9–11] allowed for the precise quantification of the fluctuations of

biomolecules like DNA, RNA and protein at the single-cell and single-molecule level. The “rules"

governing these processes, such as mass action kinetics, transcription factor based gene expression

regulation, and much more can be modeled and then compared to high resolution data, which may

invalidate the different hypotheses (or models) about how a biological process works. However, the

details of how to model such processes depend on the type of data that is being collected, the com-

putational feasability of the model, and the underlying statistics of the process that is being mea-

sured. Several approaches have been developed to fit models to the statistical moments [12–14],

stochastic trajectories [15], or full probability distributions [11, 16] of data collected with these

experimental techniques. Despite the progress of these computational and modeling approaches,
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our ability to quantify single biomolecules in single cells has created a need for more tools that

include the biological details that can be measured experimentally.

In systems where fluctuations are not critical to our understanding their underlying mecha-

nisms, mathematical modeling has been used to gain insight about the system and design experi-

ments to collect better data [17], and even predict how the system responds to new inputs. Such

models allows scientists and engineers to use component parts to compose novel systems that can

perform pre-programmed tasks. In biology, this type of model-driven approach has had some

success, from sustained oscillations of gene expression [18] to identifying certain types of cancer

cells [19]. A major roadblock to applications of systems biology is a lack of our ability to develop

predictive models. Methods that are able to predictively model biology can revolutionize person-

alized medicine, agriculture, and biofuel production by applying systems engineering principles.

One challenge in biology is that fluctuations in biomolecule numbers, even across isogenic pop-

ulations, are often non-Gaussian, which necessitates the use of modeling approaches that do not

make assumptions about the shapes of the underlying distributions [20]. Furthermore, phenomena

are often discrete, and not continuous, which leads to interesting behaviors when particle numbers

are low. In fact, the choices that one makes in computational analyses can have a profound impact

on our ability to infer model parameters and make useful predictions [20, 21].

In light of the current challenges created by modern data and computational resources, this dis-

sertation develops new theoretical and computational tools to improve the current state-of-the-art

for stochastic modeling of gene expression in biological systems. Because fluctuations in biologi-

cal systems are critically informative for building predictive understanding in biology, each method

developed here uses a fluctuation based analysis to model, interepret, and even design experiments

for modern measurement approaches.

Within these goals, the methods developed fall in to two main categories, the first of which is

to develop new theory that integrates discrete stochastic models and single-cell data. The goal with

the projects associated with this aim is to incorporate data into model reduction strategies. The

general idea of these tools is that the measurements that are collected can be used to help constrain
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models in various ways. Such tools allow the modeller to identify models and their parameters

and design experiments more efficiently. Chapter 4 discusses the Finite state projection based

bounds on the likelihood of observing single-cell data [22], which develops new bounds on the

likelihood of oberving a measured data set given a particular model of stochastic gene expression.

These bounds utilize single-cell data, such as smFISH measurements, to constrain the acceptable

modeling error needed to identify models. They can be used to rapidly eliminate much of parameter

space that matches data poorly with minimal computational expense. In Chapter 5, we develop

projection based reduction of chemical master equation models using single-cell data. In this

work, we show how single-cell data can be used to construct a reduced basis that describes the

important dynamics of the system. We then project the FSP onto this data-defined basis and use

the reduced model to identify model parameters.

The second set of analyses uses stochastic models to design single-cell experiments. Chap-

ters 6 7 develops a method to use discrete stochastic models to design optimal experiments with

Fisher information. Fisher information is a common tool in statistics and engineering that uses

a model of a system to determine the expected information that can be gained by performing a

particular experiment. Often, the Fisher information is used to determine the precision to which

model parameters can be estimated within a particular experimental setting. We derive the nec-

essary equations to compute the Fisher information for stochastic models of gene expression and

then demonstrate how it can be used to design experiments for several common models of gene ex-

pression. Finally, we apply the Fisher information to experimentally measured RNA distributions

in the canonical HOG-MAPK stress response system in yeast. Our form of the FIM for stochastic

gene expression is the only analysis that uses all of the fluctuation information contained in distri-

butions, and leads to different experiment design decisions than one would find using methods that

make assumptions about the shape of the distributions of biomolecules being measured.

Chapter 8 develops methods to integrate stochastic models of single-molecule translation with

novel single-particle translation measurements. We develop a stochastic codon-dependent model

of single ribosomes as they move along mRNA and elongate proteins. These models incorporate

3



synthetic sequences that encode epitope regions that bind antibody-like probes. Recent experimen-

tal capabilities use this principle to image single polysomes within single cells [23–26]. However,

a major limitation of these experiments is the number of antibody-like probes that are available,

which fundamentally leads to a small number of genes that can be measured in single-cells. The

purpose of our research in this area is to use stochastic models to find predictable fluctuation fin-

gerprints in the fluorescence intensity measurements that arise in different genes as they translate.

These different fingerprints allow us to tell apart two different genes as they translate in single-

cells, even if they have been labeled with the same antibody-like probes.

The next chapter introduces the chemical master equation (CME), which has been the workhorse

of systems biology in recent years. Because the CME is difficult to solve directly (it often consis-

tents of an infinite set of ordinary differential equations), we often use the finite state projection

approach (FSP) [27]. The FSP truncates the CME into a finite number of equations. Chapter 2

also discusses other common analyses of the CME, including the stochastic simulation algorithm

and approaches based on the dynamics of the moments of the CME. Chapter 3 introduces sev-

eral likelihood functions which may be used to compare modern experimental data with stochastic

models. These functions depend on the assumptions of the model and the resolution (i.e. bulk

measurements, single-cell fluorescence measurements, or single molecule measurements) of the

data, and are used throughout this dissertation.
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Chapter 2

The Chemical Master Equation

2.1 Chemical Master Equation

Like many single-molecule kinetic events, gene expression is often modeled as a Markov pro-

cess, where each discrete state xi =

[

ξ1 ξ2 ξ3 . . . ξN

]T

i

corresponds to the integer numbers

of N chemical species (e.g., RNA or protein). Transition events between states are different re-

actions such as transcription, translation or degradation, and these reactions can be indexed by

µ ∈ {1, 2, ...,M}. These reactions occur with propensities wµ(xi)dt, which is the probability that

the µth reaction occurs in the next infinitesimal time step (t, t+dt) given the current state xi. State

transitions are described as xi → xj = xi + ψµ, where ψµ is the stoichiometry vector that de-

scribes the change in population after the µth reaction. In such models, each node has a continuous

valued probability p(xi, t) that evolves in time according to the linear ODE known as the chemical

master equation (CME), [28, 29]

dp(xi, t)

dt
=

M
∑

µ=1

wµ(xi −ψµ)p(xi −ψµ, t)−
M
∑

µ=1

wµ(xi)p(xi, t). (2.1)

By enumerating all possible {x1,x2, ..., } ∈ X and corresponding probabilities,

p =

[

p(x1, t) p(x2, t) ...

]T

, the CME can be posed in matrix form as d
dt
p(t) = Ap(t), where

A is known as the infinitesimal generator (examples of A are provided in later sections).

The CME dimension is often infinite, making it impossible to solve directly for most systems.

The finite state projection (FSP) approach was developed to allow one to approximate the CME

solution within strict error bounds [11, 27, 30].
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Figure 2.1: Demonstration of the finite state projection approximation to the chemical master equation. (a)

Graph representation of a master equation with two species and infinite states. (b) Finite state projection

with a subset of the full state state space, and any reaction that leaves the set of states indexes by J must go

into the sink state g(t). (c) Same as (b), except with multiple sinks.

2.2 Finite State Projection

In its formulation, the FSP approach selects a finite set of indices, J = {j1, ..., jL} with which

it separates the full state space X into two exhaustive and disjoint sets, XJ = {xj1 , ...,xjL} and its

complement XJ ′ . Under this reorganization, the full master equation can be written

d

dt







pJ(t)

pJ ′(t)






=







AJJ AJJ ′

AJ ′J AJ ′J ′













pJ(t)

pJ ′(t)






. (2.2)

To approximate the CME, the FSP approach forms a finite state Markov process, where all nodes

in XJ ′ are aggregated to one or more sink states g that record the probability mass that leaves XJ .

However, the FSP approach requires all probability mass within g to remain in g as time proceeds.

The new, reduced FSP-CME becomes

d

dt







pFSP
J

g(t)






=







AJJ 0

−1TAJJ 0













pFSP
J

g(t)






. (2.3)

The resulting approximation in Eq. (2.3) provides three key insights into the exact CME solution.

First, it provides a lower bound on the true solution,
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





pFSP
J (t)

0






≤







pJ(t)

pJ ′(t)






for all t > 0. (2.4)

This can be easily interpreted by noting that probability can only leave XJ in the FSP-CME (Eq.

2.3), but can return from XJ ′ to XJ in the original CME (Eq. 2.2). Second, the FSP provides an

exact measure of the approximation error,

∣

∣

∣

∣

∣

∣

∣







pJ(t)

pJ ′(t)






−







pFSP
J (t)

0







∣

∣

∣

∣

∣

∣

∣

1

=
∣

∣pJ(t)− pFSP
J (t)

∣

∣

1
+ |pJ ′(t)|1 (2.5)

= |pJ(t)|1 + |pJ ′(t)|1 −
∣

∣pFSP
J (t)

∣

∣

1
(2.6)

= 1−
∣

∣pFSP
J (t)

∣

∣

1
(2.7)

= g(t), (2.8)

where | · |1 denotes the absolute sum of a vector. Finally, as states are added to the set XJ , the error

g(t) decreases monotonically. Proofs of these results are provided in [30, 31]. The FSP yields a

finite set of linear ordinary differential equations. In the case of a non-time varying infinitesimal

generator matrix, the solution to the FSP for an initial condition pFSP
J (0) at time t is simply the

matrix exponential,

pFSP
J (t) = exp (AJJt)p

FSP
J (0). (2.9)

However, for many interesting systems shown in Chapters 4 and 6, the generator A is time-varying.

In these situations, we are limited to numerically integrating the set of ODEs in Eq. 2.3.

The state space of the FSP, XJ , is easily defined through use of polynomial projection shapes

[30],

XJ = {xi such that fk(xi) ≤ ck for all constraints k = 1, 2 . . . , K} . (2.10)
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Here {fk(xi)} is a set of polynomials of the population counts, and the constraints {ck} are weights

on these polynomials that may be increased (decreased) to include more (fewer) states. In practice,

each kth constraint can be associated with its own sink, gk, which aggregates all states that satisfy

the {1, . . . , (k − 1)}th constraints, but not the kth constraint. The value of gk(tf ) then quantifies

probability of violation for the kth constraint, which in turn guides the systematic increase of ck.

With this expansion, the FSP algorithm presented in [27, 30] can be used to select an XJ to make

g(t) =
∑

k gk(t) small for a specified finite time. However, lower error will require more states

and greater computational expense, which is described in detail in Chapter 4.

2.3 Moments of the Chemical Master Equation

Often, the FSP is computationally intractable to solve. In such cases, one may turn to statis-

tical moments of the time varying distribution p(t) defined by the CME, which are often able to

be efficiently computed. For systems with affine linear propensity functions (i.e. the propensity

function w(x, t) = w0(t)x + w1(t), the moments of the CME can be computed to arbitrary order.

The uncentered moments of the CME, E {xm}, where m = [m1,m2, ...,mNs
] is a vector of inte-

gers corresponding to the mth
i power of the ith species in x, and the entire moment xm is found

according to the following formula [12]:

dE {xm}
dt

= E

{

Nr
∑

j=1

wj(x)

[

Ns
∏

i=1

(ξi +Ψij)
mi −

Ns
∏

i=1

ξmi

i

]}

. (2.11)

In the next chapter, I will show how these moments have been used to maximize the likelihood of

a stochastic model given single-cell data. For example, consider a simple birth and death process,

with two reactions

R1 : ∅
kr−→ X; R2 : X

γ−→ ∅.

This process has a stoichiometry matrix and propensity matrix given by
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Ψ =

[

1 −1

]

(2.12)

W =







0

γ






x+







kr

0






(2.13)

Applying these to Eq. 2.11 we find the following dynamics for the mean of the process, m = [1]

as

dE {x}
dt

= E {kr ((x+ 1)− x) + γx ((x− 1)− x)}

= kr − γE{x}. (2.14)

Interestingly, this form of the equation exactly matches the macroscopic ODEs corresponding to

the same system. This is true whenever propensity functions are linear with x [32]. Similarly, the

second uncentered moment of the process can be found

dE {x2}
dt

= E
{

kr
(

(x+ 1)2 − x2
)

+ γx
(

(x− 1)2 − x2
)}

= −2γE
{

x2
}

+ (2kr + γ)E {x}+ kr. (2.15)

While moment-based approaches can be useful in calculating solutions to the CME, when the

propensities are nonlinear, one must turn to approximations such as moment closures [12] to find

the moment dynamics. Even with exact moments, the number of moments that needs to be com-

puted to accurately represent the underlying distribution can be large, and leasds to a large, dense

set of equations to be integrated that computationally comparable to solving the full master equa-

tion [20]. In such situations, it may be useful to turn to stochastic simulations of the chemical

master equation.
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2.4 Simulating the Chemical Master Equation

Perhaps the most common approach to solving the chemical master equation is to find sample

paths from the time varying probability distribution. This is achieved through the stochastic simu-

lation algorithm (SSA), often called the Gillespie algorithm [33]. Each trajectory simulated using

this algorithm is a sample path from the solution to the chemical master equation p(x, t). Algo-

rithm 1 outlines a simple SSA implementation, called the direct method. Essentially, this approach

uses two randomly generated number to determine when does the next reaction happens and which

reaction occurs. From these two pieces of information, the state is updated.

Algorithm 1 Stochastic Simulation Algorithm

Initialize x = x0, t = t0, w = w(x0, t0)

while t < tf do

r1 = unif(0, 1)

r2 = unif(0, 1)

a0 = |w(x, t)|1
τ = min [log(1/r1)/a0, tf − t]

t = t+ τ

k = 1

while r2 < wk/a0 do

wk =
∑k

i=1 wi(x, t)

k = k + 1

end while

x = x+ψk

end while

By running many simulations, one can approximate the solution to the CME with high fidelity,

though many trajectories may be required to achieve low enough error, especially when the dis-

tribution being sampled has long tails. The error after N samples of the trajectory is O(N−1/2),

as are all Monte Carlo algorithms. As an example, to estimate a probability of 10−4, one needs
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Stochastic simulations SSA (n=500)

FSP

Figure 2.2: Demonstration of the SSA and FSP approaches to solving the chemical master equation. Sample

trajectories simulated by the SSA are shown in grey, with one example in black. After some time, the system

has equilibrated and the distribution is stationary. The right panel show a normalized histogram of 500 SSA

trajectories compared to the FSP solution with error less than 10−6.

to run 108 trajectories. Sample trajectories and the FSP solution are shown in Fig. 2.2. Because

of the computational challenges presented by Monte Carlo approaches to simulating the chemical

master equation, approximation schemes have been developed to more efficiently generate sample

paths. Perhaps the most commonly used is τ -leaping, in which each reaction is taken to occur a

Poisson-distributed number of times in the small time period τ [34–37]. However, care must be

taken in choosing appropriate values of τ because the propensities are often functions of the value

of the state, and therefore may change substantially if a large number of reactions occur in the time

τ . A classic pathological example that many of the above articles deal with is if the propensities

are such that more degradation reactions happen in time τ than the number of productions plus

the number of proteins already in the system, in which case the total number of protein become

negative.

Many different approaches to modeling using the CME have be used, and ultimately the correct

choice depends on the computational resources available, the fidelity of the data that is being used

(i.e. single-cell vs. bulk measurements, discrete molecule counting vs. intracellular fluorescence),

and the importance of stochasticity in the problem. This dissertation is mainly concerned with

systems in which using the FSP approach is the best option, though throughout compares results to

those one would get using a moments based approach or a stochastic simulation based approach.

The next chapter utilizes these different approaches to find the likelihood of different types of
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data sets, for bulk measurements with Gaussian errors to discrete molecule counting of individual

RNA.
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Chapter 3

Likelihood-based identification of stochastic models

of gene expression

To make a model of a biological process useful, one must match experimentally observed

variables to those in the model, i.e. fit the model to the data. However, there are many approaches

to model calibration or fitting that one may take, depending on the type of data that is being

considered, the computational cost of solving the model, and whether the uncertainty in the kinetic

parameters of the model is of interest or only a single point estimate of the parameters. To even

further complicate the problem, one must decide which model or models to use in the first place,

and how to rigorously discriminate between multiple models. The famous quote from Jon von

Neumann “With four parameters I can fit an elephant, and with five I can make him wiggle his

trunk" aludes to the tradeoff between model complexity and overfitting a model. However, in

many ways this quote neglects yet another challenge, which is that models with more parameters

may fit more features of the data, but actually finding those regions of parameter space can be

extremely difficult. The approach of our work is to start with the assumption that we do not have

the true model, but instead a model which can be useful particular aspects of the system, and that

can be invalidated. To find such kinetic parameters, and to perform model selection, one needs

to determine the quality of the fit and the associated uncertainties for a particular model and a

particular data set.

This chapter derives likelihoods of different types of data for models of stochastic gene ex-

pression under different assumptions about the characteristics of the data that is being fit. Once

the likelihood function that is appropriate to use is established, it can be applied in maximum

likelihood frameworks, Bayesian inferenence, or other optimization schemes of interest.
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3.1 Derivation of Likelihoods

In Chapters 4-6 we are interested in analyzing snapshot measurements of independent cell pop-

ulations, such as those collected using smFISH, over multiple time points. The smFISH technique

uses small oligo-nucleotides with attached fluorophores that hybridize to an RNA of interest [9,10].

These fluorescent probes bind to the complementary sequence of the RNA of interest in the cells,

producing diffraction limited spots that can be counted in each cell to quantify the discrete number

of RNA in a given cell. In cells with large numbers of RNA, it may be difficult to discern the

numbers of spots of RNA that appear in each cell. However, cells must be fixed for the oligo-

nucelotide probes to enter them, and therefore each temporal measurement contains unique cells,

and often in this case one assumes that the measurements are independent in time, as no single-cell

temporal correlations are available. One other advantage of this approach is that it does not require

genetic modifications to the genes that are being studied, as is common for time-lapse microscopy

techniques that use GFP. We assume that measurements at each time point t ≡ [t1, t2, . . . , tNt
]

are independent. Part or all of the species in xL
i may be measured, where L ⊆ (1, 2, . . . , Ns)

is set of No observable indices. Measurements of Nc cells can be concatenated into a matrix

Dt ≡ [d1,d2, . . . ,dNc
]t of the observable dimensions at each measurement time t.

For FSP models, the likelihood of indpendent measurements and its logarithm for Nc measured

cells can be written directly is simply the product of the probabilities, where state xL
i was observed

yj times at time t:

ℓ(D|θ) =
tNt
∏

t=t1

∏

j∈JD

p(xL
j , t|θ)yj (3.1)

log ℓ(D|θ) =
tNt
∑

t=t1

∑

j∈JD

yj log(p(x
L
j , t|θ)), (3.2)

where JD is the set of states observed in the data. The vector p(xL) is the marginal distribution

of the observable species from the joint probability vector p(x). The summation in Eq. 3.1 can be

rewritten as a product y log p(xL), where y ≡ [y0, y1, . . . , yM ] (i.e. binned data).
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3.2 Moment-based approaches to likelihood

As previously discussed, in many situations computing the full solution to the FSP is compu-

tationally intractable, and one must attempt to instead identify model parameters θ by match-

ing the moments of the chemical master equation to the moments of single-cell data. In the

limit of large numbers of molecules reacting in a well-mixed solution, the linear noise approx-

imation (LNA) may be applied to CME [29]. In such cases, molecule numbers are consid-

ered to be Gaussian, and the well-known Gaussian form of the likelihood may be applied [38].

If the observed data is assumed to come from a multivariate Gaussian distribution with means

µ(t;θ) = [µ1(t;θ), µ2(t;θ), . . . µNs
(t;θ)]T and covariance matrix Σ(t;θ), such as those in Eqs.

2.11, the likelihood is given by:

ℓ(D;µ,Σ) =

tNt
∏

t=t1

Nc
∏

i=1

(2πNo |Σ(t)|)− 1
2 × exp

(

−1

2
(di(t)− µ(t))TΣ−1(t)(di(t)− µ(t))

)

(3.3)

In [13, 14, 39], the authors suggest approximating the likelihood where the sample mean and

variance are taken to be jointly Gaussian, i.e. the random vector z = [µs,Σs]
T , Z ∼ N (z,C), and

C is the covariance matrix:

C =







Cµsµs
CµsΣs

(CµsΣs
)T CΣsΣs






. (3.4)

The submatrices on the diagonal correspond to the variance of µs and Σs, and the off diagonal

terms correspond to correlations between the sample means and variances.

In [14], they derive the elements of each of these matrices in terms of the moments of the

underlying model distribution p(x|θ) for models with one or two species.

For example, consider the variance/covariance of the sample mean is Cµsµs
, where we have

the data matrix with N measurements X = [xT
1 xT

2 . . .xT
N ]

T , where each row in the matrix X

corresponds to a different measurement. The sample mean x̄ can be written 1TX/N , where 1 is a

column vector of ones of size N . Without loss of generality, let E {X} = 0, and
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Cµsµs
=

1

N2

(

E
{

1TXXT1
}

− E
{

1TX
}

E
{

1TX
}T

)

(3.5)

=
1

N2
E
{

1TXXT1
}

=
N

N2
E
{

XXT
}

(3.6)

=
1

N
Σ. (3.7)

Similar procedures can be used find the rest of the C. One challenge with this approach is high-

lighted with the practicality of using measured sample variance when the population variance is

large. This is demonstrated in Fig. 3.1, which shows the distribution of sample variances for the

induced RNA Hog-MAPK data from our work in [20]. Essentially, a broad distribution of sample

variances can lead to a high probability of sampling a sample variance that is lower than the true

variance, which can bias the maximization of the estimation of parameters.

3.3 Inference of time-series data

All of the likelihood functions discussed up to this point discuss data that are independent in

time. Most often, this means that one cannot track single cells over multiple time points, but rather

to take a measurement one must fix the cells (as is the case with smFISH data or single-cell RNA

sequencing data) or that the cells have no identity (as with basic flow cytometry data). However,

time correlated data are very common in fluorescence time-lapse microscopy data, and can provide

a large wealth of data. While this area is still being actively researched [38, 40, 41], I will briefly

outline an FSP-based approach to inferring likelihood from time-series data.

Consider a single time-series measurement of a single fluorescent protein,

y = [y(t1), y(t2), . . . , y(tn)]. Given a stochastic model of the abundance of the particular protein

y, the data can be considered a single-sample path of the full time-varying probability distribution

p(y, t|θ). Note that although this section is written from the perspective of a single fluorescent

protein in a single cell, it can easlily be extended to measurements of multiple proteins or proteins

and RNA in single cells. Because temporal correlations may last the entire trajectory of gene

expression that has been measured, the likelihood at a given time point depends on the entire path

until the final time,
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Figure 3.1: The effect of finite data on estimates of the variance, σ2
s . Distributions of sample variances

1,000 measurements of 100 cells (purple), 1,397 cells (green) and 10,000 cells (orange) were computed.

1,397 cells were measured experimentally for the 0.2M condition at t =15 min. When many cells are

measured, the distribution of σ2
s is approximately Gaussian (orange). However, with less measurements

(green and magenta) these distributions are not only more broad (as expected by the central limit theorem),

but also skewed. This skewness arises because of the long tails often observed in the data. This means that

a relatively small random sampling of such distributions will underestimate the variance of the distribution.

However, infrequently the tail of this distribution will be measured, and the sample variance will be much

larger than the true variance. On average, the estimator is unbiased; the mean of all three distributions is the

same.
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ℓ(y|θ) = p(y1, y2, ...yN |θ) (3.8)

Under the Markov assumption, the probability of moving from y1 to y2 depends only on p(y1), and

therefore the probability of observing y2 is the probability that the system was in y1 and moved

to y2, or the transition probability p(y2|y1). Therefore, the likelihood can be written as a series of

transition probabilities,

ℓ(y) = p(y1)p(y2|y1), ...p(yN |yN−1) (3.9)

= p(y1)
N
∏

i=2

p(yi|yi−1) (3.10)

and the log-likelihood is (3.11)

log ℓ(y) = log p(y1) +
N
∑

i=2

log p(yi|yi−1). (3.12)

(3.13)

Noting again that the solution of the FSP (with non-time-varying propensity functions) is given by

the p(tf ) = exp(A(θ)tf )p(0), the matrix Q(θ) = exp(A(θ)∆t) maps the solution of the master

equation at time t to the solution at time time t + ∆t, i.e. p(t + ∆t) = Q(θ)p(t). Therefore

Q(θ) is a matrix of the transition probabilities in the time ∆t. In the case of fluorescent time-lapse

experiments, ∆t corresponds to the measurement sampling period. Therefore, the log-likelhood of

time-lapse data found using the FSP can be found from

log ℓ(y) = log p(y1) +
N
∑

i=2

logQyi,yi−1
. (3.14)

This approach is exact in the sense that it does not make any assumptions beyond those of standard

chemical reaction kinetics. It remains to be seen how approximations of this approach via linear

noise approximations changes the inference of model parameters. For the other likelihood-based

inference methods discussed above, there are a plethora of examples throughout this dissertation.
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Figure 3.2: Time series inference of single-cell data. (a) Haploid cells with a single copy of a gene and a

diploid cell with two copies of the same gene. (b-d) Example trajectories of the different cell types haploid

(yellow) and diploid (purple), with kon = α, koff = 3α, kr = 100, and γ = 1. In (b), α = 0.1, (c)

α = 1, (d) α = 10. For each value of α, the likelihood that a given trajectory came from the correct model

log ℓ(yA|θA) or for the incorrect model log ℓ(yA|θB) was computed for both haploid and diploid cells. The

difference was binned and plotted on the right.
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However, as motivation for the time-series inference, consider the following experiment, where

there is a population of cells that either have one copy of a given gene (haploid cells) or two

copies of that gene (diploid cells). If we assume that the production rate and switching dynamics

of a two-state promoter are equal for each gene, we are left with the standard ‘bursting gene

expression’ model of transcription, shown in Fig. 3.2(a) [1], and diploid cells undergo a slightly

different stochastic process with three effective gene states, corresponding to a single copy actively

transcribing RNA, both copies actively transcribing RNA, and neither copy actively transcribing

RNA, which makes up the following set of biochemical reactions:

R1 : Goff,off
2kon−−→ Goff,on

R2 : Goff,on
koff−−→ Goff,off

R3 : Goff,on
kon−−→ Gon,on

R4 : Gon,on
2koff−−→ Goff,on

R5 : Gon,off
kr−→ Gon,off +RNA

R6 : Gon,on
2kr−−→ Gon,off +RNA

R7 : RNA
γ−→ ∅. (3.15)

Thus, we have two different models of the biochemical processes, θhap for the haploid cells and

θdip for the diploid cells. For each of these two models, we simulated time series trajectories using

the SSA [33],1, shown in Fig. 3.2, where each trajectory corresponds to RNA abundance in either

a haploid or diploid single cell. The likelihood of each trajectory was computed under both model

assumptions, log ℓ(y|θdip) and log ℓ(y|θhap). We then subtract the likelihood of the correct model,

labeled θA whether the trajectory was simulated with θdip or θhap from the incorrect model, labeled

θB. If the likelihood of the correct model θA is higher than the likelihood of the incorrect model

θB, their difference will be positive and the trajectory was correctly classified, shown in Fig. 3.2(b-

d), right panels. To test the effect of different promoter switching rates, each panel (b-d) has a

different promoter switching rate, α, which affects the model parameters as kon = α, koff = 3α.
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As promotor switching increases, the trajectories are much easier to identify as belonging to a

diploid or haploid cell, as the processes are essentially Poisson with two different mean expression

levels. However, at slow switching rates, the dynamics between the two time series are much more

similar, though still identifiable using this approach.

While this work demonstrates one potential use of the FSP to infer time-series data, the like-

lihood function in Eq. 3.14 could be used to infer model parameters from single-cell trajectories

using maximum likelihood approaches, or to find posteriors of model parameters in a Bayesian

setting. Furthermore, most current experiments measure a single fluorescence signal that changes

over time in a single cell, as opposed to discrete RNA or protein numbers as this approach as-

sumes. However, the deconvolution of total fluorescence into protein numbers has been used to fit

flow cytometry measurements with the FSP in the past [42], and the same idea could be applied to

single-cell time series.

The next chapter introduces a new upper bound on the likelihood in Eq. 3.1, by recognizing

that the FSP solution only provides a lower bound in the likelihood of single-cell data. We derive

this upper bound and find a novel algorithm to rapidly compute it. This upper bound depends on

the model error, g(t), which in turn depends on the amount of states in the FSP and ultimately the

computational expense to solve the model.
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Chapter 4

Finite state projection based bounds to compare

chemical master equation models using single-cell

data 1

4.1 Introduction

A little over ten years ago, the finite state projection (FSP [27]) approach was introduced to

approximate the solution of the Chemical Master Equation (CME [28, 29]) and to capture the

dynamics of discrete molecular events that control single-cell gene regulation. Since that time,

the FSP has received substantial attention; has seen numerous computational improvements; and

has become a benchmark tool in the analysis of stochastic gene regulation. Most recently, the

FSP has been used to fit and predict experimental data in yeast, bacteria, and human cells [43].

The main utility of the FSP is to provide precise bounds on the accuracy of its approximation

as well as a systematic approach to improve that accuracy. However, improved accuracy comes

with increased computational cost, and no attention has been given to how one could optimize

this tradeoff. Careful evaluation of this tradeoff is needed to improve the rigor and efficiency with

which FSP models can be matched to experimentally measured data. In this work, we develop new

FSP-based bounds on the likelihood of single-cell data given a stochastic model; we show how

these bounds can be used to reduce computational costs; and we demonstrate how the co-design of

FSP tools and experimental data can lead to efficient inference of discrete stochastic models from

experimental single-cell data.

1This work was published in PLoS Computational Biology in 2019.
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4.2 FSP-Derived Bounds on the Likelihood

To quantify how experimental data affects the accuracy requirement for the FSP, we consider

single-molecule, single-cell data, such as that obtained using the technique of smFISH. This tech-

nique allows experimentalists to count the number of specific RNA molecules in individual cells,

as described in Chapter 3. The solution for the FSP is pFSP
J and is guaranteed to be a lower bound

on the model’s true solution p = [p(x1), p(x2), . . .] by Eq. (2.4). The log-likelihood in Eq. 3.1 is

monotonic in each p(xi); therefore pFSP
J provides a lower bound on the log-likelihood of D given

the model,

LBJ(D) ≡
∑

i∈ID

di log p
FSP
J (xi) ≤

∑

i∈ID

di log p(xi). (4.1)

However, in Eq. (2.3) the FSP also provides the exact error in the solution of a particular model

described by the CME. By redistributing the known FSP error back onto the CME solution in an

optimal manner, an upper bound on logL(D) can be derived,

UBJ(D) ≡max
{εi}

∑

i∈ID

di log
(

pFSPJ (xi) + εi

)

≥
∑

i∈ID

di log p(xi)

such that:
∑

i

εi = g and εi ≥ 0, (4.2)

where εi is the probability error redistributed to state xi. To optimize the redistribution of g and

determine UBJ(D), we use a modified water-filling algorithm similar to those used to determine

the amount of power to send to different channels in communications systems [44,45]. To simplify

notation, we define the FSP probability for each state as pi ≡ pFSPJ (xi) and the corresponding

partial objective as fi ≡ di log(pi + εi). To determine which states have the highest impact on the

likelihood, the derivative of fi with respect to εi is computed from Eq. (4.2) to get

∂fi
∂εi

∣

∣

∣

εi=0
=











di
pi+εi

= di
pi

for i ∈ ID

0 for i 6∈ ID

, (4.3)
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and we define ND as the number of distinct observations (i.e., the size of ID). These values are

then ranked in decreasing magnitude according to

d̃1
p̃1

≥ d̃2
p̃2

≥ ... ≥ d̃r
p̃r

≥ ... ≥ d̃ND

p̃ND

, (4.4)

where the notation ·̃ refers to the data-ordered state space X̃D = {x̃1, x̃2, ..., x̃r, ..., x̃ND
}. An op-

timal redistribution of g will equalize the first n terms of Eq. (4.4) and satisfy the linear constraints

d̃r+1ǫr − d̃rǫr+1 = d̃rp̃r+1 − d̃r+1p̃r

ǫr ≥ 0











for r ∈ {1, ..., n− 1}. (4.5)

n
∑

j=1

εj = g

For example, when n = 4, εi can be directly solved from the following linear equation:



















d̃2 −d̃1 0 0

0 d̃3 −d̃2 0

0 0 d̃4 −d̃3

1 1 1 1





































ε1

ε2

ε3

ε4



















=



















d̃1p̃2 − d̃2p̃1

d̃2p̃3 − d̃3p̃2

d̃3p̃4 − d̃4p̃3

g



















. (4.6)

In this formulation, the number of states to which probability is redistributed, n, is the largest

dimension for which the solution of Eq. (4.6) is strictly positive for all εi. If the states XJ used

by the approximation do not span the support of the distribution of data, there will be s states for

which pi = 0 and ∂fi
∂ǫi

∣

∣

∣

ε=0
is infinite, and {εi} will always include some mass for those states.

Algorithm 1 provides pseudocode for the proposed error redistribution approach. At most, the

FSP error redistribution algorithm requires ND − s iterations, and in practice computation of the

upper bound on the likelihood takes only a fraction of the time needed for the FSP solution itself,

especially for cases where the data corresponds to partial state observations.
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Algorithm 2 FSP Error Redistribution Algorithm

Rank ∂fi
∂εi

∣

∣

∣

εi=0 ∀ i

n = 1, ε1 = g

while ∂f
∂εn+1

> ∂f
∂εn

and n < ND do

n → n+ 1

Solve for ε1,ε2,...,εn using Eq. 4.5

end while

ε = [ε1, . . . , εn]

The FSP-derived bounds on likelihoods have several important implications for the comparison

of stochastic models to single-cell data. Let Λ denote a particular combination of a model and its

parameters, and let L(D|Λ) denote the likelihood of D given Λ. In the case when XJ = ∅ (i.e.,

the FSP set is empty), all of the probability mass must be redistributed, and the FSP-derived upper

bound is given by:

[

ε1 ε2 ... εND

]

=
1

∑ND

i=0 d̃i

[

d̃1 d̃2 ... d̃ND

]

. (4.7)

This result is easily understood – the maximum of the log-likelihood function occurs when the

distribution of the data exactly matches the model, and in this case the FSP upper bound describes

the best any potential model can ever do. To interpret bounds for non-trivial FSP projections, we

make use of the facts that (i) the FSP approximation lower bound pi increases monotonically as XJ

is expanded [27] and (ii) the likelihood increases monotonically as each pi increases. As a result,

LBJ(D) and UBJ(D)) are guaranteed to be monotonically increasing and decreasing functions of

the projection size. Fig. 4.1 illustrates the converging upper- and lower-bounds for the likelihoods

of two FSP models as the size of the index set J , or equivalently the size of XJ , is increased.
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4.2.1 Using FSP-Derived Bounds for Model Discrimination

For any two models and their parameter sets, Λi and Λj , we define the set of sufficient discrim-

inating projections, Φ(Λi,Λj), as any pair of projection index sets, Ji and Jj , that guarantees the

correct ranking of likelihoods for the two models,

Φ(Λi,Λj) ≡ {Ji, Jj} such that UBJi(Λi) < LBJj(Λj)

or UBJj(Λj) < LBJi(Λi) (4.8)

Intuitively, these are any two projections such that the worst possible likelihood for one model

is greater than best possible likelihood of the other. In Fig. 4.1, the red and green circles denote

pairs of projections sufficient to guarantee that parameter set Λ2 is more likely than Λ1. Because

Φ(Λ1,Λ2) can contain an infinite set of such pairs with varying projection sizes, we define a

minimal symmetric discriminatory projection, φs(Λi,Λj), as

φs(Λi,Λj) ≡ smallest set J such that {J, J} ∈ Φ(Λi,Λj). (4.9)

In Fig. 4.1, the blue circle denotes φs(Λ1,Λ2). Finally, in many sequential parameter searches,

previous FSP models may already be computed to high accuracy, and it may not be necessary

to demand the same accuracy for subsequent models. For this case, we define a minimum non-

symmetric projection size such that:

φi(Λi,Λj) ≡ smallest set Ji such that {Ji, Jj} ∈ Φ(Λi,Λj). (4.10)

The utility of this particular discriminatory projection size definition becomes important in parame-

ter search problems, where it enables sequential likelihood evaluations to be conducted at minimal

projection sizes. In Fig. 4.1, the green circles denotes the φ2(Λ1,Λ2) a particular combination

where the size of XJ2 is minimized given a previous computation for XJ1 . As the examples below

will demonstrate, utilization of these minimal discriminating projections can substantially reduce
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the computational effort in parameter inference by eliminating much of the potential parameter

space with smaller projection sizes.

Projection Size

lo
g
(L
(D

|Λ
))

0

ϕs

Figure 4.1: Schematic of discriminatory projection sizes. Monotonically upper and lower FSP bounds on

the likelihood are shown for two parameter sets Λ1 and Λ2. The red and green circles illustrate two pairs of

projections in Φ(Λ1,Λ2) that enable exact ranking of the two parameter sets. The blue circle illustrates the

minimal symmetric discriminatory projection, φs(Λ1,Λ2). The filled green circle illustrates the minimal

nonsymmetric discriminatory projection, φ2(Λ1,Λ2), needed to discriminate the system given the previous

analysis of Λ1 (open green circle).

4.2.2 Relationship of FSP bounds to other CME truncations

The FSP upper and lower bounds present an opportunity to better understand relationships be-

tween the FSP and other CME approximations in the context of single-cell data. For example,

several groups have imposed limits of species [46] or total molecule populations [47], which result

in truncated master equations with reflecting boundary conditions (in contrast to the FSP’s absorb-

ing boundary condition). In a similar vein, one could renormalize the FSP solution to make use of

the original FSP computation. For this renormalization, the CME can be written in terms similar
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to the FSP solution as:

d

dt
prenorm
J = AJJp

renorm
J + αprenorm

J (4.11)

where α = |AJJp
renorm
J |1 is the rate of flow of probability out of XJ , which is now redistributed

back into XJ according to the probability prenorm
J . However, the solution of this non-Markovian

system is identical to simply renormalizing pFSP
J at all times:

prenorm
J =

pFSP
J

|pFSP
J |1

(4.12)

This can easily be shown by substituting Eq. (4.12) into Eq. (4.11).

Because the FSP likelihood bounds provide the best- and worst-case redistribution of exiting

probability, likelihoods computed by reflection, renormalization or any other arbitrary strategy

are guaranteed to lay between the computed FSP bounds. Therefore, it is possible that reflecting

boundaries may provide an improved approximation of the true likelihood for a particular com-

bination of data and model. Unfortunately, the likelihoods of reflected or renormalized solutions

are not necessarily monotonic and the likelihoods of renormalized solutions for two different pa-

rameter sets or models may change rank depending on the projection size. These issues will be

addressed further in Section (4c).

4.3 Application of FSP-Derived Bounds

To demonstrate the application of the FSP bounds, this section uses simulated data and three

examples of stochastic gene regulation: an unregulated birth-death model, a genetic toggle switch,

and a non-linear self-activating gene.

4.3.1 Birth-Death Model

The variability in mRNA copy numbers for housekeeping genes is well captured by the stan-

dard single-species birth and death model. This model consists of two reactions that describe
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transcription and degradation as shown in Fig. 4.2(a),

R1 : ∅
w1−→ x R2 : x

w2−→ ∅

where the propensity functions w = {w1, w2} are

w1 = kr; w2 = γx.

Table 4.1 shows three different parameter sets for this example. A well-known analytical solution

for this model, assuming x(0) = 0, is the time-varying Poisson distribution

p(xi|kr, γ) =
e−λλxi

xi!
(4.13)

where λ =
kr
γ
(1− e−γtf ).

The infinitesimal generator for this model can be written as

Aji =



































−w1(xi)− w2(xi) for i = j

w1(xi) for (i, j) such that xj = xi + 1

w2(xi) for (i, j) such that xj = xi − 1

0 otherwise

. (4.14)

The FSP formulation for this model can be written from Eq. (4.14) as

d

dt

































p0

p1

p2

...

pN

g(t)

































=

































−kr γ 0 . . . 0

kr −kr − γ 2γ
. . . 0

0 kr −kr − 2γ
. . . 0

...
. . .

. . . Nmγ
...

0 0 kr −kr −Nmγ 0

0 0 0 kr 0

































































p0

p1

p2

...

pN

g(t)

































, (4.15)
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Figure 4.2: FSP bounds for the birth/death model. (a) Schematic of the RNA birth and death process. (b)

Probability distributions for the RNA birth and death process at t = 1. Simulated data is in black. The lower

bound Eq. (2.4) is shown in red, and the upper bound Eq. (4.2) is shown in blue. The shaded region denotes

the redistribution of FSP error to maximize the likelihood of data. See Table 4.1 for parameters.

Where Nm is the size of the FSP truncation (i.e. XJ = {x0,x1, ...,xNm
}). In this case, we used

a single constraint function in Eq. (4.5) f1(xi) = xi ≤ c1, where c1 = Nm. To expand the state

space for this model, c1 is simply increased by one in each iteration.

For this model and the parameters provided in the bottom row of Table 4.1, we simulated 500

trajectories of the stochastic simulation algorithm [33], and plot the resulting “data" in Fig. 4.2(b)

(black). For a projection sized defined by Nm = 50, Fig. 4.2(b) also shows the FSP lower computed

using Eq. (2.4) in red and the FSP upper bounds from Eq. (4.2) in blue. Figure 4.3 demonstrates the

convergence of the upper and lower FSP bounds as c1 is increased for two different parameter sets.

Increasing c1 adds more states to X and monotonically decreases the error g. In turn, less error is
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Figure 4.3: Demonstration of the converging bounds for the birth and death model. Upper and lower

bounds on the likelihood of a simulated data set given two different parameter sets, Λ1 and Λ2, as a function

of the number of states included in the birth-death model. As the number of states increases, the upper and

lower bounds monotonically converge to the true likelihood of each parameter set. The horizontal dashed

lines are the likelihood values found using the analytical solutions in Eq. (4.13). φs indicates the minimum

symmetric projection size that guarantees correct discrimination between the two parameter sets. See Table

4.1 for parameters.
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Table 4.1: Birth and death model parameters

Λ kr(Nt−1) γ(t−1)

Λ1 50.0 0.5

Λ2 49.65 0.5

Λ̂ 45.0 0.5

available to be distributed to the FSP solution, and UBJ(Λ) and LBJ(Λ) converge monotonically

to the analytical value of logL(D|Λ) as shown by the horizontal dashed lines.

4.3.2 Toggle Model

We next explore the application of the FSP bounds on the classic toggle model for two mutually

inhibiting genes, λcI and lacI, as illustrated in Fig. 4.4(a). The first synthetic toggle switch was

experimentally constructed by Gardner et al [48], but here we consider a simple model similar to

that presented by Tian and Burrage [49]. For this model, each state is defined by the the discrete

number of each protein, x = [λcI LacI]. The four reactions are:

R1 : ∅
w1−→ λcI; R2 : λcI

w2−→ ∅;

R3 : ∅
w3−→ LacI; R4 : LacI

w4−→ ∅;

where the propensity functions w = {w1, w2, w4, w4}, are given by

w1 = bλcI +
kλcI

1 + αLacILacIηLacI
; w2 = γλcI · λcI;

w3 = bLacI +
kLacI

1 + αλcIλcIηλcI
; w4 = γLacI · LacI.

The toggle model parameters are shown in Table 4.4, which have been used to generate simulated

data shown in black in Fig. 4.4(b).

The infinitesimal generator for this toggle model can be written:
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λcILacI
LacI Gene λcI Gene

Protein Count
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(b)

0 10 20 30 40 50 60 70 80 90
0.00

0.01

0.02

0.03

0.04

0.05

0.06
∅∅

Figure 4.4: FSP bounds for the toggle model. (a) Schematic of the toggle model with two mutually repress-

ing proteins, LacI and λcI. (b) Marginal probability distributions of LacI at t = 8 hrs. Simulated data is

in black. The lower bound Eq. (2.4) is shown in red and the upper bound Eq. (4.2) is shown in blue. The

shaded region denotes the redistribution of FSP error to maximize the likelihood of data. See Table 4.4 for

parameters.

Table 4.2: Toggle model parameters

Λ bλcI kλcI αLacI ηLacI γλcI bLacI kLacI αλcI ηλcI γLacI

(s−1) (s−1) (N−ηLacI) () (N−1s−1) (s−1) (s−1) (N−ηλcI) () (N−1s−1)

Λ1 6.8e-5 1.6e-2 6.1e-3 2.1 6.7e-4 2.2e-3 1.7e-2 2.6e-3 3.0 3.8e-4

Λ2 6.8e-5 1.6e-2 6.1e-3 2.1 8.0e-4 2.2e-3 1.7e-2 2.6e-3 3.0 3.8e-4

Λ̂ 6.8e-5 1.4e-2 6.1e-3 2.1 6.7e-4 2.2e-3 1.6e-2 2.6e-3 3.0 3.8e-4
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Aji =
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−
4

∑

µ=1

wµ(xi) for i = j

w1(xi) for (i, j) such that xj = xi + [1, 0]

w2(xi) for (i, j) such that xj = xi + [−1, 0]

w3(xi) for (i, j) such that xj = xi + [0, 1]

w4(xi) for (i, j) such that xj = xi + [0, −1]

0 elsewhere

(4.16)

To apply the FSP to truncate the toggle model CME, we consider three constraint functions from

Eq. (2.10), where c1, c2 and c3 define the projection as

XJ = {xi} such that























f1(xi) = (LacI − 4)(λcI − 4) ≤ c1

f2(xi) = LacI ≤ c2

f3(xi) = λcI ≤ c3

(4.17)

These constraints are illustrated in Fig. 4.5. Fig. 4.4(b) shows the marginal probability distribution

for LacI with c1 = 150, c2 = 95, and c3 = 55. This plot shows the FSP lower bound in red

and FSP upper bound in blue. Although Algorithm 1 distributes the error onto the joint probability

distribution of both species, results are plotted only for the marginal distribution. By monotonically

increasing ck, more states are included, and the error g(t) decreases. Fig. 4.6 shows the converging

bounds for two parameter sets, where the total numbers of states satisfying the constraints in Eq.

(4.17) is represented on the x-axis. For simplicity in presentation, c2 and c3 were initially set at

high values of 95 and 55, respectively, and the expansion only modifies the criteria c1. Similar

results can be obtained with more general expansion routines, provided that ck are constant or

monotonically increasing for each k.

4.3.3 Comparing FSP Bounds to Other CME Truncation Approaches

To illustrate potential issues that arise through application of other CME truncation approaches,

we consider a simple gene regulation model with nonlinear self-activation. In this model, the
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Figure 4.5: FSP state space expansion. Maximum species counts, as in Eqs. (4.17b) and (4.17c) are

c2 = NLacI = 95 and NλcI
= 55. States included within a truncation of c1 = 500 are in gray. As c1 is

increased, the boundary (dashed lines) increases to include more states, the FSP error decreases, and the

FSP bounds converge to one another (see also Fig. 4.6).
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Figure 4.6: Demonstration of the converging bounds for a two dimensional system. Upper and lower bounds

on the likelihood of a simulated data set given two different parameter sets, Λ1 and Λ2, as a function of the

number of states included in the toggle model. Parameters are given in Table III.
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Figure 4.7: Positive self-regulated gene expression. First order degradation (black line) and positive

feedback in production (red, green, dashed) can give rise to bistable (red) or monostable dynamics (green,

dashed). Blue dots represent stable equilibria and the cross represents an unstable equilibrium. See Table

4.3 for parameters and Fig. 4.8(c) for examples of the corresponding distributions.

propensity of birth is given by the positive feedback function

w1(x) = k1 + k2

( xn

mn + xn

)

, (4.18)

and the propensity of production is a first order process given by w2 = γx. In this formulation,

k1 is the rate of production for small values of x; k1 + k2 is the rate of production for large values

of x; m is the value of x at which the rate of production is halfway between k1 and k1 + k2; and

the cooperativity factor n determines the steepness of the function as it moves from k1 to k1 + k2.

In the deterministic regime, this model of self-regulated gene expression can lead to one or two

stable equilibria as illustrated in Fig. 4.7. In the stochastic regime, this corresponds to bimodal

distributions in some parameter regimes, and unimodal distributions in other regimes. Table 4.3

provides three possible parameter sets for this model. We simulated data from the first of these

models, ΛTrue, which admits a single stable point (see the dashed line in Fig. 4.7) and yields a

unimodal distribution of data as shown in black in Fig. 4.8.

Next, we consider two perturbations of this true parameter set,
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Table 4.3: Effective parameters for counterexample

Λ k1 k2 m n γ

ΛTrue 20 40 70 4 1

ΛA 22.5 40 70 4 1

ΛB 20 125 70 4 1
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Figure 4.8: Comparing FSP bounds with other CME truncation approaches. (a) Distributions of response

of the sel-f-regulated gene. Simulated data is in black. The renormalized FSP solutions for ΛB is shown in

red for ΛB and in green for ΛA. Both methods use a projection size of 45. (b) Likelihood versus projection

size for different CME truncations. The renormalized scheme is shown with dashed lines, and the reflecting

scheme is shown with dotted lines. All schemes lie within the FSP bounds (solid lines) and eventually

approach the correct likelihood values. Results for parameter set ΛA are in green and for ΛB are in red. At

moderate projections sizes, the renormalized and reflecting boundary scheme appear to converge to a higher

likelihood for ΛB than for ΛA. At higher projection sizes, the trend is switched. (c) The same as (a), but

now the projection size has been increased to XXX.
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ΛA = [ k1(1− ε) k2 n m γ ]

ΛB = [ k1 αk2 n m γ ]
(4.19)

where ΛA and ΛB correspond to the red and green lines, respectively, in Figs. 4.7 and 4.8, and

their parameters are given in Table 4.3. For ΛB the system has a bimodal response and for ΛA,

the response is unimodal. It is interesting to explore how the application of the renormalization

scheme in Eq. (4.12) would affect comparison of these two models to the simulated data. For

a projection size of 45, Fig. 4.8(a) suggests that ΛB provides a better match to the data than

ΛA. Moreover, the likelihood of the data given ΛA and ΛB appear to be nearly constant over a

substantial portion of the projection space as shown by the dashed lines and the shaded region of

Fig. 4.8(b). Based on this information, it would be easy to conclude that ΛB is the more appropriate

parameter set. However, only at large projections which include the second peak in the distribution

for ΛB, does it becomes apparent that the ΛA is the better choice. This scenario illustrates how

the renormalization scheme can complicate parameter discrimination for certain combinations of

models and data. Similar cautions also apply for reflecting boundary approximations of the CME

(see dotted lines in Fig. 4.8). The strict upper and lower bounds provided by the FSP eliminates

this ambiguity as a function of projection size.

It should also be noted that likelihood computations using reflection or renormalization based

truncations require the support of the CME to include that of the experimental data. Otherwise,

these approaches will match the FSP lower bound that suggests that the data is infinitely unlikely.

Such a lower bound may appear uselessness at first, but as we will see in the next section, the FSP

upper bound may still be sufficient for rigorous and efficient model selection.

4.4 FSP Likelihood Bounds in Parameter Searches

The FSP’s constricting upper and lower bounds on the likelihood enable rigorous discrimina-

tion between two parameter sets, Λ1 and Λ2, without using unnecessarily strict error tolerances.
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The following examples will demonstrate the utility of the sufficient discriminatory projections,

Φ(Λi,Λj), φs(Λi,Λj), and φi(Λi,Λj).

4.4.1 Parameter Search for the Birth-Death and Toggle Models

We return to the simulated data presented in Figs. 4.2 and 4.4, but this time we apply the FSP

for many different parameter combinations and for many different projections. Fig. 4.9 illustrates

the practical strength of the minimal symmetric discriminating projection, φs(Λi,Λj). For the

birth/death model in Figs. 4.9(a,b), parameter Λ = kr is allowed to vary. Fig. 4.9(a) shows the

likelihood of the data as a function of parameter Λ, and Fig. 4.9(b) shows the size of the sufficient

symmetric projection, φs(Λ, Λ̂), needed to discriminate between Λ and a fixed parameter Λ̂. Sim-

ilarly, for the toggle model, both the maximum rates of production for LacI and λcI were varied,

Λ =

[

kλcI kLacI

]

. In this case, Fig. 4.9(c) shows contour plots of the likelihoods and Fig. 4.9(d)

shows the corresponding contours of the size of φs(Λ, Λ̂). For models whose likelihood is better

or worse than Λ̂, Figs. 4.9(b,d) shows that the comparison can be made with smaller projection

sizes. Considering that the solution of Eq. 2.3 has a complexity that is typically O(n2) or worse

depending upon the solution scheme [50], such reductions can lead to substantial computational

savings. In past studies, the FSP has been solved to uniformly strict error tolerances such as 10−6 in

Neuert et al. [11], yet consideration of the FSP bounds allows for error tolerances that are relaxed

by several orders of magnitude.

4.4.2 FSP bounds on STL1 regulation in yeast

To demonstrate the application of the FSP bounds on real data, we examine a recent model

and single-cell experimental data for Mitogen Activated Protein Kinase (MAPK) control of STL1

gene regulation in S. cerevisiae (budding yeast). Yeast activate a variety of regulatory pathways

to mitigate the osmotic pressure difference that arises from solute imbalance across the cell mem-

brane. One such mechanism is the high-osmolarity glycerol (HOG) pathway in yeast [51]. Upon

osmotic shock, the Hog1 kinase phosphorylates and localizes to the nucleus of the cell, where it

initiates transcription of several genes, including STL1. After cells adapt to the new condition, the
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Figure 4.9: Likelihoods and sufficient projection sizes. (a) Log-likelihood versus RNA production rate

kr. The horizontal line denotes the likelihood at the fixed comparison parameter Λ̂. (b) The symmetric

projection size φs required to compare parameter set Λ to Λ̂. For Λ such that logL(D|Λ) ∼= logL(D|Λ̂),
larger projections are needed. The green (red) region represents parameter sets that are better (worse) than

Λ̂. (c,d) Same as (a,b), except for the toggle model and two variable parameters, kLacI and kλcI . Parameters

inside (outside) the dashed contour represent parameter sets are better (worse) than the comparison set

denoted with the black dots. In all plots, dashed lines denote parameter combinations with likelihoods that

are equivalent to the reference set.
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kinase leaves the nucleus, and the transcription pathways turn back off. Interestingly, while the

nuclear localization and transcription initialization is a largely deterministic temporal signal, tran-

script abundance varies considerably between isogenic cells. This variability has been quantified

in detail, using the smFISH technique to quantify transcript abundances in single cells at sixteen

different time points at various times from zero to 60 minutes after osmotic shock [11].

The current time-varying CME model of the STL1 regulation process allows the gene to switch

between four possible states with different transcription rates as shown in Fig. 4.10(a). Reactions

that change the gene from state i to j occur with propensities {kij}, and the transcription rates are

given by kri , for each of the i = {1, 2, 3, 4}th gene states. In this model, one particular transition

rate k21 varies as a function of the Hog1p kinase in the nucleus as:

k21(t) = max{0, α + βHog1p(t)}, (4.20)

where the temporal signal profile for Hog1p was measured experimentally [11] and is reproduced

in Fig. 4.10(b). As a result of this dependence on a time-varying parameter, the infinitesimal

generator for the CME is a function of time. The FSP truncation of the CME can be written as:

d
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where the matrices S, T, and Γ are given by:
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Figure 4.10: Gene regulation in the HOG-STL1 system. (a) The four-state model of Hog1p-induced STL1

gene regulation, in which each gene state (S1 . . . S4) has a distinct transcription rate. (b) The parameterized

nuclear enrichment signal, Hog1p(t), that controls the rate of transition from S2 to S1. This signal was

parameterized from experimental measurements at 0.4M NaCl by Neuert et al [11].
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transcripts are in black for each time point [11]. The FSP lower bounds are shown in red and upper bounds

are shown in blue. The Hog1-STL1 pathway is activated at t = 0 with a 0.4M treatment of NaCl (see also

Fig. 4.10).

Fig. 4.11 shows examples of distributions for six time points during the osmotic shock re-

sponse. Experimental data [11] (black) were collected using smFISH, and the FSP lower bound

for a moderate projection size is shown in red. At each experimentally measured time point during

the dynamic process, the FSP error g(t) is computed based upon the FSP truncation, and the FSP

upper bound on logL(D|Λ) (shown in blue) is computed using Algorithm 1. In this illustrative

example, we note that the projection size is substantially smaller than the support of the exper-

imental data, yet the reduced FSP adequately captures the distribution, especially for the earlier

time points. Because a good model must capture both early and late time points, this observation

suggests that smaller projections may be quite informative for model discrimination.

To explore the impact that experimental data has on the required projection for the FSP, we

use the non-symmetric minimal projection to determine the necessary projection size needed for

parameter discrimination. In this case, each sequential comparison of two models begins with a

previous FSP model that is already solved to a known precision. For example, in Fig. 4.12, we
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plot the FSP error bounds versus the projection size for two Hog-STL1 model parameter sets,

ΛN and ΛN+1. If the likelihood is already known for the Nth parameter set (horizontal dashed

line in Figs. 4.12(a,b)), then the FSP model for the (N + 1)th parameter set need only be solved

with a projection size corresponding to φN+1. Figure 4.12 represents this minimal nonsymmetric

projection size with black circles. In many cases, such as that shown in Fig. 4.12(b), the new

parameter is worse than the previous case, and the necessary discriminating projection size can be

much smaller than the support of the experimental data. Such situations where the next parameter

set is worse that the current set are the norm in a typical parameter search.

Fig. 4.13(a) shows the likelihood of the experimental data versus two parameters in the Hog-

STL1 model, and Fig. 4.13(b) shows the size of the necessary discriminating projection for the new

ΛN+1 given that the old ΛN is at the black circle. For new parameters that give smaller likelihoods

than ΛN (i.e. those outside of the halo), parameter discrimination can be achieved with projection

sizes that are a fraction of the support of the data. In fact the median projection needed to compare

the old and new models is 70, compared to a data support size of 107.
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Figure 4.12: Using FSP-bounds to search Hog1-STL1 models. (a) FSP upper and lower bounds versus

projection size for old parameters ΛN−1 and new parameters ΛN . In this case, ΛN is better, and sufficient

discrimination is made at φs, which corresponds to the support of the experimental data. (b) Comparison of

the bounds for old parameters ΛN and new parameters ΛN+1. In this case, reusing the FSP bounds for ΛN

makes it possible to reject ΛN+1 at a projection size that is less than the support of the experimental data.
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Table 4.4: Hog model parameters

Λ k12 α β k23 k32 k34 k43 kr1 kr2 kr3 kr4 γ

ΛN−1 2.096 5406.3 25116.6 0.00979 0.00868 0.0448 0.465 9.16e-4 0.01232 0.1372 1.953 5.53e-3

ΛN 2.096 5406.3 18116.6 0.00779 0.00668 0.0448 0.465 9.16e-4 0.01232 0.1072 1.953 5.53e-3

ΛN+1 2.096 5406.3 30116.6 0.01379 0.01068 0.0448 0.465 9.16e-4 0.01232 0.1372 1.953 5.53e-3

Λfixed 2.096 5406.3 18116.6 0.02 0.00668 0.0448 0.465 9.16e-4 0.01232 0.1072 1.953 5.53e-3
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Figure 4.13: Likelihoods and sufficient projection sizes for Hog1-STL1 data. (a) The likelihood of smFISH

data for 2500 different parameter combinations of kr3 and k23. (b) The size of φN+1 versus ΛN+1 =
[kr3 , k23], where ΛN = Λ̂. Over most of the parameter space, sufficient discrimination does not require the

full support of the experimental data (Nm = 107).

4.5 Summary and Conclusions

In recent years, substantial interest has arisen to integrate discrete stochastic models with

single-cell experimental data. This has motivated many approaches to solve the chemical master
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equation, including stochastic simulations, moment closure analyses, and the finite state projection

approach. Progress in this arena will continue in the future to open new biochemical processes for

discrete stochastic, computational analyses. However, until now there has been little discussion of

how accurate models need to be in order to adequately interpret experimental data. In this arti-

cle, we have explored the benefit by which careful consideration of experimental data can help to

reduce computational complexity and enable more efficient and rigorous comparison of multiple

models in the context of experimental data. We have shown that this advance can substantially re-

duce the complexity of model identification for single-cell gene regulation models using real data,

and we believe this approach opens new doors for gene regulation models in many pathways and

organisms.

In light of the above results, it would interesting to reexamine other approaches to fit stochas-

tic models to single-cell data. For example, a common and highly flexible tool for this task is

the stochastic simulation algorithm (SSA [33]). As one runs more and more SSA trajectories,

the collected statistics converge to the solution of the CME, and the computed likelihood of the

data given the model will also converges to the correct value. Unlike the FSP approach derived

here, convergence of the SSA or other kinetic Monte Carlo approaches will not be monotonic,

and long distribution tails can be very difficult to estimate. However, although the SSA does not

provide a direct computation or bounds on its computational error, one can estimate the rate of

convergence with increasing numbers of trajectories. With these one could imagine that the insight

gained from the optimal redistribution of the FSP error could be adapted to explore similar ad hoc

redistribution methods for the SSA. Such analyses provide intriguing paths for future theoretical

and computational investigations.

Finally, it is now well established that stochastic models can help to better understand single-

cell gene regulatory responses. Here, we have complemented this fact by showing how single-cell

data may inform the design of rigorous and yet more efficient computational analyses. Together,

these insights offer further motivation for tighter integration and co-design of computational and

experimental investigations of biological phenomena.
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Chapter 5

Fast Parameter Identification of Models of Stochastic

Gene Regulatory Networks Using Data-Driven

Radial Basis Function Model Reduction 2

5.1 Introduction

The ability to model gene regulatory networks has significant ramifications in scientific fields such

as molecular biology and medicine. When species exist in large numbers, as often encountered

in biochemical engineering, they can be treated as continuous quantities modeled by determinis-

tic ordinary differential equations [52]. However, certain biochemical species of interest such as

RNAs exist only in low copy numbers and the effect of intrinsic noise is significant, thus requiring

a probabilistic modeling approach [53].

Temporally-varying populations for many single-cell biological processes can be modeled with

continuous-time, discrete-state Markov processes [54–56]. Each state is the integer vector whose

entries are the number of molecules of all species. Finding the probability distribution over these

states amounts to solving the forward Kolmogorov equation, known in biochemistry as the chemi-

cal master equation (CME [57, 58]). The CME is a first-order, linear, infinite-dimensional system

of ordinary differential equations that describes the time evolution of the probability distribution of

the corresponding Markov process. Analytical solutions to the CME are known only for the sim-

plest models [59]. For more elaborate systems, the total number of states grows exponentially with

the number of species and becomes intractable, a situation known as the curse of dimensionality.

2The ideas presented in this chapter formed the foundations of a later publication titled “Bayesian estimation for

stochastic gene expression using multifidelity models." in the Journal of Physical Chemistry B, with Huy Vo as the

lead author. Like the method described in this chapter, the published work uses projection based model reduction,

but focuses on Krylov subspace-based projections that were built from full, expensive FSP evalutions. The work

presented in this chapter uses single-cell measurements to define the basis onto which the FSP dynamics are projected,

surpassing any need to fully evaluate the large expensive evalutions.
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For most biological networks, the CME is solved indirectly via sampling trajectories of the

Markov process using the stochastic simulation algorithm [60], variants such as τ -leaping [61], or

continuous approximations such as the chemical Langevin equation [62]. However, these kinetic

Monte Carlo methods have slow convergence and lack strict error control when approximating

entire probability distributions.

Alternatively, one can seek to compute directly the solution of the CME using a model order

reduction method known as the finite state projection (FSP) [63,64]. The principle of the FSP is to

keep only states with significant probabilities and discard the rest of the state space, thus effectively

truncating the CME into a finite problem. There are multiple methods for the CME that build on

this principle [65–67]. However, even following truncation, the number of states required by the

FSP may still be huge.

A promising approach to further reduce the FSP is to interpolate on a sparse set of nodes with

interpolants generated by an appropriate family of bases. Multiple interpolation methods for the

CME already exist [68–70], but here we explore the projection of the CME onto a linear space

of radial basis functions (RBF) [71]. RBF interpolation of high-dimensional data is standard in

the field of machine learning [72–74], and in computational fluid dynamics [75] due to their accu-

rate representation of high-dimensional features and their efficiency and ease of implementation.

Although RBF projection has been demonstrated to reduce the CME [76, 77], we introduce an ap-

proach with which define improved RBF centers and shape parameters. Our approach employs a

modified version of adaptive residual subsampling [78] to determine RBF bases to capture empir-

ical histogram of single-cell data. We then use these RBF bases to reduce the CME into a smaller,

more solvable system of equations.

For real biological systems, the likelihood of data given a model is computed by compar-

ing CME predictions to measured histograms. Model parameters and their uncertainties are then

inferred by maximizing this likelihood [79] using optimization routines such as Matlab’s fmin-

search [80] or the Metropolis-Hastings algorithm [81]. Here, we propose a new implementation

of the Metropolis-Hastings algorithm, in which the CME is first projected onto data-driven RBF
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bases. We show that this RBF-Metropolis-Hastings approach significantly reduces the runtime in

comparison to standard FSP-Metropolis-Hastings analyses.

A critical challenge in identifying biological models of gene regulation is the enormous parameter

space that arises from a large number of continuously valued parameters. Moreover, certain pa-

rameter combinations may be well-constrained by experimental data, while other combinations are

far less certain. One common approach to parameter estimation and uncertainty quantification is

the Metropolis-Hastings MCMC algorithm [81]. Here, we use the Metropolis-Hastings algorithm

to generate parameter distributions for the full FSP model and the RBF-reduced FSP model.

When applied to discrete stochastic models, the most expensive component of the MCMC

approach is the evaluation of the likelihood of each parameter set, which requires a new CME

solution corresponding to each parameter combination. Since a typical MCMC requires a large

number of samples, any speedup in the CME solver would have tremendous impact on the perfor-

mance of MCMC parameter identification. Our work seeks to implement this speedup by replacing

the existing FSP solver with the RBF-based method, with the goal of using this method to quickly

approach the correct parameter set.

Figure 5.1: (A) The generalized two-state bursting gene expression model captures RNA transcription and

degradation for a single gene that can switch between active (ON) and inactive (OFF) states. (B) The genetic

toggle switch model by Gardner et al. consists of two mutually repressing promoters. Cooperative repression

of the promoters is modeled using repressive Hill functions as shown in the text.
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5.2 Interpolation Using Radial Basis Functions

The FSP truncates the state space of the CME to be finite. However, even the finite state space used

in the FSP can still require an enormous number of states to obtain reasonable model accuracy. In

order to alleviate the state space explosion, we employ projection-based model reduction of the

FSP.

There is a large body of literature that uses projection-based model reduction of the FSP to

improve computational performance. Recently proposed methods are Krylov subspaces, wavelets,

polynomial spaces [65,69,70] and many others. A useful projection-based model reduction should

allow going back and forth between the original model and the reduced model with ease, and it

should not lose track of important features of the full model in the reduced model through excessive

deformations of the state space. The present work is original in that we allow for the first time the

use of single-cell data to guide the selection of the basis functions. Our choice of projection uses

a meshless reduction method with radial basis functions. The advantages of the RBF-based model

reduction are the ease of going back and forth between the full and the reduced model using the

RBF projection operator, as well as its accurate representation of the important features of the state

space, even in the reduced model. In this section, we give and overview of RBF interpolation and

discuss a scheme for selecting centers, and describe how the RBF-FSP follows naturally from this

interpolation.

5.2.1 Overview of RBF Interpolation

The curse of dimensionality causes the FSP state space to become extremely large, even for a

small number of species. As a result, computing the probability distributions for such models

is extremely computationally expensive. However, often times the underlying dynamics of the

CME are much less complex than dictated by the full FSP when looking from the perspective of a

suitable basis [82, 83]. It is reasonable to expect that reductions, such as interpolation via change

of basis can retain accuracy, while reducing the computational burden of solving the full master

equation.
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One natural choice of such a basis family is the radial basis function. Radial basis functions

are easily implemented, and scale well with the dimensionality of the function they interpolate

[72,76,77,84]. This makes them very attractive for interpolating the multi-dimensional probability

distributions that result from the FSP truncation to the CME. Although this basis family has been

very recently used in the context of a CME solver [76,77], little has been said about how to choose

the basis parameters to give reasonable accuracy and efficiency.

RBF interpolation is mesh free, requiring only the choice of RBF centers and of the tuning of

the scaling parameters that indicate the width of the function supports, which are often referred

to as the shape parameters [78]. Though not mathematically fully understood, the practice of

choosing variable shape parameters often results in well-conditioned basis. Our approach is to

choose the RBF centers based upon multi-dimensional probability distributions of discrete, single-

cell data. The algorithm is adaptive, requiring successive steps of refinement and coarsening of

RBF centers and corresponding tuning of the scaling parameter. We then implement adaptive RBF

interpolation for single and multi-dimensional probability distributions that result from the CME.

5.2.2 RBF-Based Reduction of the FSP

The RBF-based reduction of the FSP (RBF-FSP) can be developed as follows. We enumerate the

states J from the full FSP as {x1, . . . ,xi, . . . ,xn}. To reduce the FSP further, we consider a subset

of the FSP state-space K, enumerated by {x1, . . . ,xk, . . . ,xr}, to be the r radial basis centers.

Each basis center xk can be associated with a vector vk of length n whose entries are given by the

Gaussian function centered at xk as

vk(i) = exp(−‖xi − xk‖2/ǫk). (5.1)

We collect these vectors into the radial basis interpolation matrix Φ = [v1 . . .vn], which has

dimension n×r. The interpolation matrix Φ is positive definite and invertible. Therefore, v1, . . .vn

form a basis for Rn, which we will refer to as the radial basis. This interpolation matrix maps the

FSP probability vector pFSP
J to a reduced representation q,
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q = Φ−1p. (5.2)

Thus, we can define a the state matrix for the reduced system,

B = Φ−1AΦ. (5.3)

The dynamics of the FSP in the radial basis is given by

d

dt
q(t) = Bq(t), q(0) = Φ−Lp(0). (5.4)

This reduces the FSP to a r × r dimensional dynamical system, which we call the RBF-FSP.

5.2.3 Choosing RBF Centers and Scaling Parameters

The choice of RBF centers and of scaling parameters is paramount for the interpolation, yet to

our knowledge no systematic method exists to determine them. In particular, fitting a high dimen-

sional probability distribution with different peak heights and widths will require a choice of RBF

centers that is refined enough to capture all the peaks and adaptive in scale to capture the widths

of the peaks. Driscoll et al. suggest a hierarchical multilevel algorithm with local refinement and

coarsening to choose RBF for interpolation in problems with multiple localized features [78]. Fol-

lowing inspiration from the Driscoll algorithm, we implement an adaptive mesh algorithm for the

interpolation of the CME, with two key differences. First, our approach utilizes discrete, single-

cell data to choose the RBF centers, as computing the exact solution to use for interpolation may

be computationally intractable in higher dimensional systems due to the curse of dimensionality.

Second, we are confined to discretely-valued centers, both by discrete data and discrete-state mod-

els. At each iteration, the algorithm samples the error at new points between the current RBF

centers and accepts or rejects them based upon a predefined error threshold. Choosing the right

error thresholds is crucial in smoothing-out data using RBF interpolation. If the threshold is too

strict, the interpolant will try to reproduce the noisy characteristics of the data; if the threshold is
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too relaxed, the interpolant will smooth away relevant features of the data such as multi-modality.

Figure 5.2 shows the results of applying the RBF interpolation refinement algorithm to simulated

data for two different models. In Figure 5.2A, the algorithm is applied to data simulated with the

from the bursting gene expression model (see Figure 5.1A). This interpolation results in a smooth

representation of the data in green with five RBF centers. In combination with the five RBFs for the

observable space of mRNA populations, there are two gene states (‘on’ and ‘off’). When applied

to the CME, this RBF with therefore yield a reduced dimension for B that is 10 × 10. We also

implemented the adapted RBF refinement algorithm to interpolate data simulated with the SSA

for a genetic toggle switch model comprised of two mutual repressors (Figure 5.1B). Figure 5.2B

shows the original data, and Figure 5.2C shows the interpolation of that data on the RBF basis

set. In this case, through systematic refinement and coarsening, 137 RBF centers are sufficient to

capture the two-dimensional joint probability distribution of the toggle model.

The main advantage of the proposed interpolation technique is that it easily generalizable to

more than two dimension. In fact, the number of RBF centers required for interpolation scales

approximately linearly with the number of species to which it is applied. In turn, this reduced

dimension can then alleviate the state space explosion often encountered with complex biochemical

reaction networks. Once the RBF has been identified to produce an effective interpolation of the

single-cell data, the same RBF can be applied to reduce the CME model, as discussed in the

examples below.

5.3 Numerical Examples

For each numerical example below, we simulated data using the SSA [60], and we then apply a

modified version of Driscoll et al. algorithm to the simulated data at a single time point to choose

a basis for the reduced model.
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Figure 5.2: RBF-based interpolation of simulated single-cell data. (A) For the bursting gene expression

model, we compare the data generated with the stochastic simulation algorithm (SSA) (black) with the ap-

proximation using radial basis function interpolation (green) at t = 10s. The five RBF centers are positioned

at the blue crosses. (B) Data for the genetic toggle switch is generated for 1000 trajectories of the SSA at

t = 4hrs. We plot the joint probability mass of the two repressors LacI and λcI. (C) The RBF interpolation

for the genetic toggle switch. We use 137 radial basis functions centered at the black dots.

5.3.1 Bursting Gene Expression

The bursting gene expression model arises from changes in the state of a gene’s promoter, such as

the binding/unbinding of transcription factors. When the gene is ‘on’, RNA is actively translated

at rate kr. For an RNA molecule x, this simple two-state view of a gene can result in a variety of

RNA dynamics depending on the system parameters [85]. This gene regulatory network can be

written by the following set of biochemical reactions describing the state of the gene G and RNA

abundance x.

R1 : Goff
w1−→ Gon R2 : Gon

w2−→ Goff

R3 : Gon
w3−→ Gon + x R4 : x

w4−→ ∅

where the propensities w = {w1, w2, w3, w4} are w1 = kon, w2 = koff , w3 = kr and w4 = γx.
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Figure 5.3: Parameter sweep with the full FSP (left) and the RBF-FSP (right) for the bursting gene expres-

sion model for 30 time-points from t = 0s to t = 10s. Colors correspond to the likelihoods for parameters

kr and koff . Each parameter is varied one order of magnitude above and below the true parameters Λtrue

(center of plot).

Data was simulated for 30 linearly-spaced time points between t = 0 and t = 10 with the SSA.

Figure 5.2A shows the RBF-based representation (green line) of the simulated data (black line)

with the five centers selected using the adaptive residual subsampling algorithm. We then tested

2500 different combinations of the transcription rate kr and gene deactivation rate koff spanning

one order of magnitude above and below the ‘true’ parameter values from which the data was

generated. Figures 5.3A and 5.3B show the resulting log-likelihood values for the data given

the full and reduced models, respectively. In Figure 5.5A, the parameters that maximize the log-

likelihood for the full and reduced models are shown in blue dots and green lines, respectively. The

best parameters identified and their associated likelihoods and computational times, tID, are given

in Table 5.1. As only five RBF centers were required to represent the data at all times (compared

to the full FSP state space of 80), the time required to identify the parameters tID with a parameter

sweep was much lower than with the full model.

5.3.2 Mutually-Repressing Toggle Switch

For a second test model, we examine the well-known genetic toggle switch circuit of Gardner

et al. [86]. There are two mutually repressive promoter species lacI and λcI (Figure 5.1B) with
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kr(s
−1) koff(s

−1) L(D|Λ) tID(s)
Full 9.54 1.30 -9.27e4 172

Reduced 9.54 1.43 -9.30e4 16.0

“True" 10.0 1.50 -9.26e4 -

Table 5.1: Parameters identified and their associated likelihoods for a parameter sweep over 2500 parameter

combinations for kr and koff with the full FSP and the RBF-FSP.

stochastic interactions. The reactions of this biochemical network are then given by:

R1 : ∅
w1−→ λcI R2 : λcI

w2−→ ∅

R3 : ∅
w3−→ LacI R4 : LacI

w4−→ ∅,

where the propensities w = {w1, w2, w4, w4} are given above the arrows, and

w1 = bx +
kx

1 + αyxLacInyx

w2 = γx · λcI

w3 = by +
ky

1 + αxyλcInxy

w4 = γy · LacI.

With these reactions and the parameters listed in Table 5.2, we simulated data using the SSA

(shown in Figure 5.2B).

We then ran the Metropolis-Hastings algorithm combined with the RBF-FSP solution at each

step to find the parameter values that maximize the likelihood function. Our results for identifying

the probability distributions for the best parameters using Metropolis-Hastings are in Figure 5.5B

and 5.5C for the full FSP and the reduced, RBF-FSP solutions, respectively. The values of the

identified parameters of the genetic toggle switch are in Table 5.2.

We then compare against the parameters identified by the usual procedure, where the FSP

stands in place of the RBF approximation. The RBF procedure is almost twice as fast as the exist-

ing technique, while the parameters it identifies are near to the “true" parameter values (Figure 5.4).
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Figure 5.4: Parameter distributions from the Metropolis Hastings search show that the RBF-FSP approaches

Λtrue. The 95% (solid lines) and 65% (dashed lines) for the parameter distributions sampled with MCMC

for the full FSP (magenta) and the RBF-FSP (cyan). Single parameter histograms are shown on the diagonal.

Parameter distributions are scaled relative to Λtrue such that each exact parameter has a value of unity.

by kx ky ηyx γy L(D|Λ) tID(min)

True Model 2.20e-3 1.60-2 1.70e-2 2.1 3.8e-4 -3.022e4 -

Reduced Model 2.22e-3 1.65e-2 1.85e-2 2.17 4.31e-4 -3.114e4 287

Full Model 1.89e-3 1.46e-2 1.60e-2 2.10 3.46e-4 -3.0871e4 444

Table 5.2: Parameters identified using the Metropolis-Hastings algorithm for the toggle model. Parameters

were selected as the best choices in the latter half of the MCMC chain.

Figure 5.4 demonstrates the ability of the RBF-FSP to identify parameters in the toggle model. The

95% and 65% confidence intervals were computed for the second half of a 100000 iteration-long

MCMC chain which has been thinned to 10000 samples. The parameters are normalized by the

“true" parameter values in Figure 5.4, i.e. Λ̃ = Λ
Λtrue
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Figure 5.5: Best fits for the bursting gene expression and toggle models. (A) Simulated data is given by the

black histogram. Modeled probability distributions correspond maximized likelihood of observing the data

L(D|Λ). Parameters were identified from parameter sweeps using the RBF-FSP (green) or the full FSP

(blue). (B,C) Same as A, except for the toggle model, and using parameters identified during 100,000 runs

of the Metropolis-Hastings algorithm.

5.3.3 Toggle Model with Time-Varying Inputs

Next, we consider a special case of the toggle model in which the basal rate of production of LacI

varies in time:

bx = bx0(1− sin(2πωt), (5.5)

where ω is the frequency of the time-varying input signal. This example demonstrates the use of the

RBF-FSP for time-varying infinitesimal generators, A(t) and B(t), in which matrix exponentiation

and Krylov methods are inapplicable, and for which the CME must be numerically integrated, such

as with MATLAB’s ode23s. For this example, the RBF centers were selected using a single data

snapshot in time, t = 4hr. We then tested 1000 values of kx in a parameter sweep using the full

FSP and RBF-FSP separately, and the results of this parameter sweep are shown in Figure 5.6. We
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Figure 5.6: Parameter identification with a time-varying toggle model and 5000 modified SSA simula-

tions. (A) The log-likelihood as a function of kx using the full FSP (blue) and the RBF-FSP (green). The

two approaches agree approximately near the maximum, which coincides with the ‘true’ value of kx. (B)

Marginal distributions for simulated data (black) as well as for the model identified with the full FSP (blue)

and RBF-FSP (green).

found that when the parameters are such that they closely match the simulated data, the full FSP

(blue line) and reduced RBF-FSP (green line) solutions are in close agreement for their computed

likelihoods (see Figure 5.6A). However, when the parameters are far removed from their correct

values the RBF-FSP computation is much less accurate. The marginal probability distributions

obtained with the best parameters identified with both methods are presented in Figure 5.6B. For

this example, we observed computational speedups of more than twenty-fold using the RBF-FSP:

the parameter sweep with the full FSP took 8.33 hr while the search with the RBF-FSP took just

0.37 hr.

5.4 Discussion

When examined at the single-cell level, biochemical processes are subject to single-molecule

events and discrete stochastic phenomena. These stochastic dynamics can be measured using

modern single-cell and single-molecule experiments and they can be described by the chemical

master equation (CME). However, inferring gene regulation parameters from single-cell data re-

quires thousands of CME solutions and enormous computational effort. In this article, we pro-
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posed a means to use single-cell data to define a small set radial basis functions onto which the

CME can be projected prior to numerical analysis or parameter inference. We applied this RBF-

reduced CME approach to three example models, including bursting gene expression, a genetic

toggle switch, and a toggle switch with time varying rates. For each, we showed that we could

use simulated data to define RBF basis sets that capture the most important dynamics of the CME,

and that using these RBFs as part of the parameter inference scheme could lead to substantial re-

ductions in computational effort. We expect that this approach will be highly valuable to quickly

evaluate stochastic models to compare to single-cell data. Moreover, because the number of RBFs

needed to interpolate higher dimensional data scales linearly with the number of dimensions, it is

envisioned that this data-drive reduction of the CME could provide a key step toward overcoming

the curse of dimensionality in the analysis and identification of stochastic gene regulation models.
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Chapter 6

The finite state projection based Fisher information

matrix approach to estimate and maximize the

information in single-cell experiments 3

6.1 Introduction

Recent labeling and imaging technologies have greatly increased capabilities to measure bio-

logical phenomena at the single-cell and single-molecule levels. When conducted under different

conditions, single-cell experiments can probe processes for different spatial or temporal resolu-

tions, for different population sizes, under different stimuli, at different times during a response,

and for myriad other controllable or observable factors [11, 13, 16, 87–90]. As these experiments

have become more capable to precisely perturb or measure different biological species, they have

also become more expensive, which imposes a limit on the number and type of experiments that

can be conducted in any given study. Clearly, not all experiment designs provide the same informa-

tion, and different experiments may be “optimal" to answer different questions about the system.

However, the inherent diversity of modern experiments makes it difficult to intuit which experi-

ments will be most informative and in which circumstances. Computational tools for model-driven

experiment design could help to select more informative experiments, provided that existing tools

can be adapted to overcome the unique challenges presented by single-cell data.

One model-driven approach to optimal experiment design is to use the Fisher information

matrix (FIM), which describes the precision to which a model’s parameters can be estimated for

any particular experiment [14,38,91–94]. To improve estimates of model parameters, the FIM can

be used iteratively in a Bayesian framework by specifying maximally informative experimental

3This work was published in PLoS Computational Biology in 2019.
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conditions, collecting data under these conditions, using new data to constrain parameters, and

using the newly constrained parameters to design the next round of experiments [14,39,41,93,94].

The formalism of the FIM for experiment design has been used to great effect in engineering

disciplines, such as radar, astrophysics, and optics [95–97]. In principle, similar analyses could

introduce a natural feedback in the co-design of single-cell experiments and discrete stochastic

models, but for this to work, accurate analyses are needed to extract more meaning from the data

and to provide better predictions about how biological systems will behave under new conditions.

Experimentally observed cell-to-cell variability has been well demonstrated to provide substan-

tial quantitative insight to constrain and identify the mechanisms and parameters of gene regulation

models [11,13,16,22,42,87–89,98]. Therefore, the FIM analysis for the optimal design of single-

cell experiments should explicitly consider such single-cell variability. Standard FIM analyses

assume continuous-valued observables with Gaussian-distributed measurement noise. However, in

contrast to most classical engineering applications, the distributions of integer-valued RNA or pro-

tein levels across an isogenic cell population can be highly complex and subject to intrinsic and ex-

trinsic variations, with nonlinear interactions that lead to multiple peaks and long tails [9–11, 43].

Because the FIM is not computable for general discrete stochastic processes with non-Gaussian

distributions, computational biologists have applied various approximations to estimate the FIM.

A few recent biological studies use the Linear Noise Approximation [29] to treat single-cell dis-

tributions as Gaussian, which allows for the use of standard Fisher information analyses [38]. This

approach, which we refer to as the LNA-FIM, should be valid for large numbers of molecules,

but it is unlikely to be accurate for systems with high intrinsic noise corresponding to low gene,

RNA, or protein counts. A different approach to estimate the FIM uses the central limit theorem

(CLT) to approximate the sample mean and covariance to be jointly Gaussian and uses higher-

order moments of the chemical master equation to estimate the likelihood of these moments [14].

This approach, which we refer to as the sample moments approach (SM-FIM), should be valid

for large numbers of cells as can be collected in high-throughput experimental approaches, such

as flow cytometry. However, when distributions have long asymmetric tails and sample sizes are
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limited, higher moments become very difficult to estimate and can lead to surprising model esti-

mation errors [20]. Beyond these few Gaussian assumptions, there has been little work devoted to

improve the design of time-varying single-cell experiments for systems with arbitrary probability

distributions.

In this study, we introduce a formulation of the Fisher information for use with discrete stochas-

tic models and data sets containing intrinsic variability that is measurable with single-biomolecule

resolution. Our approach utilizes the finite state projection (FSP) approach [27] to solve the chemi-

cal master equation (CME) [28,29], and compute the likelihood of single-cell data given a discrete

stochastic model [11,22,43]. The FSP solves for the probability distribution over discrete numbers

of biomolecules to any arbitrary error tolerance. By utilizing the full probability distributions, as

opposed to finite order or approximate moments of these distributions, our approach makes no

assumptions and works well for distributions with multiple peaks or long tails.

In the next section, we introduce the FSP and derive the sensitivities of the FSP solution to

small perturbations in parameters. Next, we derive the likelihood function and its local sensitivity

for discrete stochastic models and discrete data. These allow us to formulate and compute the

FSP-FIM. Next, we use a combination of analytical results and numerical simulations to verify the

FSP-FIM for two common models of gene expression. Finally, we demonstrate how the FSP-FIM

can be applied to design nontrivial experiments for a simulated system with nonlinear reaction

rates.

6.2 Derivation of the Fisher Information for FSP Models

The FIM, which describes the amount of information that can be expected by performing a

particular experiment with Nc cells, is defined as

I(θ) = NcE

{

(∇θ log p(X;θ))T (∇θ log p(X;θ))
}

, (6.1)
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where the expectation is taken over p(X;θ), corresponding to the density from which future (or

hypothetical) data could be sampled. For FSP models, this density is the discrete distribution found

by solving Eq. 2.3. Equation 6.1 is positive semi-definite and is additive for collections of inde-

pendent observations [91]. The inverse of the FIM is known as the Cramèr-Rao bound (CRB),

which provides a useful lower bound on the variance for any unbiased estimator of model param-

eters [92]. The notion of information stems from the fact that new experiments should increase

the FIM, corresponding to additional knowledge about θ and a tighter CRB. More specifically,

the well-known asymptotic normality of the maximum likelihood estimator (MLE) states that as

the number of measurements Nc increases, the MLE estimates will converge in distribution to a

multivariate normal probability density with a variance given by the CRB,

√

Nc(θ̂ − θ∗) dist−−→ N (0, I(θ∗)−1), (6.2)

where θ̂ is the θ that maximizes Eq. 3.1 and θ∗ are the “true" model parameters that produced

the observed data [91, 92]. Designing experiments to maximize a given metric of the FIM can be

expected to provide a more accurate estimate of θ, where different definitions of ‘accuracy’ (i.e.,

different vector norms for parameter errors) can be implemented through the choice of different

FIM metrics.

To derive the FIM requires one must take the partial derivative of the log-likelihood (Eq. 3.1)

with respect to the parameters θ,

∇θ log p(X;θ) =



















1
p0

∂p0
∂θ1

1
p0

∂p0
∂θ2

. . . 1
p0

∂p0
∂θNp

1
p1

∂p1
∂θ1

1
p1

∂p1
∂θ2

. . . 1
p1

∂p1
∂θNp

...
... . . .

...

1
pN

∂pN
∂θ1

1
pN

∂pN
∂θ2

. . . 1
pN

∂pN
∂θNp



















. (6.3)

The expression ∇θp(X;θ) is the sensitivity matrix, S, which has dimensions N ×Nθ, where N is

the dimension of the CME or its FSP projection. We derive an equation similar to that presented
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in [99] to define the time evolution of the sensitivity for each state’s probability density, p(xl;θ),

to each parameter θj . However, unlike previous analyses that rely on stochastic simulations and

finite difference approaches, the FSP enables direct approximation of the sensitivities. Using the

sensitivity matrix, the entries of the FIM can be computed as:

I(θ)ij = NcE

{

(

1

p(xl;θ)

)2

SliSlj

}

. (6.4)

Taking the expectation over all l on (1, N) yields the elements of the FIM:

I(θ)ij = Nc

N
∑

l=1

(

1

p(xl;θ)

)2

SliSljp(xl;θ),

= Nc

N
∑

l=1

1

p(xl;θ)
SliSlj, (6.5)

which quantifies Fisher information for the model evaluated at a single time point. For smFISH

data, each time point is independent. If Nc(tk) cells are measured at each kth time point, the FIM

is summed, and the total information is computed as:

I(θ)ij =
Nt
∑

k=1

Nc(tk)
N
∑

l=1

1

p(xl; tk,θ)
Sli(tk)Slj(tk). (6.6)

The Fisher information can be found using Eq. 6.6 for any model for which the FSP (Eq.

2.3) can be solved. This formulation explicitly quantifies how the number of cells and number

of time points impact the information, and is easily extended to include other experiment design

aspects such as the interval of successive measurements or changes in applied inputs, as we will

demonstrate in the following sections. Because one is often interested in the relative sensitivity

of parameters rather than the absolute sensitivity, a logarithmic parameterization of the FIM can

easily be obtained from Eq. 6.6.

I(log θ) = E
[(

∇log θ log p(X;θ)
)T(

∇log θ log p(X;θ)
)]

(6.7)
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The logarithmic parameterization carries through to the computation of the sensitivity matrix,

∇θ log p(x;θ) =



















1
p0

∂p0
∂ log θ1

1
p0

∂p0
∂ log θ2

. . . 1
p0

∂p0
∂ log θNp

1
p1

∂p1
∂ log θ1

1
p1

∂p1
∂ log θ2

. . . 1
p1

∂p1
∂ log θNp

...
... . . .

...

1
pN

∂pN
∂ log θ1

1
pN

∂pN
∂ log θ2

. . . 1
pN

∂pN
∂ log θNp



















. (6.8)

Using the relationship
∂f(x)
∂log x

= x∂f(x)
∂x

, we can rewrite Eq. 6.8 as

∇log θ log p(x;θ) = QSΘ, (6.9)

where

Θ ≡



















θ1 0 . . . 0

0 θ2
. . . 0

...
. . .

. . .
...

0 . . . . . . θNp



















and Q = diag{ 1
p
}. Therefore, the logarithmic parameterization is easily found by multiplying the

ith column in S by the corresponding parameter θi. The log-FSP-FIM can then be computed:

I(log θ)i,j = Nc

N
∑

k=1

θiθj
p(xk;θ)

ski s
k
j = θiθjI(θ)ij. (6.10)

In the following sections, we will verify the FIM using several common models of gene ex-

pression, and demonstrate experiment designs using these approaches.

6.2.1 Derivation of information for Gaussian fluctuations

The Gaussian distribution with mean and variance λ is defined
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f(x, λ) =
1√
2πλ

e
(x−λ)2

2λ . (6.11)

Computing the FIM for this Guassian requires finding the derivative of the log-density

log f(x, λ) = −1

2
log 2π − 1

2
log λ− 1

2

(

x2 − 2xλ+ λ2

λ

)

(6.12)

with respect to λ,

∂ log f(x, λ)

∂λ
= − 1

2λ
− 1

2
(1− x2

λ2
)

= −1

2
(−x2

λ2
+

1

λ
+ 1)

and squaring it:

(

∂ log f(x, λ)

∂λ

)2

=
1

4

(

−x2

λ2
+

1

λ
+ 1

)(

−x2

λ2
+

1

λ
+ 1

)

=
1

4

(

x4

λ4
− 2x2

λ3
− 2x2

λ2
+

1

λ2
+

2

λ
+ 1

)

. (6.13)

To take the expected value, we need the second and fourth moments of the normal distribution,

which are λ2 + λ for the second uncentered moment and λ4 + 6λ3 + 3λ2 for the fourth uncentered

moment. Thus, we have:

E

[(∂ log f(x, λ)

∂λ

)2]

=
1

4

(λ4 + 6λ3 + 3λ2

λ4
− 2(λ2 + λ)

λ3
− 2(λ2 + λ)

λ2
+

1

λ2
+

2

λ
+ 1

)

=
1

4

(4

λ
+

2

λ2

)

=
1

λ
+

1

2λ2
.

6.2.2 Derivation of information for a Poisson distribution

The Poisson distribution is defined:

f(x, λ) =
λxe−λ

x!
. (6.14)
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Again, by taking the log

log f(x, λ) = x log λ− λ− log x! (6.15)

Now, take the derivative with respect to λ

∂ log f(x, λ)

∂λ
=

x

λ
− 1, (6.16)

and squaring this term yields:

(∂ log f(x, λ)

∂λ

)2

=
x2

λ2
− 2x

λ
+ 1. (6.17)

As the FIM is the expected value of this quantity, and the mean and variance of the Poisson distri-

bution are given by λ,

E

[(∂ log f(x, λ)

∂λ

)2]

= E

[x2

λ2

]

− E

[2x

λ

]

+ 1

=
λ2 + λ

λ2
− 2 + 1

=
1

λ
. (6.18)

6.3 Derivation of sensitivities for FSP models

The change of probability p(xl) with respect to small changes in parameter θj describes the

sensitivity of the lth state in the Markov process to the jth parameter [99, 100]. These local sen-

sitivities can be calculated by transforming the linear ODEs describing the time evolution of the

probabilities of the state space d
dt
p(t) = f

(

p(t),θ, t
)

into a set of ODEs describing the time

evolution of the sensitivities. Given an initial condition, the solution to the CME is:

p(t;θ) = p(t0) +

∫ t

t0

f(p(s;θ),θ, s)ds (6.19)
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Taking partial derivatives with respect to θ,

∇θp(t;θ) =

∫ t

t0

[

∇θf(p(s;θ),θ, s) +∇pf(p(s;θ),θ, s)∇θp(s;θ)
]

ds. (6.20)

We can now describe the sensitivities S ≡ ∇θp as they evolve with time, by taking the time

derivative of the equation above. For the FSP, the right-hand side f(p(t;θ),θ, t) = A(θ, t)p(t),

and

∇θf(t,p(t;θ),θ) = (∇θA(θ))p(t) (6.21)

∇pf(t,p(t;θ),θ) = A(θ) (6.22)

In many cases, including all models formulated using mass-action kinetics, the generator A can be

written as a linear combination of the model parameters, i.e. A =
∑

θiBi, and the derivative with

respect to the ith parameter can be found,

∂

∂θi
A =

∂

∂θi
(θiBi) = Bi. (6.23)

Using this notation, Eq. 6.20 is reduced to the set of linear ODEs for each parameter θi,

d

dt







p(t)

Si(t)






=







A 0

Bi A













p(t)

Si(t)






. (6.24)

In practice, Eq. 6.24 can be computed in parallel for each parameter, and the computation of

sensitivities for K parameters is equivalent to solving K sparse systems of ODEs, each twice the

size of the FSP computation.

6.3.1 Moment-based FIM Approximations

Current state-of-the-art approaches for single-cell, single-molecule experiment design rely on

computing moments of the CME. Approaches that use ODE reaction kinetics (in a deterministic
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model setting) [101–103], linear noise approximations [38, 41], or higher order moments [14] all

make use of the well-known Gaussian form of the FIM

FIMi,j =
∂µ

∂θi

T

Σ−1 ∂µ

∂θj
+

1

2
trace

(

Σ−1∂Σ

∂θi
Σ−1∂Σ

∂θj

)

. (6.25)

In the higher order approach, developed by Ruess et al [14] takes the sample mean and sample

variance to be jointly Gaussian, and thus requires the computation of up to the 4th moments in Eq.

2.11.

6.4 Verifications and applicationss of the FSP-FIM

6.4.1 The FSP-FIM captures the exact information for constitutive gene ex-

pression

To demonstrate and validate the FSP-FIM method, we begin with a simple birth and death

model for constitutive gene expression as shown in Figure 6.1. This model, which has been fit

to capture the variability for many housekeeping genes [87, 98], consists of two reactions, corre-

sponding to the constant transcription and first order decay of RNA,

R1 : gene
kr−→ gene+RNA

R2 : RNA
γ−→ ∅.

The production and degradation parameters are defined as θ = [kr, γ].

Given an initial condition of zero RNA for this process, the population of RNA at any later

time is a random integer sampled from a Poisson distribution,

p(x;λ) =
λxe−λ

x!
, (6.26)

where λ is the time varying average population size,
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Figure 6.1: Fisher information for a model of birth and death. The Fisher information for the two model

parameters kr (a) and γ (b) for various values of the mean expression level, λ. The analytical form of the

FIM for a Gaussian approximation and that computed using Eq. 6.25 (purple line) match to one another. The

value computed using the FSP-FIM (blue) matches to the exact form of the analytical Poisson distribution

(orange dashed). As λ becomes large, all four approaches are consistent.

λ(t, kr, γ) =
kr
γ
[1− exp(−γt)]. (6.27)

We have chosen the constitutive gene expression model to verify the FSP-FIM because the exact

solution for the Fisher information for Poisson fluctuations can be derived in terms of λ as [91]:

IPoisson(λ) =
1

λ
. (6.28)

Figure 6.1 shows the exact value of Fisher information (orange) versus the mean expression level

for the two parameters kr and γ. Figure 6.1 also shows that the FSP-FIM (blue) matches the

exact solution for the information on both parameters at all expression levels, which verifies the

FSP-FIM for this known analytical form.

Having demonstrated that the FSP-FIM matches to the exact solution, it is instructive to com-

pare how well the previous LNA-FIM and SM-FIM estimates match to the exact FIM computation.

For the Poisson distribution, the mean and variance are both equal to λ. Using this fact, the FIM

can be approximated using the LNA-FIM for normal distributions (see Eq. 6.25). This expression

reduces to
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IN (λ,λ) =
1

λ
+

1

2λ2
, (6.29)

when both the mean and variance are λ. As λ becomes large, the Poisson distribution becomes well

approximated by a normal distribution [92]. Equations 6.28-6.29 show that for this limit of large λ,

the first term in Eq. 6.29 dominates, and IN reduces to IPoisson, yielding nearly equivalent values

for the expected information. However at low mean expression λ ≤ 1, the strictly positive Poisson

and the symmetric Gaussian distributions are less similar, and the Gaussian approximation predicts

more information than is actually possible given the exact Poisson distribution. These trends are

shown in Fig. 6.1, where the LNA-FIM approach only matches to the exact solution at high ex-

pression levels (compare orange and purple lines). For this example, the sample-moments based

FIM (SM-FIM) is exact and matches to the analytical and FSP-FIM solutions at all expression

levels [14].

6.4.2 The FSP-FIM matches the simulated information for bursting gene

expression

Next, we consider a slightly more complicated model of bursting gene expression, in which

a single gene undergoes stochastic transitions between active and inactive states with rates kon

and koff . This switching model, which is depicted in Fig. 6.2(a), has been studied in detail [98,

104–110], and it has been used to capture single-cell smFISH measurements in mammalian cells

[107, 111], yeast cells [11, 106], and bacterial cells [112]. When active, the gene transcribes RNA

with constant rate kr and these RNA degrade in a first order reaction with rate γ. The four reactions

of the system are:

72



R1 : goff
kon−−→ gon (6.30)

R2 : gon
koff−−→ goff (6.31)

R3 : gon
kr−→ gon +RNA (6.32)

R4 : RNA
γ−→ ∅. (6.33)

For the examples below, we use the baseline parameters given by: kon = 0.05α min−1, koff =

0.15α min−1, kr = 5.0 min−1, and γ = 0.05 min−1. In particular, the mRNA degradation rate,

which sets the overall time-scale, was chosen to be representative of the average decay times

(approximately 20 minutes) for mRNA in yeast [113].

For the bursting gene expression model, rescaling the transition rates kon and koff by a common

factor does not affect the mean expression level, because the fraction of time spent in the active

state remains unchanged. This fraction can be written

fon ≡ αkon
αkon + αkoff

=
kon

kon + koff
, (6.34)

and is the same for any α > 0. For the parameters given above, the average expression at steady

state is given by krfon/γ = 25. However, rescaling the transition rates does change the shape of

the distribution as shown in Fig. 6.2(b-d) [98]. When switching is slow, the gene stays in the “on"

and “off" states long enough to observe individual high and low peaks corresponding to the “on"

and “off" states, as in shown in Fig. 6.2(b). However, for intermediate switching rates, the gene

does not spend enough time in the “off" state for bursts to decay or enough time in the “on" state for

large populations to accumulate (see Fig. 6.2(c)). At fast switching rates the “on" and “off" states

come to a fast quasi-equilibrium, and the time-averaged system approaches a Poisson process,

where the effective production rate is krfon. For the bursting gene expression model, all moments

of the distributions can be computed exactly from Eq. 2.11, even when the RNA distributions are

highly non-Gaussian [12].

73



Figure 6.2: Bursting gene expression. (a) Schematic of the standard bursting gene expression model. Pa-

rameters are defined as given in the text to yield an “on" fraction of 0.25 and a mean expression of 25

mRNA per cell. (b) At slow switching rates, unique “on" and “off" modes are apparent, and distributions of

molecule numbers are bimodal. (c) For intermediate switching rates, the distributions are geometric. (d) At

high switching rates, the distributions are nearly Poisson (d). For each switch rate scale (labeled I, II, or III),

the distribution of RNA computed with the FSP (blue) is compared to a Gaussian with the same mean and

variance (purple).

Since the previous example has already verified the accuracy of the FSP-FIM when the expres-

sion has a Poisson distribution, we now verify the FSP-FIM for the slow switching case in which

the distribution is bimodal (α = 0.1). To our knowledge an exact FIM solution is not known for

the bursting gene expression model, so we evaluate the different FIM approximations by finding

the sampling distribution of the MLE, and we compare the covariance of this distribution to the
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Figure 6.3: Verification of the FSP-FIM for models with non-Gaussian distributions. The inverse of the

FIM is a lower bound on the variance of the MLE estimator. Here, we simulate 200 data sets with 1,000

cells in each data set. We then find the MLE θ̂ (scatter plots) for each, and compare the covariance of

these samples to the inverse of the FIM for the (a) FSP-, (b) LNA-, and (c) SM-FIM approaches. Panel (d)

shows the FIM matrices for all approximations on the same axes. Simulated data were generated using the

parameters given in the main text and at 10 time points evenly distributed between 0 and 200 minutes.

inverse of the FIM [92]. To do this, we sample from p(X; t,θ∗) under reference parameter set θ∗

to generate 200 simulated data sets, each with independent RNA measurements for 1,000 cells.

We then allow koff and kr to be free parameters, and we find θ̂ for each of the 200 data sets. Figure

6.3 compares the 95% confidence intervals found by taking the inverse of the FIM and through

MLE estimation using simulated data for the FSP likelihood (Eq. 3.1) shown in Fig. 6.3(a), the
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LNA-based likelihood (Eq. 3.3 in the Methods section) shown in Fig. 6.3(b), and the SM-based

likelihood (Eq. 3.3 in the Methods section, Supplementary Eq. 10) shown in Fig. 6.3(c). Figure

6.3(a) shows that the CRB predicted by the FSP-FIM matches almost perfectly to the confidence

intervals determined by MLE analysis of independent data sets. Figure S3 (left column) shows

that this estimate is consistently accurate over multiple different experiment designs. In contrast,

the LNA-FIM dramatically overestimates the information and predicts confidence intervals that

are much smaller than are actually possible (Figs. 3(b) and S3, center column). The SM-FIM does

a better job than the LNA in that it matches the MLE analysis for some experimental conditions

(Fig. 6.3(c)) but much less well for other conditions (Fig. S3, right column). We note that the three

different FIM estimates yield different principle directions and different magnitudes for parameter

uncertainty (Fig. 6.3(d)), but in all cases the FSP-MLE matches to the FSP-FIM and results in the

tightest MLE estimation.

Having verified the FSP-FIM for the bursting gene expression model with multiple parameter

sets, we next explore how the information changes as a function of the system parameters. Figure

6.4 shows the determinant of the FIM (also known as the D-optimality or information density)

for the bursting gene expression model as a function of the switch rate scaling factor, α, using

the LNA-FIM (purple), SM-FIM (green) and FSP-FIM (blue) approximations. In the limit of

fast switching (i.e. α → ∞), the expected information converges to nearly the same value for all

approaches, as expected for a Poisson distribution with high effective population size of λ = 25

RNA. However, in the non-Gaussian regimes with slow switch rates, the LNA-FIM over-estimates

and SM-FIM under-estimates the information compared to the verified FSP-FIM approach. We

note that these differences arise despite the fact that the bursting gene expression model has linear

propensity functions, which allows for closed and exact computation of the statistical moments.

6.4.3 The FSP-FIM Can Design More Informative Single-Cell Experiments

Next, having verified the FSP-FIM for its ability to accurately estimate the FIM for different

parameter sets, we explore the use of the FSP-FIM to design experiments that maximize infor-
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mation. Specifically, we will use classical FIM-based experiment design approaches to choose

single-cell experiments first for the bursting gene expression model above, and then for a nonlinear

toggle model for which moments can no longer be computed exactly. We consider two different

metrics of the FIM, which are frequently used in model-driven experiment design [14, 93]. The

first of these is E-optimality, which corresponds to the smallest eigenvalue of the FIM. By finding

the experiment which maximizes this eigenvalue, the information is increased in the principle di-

rection of parameter space in which the least information is known (i.e. the parameter uncertainty

is highest). The second FIM criteria is D-optimality, which corresponds to the determinant of the

FIM. By maximizing the determinant of the FIM over the experiment design space, one finds an

experiment which minimizes the volume of the uncertainty in parameter space. We note that many

other experimental design criteria are possible, and the choice of criteria depends on what one

desires to learn about the system.

Optimizing the sampling rate for bursting gene expression. Our first demonstration of FSP-

FIM based experiment design is to select the optimal single-cell sampling period with which to

identify the parameters of the bursting gene expression model. For this, we have chosen to analyze

E-optimality criteria, which seeks to maximize the smallest eigenvalue of the FIM. We consider a

potential experiment design space consisting of 60 logarithmically distributed sampling periods ∆t

from 2×10−2 minutes and 7×102 minutes. For each sampling period, a total of five evenly spaced

temporal measurements would be taken. Figure 6.5(a) compares the information expected versus

the sampling period using the different FIM approximations: LNA-FIM (purple), SM-FIM (green)

and FSP-FIM (blue). For each potential experiment, we then simulate 200 data sets for 1,000 cells

each by sampling p(X; t,θ∗), use Eq. 3.1 to find the MLE parameter estimate for each data set,

and then compute the covariance matrix from the MLE parameter sets. This covariance matrix is

inverted, and its minimum eigenvalues are depicted as orange triangles in Fig. 6.5(a). Figure 6.5(b)

also shows a scatterplot to compare the relationship between the MLE-observed information and

the predicted information for all FIM approaches. Once again, the FSP-FIM consistently matches

the observed E-optimality at all experimental conditions. However, the LNA approach is much less
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consistent, sometimes over-estimating and sometimes under-estimating the real information for the

different experimental conditions. The SM-FIM consistently underestimates the true information

for this example, although it is not clear if this trend would hold for all sets of parameters and

experimental conditions.

Figure 6.4: FIM analysis of the bursting gene model. The determinant FIM for the LNA-FIM (purple),

FSP-FIM (blue), and SM-FIM (green) as a function of the gene switching rate scale, α. Labels I, II, III

correspond to the switch rates for which distributions are plotted in Figs. 6.2(a-c). Parameters are given in

the main text and data are assumed to be collected at 10 equally separated time points between 0 and 200

minutes.

From Fig. 6.5(a), it is clear that the amount of expected information depends strongly on the

sampling period. When the sampling period is much longer than the characteristic time to reach the

steady state distribution (∆t ≫ 1/γ), the information does not change because all snapshots are al-

ready close to steady state. When the sampling period is too short (∆t ≪ 1/γ), there is insufficient

time for the distributions to change and the information tends to zero. Despite conserving these

trends, the three different FIM analyses result in substantially different optimal experiments for
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Figure 6.5: Designing experiments with the FSP-FIM. (a) E-optimality (i.e., smallest eigenvalue of the

FIM) for the standard bursting gene expression model versus sampling period, ∆t, using FSP-FIM (blue),

LNA-FIM (purple), and SM-FIM. Maximizing E-optimality corresponds to minimizing variance in the in

the most variable direction of parameter space. The orange triangles show MLE-based confirmation of the

E-optimality, using 200 simulated data sets for each sampling period. The green shaded region represents

experiments that are feasible using smFISH, from minute resolution [11] to hour resolution [112] (b) Com-

parison of the FSP-FIM (x-axis) versus the observed information (y-axis) for various sampling periods using

the FSP-FIM (blue circles), LNA-FIM (purple squares), and SM-FIM (green crosses). Kinetic parameters

are given in the main text.

the E-optimality design criteria. Using the FSP-FIM, the optimal experiment is ∆t = 6.1 minutes,

which we verified using the MLE sampling approach (compare orange triangles and blue line in

Fig. 6.5(a)). This optimal design is well-aligned with smFISH experimental technique, which can

capture cell populations with one minute resolution [11] to one hour resolution [112]. However,

the LNA-FIM selects a much faster sampling period of ∆t = 1.1 minutes, and the SM-FIM selects

a much slower sampling period of ∆t = 420 minutes. Thus, the FSP-FIM not only provides more

information compared to moments-based approaches, but it also provides a better estimate of the

expected information. In turn, these improved estimates can help to avoid potentially misleading

experiments and select optimal designs.

The FSP-FIM accurately estimates information for systems with nonlinearities and bi-

modal responses. To demonstrate the utility of the FSP-FIM approach for models with nonlinear

reaction propensities and multiple species, we turn to the toggle model first introduced by Gardner

et al [48], with a stochastic formulation by Tian and Burrage [49]. Figure 6.7(a) shows a schematic
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Figure 6.6: Optimal experiment design for the bursting gene expression model using the determinant of the

FIM, D-optimality. (a) The D-optimality criteria for the FSP-FIM (blue), LNA-FIM (purple) and SM-FIM

(green) for different sampling periods ∆t. Orange triangles represent the D-optimality confirmed using 200

simulated data sets for each potential sampling period. Optimal sampling periods are given by black circles.

(b) Comparison of the FSP-FIM at the the reference parameter set (x-axis) and the observed information (y-

axis) for various sampling periods using the FSP-FIM (blue circles), LNA-FIM (purple squares), and SM-

FIM (green crosses). Kinetic parameters are kon = 0.05 min−1, koff = 0.15 min−1, kr = 5 molecules/min,

and γ = 0.05 min−1.

of the toggle model, which consists of two mutually repressing proteins, x ≡ LacI and y ≡ λcI,

where the production of each species depends non-linearly on the concentration of its competitor.

The reactions in the toggle model can be written

R1 : ∅ w1−→ x; R2 : x
w2−→ ∅; (6.35)

R3 : ∅ w3−→ y; R4 : y
w4−→; ∅ (6.36)

where

w1 = bx +
kx

1 + αyxyηyx
; w2 = γxx; (6.37)

w3 = by +
ky

1 + αxyxηxy
; w4 = γy(UV)y. (6.38)

In this formulation, we have assumed that the degradation of λcI is controlled by an ultraviolet

(UV) radiation through the light-induced circuit described by Kobayashi et al [114]. Similar to
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Figure 6.7: Validation of a toggle model. (a) Model schematic of the two genes, lacI and λcI, which are

mutually repressing [48]. Degradation of λcI is controlled by UV radiation. (b) Verification of the FSP-FIM

(black ellipse) for 200 MLE estimates of 1,000 cells each (black dots) for two free model parameters, αxy

and by.

[30], we assume that the UV level affects the degradation of λcI according to the function:

γy(UV) = 3.8× 10−4 +
0.002UV2

1250 + UV3 , (6.39)

where the minimum degradation rate has been chosen to match dilution due to the E. coli half life

of 30 min [30]. The remaining parameters used for this example are given by θ∗ in Table 6.1. The

system’s initial condition at t = 0 is assumed to be the equilibrium distribution when no UV is

applied. For this biological system and these parameters, different levels of UV radiation will give

rise to different dynamics. At low levels of radiation, switching to the high LacI state is rare, and

the distribution tends to have a single peak. At intermediate levels of radiation, switching between

low and high levels of LacI expression is possible, and LacI distributions may be bimodal. Finally,

at high levels of radiation, the system very quickly switches into the high LacI state.

Because this model has complex nonlinear propensity functions, the statistical moments cannot

be calculated in closed form, and the LNA-FIM and SM-FIM estimates are no longer expected to

provide accurate estimates for information or optimal experiment designs. In contrast, the FSP

analysis remains unchanged, and the FSP-FIM can be computed exactly as above. As before, we
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Figure 6.8: Experiment design for the nonlinear genetic toggle model. (a) Degradation rate of λcI is con-

trolled by UV as shown in Fig. 6.7(a). The magnitude and duration (β) of UV exposure are free experiment

design parameters, along with the time between measurements ∆t. (b) E-optimality (the smallest eigen-

value of the FIM) versus the 3-dimensional experiment design space, where the FIM is computed using

(b) the reference parameter set, (c) by averaging the E-optimality over 100 unique parameter sets and (d)

using the “true" parameter values. The black circle is the optimal design chosen according to (c). The black

triangle denotes a nearby, but less informative, experiment. (e) For the experiments corresponding to the

black circle and triangle in (b-d), E-optimality values are shown for each sampled parameter set.
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verify the FSP-FIM for this nonlinear case using a set of 200 simulated data sets measured at 1 hr,

4 hr, and 8 hr, each with 1,000 cells, and we found MLE parameter estimates θ̂ for each simulated

data set. Figure 6.8(a) shows this verification in a simple case with two free parameters, by and

αxy, and Fig. 6.9 shows the verification where all parameters free except for Hill coefficients ηxy

and ηyx. In this and all subsequent analysis of the toggle model, we have used the logarithmic

parameterization of the FIM (Eq. 6.10).

Next, we aim to design more complex experiments for the toggle model described above. We

consider an experiment design space where the measurement sampling period (∆t), pulse duration

(β), and pulse magnitude (UV) can all be changed, as illustrated in Fig. 6.8(a). Each pulse of UV

starts at t = 1 hr. We then compute the FSP-FIM for each experiment {UV, β,∆t}.

To capture the more realistic situation where parameters are unknown prior to experimentation,

we next explore how parameter uncertainty affects the estimation of the FIM and the design of

optimal experiments. To begin, we assume that parameters have been partially estimated from a

simple initial experiment corresponding to measurements of the unperturbed steady state at zero

UV input to the system. In practice, similar preliminary parameter estimates could be acquired

from literature, from previous less-optimized experiments, or by comparison to related pathways

or organisms. For our analysis, the prior estimate for parameters is described by a multivariate

lognormal distribution with a geometric mean of θ̂0 given in Table 6.1. Parameters sampled from

this distribution are substantially different from the “true” parameter, θ∗, which is also shown in

Table 6.1. Figure 6.8(b) shows the E-optimality criteria for parameter set θ̂0 as a function of the

experiment design parameters {UV, β,∆t}. Next, we sampled 100 random sets of parameters

from the prior distribution (Fig. 6.10), and we computed the E-optimality for each set. Figure

6.8(c) presents expected information versus experiment design averaged over these 100 parameter

sets. For comparison, Fig. 6.8(d) shows the information versus experiment designs if one had exact

knowledge of the true parameters.

From Figs. 6.8(b-d), we observe that relative estimates of the FIM remain consistent despite

substantial changes to the parameters from which the FIM is computed. To explore this observa-
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θ∗ θ̂0 units

by 6.80× 10−5 9.86× 10−4 s−1

bx 2.20× 10−3 3.19× 10−3 s−1

ky 1.60× 10−2 1.60× 10−2 s−1

kx 1.70× 10−2 2.50× 10−2 s−1

αxy 6.10× 10−3 8.28× 10−3 N−ηxy

αyx 2.60× 10−3 2.46× 10−3 N−ηxy

ηxy 2.10 2.10 -

ηyx 3.00 3.00 -

γx 3.80× 10−4 5.57× 10−4 N−1s−1

Table 6.1: Parameters for the toggle model. θ∗ is the “true" parameter set from which data is generated,

and θ̂0 is the MLE parameter set fit to a baseline data set generated assuming 0 UV (see Fig. 6.10 for further

discussion). Here, N is used to denote the units of single-molecules.

Single experiment Dual greedy Dual simultaneous






β
∆

UV













2 hr

3 hr

9 J/m2













4 hr

5.5 hr

14 J/m2













1 hr

2.5 hr

9 J/m2







,







4 hr

2.5 hr

13 J/m2







E-opt 14.9 32.0 36.8

Table 6.2: Comparing sequential experiment design approaches.

tion more closely, we selected the experiment that maximizes the averaged E-optimality in Fig.

6.8(c). This experiment is denoted by a black circle in Figs. 6.8(b-d), and we compare it to an-

other similar experiment design, shown by the black triangle in Fig. 6.8(b-d). Figure 6.4.3 shows

the expected parameter uncertainty for these two designs and shows that the optimal experiment

reduces variance in some parameter directions by more than an order of magnitude compared to

the sub-optimal experiment. To explore how different parameters change the ranking of these two

experiments, we analyze the ranking of Experiment A and Experiment B not only based on their

average E-optimality value as in Fig. 6.8(c), but at each of 100 random parameter combinations.

Figure 6.8(e) shows that for 97 of the 100 parameter samples, the relative ranking of the experi-

ments is consistent, even though the absolute value of the E-optimality criteria varies over several

orders of magnitude.

The analysis shown in Fig. 6.8 assumes a fixed initial distribution at t = 0, which was specified

by the steady state distribution under the true parameters in the absence of UV radiation. Under this
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Figure 6.9: Verification of the FSP-FIM for the seven free parameters for the toggle model. Each black

circle corresponds to the logarithm of an MLE estimate, log θ̂ for 100 different simulated data sets. The

gold circle corresponds to the reference parameter set, log θ∗. The 95% ellipse corresponding to the log-

FSP-FIM is shown in black. The tilde corresponds to the log of each parameter, i.e. b̃x = log bx.

assumption, the initial sensitivity matrix S(0) in Eq. 6.24 was set to zero. Figure 6.12 extends the

analysis to compute the initial sensitivity Sθi(0) = ∂p/∂θi at steady state, which slightly increases

the estimate of information for the early time points, but has relatively little effect on the choice of

optimal experiment design.
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Figure 6.10: Parameters were sampled 100 times from a log-normal distribution evaluated about the ref-

erence parameter set θ̂0, shown in black. The covariance of this distribution was chosen according to the

inverse of the FIM evaluated for an experiment with 0 UV, t = [1, 4, 8] hr, and 100 measurements at each

time point. For reference, the gold parameters are the ‘true’ parameters for the model. The tilde corresponds

to the log of each parameter, i.e. b̃x = log bx.
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to lower parameter uncertainty. (b) The effect of Experiment A and B on standard deviations of log θi.

We next seek to understand how optimal experiments depend on one’s plans to perform mul-

tiple experiments. The “single experiment” in Table 6.2 refers to designing a single experiment,

E1, to maximize the expected FIM design criteria, such as finding the maximal combination in

Fig. 6.8(c). The “dual greedy" approach also chooses the same E1 and then seeks to find the most

complementary additional experiment, E2, to maximize the overall FIM design criteria. Finally,

the “dual simultaneous” search finds the optimal combination of any two possible experiments, Ê1
and Ê2 to maximize the design criteria. Since the optimal choice for Ê1 and Ê2 can admit the other

choices, it must yield at least as high a design criteria as E1 and E2. By comparing the three design

strategies for the current toggle model, we find indeed that the simultaneous approach discovers

a substantially more informative experiment than does the greedy approach. In other words, the

overall expected value of an experiment, can depend not only on the current parameter values, but

also upon which other experiments one intends to conduct. If one has plans to do multiple experi-

ments, it may be better to consider the potential information from all experiments as a whole rather

than to design each experiment one at a time.
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Figure 6.12: Toggle model experiment design with non-zero initial sensitivities (a) Degradation rate of

λcI is controlled by UV as shown in Fig. 7(a). The magnitude and duration (β) of UV exposure are free

experiment design parameters, along with the time between measurements ∆t. (b) E-optimality (the smallest

eigenvalue of the FIM) versus the 3-dimensional experiment design space, where the FIM is computed using

(b) the reference parameter set, (c) by averaging the E-optimality over 100 unique parameter sets and (d)

using the “true" parameter values. The black circle is the optimal design chosen according to (c). The black

triangle denotes a nearby, but less informative, experiment. (e) For the experiments corresponding to the

black circle and triangle in (b-d), E-optimality values are shown for each sampled parameter set.
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6.5 Discussion

Fluctuations in biological systems complicate modeling by introducing substantial variability

in gene expression among individual cells within a homogeneous population. This variability

contains valuable and quantifiable insights [98], but data with multiple peaks and long tails, such

as those collected using smFISH, are often poorly described by modeling approaches that only

make use of low-order moments of such distributions [20]. The FSP approach [27] has previously

been used to identify and predict gene expression dynamics for complex and rich single-molecule,

single-cell data [11, 111, 112]. In this work, we have developed the FSP-based Fisher information

matrix, which extends the FSP analysis to allow rigorous design of experiments that are optimally

informative about the model’s parameters.

The FSP-FIM uses a novel sensitivity analysis, which requires solving a system of ODEs that

is twice the size of the FSP dimension for each parameter, and therefore should be computationally

tractable for any problem to which the FSP can be applied. The local sensitivity of each parameter

is independent of the other parameters, so the computation is easily parallelized among multiple

processors. We verified that the FSP-FIM approach matches the information for the constitutive

gene expression model, whose response follows a Poisson distribution (Fig. 6.1), and for which

the FIM can be computed exactly. The FSP-FIM also matches to classical FIM approaches that

assume normally distributed data (LNA-FIM) or very large data sets (SM-FIM) in the limiting

case when the data distributions are close to being Gaussian (Figs. 6.1-6.4). For systems where

data is not Gaussian and for which there is no exact FIM formula, we showed that the FSP-FIM

is more accurate than traditional approaches (Figs. 6.4, 6.5), which we validated by generating

many independent data sets and comparing the inverse of the FSP-FIM to the variance in the MLE

estimates (Figs. 6.3 and 6.7).

We showed that the choice of FIM analysis can lead to different optimal experiment designs

(Fig. 6.5). For example, Fig. 6.5 shows that the LNA-FIM can substantially overestimate the infor-

mation of certain experiments compared to the full, correct information obtain using the FSP-FIM,

which could mislead researchers to choose experiment designs that are much worse than they ex-
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pect. In practice, overestimation of the Fisher information can have the further deleterious effect

of overconfidence in poor parameter estimates, which can result in model bias and poor predic-

tions as we observed recently in [20]. Furthermore, the LNA-FIM is not self-consistent, and often

overestimates the information even compared to the ellipse found from sampling the MLE with

the Gaussian likelihood function. On the other hand, we found that the SM-FIM under-estimated

the information for the bursting gene model, but the amount of underestimation varied substan-

tially with experimental conditions, which could cause researchers to reject otherwise informative

experiments. In contrast to these moment-based approaches, the MLE sampling using the FSP

approach always provided the best parameter estimates (Figs. 3 and S3), and the FSP-FIM was

always consistent with the confidence intervals verified by sampling (Figs. 1 6.1, 6.3, 6.5), even

for the case of nonlinear reaction propensities for which exact moments cannot be found (Figs.

6.7(a), and 6.9).

In our analysis of the non-linear toggle model, we allowed for the independent control of three

experimental variables (Fig. 6.8a), and found experiments that optimize particular criteria of the

FIM. Furthermore, we showed that other experiments very near to the optimal experiment in the

design space can be significantly less informative than the optimal experiment (Figs. 6.8(b-e) and

6.4.3. Choosing between such similar experiment designs is non-trivial and would be difficult or

impossible using intuition alone. On the other hand, we explored the effects of parameter uncer-

tainty on FSP-FIM-based experiment design, and we found that parameter rankings are relatively

robust to parameter uncertainty, even when the absolute value of the FSP-FIM is sensitive (Fig.

6.8).

We found that that the choice of optimal experiments depends on the number of experiments

to be completed (Table 6.2). For example, the optimal set of two experiments may not contain the

optimal single experiment. Sometimes, the FIM for a given experiment may be singular or nearly

singular, indicating that the model under investigation is unidentifiable for the current parameteri-

zation and experiment design. In such a case, the FIM-eigenvectors corresponding to the near-zero

eigenvalues indicate specific linear combinations of parameters that are poorly constrained (e.g.,
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‘sloppy’ directions [21]). If a second complementary experiment can shift the orientation of these

sloppy vectors, then those parameters may yet be uncovered through combinations of multiple

experiments. Alternatively, if a given combination of parameters remains unidentifiable for all

admissible experiments, then these irrevocably sloppy directions may be used to reformulate the

model into one that has a reduced set of fully identifiable parameters. We note that as one conducts

new experiments and collects new data, parameter posteriors will need to be updated. As this oc-

curs, optimal experiments may also need to be adjusted (e.g., through application of a Bayesian

experiment design framework [115]), and future developments are needed to incorporate FSP-FIM

computations within such iterative frameworks.

Our results show that the FSP-FIM performs better than previous approaches for gene regula-

tion models with low molecule counts or nonlinear reaction rates. Previous studies have demon-

strated many realistic systems for which such FSP can be used to identify and predict stochastic

dynamics in numerous biological systems [11,16,20,42,111,112,116–118]. Each of these studies

has used different experimental input signals, such as temporal salinity profiles [11, 20], tempera-

ture [112], or chemical induction [42, 111]. Modern optogenetic experiments promise to allow for

even more robust and flexible control of input signals to control cellular behavior [90, 119, 120].

For such studies, the FSP-FIM could now be used to optimize these signals to achieve maximally

informative experiments.

Like any other tool, the FSP-FIM also has its associated challenges. Our initial investigations

focused on intrinsic stochastic fluctuations of small biochemical processes, and we used simulated

data to verify our new computational tools. For models with large molecular counts of four or more

species or with the addition of mechanisms to account for extrinsic variability, existing methods

to solve the FSP-FIM will remain intractable until more efficient probability density based CME

analyses can be developed to address such problems [82, 121–124]. Until higher dimension CME

approaches are developed, approximate moment-based experiment design methods, such as the

SM-FIM and LNA-FIM, may remain the only available options to design experiments for large

biochemical pathways. We also note that real experiments come with additional sources of noise,
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such as the errors or uncertainties associated with experimental measurements. For example, in

smFISH data analysis, image processing settings give rise to variability in final RNA counts due to

density dependent co-localization of RNA molecules. This measurement uncertainty may have a

non-negligible effect on parameter inference, and future controlled experiments are needed to elu-

cidate the degree to which such effects depend on optical imaging settings. Fortunately, such vari-

abilities are easily incorporated within the framework of the FSP analysis. For example, previous

work has used a simple linear transformation to adapt FSP analyses to include the effects of noisy

GFP fluorescence emission and background autofluorescence when comparing integer-valued bio-

chemical models to flow cytometry data in arbitrary continuous units of fluorescence [42]. Once

adapted to take these transformations into account, the FSP-FIM could be used to design experi-

ments to minimize the effects of measurement noise.

New experimental capabilities are creating an enormous potential to probe single-cell biolog-

ical responses. These capabilities are making it ever more difficult to choose what species in the

system to measure, whether to measure joint distributions (i.e. measure the RNA counts from mul-

tiple genes in the same cells) or marginal distributions (only measure RNA counts from a single

gene at a time), or in what condition. Furthermore, different experiments have different costs,

and the experimentalists must not only optimize their information about model parameters, but

also consider the trade-off between collecting more data and the cost of a given experiment. By

providing a new computational tool to iteratively improve models and design experiments for an

important class of biological problems, the FSP-FIM will help to improve quantitative predictive

modeling of gene expression.
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Chapter 7

Optimal Allocation of Single-Cell Measurements for

the HOG-MAPK Pathway in S. Cerevisae

7.1 Introduction

The HOG pathway is a pathway commonly studied to understand nuclear localization in re-

sponse to phosphorylation. We have previously used stochastic models of kinase activated tran-

scription to predict adaptive responses across entire cell populations in yeast [11,20,43]. However,

this effort took hours of significant computational effort on both the image processing of smFISH

measurements and fitting of experimental data. In this work, we use the newly developed FSP-FIM

(Chapter 6 to show how we could have used this model to optimize the design of experiments to

use less measurements to infer the model.

Downstream activation of stress response genes such as STL1 and CTT1 depend on nuclear

localization dynamics of MAPK, a kinase which is phosporylated in response to salt stress and

localizes to the nucleus. Depending on the concentration and rate of application of this stress,

the nuclear localization dynamics of MAPK can be different (shown in Fig. 7.1b). While the first

study optimizes the experiments to minimize the uncertainty in model parameters, in this study we

find the optimal smFISH measurement times and cell numbers to minimize uncertainty about the

amount of salt in the environment, and verify this method.

7.2 Background

7.2.1 Finite State Projection models of osmotic stress response in yeast.

Gene expression and regulation is a complicated process in which transcription factors, chro-

matin modifiers, and more interact with DNA, RNA, protein the cellular environment to carry out

different functions. For example, stress response genes are activated in bacteria in response to
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Figure 7.1: Stochastic modeling of osmotic stress response genes in yeast. (a) Four state model of gene

expression, where each state creates mRNA with a different transcription rate. These mRNA degrade with

rate γ. (b) The effect of measured MAPK nuclear localization (left) on the the rate of switching from S2 to

S1 (right) under both 0.2M and 0.4M osmotic stress. (c) Time evolution of the STL1 RNA in response to

the 0.2M and 0.4M salt stress.

heat shock [112]. Furthermore, stress response genes often behave stochastically across isogenic

cell populations, and therefore models of such cellular responses must capture stochastic behavior.

The chemical master equation framework of stochastic chemical kinetics has been the workhorse

of stochastic modeling of gene expression, whether through simulated sample paths of its solution

via the stochastic simulation algorithm [33], moment approximations [12], or finite state projec-

tions [27]. Recently, it has come to light that for some systems it is extremely important to consider

the full distribution of biomolecules when fitting CME-based models [20,125]. For signal activated

transcription in the HOG-MAPK stress response pathway in yeast, an FSP model has been used to

fit and predict mRNA distributions at a variety of salt concentrations [11, 20].
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This model of osmotic stress response consists of transitions between four different gene states,

shown in Fig. 7.1(a). The probability of a transition from the ith to the jth gene state occuring in

the infinitesimal time dt is given by kijdt. Each state also has a corresponding transcription rate of

mRNA, kri, and the mRNA degrade with rate γ. Further descriptions and validations of this model

are given in the supporting information and in [11,20,43]. To accurately fit and predict RNA levels

across cell populations, the authors in [11] cross-validated across a number of different potential

models with different numbers of gene states and time varying parameters. The most predictive

of these was the model shown in Fig. 7.1(a),in which the transition rate from the second gene

activation state to the first gene activation state is a function of nuclear MAPK levels, f(t). The

nuclear localization of MAPK affects this transition with a threshold function,

k21(t) = max[0, α− βf(t)]. (7.1)

Figure 7.1(b) shows the nuclear localization dynamics of MAPK (i.e. f(t)) at 0.2M and 0.4M, with

simulated nuclear localization dynamics fit to a model (from [20]), and Fig. 7.1(c) shows the value

of k21(t) for each salinity level. This rate results in a time-vary generator for the master equation

dynamics.

The generator matrix for the FSP system can be written as a sum of multiplied by corresponding

parameters,

A(t) =
K
∑

i=1

θi(t)Ai. (7.2)

The different Ai are matrices of 1’s and -1’s. The dynamics of the CME are then given by dp
dt

=

A(t)p.
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7.2.2 Finite State Projection based Fisher Information for signal-activated

stochastic gene expression.

The Fisher information matrix (FIM), is a common tool in engineering and statistics to find

estimates of parameter uncertainties prior to collecting data, which allows one to find the exper-

imental settings which make these predicted uncertainties as small as possible. Recently, it has

been applied to biological systems to estimate kinetic rate parameters in stochastic gene expres-

sion systems [14, 38, 39, 41, 125]. In general, the FIM for a single measurement is defined

I(θ) = E

{

(∇θ log p(x;θ))
T (∇θ log p(x;θ))

}

. (7.3)

As the number of measurements Nc is increased such that maximum likelihood estimates (MLE)

of parameters are unbiased, the distribution of MLE estimates is known to be normally distributed

with a variance given by the inverse of the Fisher information matrix, i.e.

√

Nc(θ̂ − θ∗) dist−−→ N (0, I(θ∗)−1). (7.4)

In chapter 6, we developed the FSP-based Fisher information matrix (FSP-FIM), which allows

one to use the FSP solution p(x, t) and the piecewise-sensitivity matrix S to find the Fisher in-

formation matrix for stochastic gene expression systems. The dynamics of the sensitivity of each

state in the process to the ith kinetic parameter dp
dθi

is given by

d

dt







p

si






=







A 0

Ai A













p

si






, (7.5)

where Ai =
∂A
∂θi

, and for linear models is the same as the Ai given in Eq. 7.2 [125]. The FSP-FIM

at a single time point is given by

F(θ, t)i,j =
N
∑

l=1

1

p(xl; t,θ)
sil(t)s

j
l (t). (7.6)
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The FIM for a sequence of measurements taken independently (i.e. for smFISH data) at times

t = [t1, t2, . . . , tNt
] is then

I(θ, t, c) =
Nt
∑

k=1

ckF(θ, t = tk). (7.7)

where c = [c1, c2, . . . , cNt
] is the number of cells measured at each of the measurement times.

For smFISH experiments, the vector c plays an important role in the design of the study, as it

corresponds to the time points to be measured (i.e. which times are optimal to fix the cells), and

how many cells to count the RNA in at those selected times. The next section aims to find the

optimal c for STL1 mRNA in yeast cells.

7.3 Results

7.3.1 Verification of the FSP-FIM for time-varying stochastic gene expres-

sion

Our work in Chapter 6 was limited to models of stochastic gene expression that had constant

A. Here, we extend this to time-varying A to the adaptive stress response gene STL1 in yeast

with a time varying signal given in Eq. 7.1. For this analysis, we considered a subset of all model

parameters, shown in Fig. 7.1(a). Model parameters simultaneously fit to experimentally measured

0.2M and 0.4M STL1 mRNA from [20] were used as a reference set of parameters (yellow dots

in Fig. 7.2), θ∗. These reference parameters were used to generate 50 unique simulated data sets.

The parameters that maximized the likelihood for each simulated data set were then found as a set

of θ̂, shown as gray dots in Fig. 7.2. Using the asymptotic normality of the maximum likelihood

estimator and its relationship to the FIM (Eq. 7.4), we then compared the 95% CIs of inverse

of the Fisher information to those of the MLE estimates, shown by the blue and green ellipses

in Fig. 7.2(a). We also compared the eigenvalues of the inverse of the Fisher information to the

eigenvalues of the covariance matrix of MLE estimates in Fig. 7.2(b). With the FSP-FIM verified

97



-5.5 -5

0

2

4

-5.5 -5

-5.2

-5

-4.8

-5.2 -5 -4.8

0

2

4

-5.5 -5

-3.8

-3.6

-3.4

-5.2 -5

-3.8

-3.6

-3.4

-4 -3.5

0

2

4

6

-5.5 -5

-5

-4.5

-4

-5.2 -5

-5

-4.5

-4

-3.8 -3.6 -3.4

-5

-4.5

-4

-5 -4.5 -4

0

1

2

-5.5 -5

-5

-4.9

-4.8

-5.2 -5

-5

-4.9

-4.8

-3.8 -3.6 -3.4

-5

-4.9

-4.8

-5 -4.5 -4

-5

-4.9

-4.8

-5 -4.9 -4.8

0

5

10

a) b)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

E
ig

e
n

v
a
lu

e
s
 o

f 
F

IM
-1

  v
1                

v
2                  

v
3                

v
4                  

v
5

FIM 

MLE Verification (simulated)

Figure 7.2: Verification of the FSP-FIM for the time-varying HOG-MAPK model.(a) Scatter plots and

density plots of the spread of MLE estimates for 50 simulated data sets for a subset of model parameters.

The ellipses show the 95% CI for the inverse of teh FIM (blue) and covariance of scatter plot (green). The

yellow dot indicates the parameters at which the FIM and simulated data sets were generated. (b) Ranked

eigenvlaues for the covariance of MLE estimates (green) and inverse of the FIM (blue).
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for the Hog-MAPK model, we next explore how the FIM can be used to optimally allocate the

number of cells to measure at different times after osmotic shock.

7.3.2 Designing optimal measurements for the HOG-MAPK pathway to de-

sign smFISH experiments in S. cerevisae

To test the FSP-FIM in the realistic context of time-varying gene expression, we consider a

simulated course of smFISH data for osmotic stress response of yeast in yeast. We start with

a single experimental replicate of smFISH data at 0.2 M NaCl concentration, with a known set

of underlying model parameters, which were taken from simultaneous fits to 0.2M and 0.4M

data in [20]. Parameters for the single simulated data set were found by maximizing the like-

lihood 3.1 using iterative genetic algorithms and simplex-based searches [20]. These baseline

parameters were then used to optimize the allocation of measurements at different time points

t = [1, 2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55] minutes after NaCl induction. To show the

practical application of these approaches, we first designed experiments to maximize the informa-

tion about a subset of the model parameters, sometimes referred to as Ds-optimality. This metric

corresponds to maximizing the product of the eigenvalues of the FIM.

The number of cells to be measured at a discrete set of time points for the system can be

optimized using a greedy approach, in which measurements are added one at a time according to

the time point that increases the metric of interest the most. Mathematically, our goal is to find

max
c

|I(c;θ)|Ds
such that

Nt
∑

i=1

ci = 1 (7.8)

where c is a vector of length Nt where each entry corresponds to the fraction of total measurements

to be allocated at t = ti, and |I(c;θ)|Ds
refers to the product of the eigenvalues FIM. To illustrate

this approach, we first allocated cell measurements according to Ds-optimality. The fraction of

cells that is optimal for a 0.2M NaCl input compared to the experimentally measured number of

cells is shown in Fig. 7.3. While each available time point was allocated a non-zero fraction of
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Figure 7.3: Optimizing the allocation of cell measurements at different time points. (a) Comparison of

optimal fractions cells to measure (blue) at different time points compared to experimentally measured

numbers of cells (red). (b) Model fits (blue) to experimental data (black) at a subset of time points. The blue

boxes denote the time points of optimal measurements.

measurements, two time points at t = 10 min and t = 25 min were vastly more informative than

the other available time points. To verify this result, we simulated 50 data sets of 1,000 cells

each and found the MLE estimates for each sub-sampled data set. We compared the spread of

these MLE estimates to the inverse of the optimized FIM, shown in Fig. 7.2. The increase in

information of the optimal 0.2M experiment is compared to the baseline, ‘intuitive’ experiment

is shown in Fig. 7.4(a). The optimal experiment only requires measurement of 2 time points

compared to the full experiment, in which 16 time points were measured. We next compare the

intuitive experiment design to a random experiment design, in which measurements are randomly

distributed among different time points, and compare the Ds-optimality. Fig. 7.4(b) shows that the

intuitive experiment is more informative than a random experiment, but is still significantly less

informative than the optimal experiment.

7.3.3 Designing optimal biosensor experiments

Thus far, we have considered a set of experiments to find the optimal experiment regarding

the information about model parameters. We next use the model to design an optimal series of

smFISH measurements to sense the cellular environment. In the HOG-MAPK transcription model,

we model the way that extracellular osmolarity ultimately affects stress response gene transcription
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Figure 7.4: Information gained by performing optimal experiments compared to actual experiments (a)

Ds-optimality for the optimal design using only two time points compared to the measured number of cells

using all 16 time points. (b) Comparing the information of the optimal experiment design (blue), intuitive

experiment design (purple), and random experiment designs (black).

levels through the time-varying parameter k21(t) in Eq. 7.1. Figure 7.1b shows the effect 0.2M and

0.4M salt concentrations on k21 activation. Higher salt concentrations delay the time at which

k21(t) becomes nonzero. Using this fact, we approximate the function k21(t) as the sum of three

Heaviside step functions,

k21(t) = u(t)− u(t− t1) + u(t− t2), (7.9)

where t1 is a fixed delay of the time it takes for nuclear kinase levels to reach a particular threshold,

and t2 is the time they drop below that threshold. Our goal in this section is to find an experiment

which reduces the uncertainty in t2 for a range of values of t2, shown in Fig. 7.5(a). We are

assuming that t2 is related to the salt concentration experienced by the cell, as shown in Fig.

7.1b and 7.5(b) in which 0.2M salt inputs have a lower t2 than 0.4M salt inputs. To estimate the

uncertainty in t2 given our model, we find the sensitivity of the distribution of mRNA abundance

to the variable t2. This FSP-sensitivity requires finding st2 = ∂A
∂t2

. As k21(t) is the only part of A
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Figure 7.5: Overview of optimal design for biosensing experiments in the osmotic stress response in yeast.

(a) Unknown salt concentrations in the environment give rise to different reactivation times, t2. These

different reactivation times cause downstream STL1 expression dynamics to behave differently as shown in

panel (b). These different responses can be used to resolve experiments that reduce the uncertainty in t2.

that depends explicitly on t2, we only need

∂k21(t)

∂t2
= δ(t2), (7.10)

and therefore st2 = ∂A
∂t2

is only non-zero at t = t2. The time evolution sensitivity of the system to

t2 is then

d

dt







p

st2






=







A 0

0 A













p

st2






with s(0) = st2p(t2), (7.11)

and time is integrated from t2 to the final time of interest. This suggests that the time evolution

of the sensitivities only really depends on probability vector p(x, t = t2) and the generator matrix

A, i.e.
dst2
dt

= Ast2 . If the Fisher information at each measurement time is written into a vector

f = [f1, f2, . . . , fNt
] and the number of measurements is the vector of equal measurements, c =

[c1, c2, . . . , cNt
], the information for a given t2 value is the sum-product of these two vectors,
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I(t2) =
Nt
∑

k=1

ckfk = cT f . (7.12)

Because our goal is to find an experiment that is optimal given a range of possible t2’s (which

we have assumed is linearly related to the salt concentration in the environment), the time until

reactivation is treated as a uniform random variable over the range of reasonable activation times,

T ∼ unif(tmin
2 , tmax

2 ), where tmin
2 and tmax

2 correspond to the minimum and maximum t2 values we

consider. To find the experiment that reduces our uncertainty in t2, we integrate the FIM in Eq.

7.12 over the uncertainty in T ,

copt = min
c

∫ tmax
2

tmin
2

p(t)I−1(c; t2 = t,θ)dt (7.13)

= min
c

∫ tmax
2

tmin
2

I−1(c; t2 = t,θ)dt, (7.14)

because we have assumed that p(t) is uniform. The objective function of our minimization is the

integral

J =

∫ tmax
2

tmin
2

I−1(c; t2 = t,θ)dt, (7.15)

which corresponds to the uncertainty about the value of t2 for a given c. We then used the same

greedy approach described in Section 7.3.2 to find the optimal c. To verify this approach, we

sampled a random value of t2, which we call ttrue2 . For this value of t2, we then simulate 100

random data sets of according to each of the five experiment designs in Fig. 7.6. For each of the

random data sets, we asked which FSP solution for the range of t2 values was most likely using

Eq. 3.1, which we call t̂∗2, and made a table [ttrue2 t̂∗2]. The error in the estimation is then the MSE

of the columns of this table, as shown in purple in Fig. 7.6. The optimal design and the simplified

design perform much better than a uniform design or random experiment designs. The simplified

design refers to a design which uses the same time points as the optimal design, but with equal

numbers of measurements at each time.
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7.4 Discussion

The methods developed in this work presents a principled, model-driven approach to allocating

single-cell measurements in a time-varying stochastic system. We demonstrate these theories on

a well-established model the osmotic stress response in yeast cells, and particularly for the STL1

gene, which is activated upon the nuclear localization of phosporylated MAPK [11, 20]. For this

system, we showed how to optimally allocate the number of cells measured at different times to

maximize the information about a subset of model parameters. We then compared these optimal

designs to the actual experiments performed and randomly generated experiments shown in Fig.

7.4b. We found that while the experiments performed were much better than you would expect

by random chance, they still had lower Fisher information than the optimal experiment. Similarly,

the optimal experiment design consisted of measuring only two time points in the process many

times, compared to a more intuitive design of relatively uniform measurements, as shown in Fig.

7.4a. This suggests that the optimal design not only found an experiment that increases the Fisher

information, but also is experimentally ‘cheaper’ than an intuitive design.

We then used Fisher information to design experiments to learn about the cellular environ-

ments. Using the same osmotic shock response model, we found the optimal experiment to reduce

the uncertainty about the adaptation time, given a range of possible adaptation times. We then

compared this experiment design to other experiment designs, including an intuitive design, where

all time points are treated equally, and two other random experiments in Fig. 7.6. This method

of using design experiments to use cells as biosensors in stress environments could be extremely

useful in a biomedical contexts, where the time and amount of sample can be hugely important.

This work also provides another example of model-driven experiment design.

105



Chapter 8

Using Fluctuations to Expand the Color Palette of

Single-Molecule Microscopy 4

8.1 Introduction

Recent technology developments allow the quantification of single-RNA and proteins in live

cells. The MS2 system [126–129] encodes stem loop structures into a gene of interest, which

are subsequently bound by fluorescently tagged MS2 coat proteins upon transcription of RNA.

This approach allows one to see single RNAs as they are transcribed and transported within the

cell [130].

In the same spirit, recent works have developed the technology to visualize single polysomes

[23–25]. For this method, the gene is modified to produce proteins that bind antibody-like probes.

This technology has been combined with the MS2 system to visualize the entire central dogma of

molecular biology at single-molecule resolution. However, these new technologies have created

a need for more advanced computational approaches to help design future studies. For example,

where in the gene of interest should one add MS2 sequence or FLAG sequence to answer a partic-

ular biological question?

One limitation of antibody-like based live-cell protein measurements is the relatively small

numbers of colors available to make the measurements [23–25], which fundamentally limits the

number of genes that can be measured in a single cell, and therefore limits the scope of questions

that can be addressed with this technique. However, different genes have different sequences,

codon dependencies and lengths, all of which give rise to different fluctuations in the single-

polysome intensity traces measured with the nascent polypeptide chain tracking described above.

4This chapter first summarizes the modeling approach developed by a collaboration of the Munsky Group (compu-

tational) and Stasevich Group (experimental), primarily led by Luis Aguilera on the computational side. This chapter

extends that analysis to multiplex the number of genes that can be measured in single cells.
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The characteristics of these fluctuations, such as their autocorrelation times, mean intensisty levels,

and variance intensity levels can be used to discriminate between proteins without using different

fluorophore. These statistics can be used for multiplexing, i.e. discriminating between multiple

genes without using different colors of molecules. Such multiplexing could expand the number

of proteins that can be imaged in different cells. In this work, we develop a stochastic model of

translation, describe the statistics of this process, and develop a novel computational pipeline that

accurately classifies experimental trajectories that have been trained on simulated trajectories.

8.1.1 Stochastic Model of Translation Dynamics

Single-molecule translation is stochastic process in which ribosomes bind with messenger

mRNA, and polymerize polypeptides one amino acid at a time. Each amino acid addition, or

elongation event, of the protein can be modeled as a stochastic event which occurs with proba-

bility wi(xi)dt in the infinitesimal time interval dt. Ribosomes bind the mRNA with probability

kinitdt, and dissociate with probabilty wtxndt. Elongation of multiple nascent proteins along a

single mRNA molecule may be modeled as a discrete, stochastic process in which ribosomes bind,

elongate polypeptide chains, and terminate. By enumerating the position of each codon along the

mRNA xi, the process can be written as a series of chemical reactions

∅
kinit(1−x1)−−−−−−→ x1

wi(x2,...,xnf+1)−−−−−−−−−→ x2

wi+1(xi+1,...,xnf+1)−−−−−−−−−−−→ xi . . .
wt−→ ∅. (8.1)

This general formulation of the model allows for several important biological features of elonga-

tion, such as the effects of “ribosome exclusion", in which a ribosome may not advance to the

i + 1th position if there is another ribosome in the i + nf codons in front of it. This causes the

propensities of each step to be non-linear functions,
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w0 = ki

nf
∏

j=1

(1− xj), (8.2)

wi = ke(i) · xi

nf
∏

j=1

(1− xi+j), for i = 1, ..., N − 1;. (8.3)

Furthermore, one can incorporate codon-specific elongation rates for each step of the process,

where the propensity coefficient ke(i) depends on the relative abundance of that particular codon

in the human genome,

ke(i) = k̄e · (u(i)/ū). (8.4)

Finally, the termination of elongation can be found using a single rate,

wt = kt · xN . (8.5)

This set of biochemical reactions can be used to track the positions of individual ribosomes as

they move along the RNA, creating the polypeptide. At a given time t, this approach describes

the binary occupancy of each codon position along the mRNA. The vector x(t) is a vector of 1’s

and 0’s of length N . However, single polysome measurements do not resolve single ribosomes, so

to compare the vector x(t) is not an observable quantity. Instead, diffraction limited fluorescent

spots are quantified. To compare simulations to such single molecule data, the vector of ribosome

positions x(t) needs to be mapped to fluoresence intensities I(t). Every time a ribosome passes the

epitope region of a gene, FLAG-tags bind to amino acids, and increases the fluorescence intensity

of the polysome. The locations of epitope regions can then be used to map ribosome positions to

fluoresence intensities using a probe design vector c of length N :

I(t) =
N
∑

i

cixi = cTx. (8.6)
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The vector c is the cumulative sum of a vector of length N with 1’s in the epitope regions and

0’s elsewhere. This formulation of a mechanistic stochastic model of translation can be simulated

using the stochastic simulation algorithm using the software rSNAPSIM [131], to obtain the inten-

sities I(t) over time. Intensities for two genes, KDM5B and H2B are shown in Fig. 8.2, along with

experimentally measured intensity trajectories, distributions,and autocorrelations measured for the

two genes.

8.2 Autocorrelation of translation dynamics

When ribosome loading is sparse, higher-order interaction of ribosomes is rare, and the non-

linearities in Eq. 8.2 have a lesser effect on the dynamics. Under such circumstances, it is possible

to derive a simplified linear system model for the elongation dynamics, which is nonphysical in

the sense that a ribosome could pass another ribosome while elongating. In the linear model, the

propensity of an elongation step is wi(xi) = kixi, and the ability of a ribosome to add another

amino acid only depends on the current position of the ribosome, and not on the footprint of other

ribosomes.

For this simplified process, we can define a stoichiometry matrix that describes the change in

x for every reaction,

Si,j =















1 for all i = j

−1 for all i = j − 1,

(8.7)

where i corresponds to each codon in the protein of interest. Each row of the stoichiometry matrix

corresponds to an elongation event of an individual ribosome from the ith to the i+1th codon. The

propensities of each reaction can be written in the affine linear form

w = w0 +W1x, (8.8)

where w0 is a column vector of zeros with the first entry ki and W1 is a matrix
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=  4 frames

Trajectory length 
=  18 frames

Trajectory length 
=  52 frames

Figure 8.1: The effect of different trajectory lengths on autocorrelation. Autocorrelations are shown a

single stochastic trajectory (top) with varying measurement lengths, shown in blue. The black line shows

the autocorrelation derived from the model above.

W1i,j =















−ke(i) for all i = j

ke(i) for all i = j − 1.

(8.9)

Under these assumptions, the first two moments of the intensity I(t) can be found:

E{I(t)} = E{cx} = cE{x} (8.10)

E{I(t)2} = E{cxxTcT} = cE{xxT}cT. (8.11)

The autocorrelation dynamics of the process are defined in terms of the intensity I(t) as in Eq. 8.6

and can be decomposed in terms of the ribosome position vector x as

110



Experimental

Simulated

Experimental

Simulated

(a)

(b)
1544 codons

128 codon

Figure 8.2: Comparing experimental and simulated statistics of single-model translation. Experimental

and simulated trajectories (left) intensity distributions (center) and autocorrelations (right) for two genes

H2B and KDM5B. Adapted from our work in [131].

G(τ) = E{cTx(t)x(t+ τ)Tc} (8.12)

= cE{x(t)x(t+ τ)T}cT. (8.13)

Noting that c is a constant with respect to τ , it is only necessary to find the auto- and cross-

correlations of the ribosome positions. Following the regression theorem [32], these correlations

are given by the solution to the set of ODEs,

dΣ(τ)

dτ
= φΣ(τ) (8.14)

given the initial condition is the steady-state covariance of the process, i.e.

Σ(0) = lim
t→∞

E{x(t)x(t)T} (8.15)

and the autonomous matrix of the process φ = SW. Because the system is linear, the steady-state

covariance Σ0 is given by the solution to the Lyapunov equation

111



(a)

...

Initiation

Termination

TTCAGTCTGTTGAAG-

GATACCCGTTGT-

TATTTCTACCTGTATG-

ATCGGTCTGTT-

GAAGCATACCCG-

TAGTTGGTTCTACCT-

Training time series,

 H2B

Training time series,

 KDM5B

(c)

Input

Max 

Pool 1 

Max 

Pool 2 

KDM5B

H2B

Classifier (CNN) (d)

time

in
te

n
s
it
y

(b)

Figure 8.3: Outline of CNN based approach to classify polysomes. (a) Given two different gene sequences,

a stochastic model of protein elongation can simulate intensity trajectories. These intensity trajectories can

be used to generate training data (b) that can then classified using a convolutional neural network (CNN),

shown in (c). After training on purely simulated data, the CNN can be used to classify intensity trajectories

measured in murine cells.

SW1Σ(0) + Σ(0)WT
1 S

T + Sdiag(W1E{x}+w0)S
T = 0. (8.16)

Integrating Eq. 8.14, the autocorrelation of the intensity R(τ) can be found using Eq. 8.12. In

practice, autocorrelations are difficult to measure from a single fluorescent signal [23, 127, 131],

due to finite signal length, photobleaching effects, and measurement noise. The effect of finite mea-

surement time on autocorrelation is shown for an arbitrary gene in Fig. 8.1. While autocorrelation

dynamics are not always accurate for a single trajectory, they can be averaged across ensembles of

traejctories to give insight about the time scales of the fluctuations in intensity signal [23]. Because

the aim of this study is identify single-trajectories withing cells, we now turn to other computa-

tional methods to discriminate between multiple genes, which use the biophysical model described

above to generate data for a statistical model that can accurately classify single trajectories.
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8.3 Convolutional neural networks to multiplex single-molecule

translation

The role of neural networks in modern machine learning approaches has vastly increased in re-

cent years. In particular, convolutional neural networks (CNN) [132, 133] have become extremely

popular for image recognition, but also image generation [134]. CNN’s have been applied to clas-

sify histological samples [135–137], segment cells for microscopy data [138]. The disadvantage

of neural network based algorithms is the ambiguity that one faces in trying to interpret the result-

ing weights and biases from the network, though recent work has started to develop some insight

about what different layers of the network are doing [139]. In general, CNN’s can be thought of as

optimal filters for classifying the image of interest. This property makes them ideal for time-series

classification of a stochastic process, as they are able to find the relevant frequency relationships

within the data, compared to a recurrent neural network or LSTM, which essentially is a set num-

ber of neural networks that “unfold" in time [140]. Because of the explosion of methods in the field

of machine learning, there are many types of algorithms and sub-algorithms that can be used for

any problem, and there seems to be some art in deciding which method is best for which problem.

In our case, CNN’s are likely to be successful for classifying trajectories, though other approaches,

such as hidden Markov Models, standard neural networks applied to the frequency decompositions

of the data, or other approaches may also be successful.

There are some aspects of our problem which make it interesting from a computational/theoretical

standpoint beyond applying a black-box method to some data and obtaining classifications of dif-

ferent trajectories. Our goal is to train and validate the model on simulated data exclusively, and

then see how well the same neural network is able to classify experimentally measured trajecto-

ries. This approach requires the model to be extremely representative of the data, which we show

in [131], and importantly that there is way to find all parameters of the model prior to collecting

data. Ultimately, this will require estimating the average elongation rate, initiation rate, and termi-

nation rate for a gene based on it’s sequence alone. The advantages of such a model are vast, as
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one can then use it to design experiments to optimally distinguish between multiple genes in single

cells.

We start by training a CNN on simulated trajectories for the KDM5B and H2B genes, shown in

Fig. 8.3(b). The neural network architecture was extremely simple, consisting of two convolutional

layers, two max pool (averaging) layers, and a single dense layer for classification. The network

was implemented with the Keras [141] package for TensorFlow [142]. Validation for these two

genes is shown in Fig. 8.4(a) and (b), and 100% accuracy is achieved. As a proof of concept, we

then take this network and ask how well it is able to classify experimentally measured trajectories

of H2B (N=10) and KDM5B (N=18), shown in Fig. 8.4(b) and (c). While all trajectories are

correctly classified for KDM5B, only 60% were correctly classified for H2B. While the goal of this

approach is to tell apart trajectories in the same cell and the same color, we do not currently have

experimental data with two genes in the same cell with different color tags, and therefore cannot

validate the classifications from the same cell. Despite the experimental challenges associated with

measuring gene, the results in Fig. 8.4 are sufficent to motivate further exploration of this approach

as data quality improves. Having validated the network, we next ask how different experimental

parameters can affect classification results.

8.3.1 Experiment design using convolutional neural networks

One major question for fluorescence microscopy is how to choose the frame rate of the camera

to measure trajectories. For many live cell experiments that rely on fluorophores, the number

of photons released by a given particle decreases as they are exposed to light, and therefore the

signal decreases. This decrease in signal creates noisier measurement. Therefore, there is an

inherent tradeoff between measurement time and experimental noise. Often times, it is of interest

to numerically remove this effect by fitting and normalizing fluoresence intensity measurements to

an exponential curve [23, 143].

To simulate the effect of variability in the number of photons that are detected by the camera

given a single (or multiple) fluorophores, we add white noise (poisson limit of large numbers of
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Figure 8.4: (a-b) Classification results for simulated trajectories held out for validation, where the model

was trained to discriminate between KDM5B (left) and H2B (right). Panels (c-d) show the results for

experimentally measured trajectories of KDM5B and H2B.
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Figure 8.5: Experimental considerations for multiplexing single-molecule translation. Correct classifica-

tion percentage as a function of trajectory length (a) for H2B and KDM5B genes with 2.2X noise, noise (b)

with a fixed trajectory length 110 frames, and with both noise and number of frames being varied (c).

photons) to the simulated trajectories,

Ĩ(t) = I(t) + η, (8.17)

where η is a normally distributed random variable that does not have any temporal correlation. As

the noise level increases, the ability to correctly identify the trajectories decreases, shown in Fig.

8.5(b). Figure 8.5(a) shows the improvement of identification of single trajectories as a function

of the trajectory length. In a more realistic scenario, as trajectory length increases, the noise

also increases, as one must use lower laser power to avoid photobleaching effects. However, as

this tradeoff is yet to be rigorously experimentally quantified, we compute identification accuracy

accross a range of measurement times and experimental errors, shown in Fig. 8.5. The tradeoff

between trajectory length and measurement noise is a (unknown) curve on that contour plot.

8.4 Discussion

Single-molecule imaging of the entire central dogma of molecular biology has only recently

been possible with the advent of single-polysome translation imaging methods [23–25]. Here, we

demonstrate a stochastic model of the translation process, and drawing on our work [131], show

that it can match the statistics of measured polysome intensity trajectories. We showed that this
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model can be used to generate autocorrelations under a linear model assumption, which in principle

is different for genes of different lengths. We then ask how this model can be used to multiplex

single-molecule translation experiments, in which there are a finite number of colors that can be

used to image within single cells, which limits the number of genes that can be measured. While

autocorrelations can be rapidly generated from the approximate model (Eq. 8.14), effects of noise

and finite measurement times make them difficult to compare to experimental data, shown in Fig.

8.1. Because of the challenges associated with autocorrelation based identification of single-cell

trajectories, we turn to a hybrid method that uses the stochastic model we define in Eq. 8.1 to

generate training data that accurately represents what one can expect to see experimentally [131],

but can be generated in essentially unlimited quantity, as compared to the relatively difficult to

obtain experimental trajectories. The other advantage of an approach based on simulated training

data is that one can change the experimental settings, such as noise and measurement time to

find conditions which are optimal for discriminating between multiple genes in the same cell Fig.

8.5. However, the classification of simulated trajectories is only meaningful if the same neural

network model can be used to classify experimental trajectories. In Fig. 8.4, we showed that the

trained network can distinguish between experimentally measured KDM5B and H2B trajectories

that came from different cells with moderate accuracy.

As our ability to include more accurate measurement and biological details into the stochastic

model improves, the model that is trained on the simulated data should more accurately reflect

classifications that we can expect from experimental trajectories. In addition to improving the

biophysical stochastic model, in the future we will include more experiment design features, using

multicolor probe designs, such as those used by Lyon et al [26]. Multiple probe colors and their

positions within the protein of interest will affect the fluctuation characteristics and could lead to

coordinated designs to measure 10’s of genes in the same cells. Furthermore, the neural networks

to classify the genes can be added to image acquisition software, leading to real-time classification

of genes and experiment designs. Paired with optogenetic technology [90, 144], these methods
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could be used analyze and control gene expression in live cells with feedback control to drive cells

towards particular cell fates and coordinate with other cells.

This work demonstrates a combination of mechanistic modeling and machine learning. The

mechanistic model provides ample stochastic trajectories to train the convolutional network, which

would otherwise require a large number of measured trajectories to train. This idea may be useful

for other data types, where data is limited and a mechanistic model can be readily defined, but

there is no clear way to apply the mechanstic model to the data.
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Chapter 9

Conclusions and Future Work

This dissertation has developed a new set of computational tools to better understand and make

use of computational models of gene expression. The advances presented here are meant to make

biological modeling, even for systems with noisy processes like bursting transcription/translation,

single-molecule translation, more integrated with experimental data. In general, a main goal of

computational and systems biology is to develop useful models that accurately descibe experimen-

tal observations by logically gathering known information about the system that is being studied,

and using it to predict how this system will behave in different environments. However, predictive

modeling has thus far had mild success, which is often attributed the extreme complexity of bio-

logical systems. To address the complexity in biology, the modeller is ofter tempted to add enough

details to capture all the known biological information, which requires a huge number of kinetic

parameters. These parameters are almost impossible to infer from data because they are poorly

constrained by the relatively low dimensional quantitative data that is available, and the models

are often analyzed at the level of average expression of the relevant biomolecules in the system.

Another reason that less detailed models of gene expression have had limited successes may be

that the analysis approach is very important, and that using average behavior is not a good proxy

for the underlying behavior of the system. This dissertation develops new methods for analyzing

relatively small stochastic models of gene expression with a high level of precision, to rigorously

co-design modern single-cell, single-molecule experiments and biological models of their under-

lying processes.

The FSP bounds on the likelihood of single cell data in Chapter 4 can be used to speed up

the identification of stochastic models of gene expression by using the data to inform the accuracy

of the model itself. While the bounds themselves are novel, the idea of using data not only as

a quantity to fit the model, but also to constrain its computational cost is powerful idea that can

be applied in other ways. For example, Chapter 5 uses the data to define a lower dimensional
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basis on which we projected the FSP dynamics. This project uses a small number of radial basis

functions to interpolate the entire, high-dimensional state space. However, a rigorous error model

using radial basis functions was not able to be developed. Furthermore, it would be interesting

to investage, for both the FSP bounds and the project-based model reduction, to investigate how

constraints that come from multiple types of data can be imposed on FSP solutions. For example,

one could imagine using bulk assays to learn the mean of the process, and use that information to

help define basis centers or constrain the FSP bounds. Furthermore, the FSP bounds have yet to

be applied to a Bayesian inference scheme, in which one could rapidly find posterior parameter

distributions.

This work also takes some steps forward in using identified predictive, stochastic models and

using them to design experiments that are as informative as possible. The FSP-based Fisher in-

formation approach presented in Chapter 6 has been used to optimize measurement times in a

simulated model of bursting gene expression and a simulated toggle model. We also use the FIM

to design optimal optogenetic-controlled degradation in the simulated toggle system. Finally, we

studied the allocation of measurements at different times in an experimental yeast system, and val-

idating the FSP-FIM for time-varying inuts. In the future, the FSP-FIM could be used in the setting

of fluorescence-activated cell sorting to define a population of cells with stochastic gene expression

dynamics that are optimal to learn about a particular feature. In a similar vein, the FSP-FIM can be

used to develop optimal image analysis by only spending computational power to count individual

RNA in cells that are likely to be informative. Finally, often times we are not concerned about

the uncertainty in the parameters of the model, but rather in the uncertainty in the predictions the

model will make. In that vein, we are developing a prediction-uncertainty reduction method that

makes use of the FIM.

For models of single molecule translation in Chapter 8, we developed novel methods to mul-

tiplex the measurements of multiple genes in the same cell. By using a mechanistic model to

simulate the gene expression of the two genes, H2B and KDM5B, we generated intensity trajec-

tories that have realistic fluctuation characteristics compared to the single-polysome translation
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measurements [23–25]. We then showed how a simplified model that does not allow for ribosomal

exclusion can be used to find the autocorrelation function for different genes. Finally, we showed

that the stochastic mechanistic model can be used to generate training data for a machine learn-

ing algorithm, which was then able to classify experimentally measured trajectories. This novel

approach could be used to expand the number of genes that are able to be measured in a single

cell from one or two genes to ten to twenty genes. By measuring more genes in single cells, it is

possible to understand more about the dynamic regulation of genes than is otherwise possible.

This dissertation is primarily concerned with developing novel computational and theoretical

methods to model and analyze modern single cell data. Often, computational methods and models

are built in a vacuum, isolated from data and the messy world of biological measurement. Our

approach is to build these tools so that they can be applied with experimentalists in mind. A major

part of bridging computational methods to use for actual experiments requires easy-to-use soft-

wares to develop models and design experiments. Along these lines, a major step forward (and

one that is currently in progress), is the creation of software that can define a stochastic model,

input single-cell measurements, identify model parameters, and design future experiments. Such

software should have an attractive graphical user interface. For the single molecule translation

problem, our group has started developing the rSNAPSIM package, which allows one to simu-

late and analyze intensity trajectories for any gene of interest. We have also started to develop a

software called the Stochastic System Identification Toolkit, which provides graphical model con-

struction and basic model fitting approaches. Eventually, the FSP-bounds, projection based model

reduction, and FSP-based FIM will all be used to enhance this software.

In conclusion, the works here present first steps in filling out the toolkit for analysis of full

probability distributions of biomolecules across populations of cells. As quantitive methods to

measure single molecules in single cells has improved, there is a need to develop better methods

to analyze and interpret data. Quantitative modeling and prediction of how biological systems

behave will revolutionize medicine and agriculture, especially as our ability to manipulate and

design DNA improves.
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