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ABSTRACT OF THESIS

DEVELOPMENT OF A MODEL FOR BAFFLE ENERGY DISSIPATION

IN LIQUID FUELED ROCKET ENGINES

In this thesis the energy dissipation from a combined hub and blade baffle structure in a 

combustion chamber of a liquid-fueled rocket engine is modeled and computed.  An analytical 

model  of  the  flow  stabilization  due  to  the  effect  of  combined  radial  and  hub  blades  was 

developed. The rate of energy dissipation of the baffle blades was computed using a corner-flow 

model that included unsteady flow separation and turbulence effects.  For the inviscid portion of  

the flow field, a solution methodology was formulated using an eigenfunction expansion and a 

velocity potential matching technique.  Parameters such as local velocity, elemental path length, 

effective viscosity, and local energy dissipation rate were computed as a function of the local 

angle α for a representative baffle blade, and compared to results predicted by the Baer-Mitchell 

blade dissipation model.  The sensitivity of the model to the overall engine acoustic oscillation 

mode,  blade  length,  and  thickness  was  also  computed  and  compared  to  previous  results.  

Additional studies were performed to determine the sensitivity to input parameters such 

as  the  dimensionless  turbulence  coefficient,  the  location  of  the  potential  difference  in  the 

generation of the dividing streamline, the number of baffle blades and the size of the central hub.  

Stability computations of a test engine indicated that when the baffle length is increased, the 
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baffles provide increased stabilization effects.  The model predicts greatest dissipation for radial 

modes with a hub radius at approximately half the chamber's radius.

Nathan A. Miller
Department of Mechanical Engineering

Colorado State University
Fort Collins, CO 80523

Fall 2010
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1: Introduction

Liquid propellant rocket engines are susceptible to high-frequency combustion instability, 

a coupling between the acoustics of the combustion chamber and the combustion process.  The 

stochastic pressure oscillations caused by the combustion process add energy to the system in 

such a way as to promote organization into an acoustic-type wave or mode.  These acoustically 

coupled  oscillations  adversely  impact  engine  performance  through  increased  rates  of  heat 

transfer to the injector face and combustion chamber walls and by inducing excessive structural  

vibrations.  In extreme cases, instability of this sort can result in engine failure. 

The acoustic oscillations of interest have been low-order tangential and radial modes.  To 

reduce the detrimental  effects of  the oscillatory instability,  these vibrations can be dampened 

using injector face baffles.  While many different arrangements of baffles are used to dampen 

oscillations, two common types of baffles include the hub and radial types.  Hub baffles are used 

to reduce radial oscillations, while radial blade baffles have been used to reduce the tangential 

oscillations.  Hub baffles also have some effect on tangential modes though it is minimal at best.  

Radial baffle blades have essentially no effect on the radial modes due to the symmetric nature of  

the pressure distribution on either side of the blade.

In addition to increased viscous dissipation, the baffle effects also include a decrease in 

the acoustic frequency of a rocket engine, as the baffles increase the oscillation path length.  It is  

through a mechanism of viscous drag that the blades are believed to reduce the strength of the  

pressure oscillations and increase the overall stability of the combustion process.  An unfortunate 

side effect of these baffle blades is a reduction in engine thrust, however; this negative effect is 

negligible when compared to the detrimental effects of uncontrolled, large amplitude chamber 

pressure oscillation.  In this thesis the energy dissipation from a combined hub and blade baffle 
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structure in a combustion chamber, as shown in Figure 1, is modeled and computed.  It should be 

noted that the radial baffle blades are not required to be spaced evenly as shown in the figure.  

There  are  benefits  and  detriments  for  both  arrangements.   Throughout  this  thesis,  an  even 

spacing among the radial  baffles is  assumed to  coincide with  previous published works.   In  

addition, while it is possible to have multiple hub baffles to counter radial modes of larger order, 

such geometries are not  modeled herein.   The techniques used for a singular annular baffle 

however, could be applied to these more complex structures.

Figure 1. Baffle blade and hub in combustion chamber (from Harrje and Reardon1)
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2: Background

2.1: Vibration Geometry

Pressure oscillations in combustion chambers can be described by the solution of the 

forced Helmholtz equation (Equation 1).  

∇2⋅2⋅=F  1

The Helmholtz  equation  can  be  solved  through the  separation  of  variables  using an 

eigenfunction matching technique.  This method assumes that the different axes are independent  

of each other.  This assumption means that the oscillation must be linear resulting in an Equation 

2.

r , , z=Rr ⋅⋅Z  z  2

Appendix 1 shows the derivation of the two dimensional, no dependence on the axial  

position z, oscillatory case.  It also demonstrates that the difference between a thin fluid sheet 

and a thin film oscillating is in the boundary conditions.

The pressure oscillations present in combustion chambers can be of three major shapes. 

Radial modes are oscillations in the radial direction, tangential modes have both a radial and 

angular dependance and longitudinal modes are oscillations in the axial direction.  It is possible 

for combination modes to exist.  An example of this is a 1T1R mode where a tangential mode is 

combined with a radial mode.  In DISTCS, the engine stability code used for these calculations, 

the longitudinal mode is unconstrained and allowed to vary freely.  The mode shapes can be 
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either standing or spinning modes.  Standing modes only vary in amplitude as a function of time 

while  spinning modes rotate  around the longitudinal  axis.   Examples of  standing modes are 

shown in Figure 2.  A spinning 1T mode is shown in Figure 3.

Figure 2: Example pressure and velocity oscillation profiles in an unbaffled chamber (from  Harrje 

and Reardon1)

Oscillations  solved  using  eigenfunction  techniques  are  denoted  by  their  indices  of 

vibration.  In this thesis the mode number and shape are defined by (m,l,n).  The radial indices  

are indicated by n, tangential indices are indicated by l, and longitudinal indices are indicated by 

n.  The radial indices begin at 1 while the tangential and longitudinal indices begin at 0.  This is 

due to the formulation of the Bessel functions.  A 1T mode as shown above will have the indices 
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(1,1,0).  A 1R mode will have the indices (0,2,0).  A 1T1R mode would be indicated by the indices 

(1,2,0).

Figure 3: Pressure and velocity distributions for 1T spinning mode (from Harrje and Reardon1)
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Different arrangements of baffles will have different effects on different modes.  Some 

baffle structures will actually fall into the nodes of the pressure potential.  This is shown in Figure 

4.  Note that radial modes are totally unaffected by radial baffles of any configuration.  These 

modes can only be reduced with hub baffles.  In addition a baffle structure of four radial blades  

and no central hub is completely ineffective in any dissipation.  It is for these reasons that baffle 

arrangements typically are combinations of radial and hub shaped baffles.  The number of radial 

baffles are also typically prime numbers and greater than any of the tangential modes observed.
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Figure 4: Anti-Node alignment with different baffle arrangements (from Harrje and Reardon1)

2.2: Non-dimensional Scheme

Non-dimensionalizing the variables is  very useful  in  the development  of  the potential 

equations.  By removing the dimensional dependance the complexity of the potential equations is  
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reduced.   Dimensional  variables  (indicated by a  *  superscript)  such  as  time,  frequency,  and 

various lengths are non-dimensionalized by the chamber radius, rc*, and the dimensional speed 

of  sound at  the stagnation condition a0*.   Examples of  non-dimensional  equations are given 

below.  Equation 3a demonstrates the non-dimensionalization of the frequency of oscillation while 

Equation 3b is the non-dimensionalization of time and Equation 3c is the non-dimensionalization 

of distance.  An expanded look at non-dimensionalization is included in Appendix 2.

=2⋅⋅ f *⋅
rc*
a0*

3a

t=t *⋅
a0*
rc*

3b

x= x*
r c*

3c

2.3: Combustion Stability Review

A comprehensive overview of combustion instability research in liquid rocket engines is 

given in Harrje and Reardon1, and a review of various analytical approaches used to model this 

problem is  given in  Mitchell2.   The combustion stability analysis  of  Mitchell2 utilized the non-

dimensional governing equations in a velocity potential formulation, using the chamber radius, the 

speed of sound at the nozzle entrance, and the stagnation pressure to non-dimensionalize the 

length, velocity, and pressure scales.  Using a perturbation technique and a linearization process, 

the equations were combined into a single linear,  second order,  non-homogenous, Helmholtz 

equation.   The  velocity  potential  was  assumed  to  be  harmonic  and  solved  for  in  each 

compartment of interest subject to boundary conditions and a matching condition with adjacent 

compartments where necessary.

As the velocity potential is assumed to be harmonic, the frequency can be assumed to be 

a complex value with the real part describing the oscillatory frequency and the imaginary part 
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describing the decay.  The frequency is then non-dimensionalized using the chamber radius and 

the speed of sound in the chamber.  Due to the complex geometry of the overall  combustion 

chamber a direct solution of the potential equations would be impossible with a simple separation 

of  variables  approach.   Instead  as  described  in  Baer  and  Mitchell3 as  well  as  Milano4 an 

eigenfunction  matching  technique  between  different  chamber  volumes  is  employed.   For 

example, the eigenfunction solution to the potential distribution of a standing wave, in a chamber 

without baffles takes the form:

References to  combustion  stability  in  this  thesis  typically  refer  to  calculations  of  the 

overall n and τ.  The variable n is the interaction index or, to clarify, it is the gain parameter of the  

combustion  pressure  perturbation.   The  variable  τ is  the  time  lag  between  the  combustion 

response and the pressure fluctuation.   To describe it  in  a different  way,  it  is  the time delay  

between a pressure oscillation and when the combustion responds to it.  Given these variables 

and angular frequency ω it is possible to calculate the value of a stability parameter N also called 

CRES. CRES is an overall measure of the combustion response of the engine and is the ratio of  

the non-dimensional oscillatory gas generation to oscillatory pressure shown in Equation 4.

N=

Q '
Q
P '

4

CRES is a complex variable with magnitude and phase, and is related to n and τ by the 

following equation.

∣N∣=∣n⋅1−e−i⋅⋅ ∣ 5

In practice, typical n values range from 0.5 to 1 and typical τ values range from 0.3 to 3.  

The values of  n and τ  are  often used as a method of  classifying different  injector/propellant  
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combinations.   The  stability  is  plotted  on  n-τ or  |N|-ω coordinates  shown  in  Figures  36-44 

presented later in the thesis, with a minimum point along the curve indicating minimum stability.

The instabilities referred to in this paper are typically called high-frequency instabilities 

and are a result of the combustion process triggering the fundamental acoustic frequencies of the 

combustion  chamber.  These  instabilities  are  some of  the  most  critical  in  determining engine 

performance and the overall safety of the rocket.  While lower frequency instabilities are typically 

associated with the overall structure and intermediate frequencies are relatively non-destructive, 

high frequencies are directly tied to the performance of the combustion chamber and can be  

particularly damaging.

=e i⋅⋅t⋅∑
m ,l

Am, l⋅[cosm⋅⋅J mm, l⋅r ⋅cos
n⋅⋅z

L
] 6

For equation (6),  φ is the velocity potential  in  the chamber,  λm,l is  the lth root  of  the 

derivative of the Bessel function J of order m and A is a coefficient for the main chamber.  The 

difference between the velocity potential  for a standing wave and that  of  a spinning wave is  

relatively simple.  A standing wave is represented by the cos(mθ) term while a spinning wave is 

represented by a e-imθ term.

The imaginary frequency, hereafter called λ, is related to the real part of the frequency as 

follows in equations (7) and (8):

=Ri⋅ 7

e i⋅⋅t=ei⋅R⋅t⋅e−⋅t=cos R⋅t i⋅sin R⋅t ⋅e
−⋅t 8

The  imaginary  frequency  λ  defines  the  growth  or  decay  behavior  of  a  harmonically 

oscillating system.  If lambda is zero the system will oscillate at a constant amplitude. A value  
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greater than zero indicates that the equation will grow exponentially with time. A value less than 

zero indicates exponential decay.  In relation to system stabilization, λ values less than zero are 

desirable. (Note that λ in this equation is different than the λml parameter of the Bessel function.)

As a convenience to the reader, the equations used in modeling the potential field within 

the combustion chamber are presented in Appendix 3 of this text. These equations were used to 

great effect by Milano et. al.5 in the development of the DISTCS code. This code can model the 

stability of a combustion chamber including acoustic cavities, both hub and radial baffles, and 

other effects.

One of the first analyses of the effect of baffles on acoustic oscillations was performed by 

Oberg,  et  al.6  However,  no dissipation  mechanism for  the baffled  chamber  oscillations was 

included in this analysis, so the baffles were found to be destabilizing, rather than stabilizing. 

Quinlan et al.7 also predicted that an inviscid baffle structure would have a destabilizing effect. 

It is very difficult to develop a physical model for the viscous dissipation at the baffles, as  

one simply does not know the details of the combustion flow field in that region.  Aspects of flow  

behavior resulting in dissipation such as separation and vortex shedding could be taking place.  

Without a more complete understanding of the flow field it was decided to be approximated using 

potential flow theory in the main volume of the combusting flow, and a viscous dissipation model  

at  the  boundary  layer  regions  near  solid  baffle  surfaces.  Baer  and  Mitchell3 developed  a 

streamline-based baffle tip energy dissipation model and included it  in an overall  combustion 

stability analysis, predicting a baffle-stabilizing influence.  
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Figure 5: Dividing streamline forming baffle blade tip

To obtain the non dimensional rate of energy dissipation at the baffle tips of the flow field,  

Mitchell and Baer divided the oscillating flow over the baffles into an inviscid outer region, and a 

viscous inner region, as shown in Figure 5.  The outer solution is obtained using the eigenfunction 

expansion for the velocity potential which models the combustion chamber at large.  The outer  

solution is then used to drive an oscillatory boundary layer on the tips of the baffle blades.  For 

potential  flow around a 360-degree corner  of  an infinitely  thin  blade,  the streamfunction and 

velocity potential are: 

=a⋅ζ
1
2⋅sinα2 9

=a⋅ζ
1
2⋅cos α2+k 10

These potential functions can be found in White.8  A baffle blade of finite thickness was 

formed by representing the baffle surface by the edge streamline that passes through the two 

corner edges of the baffle blade, at  α = π/2 and 3π/2, as indicated in Figure 5.  In this way, the 
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limitation of the potential flow functions in describing infinitely thin baffles could be circumvented. 

Expressions for the streamfunction, elemental path length, and oscillating velocity were obtained 

as  a  function of  baffle  thickness  and  the  (ζ, α)  position  along the streamline.   The  a and  k 

coefficients in the above equations were found from the outer flow potential solution by solving for 

both coefficients at the corners of the baffle blade using the potential values at each location. The  

results are shown below:

a=
1−2

t
1
2

11

k=
12

2
12

In this form it is assumed that the locations of φ1 and φ2 for the driving potential φ1 - φ2 

are at mirror angles relative to the centerline from each other.  The position at which these values  

are selected is critical and, in the original analysis, the potential difference was calculated at the 

baffle tips by choosing the potential values at both corners of the baffle blade.  Other formulations  

of the model have taken the potential difference at other locations, most notably at the injector  

face next to the baffle by Milano et al.5  The streamline for the baffle was still the same shape as 

when the potential difference was located at the baffle tip, however the driving potential could be  

much larger due to the increased geometric distance between the two sample points.  This larger 

geometric distance leads to greater possibility of large differences between the potential values.

An equation for the effective turbulent viscosity of the oscillating flow in the streamline 

forming the baffle tip was also developed and incorporated into an energy dissipation expression 

as potential flow theory makes no allowance for viscosity by its nature.  Baer and Mitchell7  used 

the following equation (13) to compute the effective turbulence viscosity.  In order for the energy  

dissipation to be integrated along the streamline, the unit path length ds of the streamline was  

also  derived as a function of the angle alpha and is shown in equation (14).

13



νeff =ν lam+cturb⋅U 2+ε 2 u2

2
13

ds = t
4
⋅ 1

sin3 2 
d  14

The overall energy dissipation rate in the boundary layer, Equation (16), was computed 

by first  integrating the local  energy dissipation flux,  Equation (15),  along the streamline at  a 

particular cross section of the baffle. The overall dissipation was found by integration along the 

baffle face using a Gaussian quadrature technique. This procedure was repeated for both the 

radial as well as the the hub baffle in succession.  This dissipation prediction can be matched to  

experimental data using known  λ's computed from pressure decay profiles and varying of the 

turbulence coefficient parameter cturb.

The Baer-Mitchell baffle energy dissipation model was used to compute the performance 

of  hub  baffles  by  Acker  et  al.9,  and  also  used  to  compute  the  performance  of  a  combined 

hub/blade geometry by Milano et al.5 

dE diss=γ νeff α ⋅ω
2 u α 2 15

Ediss=∫ γ νeff⋅ω
2

u2⋅dS 16

Further details about the velocity potential eigenfunction solution technique for the baffled 

combustion chamber are given in Milano et al.5

There  are  some  issues  with  the  Baer-Mitchell  model  that  warrant  further  study.   A 

dimensional  analysis  of  the  Baer-Mitchell  energy  dissipation  formula  (16)  indicates  that  it  is 

dimensionally inconsistent.  The viscosity formula (13) is also dimensionally inconsistent, as it 

lacks a length scale in the turbulent term.  Additionally, any effect that the length of the baffle has 
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on the system is purely second order as the viscous dissipation which occurs on the sides is  

ignored.  Because of this, it is expected that the model does not couple with the mode shapes  

quite as well as would be desired.  In addition, the dissipation predicted by the baffles does not  

drop to zero as the length of the baffle is reduced as is expected.
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3: Analysis

In  order  to  address  the  above  issues,  an  improved  baffle  dissipation  model  was 

developed.  In this case, a corner-flow streamline allowing for flow detachment at the corners was  

chosen.  The streamfunction and velocity potential equations for a corner-flow streamline are:

 =a⋅ζ
2
3⋅sin2α3  17

 =a⋅ζ
2
3⋅cos2α3 +k 18

 Equations 17 and 18 demonstrate that the overall functions are the same except a factor 

of 2/3 has been introduced where previously a 1/2 was used. A graphical representation of the 

streamline separating at the corner for the time period when the oscillating flow is moving from 

left to right is shown below in Figure 6.  The major benefit of approaching the streamline in this 

way is that the resulting fluid path is much more consistent with what would be expected to be 

physically occurring.  In addition, by the very nature of the streamline the length of the baffle must  

be included.  Since the flow is oscillating, it will also be moving to the left for half the oscillation  

period, and the streamline will be assumed symmetric about the centerline of the baffle when 

viewed at the extrema of the period of its oscillation.  Care must be taken however in the way that 

the dissipation over this period of oscillation is taken as the potential in the combustion chamber 

is modeled in the frequency domain.  In the same way as the Baer-Mitchell  model, the outer  
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region above  the streamline is  modeled  as  inviscid  flow using the potential  values  from the 

eigenfunction solution, and the region below the streamline is modeled as viscous flow. 

Figure 6: Corner separation streamline 

Expressions  for  the  streamfunction  value,  elemental  path  length  dS,  and  oscillating 

velocity u along the edge streamline shown in Figure 6 were obtained as a function of baffle  

thickness and the (ζ, α) position along the streamline.  The equation for the length of  ζ as a 

function of  α is given in equations (19) and (20) where C is a constant used to simplify the 

expression of ζ.  

C=[ 32 ⋅ t223] 19 

ζ α =[ C

sin23⋅α]
3
2 20 
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The a and k coefficients in equations were found using the outer flow potential solution,  

as shown in equations 21 and 22.

a=
1−2

1
2
3⋅cos  2

3
⋅1− 2

2
3⋅cos  2

3
⋅2

21

k=1−a⋅1
2
3⋅cos 2

3
⋅1 22

In an effort to further remove any time dependance from the solution the selection of the 

driving potential  φ1  and φ2 is of large importance.  For the purposes of this analysis it will be 

assumed that the potential in the combustion chamber is harmonic in its oscillation over time and 

can be described as a sinusoidal function. The baffle blade is assumed to only dissipate energy  

when the potential at the base of the blade is larger than at the tip, i.e. a driving flow field.  The  

locations  of  the  potential  are  shown  in  Figure  7.   This  figure  demonstrates  the  assumed 

streamline at the two maxima of the oscillation.  While the oscillation is occurring from ωt = 0 to π 

the dissipation is assumed to occur between φa and φzb.  The dissipation is then assumed to 

switch to the opposite side of the baffle blade where ωt = π to 2π and the dissipation occurs 

between  locations  φb and  φzb.   Assuming  that  the  magnitude  of  these  potentials  varies 

sinusoidally,  the total  potential  difference over  one period  can  be described  by the following 

function:

=∫
0



a−zb ⋅sin x dx∫


2⋅

b−zb ⋅sinx dx 23
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In this case φa and φb are, from the formulation of the parameter a in equation (21), φ1 for 

each half of the period respectively. φ2 is represented by φzb. Integrating this function yields an 

expression for the potential difference during a full period of oscillation.

=2⋅a−b  24

This result implies that the base of the baffles is the most physically accurate location for 

both φ1 and φ2.  In addition, it also adds a factor of two to the value of the parameter a in equation 

(21). 

Figure 7:  φ selection locations

By manipulation of the ζ, a and k functions, the streamline and oscillatory velocity terms 

can be derived as shown in equations (25) and (26).
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ds = C

sin52 
3


25

u= 49⋅a2⋅sin  23⋅C
26

The viscosity model used in the corner flow model is different than the Baer model.  It  

should be noted that turbulence models using an eddy viscosity concept have a local velocity 

scale and a local length scale to characterize the local eddy viscosity ν.  For example, the eddy 

viscosities of boundary layer flow are assumed to be proportional to the product of a local velocity 

and length.  In this corner flow analysis we choose a local fluctuating velocity (U 2 + u2)1/2 as the 

local velocity scale, and the baffle height zb as the local length scale.  Owing to the physical 

difference between these two models it does not seem reasonable to continue referring to the 

turbulence coefficient of the corner-flow model as cturb.  Therefore, the coefficient of turbulence for 

the corner-flow model will be called c1 since it is used in a different viscosity formulation.  The 

effective viscosity equation is as follows: 

νeff =ν lam+c1⋅zb⋅U 2+u2 27   

The  rate  of  energy  dissipation  in  the  volume  below  the  dividing  streamline  can  be 

determined by integrating the corner flow normal to the streamline, and then integrating along the 

streamline and baffle face, as indicated by Equation (28):

Ediss=∫ Power
Vol

dV=m∫∫
δ1

δ2

dudy 
2

dy dS 28 
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For a streamline oscillating at a velocity with amplitude of u and frequency ω, an equation 

for the fluid velocity gradient du/dy a distance y from the streamline is given by Equation (29a). 

This expression can be derived from the solution for a plate oscillating in fluid.  This velocity 

gradient is averaged over one oscillation period. To do this, the function is integrated from zero to  

2π and then divided by 2π. Performing this integral of the du/dy term and then integrating it from 

δ1 = 0 to δ2 = δ as shown in equation (29) yields:

du
dy =uω2ν sinω⋅t−ω2⋅ν 

1
2 y 29a 

= 2⋅


Average
period

: 1
∫0



∫
0



sin ⋅t− 
2⋅

⋅y
2

dy dt

A=cos 4⋅−1

B=2⋅sin⋅ 
2⋅

−2⋅
2

−2⋅sin⋅ 
2⋅ 

2
Average
period

: 
2
 1

16⋅⋅ 
2⋅

⋅AB 

1

16⋅⋅ 
2⋅

⋅AB =0

Average
period

=
2

du
dy=u⋅ 

2⋅⋅

2 29b
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The penetration depth δ can either be directly calculated as the distance from the baffle 

or the streamline or, to save on computation power, the penetration depth can be approximated. 

From scale analysis, the penetration depth δ of the oscillation scales as:

δ≈ νeff⋅2π
ω 30 

Upon substitution of  Equations (29b) and (30)  into  Equation (28),  the rate  of  energy 

dissipation in the viscous layer at an angular location α along the streamline is given by Equation 

(31), and the total rate of energy dissipation is found by integrating over the baffle tip surface area 

as shown in Equation (32):

dE diss≈
⋅u2⋅⋅

2
≈ ⋅u2

2
⋅eff⋅

2
31

E diss=∫ ⋅u2

2
⋅eff⋅

2
⋅ds 32

As can be seen, the resulting integral form is essentially identical to that is typically used 

to compute the acoustic power loss at a surface, and is similar in structure to the Baer-Mitchell  

model, see Equation (16), with the difference being the incorporation of the density term ρ instead 

of the specific heat term γ.  Another observation that may be made is that due to the oscillations 

penetrating into the fluid at a distance δ the corner-flow model views the energy loss as being a 

volumetric effect as opposed to a surface level occurrence.  This difference in the conceptual 

nature of the model is also another indication that the turbulence coefficients are not the same 

between the two models.
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4: Results

4.1: Comparison of Local Energy Dissipation Flux

To compare these two dissipation models, we first look at a simple example of the energy 

dissipation per unit area along a streamline over a baffle with fixed driving potential difference.  

The following plots compare the rate of energy loss of the corner flow model compared to the  

Baer-Mitchell model.  Parameters such as local velocity, elemental path length, effective viscosity, 

and local energy dissipation rate are computed and compared as a function of the local angle α 

for each model.  In this example, it is assumed that the velocity potential difference, φ1 - φ2  , 

across the baffle in the combustion chamber is held constant at 0.5 - 0.2 = 0.3.  In this manner 

the two models are compared directly and the dependance upon the outer flow potential φ can be 

negated for the moment. A value of cturb and c1 equal to 1.0 was chosen for these calculations. 

The baffle blade geometry was chosen with a nondimensional length of 0.15 and thickness of 

0.05. For the Baer-Mitchell model, a value for  ε of 0.1 was used which is a value used in test 

cases previously. As shown in equation (27) this parameter has been removed from the corner-

flow model. The removal of this value is expected to reduce the value of c1 slightly required in the 

corner model to achieve a similar dissipative effect as the Baer-Mitchell model.
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Figure 8: Comparison of oscillating velocity profile

The change in the oscillatory velocity along the streamlines for the Baer-Mitchell and the 

corner flow are given in Figure 8.  The Baer-Mitchell line is plotted from one baffle corner tip to the 

opposite corner, from α = π/2  to α = 3π/2, while the corner-flow model is plotted from the base of 

the baffle blade to the value of  α which corresponds to the streamline being located just above 

the opposite corner. In order to find this value of α, an iterative process was required.  The basic 

shape of both velocity profiles is very similar, with different locations of a maximum oscillatory 

velocity.  Figure 9 plots the variation of the non-dimensional effective turbulent viscosity along the  

streamlines for both models.  The corner-flow turbulent viscosity is about a factor of three larger, 

and has more streamline position dependence than the Baer-Mitchell model.  This is a function of  
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the added length scale and the removal of the pressure oscillation term ε in addition to several 

numerical coefficients resulting from equations (24) and (29a).

In Figure 10,  the energy dissipation flux,  dEdiss,  is  plotted as a function of  streamline 

location for  both  models,  using Equation (15)  for  the Baer model,  and Equation (31)  for  the 

corner-flow model.  The corner-flow energy dissipation is much larger in this configuration, and  

again has more streamline position dependence.

Figure 9: Effective viscosity comparison
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Figure 10: Local energy dissipation comparison

4.2: Energy dissipation rate in representative test engine

We now compute the baffle energy dissipation rate for a hub/blade baffle configuration in 

a  representative  test  engine.   The  representative  test  engine  of  Acker7 which  described  a 

combustion chamber with a hub only is utilized. Modifications to this model by Milano 8 have been 

included for study in this paper. This is so that the chamber geometries contained within this 

paper are consistent with a test case which has been utilized in past papers.  The engine has a 

chamber with a non-dimensional length of 2.5, a hub radius of 0.4, and five evenly spaced radial 

blades with a non-dimensional length of 0.15, and non-dimensional thickness of 0.05.   On this 

section the turbulence coefficient was held constant at c1 =1.00, for the purposes of this paper, 

whenever the Baer-Mitchell or Milano models are used, a value of 5.0 for c turb will be used unless 
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otherwise specified.  This value is chosen because it is the default setting in DISTCS.  Unless 

otherwise specified, no cavities are used.  The reason for this decision was to show the effects of  

the baffles alone without any additional dissipation by the cavities. 

The  overall  baffle  energy  dissipation  rate  Ediss is  found  by  integrating  the  energy 

dissipation rate per unit  area, dEdiss, over the hub/blade face area in the radial and azimuthal 

directions, using Gauss quadrature.  The independent variables are the acoustic mode shape, 

baffle length zb, and baffle thickness t relative to baseline values.  The acoustic frequency for a 

particular mode is dependent on the baffle length, and decreases a small degree as the baffle 

length is increased.  

Note that the incorporation of the energy dissipation model into a combustion stability 

calculation introduces a stronger dependence on the mode shape than is possible with the simple 

plots shown in the previous section which were calculated with constant φ1 - φ2.  In a combustion 

stability computation, the values of φ1 and φ2 used to calculate the local values of the streamline 

variables a and k at each (r, θ) location along the surface of the baffle are different.  The potential  

at any given location is a function of the mode which has been chosen by the user.  In this way,  

the model is coupled to the existing mode in the combustion chamber in a way that was not 

possible  with  the  simple  equation  models  before.   The  energy  dissipation  rate  becomes 

dependent on the acoustic mode existing in the chamber, since the value of the variables a and k 

at a given (r, θ) location on the baffle face are directly proportional to the local values of φ 1 - φ2  at 

that location for a given engine geometry and acoustic mode.  The value of is shown in Figure 11 

for the 1R and in Figure 12 for the 1T mode demonstrating the dramatic difference that exists in 

the potential values.  This φ1 – φ2 is computed across the base of the baffle blade.  The location 

from the injector face where this potential difference is calculated is called zmatch.
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Figure 11: φ1 - φ2 at the injector face for the 1R mode.
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Figure 12: φ1 - φ2 at the injector face for the 1T mode

A direct comparison of the difference compared to φ1 - φ2 across the baffle tip is also 

warranted. As stated before, the Baer-Mitchell model was originally intended to use the potential 

difference across the baffle tips.  In Figure 13 and 14, the overall  shape remains reasonably 

consistent compared to the potential difference computed the base.  Separate sections tend to  

blend together more than in the baffle base potential difference. The magnitudes between the two 

are  significantly  different  indicating that  the  corner-flow model  will  be utilizing a  much larger  

change in potential, than tip difference of the Baer/ Mitchell model.
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Figure 13: Baffle tip φ1 - φ2 1R mode
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Figure 14:  Baffle tip φ1 - φ2 1T mode

These figures demonstrate clearly how the potential difference across the baffle blade 

varies significantly with the location of zmatch.  To understand the effects of locating the potential 

difference at different locations a plot of the pressure is useful.  This pressure can be calculated 

from the potential φ using equation (33).

P=−⋅⋅i⋅⋅u⋅
∂
∂ z

⋅
Q
  33

Figures 15 and 16 clearly demonstrate the differences between the 1R and 1T modes. 

Both of these plots are (r,θ) plots indicating pressure profiles axially and radiallly at θ values of 0 
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and π.  In these figures the injector face is located to the right while the nozzle is located to the  

left  of  the image.   The 1R mode seen in  Figure  15 appears  to  have a significant  pressure 

increase in the hub as opposed to the lower potential in the baffle compartments.  This forcing 

pressure would be expected to  drive large amounts of  dissipation for this mode.  The small  

breaks in the pressure plot are due to the location of the hub baffle.  The 1T mode in Figure 16 

predicts much less pressure differential between the hub and the baffle compartments.  This is  

not unexpected given the evidence of the potential differences in Figures 12 and 14.

Figure 15: Axial pressure distribution 1R mode
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Figure 16: Axial pressure distribution 1T mode

To determine the local distribution of the energy dissipation across the baffle blades for 

the corner-flow model, a series of plots showing the dissipation at the quadrature points for the  

1R as well as the 1T mode are provided. The values of φ1 and φ2  were selected at the injector 

face as in Figures 11 and 12.  Attention should be paid to the magnitude of the dissipation with  

the 1R mode showing dissipation values nearly 20 times larger than the  tangential modes. Most 

noticeable is that the dissipation is proportional to the difference in potential which is most evident 

in the 1R mode. This is to be expected given the method with which the streamline was formed 

but it is evidence that the model is coupling into the mode shape as desired. 
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Figure 17: Corner flow model dissipation for 1R
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Figure 18: Corner flow model dissipation for 1T

The following figures are a comparison of the dissipation profiles generated by the Baer-

Mitchell  model with the potential difference taken across the baffle blade at the injector face.  

From this point on in this section, all plots and figures referring to Baer-Mitchell uses a potential 

difference calculated at the injector face.  This is to provide a more direct comparison between 

the models.   These plots  demonstrate  that,  again,  the  model  has  coupled into  the  potential  

profiles correctly and appears to be a proportional scaling of the magnitude.
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Figure 19: Baer-Mitchell Dissipation 1R
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Figure 20: Baer-Mitchell Dissipation 1T

4.3: C1 variation study

The corner flow model turbulence coefficient c1 can be determined by matching with test 

data.  Milano found that values of cturb of the order of 5-50 would be appropriate for the Baer-

Mitchell  model.  These values are,  essentially,  arbitrary constants and large variation between 

models is to be expected.  Using the test engine case it was clearly demonstrated that the corner-

flow model carries increased sensitivity to c1  so that one would expect c1 and cturb to be different.

In order to match the value of c1 to a decay rate λ, a method of matching the minimum |

CRES| values predicted by the code was used.   Initially,  the stability of  clean chamber was 

computed with λ = 0 to give a baseline. A range of frequencies spanning the acoustic frequency 

were used.  For the 1R, ω was varied from 3.0 to 4.5.  For the 1T ω was varied from 1.0 to 2.5. 

The damping was then incremented from  λ = 0.05 to 0.20 and the minimum resulting |CRES| 

37



values were noted.  These are the horizontal 'clean chamber' lines on the plots.  Then the stability 

code was run  with  baffles  with  different  values of  c1 using the  Acker/Milano  engine  and the 

minimum |CRES| values from a |CRES|-ω plot were identified.  The results of these studies are 

presented in the following figures.

 The |CRES| vs c1 curves for the corner flow model is presented in Figure 21 for a 1R and 

Figure 22 for a 1T along with the constant |CRES| lines for the clean chamber with varying decay  

parameters. The intersection of the corner flow line with the clean chamber lines gives the value 

of  c1 value that  would  correspond to the clean chamber  decay  λ.  For  example,  for  a  decay 

parameter  λ = 0.10, the equivalent c1 = 0.005.

Figure 21: Minimum |CRES| as a function of  c1  from 0 to 0.05 (Corner flow model 1R)
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Figure 22: Minimum |CRES| as a function of  c1  0 to 0.05 (Corner flow model 1T)

The minimum |CRES| values predicted by the Baer-Mitchell model for larger of c turb are 

presented in Figures 23 and 24.  The increased values of c turb when compared to c1 are likely a 

combination of the length scale in the viscosity term as well  as the removal of the  ε term in 

addition to integration constants coupled with the factor of two added to equations (21) and (22)  

as stated before.  Figures 23 and 24 demonstrate the predicted minimum |CRES| values for both  

the 1R and the 1T mode for the Baer/ Mitchel model.  
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Figure 23: Minimum |CRES| as a function of cturb from 0 to 5 (Baer-Mitchell 1R)

Figure 24: Minimum |CRES| as a function of  cturb  0 to 5 (Baer-Mitchell model 1T)

Using Figures 21 through 24 the value of c1 which most closely matches the default value 

of cturb of 5.0 can be calculated. For cturb = 5.0 from Figure 23 the |CRES| value for the Baer-

Mitchell model for the 1R is approximately 7.5 from Figure 23 and from Figure 24 the |CRES|  
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value for the 1T mode is approximately 2.5.  From Figures 21 and 22 this corresponds to c1 

values of 0.02 and 0.04 respectively.  Taking the average of these two values yields a value of 

0.03.  Therefore, to accurately compare the models a c1 value of 0.03 will be utilized.

4.4: Zmatch variation study

Figures 25-28 demonstrate the dependance of the minimum |CRES| on the location of 

zmatch varying from the injector face to the baffle blade tip.  Again, zmatch is the z location where the 

driving potential difference φ1 - φ2 across the baffle is calculated.  There is a location where the 

model predicts the maximum dissipation to occur.  This point is between the injector face and the 

tip of the baffle.  The maxima is directly due to the interaction of the length scale in the viscosity  

model  and  the  cosine  terms in  the  formulation  of  the  'a'  coefficient.   The coupling of  these 

variables defines the slope of  the minimum |CRES| line.   This occurrence implies that,  as a  

design tool,  it  might be useful to be able to use a variable zmatch.   This additional variable in 

conjunction with  c1 could  make it  possible  to  fine  tunie  the  response of  a  simulated  engine 

geometry to test data.  While the base of the baffle blades is perhaps the most physically correct  

region for the potential difference to be calculated, varying the location of zmatch could allow for 

factors outside of the scope of the model to be accounted for.  Of note is that the value of  c1 

causes the minimum |CRES| value to asymptotically approach the c1 equal to zero case when the 

position of  zmatch is at the injector face.  The 1T and 1R modes seem to have the same general 

shape with varying overall magnitudes.
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Figure 25: Minimum |CRES| value variation as zmatch changes 1R

Figure 26: Minimum |CRES| value variation as zmatch changes 1T

The Baer-Mitchell model appears to be similarly sensitive to the variation of  zmatch for a 

given cturb and similar value of c1.  The location of the maximum predicted dissipation appears to 

occur, for this particular geometry, near the tip of the baffle as opposed to the corner-flow model  
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which predicted the dissipation more towards the middle of the baffle blade.  This is evidence that  

the  corner  dissipation  model  has  a  greater  amount  of  coupling  with  the  wave  shape  and 

surrounding baffle structure than the Baer-Mitchell  model as the velocity potential appears to 

have a greater effect on the predicted dissipation than the formulation of the equations in the  

model.

Figure 27: Minimum |CRES| value variation as zmatch changes 1R Baer-Mitchell
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Figure 28: Minimum |CRES| value variation as zmatch changes 1T Baer-Mitchell

In addition to the location of zmatch the distance from the surface of the baffle blade at 

which the potential is obtained is also of importance. In the Baer-Mitchell model and all previously 

shown plots, the location of matching has been against the surface of the baffle.  An alternate  

method is to place the matching location at the distance away from the baffle blade the streamline 

is predicted to be as shown in Figure 7.  As a means of comparing the differences in dissipation 

between the two matching locations, plots have been provided varying zmatch with the minimum |

CRES| value plotted for each case are shown in Figure 29.  The plots are using a c 1 value of 

1.250. At each point, the distance from the baffle blade to the streamline which corresponded with 

each individual value of  zmatch was computed.  As can be seen, the minimum |CRES| value is 

increased, though only slightly. The difference appears to increase slightly as the location of zmatch 

moves closer to the end of the blade before the lines intersect just before the tip of the blade.  

Looking at the effect on the 1T mode in Figure 30 the difference is very similar to that of the 1R  

mode in appearance with the difference being the magnitude of the |CRES| value.
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Figure 29: Change in minimum |CRES| with different hmatch and bmatch locations for the 1R mode

Figure 30: Change in minimum |CRES| with different hmatch and bmatch locations for the 1T mode

Due to the small effect that the movement of the matching point had on the predicted 

dissipation, the decision was made to leave the matching location at the baffle blade.  This is a  

location which is considerably easier to define and requires no extra calculation.
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4.5: Geometry Effects

Figures 31 and 32 indicate how the energy dissipation rate changes as the baffle length 

and the baffle thickness is changed for a 1T acoustic-oscillation mode with a c 1 value of 0.03.  It 

should be noted that the variable, vdiss, plotted on the y axis is the total energy dissipation for the 

baffle blades.  Similar results were obtained for 1R and 2T oscillation modes.  Since a baffle-

length scale is  now included in the turbulent  viscosity formulation,  the corner-flow model,  as 

indicated in Figure 31,  has a greater dependence on the baffle length than the Baer-Mitchell  

model, in which the energy dissipation rate is almost independent of baffle length.  Of particular 

importance is the tendency of the corner flow model to approach zero as the baffle length nears 

zero.  This effect is not mirrored in the Baer-Mitchell model and has been of particular concern.  

The corner flow model also appears to minimize the irregularities present in the Baer-Mitchell  

model.  In Figure 32, the predictions for both models indicate that there is large energy dissipation 

in the limit of an infinitely thin blade, where the tip velocities would be infinite.  There is also a 

local minimum at a relatively large baffle thickness.  The computations were performed up to 

where the baffle thickness is equal to the baseline baffle length of 0.1 which would result in a 

nearly square baffle blade.
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Figure 31: Energy dissipation rate as a function of baffle length for 1T mode t = 0.05
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Figure 32: Energy dissipation rate as a function of baffle thickness for 1T mode zb = 0.15

The Baer-Mitchell model also seems to predict the minimum due to baffle thickness to 

occur somewhere around 0.04 while the corner-flow model's minimum is at a larger thickness. 

The variation in vdiss between the two models for the baffle thickness is relatively small when 

compared to the variation due to baffle length however.

4.6: Stability Plots

As a final  demonstration of  the corner-flow model several different n-τ and |CRES|-ω 

stability plots are included.  The baseline overall hub/blade geometry had 5 blades, with a hub 

radius  of  rh =  0.4,  blade  thickness  t  =  0.05  and  blade  length  zb =  0.15.   First  are  plots 

demonstrating  the  variation  in  stability  for  the  1T  mode  as  the  number  of  baffle  blades  is 

increased. The minimum value is that of a clean chamber and the plots above it are for numbers 
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of baffles ranging from 2 to 7. A c1 value of 0.03 was used.  As can be seen in Figure 33, an 

increase in the number of baffles for the 1T mode implies a increase in the amount of dissipation 

with  Figure  34  demonstrating  the  same  behavior  but  |CRES|  values.   Note  that  there  is  a 

decreasing stability improvement as the number of blades are increased.

Figure 33: n-τ curves for different baffle arrangements for the 1T mode
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Figure 34: |CRES| curves for different baffle arrangements for the 1T mode

Figure 35 however demonstrates the phenomena that if a baffle blade structure of 2n is 

used for a 2T mode the radial baffles are located at velocity nodes so the dissipation only occurs 

on the hub structure.  It is presented here to demonstrate the code works correctly when such a 

situation is presented.  To illustrate this phenomena, the dissipation at each quadrature point has  

been plotted in in Figure 36. Due to this, designers must choose blade arrangements which do 

not  ignore  oscillatory  modes  commonly  observed  in  a  combustion  chamber.  2T modes  are 

relatively common, and as such blade arrangements of 2 and 4 baffles are inadvisable.
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Figure 35: |CRES| for different baffle arrangements for the 2T mode

Figure 36: Dissipation at quadrature points for a 2 bladed baffle structure. 2T mode
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Variation of the radius of the hub on the stability curves was also performed. Hub radius 

values were changed from 0.1 to 0.8.  It should be noted that in the stability code being used, hub 

sizes less than 0.1 are not allowed by the stability code.

There appears to be a design point at which the optimal dissipation is reached seen in 

Figure 37 and 38.  After the hub has passed a value between 0.5 and 0.6, the stability curves  

begin to show the engine is becoming more unstable.  This is likely due to the potential difference  

between  the  region  outside  of  the  hub  and  the  region  inside  of  the  hub's  potential  values 

becoming smaller.  This is observed in many combustion chambers in application.  Placement of 

the baffle at the location of largest potential gradient ensures that the  baffle is at its most effective 

location assuming that the wave form does not change significantly.

Figure 37: n-τ as a function of hub radius changes (1R, c1 = 0.03)
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Figure 38: |CRES| as a function of hub radius (1R, c1 = 0.03)

For the 1T mode it is clear from Figure 39 that a smaller hub is the most efficient method 

for dissipating wave energy.  This is due to the increase in surface area of the radial baffles at  

smaller hub sizes.  The hub plays a much smaller role in the dissipation of a tangential wave's 

energy.   Figure  40  demonstrates  the  1T  mode  stability  plotted  with  |CRES|.  This  shows 

essentially the same results but plotted using the different variable representation.
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Figure 39: n τ curves as a function of central hub radius (1T, c1 = 0.03)

Figure 40: |CRES| curves as a function of central hub radius (1T, c1 = 0.03)
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Viewing the resultant stability curves while varying the length of the baffles also yields 

some  useful  information.  As  seen  in  Figure  41,  the  engine  responds  positively  in  terms  of  

increasing stability for longer baffle blades.  This is as expected given the results in Figure 41 and 

are mirrored in the |CRES| curves of Figure 42.  Of note is the increase in natural frequency of 

the minimum |CRES| combustion chamber as the length of the baffles is increased.  

Figure 41: Effect of varying baffle length for 1T mode
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Figure 42: |CRES| as a function of baffle length of 1T mode
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5: Summary and Conclusions

The rate of energy dissipation of the baffle blades in a liquid-fueled rocket combustion 

chamber  was computed  using a  corner-flow viscous flow model  that  included unsteady flow 

separation and turbulence effects.  For the inviscid portion of the flow field, a velocity potential  

methodology was formulated using an eigenfunction expansion and a velocity-potential matching 

technique.  Parameters such as local velocity, elemental path length, effective viscosity, and local 

energy  dissipation  rate  were  computed  as  a  function  of  the  local  streamline  angle  α for  a 

representative  baffle  blade,  and  compared  to  results  predicted  by  the  Baer-Mitchell  blade 

dissipation model.

The  overall  baffle  energy  dissipation  rate  was  also  calculated  for  a  hub/blade  baffle 

configuration  in  a  representative  test  engine.  Through the  inclusion  of  a  length  scale  in  the 

turbulent viscosity equation,  the corner-flow model shows a much greater dependence on the 

baffle length than the Baer-Mitchell  model. The corner-flow model also predicts no dissipation 

when the baffle length is zero.

The potential match point was made at the baffle blade to reduce computation time and 

have  the  potential  difference  computed  at  an  easily  definable  position.   A methodology  for 

determining the turbulence coefficient  c1 was developed, and upon comparison with previous 

results a value of c1 = 0.03 was chosen.

Stability plots showed that the addition of additional baffle's has a diminishing return as 

far  as  increased  stability.   The  model  also  predicts  that  certain  baffle  arrangements  are, 

essentially,  invisible  to  various  tangential  modes.   Variation of  the  size  of  the  hub  was also 

performed and the effects of a larger hub size on the stability curves were observed.  The design  

point for maximum dissipation of the 1R mode at approximately half of the chamber's radius was 
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accurately predicted.  The reduction in stability for the 1T mode as the radial blade's surface area 

was reduced with increasing hub radius was also observed.  Increasing the baffle length was 

shown to have an increase in the overall stability of the combustion chamber.
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Appendices

Appendix 1: Polar Vibration Solution

The amplitudes of unforced oscillatory systems are found by solving the Helmholtz equation

∇2⋅Ak2⋅A=0

In this equation ∇2  is the Laplacian, A is the amplitude, and k is the wave number.

The differential equation of a wave in polar coordinates is:

1
r
⋅
d
dr r⋅ d

dr
A 1r2⋅ d 2

d 2
Ak 2⋅A=0

Attempting separation of variables:

A r ,=Rr ⋅

1
r
⋅ d
dr r⋅dRdr⋅ 1r2⋅d

2
d 2

⋅Rk 2⋅R⋅=0

r 2

R
⋅d

2R
dr

 r
R
⋅dR
dr

d 2
d 2

⋅Rk 2⋅r2=0
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Which can be separated:

d 2
d 2

⋅
1
=−n2

r2

R
⋅d

2 R
dr2

 r
R
⋅dR
dr

k 2⋅r 2=n2

Simplifying the equations:

d 2
d 2

n2⋅=0

r 2⋅d
2 R
dr2

2⋅r⋅dR
dr

 k 2⋅r 2−n2 ⋅R=0

Assuming that the period of  Θ is 2π and knowing that with the first derivative term of the  Θ 

equation equaling zero:

=c1⋅e
⋅⋅cos ⋅c2⋅e

⋅⋅sin ⋅

Where:

=−b
2⋅a

=4⋅a⋅c−b2

2⋅a
a=1 b=0 c=n2 =0 =n
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The solution in the Θ direction becomes

=c1⋅cos n⋅c2⋅sinn⋅

Because for the R section the simplified form is Bessel's equation:

R r =Ca⋅J nk⋅r Cb⋅Y nk⋅r 

Because Bessel functions of the second kind (Yn) go to negative infinity at 0 Cb must be equal to 

zero  when  there  is  no  hub.  For  a  system  where  there  are  spars  (drum-head)  or  baffles 

(combustion chamber) the boundary condition is defined as:

A r , Ar o ,
2⋅
 =0 dA

dr ro ,
2⋅
 =0

For the drum and combustion chamber cases respectively. If there were no baffles the equations  

would have values of zero for θ.

A hub is included by dividing the equation for R by Cb which effectively non-dimensionalizes the R 

equation. This makes it so only one matching point is necessary which can be chosen to be the 

hub. The boundary conditions for a hub for a drum-head and a combustion chamber are given by: 

A rh ,=0
dA
dr rh ,=0

Additional vibration information is given in references 10-16
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Appendix 2: Expanded Non-dimensionalization

The  following  table  demonstrates  the  method  by  which  variables  involved  in  the 

calculation of the potential and the energy dissipation are non-dimensionalized.
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Symbol

Pressure P* (Pa) P

Temperature T* (K) T

Density

a* (m/s) a

Radius r* (m) r

Length z* (m) z

Time t* (s) T

Frequency f* (Hz)

u* (m/s) u

U*  (m/s) U

Potential

Dimensional 
Variable

Scaling 
Parameter

Dimensionless 
Variable

ρ* (kg/m3) ρ

Speed of 
Sound

Chamber radius: 
r
c
*

r
c
*

ω

Kinematic 
Viscosity ν* (m2/s) ν

Oscillatory 
Particle 
Velocity

Mean Flow 
Velocity

φ* (m2/s)

Energy 
Dissipation E

diss
*

Product of 
Dimensionless 

Variables E
diss

P*

a *

T *
*

a*
2⋅⋅r c*

a *⋅r c*

a *⋅r c*

a *

a *

a *⋅r c*



Appendix 3: Milano Combustion Chamber Representation

The  following  equations  describe  the  potential  values  (φ)  within  the  engine  chambers.  The 

equations, and their notation, come from Milano8 and are presented here as a reference.

Main Chamber: C=∑
m=0

mC

∑
l=1

lC

Am,l
C ⋅cos m⋅θ ⋅J m λm,l

C ⋅r ⋅Zm,l
C  z 

Baffle Compartment: μ=∑
mb=0

mB

∑
l b=1

lB

Amb ,l b

μ ⋅cosmb⋅μB

2
⋅θ⋅Ψ mb ,l b

r Zmb ,l b

B z 

Hub Compartment: H=∑
mh=0

mH

∑
l h=1

l H

Amh ,l h

H ⋅cos mh⋅θ ⋅J mh λmh ,lh

H ⋅r ⋅Zmh ,l h

H  z 

The function Zm,l(z) for the different compartments is:

Main Chamber: Zm, l
C =

e i⋅ 2−m ,l
C 2⋅z−Le−i⋅ 2−m, l

C 2⋅ z−L

e i⋅ 2−m ,l
C 2⋅z B−Le−i⋅ 2−mh, lh

C 2⋅z B−L

Baffle Compartment: Zm, l
 =

e i⋅ 2−mb , lb
B 2⋅z e−i⋅ 2−mb , lb

B 2⋅z

e i⋅ 2−mb , lb
B 2⋅z Be−i⋅ 2−mb , lb

B 2⋅zB 

Hub Compartment: Zm, l
 =

e i⋅ 2−mh , lh
H 2⋅z e−i⋅ 2−mh , lh

H 2⋅z 

e i⋅ 2−mh , lh
H 2⋅z Be−i⋅ 2−mh , lh

H 2⋅z B
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Coefficients, Am,l,  for standing waves:

Baffle Compartment:

Am',l'
μ =

∑
m=0

mC

∑
l= 1

lC

Am,l
C ⋅∫

θ1

θ2

cos m⋅θ ⋅mb '⋅μ B

2
⋅θ ⋅dθ⋅∫

rH

1

J m λm,l
C ⋅r ⋅Ψ mb ',lb'

r ⋅r⋅dr

∫
θ1

θ2

cos mh⋅θ ⋅mh '⋅θ ⋅dθ⋅∫
0

rH

J mh λmh ,l h

H ⋅r⋅J mh' λmh ',lh '
H ⋅r ⋅r⋅dr

Hub Compartment:

Amh ',lh '
H =

∑
m=0

mC

∑
l=1

lC

Am,l
C ⋅∫

0

2⋅π

cos m⋅θ ⋅cos mh '⋅θ ⋅dθ⋅∫
0

rH

J m  λm,l
C ⋅r ⋅J mh λmh ',lh'

H ⋅r ⋅r⋅dr

∫
0

2⋅π

cos mh⋅θ⋅cos mh '⋅θ⋅dθ⋅∫
0

r H

Jmh λmh ,l h

H ⋅r ⋅Jmh λmh ',lh'
H ⋅r ⋅r⋅dr

Main Chamber:

D1=Amb ,l b

B ⋅∫
θ1

θ2

cosmb⋅μb

2
⋅θ⋅cos m'⋅θ dθ

D2=∫
rH

1

Ψ mb ,l b
r ⋅J m ' λm',l'

C ⋅r ⋅r⋅dr⋅
∂Zmb ,lb

B  zB
∂ z

D3=∫
0

2⋅π

cos m⋅θ ⋅cos m'⋅θ ⋅dθ⋅∫
0

1

J m  λm',l'
C ⋅r ⋅Jm'  λm',l'

C ⋅r ⋅r⋅dr⋅
∂Zmb ,l b

B  zB 
∂ z

D4=Amb ,l b

H ⋅∫
0

2⋅

cosmh⋅⋅cos m'⋅⋅d 

D5=∫
0

rH

J mh
mh ,l h

H ⋅r ⋅J m' m' , l '
C ⋅r ⋅r⋅dr⋅

∂Z mh ,l h

H  z B
∂ z

D6=∫
0

2⋅

cos m⋅⋅cos m '⋅⋅d ∫
0

1

J mm ,l
C ⋅r ⋅J m' m' ,l '⋅r ⋅r⋅dr⋅

∂Z m, l
C  z B
∂ z

Am',l'
C =

∑
μ=1

μ B

∑
mb=0

mB

∑
l b=1

lB

D 1⋅D2 

D3

∑
mh=0

mH

∑
l h=1

l H

 D4⋅D5 

D6
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The forcing function for the combustion chamber is given by the following equation:

F =⋅[1⋅i⋅⋅d udz 1⋅ d udz 
2]...

∂
∂ z

⋅[2⋅u⋅i⋅u⋅d udz ⋅5−2⋅u1⋅d udz ]...
∂2
∂ z 2

⋅[u2 ]−...

N⋅{⋅[⋅i⋅⋅d udz
2⋅⋅ d udz 

2]∂
∂ z

⋅[⋅d udz
⋅2⋅u−u1]}

The equation is a combination of the stabilizing effects of the flow and the instability caused by 

the combustion response N. The first three lines of the above equation are the stabilizing effects 

of the flow while the final line is the destabilizing effect of combustion on the pressure oscillations
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