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ABSTRACT

EXOTIC PHENOMENA IN RARE-EARTH BASED GEOMETRICALLY FRUSTRATED MAGNETS

Rare-earth (RE) based frustrated magnets are ideal systems to explore quantum effects in

materials, which are paramount for the development of quantum computers, MRAM, and other

next-generation technology. RE based materials are of specific interest due to the strong spin-

orbit coupling and crystal electric field effects, which split the degenerate 4 f angular momen-

tum states, often leading to an effective spin-1/2 doublet with anisotropic effective exchange

models. For this reason, RE materials are paramount to investigating the effects of anisotropic

exchange on exotic ground states or quantum phases. Exchange frustration refers to when a

system cannot simultaneously satisfy competing interactions, which can lead to a macroscopic

degeneracy in the ground state of the system. Materials with geometric frustration, where com-

peting interactions occur due to the crystal geometry alone, have been shown to host a wealth

of exotic phenomena, including spin ice phases, quasi-particle excitations, order-by-disorder,

and the highly entangled quantum spin liquid (QSL) state, to name a few.

In this thesis, we will discuss three RE systems that exhibit geometric frustration in addition

to exchange frustration: two RE pyrochlore oxides (RE2TM2O7) and a 2D isosceles triangular

lattice material K3Er(VO4)2. Spin-1/2 antiferromagnetic (AFM) 2D triangular lattice magnets

are an archetype of geometric frustration. While these materials are theorized to host a variety

of different ground states and exotic phases depending on the anisotropies of the system, only a

handful of RE material examples have been explored. We report the first deep dive into one such

system, K3Er(VO4)2. We have determined the ordered magnetic structure of K3Er(VO4)2, finding

an unusual structure with alternating layers comprised of AFM aligned and zero moment. We

theorize this unique structure is due to the strong XY single-ion anisotropy, suggested from

magnetometry measurements, which acts to suppress (to the point of vanishing completely)

the out-of-plane pseudo-spin-1/2 magnetic moments.
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Next, we explored the effects of phase competition in a well-studied effective spin-1/2 RE

pyrochlore oxide, Er2Sn2O7. Previous polycrystalline work has found Er2Sn2O7 to possess a

suppressed critical temperature and an AFM Palmer-Chalker ground state. The determined ex-

change and single-ion anisotropy of Er2Sn2O7 find the ground state lies in close proximity to a

competing AFM phase. Through extensive single crystal heat capacity measurements, we dis-

covered a reentrant field vs. temperature phase diagram, where a system that has developed

order returns to the original, less ordered (paramagnetic) state as some external parameter

(field) is tuned continuously. We investigated the underlying mechanisms behind the reen-

trance by utilizing Monte Carlo simulations, mean field theory, and classical linear spin-wave

calculations. This theory suggests that reentrance is linked to soft modes arising from phase

competition, either from enhanced competition of the proximal AFM phase or from competing

T = 0 field-evolved ground states, depending on the specific applied field direction. In both

cases, the soft modes enhance thermal fluctuations which cause the specific ordered phase to

be entropically stabilized, thus forming a reentrant phase diagram.

Finally, we report recent elastic neutron diffraction results on a RE pyrochlore oxide and can-

didate octupolar spin-ice, Ce2Sn2O7. The pseudo-spin-1/2 moments in Ce2Sn2O7 are known to

possess dipolar-octupolar character and a large parameter space within the phase diagram is

theorized to host novel QSL states. Previous powder neutron diffraction found diffuse scatter-

ing at high scattering vectors associated with magnetic octupoles. However, our undertaking of

a similar measurement on nominally the same sample, found strikingly different results. Our

neutron diffraction resulted in a broad, diffuse signal at low scattering vectors, reminiscent of a

dipolar spin-ice. Neutron diffraction and atomic PDF measurements have not turned up obvi-

ous sample deformities or evidence of oxidation that could explain the differences in the diffuse

signals. Further atomic studies and significant theory work is necessary to fully understand the

results of this measurements, but the similarities to sister compound Ce2Zr2O7 suggest that

Ce2Sn2O7 could lie on a phase boundary that is sensitive to minor distortions.
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Chapter 1

Introduction

1.1 Rare-earth Magnetism

Condensed matter physics is a diverse playground for exploring many-body phenomena.

Within condensed matter, the magnetism caused by unpaired electrons has drawn immense

interest for use in next generation technology. Magnetic materials that preclude order down to

very low temperature enable the study of fundamental questions about many-body quantum

physics.

1.1.1 Magnetic interactions

There are two main methods for unpaired electrons in an insulator to interact with each

other, through either exchange interactions or dipolar interactions. Exchange is a quantum

mechanical effect that comes about from the electron-electron interaction and Pauli exclu-

sion principle. If the electron wave-functions overlap spatially, known as direct exchange, the

Pauli exclusion principle states that when two electrons are exchanged,the wave-function for

the two-electron system must be antisymmetric. As the wave-function is composed of a spin

and spatial part, this requires the spin part to either be symmetric (ferromagnetic exchange) or

antisymmetric (antiferromagnetic exchange) depending on the orbital symmetry. However, in

many magnetic materials, these wave-functions do not overlap, and the exchange interaction

is instead mediated through common non-magnetic neighbors, such as O2−, called superex-

change. Depending on the specifics of the system, superexchange can be larger than direct

exchange, and this is the main exchange interaction that occurs in the rare-earth insulators

studied here due to the localized nature of the 4 f -electrons. For completeness, another form of

exchange within rare-earth metals is the RKKY (Ruderman-Kittel-Kasuya-Yosida) interaction,

1



where the localized f -electrons are coupled with each other through conduction electrons. We

can write the nearest-neighbor exchange interaction as

− J
∑

i , j

Si ·S j , (1.1)

where J is the exchange constant (J > 0 indicates ferromagnetic exchange and J < 0 indicates

antiferromagnetic exchange), and the sum runs over each nearest-neighbor pair. The interac-

tions depends only on the relative orientations of the two spins and the isotropic nature of J is

called the Heisenberg interaction. More complex, anisotropic, or next-nearest neighbor inter-

actions can be modeled simply by changing the nature of the J term.

If there does not exist an inversion center between neighboring atoms, an antisymmetric

exchange can exist, called the DM (Dzyaloshinskii-Moriya) interaction. The DM interaction

takes the form

HDM =
∑

i , j

Di , j · (Si ×S j ), (1.2)

where Di , j is the interaction vector. The orientation of Di , j is constrained by the crystal symme-

try, and in the case of magnetic interaction through superexchange, Di , j will be perpendicular

to the triangular plane formed by the three ions involved.

Dipolar interactions are due to the interaction of two magnetic dipoles. We can write this

interaction between dipoles m1 and m2 as

U = 1

r 3

[

m1 ·m2 −3(m1 · r̂)(m2 · r̂)
]

. (1.3)

The 1/r 3 dependence means that the dipole interaction is relatively long-range, but can some-

times be ignored or limited to nearest-neighbors in the case of small magnetic moments and

depending on the relative strength of other interactions.

Magnetic interactions are vital to magnetic order; without them, ordered magnets would not

exist. At temperatures well-above the mean interactions felt by each spin, thermal fluctuations
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dominate the magnetic interactions and cause the moments to point in random directions.

This is known as the paramagnetic state where the magnetic structure is disordered and there

exists no macroscopic magnetic moment. As the temperature is lowered below the mean in-

teractions of the system, the system will try to minimize the energy of interactions by aligning

the spins in such a way that does this. For a simple 1D chain of Ising spins (point up or down),

this simply equates to aligning the moments parallel (ferromagnetic) or antiparallel (antiferro-

magnetic) to each other. In the case of ferromagnetic order, the aligned moments would form

a spontaneous magnetization below the ordering temperature, and would show a macroscopic

magnetization density. In contrast, antiferromagnetic order shows no spontaneous magnetiza-

tion because the moments sum to zero. More complicated crystal structures and interactions

lead to more elaborate or unconventional magnetic order than these simple examples, and in

the case of frustrated magnets, order can be avoided all together.

1.1.2 Frustrated magnets

The presence of competing interactions is a common occurrence in many magnetic sys-

tems, even if only weakly. This competition is called frustration and can often preclude mag-

netic order, or suppress a magnetic ordering transition to sub-Kelvin temperatures. The more

precise definition of frustration is that the energy of total system cannot be minimized by min-

imizing the interaction energy of the system constituents individually, i.e. the competing in-

teractions cannot be simultaneously satisfied. This leads to many nearly-degenerate states at

low energy and frustrated materials can often possess unconventional phases or other exotic

physics.

This competition can originate through the exchange interactions of nearest-neighbors with

further neighbors or anisotropic exchange, called exchange frustration, or it can come about

from the spatial arrangement of the spins on a lattice, called geometric frustration. A simple

picture for geometric frustration is antiferromagnetically (AFM) coupled Ising spins (point up

or down) on the vertices of a 2D triangular lattice, where the three spins on a single triangle
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cannot all be simultaneously AFM aligned (Figure 1.1 a). This model system, when tiled on a

lattice, exhibits an infinitely degenerate ground state manifold due to these frustrated inter-

actions. Other types of geometrically frustrated lattices include the Kagome lattice (corner-

sharing triangles), the pyrochlore lattice (corner-sharing tetrahedra), and the perovskite lattice

(edge-sharing tetrahedra), to name a few (Figure 1.1).

In real systems, there can be both geometric and exchange frustration, which allows us to

explore the effects of both in various magnetic systems. Additionally, in realizable systems,

frustration can be alleviated by weaker interactions to eventually order at some low temperature

TN while still possessing exotic ground states. The frustration of a system can be parameterized

by the frustration parameter, f , given by

f = |θCW|/TN (1.4)

where θCW is the Curie-Weiss temperature discussed in detail in Section 1.2.2. In essence, the

CW temperature gives a mean scale of interaction strength, so the more suppressed the ordering

temperature (TN ) is compared to those interactions, the more frustrated a system is considered

to be. The suppression of magnetic order down to ultra-low temperature enables the study of

various quantum effects, with a large effort towards the experimental realization of a Quantum

Spin Liquid (QSL). A QSL is a long-ranged entangled quantum state (i.e. it cannot be written as

a direct product state across the spins in the system) without conventional magnetic order that

exhibits fractionalized excitations among other novel features. In contrast to a classical spin

liquid, which possesses a residual entropy down to zero temperature due to the highly degen-

erate ground state, a QSL lacks a residual entropy as the ground state is a single superposition

state that can quantum tunnel between the different configurations. Even when a QSL is not

realized, unconventional physics and order can sometimes be found from proximity to a QSL

state.
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Figure 1.1: a) Canonical example of magnetic frustration, with AFM interacting Ising spins on a triangu-
lar lattice. Depending on the top spin direction, either the left or right interaction cannot be satisfied. b)
The tetrahedron, a 3D analogue of the triangular lattice frustration. Schematics of various geometrically
frustrated lattices: c) triangular lattice composed of edge sharing triangles, d) kagome lattice composed
of corner sharing triangles, e) pyrochlore lattice composed of corner sharing tetrahedra, f) perovskite
lattice composed of edge sharing tetrahedra.

1.1.3 Spin-orbit coupling and crystal field effects

The heavy nature of rare-earth ions typically causes the spin-orbit coupling to be sufficiently

large such that the total angular momentum J is a good quantum number (determined from

Hund’s rules). The isolated single-ion ground state is then composed of (2J +1) degenerate en-

ergy levels. When embedded in a crystal, these degenerate levels are perturbed and thereby

split by the Coulomb interaction with the surrounding crystalline environment which breaks

the rotational symmetry of the single-ion ground state. In the 4 f ions, the effects of the crystal

field are typically small compared to the spin-orbit coupling due to shielding from the 5s25p6

orbitals. Therefore, we can use standard perturbation theory to determine the effects of the

crystal field, and the first step of this is to find the perturbing Hamiltonian and its matrix ele-

ments.

To start, we need to determine the electrostatic potential V (r ) on the unpaired electron from

the surrounding environment. This potential is incredibly complicated to determine because

the surrounding charges (ligands) are distributed in space and may overlap. The resulting theo-

retical framework of determining the potential due to these charge ligands is called ligand field

theory. Due to the complexity, we instead approximate the ligands as static point charges in a

simplified theory called crystal electric field (CEF) theory.

Using the CEF static charge approximation, we can write the electrostatic potential at a

point r as
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V (r ) =
∑

j

q j

|R j − r |
, (1.5)

where {q j ,R j } are the charge and location of the surrounding point charges, and the potential

energy is then

HCEF =
∑

i

qi V (xi , yi , zi ). (1.6)

While this would be sufficient, it can be useful to rewrite Eqn. (1.5) in terms of spherical har-

monics (see Ref. [19] for details) as

V (r,θ,φ) =
∑

n

n
∑

m=−n

r nγnmY m
n (θ,φ) (1.7)

where

γnm =
∑

j

q j

Rn+1

4π

2n +1
(−1)mY −m

n (θ j ,φ j ). (1.8)

In 1952, Stevens showed, using an application of the Wignar-Eckart theorem, that the single-

electron wavefunctions could be replaced by the coupled system wavefunctions by using an

’operator equivalent’ (consisting of angular momentum operators) which acts on the angular

part of the coupled system [19, 20]. Eqn. (1.6) is then written as

HCEF =
∑

n,m
B m

n Om
n , (1.9)

where Om
n are the Stevens’ operators (linear combinations of angular momentum operators),

and B m
n are known as the Stevens’ parameters. Time reversal symmetry constrains n to be even,

and −n ≤ m ≤ n [21]. Additionally, n < 2l , where l is the orbital quantum number of the single

magnetic electrons, means the 4 f rare-earth ions need to only go up to the 6th order at most.

Thinking about this phenomenologically, the surrounding atomic environment is shifting

the relative energies of the magnetic ion’s electron orbitals by the Coulomb interaction. As the
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orbitals have a shape, and the crystallographic environment imposes certain spatial symmetry,

it makes sense that the way in which energies are shifted will be effected by the symmetry of

the surrounding system. More information on symmetry is given in Section 1.3, but for now, it

suffices to say that the specific point group symmetry of the magnetic ion will limit the number

of Stevens’ parameters to be calculated or fit. Higher symmetries, like cubic or hexagonal, only

require 2 to 8 parameters, while low symmetries, like monoclinic or triclinic, can require up to

26 parameters [22, 23, 24, 25].

The point charge calculations are a great place to start when one wants to estimate the

energy levels expected, for example to help determine what neutron energies to use during

a scattering experiment. However, the reverse calculation, determining the CEF Hamiltonian

from experimental data, is significantly more challenging. Experimentally, not all single-ion

energy levels can necessarily be resolved due to either low intensity or they could coincide with

a phonon mode. Additionally, there can be many degenerate best fit solutions in the case of

low symmetry systems where there are a large number of parameters to fit. This can be miti-

gated by initiating the experimental fits from the point charge calculations, but this is not al-

ways successful. Recently, an ’effective point charge model’ has been put forward [22] where

the charge on the surrounding point charges or ligand environment is fit to the data rather than

the Steven’s parameters. This greatly limits the number of fitting parameters to solely the sur-

rounding ligands, and has been shown to be successful for a number of rare-earth pyrochlore

materials (high symmetry) as well as for some Kagome materials (lower symmetry).

The nature of the CEF splitting is also dependent on the number of electrons the system con-

tains by Kramers’ theorem. This theorem states that an odd number of electrons (half-integer

total angular momentum J ) requires the single-ion energy eigenstates to be at least doubly de-

generate and respect time reversal symmetry. Systems with an even number of electrons are

time reversal even, so any degeneracy is coincidental and imposed by the crystal symmetry

alone. In systems where the CEF splitting creates a large energy gap (∆) between the ground and

first-excited states (as is often the case in the rare-earth pyrochlores, for example), the ground
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Figure 1.2: The pyrochlore structure showing corner-sharing tetrahedra on both the a) A-site and the
b) B-site, which interpenetrate each other. c) The oxygen cage surrounding a single A-site ion. The
difference in A-O’ and A-O is responsible for the single-ion anisotropy.

state can be considered isolated at temperatures well below this (kB T ≪∆). In this case, when

the ground state is a doublet, we can project the system onto an “effective” spin-1/2 basis due to

the two degrees of freedom. This is ideal for studying quantum effects and makes the rare-earth

frustrated magnets an ideal model system for studying a wealth of phenomena.

1.1.4 Rare-earth pyrochlore oxides, A2B2O7

The rare-earth (RE) pyrochlore oxides are some of the most well-studied 4 f magnetically

frustrated systems. The pyrochlore structure consists of a magnetic sublattice of corner-sharing

tetrahedra (Figure 1.2 a and b), which, as discussed previously, is one of the archetypes of 3D

frustrated geometries. With the general chemical formula A2B2O7, where the A-site is often a

magnetic trivalent rare-earth ion and the B-site is typically a tetravalent non-magnetic transi-

tion metal ion, one can see that there are a wide range of materials that can be studied within

the RE pyrochlore oxides. The single-ion anisotropy, exchange anisotropy, and magnetic mo-

ment of the A-site can vary dramatically depending on the rare-earth ion used, and therefore we

can explore how these influence the ground state. Similarly, we can use different B-site atoms

to explore the effects of chemical pressure.

The ionic radius of the rare-earth series decreases systematically as the number of electrons

increases, known as lanthanide contraction. The ratio of the A3+/B4+ radii determines whether
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the pyrochlore structure can be stabilized, albeit with a few exceptions [26]. A structure stabil-

ity map was created in 1993 by Subramanian and Sleight [27] which showed that tin (Sn) is the

only B-site ion that could form the entire rare-earth series in the pyrochlore structure. Poly-

crystalline synthesis is relatively straight forward for the RE pyrochlores using standard solid

state synthesis, heating stoichiometric ratios of powder up to around 1400◦C . For the tin-based

pyrochlores, often the inclusion of extra SnO2 during synthesis is required in order to form the

structure due to the volatility of tin. For small B-site radii (ex: Ge), high pressure synthesis may

be required [28, 29, 30, 31, 32]. Single crystal synthesis techniques are more diverse, utilizing

techniques such as floating zone synthesis, vapor transport, and hydrothermal synthesis, de-

pending on the desired system. Due to the similar radii of the A- and B-site, as well as the fact

that some rare-earth ions have other stable oxidation states (ex: Ce3+ and Ce4+), site-mixing

and defect formation is possible. The number of defects is often small and difficult to detect,

but even low defect densities can have profound effects on the ground state and physics at

play due to low interaction strengths and frustration, and is therefore an active area of research

within this field.

The RE pyrochlores form in the cubic space group F d3m (227) at room temperature. The

oxygen cage surrounding a single A-site, shown in Figure 1.2 c), possesses D3d (trigonal) point

group symmetry and forms a distorted cube. The difference in bond length between A-O’ and

A-O is responsible for the single-ion anisotropy found in the RE pyrochlores, and can give a

pronounced axial symmetry with respect to the local 〈111〉 axis (O’-A-O’). We can quantify the

single-ion anisotropy by exploring the CEF Hamiltonian,

HCEF = B 0
2Ô0

2 +B 0
4Ô0

4 +B 3
4Ô3

4 +B 0
6Ô0

6 +B 3
6Ô3

6 +B 6
6Ô6

6, (1.10)

where l = 2,4,6 and the non-zero terms are determined from the D3d point group, discussed

in Section 1.1.3. The sign of the first term in the CEF Hamiltonian, B 0
2 , coincides with the axial

symmetry in such a way that B 0
2 > 0 (A = Sm, Er, Tm, Yb) corresponds to easy-plane anisotropy

(perpendicular to 〈111〉, also known as XY-like) and B 0
2 < 0 corresponds to easy-axis anisotropy
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(also known as Ising-like) [26]. This is also seen in the anisotropic g -tensor, where g⊥ > g ||

indicates XY-like and g || > g⊥ indicates Ising-like anisotropy [33].

The CEF splitting in RE pyrochlores of interest can often lead to an isolated doublet ground

state, as discussed in Section 1.1.3. We can denote the isolated doublet as |±〉 with a pseudo-

spin operator S. A ground state doublet can then be classified by the point group symmetry to

fall into the following categories: effective spin-1/2 doublet (Kramers’ ion), “dipolar-octupolar”

doublet (Kramers’ ion), and non-Kramers’ doublet. The effective-spin-1/2 doublet is the most

familiar, where the pseudo-spin behaves identically to an S = 1/2 spin. The “dipolar-octupolar”

(DO) doublet is deemed such because part of the pseudo-spin transforms as a magnetic dipole

while the rest transforms as a magnetic octupole, and this occurs for A = Ce, Nd, and Sm [4, 33,

34]. Finally, the non-Kramers’ doublet transforms in part like a magnetic dipole, and in part like

an electric quadrupole [33, 35].

We can describe the nearest-neighbor anisotropic exchange Hamiltonian for each of these

cases individually. Starting with the effective spin-1/2 doublet, we have

H =
∑

〈i j 〉
J
µν

i j
S
µ

i
Sν

j , (1.11)

where J
µν

i j
is the exchange matrix that allows anisotropic exchange between the spatial coordi-

nates of each spin in the global coordinate (crystal) frame and Si = (Sx
i

,S
y

i
,Sz

i
) are the pseudo-

spins-1/2 defined in the global basis (note, the Einstein summation convention is used for the

implied sum over µ and ν). The global basis is defined by a single tetrahedra centered at the

origin, and the four corners are defined as r0 = a
8 (1,1,1), r1 = a

8 (1,−1,−1), r2 = a
8 (−1,1,−1), and

r3 = a
8 (−1,−1,1), where a is the lattice parameter for the conventional FCC lattice. The point

group symmetry constrains this model to have only four unique nearest-neighbor couplings,

labelled J1, J2, J3, and J4, which correspond approximately to XY-like, Ising-like, off-diagonal,

and DM exchange, respectively [36]. The bond-dependent interaction matrices between two

spins are given by
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[111]

Figure 1.3: a) The sites of a single tetrahedron in the pyrochlore lattice. The bond-dependent interac-
tions between magnetic ions are given by Eqn. (1.12). b) The local [111] axis, equivalent to the C3 sym-
metry axis, is shown for two corner sharing tetrahedra on the pyrochlore lattice. c) All-in-all-out (AIAO)
ordered magnetic structure. d) One possible spin-ice configuration on the pyrochlore lattice, which fol-
lows the ice-rule that two spins point into and two spins point out of the center of the tetrahedra.
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
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






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
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
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
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J1 J4 −J3

−J4 J2 J4

−J3 −J4 J1


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


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
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
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









J2 −J4 J4

J4 J1 −J3

−J4 −J3 J1















(1.12)

where J01 is the interaction between the spins located at r0 and r1, for example, and these are

all related to each other through cubic rotations. [1, 37].

We can recast this Hamiltonian in the global frame to a local frame, where zlocal
i

is the local

C3 symmetry axis of the crystal field on site i , also known as the local 〈111〉 (Figure 1.3 b). This

leads to

H local =
∑

〈i j 〉
[JzzS

z
i S

z
j − J±(S+i S

−
j +S

−
j S

+
i )+ J±±(γi jS

+
i S

+
j +γ∗

i jS
−
i S

−
j )

+ Jz±(Sz
i (ζi jS

+
j +ζ∗i jS

−
j )+ i ↔ j )],

(1.13)

where
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ζ=





















0 −1 e i π
3 e−i π

3

−1 0 e−i π
3 e i π

3

e i π
3 e−i π

3 0 −1

e−i π
3 e i π

3 −1 0





















, γ=−ζ∗ (1.14)

and Jzz = −1
3 (2J1 − J2 +2J3 +4J4), J± = 1

6 (2J1 − J2 − J3 −2J4), J±± = 1
6 (J1 + J2 −2J3 +2J4), Jz± =

1
3
p

2
(J1 + J2 + J3 − J4). The spin S

µ

i
is now defined in the local single-ion basis with z being the

easy axis. More explicitly, we define the local basis as

ê0 =
1
p

3
(1,1,1), â0 =

1
p

6
(−2,1,1)

ê1 =
1
p

3
(1,−1,−1), â1 =

1
p

6
(−2,−1,−1)

ê2 =
1
p

3
(−1,1,−1), â2 =

1
p

6
(2,1,−1)

ê3 =
1
p

3
(−1,−1,1), â3 =

1
p

6
(2,−1,1)

(1.15)

where b̂i = êi × âi . This also allows us to easily write the Hamiltonian associated with the non-

Kramers’ doublet, as the time reversal symmetry even property leads to Jz± = 0, otherwise the

equation is unchanged. The Hamiltonian for the DO pyrochlores is also a simplification of

Eqn. (1.13), where ζi j = γi j = 1. This gives

H =
∑

〈i j 〉
JxxS

x
i S

x
j + Jy yS

y

i
S

y

j
+ JzzS

z
i S

z
j + Jxz(Sx

i S
z
j +S

z
i S

x
j ), (1.16)

where Jxx = 2(J±±− J±), Jy y =−2(J±±+ J±), and Jxz = 2Jz±. The final term in Eqn. (1.16) can be

removed by a careful transformation, resulting in a ‘simple’ XYZ Hamiltonian [4, 33].

Much theoretical work has gone into determining the various and sometimes exotic mag-

netic ground states that result from these different Hamiltonians. It is found that the ordered

magnetic states typically have a q = 0 structure, which means the magnetic unit cell and crys-

tallographic unit cell are the same. This allows the magnetically ordered phases to be organized

by the transformation properties under the point group symmetry. For the effective spin-1/2
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case, five ordered phases occur within the D3d point group: A2g (Γ3), Eg (Γ5), T1g and T ′
1g (Γ9),

and T2g (Γ7). The Γ3 phase is known as the all-in-all-out (AIAO) phase (Figure 1.3 c), where all

spins point either into or out of the center of the tetrahedra (along zlocal). Γ9 contains both the

spin-ice ordered magnetic structure, which follows the “ice rule” that two spins point into the

tetrahedra and two spins point out (Figure 1.3 d), as well as the splayed ferromagnetic state. Γ7

is known as the Palmer-Chalker (PC) state, which will be described in detail in the following sec-

tion. Finally, the Γ5 state is unique in that it possesses an accidental U(1) degeneracy where the

spins can rotate continuously in the local XY plane (perpendicular to zlocal) without changing

the energy of the system at the mean field level. The DO pyrochlores have four ordered phases:

A1g (Γ1) and A2g (Γ3) are octupolar and dipolar AIAO phases, respectively, while T1g (Γ9) and

T2g (Γ7) are dipolar and octupolar spin-ice phases, respectively [33].

Quantum fluctuations, disorder, or phase competition can destabilize these ordered mag-

netic phases and lead to a plethora of exotic collective behavior. As there are a large number of

studied pyrochlores, we will not go in to the specifics of all of them and will instead focus on the

pyrochlores relevant to this thesis. However, we would like to guide the interested reader to two

useful review articles, Ref. [26] and Ref. [33].

Er2Sn2O7

Er2Sn2O7 has been an enigma of the rare-earth pyrochlores since it’s physical properties

were first measured. The tin-based pyrochlores are notoriously difficult to synthesize as single

crystals due to the volatility of tin-oxide, therefore the previous work on Er2Sn2O7 has been per-

formed on polycrystalline samples. Any evidence of a magnetic ordering transition in Er2Sn2O7

avoided detection [38, 39, 40] until 2017 when a second-order antiferromagnetic transition was

discovered at TN ∼ 100 mK through neutron diffraction, magnetic susceptibility, and heat ca-

pacity measurements [15, 16]. The crystal field Hamiltonian was explored using inelastic neu-

tron scattering [38] and found excited multiplets at E = 5.1,7.6, and 17.2 meV. Using Eqn. (1.10),

the authors of Ref. [38] determined the Steven’s parameters which allowed the characteriza-

tion of the single-ion g -tensor. This showed that Er2Sn2O7 possesses a strong XY (easy plane)
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Table 1.1: Properties of well-known XY pyrochlores in comparison to Er2Sn2O7 showing the strong XY
single-ion nature as well as the suppressed transition temperature.

Er2Sn2O7 Er2Ti2O7 Yb2Ti2O7 Yb2Ge2O7

g⊥ 7.52 6.8 4.2 4.2
g || 0.054 2.6 1.8 1.9

TN (K) 0.01 1.2 0.25 0.57
Ordered state Γ7 (PC), AFM Γ5(ψ2), AFM Γ9, FM Γ5(ψ3), AFM

single-ion anisotropy. The g -values in comparison to other well-known pyrochlores are shown

in Table 1.1.

Magnetic Bragg peaks emerged in the elastic neutron scattering (ENS) signal below the or-

dering transition on top of nuclear Bragg peaks, indicating the magnetic and crystallographic

unit cell are the same and Er2Sn2O7 therefore possesses a k = 0 ordering wavevector. Utilizing

representational analysis (Section 1.3.1), the authors of Ref. [16, 38] found Er2Sn2O7 orders into

the Γ7 Palmer-Chalker AFM phase. The gradual increase in ordered moment as temperature is

decreased past TN indicates the transition is second order and the ordered Er3+ moment at the

lowest measured temperature is 3.1µB , greatly lowered from the single-ion value of ∼ 9µB .

Inelastic neutron scattering (INS) in the field polarized regime (above ∼ 1.5 T) allowed the

estimation of the anisotropic interaction tensor from Eqn. (1.11) using linear spin wave theory

(LSWT). Typically single crystal samples are ideal for the LSWT analysis because they provide

more information about the anisotropic nature of the sample. However, as previously men-

tioned, only polycrystalline samples were available, therefore the applied field direction is aver-

aged over all crystallographic directions. Consequently, the authors performed a quasi-powder-

average by averaging over the high symmetry directions in the LSWT calculations. Placing the

additional constraint J4 = 0, as the DM interaction is typically small in these materials, authors

found the full interaction tensor, which placed Er2Sn2O7 within the Γ7 PC phase, in agreement

with the ENS conclusions.

Classical Monte Carlo simulations were performed, similarly using the constraint J4 = 0 and

the additional constraint J3 < 0 motivated by the estimated parameters of Yb2Ti2O7, Er2Ti2O7,

and Er2Sn2O7, to investigate the T = 0 ground state phase diagram of the family of XY frustrated
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Figure 1.4: Classical ground state phase diagram for effective spin-1/2 pyrochlores with J4 = 0 and J3 < 0.
The spin configurations for each phase is shown, and various studied materials are also placed in the
respective phases. Note: Yb2Ge2O7 does not have a J4 equal to zero, therefore the placement on the
phase diagram is for qualitative purposes. Figure adapted from Refs. [1] and [2].

magnets [1], which is shown in Figure 1.4. With the anisotropic interaction parameters deter-

mined, Er2Sn2O7 along with other XY pyrochlores can be placed on the phase diagram. Inter-

estingly, many of these systems lie in proximity to one or more phase boundaries and show

unique behavior. Yb2Ti2O7, for example, lies near the ψ2 and ψ3 (basis vectors of the Γ5 phase,

see Section 1.3.1) phase boundary and shows rods of diffuse scattering in neutron scattering

measurements. Note, Yb2Ge2O7 has a non-negligible J4 value and therefore cannot technically

be placed on this diagram, however, we placed a qualitative point to illustrate the proximity of

the Yb2Ge2O7 ground state to the Γ9, ψ2, and ψ3 phase boundaries.

Er2Sn2O7 can be seen to lie on the border between the PC phase and the ψ2 phase, likely

tuned by chemical pressure from Er2Ti2O7. As discussed, competition can hinder magnetic

ordering, whether due to the frustrated magnetic moments or due to proximal ground state

phases. This is illustrated by the transition temperature. Classical Monte Carlo calculations

predict a first-order transition at T MC
N

∼ 200 mK, meaning phase competition or quantum fluc-

tuations not accounted for by the classical model are likely suppressing the magnetic order to
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lower temperatures. In addition to the ψ2 phase, Er2Sn2O7 is in proximity to a disordered region

and a k =
(1

2 , 1
2 , 1

2

)

state [16, 41]. For these reasons, Er2Sn2O7 is an ideal model for studying the

effects of phase competition, for example in an applied magnetic field (which would require the

use of single crystal samples).

Ce2Sn2O7 and Ce2Zr2O7

The DO pyrochlores have received recent attention due to the discovery of potential QSL

candidates Ce2Sn2O7 and Ce2Zr2O7. Unlike other QSL candidates, the Hamiltonian of the DO

pyrochlores is described by a simple XYZ Hamiltonian, allowing the full parameter space of the

phase diagram to be explored, as was done by Ref. [4]. The authors start by rewriting Eqn. (1.16)

as

H =
∑

〈i j 〉

[(

∑

α=x,y,z
Jατ

α
i τ

α
j

)

+ Jxz

(

τx
i τ

z
j +τz

i τ
x
j

)

]

, (1.17)

where pseudo-spin- 1
2 operators τx

i
and τz

i
transform like components of the magnetic dipole

oriented along the C3 symmetry axis (local 〈111〉), and τ
y

i
transforms as a component of the

magnetic octupole (Figure 1.5 a) [3]. A global transformation such that τα
i
−→ τ̃α̃

i
then reduces

the problem to

H =
∑

〈i j 〉

∑

α=x̃,ỹ ,z̃
J̃ατ̃

α
i τ̃

α
j . (1.18)

The global phase diagram was explored through cluster mean field theory and exact diagnoliza-

tion and is shown in Figure 1.5 b, adapted from Ref. [4]. There were found to be four U(1) QSL

phases, and two ordered phases. The QSL phases are the dipolar or octupolar U(1)0 or U(1)π,

where the 0 or π indicate the U(1) flux penetrating the hexagonal plaquette inherent to the py-

rochlore structure. These QSL phases make up approximately 20% of the global phase diagram,

exemplifying why the DO pyrochlores are excellent candidates for the experimental realization

of a QSL.
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Figure 1.5: a) Visualization of the dipolar/octupolar nature of the DO pyrochlores, where the x and z

components of the pseudo-spin transform as components of the magnetic dipole and the y component
transforms as a component of the magnetic octupole. Image credit: Ref. [3]. b) The ground state phase
diagram for DO pyrochlores using the XYZ model, parameterized such that J̃ x̃ = Jcos

(

φ
)

sin
(

ψ
)

, J̃ ỹ =
Jsin

(

φ
)

sin
(

ψ
)

, and J̃ z̃ = Jcos
(

ψ
)

, where J is an overall scale factor. Two ordered phases and four QSL
phases are found within this phase diagram, with ∼ 20% of the phase space corresponding to the QSL
phase. Figure adapted from Ref. [4].

Understanding the disorder in these materials is crucial to understand how it effects the

ground state. This is especially challenging in the Ce-based DO pyrochlores, as the 3 + /4+

oxidation states are stable, therefore disorder in these materials is highly probable. Oxidation

effects are readily apparent in Ce2Zr2O7, where stoichiometric powders are seen to degrade in

air on the order of minutes to hours [42]. Single crystal samples are more air-stable due to

less surface area exposure. Lattice parameter studies are able to quantify the level of oxidation

present [43], as well as thermogravimetric [44] and atomic PDF measurements [18]. Ce2Sn2O7

suffers the same single crystal synthesis challenge as Er2Sn2O7, but surprisingly, Ce2Sn2O7 pow-

ders seem to be less susceptible to oxidation compared to Ce2Zr2O7. Previous powder studies

find Ce2Sn2O7 samples are air-stable for years [18].

Both Ce2Sn2O7 and Ce2Zr2O7 do not show any evidence of ordering at the lowest tempera-

tures measured (∼ 50 mK) in heat capacity and neutron scattering measurements [3, 18, 42, 45,

46]. The single-ion properties were explored through INS crystal field measurements, and the

crystal field splitting was found to be very similar between the two compounds. The ground

state is well separated by ∆E ∼ 50 meV (∼ 5 K) from the first excited state and in both cases
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the ground state doublet wave-function is a linear combination of the |m Jz = ±3/2〉 states, as

expected for the DO pyrochlores.

An essential puzzle piece is to determine the interaction parameters that would allow the

DO pyrochlores to be placed in the phase diagram of Figure 1.5. A dipolar QSL is found when

the easy axis is along the dipolar component (i.e. |J x̃ | > |J ỹ | or |J z̃ | > |J ỹ |), while an octupolar QSL

is found when the easy axis is along the octupolar component (i.e. |J ỹ | > |J x̃ |, |J z̃ |). Assuming

no dipolar interactions, due to the small moment of Ce3+ (∼ 1.2µB ), Ref. [3] determined the

interaction parameters of Ce2Zr2O7 using numerical linked cluster calculation fits to the heat

capacity and susceptibility experimental measurements. These calculations constrained the

ground state to lie within the dipolar U(1)π QSL state, on the boundary between dipolar and oc-

tupolar phases. The spin-flip channel of polarized neutron scattering measurements are well-

reproduced with the determined interaction parameters, however, the poor agreement with the

non-spin-flip channel suggests further neighbor or dipolar interactions may be important.

In contrast, Ce2Sn2O7 shows no evidence of magnetic dipole scattering and instead was

found to possess diffuse neutron scattering at high momentum transfer (peaked around Q =

8 Å−1), attributed to the scattering by magnetic octupoles [18]. Mean field calculations us-

ing Eqn. (1.16), with the simplification Jxx = Jxz = 0, found two sets of Jy y and Jzz best fit

the measured field dependent heat capacity, magnetization, and effective magnetic moment

µeff ∝ (χ×T )1/2. One of these sets places Ce2Sn2O7 in an all-in-all-out octupolar ordered regime

with “hidden” order, which was ruled out based on the absence of an ordering transition. The

second set of parameters places Ce2Sn2O7 in the octupolar ice configuration. A similar anal-

ysis to Ce2Zr2O7 would be beneficial to determine the exact ground state utilizing all allowed

interaction parameters.

1.1.5 Rare-earth triangular lattice materials

Within frustrated materials, edge-sharing triangular lattices with Ising AFM coupled spins

are the canonical example of geometric frustration. While transition metal triangular lattice
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a) b) c)

Figure 1.6: Schematics of a) 120◦ magnetic order, b) quantum spin liquid with fluid valence bonds (spin
pairs), and c) stripe order on a 2D edge-sharing triangular lattice.

materials have been well-studied, there has been a surprising lack of rare-earth based trian-

gular lattice materials and thus a significant gap in our knowledge of the role of exchange and

single-ion anisotropy in these systems. These materials gained theoretical popularity in 1973

after P.W. Anderson introduced his theory of resonating valence bonds forming a quantum liq-

uid on the triangular layer lattice, where the ground state is a fluid of mobile valence bonds

(spin pairs) [47]. Since then, theoretical work has focused on elucidating the ground state phase

diagram associated with the spin-1/2 Heisenberg Hamiltonian on the triangular lattice. The au-

thors of Ref. [48] used density matrix renormalization group calculations and first- and second-

neighbor Heisenberg interactions (J1 and J2, respectively) on a triangular layer lattice to find

two ground state magnetic orders. For small J2 (compared to J1), a 120◦ order is stabilized, and

for large J2, the ground state forms a striped order (Figure 1.6 a and c, respectively). However,

for an intermediate region within this model, a spin liquid state could be realized (Figure 1.6 b)

[48].

In real materials, subtle deviations can have significant impacts on the eventually realized

ground state of a system. For example, triangular lattice materials can often show symmetry

lowering transitions at low temperature where the lattice deviates from perfect equilateral tri-

angles. Additionally, further neighbor interactions can act to stabilize an ordered phase, for

example, the out-of-plane interactions in layered materials (depending on the inter-layer to

intra-layer distance ratios). For large inter-layer distances, the system can often be treated as

an effective-2D lattice where the out-of-plane interactions are effectively ignored.
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The most famous example of a rare-earth frustrated triangular lattice is that of YbMgGaO4.

Unlike the sister compounds, YbCuGaO4, Lu(Cu/Co)GaO4, and Lu(Zn/Cu)FeO4, which all show

a spin glass state, YbMgGaO4 does not show evidence of ordering or spin freezing down to

50 mK [49, 50, 51]. Integrated heat capacity measurements showed the entropy plateaus at

Rln(2), suggesting a well-separated effective spin-1/2 ground state. This was corroborated by

inelastic neutron scattering (INS) crystal field investigations, which found the first excited state

to be separated by 38 meV from the ground state, although the CEF transitions were broader

than the instrument resolution, likely due to the presence of Mg/Ga site disorder [49]. Elastic

scattering found no Bragg peaks down to the lowest measured temperatures, and, most im-

portantly, INS found broad continuous excitations originally proposed to be associated with

spinons from a QSL state [49, 50]. The candidate QSL state was contested from further DMRG

calculations that extend the phase diagram by including anisotropic exchange (specifically XXZ

anisotropy that is found in YbMgGaO4) [52]. This work placed YbMgGaO4 in a striped phase

rather than QSL phase, and suggested the striped phase is susceptible to orientational disorder

from the Mg/Ga site randomization. This was argued to cause YbMgGaO4 to “mimic” a spin-

liquid-like state, and that in actuality YbMgGaO4 is likely composed to short-ranged stripe-like

domains.

Although it remains controversial, YbMgGaO4 seemed to reinvigorate rare-earth triangu-

lar lattice investigations. In the last few years, many materials in the alkali metal rare-earth

chalcogenide family, AREC h2 (A+ = Na, K, Cs, and Li, RE 3+ = rare-earth ions, mostly Yb, Er,

and Ce, and C h2− = O, S, Se, and Te), have been receiving recent attention [53, 54, 55, 56, 57,

58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73]. The materials not containing oxygen

are typically found to have small single-ion separations between the ground and first excited

states, and therefore the CEF scheme often needs to be investigated. Recently NaYbO2 has been

highlighted as a QSL candidate, as it possesses no magnetic order down to 50 mK investigated

through ENS and heat capacity, and does possess non-negligible inter-layer exchange (inter- to

intra-layer ratio is 1.6, in contrast to YbMgGaO4 with a ratio of 2.5). There is still plenty of work
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to do to fully investigate this family of materials (as well as other triangular lattice materials)

with potential for more QSL or exotic states.

1.2 Experimental Techniques

1.2.1 Heat capacity

Heat capacity is an essential measurement in condensed matter physics for material charac-

terization. While the textbook definition of heat capacity is simply the amount of heat required

to raise the temperature of the material by 1 K, the utility of such measurement is much greater

than the definition suggests. Low temperature heat capacity specifically can be used to study

phase transitions (crystallographic or magnetic) and magnetic properties. We will first discuss

the theoretical signatures [6, 74, 75] we expect to see during a heat capacity measurement, then

we will discuss the instrument specific considerations [5, 76, 77] for performing a heat capacity

experiment.

Theoretical considerations

The mathematical definition of heat capacity at constant volume is given by

Cv =
(

∂U

∂T

)

v

, (1.19)

where U is the internal energy of the system. Typical heat capacity signatures that we mea-

sure can fall into one of three categories which I will discuss separately: phonon contributions,

Schottky anomalies, and phase transitions.

First, we will explore the effects of phonons. In a static lattice, the specific heat of a metal

was theorized in the Sommerfeld theory of metals to be proportional to temperature (T ) due to

the free electron degrees of freedom (d.o.f.). This would mean that the heat capacity of insula-

tors should not deviate much from the T = 0 value, however, this was not seen experimentally.

This is because the lattice d.o.f. contribute to the heat capacity as well. We call these quantized
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lattice vibrational modes “phonons”. At low temperatures compared to the optical phonon fre-

quencies, we can approximate the heat capacity as

Cv ∼ 2π2

5
kB

(

kB T

~c

)3

(1.20)

due to the linear dispersion of acoustic phonons in three dimensions. We often see this char-

acteristic T 3 behavior when measuring heat capacity in the T > 1 K range. In our work, we

are interested in the magnetic behavior rather than the lattice behavior, so it is sometimes nec-

essary to remove the phonon contribution. The easiest way to do this is to perform a similar

measurement with a non-magnetic analogue, as it should have a nearly identical lattice (and

thus lattice vibrations) but will not contribute any magnetic signal.

Next, we will discuss the heat capacity from a two level system, called a “Schottky anomaly.”

For a two-level system with discrete energy levels at ε1 = 0 and ε2 =∆, we can write the partition

function as

Z =
∑

i

e−βεi

= 1+e−β∆,

(1.21)

where β= 1
kB T

. Given the definition of internal energy for N particles as U =−N ∂
∂β lnβ, we find

U = N
∆e−β∆

1+e−β∆

= N
∆

eβ∆+1

(1.22)

To find the heat capacity related to this internal energy, we can begin by rewriting Eqn. (1.19) as

C =
(

∂U

∂T

)

=
(

∂β

∂T

)(

∂

∂β

)

U

= −1

kB T 2

(

∂U

∂β

)

(1.23)
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and inserting Eqn. (1.22) into Eqn. (1.23) we find

C =−N
∆

kB T 2

∂

∂β

(

1

eβ∆+1

)

= N
∆

2

kB T 2

eβ∆

(eβ∆+1)2

= N kB

(

∆

kB T

)2 e∆/kB T

(e∆/kB T +1)2
.

(1.24)

One can plot this result as a function of temperature to find that a broad peak appears in the

heat capacity with a maximum at kB T ∼ 0.417∆ (which can be rewritten as ∆∼ (0.21 meV/K)T ).

Thinking about this on a more qualitative level, at low-enough temperature we expect only

the ground state to be populated and there is little change in the internal energy with respect

to temperature. As temperature is increased, the excited level begins to be populated and the

internal energy increases dramatically, hence the heat capacity will increase. With a further in-

crease in temperature, eventually both states will be equally populated and the internal energy

will fall back, thus creating the anomalous peak in the heat capacity. This same process can be

applied for any finite level system with discrete energy levels.

Experimentally, we can utilize the signature of a Schottky anomaly to estimate the energy

level separation in our system. As discussed in Section 1.1.3, the frustrated rare-earth mag-

nets we study typically have well-separated single-ion energy levels, on the order of 50−100 K

(5−10 meV) between the ground and first excited state, and thus we would be unlikely to see

a Schottky anomaly during a low-temperature (< 4K) measurement. However, as is found in

Chapter 2, low-lying single-ion energy levels can exist and it can be necessary to characterize

them in order to separate out features of interest from the Schottky anomaly.

The final, and perhaps most important, heat capacity signature that we are interested in is

due to phase transitions (specifically magnetic ordering). In a magnetic crystal lattice, a phase

transition occurs when there is a sudden rearrangement in the system, whether that be the atom

positions or the magnetic spin directions. For example, as temperature is lowered in a system,

it can be energetically favorable for atoms to be slightly displaced from their higher symmetry
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Figure 1.7: Illustrative graphical representations of the free energy, F , entropy, S, and heat capacity, C ,
for first and second order transitions near the critical temperature, Tc .

positions. This is called a symmetry lowering transition. The same is true for a transition from

a paramagnet, where all of the magnetic spins point in random orientations, to a ferro- or an-

tiferromagnet. A paramagnet has spherical spin symmetry, while an ordered magnet will have

some lower symmetry (the specific symmetry depends on the system of study).

In order to discuss the experimental heat capacity signature of a phase transitions, we first

need to introduce the distinction between a first- and second-order phase transition. A transi-

tion is considered first-order when the state changes suddenly, or discontinuously, between two

states (i.e. there is a phase coexistence). In contrast, a second-order transition is a continuous,

gradual change in the state, and there is no phase coexistence because there is only one phase.

In both cases, if the symmetry changes, it does so discontinuously, but the gradual change re-

quired for a second-order transition dictates that the lowered symmetry must be a subgroup

of the symmetry prior to the transition. During a first-order transition, there is an associated

latent heat, so the free energy will have a kink at the critical temperature (Tc ) and the entropy

will have a discontinuity, ∆S. As the heat capacity is related to the entropy by a derivative, it
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will exhibit a vertical asymptote at Tc , experimentally realized as a sharp, λ-looking, peak. See

Figure 1.7 for a graphical summary of first- and second-order transitions. How we differentiate

these transitions experimentally will be discussed later.

Experimental considerations

To more easily relate the heat capacity to experimental measurements, we can rewrite Eqn.

(1.19) as

Cp =
(

∆Q

∆T

)

p

, (1.25)

where ∆Q is the amount of heat added to the system and we have changed to a constant pres-

sure measurement as this is more experimentally feasible. This heat is typically added exper-

imentally by a heating coil, and thus can be measured as ∆Q = I 2R∆t , where I and R are the

current through and resistance of the coil, and ∆t is the amount of time the heater is on. Typ-

ically the sample is also suspended in a vacuum and connected to a cold finger through weak

thermal contact to minimize heat lost to the sample environment.

We employ the use of a Quantum Design Physical Properties Measurement System (PPMS)

with a dilution refrigerator (DR) insert to reach temperatures as low as 50 mK. The DR takes

advantage of the entropy of mixing to reach these ultra-low temperatures (schematic shown in

Figure 1.8 e). A mixture of liquid 3He and 4He separate in the mixing chamber into a “dilute”

phase (mostly 4He) and pure 3He phase. A turbo pump reduces the concentration of 3He

within the dilute phase. This is replaced by atoms from the concentrated 3He phase, but in

order to cross the boundary between the phases, the 3He atom must absorb some energy (and

therefore heat), cooling the system. Then, the pumped 3He gas is recondensed and recombined

into the pure phase, forming a contained cycle. This allows the DR system to remain at ultra-low

temperatures for long time periods and without the loss of helium.

For PPMS heat capacity measurements, a sample is mounted using low-temperature grease

on a sapphire platform, suspended in vacuum by kapton tubes (Figure 1.8 f). A heater and
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thermometer are connected by wires and gold leads to the electronics and thermal bath, with

thermal conductivity Kwire. We employ two measurement techniques, the conventional quasi-

adiabatic thermal relaxation technique (hereafter called “short pulse”), and a large ∆T thermal

relaxation technique (hereafter called “long pulse”).

The short pulse technique is the conventional measurement and analysis used by the Quan-

tum Design Multivu data acquisition programming. In this case, the heater applies a 1− 2%

temperature increase heat pulse and the temperature is tracked upon heating and cooling (Fig-

ure 1.8 a). When the crystal is perfectly thermally connected to the sample stage, the tempera-

ture change follows

Ctotal

(

dT

d t

)

=−Kwire(T −Tbath)+P (t ), (1.26)

where Ctotal is the heat capacity from the sample and stage with grease, Tbath is the temperature

of the bath, and P (t ) is the heater power which is a step-wise function (P0 when the heater is

on, 0 when the heater is off after time t0) [76]. Solving this differential equation for T (t ), we find

T (t ) =



































P0τ1
(

1−e−t/τ1
)

/Ctotal +Tbath 0 ≤ t ≤ t0

P0τ1
(

1−e−t0/τ1
)

e−(t−t0)/τ1 /Ctotal +Tbath t > t0 (1.27)

where τ1 =Ctotal/Kwire (called the characteristic time constant). This is then used to fit the tem-

perature vs. time curve and extract Ctotal(T ). This process is then repeated at many temperature

set-points to map out C (T ) and find ordering transitions (Figure 1.8 c). In the situation where

there is poor thermal contact between the sample and stage, Eqn. (1.26) and (1.27) are no longer

valid because the sample and stage are can no longer be assumed to be the same temperature.

In this case, there will be two characteristic times, τ1 and τ2, to fit the slight jump that occurs in

the data after the heater turns off (Figure 1.8 a), due to the heat capacity of the grease holding

on the sample.
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Figure 1.8: Temperature with respect to time after a heat pulse during a (a) short pulse and (b) long
pulse measurement. The heating and cooling parts of the measurements are shown with red and blue
respectively. The jump between heating and cooling in the (a) short pulse measurement due to a τ2

contribution is circled. (c) The extracted short pulse heat capacity with the specific fitted data point
associated with the heat pulse in (a) highlighted in red. (d) The heat capacity extracted from a long pulse
measurement, showing the continuous nature due to using the entire cooling curve. (e) The Quantum
Design dilution refrigerator probe. Image credit: Ref. [5] (f) A crystal mounted on the sapphire sample
stage which is suspended in vacuum.

The long pulse technique is similar to the short pulse technique in that they both apply

heat pulses and measure the relaxation of the temperature with respect to time. However, a

long pulse applies a significantly larger temperature increase of up to 300% and are designed

such that the sample will be heated through a phase transition (Figure 1.8 b). The resulting

heat capacity is then related to the temperature vs. time cooling curve through a derivative.

Rewriting Eqn. (1.26) slightly,

C =
(

dT

d t

)−1

[Q −P (t )] (1.28)

and
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Q =
∫Tsample

Tbath

[Kwire(T )+Koffset]dT (1.29)

is the heat flow through the wire, including some losses from the surrounding environment via a

thermal conductance “Koffset”. The term dT /d t can be explicitly calculated from the measured

cooling curve, and Kwire(T ) is found during puck calibrations during the PPMS heat capacity

option installation. These calculations are done with the LongHCPulse python code and details

of the data treatment can be found in Ref. [77]. Because the heat capacity is extracted for the

entire cooling curve, this gives a much more comprehensive measurement (Figure 1.8 d) that

more accurately maps out phase transitions. As can be seen in Figure 1.8 b, the other added

benefit of long pulse measurements are that they give insights into the nature of the transi-

tion, whether it is first- or second-order due to the observed (or absent) latent heat as well as

whether the peak is sharp or broad from better peak point coverage. The long-pulse heat ca-

pacity method was essential for mapping out the field vs. temperature phase diagram that we

will introduce in Chapter 3.

1.2.2 Magnetometry

Magnetometry is another essential characterization technique for magnetic systems. The

response of a material to an external magnetic field can give insights into the underlying mag-

netic Hamiltonian. The output of a system under an applied magnetic field (H) is the mag-

netization (M), or magnetic moment per unit volume, and the response function is called the

susceptibility, χ. The measurement of these as a function of applied field and temperature can

allow us to determine the ordering transition temperature, type of magnetic order, g -tensor,

effective magnetic moment, and more.

Theoretical considerations

We can write the magnetization as
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Figure 1.9: Figure adapted from Ref. [6] showing the expected magnetic susceptibility signatures for a
paramagnetic, ferromagnetic, and antiferromagnetic material. As temperature is decreased, the mo-
ments will align (or anti-align) more readily and follow a 1/T dependence. Magnetic order then breaks
this trend and either saturates (ferromagnet) or decreases toward zero (antiferromagnet).

M =χ(T )H (1.30)

where we assume M is linear in H (otherwise χ(T ) = ∂M/∂H). It can be seen from Eqn. (1.30)

that when the magnetic moments align with the field, χ> 0, which known as a paramagnet, and

when they align antiparallel with field, χ< 0, which known as a diamagnet.

Assuming a linear response to the field, which is the case at low fields compared to the

magnetic interaction strength, we can track the susceptibility as a function of temperature (at

constant applied field H), as high temperature acts to destroy magnetic order through thermal

fluctuations. As temperature is decreased, we expect the moments to align (or anti-align) more

readily with the field, and thus the susceptibility would increase (Figure 1.9 a), following Curie’s

law

χ= CW

T
, (1.31)

where CW is Curie’s constant. However, the spontaneous magnetic order will deviate from this

as the magnetic moments rotate into the most energetically favorable orientation. In the case

of a simple ferromagnet, mean field theory was used to implement a correction to the suscep-

tibility to account for the transition, called the Curie-Weiss law,
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χ= CCW

T −TCW
(1.32)

where TCW is the critical (Curie-Weiss, CW) temperature (also sometimes denoted as θc ). This

mean field model is highly idealized and paints a poor picture near the critical region, and

therefore is only accurate as long as T ≫ TCW. Below the idealized FM ordering transition Tc ,

the magnetic moment should remain constant at the ordered value, and thus the susceptibility

should remain constant (Figure 1.9 b). For an AFM, the Curie-Weiss law still holds, however, the

CW temperature is negative. The ordering temperature is called the Néel temperature (TN ), and

it is at this point that the susceptibility has a cusp as we expect the average magnetic moment

(magnetization) to be (or tend to) zero for an antiferromagnet (Figure 1.9 c). We can therefore

use these signatures in the χ vs. T measurements to infer the type of magnetic order in our

materials.

Additionally, the CW temperature gives insights into the approximate strength of magnetic

interactions in the system, with the FM mean field theory definition given by

TCW = S(S +1)

3kB
J0, (1.33)

where S is the spin quantum number, kB is the Boltzmann constant, and J0 is the mean inter-

action strength. In frustrated magnetic systems, we can relate this to how frustrated a system

is based on how much the ordering transition is suppressed compared to the CW temperature.

This “frustration parameter” is f = θc

TN
, therefore a small ordering transition temperature com-

pared to CW temperature means the system is more frustrated.

We can also explore the non-linear response of a material at a constant temperature to a

changing applied magnetic field. For a simple paramagnet with angular momentum quantum

number J, we expect the magnetization to follow

M = N gµB JB J (x), (1.34)
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where

B J (x) = 2J+1

2J
coth

(

(2J+1)x

2J

)

− 1

2J
coth

(

x

2J

)

(1.35)

is the Brillouin function, x = g JµB B/kB T , N is the number of atoms in the system, and µB is the

Bohr magneton (µB = e~
2me

≈ 0.0578 meV/T). The saturation magnetization (when the applied

field is large) can give us information on the g -tensor (and therefore magnetic anisotropy) of

the studied material, as

Msat = N gµB J. (1.36)

Experimental considerations

All susceptibility and magnetization measurements were performed on a Quantum Design

Magnetic Properties Measurement System (MPMS) XL and MPMS3 with a base temperature

of 1.8 K. The MPMS uses a SQUID (superconducting quantum interference device) to perform

extremely sensitive magnetic measurements on the order of 10−8 emu. We employ a DC scan,

where the sample is moved at a constant speed through detection coils, and the change in flux

through those coils produces an electronic signal through Faraday’s Law (Figure 1.10). This

electronic signal is amplified through the SQUID, and a voltage vs. position function can be fit

to extract the magnetic moment, assuming a dipole response.

Measurements can be performed on crystals or powder, but the important aspect is that

they should not move. This requires the use of eicosane (non-magnetic wax) that can be melted

with powder samples to hold the grains in place when a magnetic field is applied. Crystals are

typically mounted on a plastic or quartz plate with GE-varnish or crystal bond and inserted

into the sample holder. Rotation measurements were also employed with the MPMS3 and are

described in Section 2.5.
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Figure 1.10: Schematic of the MPMS showing the sample moves through the pickup (detection) coils,
creating a voltage signal that is amplified using a SQUID. Figure from Ref. [7].

1.2.3 Neutron scattering

One of the most instrumental techniques for studying complex magnetism and magnetic

dynamics is neutron scattering. The fundamental properties of thermal neutrons coincide with

the energy (∼ 25 meV) and wavelength (∼ 1.8 Å) of typical excitations and atomic distances

in condensed matter systems, making it the perfect probe of such phenomena. Unlike x-rays

and protons, the neutral charge of the neutron limits the nuclear interaction with atoms to

the strong force. The short-range nature of the strong force restricts nuclear interactions to

be infrequent and the neutron therefore penetrates deeply into a material, making it a bulk

probe that allows for various sample environments (magnetic field, low or high temperature,

pressure, to name a few). Additionally, because the neutron is interacting with the nucleus, it

is privy to some light elements, like Hydrogen and Oxygen, which are difficult to detect via x-

ray scattering. The scattering length (to be discussed later) is found to be independent of Z and

thus neutron scattering can be used to differentiate isotopes. Most importantly for our work, we

can take advantage of the fact that a neutron possesses a magnetic moment and will therefore

scatter due to unpaired electrons in the material. Because of the versatility of the neutron, there

is also a versatility among the instruments used to prepare, scatter, and measure neutrons based

upon the phenomena they are intended to probe. In this section, we will introduce the basics
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of neutron scattering theory [10, 78, 79, 80, 81, 82, 83] before discussing instrument specific

considerations.

Theoretical considerations

An incoming neutron can be described by its incident energy and momentum (wave-vector)

as

Ei =
|pi |2

2m
= ~

2|ki |2

2m
. (1.37)

The quantity that is actually measured during this scattering is the number of neutrons that

have been scattered into a detector with solid angle dΩ and have a final energy between E f and

E f +dE f (Figure 1.11 a). This is known as the double differential cross-section and is given by

d 2σ

dΩdE f
=

|k f |
|ki |

∑

λi ,λ f

pλi

∣

∣〈k f λ f |V |kiλi 〉
∣

∣

2
δ

(

~ω− (Ei −E f )
)

, (1.38)

where k{i , f } is the incoming and outgoing wavevector of the neutron, pλi
is a probability, λi , f

is the initial and final states of the system of study, V is the scattering potential, and ~ω is the

energy transfer of the neutron to the system. While I will not derive Eqn. (1.38) (detailed deriva-

tions can be found in Refs. [78, 83, 84]), I will motivate the individual terms. First, the δ-function

is required due to conservation of energy, such that the energy lost by the neutron is the energy

imparted to the system. The term
∣

∣〈k f λ f |V |kiλi 〉
∣

∣

2
is the result of Fermi’s golden rule, which

states that the probability of changing states from ki to k f (neutron) and λi to λ f (scattering

system) after interacting with a scattering potential V is proportional to the coupling between

the initial and final states. pλi
is the probability that the system is in an initial quantum state

λi , where the exact form depends on the system of study.

We will discuss two forms of the interaction potential from the two main types of scatter-

ing we are concerned with: nuclear (crystal structure, specifically) and magnetic. As discussed,

the neutron interacts with the nucleus of atoms via the strong force, which is a short-range
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Figure 1.11: a) Neutron scattering set-up. The incoming beam of neutrons has initial energy Ei and
wavevector ki before interacting with sample. After interaction, the scattered neutron has energy E f and
wavevector k f , and is scattered into area dω at an angle of 2θ. b) Coherent scattering length, b, as a
function of atomic number, Z . The non-monotonic nature of the coherent scattering length allows for
the study of light elements and discerning different isotopes of the same material not possible with x-ray
scattering. Data extracted from Ref. [8].

interaction (on the order of femtometers). We can therefore treat the nuclear interaction po-

tential as a δ-function, which takes the form

V (r) = bδ(r−R) (1.39)

for a single, fixed nucleus at R, where b is the scattering length (a non-monotonic phenomeno-

logical value describing the nuclear scattering process). One of the great benefits of neutron

scattering can be seen in Figure 1.11 b) where the scattering length as a function of atomic

number, Z , is seen to be non-monotonic. This complex behavior is contrasted to x-ray scat-

tering in which the scattering length is directly proportional to Z , and this allows some light

elements, such as hydrogen, to be studied through neutron scattering.

Eqn. (1.39) is known as the “Fermi pseudo-potential” and can be rewritten for the case of

multiple fixed scatterers (a lattice) as

V (r) =
∑

n

bnσ(r−n), (1.40)
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where n are lattice sites, and bn is the scattering length of the atom at the specific lattice site.

It can be shown that inserting this in to the double differential cross-section, Eqn. (1.38), one

obtains

d 2σ

dΩdE f
= 1

2π~

|k f |
|ki |

∑

i , j

bi b j

∫

〈

e−i Q·Ri (0)e−i Q·R j (t )
〉

e−iωt d t

= 1

8π2~

|k f |
|ki |

(

σc

∑

i , j

∫

〈

e−i Q·Ri (0)e−i Q·R j (t )
〉

e−iωt d t

+σi

∑

j

∫

〈

e−i Q·R j (0)e−i Q·R j (t )
〉

e−iωt d t

)

,

(1.41)

where Q = k f −ki is the scattering vector, and R is the position of the nucleus. σc = 4πb
2

and

σi = 4π
(

b2 −b
2)

are the total coherent and incoherent cross-sections (integrated over all di-

rections), respectively. As we can see from Eqn. (1.41), the coherent part of the equation gives

the correlations between different nuclei (i , j ) and collective excitations (e.g. Bragg scattering),

while the incoherent is related to correlations from a single nuclei ( j ) and single-particle exci-

tations (e.g. diffusion, crystal field excitations).

We can further simplify the double differential cross-section by introducing correlation func-

tions. The dynamic structure factor is given by

S(Q,~ω) = 1

2π~

∫

I (Q, t )e−iωt d t , (1.42)

which is the Fourier transform with respect to time of the intermediate scattering function,

I (Q, t ). The intermediate scattering function is then given by

I (Q, t ) =
∫

G(r, t )e i Q·r dr, (1.43)

which is the space-Fourier transform of the space-time correlation function

G(r, t ) = 1

N

N
∑

i , j

〈δ
(

r+Ri (0)−R j (t )
)

〉. (1.44)
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The space-time correlation function describes the position of the nuclei in space and time. The

introduction of correlation functions in 1954 by van Hove allowed the separation of the scat-

tering problem into the interactions of the neutrons with the sample and the response of the

sample system to the neutron. This focus on the response of the system led to a more intuitive

understanding of the neutron scattering results and is more readily theoretically calculable.

The magnetic scattering potential is significantly more complicated than the nuclear scat-

tering potential. To describe this interaction potential, we first need to define the neutron and

electron magnetic dipole moment. The neutron magnetic moment is given by

µn =−γµNσ, (1.45)

where γ= 1.913, µN = e~
2mp

is the nuclear magneton (mp is the proton mass), and σ is the Pauli

spin-1/2 operator. The electron magnetic dipole moment is given by

µe =−2µB s, (1.46)

where µB = e~
2me

is the Bohr magneton, and s is the spin angular momentum operator of an

electron. The neutron moment interacts with both the spin of the electron forming a magnetic

field, as well as the magnetic field created from the orbit of the moving electron. The field at a

point in space, R, due to an electron with momentum, p, can be written as

B = Bs +BL

= µ0

4π

[

∇×
(

−2µB
s× R̂

|R|2

)

+ 2µB

~

p× R̂

|R|2

]

.
(1.47)

Therefore, the magnetic potential is given by

Vmag =µn ·B

= µ0

4π
γµN 2µBσ ·

[

∇×
(

s× R̂

|R|2

)

+ 1

~

p× R̂

|R|2

]

.
(1.48)

Plugging this in to the double differential cross-section (Eqn. (1.38)) and simplifying, we obtain
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d 2σ

dΩdE f
=

|k f |
|ki |

∑

λi ,λ f

(4π)2pλi

∣

∣〈k f λ f |σ ·Q⊥|kiλi 〉
∣

∣

2
δ

(

~ω− (Ei −E f )
)

, (1.49)

where

Q⊥ =
∑

i

e−i Q·ri

[

Q̂× (si × Q̂)+ i

~|Q|
(pi × Q̂)

]

. (1.50)

The sum over i is the sum over the individual electrons with position ri and spin si . This is fairly

complicated to compute as magnetic interactions are long-range, but it is significantly simpli-

fied for magnetically ordered crystals. One important point to note is that Q⊥ is related to the

Fourier transform of magnetization, but specifically probes the component of the magnetiza-

tion perpendicular to the momentum transfer (Q = k f −ki ).

In practice, we fit the momentum (Q) and energy (E) dependence of the magnetic structure

and excitations through streamlined fitting programs, such as Fullprof and SpinW, respectively.

As these require in-depth theoretical algorithms or simplifications, the discussion of such fitting

will be presented in Section 1.3.

Experimental considerations

Before discussing different neutron scattering instruments and their experimental consider-

ations, it would benefit to discuss the sources of neutrons. There are two main sources for neu-

tron scattering with the same goal; to extract neutrons from some nuclei and direct them to the

different beamlines. One way to do this is in a nuclear reactor through fission, where slow neu-

trons are absorbed by meta-stable 235U, which then decays with many decay products, most im-

portantly neutrons. The high energy (on the order of MeV) neutrons that are liberated need to

be slowed down to both continue the reaction and to do science with. Typical condensed matter

experiments are performed at meV levels to match typical interaction strengths and excitations

in studied materials. At the High Flux Isotope Reactor (HFIR) at Oak Ridge National Labora-

tory (ORNL), this is done with a heavy water moderator through inelastic collisions. The tem-

perature of the moderator determines the energy (and therefore wavelength) of the neutrons
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described by the Boltzmann distribution. Neutrons moderated through heavy water are known

as thermal neutrons (E ∼ 5−100 meV), but there are also cold neutrons (E ∼ 0.1−10 meV), mod-

erated through liquid hydrogen, and hot neutrons (E ∼ 100−500 meV), moderated through hot

graphite. As the fission process is constantly occurring, this method of neutron production is

called a continuous or steady-state source. Other steady state sources include the Institut Laue-

Langevin (ILL) in France, and FRM-II in Germany.

In contrast, the spallation method produces a pulsed source. At the Spallation Neutron

Source (SNS) at ORNL, an ion source produces H- ions that are accelerated to ∼ 1 GeV. These

ions are then guided to an accumulation ring where the ion beam is bunched and intensified

before being sent through a stripper foil to remove the electrons. The result is a high energy

proton beam pulse that is extracted to hit a target (liquid Hg at SNS, but other heavy metals

can be used), releasing 20−30 neutrons per target atom. Similarly to the reactor source, these

neutrons are then slowed through a moderator before being guided to the different beamlines.

Other spallation sources include the ISIS Neutron & Muon source in the UK, and the J-SNS in

Japan.

Our neutron scattering signals can be broken into the elastic and inelastic signals. Elastic

signals are that where the energy transfer of the neutron is zero (~ω= 0), which occurs when the

neutron interacts with a static structure like the crystal lattice or a magnetically ordered lattice,

called Bragg scattering. Inelastic signals (~ω 6= 0, schematic shown in Figure 1.13 a) explore the

dynamics of a system, such as spin-wave or phonon modes in a material. One important point

is that a positive energy transfer, ~ω> 0, means that the neutron has lost energy to the system.

This is defined this way because, at low temperatures, the lattice has less energy to give to the

neutron, so the negative energy transfer is related to the positive energy transfer by

S(Q,−ω) = e
−~ω
kB T S(Q,ω). (1.51)

This is the method of detailed balance, where e
−~ω
kB T is the Boltzmann factor which acts as an

intensity envelope for the negative energy transfer. One can take advantage of this relationship
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Figure 1.12: Schematics of a) a triple axis and b) diffraction beamlines at a reactor source. In both cases,
the neutron interacts with a monochromator crystal to pick out the incident energy before it interacts
with the sample. The scattered neutron is then energy discriminated with an analyzer crystal before
being detected in a triple axis experiment, while it is energy integrated when detected in a diffraction
experiment. Both types of beamlines utilize either 3He point detectors or 2D position sensitive detectors.

to determine the effective temperature of the system, which can be useful at these ultra-low

temperatures (assuming the energy resolution is good enough).

One of the first neutron scattering instruments developed was the triple-axis, aptly named

for the three tuneable rotation axes it possesses. A schematic of a triple-axis instrument is

shown in Figure 1.12 a). The first tuneable axis is the monochromator, a crystal with well-

defined Bragg scattering such that nλ= 2d sinθ determines the incoming neutron wavelength

and energy incident on the experimental sample. The second axis is the sample, typically a sin-

gle crystal, rotated to define the Bragg peak or point in reciprocal space being probed. Finally,

the third axis is the analyzer crystal, which works in the same way as the monochromator to

pick the final energy to be measured. The scattered neutrons with the desired final energy are

then measured by a detector, typically 3He gas-filled tubes which act as point detectors, al-

though 2D position-sensitive detectors may also be utilized. Triple-axis experiments probe a

specific point in (Q,ω) space at a time and are therefore not ideal for broad survey-type mea-

surements. However, triple-axis experiments are advantageous for parametric scans where an

external parameter is tuned, such as temperature, field, or pressure. For example, a triple-axis

spectrometer can determine the magnetic ordering temperature very accurately by measuring

a specific magnetic Bragg peak as a function of temperature.
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Time-of-flight (TOF) measurements, on the other hand, are more suitable for broad survey

experiments. TOF takes advantage of the pulsed nature of a spallation source (or a continuous

source that employs choppers), by timing how long a neutron takes to reach the detector after

interacting with the sample. Assuming non-relativistic neutrons and a monochromatic incom-

ing pulse with energy Ei and a well-known distance between the sample and detectors (L), the

neutron energy transfer is

~ω= Ei −
1

2
m

(

L2

t 2

)

. (1.52)

The scattered neutrons are detected by a 2D array of detectors surrounding the sample and

the tagged time will inform about the neutron energy transfer. This method gives significantly

more information per incoming neutron pulse, making it ideal for broad survey measurements,

such as crystal field excitation measurements or spin-wave exploration. These measurements

still require long counting times and many crystal rotations to map out a wide Q-space, and are

therefore not always ideal for parametric scans.

Monochromating a pulsed beam is less trivial than using a monochromating crystal, but

it can also take advantage of the pulsed nature of the beam. A velocity selector of length L is

composed of twisted neutron absorbing sheets (Figure 1.13 b). It rotates at some angular speed

ωa , such that neutrons with velocity v = L/t pass through according to

v = ωaL

γ
,or

λ= hγ

mLωa
,

(1.53)

where γ is the twist angle. A disk chopper works similarly, where a disk is wrapped in a neutron

absorbing material with small openings that allow neutrons through (Figure 1.13 c). Since the

initial pulse of neutrons is a white beam, the pulse will spread in space, and as the disk chopper

rotates, only the desired neutron velocity will be allowed through. Finally, a Fermi chopper
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Figure 1.13: a) Simplified inelastic neutron scattering graphic which shows that a positive energy transfer
corresponds to the neutron losing energy. b) The multi-blade design of a neutron velocity selector. Image
credit: Ref. [9] c) A disk chopper from DCS at NIST, where the white is Gd2O3, a strong neutron absorber.
Image credit: nist.gov. d) A schematic of a Fermi chopper. Image adapted from Ref. [10].

may be used, which chops via a rotating collimator (axis of rotation perpendicular to the beam)

surrounded by neutron absorbing material (Figure 1.13 d).

There are two types of TOF beamlines, direct geometry and indirect geometry. A direct ge-

ometry instrument requires a monochromated incoming neutron pulse and uses the time to

discern the final energy of the neutron. Indirect geometry, in contrast, has an incoming white

beam pulse and utilizes an analyzer to select the final neutron energy detected and is advanta-

geous for obtaining higher energy resolution at large energy transfers. Examples of direct geom-

etry spectrometers are the Cold Neutron Chopper Spectrometer (CNCS) at ORNL, which is opti-

mized for low incident energies (∼ 2−50 meV) to explore quantum magnetism and excitations,

and SEQUOIA at ORNL, which is optimized for a broad incident energy range (∼ 8−2000 meV)

and high resolution to investigate magnetic excitations and lattice vibrations. An example of an

indirect geometry spectrometer is BASIS at ORNL, which quotes an energy resolution as low as

3.5 µeV at the elastic line and is optimized to study quasi-elastic scattering to probe diffusion.

Neutron diffraction is another essential technique within neutron scattering. The set-up

of diffraction experiments is the same as a triple-axis experiment, however, the analyzer is re-

moved such that all energies contribute to the final intensity. This is an efficient way to measure

Bragg peaks as the elastic scattering typically dominates the total scattering signal. Additionally,

an array of detectors is typically utilized to cover a large area of Q-space at once. A schematic
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of this is shown in Figure 1.12 b. In the case of the powder diffractometer POWDER (HB-2A) at

ORNL, point detectors are used and the detector array must be rotated around the sample to

obtain a full scattering pattern. On beamline WAND2 at ORNL, a 2D position sensitive detector

is utilized which provides the full Q-space pattern at once and enables faster data acquisition at

the cost of resolution. As neutron diffraction integrates over the neutron energy transfer, these

measurements are dominated by the elastic (static) signal and are therefore ideal for performing

structure (magnetic or crystal lattice) determination measurements.

Total scattering is experimentally identical to neutron diffraction in that the final energy of

the scattered neutrons is integrated over, however the analysis and application are different.

Total scattering relies on performing a Fourier transform of the neutron diffraction data, taking

what was once broad signals in reciprocal space (known as diffuse scattering) and turning them

into sharp signals in real space. As neutron diffraction peaks result from bulk (or long-range) or-

der, broad signals result from short-range order. In taking the Fourier transform, we can instead

analyze the real space correlations. In the case of crystal structure scattering, the real space cor-

relations can be thought of as a histogram of atomic distances, and this is called atomic pair dis-

tribution function (PDF) analysis. Total scattering is often used in nanoscale-ordered structural

studies, but it has recently also been utilized for short-range magnetic order using a magnetic

PDF (mPDF) technique. In this technique, the sign of the PDF peaks depends on the sign of

the magnetic interaction (positive for FM, negative for AFM). An illustrative example of the PDF

technique is shown in Figure 1.14, where two structurally disordered models are shown, but

one exhibits local, short-range order. The neutron diffraction pattern shown in Figure 1.14 c) is

almost identical between the two, however the local ordered structure possesses a diffuse back-

ground signal. This leads to a larger peak at the nearest-neighbor distance in the real space

PDF pattern, indicative of the preference toward this short-range order. While PDF could be

performed at a reactor source, the Fourier transform relies on large Q-space coverage which

can only be achieved with very low-wavelength neutrons that are readily available at spallation

sources.
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a) Disordered

b) Local Order
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d)

Figure 1.14: A a) random and b) locally ordered system of vacancies. c) The corresponding powder
diffraction pattern, which shows that the Bragg scattering is the same from a) and b), but the local order
has diffuse scattering in addition. c) The PDF of both systems, where the locally ordered system has
greater intensity on the nearest-neighbor bond distance peak. Image credit: Ref. [11]

Finally, neutron spin polarization techniques are incredibly powerful in neutron scattering,

but are quite challenging and complex. In our work, we utilized half-polarization analysis, so

this discussion will be limited to this technique. In the 1960’s, Blume and Maleyev determined

the scattered neutron intensity from a polarized neutron beam to be given by

I = N∗N +M⊥ ·M∗
⊥+P · (N M∗

⊥+N∗M⊥)+ i P · (M⊥×M∗
⊥)+ ISI, (1.54)

where N is the nuclear structure factor, M is the magnetic structure factor, and P is the neu-

tron polarization. The first and second terms compose the nuclear and magnetic scattering,

respectively, followed by interference, chiral magnetic scattering, and incoherent nuclear spin

terms, respectively. In the case that the polarization is out of the scattering plane (P ∥ ẑ), we can

write the intensity of Eqn. (1.54) in terms of the direction of incoming and outgoing polarization

(where the negative polarization, z, is achieved using a flipper) denoted with the incoming and

outgoing polarization as the first and second subscripts, respectively:

43



Izz = N∗N +M⊥z M∗
⊥z +N M∗

⊥z +N∗M⊥z +
1

3
ISI

Izz = N∗N +M⊥z M∗
⊥z −N M∗

⊥z −N∗M⊥z +
1

3
ISI

Izz = M⊥x M∗
⊥x +M⊥y M∗

⊥y + i (M⊥x M∗
⊥y −M⊥y M∗

⊥x)+ 2

3
ISI

Izz = M⊥x M∗
⊥x +M⊥y M∗

⊥y − i (M⊥x M∗
⊥y −M⊥y M∗

⊥x)+ 2

3
ISI.

(1.55)

Half-polarization occurs when the incoming beam is polarized, but the polarization of the scat-

tered beam is not discerned (or vise versa). Therefore, we can sum together intensity of the

scattered up and down neutron polarizations, to obtain

Iz (or I+) = Izz + Izz

= N∗N +M⊥ ·M∗
⊥+N M∗

⊥z +N∗M⊥z + i (M⊥x M∗
⊥y −M⊥y M∗

⊥x)+ ISI

Iz (or I−) = Izz + Izz

= N∗N +M⊥ ·M∗
⊥−N M∗

⊥z −N∗M⊥z − i (M⊥x M∗
⊥y −M⊥y M∗

⊥x)+ ISI

(1.56)

The utility of Eqn. (1.56) comes from taking the sum and difference of the half-polarized mea-

surements, which either cancel the nuclear and magnetic structure terms or the interference

and chiral terms. For field-polarized paramagnet, ferro- or ferri-magnets, where m ∥ P ∥ ẑ,

Eqn. (1.56) is simplified further to

I± = N∗N +M⊥M∗
⊥±P0(N M∗

⊥+N∗M⊥)+ ISI

≈ (N ±M)2
(1.57)

Therefore, for effective ferromagnetic materials with small magnetic signal, half-polarized neu-

tron scattering can be beneficial to increase the magnetic intensity (compared to unpolarized

scattering in which I ≈ N 2 +M 2).
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1.3 Theoretical Techniques

1.3.1 Describing Magnetic Structures

All materials in nature possess some kind of symmetry. The repeating lattice in a crystal

by definition means it possesses discrete (i.e. breaks continuous) translational symmetry. To

determine the structure of a type of magnetic order, it is useful to mathematically describe

the structure in terms of the symmetry it obeys. There are two commonly utilized methods

to do this, through either magnetic space groups [85, 86, 87] or through irreducible representa-

tions [75, 86, 88, 89, 90], both of which will be presented individually. Before discussing these, it

is beneficial to discuss the basics of symmetry.

A symmetry operation maps a point from an initial location to a new location. There are

four primary symmetry operations: translation, rotation, reflection, and inversion. A mirror

(reflection) is a 2D plane which inverts one Cartesian coordinate, rotation is with respect to a

1D axis which acts to change two Cartesian coordinates, and an inversion occurs about a point

(0D) that will change all three Cartesian coordinates. Within a perfect lattice, there are four

types of rotational symmetry that is consistent with a repeating lattice. Those are 2-, 3-, 4-, and

6-fold rotations (180◦, 120◦, 90◦, and 60◦, respectively).

When symmetry operations are combined together, they can form a set of self-consistent

symmetry elements, known as a group (G). The requirements to form a group are that 1) there

exists an identity element (E) such that for all gi ∈G , gi E = gi , 2) for each element gi ∈G there

exists an inverse element g ′
j
∈G such that gi g ′

j
= E , 3) the group is closed under multiplication,

so gi g j = gk , where gi , g j , gk ∈G , and finally 4) the group follows the associative law of multipli-

cation, i.e. for gi , g j , gk ∈G , gi (g j gk ) = (gi g j )gk . In crystallography, the minimal self-consistent

symmetry groups that leave the crystal unchained are known as point groups when translation

is not included, and space groups when translation is included. There are 32 point groups, and

230 space groups, that fall into seven categories (from lowest to highest symmetry): triclinic,

monoclinic, orthorhombic, trigonal, tetragonal, hexagonal, and cubic.
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Magnetic Space Groups

Assume the magnetic structure can be defined by an axial vector (or pseudo-vector), S(r ),

which contains each magnetic atom in the crystal. After applying a symmetry operation, g , S(r )

has transformed either to S′(r ) or remains unchanged. The approach using magnetic symmetry

defines the set of symmetry operations, G , that leave S(r ) invariant.

From the 230 paramagnetic (crystallographic, or “parent”) space groups, the magnetic space

groups split this further by the introduction of time reversal symmetry. Time reversal is a non-

spatial symmetry operation, unlike those listed previously, and acts to reverse the current flow

of the electrons and therefore reverse the magnetic dipole direction. This addition forms a total

of 112 magnetic point groups and 1651 magnetic space groups. This is clearly too many to sort

through by hand to find the magnetic symmetry that best fits your data. For this reason, we

utilize the Bilbao Crystallographic Server and specifically the program MAXMAGN [91, 92, 93,

94]. This tool has the user input the parent space group and propagation vector, k, found from

neutron diffraction, and MAXMAGN will find all possible magnetic space groups with maximal

symmetry consistent with this propagation vector. This typically limits the number of magnetic

structures to sort through to only a handful. Furthermore, if none of the models reasonably fit

the diffraction data, the program can explore lower symmetry structures that could be caused

by subtle structural distortions.

While this approach is intuitive and straightforward, the biggest drawback is that it only ap-

plies to commensurate magnetic structures, where the magnetic cell is a rational multiple of the

crystallographic unit cell. For incommensurate magnetic structures, one needs to use magnetic

superspace groups[86]. Additionally, the magnetic space group method can be challenging for

the initial determination of the magnetic structure (especially when the structure is “unconven-

tional”, see Chapter 2) and better suited for classification once the structure is known.

Representation theory

Representation analysis is a much less intuitive but more general method of determining a

material’s magnetic structure. A representation is simply a matrix group (set of square matrices)
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Figure 1.15: Isomorphic groups: the permutation group, P (3), which is a permutation of three numbers,
and the symmetry group, D3, for an equilateral triangle.

Table 1.2: The three irreducible representations of the permutation group P (3). Γ1 is the trivial group,
and it is from these irreps that all reducible representations of P (3) are composed of.
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of symmetry operations, such that, when acting on a point, it will transform that point accord-

ing to the symmetry it follows. More explicitly: assume g is a symmetry operation in the space

group G and it operates on a spin S j where j = (1,2...3n) to include the x, y, z directions as well

as n symmetry equivalent points. We can write this symmetry operation as

g S j =
∑

k

D(g )k j
·Sk , (1.58)

where D(g ) is the matrix transpose of the transformation matrix of the spins. We call D(g )

a 3n × 3n representation of G and it is usually reducible, meaning it can be written in block

formation composed of multiple irreducible representations (irreps). A simple example of the

concept of representations is the symmetry group of an equilateral triangle. First, we define

“isomorphic” as having a correspondence between two groups, so an equilateral triangle sym-

metry group (D3) is isomorphic to the permutation group of three numbers (P (3)) as is shown

in Figure 1.15. The matrix representations form a group which is also isomorphic to the sym-

metry or permutation group (see Table 1.2).
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We can use matrices to represent the different space group symmetry operations in crystal-

lography by

g =
{

h|t
}

=





















h11 h12 h13 t1

h21 h22 h23 t2

h31 h32 h33 t3

0 0 0 ±1





















(1.59)

where h is a symmetry operator, t is a translation vector, and the ±1 indicates the handedness

of the symmetry operation. For a magnetic structure with propagation vector k, the group Gk

(with parent group G) is composed of all symmetry operators gk ∈G that leave k invariant. Next,

the operations of all symmetry elements gk ∈ Gk on a spin can be described by a matrix, Γmag

(like D(g ) above). The magnetic representation Γmag is composed of irreps Γν, where

Γmag =
∑

ν

nνΓν, (1.60)

which describe the transformation properties. We find nν through

nν =
1

n(Gk )

∑

gk∈Gk

χ
Γmag

(gk )χ
Γν

(gk ) (1.61)

where χ is called the character, and is the trace of the matrix representation for the specific

symmetry operation. To actually find the decomposition of Γmag into the irreps, we utilize a

character table and these useful properties:

• The number of irreps is equal to the number of classes (classes are the groupings of similar

symmetry operations, e.g. rotations of π).

•
∑

ν l 2
ν = m, where l is the dimension of Γν and m is the order (number of symmetry ele-

ments) of the group. When this is combined with the previous point, it is usually possible

to uniquely determine the dimensions of the irreps.
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• The trivial (identity) representation is a full row of 1’s in the character table.

• The first column of the character table is the trace of the identity matrix for each repre-

sentation and is therefore the dimension of the irrep.

•
∑

k Nkχ
Γν(gk ) = 0, where Nk is the number of elements in the class, can be utilized to

determine the trace of all symmetry elements for a single representation.

• There exist orthogonality theorems between the rows and columns in a character table

that can be taken advantage of to fill out the remainder of the character table.

The goal of representational analysis is to form the magnetic configurations from linear

combinations of basis functions that transform according to the irreducible representation of

Gk . Now that the magnetic representation is determined, we need to find the basis vectors as-

sociated with the irreps through

ψ
jλ
ν =

∑

gk∈Gk

Γ
λ
ν(gk ) e i kagk j det(h) hαα′ δ j ′,gk j φα (1.62)

where λ = 1...d and d is the dimension of the irrep, j runs through equivalent positions in the

unit cell, α = x, y, z, the φα are test functions, δ is a Kronecker delta function that is 1 if gk

transforms j to j ′ and is 0 otherwise, and finally e i kagk j is a phase factor included in case the

symmetry operator translates outside the unit cell (a is known as a “returning vector”). Once

these are determined, we find the magnetic structure by a linear combination,

Sk j
=

∑

λn

cλn
ν ψλn

ν , (1.63)

and the coefficients c can be fit to the neutron diffraction data. In the case of a second order

transition, Landau theory states that the lower symmetry group must be a sub-group of the

higher symmetry group and only one irrep can contribute to the magnetic structure, which

greatly limits the number of basis vector coefficients to fit.
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Similarly to the magnetic space group method, we rarely do these calculations by hand and

instead utilize one of the many computational programs designed for the representational anal-

ysis method. Some examples of these tools are KAREP, SARAh, MODY, BasIreps, and ISOTROPY,

to name a few. For our work in Chapter 2, we used SARAh [88, 95] to find the irreps and basis

vectors applicable to K3Er(VO4)2 by inputting the propogation vector, space group, and mag-

netic atom position.
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Chapter 2

Pseudo-spin versus magnetic dipole moment

ordering in the isosceles triangular lattice material

K3Er(VO4)2

2.1 Context

This chapter consists of the paper Pseudo-spin versus magnetic dipole moment ordering on

the isosceles triangular lattice material K3Er(VO4)2, which was published in Physical Review B

in 2020. The full reference is:

D. R. Yahne, L. D. Sanjeewa, A. S. Sefat, B. S. Stadelman, J. W. Kolis, S. Calder, and K. A. Ross,

Phys. Rev. B 102, 104423 (2020)1.

The supplemental information and ongoing (unpublished) work are shown in sections 2.4

and 2.5 respectively. This work aimed to fully characterize the newly synthesized isosceles trian-

gular lattice magnet K3Er(VO4)2, and discovered an unexpected magnetic order with alternating

magnetic dipole-active and magnetic dipole-silent layers. We put forward the hypothesis that

the unique order may be due to suppressed out-of-plane pseudo-spin order from the strongly

XY nature of K3Er(VO4)2. The ongoing work aims to test this hypothesis.

Contributions

Single crystal samples were grown by L. D. Sanjeewa under supervision of A. S. Sefat. Crys-

tals used for powder diffraction were grown by B. S. Stadelman with assistance from L. D. San-

jeewa and J. W. Kolis. Heat capacity, susceptibility, magnetization, and powder x-ray diffraction

1Copyright by 2020 American Physical Society
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measurements were performed by D. R. Yahne with support from K. A. Ross. Powder neutron

scattering was performed by D. R. Yahne and K. A. Ross with assistance from beamline scientist

S. Calder. Subsequent analysis of scattering data was analyzed and simulated by D. R. Yahne

with support from K. A. Ross and S. Calder. The paper was written by D. R. Yahne and K. A. Ross.

2.2 Paper abstract

Spin- 1
2 antiferromagnetic triangular lattice models are paradigms of geometrical frustra-

tion, revealing very different ground states and quantum effects depending on the nature of

anisotropies in the model. Due to strong spin orbit coupling and crystal field effects, rare-earth

ions can form pseudo-spin- 1
2 magnetic moments with anisotropic single-ion and exchange

properties. Thus, rare-earth based triangular lattices enable the exploration of this interplay

between frustration and anisotropy. Here we study one such case, the rare-earth double vana-

date glaserite material K3Er(VO4)2, which is a quasi-2D isosceles triangular antiferromagnet.

Our specific heat and neutron powder diffraction data from K3Er(VO4)2 reveal a transition to

long range magnetic order at 155 ± 5 mK which accounts for all R ln2 entropy. We observe

what appears to be a coexistence of 3D and quasi-2D order below TN . The quasi-2D order

leads to an anisotropic Warren-like peak profile for (hk0) reflections, while the 3D order is

best-described by layers of antiferromagnetic b-aligned moments alternating with layers of

zero moment. Our magnetic susceptibility data reveal that Er3+ takes on a strong XY single-

ion anisotropy in K3Er(VO4)2, leading to vanishing moments when pseudo-spins are oriented

along c. Thus, the magnetic structure, when considered from the pseudo-spin point of view

could comprise of alternating layers of b-axis and c-axis aligned antiferromagnetism.
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Figure 2.1: a) Crystal structure of monoclinic K3Er(VO4)2 (space group C 2/c) showing layers of 2D
isosceles triangular Er3+ lattices. b) The 2D isosceles triangular Er3+ lattice, with bond lengths and unit
cell size shown (not shown, c = 15.2050 Å). c) Typical single crystals of K3Er(VO4)2 which were co-aligned
for magnetization and susceptibility measurements.

2.3 Research article

Introduction

Magnetic frustration has been of interest in condensed matter physics due to the presence

of competing interactions which often leads to exotic properties. A two-dimensional (2D) tri-

angular lattice with antiferromagnetically (AFM) interacting Ising spins is the simplest example

of geometrical frustration. Wannier found in 1950 that this model has a macroscopically de-

generate ground state and the frustration suppresses order down to zero temperature [96]. A

Quantum Spin Liquid (QSL) state, which exhibits quantum entanglement and fractionalized ex-

citations, was first envisioned by Anderson to exist on a 2D triangular Heisenberg AFM (HAFM)

[47]. It is now understood that interactions on the 2D triangular HAFM model leads to 120◦ or-

der [97, 98, 99], but exchange interaction anisotropies or lattice distortions can lead to other in-

teresting phenomena. For example, the isosceles triangular AFM Cs2CuCl4 was found to be a 1D

spin chain and is an example of "dimensional reduction" induced by frustration [100, 101], and

anisotropic exchange models on the triangular lattice have been proposed to host QSL phases

[52, 56, 102, 103, 104].
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Rare-earth based frustrated materials have become of interest due to strong spin orbit cou-

pling and crystal electric field (CEF) effects which can lead to Seff = 1
2 doublets (pseudo-spin-

1
2 ) and anisotropic effective exchange models based on these pseudo-spin- 1

2 moments. This

makes them ideal to study quantum phases arising from anisotropic exchange. The relation-

ship between the observed magnetic dipole moments (µi ) and the pseudo-spin- 1
2 operators

(Si ) is given by the g -tensor: µi = gi i Si
2. Depending on the details of the CEF Hamiltonian, the

ground state doublet forming the pseudo-spins can have certain g components become van-

ishingly small (or in some cases, identically zero due to the symmetry) and thus no appreciable

magnetic dipole moment associated with that pseudo-spin direction [33]. In the case where

the symmetry prevents any dipole moment, these pseudo-spin directions are associated with

higher multipoles, such as quadrupoles [106, 107] or octupoles[34, 108, 109, 110].

In terms of the search for quantum magnetic phases based on rare earth ions, Yb3+ has

received the most attention. For instance, Yb2Ti2O7, was proposed as a quantum spin ice ma-

terial [37, 111, 112, 113] but was later shown to be an unusual ferromagnet with continuum-

like scattering [114, 115, 116] that appears to arise from phase competition and non-linear

spin wave effects [117, 118, 119]. Meanwhile the triangular lattice YbMgGaO4 was proposed

as a QSL but may instead exhibit a random valence bond state due to Mg/Ga site disorder

[49, 50, 51, 52, 120, 121, 122]. Frustrated Er3+ materials are also of interest, and the pyrochlores

(Er2B2O7, B = Ti, Sn, Ge, Pt, etc.) [14, 16, 38, 123, 124, 125, 126, 127, 128, 129] have enjoyed the

most attention, but other frustrated geometries realized by Er3+ are just beginning to be ex-

plored [130, 131]. Here we study the isosceles triangular material K3Er(VO4)2 and show that it

has strong XY single ion anisotropy with an unconventional magnetic ground state described by

alternating ordered layers of antiferromagnetic "magnetic dipole active" and "magnetic dipole

silent" pseudo-spins.

2This assumes the gi i values are those obtained from the square root of the eigenvalues of the G tensor [105], so
the moment directions defined here by i are along the eigenvectors of that tensor
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K3Er(VO4)2 is a member of the rare-earth double vanadate glaserite family, K3RE(VO4)2,

where RE = (Sc, Y, Dy, Ho, Er, Yb, Lu, or Tm). Previous studies on rare-earth double phos-

phate glaserites (K3RE(PO4)2) have shown that there can exist structural transitions between

trigonal and lower symmetry structures of these compounds (i.e. monoclinic) [132, 133]. While

previous reports of K3Er(VO4)2 describe it in terms of a trigonal space group (P3m1) at room

temperature[134], we have found from powder and single crystal x-ray diffraction, as well as

low temperature neutron diffraction, that a monoclinic structure (space group C 2/c), shown in

Figure 2.1 (a) & (b), is appropriate for our samples at all measured temperatures, similar but not

identical to K3Er(PO4)2 (which forms in space group P21/m).

Experimental methods and results

The crystal growth of monoclinic K3Er(VO4)2 phase involved two steps. First, powder target-

ing a stoichiometric product of K3Er(VO4)2 was performed using K2CO3, Er2O3 and (NH4)VO3.

A total of 3 g of components were mixed in a stoichiometric ratio of 3:1:4 and ground well us-

ing an Agate motor and pestle. The powder mixture was then pressed into pellets and heated

to 750◦C for 80 hours. After the reaction period, the resulted pellets were crushed, ground and

checked the purity using powder X-ray diffraction (PXRD). According the PXRD, majority phase

was matched with the K3Er(VO4)2 (PDF No. 00-51-0095) with impurities of K3VO4 and ErVO4.

In the second step, the resulted K3Er(VO4)2 powder was treated hydrothermally to obtain single

crystals.

Hydrothermal synthesis was performed using 2.75-inch long silver tubing that had an inner

diameter of 0.375 inches. After silver tubes were welded shut on one side, the reactants and

the mineralizer were added. Next, the silver ampules were welded shut and placed in a Tuttle-

seal autoclave that was filled with water in order to provide appropriate counter pressure. The

autoclaves were then heated to 600◦C for 14 days, reaching an average pressure of 1.7 kbar,

utilizing ceramic band heaters. After the reaction period, the heaters were turned off and the

autoclave cooled to room temperature. Crystals were recovered by washing with de-ionized
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water. In a typical reaction 0.4 g of K3Er(VO4)2 powder was mixed with a mineralizer solution of

0.8 mL of 10 M K2CO3.

Crystals of K3Er(VO4)2, used for magnetism and heat capacity measurements, were phys-

ically examined and selected under an optical microscope equipped with a polarizing attach-

ment. Room temperature single crystal structures were characterized using a Bruker D8 Ven-

ture diffractometer Mo Kα radiation (λ = 0.71073 Å) and a Photon 100 CMOS detector. The

Bruker Apex3 software package with SAINT and SADABS routines were used to collect, process,

and correct the data for absorption effects. The structures were solved by intrinsic phasing and

subsequently refined on F 2 using full-matrix least squares techniques by the SHELXTL software

package[135]. All atoms were refined anisotropically.

We performed heat capacity measurements from 8 K down to 50 mK (Figure 2.2) on a 0.41±

0.05 mg single crystal sample (examples shown in Figure 2.1 (c)) using a Quantum Design PPMS

with dilution refrigerator insert. We employed two measurement techniques, a typical quasi-

adiabatic thermal relaxation measurement with temperature rise ∆T /T of 2%, as well as “long

pulse” measurements where ∆T /T can be as large as 400%, as described in Ref. [77]. We find a

sharp transition at TN = 155±5 mK, much lower than the Curie-Weiss temperature (discussed

later), indicating that this system is frustrated as expected, with a frustration parameter of f =

θCW /TN ≈ 20. The total Cp (T ) (not lattice subtracted) reveals a broad peak around 10 K, the

shape of which cannot be purely attributed to a power law contribution from acoustic phonon

modes, as well as a gradual release of entropy on cooling from 1 K down to 155 mK, at which

temperature a sharp anomaly is observed. The high temperature peak near 10 K is indicative of

a low-lying excited CEF multiplet with energy of about 2 meV. The entropy change between 50

mK to 2 K accounts for all the entropy expected from a Kramers CEF ground state doublet (R ln2

per mole Er3+, see inset of Figure 2.2). Less than 30% of this entropy is released via the sharp

anomaly, indicating that short range correlations develop over a broad temperature range above

the ordering transition. This is commonly found in low dimensional and frustrated magnets,

where ordering is suppressed but is eventually triggered by some subleading energy scale in the
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Figure 2.2: Single crystal heat capacity in zero magnetic field. The open circles represent the adiabatic
measurements, while the solid line represents the large ∆T measurements. A sharp magnetic transition
is observed at 155 mK, with the asymmetric shape on the high temperature side of the transition indi-
cating a build-up of low dimensional short range correlations. (Inset) Entropy calculated from Cp vs. T

with the R ln2 limit shown, indicating an isolated Seff = 1
2 system below 1 K.

Hamiltonian (such as inter-layer interactions in the case of quasi-2D systems) [136]. The quasi-

2D nature of the magnetism in K3Er(VO4)2 is also confirmed by neutron powder diffraction to

coexist with 3D order below TN , as discussed later.

The temperature dependent magnetic susceptibility of K3Er(VO4)2 was measured down to

1.8 K in a 100 Oe field (Figure 2.3 (a)) using the MPMS XL Quantum Design SQUID magnetome-

ter on 1.60±0.05 mg and 1.04±0.10 mg of co-aligned single crystals, aligned in the H⊥c and

H ||c directions respectively. For magnetic fields H⊥c, we find net antiferromagnetic interac-

tions shown by the negative Curie-Weiss temperature θCW ≈−3 K obtained by fitting between 2

and 10 K (although this value is highly dependent on the exact fitting range used due to crystal

field effects), similar to YbMgGaO4with θCW ≈−4 K. The magnetic susceptibility χ||c is an order

of magnitude less than χ⊥c , indicating a strong XY nature of the g -tensor of Er3+ in this mate-

rial. Magnetization measurements (Figure 2.3 (b)), taken at 1.8 K in a magnetic field up to 5 T,

corroborate that K3Er(VO4)2 is a strongly XY system due to the large saturation magnetization
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Figure 2.3: a) Magnetic susceptibility of co-aligned single crystals with the field aligned perpendicular
and parallel to the c-axis, showing χ⊥c is larger than χ||c by a factor of ∼ 10. (Inset) Low temperature fit
of inverse susceptibility used to find the H⊥c Curie-Weiss temperature θCW ≈−3 K. b) Magnetization of
co-aligned single crystals at 1.8 K. For H ||c, significant field-induced mixing of the next highest CEF level
produces an enhanced moment in the field.

for M⊥c . Neither M⊥c nor M||c follow a Brillouin function expected for a simple paramagnet,

suggesting that there is significant mixing of the higher CEF states causing the response to be

non-paramagnetic. Due to field induced mixing of the excited CEF levels, the saturation mag-

netization is not a good indicator of the zero-field g -tensor for either direction. Regardless of

the CEF mixing, the magnetization M||c starts with a low g -value near zero field, consistent with

a small g -value in the c-axis.

Neutron powder diffraction was performed on the HB-2A beamline at Oak Ridge National

Laboratory’s (ORNL) High Flux Isotope Reactor (HFIR). Approximately 2.5 g of crystals were

ground into a fine powder, placed into a copper sample can and filled with 10 atm of He gas at

room temperature, a technique shown to enable sample thermalization of loose powders below

1 K [137]. Diffraction patterns were obtained from 10 K down to 50 mK, with collimator settings

open-open-12’, and a Ge(113) monochromator provided an incident wavelength of λ= 2.41 Å.

The patterns were collected over a Q-range of 0.18 Å−1 < Q < 4.64 Å−1 (4◦ < 2θ < 126◦) with

count times of 2 hours per scan.

Analysis of the powder diffraction data was performed using the FullProf software suite

which implements the Rietveld refinement method [138]. The 10 K data was used to refine
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Table 2.1: Irreducible representation and basis vector composition for space group C 2/c with k=(1,0,0)
found using the SARAh Representational Analysis software. The atoms are defined according to m1:
(0.5,0,0.5) and m2:(0.5,0,0).

IR BV Basis Vector Components
m1a m1b m1c m2a m2b m2c

Γ1 ψ1 2 0 0 -2 0 0
ψ2 0 2 0 0 2 0
ψ3 0 0 2 0 0 -2

Γ3 ψ4 2 0 0 2 0 0
ψ5 0 2 0 0 -2 0
ψ6 0 0 2 0 0 2

the nuclear structure with contributions from the copper cell and aluminum windows masked.

Magnetic peaks which could not be indexed within the K3Er(VO4)2 unit cell emerged between

10 K and 400 mK, indicating the presence of magnetic impurities in the sample, which were

unable to be identified. These impurities are likely to be from by-products produced during the

crystal synthesis, which are easy to avoid for single crystals measurements, but is impractical

to completely remove for the large sample mass needed for neutron powder measurements.

To remove the impurity signal from the magnetic structure analysis, we subtracted the 400 mK

data from the 50 mK data, leaving only contributions from K3Er(VO4)2 magnetic Bragg peaks

(Figure 2.5 (a)). The magnetic peaks indexed gave an ordering wavevector of k=(1,0,0), for

which the decomposition of the magnetic representation into irreducible representations (IR’s)

is Γmag = 3Γ(1)
1 +0Γ(1)

2 +3Γ(1)
3 +0Γ(1)

4 for a magnetic atom at site (0.5,0,0.5) found using the SARAh

Representational Analysis software[95] (Kovalev tables). Γ1 is composed of basis vectors ψ1,2,3,

and Γ3 is composed of basis vectors ψ4,5,6. Basis vectors ψ2,4,6 have antiferromagnetic (AFM)

spin arrangements in the ab plane which are ferromagnetically (FM) correlated along the c-

axis (i.e. every layer is identical), with moments pointing along the b, a, and c axes, respectively.

ψ1,3,5 are AFM in the ab plane as well as along the c-axis, with moments pointing along the a,c,

and b axes, respectively. The summary of these basis vectors and their components for each

site is in Table 2.1 and shown in Figure 2.4.
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ferromagnetic along c, while basis vectors ψ2,4,6 are ferromagnetic along c (each layer is identical).

We attempted to fit the magnetic scattering within a single IR, which would be expected

for a second order phase transition [89], however, no linear combination of the basis vectors re-

stricted to a single IR came close to reproducing the observed magnetic structure (Appendix 2.4).

It should also be noted that all fits lacked perfect agreement with the intensity of all of the mag-

netic peaks simultaneously, specifically with respect to the (100) reflection. The shape of the

(100) peak does not follow the typical pseudo-Voigt peak shape, and is instead reminiscent of

the Warren line-shape for random 2D layered lattices [139], having an asymmetric base that ex-

tends further to high Q. In a 2D random layer lattice, where no correlations exist between layers,

the structure factor for (hkl ) zone centers is expected to be zero [139], in contrast to the (hk0)

zone centers, which are non-zero and will have this asymmetric shape. For quasi-random 2D

layers with some short range correlations between planes, intensity is expected at (hkl ) reflec-

tions, but peaks will have suppressed intensities and will in principle be broadened compared

to a peak arising from long range 3D order [140, 141, 142].
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Figure 2.5: a) Neutron diffraction pattern (black) taken on a 2.5 g powder sample on beamline HB-2A
at HFIR (ORNL). Magnetic peaks were found from subtracting the 400 mK pattern from the 50 mK pat-
tern to remove impurity signals. A coexistence of 2D and 3D order was found, and thus the Warren-like
(100) peak was not included in the fit. The fit to the 3D order (red) and calculated difference (blue) is
shown for the best fit using the Fullprof software, which was a linear combination of equal contributions
of basis vectors ψ2 (from Γ1) and ψ5 (from Γ3). b) Temperature dependence of magnetic Bragg peaks
below the transition temperature of 155 mK shows the onset of 2D and 3D order occurs at the same tem-
perature. Magnetic impurity peaks were found between 10 K and 400 mK, denoted with a star. c) The
magnetic structure found from neutron diffraction pattern shows layers of b-aligned moment alternat-
ing with layers of zero moment, proposed to be due to the strong XY nature of K3Er(VO4)2 (gz ∼ 0). d)
The proposed pseudo-spin structure, alternating between layers of b-aligned pseudo-spin and layers of
c-aligned pseudo-spin.

As a pure Warren line-shape did not accurately reproduce the (100) reflection, we explored

the 2D nature of this material by performing a numerical simulation for the (100) reflection to

determine the in-plane and out-of-plane correlation lengths (see Appendix 2.4 for details). The

simulation of the (100) peak produces an out-of-plane correlation length that is inconsistent

with the (hkl ) magnetic Bragg peaks, which are almost resolution-limited, indicating there is

instead a coexistence of 2D and 3D order in K3Er(VO4)2. The origin of this coexistence is un-

known, but similar effects have observed in other materials and is speculated to be caused by

structural inhomogeneities [143, 144]. However, as shown in Figure 2.5(b), the 2D and 3D peaks

have similar temperature dependence, which indicates that even if there are inhomogeneous

regions of 3D and quasi-2D order, they onset at the same temperature.

Due to the contributions from 2D and 3D correlations to the (100) peak, it was excluded

from the fit of the 3D magnetic structure. Our refined magnetic structure is given by equal

contributions from basis vectors ψ2 (from Γ1) and ψ5 (from Γ3), with basis vector coefficients

0.90(2). This leads to moments along b that add together in one layer and cancel in the other
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layer due to the FM and AFM spin correlations along the c-axis (Figure 2.5 (c)). It should be

noted that less prominent contributions of basis vectorψ6, which adds small c-aligned moment

to the layers, could be included without affecting the fit drastically. From the susceptibility data

though, little to no moment is expected out-of-plane, so the ψ6 contribution is expected to be

small or zero. Comparing the calculated diffraction pattern to the data (Figure 2.5 (a)), it is clear

that the (hk0) peaks are under-estimated. This is as expected, since the (hk0) peaks contain

significant contributions from the 2D correlations in the material that are not captured by the

model.

Discussion

The refined magnetic structure, in conjunction with the heat capacity, which produces the

full R ln2 entropy change upon integrating Cp /T from 50 mK to 1 K, suggests that K3Er(VO4)2

is in a fully ordered state, yet the refined structure implies the absence of ordered moments ev-

ery other layer. Quantum fluctuations could in principle produce a reduced or zero moment

on some layers, however, a simpler explanation seems to be possible by considering the in-

ferred g -tensor and the likely pseudo-spin order. We suggest that the likely pseudo-spin or-

dering structure involves the 2D triangular layers alternating between AFM ordered layers with

moment along~b and~c (Figure 2.5 (d)) 3. Such a spin structure is not likely to be obtained from

purely XY exchange interactions. Yet, because of the strong XY single-ion nature of this mate-

rial (gz ∼ 0), the layers with the pseudo-spins pointing along the c-axis would carry approxi-

mately zero dipole moment and thus appear to be disordered (or strongly reduced) according

to probes that are sensitive only to dipole magnetic moments, such as neutron scattering. This

result emphasizes a subtle point which is sometimes misunderstood; the g -tensor anisotropy

of pseudo-spin- 1
2 systems does not need to be the same as the exchange anisotropy.

Similar effects are at play in some rare earth pyrochlores, where the the XY part of the

pseudo-spin carries a quadrupolar [106, 107] or octupolar [34, 108, 109, 110] moment but no

3this pseudo-spin state can be visualized using a combination of Ψ2,5,6 and −Ψ3 (Figure 2.4)
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dipole moment. However, even “conventional” Kramers’ doublets which transform as dipoles

in all directions can have very small g -values in certain directions, which is the case for Er3+

in Er2Sn2O7 [38]. Due to the low point symmetry at the Er3+ site (triclinic) of K3Er(VO4)2, the

ground state CEF doublet is most likely to be a conventional Kramers’ doublet. This could in

principle be investigated by an analysis of the CEF levels in the material, however we note that

the point symmetry for Er3+ in K3Er(VO4)2 is triclinic, leading to 15 symmetry-allowed Steven’s

parameters which are unlikely to be determined uniquely by experiment or calculation.

Conclusions

We have performed an extensive study of the magnetic properties of a member of the rare-

earth double vanadate glaserite materials, which form 2D isosceles (or equilateral, in the case

of the trigonal polymorphs) triangular lattices. We found an antiferromagnetic transition in

K3Er(VO4)2 at 155 mK despite a relatively strong AFM interaction of 3 K inferred from Curie-

Weiss analysis (frustration parameter f ∼ 20). Susceptibility measurements reveal this mate-

rial to have strong XY g -tensor anisotropy, although field-induced coupling to a low-lying CEF

level near ∼ 2 meV (inferred from Cp (T )) hinders a quantitative estimate of the g -tensor via

magnetization. The magnetic structure is likely comprised of large AFM magnetic dipole mo-

ments ordering along the b axis direction in every other layer, and magnetic dipole suppressed

pseudo-spin order along c in the other layers. In this light, K3Er(VO4)2 thus appears to be one

of the clearest examples in which pseudo-spin order results in zero dipole moments. Inelas-

tic neutron scattering studies of K3Er(VO4)2 could help to validate this model, and could also

reveal the inferred low lying CEF level. Furthermore, the measurement of the g -tensor via Elec-

tron Paramagnetic Resonance could help to confirm our proposed model. Further studies of

other rare earth glaserites, particularly in their trigonal structural polymorphs, would be in-

triguing, as they could be promising materials for discovering new quantum magnetic phases

due to their pseudo-spin- 1
2 angular momentum and strong frustration.

63



2.4 Supplemental material

Sample preparation

Table 2.2: Crystallographic data of K3Er(VO4)2 determined by single crystal X-ray diffraction.

Empirical formula K3Er(VO4)2

Formula weight (g/mol) 514.44
Crystal system monoclinic

Crystal dimensions, mm 0.10 x 0.02 x 0.02
space group, Z C 2/c (no.15), 4

T, K 298
a, Å 10.1956(4)
b, Å 5.8650(2)
c, Å 15.2050(6)
β,◦ 90.12(1)

Volume, Å3 909.21(6)
D(calc), g/cm3 3.758

µ (Mo Kα), mm−1 12.543
F(000) 940

Tmax, Tmin 1.0000,0.8169
2θ range 2.679−24.990

reflections collected 10581
data/restraints/parameters 781/0/67

final R [I > 2σ(I )] R1, Rw2 0.0372,0.1144
final R (all data) R1, Rw2 0.0374,0.1144

GoF 1.086
largest diff. peak/hole, e/ Å3 1.760/−1.155

Crystallographic data for monoclinic K3Er(VO4)2 was determined using single crystal x-ray

diffraction, the details of which are outlined in the main text, and the results are shown in Ta-

ble 2.2. A large number of single crystals of K3Er(VO4)2 were ground into a powder for neutron

diffraction using a motor and pestle. Due to the large number of crystals necessary to achieve a

substantial mass for neutron scattering, the crystals were ground in three batches, which were

x-rayed separately and then again after the batches were combined. Powder X-ray diffraction

was performed on a Bruker D8 Discover Davinci diffractometer from 10◦ < 2θ < 60◦ for approx-

imately 1 second per 0.02◦. The PXRD pattern was fit using TOPAS Reitveld refinement, and
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was found to be in agreement with the single crystal XRD, as well as no preferred orientation or

peak broadening were found, indicating the crystals were ground sufficiently. Impurity peaks

were unable to be matched with any of the expected by-products (ErVO4, Er3O2, etc), and are

likely to be from by-products introduced during the hydrothermal synthesis. The powder was

then shipped to ORNL where it was placed into a copper sample can. The sample can contains

a piece of indium within the He filling line to allow the can to be filled with 10 atm of He gas and

then crimped at the indium, thereby containing the gas.

Low-temperature nuclear structure

Neutron powder diffraction data was performed at 10 K, which was used to determine the

low temperature lattice parameters. The neutron data corroborates the monoclinic space group

best describes the crystal structure (Figure 2.6). As expected, we find small impurity peaks in the

nuclear data, denoted by stars, and do not find any evidence of preferred orientation. Upon de-

creasing the temperature to 400 mK, magnetic impurities were found, specifically evidenced by

a peak at |Q| = 1.06 Å that increases in intensity between 10 K and 400 mK, and does not increase

intensity further upon cooling to 50 mK (Figure 2.5 (b)). Due to the different onset temperature

and no signatures of a transition between 10 K and 400 mK in the heat capacity data, this is not

believed to be a secondary phase of K3Er(VO4)2. To remove this unknown impurity, we sub-

tracted the 400 mK data from the 50 mK data, leaving only the magnetic scattering signal to be

analyzed.

Quasi-2D simulation

The first magnetic peak, (100), did not have the expected pseudo-Voigt peak shape and in-

stead follows more of Warren line-shape for random 2D layer lattices. The Warren line-shape

comes from rods of scattering in reciprocal space, centered at (hk). Initially, we attempted to

fit the (100) peak with a Warren function [139, 145], but the Warren fit over-estimated the high

Q tail (Figure 2.7 (a)). In addition, if the 2D layers were random with no correlations along the

c-axis, only (hk0) peaks would have a non-zero structure factor in contrast to (hkl ) peaks which
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along the ab and c directions. c) 2D visualization of simulation in the h0l plane, where blue ellipses are
the scattering intensities and the red circles are the integrated areas simulating the powder diffraction.

would have zero intensity. This suggests that the layers could have some short-range correla-

tions along c, thus would be quasi-random. Quasi-random 2D layers would still posses asym-

metrical (hk0) peaks, while (hkl ) peaks would be suppressed and broadened but non-zero. We

used a numerical simulation to estimate the in-plane and out-of-plane correlations and fit the

(100) asymmetric peak, which shows that this is not the case, as discussed next. Thus we infer

that the magnetic correlations are a possibly inhomogeneous mixture of 2D and 3D order.
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The numerical simulation was performed by creating a 3D Gaussian ellipse (instead of rods)

at zone centers in reciprocal space using the unit cell parameters found from the 10 K neutron

diffraction (Figure 2.7 (c)). The variables of this ellipse were the standard deviations in the ab

and c directions which are related to the correlations in the ab plane, Lab , and the correlations

between planes, Lc , respectively by the equation L =
p

2ln2/σ. A radial integral was performed

to simulate the powder averaged neutron diffraction pattern, the result of which was then scaled

by a Lorentz factor (geometrical correction) and the magnetic form factor. This was then con-

volved with the instrument resolution, estimated by the FWHM of a nearby nuclear peak. The

peak height was scaled to match the data since the intensity is arbitrary. The results compared

with the Warren fit are shown in Figure 2.7 (a).

The simulation finds a range of correlation lengths fit the data well (Figure 2.7 (b)), but a

best fit estimates correlation lengths along the c axis Lc ≈ 6 Å (approximately half a unit cell),

while correlations in the ab plane Lab ≈ 120 Å (more than 20 unit cells). When these correlation

lengths are applied to an (hkl ) peak, we find the peak would be much broader and significantly

more suppressed than what we observe. Thus, the 2D and 3D order must be coexisting and

onset at the same temperature.

Magnetic structure

We attempted to fit the magnetic structure using a single IR, as it was not clear if the tran-

sition found in heat capacity was a first- or second-order transition. Examples of those fits are

shown in Figure 2.8. Both fits of individual IR’s had peaks which were not seen in the scattering

signal, while the accepted fit (combination of ψ2 from Γ1 and ψ5 from Γ3)) does not show any

spurious peaks. In the scenario where the magnetic structure is a combination of more than

one IR, it follows that the transition must be first-order.

The fit may also be described in terms of magnetic space groups. Using this approach gives

two magnetic space groups that are maximally allowed, Pc21/c and Pc2/c. As these only have 1

Er site, it is not possible to recreate the magnetic structure only using one magnetic space group,

similarly to what we find using the irreducible representation analysis. However, a subgroup of
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Figure 2.8: Examples of fits using a single irreducible representation. Both Γ1 and Γ3 fits give peaks not
seen in the data, shown by arrows. Therefore, the best fit comes from a linear combination of Γ1 and Γ3’s
basis vectors, ψ2 and ψ5 respectively.

lower symmetry could be used, namely the magnetic space group Ps1 which has 2 inequivalent

Er sites and would be able to recreate the found magnetic structure. This would imply some

sort of subtle structural distortion beyond the limits of the measurements performed. This is

consistent with our observation that two IR’s must be mixed to account for the observed Bragg

intensity. Such a mixed-IR magnetic structure can only arise if the symmetry is lower than as-

sumed, which could happen at a first order transition.

The data was fit at multiple temperatures and the total moment was able to be extracted as

a function of temperature, shown in Figure 2.9 to be approximately 4µB . Due to the low point

density of the total moment as a function of temperature, it is difficult to fit the order parameter

equation, but we have included a guide to the eye. The total moment found is lower than the

saturated moment of 6.2µB found from magnetization, but we know the saturated moment will

be increased by the field-induced mixing of the low lying crystal field level.
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2.5 Ongoing work

The goal of our ongoing work is find evidence of our claim that gz ≈ 0, confirming the the

possible origin of the unique magnetic structure. Typically, we could perform electron para-

magnetic resonance (EPR) measurements to extract the g-tensor, however, this is not easily

accomplished in this instance due to the low-lying crystal field doublet. This type of mea-

surement would require ultra-low temperatures (sub 1 K), which we do not have access to

with our EPR system. Therefore, we explore this using alternative techniques, namely rotation
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magnetization, CEF measurements through inelastic neutron scattering, and local magnetiza-

tion measurements using half-polarized neutron diffraction.

Rotation magnetization

From the magnetization and susceptibility data presented in the preceding sections, the

anisotropy is unclear due to the ambiguity of applied field direction for M⊥c . For this reason,

we took on a rotation magnetization measurement using a Quantum Design MPMS3 with a

horizontal rotator. Single crystals were aligned using the standard and thin film mount to probe

the ab- and ac-planes respectively. A schematic of this alignment is shown in Figure 2.10. The

ab-plane was mounted such that the flat (c-axis) side of the crystal was affixed to the mount with

GE-varnish, and the crystal was aligned to the a-axis (such that the a-axis starts perpendicular

to the field). The ac-plane was mounted on a quartz plate using GE-varnish with the c-axis

perpendicular to the plane of the plate. This plate was then attached to the standard mount,

and the crystal was aligned to the c-axis (such that the c-axis starts perpendicular to the field).

The crystal was rotated a full 360◦ and back with 5◦ steps (Note, due to slip of the mount, the

forward and backward rotations are shifted. For this reason, we have excluded the backwards

rotation.).

The results of the rotation magnetization measurements with an applied field of 5 T are

shown in Figure 2.10 c). The first feature to note is the hump that occurs approximately ev-

ery 90◦ in the ab-plane and only at 90◦ and 270◦ in the ac-direction. The cause of this signal is

unknown, but similar features have been found in unrelated compounds using the same instru-

ment, so it is unlikely to be intrinsic to K3Er(VO4)2. Because of this feature, we have included

a guide-to-the-eye for the ab-direction. We can compare these results to our previously mea-

sured magnetization (Figure 2.3) at 5 T, and this is shown by the horizontal lines in Figure 2.10

c). We find good agreement between the ab-plane rotation and M⊥c , as expected since the M⊥c

was some average of the ab-plane. The data shows that there is only a slightly larger moment

in the b-direction than the a-direction, and thus the single-ion anisotropy is likely not the only
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Figure 2.10: Crystal orientation for rotation magnetization measurements using a) a thin film mount to
probe the magnetization within the ab-plane and b) a standard mount to probe the ac-plane. c) Rotation
magnetization results, including a guide-to-the-eye for the ab-plane results due to a signal of unknown
origin. We have also included the saturation magnetization values at 5 T found previously (Figure 2.3 b).

cause of the b-aligned ordered moment layers and points instead to the underlying cause to be

due to exchange anisotropy.

In contrast, we do not find a good agreement between the ab- and ac-planes, as we expect

these curves to be equal at M||a at the peak of the ac-plane measurement and the trough of

the ab-plane measurement. Additionally the ac-plane c-axis measurement and M||c (from Fig-

ure 2.3 b) are not in agreement. It is likely that the samples torqued during the measurement,

as the initial magnetization is unequal to the following peak. In future measurements, the sam-

ples will be affixed with a stronger adhesive (ex: CrystalbondTM) in between flat quartz plates. In

the meantime, while we cannot fully corroborate our previous magnetization data, the general

trend that the c-axis moment (and thus g-value) is smaller than the a-axis still holds true.

Crystal field measurements

To understand the magnetic single-ion anisotropy in K3Er(VO4)2, it is necessary to explore

the CEF interactions from the surrounding crystalline environment. CEF measurements were

carried out on approximately 2 g of powder K3Er(VO4)2 utilizing the SEQUOIA beamline, lo-

cated at the SNS in Oak Ridge National Laboratory. Point charge (PC) calculations, using only
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the surrounding O2− environment, suggested that all eight (including the ground state) crystal

field levels would be below 50 meV. Therefore, data was collected with incident neutron ener-

gies Ei = 200,80,60,20,11,8, and 4 meV (elastic energy resolution of 5.8,2.5,1.8,0.5,0.3,0.2, and

0.055 meV, respectively) in high resolution mode, at temperatures T = 5,20,50,100, and 200 K.

The measurements were repeated with the empty can for background subtraction. Low energy

measurements were taken to reveal the low-lying CEF level expected near 2 meV from PC cal-

culations and heat capacity measurements. Due to this low-lying CEF level, the temperature

dependence is necessary to allow us to discern excitations from the ground state, which will de-

crease in intensity with increasing temperature, from excitations from an excited level, which

will increase in intensity as the excited level begins to populate. The 200 meV measurement

serves to catch any unexpected high-energy levels, as well as to look for higher multiplet transi-

tions. All spectra were processed with the Mslice program [146], and fits to the CEF Hamiltonian

utilized the PyCrystalField python code [21].

The Ei = 20 and 80 meV spectra at 5 K are shown in Figure 2.11 a) and c), with temperature

dependent cuts along Q (intensity vs. energy) shown in Figure 2.11 b) and d) (Q-space inte-

gration range denoted by red box). Clear CEF levels can be seen around 1.5,7,11, and 12 meV,

shifted to slightly lower energies than predicted by the PC model. In contrast, we do not see

evidence of high energy CEF levels, expected in the region of 30−50 meV. It is not clear if this

absence is due to an absence of CEF levels or if the intensity is overshadowed by the apparent

phonon contributions identified by the increase in intensity proportional to Q2. We performed

cuts over various energy integration windows to find evidence of the intensity decreasing with

Q before the phonon modes, but this was not elucidating. Future work could aim to model

the phonon background in order to explore these high energy levels, however, for the present

work and modeling, we moved forward by making no assumptions about the location of these

"missing" levels.

The triclinic point group symmetry of K3Er(VO4)2 makes it difficult to find a unique fit to

the 15 Steven’s parameters of the CEF Hamiltonian, Eqn. (1.9), as the system is significantly
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a) b)

c) d)

Figure 2.11: a) Powder neutron spectrum with an incident energy of 20 meV at 5 K. Crystal field excita-
tions are clearly visible, including a low-lying level near 1.5 meV. b) Temperature dependent cut of INS
data, with integration range shown in a) by the red box. c) Powder neutron spectrum with an incident
energy of 80 meV at 5 K. No CEF transitions in the 40 meV range are seen. d) Temperature dependent cut
of INS data, with integration range shown in c).

underconstrained. However, as is shown in Figure 2.12 c), the structure of the single ion Er-O in

the monoclinic polymorph is similar to that of the trigonal polymorph (with trigonal D3d point

group symmetry), with a continuous symmetry measure of approximately 0.09. In the case of

trigonal symmetry, the CEF Hamiltonian has only 6 unique B m
l

Steven’s parameter values to fit,

and thus we can start our fits by approximating the symmetry to be trigonal. Within our fit,

we defined a residual function to match both the intensity vs. energy plot at Ei = 20 meV and

the eigenvalues found by fitting the data with Gaussian peaks (making no assumption about

the order of eigenvalues). These fits were able to reproduce the locations of the peaks (and

therefore CEF levels), but were unable to accurately reproduce the relative intensities of said
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Figure 2.12: Energy vs. intensity cuts from a) 20 meV and b) 50 meV incident energy measurements. The
red line indicates the CEF fit with the trigonal simplification. c) The difference in the oxygen cage around
the Er3+ ion in the monoclinic and trigonal space groups that motivates the point group simplification.

peaks. However, we can use this as a starting point to estimate the g -tensor, which gives gx y ∼

8.4µB and gz ∼ 3.3µB .
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Chapter 3

Understanding reentrance in frustrated magnets:

the case of the Er2Sn2O7 pyrochlore

3.1 Context

This chapter consists of the paper Understanding Reentrance in Frustrated Magnets: The

Case of the Er2Sn2O7Pyrochlore, which was published in Physical Review Letters in 2021. The

full reference is:

D. R. Yahne, D. Pereira, L. D. C. Jaubert, L. D. Sanjeewa, M. Powell, J. W. Kolis, Guangyong Xu,

M. Enjalran, M. J. P. Gingras, and K. A. Ross, Phys. Rev. Lett. 127, 277206 (2021)4.

The supplemental information and ongoing (unpublished) work are shown in sections 3.4

and 3.5 respectively. In this work, we explored the phase diagram of Er2Sn2O7 through a va-

riety of theoretical techniques and exposed the underlying mechanisms of reentrance in this

material.

Contributions

Single crystal samples were synthesized by L. D. Sanjeewa, M. Powell and J. W. Kolis. All

heat capacity measurements were performed by D. R. Yahne under the supervision of K.A. Ross.

D. R. Yahne and K. A. Ross measured the powder neutron diffraction pattern with assistance

from beamline scientist G. Xu. Monte Carlo simulations were performed by L. D. C. Jaubert,

and mean-field theory calculations were performed by D. Pereira and M. J. P. Gingras, with as-

sistance from M. Enjalran. The paper was written and edited by D. R. Yahne, D. Pereira, L. D. C.

Jaubert, M. Enjalran, M. J. P. Gingras, and K. A. Ross.

4Copyright by 2021 American Physical Society
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3.2 Paper abstract

Reentrance, the return of a system from an ordered phase to a previously encountered less-

ordered one as a controlled parameter is continuously varied, is a recurring theme found in

disparate physical systems, yet its microscopic cause is often not investigated thoroughly. Here,

through detailed characterization and theoretical modeling, we uncover the microscopic mech-

anism behind reentrance in the strongly frustrated pyrochlore antiferromagnet Er2Sn2O7. We

use single crystal heat capacity measurements to expose that Er2Sn2O7 exhibits multiple in-

stances of reentrance in its magnetic field B vs temperature T phase diagram for magnetic fields

along three cubic high symmetry directions. Through classical Monte Carlo simulations, mean

field theory and classical linear spin-wave expansions, we argue that the origins of the multiple

occurrences of reentrance observed in Er2Sn2O7 are linked to soft modes. These soft modes

arise from phase competition and enhance thermal fluctuations that entropically stabilize a

specific ordered phase, resulting in an increased transition temperature for certain field values

and thus the reentrant behavior. Our work represents a detailed examination into the mech-

anisms responsible for reentrance in a frustrated magnet and may serve as a template for the

interpretation of reentrant phenomena in other physical systems.

3.3 Research article

Within the field of magnetism, frustration refers to a system’s inability to simultaneously sat-

isfy all of its energetic preferences. Strong frustration can result in a variety of exotic phenom-

ena such as spin liquids, spin ice, emergent quasiparticles, topological phases and order-by-

disorder [2, 33, 101, 147, 148, 149, 150]. Most of the research focus in this area over the past thirty

years has been devoted to investigating the physics near zero temperature, considering finite

temperatures as a necessary modus operandi to search for signatures of the low-energy proper-

ties. However, even when subject to high frustration, a majority of frustrated magnetic materials

ultimately develop long-range order or display spin-glass freezing at a nonzero critical temper-

ature Tc, albeit often at a very low one compared to the spin-spin interactions. In this context, it
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therefore seems natural to ask what behavior near Tc may be a witness of the zero-temperature

ground state physics. This is particularly important when Tc is just above the experimental

baseline temperature, so that temperatures which are low relative to Tc cannot be reached. Here

we precisely consider such a situation, as arises in the Er2Sn2O7 pyrochlore antiferromagnet,

and which provides an opportunity to study a recurrent aspect of frustrated magnetic systems

observed at nonzero temperature: reentrance [113, 151, 152, 153, 154, 155, 156, 157, 158].

Reentrance occurs when a system, after having developed an ordered phase of some sort,

returns to its original less-ordered (e.g. paramagnetic) state as some parameter (e.g. temper-

ature, field, pressure, stoichiometry) is continuously varied. Reentrance has been found in

spin glasses [159, 160], liquid mixtures [161, 162], protein thermodynamics [163], liquid crys-

tals [164, 165], bilayer graphene [166], superconductors [167], modulated phases [168, 169] and

even in black hole thermodynamics [170]. Despite its ubiquity, reentrance is typically unex-

pected and its explanation in terms of entropic contributions to the free-energy from the un-

derlying microscopic degrees of freedom is usually subtle. In this context, while frequently ob-

served in frustrated magnets, the microscopic mechanism leading to reentrance often remains

obscure [113, 151, 152, 153, 154, 155, 156, 157]. Two mechanisms have commonly been invoked:

a field-dependent suppression of quantum fluctuations [68, 171, 172] and the partial disorder of

an intervening phase [160, 173, 174, 175]. Here, we present an alternative scenario of a generic

nature which illustrates how the observation of reentrance may be used as a fingerprint of the

frustration at play in the ground state.

In this Letter, we show that Er2Sn2O7 represents a tractable material example where the

intricate microscopic mechanisms responsible for reentrance in frustrated magnets can be rig-

orously studied experimentally and theoretically. Er2Sn2O7 holds a special place among rare

earth pyrochlores [2, 26]: it is well characterized, has a suppressed critical temperature and

is one of the few materials with a simple Palmer-Chalker (PC) antiferromagnetic ground state

[12, 16, 38] [Fig. 3.1(a)]. Its estimated exchange and single-ion susceptibility parameters are

highly anisotropic and theory suggests a proximity to another competing antiferromagnetic
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phase [1, 16, 38] known as Γ5 [1, 2, 33] [Figs. 3.1(b) and 3.1(c)]. Because of this anisotropy, the

response of Er2Sn2O7 to an applied field is expected to differ with field direction, as has been

poignantly illustrated with the experimental exploration of rare earth pyrochlore titanates [2,

26, 33, 153, 154]. As such, the present study critically relies on the recently gained, and no-

toriously challenging, ability to synthesize pyrochlore stannate single crystals [176], including

Er2Sn2O7.

We report herein the discovery of five occurrences of reentrance in the B-T phase diagram

of Er2Sn2O7 for fields along the [100], [110] and [111] cubic directions using heat capacity mea-

surements. By thoroughly investigating this experimental phase diagram using mean field the-

ory, classical linear spin-wave expansions and Monte Carlo simulations, we have uncovered

the various, and distinct, microscopic origins of reentrance in this system. In short, we find

that multiphase competitions at T = 0 result in enhanced thermal fluctuations at specific field

values. These fluctuations entropically stabilize the corresponding ordered phase over the dis-

ordered phase, and thus increase Tc(B) over a certain B field range. This produces Tc(B) reen-

trant phase boundaries whose maximal temperature extent corresponds approximately to the

zero-temperature field-driven phase transitions [see Figs. 3.2(a)-3.2(c)]. This multiphase com-

petition is in some cases a direct consequence of the competition of the field-evolved PC states

while in others it is inherent to Er2Sn2O7’s zero-field ground state being in close proximity to

the phase boundary between the PC and Γ5 phases. See the Appendix for technical details on

the experiments, simulations and analytics.

Heat capacity (Cp ) measurements were performed on single crystal samples, grown via the

hydrothermal method described in Ref. [176], down to 50 mK with varying magnetic fields, B ,

oriented in the [111], [110], and [100] directions, using a dilution refrigerator insert in a Quan-

tum Design Physical Properties Measurement System. Two measurement techniques were used:

the conventional quasiadiabatic thermal relaxation method (called “short pulses” hereafter), as

well as “long pulses”, both of which are described in detail in Ref. [77]. The long pulse tech-

nique allows faster and higher point-density measurements across phase transitions, enabling
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Figure 3.1: Example of sixfold degenerate states: (a) Palmer-Chalker [12] and (b) ψ2 and (c) ψ3 basis
states of Γ5 [13]. The ψ2 and ψ3 states are connected by a rotation of the spins by an angle φ within their
local easy planes (yellow circles): φ ≡ nπ/3 (+π/6) for n = 0, ...,5 correspond to ψ2 (ψ3) [14]. Panels (b)
and (c) are for φ = 0 and π/2, respectively. The manifold with U (1) degeneracy, φ ∈ [0,2π], forms the
so-called Γ5 states that appear in the [111] phase diagram. (d) Heat capacity, Cp (T ), vs temperature, T ,
of Er2Sn2O7 with the magnetic field along [100], showing the reentrant nature of the transition. Curves
at different fields are offset vertically for clarity. Similar data for the [110] and [111] field directions are
included in the Appendix. (Inset) Cp (T ) Er2Sn2O7 in zero field, with short and long pulse measurements
on crystal samples overlaid. Powder data from Shirai et al. [15] is also overlaid to demonstrate agreement
between sample types.

an accurate mapping of a phase diagram by measuring the field dependence of the transition

temperature, Tc(B) [Fig. 3.1 (d)].

In the zero-field heat capacity [Fig. 3.1 (d) inset], we find a sharp lambdalike anomaly indica-

tive of a phase transition at Tc = 118±5 mK, which is consistent with previous measurements

on powder samples reported in Ref. [15] [130 mK, from heat capacity, data shown in Fig. 3.1

(d) inset] and Ref. [16] [108±5 mK, from DC magnetic susceptibility]. The extremely high point

density of the long pulse measurements allows for the observation of subtle features in the peak

shape, which are typically not resolved by conventional short pulse measurements. This reveals

a low temperature shoulder of the Cp peak in the zero-field data at 97± 5 mK [177]. We per-

formed elastic neutron scattering measurements to determine the magnetic structure between

the sharp high temperature peak and the low temperature shoulder to check for an intermedi-

ate magnetic phase [177]. We found that the magnetic structure is of Palmer-Chalker type at all
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measured temperatures throughout the transition range with no sign of other magnetic phases.

It is not clear what causes this structure in the heat capacity anomaly, but we note that similar

(though not identical) broadening is observed in all five crystals we have measured as well as in

published data on a powder sample [15, 177] [Fig. 3.1 (d) inset]. Thus, it seems to be a feature of

all Er2Sn2O7 samples, but is likely due to (or influenced by) slight inhomogeneities rather than

being purely intrinsic in origin. Although it may be worth future investigation, its presence does

not affect any of the conclusions of this work.

To model Er2Sn2O7, we use the generic nearest-neighbor Hamiltonian on the pyrochlore

lattice [1, 37],

H =
∑

〈i , j 〉
J
αβ

i j
Sα

i S
β

j
− µB

∑

i

g
αβ

i
BαS

β

i
. (3.1)

Si = (Sx
i

,S
y

i
,Sz

i
) is a three-component pseudospin of length |Si | = 1/2 and B is the external

magnetic field. The g tensor represents the single-ion anisotropy, with local easy-plane g⊥

and easy-axis g∥ components at lattice site i . Given the symmetries of the pyrochlore lattice,

the anisotropic exchange matrix J
αβ

i j
is parameterized by four independent coupling constants:

(J1, J2, J3, J4) [36, 37]. Er2Sn2O7 has been previously parameterized using inelastic neutron scat-

tering on powder samples [16, 38]. Here we choose to remain within the error bars of Ref. [16],

selecting a set of coupling parameters where simulations find Tc ∼ 180 mK at 0.4 T for a [111]

field to match the experimental result 5: (J1, J2, J3, J4) = (+0.079,+0.066,−0.111,+0.032) meV

and g⊥ = 7.52, g∥ = 0.054. Note that the nearest-neighbor part of dipolar interactions is included

in the J
αβ

i j
couplings of the Hamiltonian (3.1).

To proceed, we first analyze this model using classical Monte Carlo simulations, with the re-

sults summarized in the B-T phase diagrams of Fig. 3.2. Most importantly, with Tc(B =0.4T) fit-

ted (for B along the [111] direction), the simulations reproduce the number of reentrant “lobes”

5Now that single crystals are available, fine-tuning these parameters by exploring the entire Q−space with neutron
scattering would be a worthwhile endeavor for future work, albeit challenging due to the small mass of each
crystal.
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Figure 3.2: B-T phase diagrams of Er2Sn2O7 in the (a) [100], (b) [110] and (c) [111] field directions, com-
paring experimental data with sharp (���) and smooth (�) heat-capacity peaks [Fig. 3.1(d)], to Monte
Carlo results with first (���) and second (�) order transitions. Experiments and simulations are notably
similar, showing the same (multiple) reentrance. The degeneracy Zn found in simulations is given for
each phase. The width of the red rectangles at 0 and 0.1 T represents the position of the double peaks.
(d) In a [111] field, each of the six FEPC ground states has a Γ5 contribution described by an angle φ

[Figs. 3.1(b) and 3.1(c)], that can be computed exactly by minimizing the energy of one tetrahedron as a
function of B .

for each field direction (e.g. one and two for a [100] and [110] field, respectively), as well as, at

each lobe, the rough magnitude of the increase of Tc at the corresponding value of B . Moreover,

simulations find that the transition always evolves from discontinuous to continuous when in-

creasing the field. This is consistent with the shape of the experimental heat capacity peaks,

evolving from sharp to smooth, and a further hint that simulations are capturing the proper

physics displayed by the experiments. We suspect that a fine-tuning of the J
αβ

i j
coupling param-

eters and incorporating quantum fluctuations, as well as perhaps dipolar interactions beyond

nearest neighbors, should account for the quantitative disagreements. Nevertheless, the semi-

quantitative match between experiments and simulations confirms the validity of Eq. (3.1) as a

minimal model for Er2Sn2O7, suggesting that simulations robustly encapsulate the key physics

behind the experimentally observed multiple occurrences of reentrance.

The results in Figs. 3.2(a)-3.2(c) raise multiple questions. Why are there multiple instances

of reentrance and why are they so strongly dependent on the field direction? More fundamen-

tally, why does Er2Sn2O7 demonstrate reentrance in the first place? As a set of clues, simulations
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bring to light a variety of phases that vie for ordering. In the rest of this Letter, we explain how

soft modes induced by this multiphase competition are linked to reentrance, using a combina-

tion of mean field theory and classical linear spin-wave expansions.

The zero-field ground state of Er2Sn2O7 is the sixfold-degenerate PC phase. However, the

ground states naturally deform and evolve under the application of a magnetic field. For suffi-

ciently large fields, some of these field-evolved PC (FEPC) states may become partially polarized

into the same spin configuration. We therefore label the resulting phase according to the num-

ber of FEPC states that minimize the free energy but have distinct spin configurations (e.g. Z6

at B = T = 0, for the six degenerate PC states, and Z1 at sufficiently large B for the trivial field-

polarized paramagnet). Phase transitions then occur whenever distinct FEPC states “merge”

into the same spin configuration at a given field value Bc.

First, consider the [100] field phase diagram in Fig. 3.2(a). At T = 0, the FEPC states merge at

Bc = 0.82 T, giving rise to the yellow Z2 region. Figure 3.3 displays the classical spin-wave disper-

sions κν(q) for a number of field values below and above Bc, calculated from the corresponding

T = 0 FEPC ground states. As the merger transition is approached at Bc = 0.82 T, the bottom

of the dispersive bands drop below the energy scale set by Tc(B = 0) ≈ 160 mK, becoming soft

and gapless at B = Bc. This decrease indicates a propensity for stronger thermal fluctuations

at Bc than at other field values. More precisely, since s =− 1
8Nq

∑

q

∑8
ν=1 ln

(

κν(q)
)

quantifies the

entropy contribution from classical spin waves, the decrease in κν(q) on approaching Bc from

above or below (as shown in Fig. 3.3) corresponds to an increase in entropy within the ordered

phase. As a consequence, the gapless soft modes at Bc stabilize the yellow Z2 region of Fig. 3.2

at finite temperature, both over the green Z4 region as well as the disordered paramagnet.

At first sight, the above discussion may remind the reader of order-by-disorder, but the two

mechanisms are in general different. Specifically, the Z2 selection for B ≥ Bc is energetic and not

entropic. As opposed to order-by-disorder, soft modes do not select the Z2 states among a de-

generate manifold, but rather enhance their entropic stability at a specific field, Bc , compared
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Figure 3.3: Classical spin-wave dispersions for B = 0,0.40,0.82, and 1.20 T along the [100] direction,
for a path in the FCC Brillouin zone. Note that Bc = 0.82 T is a critical field at T = 0, as shown in Fig.
3.2. The grey boxes indicate energy scales below Tc(B = 0 T) ≈ 160 mK from Monte Carlo simulations;
when modes occur within this region they are considered “soft”. Note that the dispersions for all Palmer-
Chalker states are plotted, but may overlap at high-symmetry points or due to their degeneracies in a
field.

to higher and lower fields. This pushes the transition temperature upwards around Bc , inducing

reentrance.

The microscopic physics at play is different in a [111] field; simulations reveal a reentrant

lobe around a field value (∼ 0.4 T) for which no corresponding T = 0 FEPC merger is found

in the calculations. To understand this reentrance, it is important to note that the long-range

order of Er2Sn2O7 in a [111] field is not described by a single irreducible representation (irrep)

[1]. Instead, it is described by the naturally field-induced ferromagnetic irrep as well as the

Γ5 irrep [Fig. 3.1(b) and 3.1(c)] due to the proximity of the Γ5 ground state to the PC phase

in zero field [1]. The Γ5 states bear an accidental U (1) degeneracy parameterized by an angle

φ [1, 14, 123, 178, 179], which is lifted by a magnetic field [180] with discrete values of φ being

selected, as shown in Fig. 3.2(d). While the six FEPC states remain distinct in this region, their

Γ5 components merge at B ≈ 0.55 T into three φ = {π/3,π,5π/3} corresponding to three of the

six ψ2 states [Fig. 3.1(b), Ref. [177]]. This ψ2 selection is associated with a flat low-energy soft

mode in the spin-wave expansion at B ≈ 0.5 T and simulations confirm the presence of partial

ψ2 order in the reentrant lobe, shown by the violet Z3 phase in Fig. 3.2(c). These results make

a strong case unraveling the mechanism of reentrance; the intervening Z3 phase, which is not
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part of the ground states, is entropically stabilized by low-energy soft modes arising from the

PC and Γ5(ψ2) phase competition.

Closing the [111] case, one should mention the FEPC merger transition at Bc = 1.31 T and

T = 0 is naturally accompanied by a merging of the φ values [here also corresponding to ψ2

states, see Fig. 3.2(d)] and by a small reentrant lobe [Fig. 3.2(c)], as expected from the discussion

for the [100] field case. Our experimental data point towards the onset of this high-field lobe as

well (see Fig. 3.2(c) for B = 0.9 T and 1.1 T). However, it was not possible to explore this high-field

region experimentally because the sample did not easily equilibrate above 0.7 T. Interestingly,

simulations also suffer from difficulties thermalizing between 0.7 and 1.2 T.

Finally, the mechanisms behind reentrance for a [110] field are reminiscent of the other two

field directions [Fig. 3.2(b)]. Below B . 0.1 T, simulations are difficult to thermalize (see Ap-

pendix), but above B & 0.1 T, we find two FEPC ground states that merge at Bc = 0.42 T. This

merging gives rise to gapless soft modes, the subsequent violet Z1 phase, and reentrance at fi-

nite temperatures. It is the same mechanism as in a [100] field. However, as opposed to the [100]

scenario, this newly merged ground state vanishes immediately once B > Bc (i.e. it becomes an

excited state). The system is then found in two other ground states (corresponding to the yellow

Z2 phase). The vanishing of the merged state corresponds to the Z1 phase abruptly disappear-

ing above Bc and the removal of the aforementioned gapless soft modes. This causes the rapid

collapse of the reentrant lobe at B ∼ 0.42 T. The fact that Z1 order is only stable at one point at

T = 0 is reminiscent of the triangular Heisenberg antiferromagnet in a field, where an interven-

ing 1/3 plateau also spreads at finite temperature and gives rise to reentrance [151, 155, 181] – a

mechanism that might be at play in Ba3CoSb2O9 [182]. However, the reentrance phenomenon

in our system at 0.42 T differs from this case in that it does not require the extensive degener-

acy of a magnetization plateau, but simply the more generic presence of soft modes about a

long-range ordered nondegenerate spin configuration.

At higher [110] field, another reentrant dome appears (B ∼ 0.7 T), however, there are no

ground state FEPC mergers involved. Similarly to the reentrant behavior at low [111] field,
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spin-wave theory shows a minimum (non-zero) gap that entropically favors the ordered phase

around 0.7 T (see Section S5 in the Appendix). These low-energy gapped modes, along with the

collapse at Bc = 0.42 T, give the higher field reentrant lobe at ∼ 0.7 T.

In summary, we have presented the first exploration of the field-direction dependence of the

thermodynamics of stannate pyrochlores, which, despite decades of effort, were not available

as single crystals until very recently [176]. Access to these crystals has proven to be crucial since

the phase diagram of Er2Sn2O7 is highly sensitive to the field direction, and exhibits several

reentrant lobes with sundry underlying mechanisms. These features result from the competi-

tion of several orders, especially the zero-field Palmer-Chalker, the field-induced ferromagnetic

and the neighboring Γ5 states. In particular, most instances of reentrance in the phase diagram

can be traced to zero-temperature field-induced merging of ground states. This energetic se-

lection is accompanied by soft modes which entropically enhance the transition temperatures,

and this mechanism is thus distinct from the one of order-by-disorder. In this light, reentrance

is a useful and experimentally accessible fingerprint at the critical temperature of an underlying

zero-temperature phase transition.

Given that multiphase competition is a common feature of frustrated magnetism, we ex-

pect the mechanisms we have uncovered to be widespread among magnetic systems display-

ing reentrance; especially since it does not require the accidental presence of an exotic par-

tially disordered phase [160, 174, 183, 184, 185] or a phase with extensive entropy, such as

in a magnetization plateau state [151, 155, 181, 182]. In semiclassical and quantum systems,

our mechanism may work together with the field-induced suppression of quantum fluctua-

tions [171] to produce even larger reentrant lobes. We hope our work will motivate others to

pursue a microscopic interpretation of future observations of reentrance (and possibly to re-

visit old ones [113, 151, 152, 153, 154, 155, 156, 157, 158]) in light of zero-temperature transi-

tions. Since magnetic systems often afford us with minimal models to understand other areas

of physics, our results raise a more general question: If reentrance is observed by varying a
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given parameter, when is it actually due to a nearby transition in a broader, and perhaps not

even physically accessible, parameter space?

3.4 Supplemental material

Definition of Palmer-Chalker states

There are six Palmer-Chalker states in zero field [Fig. 3.4]; the spin configurations for three

of these (on the four sublattices of a tetrahedron) are outlined in Table 3.1. The remaining three,

denoted as 〈x y〉, 〈xz〉, and 〈y z〉, can be obtained from the listed three by reversal of the spins.

Figure 3.4: The six Palmer-Chalker states, labeled from left to right 〈xz〉, 〈y z〉, 〈x y〉 (first row) and 〈xz〉,
〈y z〉, 〈x y〉 (second row).

Table 3.1: Spin configurations for three of the six Palmer-Chalker states on the four sublattices i = 0,1,2,3
of a tetrahedron. Each state lies within a plane in the global frame of reference (e.g. 〈x y〉 lies in the x y-
plane). The remaining three Palmer-Chalker states are obtained by spin reversal. The convention for
labeling the sublattices follows the one from Ref. [1].

〈x y〉 〈xz〉 〈y z〉
m0 = 1p

2
(1,−1,0) m0 = 1p

2
(1,0,−1) m0 = 1p

2
(0,1,−1)

m1 = 1p
2

(−1,−1,0) m1 = 1p
2

(−1,0,−1) m1 = 1p
2

(0,−1,1)

m2 = 1p
2

(1,1,0) m2 = 1p
2

(−1,0,1) m2 = 1p
2

(0,−1,−1)

m3 = 1p
2

(−1,1,0) m3 = 1p
2

(1,0,1) m3 = 1p
2

(0,1,1)
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Additional heat capacity data

Figure 3.5 shows the raw zero-field long pulse heat capacity data for three different single

crystals polished in the three high symmetry directions. As discussed in the main text, we find a

sharp peak at 118±5 mK with a low-temperature shoulder around 97±5 mK. A similar broad fea-

ture can be seen in polycrystalline measurements by Ref. [15], but the broadness of the peak is

not discussed therein. The heat capacity measurements in field are shown in Figure 3.6 for fields

applied along the three cubic directions, the transition temperatures of which are included in

Figure 3.2 in the main text.
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Figure 3.5: Raw zero field heat capacity data for the three crystals polished in each of the high symmetry
directions. We find that all samples show a low temperature shoulder, but the pronouncement of the
shoulder varies between samples. (Inset) Example of a typical crystal that was used in heat capacity
measurements.
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Neutron scattering experimental details and results

Elastic neutron scattering measurements were performed at the NIST Center for Neutron

Research using the SPINS triple axis spectrometer. Approximately 4 g of crystals were ground

into a fine powder and placed in a copper cigar-type foil construction that was inside the sample

can, which was subsequently filled with 10 atm of He gas at room temperature. We collected

elastic scattering scans at 50 mK, 110 mK, and 8 K on the (111), (002), (220), (113) and (222)

Bragg peaks using E = 5 meV neutrons with an energy resolution of approximately 0.25 meV.

The collimation settings were guide-open-80′-open, with Be filters placed before and after the

sample.

The 50 mK data was taken to corroborate the Palmer-Chalker ground state found from pow-

der samples by Ref. [16], as it should be well into the ordered phase. Data at 110 mK was taken as

it lies in between the high temperature and low temperature peaks we find in the heat capacity

curve (118 and 97 mK respectively), as discussed in the main text, and could possibly show evi-

dence for an intermediate phase. We find that the correlations are Palmer-Chalker throughout

the broad transition, as evidenced by the Q = (111), (002) and (220) Bragg peaks. In particular,

there was no hint of Γ5 order, which may have been a likely intermediate phase candidate due
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Figure 3.7: (a) Elastic neutron scattering data (black) on SPINS. Data was taken at 50 mK, 110 mK, and 8
K, with 8 K data used for background subtraction. The fit to the PC phase is shown (red), as well as the
difference between the data and fit (blue). (b) Calculated magnetic diffraction patterns for the Γ5 and
PC (Γ7) configurations (nuclear contributions not shown). The Γ5 pattern has been shifted vertically for
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to the material’s proposed proximity to the phase boundary between PC and Γ5 [16, 38]. No

(002) intensity is expected for the Γ5 phase [Fig 3.7 (b)], and we do not see any evidence of an

enhanced (111) nor (220) peak that could indicate coexistence of the Γ5 and PC (Γ7) phase. The

fit to the Palmer-Chalker structure is shown in Fig 3.7 (a) and is in agreement with the Ref. [16]

powder diffraction data. We note that only intermediate phases with ordering wave vector q = 0

were investigated, and it is still possible that a q 6= 0 intermediate phase could exist.

Variational mean field theory and the Palmer-Chalker merger transitions

The following derivation of variational mean field theory for a spin system on the pyrochlore

lattice, with an exchange Hamiltonian and an applied magnetic field, follows Refs. [186, 187,

188]. The exchange Hamiltonian can be written as

H0 =
1

2

∑

a,b

∑

i , j

∑

µ,ν
J
µν

i a, j b
S
µ

i a
Sν

j b , (3.2)

where a and b denote the chosen tetrahedra, i and j denote the sublattices chosen within those

tetrahedra, and µ and ν denote the components of the (classical) spin vectors. The exchange

matrix J
µν

i a, j b
is completely general in this form. In this work, we have predominantly only taken

into account the global-frame nearest-neighbor exchange parameters that are defined for rare-

earth pyrochlore systems with a Kramers ground state doublet [1]. However, this general form

can also include the dipole-dipole interaction (as will be discussed at the end of this section).

With an applied magnetic field, this Hamiltonian becomes

H = 1

2

∑

a,b

∑

i , j

∑

µ,ν
J
µν

i a, j b
S
µ

i a
Sν

j b −
∑

i ,a
hi a ·Si a . (3.3)

The scaled magnetic field for a given applied magnetic field Bν is given by

h
µ

i a
=µBg

µν

i a
Bν, (3.4)
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where g
µν

i a
is the g -tensor of the ion at the given sublattice i , expressed in the global frame of

Ref. [1] and µB is the Bohr magneton. This g -tensor is independent of the tetrahedron a and

only depends on which sublattice i is considered [1]. Henceforth, all physical quantities with

energy dimension are measured in K (Kelvin) units and, as such, we correspondingly set the

Boltzmann constant kB = 1.

The mean field free energy is given by

Fρ = Tr{ρH }+T Tr{ρ lnρ}, (3.5)

where ρ is the many-body density matrix and the trace is computed over all spin configurations.

The variational mean field approximation assumes ρ({Si a}) = ∏

i ,a ρi a(Si a), where ρi a is the

density matrix for a single site’s spin. These single-site density matrices are then treated as

variational parameters, subject to the constraints of normalization (Tr{ρi a} = 1) and the order

parameter definition (Tr{ρi aSi a} = mi a). Enforcing these constraints using the sets of Lagrange

multipliers {ξi a} and {Ai a} yields

F ({ρi a}, {ξi a}, {Ai a}) = Tr{ρH }+T Tr{ρ lnρ}−T Tr

{

∑

i ,a
ξi a(ρi a −1)

}

−T Tr

{

∑

i ,a
(ρi aSi a −mi a) · Ai a

}

.

(3.6)

Minimizing the free energy with respect to the variational parameters, the single-site density

matrices are found to be ρi a = 1
Zi a

e Ai a ·Si a . The partition function Zi a is computed by integrating

over all spin configurations in spherical coordinates, given that the spins are treated classically

(that is, as continuous vectors); this yields Zi a = 4π
Ai a

sinh(Ai a), where Ai a = |Ai a |. Using the

above relations and computing the traces in Eqn. (3.6), the free energy simplifies to

F = 1

2

∑

a,b

∑

i , j

∑

µ,ν
J
µν

i a, j b
m

µ

i a
mν

j b −
∑

i ,a
hi a ·mi a +

∑

i ,a
(Hi a ·mi a −

1

β
ln(Zi a)), (3.7)
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where Hi a ≡ Ai a

β
can be considered as a local field. Explicitly, by minimizing the free energy with

respect to the order parameters mi a , ∂F

∂m
µ

i a

= 0, it can be shown that

H
µ

i a
=−

∑

j ,b,ν

J
µν

i a, j b
mν

j b +h
µ

i a
. (3.8)

Using this expression for H
µ

i a
, the free energy, f , averaged over all N sites of the lattice is

f = F

N
= X (m)

N
− 1

Nβ

∑

i ,a
ln(Zi a), (3.9)

where

X (m) ≡−1

2

∑

a,b

∑

i , j

∑

µ,ν
J
µν

i a, j b
m

µ

i a
mν

j b . (3.10)

Lastly, using the identity ∂ f

∂Hi a
=−mi a for the order parameter at each site, one finds

mi a = Hi a

|Hi a |

[

coth(β|Hi a |)−
1

β|Hi a |

]

. (3.11)

This equation relates the local field Hi a with the order parameter mi a at each site, which can be

calculated self-consistently.

The evolution of a chosen Palmer-Chalker state (e.g. 〈x y〉) in the presence of an applied

magnetic field, B , is accomplished within variational mean field theory as follows: For a given

magnitude and direction of the field (at zero temperature), the tetrahedra of the pyrochlore lat-

tice are initiated with an initial spin configuration. At zero field, this initial spin configuration is

that of the chosen Palmer-Chalker state. At finite field, this initial spin configuration is the mean

field solution from the previous field magnitude. For example, if the mean field calculation is

done for B values incremented by 0.01 T, the initial configuration used for B = 0.11 T is the mean

field solution from B = 0.10 T. In this way, the evolution of the chosen zero-field Palmer-Chalker

state can be tracked as a function of B . The self-consistency equation Eq. (3.11) is then solved

iteratively for zero temperature until convergence is attained. The resulting spin configuration
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is denoted with a subscript h (e.g. 〈x y〉h) to represent that it is the field-evolved configura-

tion of the originally-chosen Palmer-Chalker state. This field-evolved Palmer-Chalker (FEPC)

state for a given B can then be used to tile the pyrochlore lattice and solve the self-consistency

equation for finite temperatures for the same B value, showing how the chosen Palmer-Chalker

state evolves with temperature as well. This process is followed for each of the six parent B = 0

Palmer-Chalker states, in order to track their field and temperature evolution individually.

The mean field calculations are performed for a pyrochlore lattice of size L = 2 (in terms of

cubic unit cells) for a total of 16L3 = 128 sites. At all fields and temperatures, the spin config-

uration is always found to be q = 0 ordering wave vectors. The phases can be labelled by (i)

how many of the six FEPC states minimize the free energy (which may be less than six), and

(ii) how many of these degenerate FEPC states have distinct spin configurations. If there are

n distinct spin configurations out of all degenerate FEPC states, that phase is labelled as a Zn

phase, reflecting the order of the discrete degeneracy. Phase transitions are then indicated by

a reduction in this discrete symmetry as the field increases, referred to as “merger” transitions.

The mean field phase diagram for the [100], [111], and [110] field directions, as well as a pictorial

representation of the merger transitions at zero temperature, are illustrated in Fig. 3.8.

Variational mean field theory including dipolar interactions has also been performed by

use of the Ewald summation method [179, 187, 189]. When including the dipolar interactions,

the g -tensor must be properly incorporated to map the interaction (between dipoles) onto the

pseudospin S = 1
2 representation. It should also be noted that the nearest-neighbor part of the

dipolar interaction is already included in the nearest-neighbor exchange couplings (J1, J2, J3, J4).

With the inclusion of dipolar interactions, the critical temperatures and fields are reduced rel-

ative to Fig. 3.8, but the q = 0 orders, Zn phases, and overall topology of the phase diagrams

remain unchanged.

Classical spin-wave expansion

A classical spin-wave expansion for q = 0 spin ordering on the pyrochlore lattice and with-

out an applied field is detailed in Ref. [1] and is similar to the derivation below for a classical
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Figure 3.8: Zero temperature representations of field-evolved Palmer-Chalker (FEPC) mergers ((a), (c),
and (e)) and mean field B-T phase diagrams ((b), (d), and (f)) for the [100], [111], and [110] field di-
rections, respectively. In the FEPC merger diagrams, vertical grey lines represent critical fields of the
merging transitions; the vertical blue line represents field-induced selection of the ψ2 phase out of the
accidentally-degenerate Γ5 manifold; vertical red lines represent changes in the set of degenerate FEPC
states. Solid lines denote the FEPC states that are degenerate and minimize the energy; dotted lines rep-
resent FEPC states that are excited and do not minimize the energy. In the mean field phase diagrams,
filled black squares represent a phase transition to a phase of different discrete symmetry due to merging;
open red squares represent a change in the set of degenerate FEPC states. In both sets of diagrams, Zn

denotes the discrete symmetry of the phase, which has n distinct spin configurations out of the degen-
erate FEPC states. FP-PM denotes the field-polarized paramagnetic phase; PC denotes Palmer-Chalker
order. Note that the zero temperature phases in the [110] field direction differ from the finite tempera-
ture phases due to entropic effects, for reasons discussed further in Section 3.4. Note also that Zn labels
for the mean-field phase diagrams may differ from those of the Monte Carlo phase diagrams shown in
Fig. 2 of the main text due to thermal order-by-disorder selection (e.g. the low-field Z6 region of the
mean-field [100] phase diagram, versus the low-field Z4 region of the Monte Carlo [100] phase diagram).
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spin-wave expansion in a finite field. Informed by the mean field results at zero temperature,

q = 0 ordering is assumed and dipolar interactions, which do not change the topology of the

phase diagram, are excluded. Under these assumptions, the Hamiltonian is

H = 1

2

∑

a

∑

i j

J
µν

i j
S
µ

i a
Sν

j a −µB

∑

a

∑

i

g
µν

i
S
µ

i a
Bν, (3.12)

where J
µν

i j
is now restricted to only nearest neighbors, and the tetrahedra indices are suppressed

because of the q = 0 assumption.

Starting with the classically-ordered ground state spin configuration on a single tetrahe-

dron at T = 0, we define the local coordinate system at each sublattice with {ui , vi , wi }, where

the classical spin vector is of length S and points along wi . The other two local unit vectors

are defined arbitrarily, so long as mutual orthogonality is satisfied. The fluctuations about this

ordered spin vector, on sublattice i and tetrahedron a, can then be expressed as

Si a =















p
Sδui a

p
Sδvi a

√

S2 −Sδu2
i a
−Sδv2

i a















≈















p
Sδui a

p
Sδvi a

S − 1
2δu2

i a
− 1

2δv2
i a















. (3.13)

Substituting this perturbed spin into the original Hamiltonian and expanding to quadratic order

in the fluctuations yields

H = 1

2
Nt

∑

i j

S2(wi ·
↔
J i j ·w j )−µBSNt

∑

i

(wi ·
↔
g i ·B )+ S

2

∑

a

∑

i j

δui aδu j a(ui ·
↔
J i j ·u j )

+δui aδv j a(ui ·
↔
J i j ·v j )+δvi aδu j a(vi ·

↔
J i j ·u j )+δvi aδv j a(vi ·

↔
J i j ·v j )

− 1

2
(δu2

i a +δv2
i a +δu2

j a +δv2
j a)(wi ·

↔
J i j ·w j )+ 1

2
µB

∑

a

∑

i j

(δu2
i a +δv2

i a)(wi ·
↔
g i ·B ).

(3.14)

The first two terms represent the ground state energy, ε0, where Nt is the number of tetrahedra

in the system (Nt = N
4 , where N is the number of spins in the system). The rest of the expression

encapsulates the effect of fluctuations from exchange and Zeeman interactions.
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Performing a Fourier transform over the reciprocal lattice vectors q of the FCC lattice and

defining u(q) ≡ (δu1(q),δu2(q),δu3(q),δu4(q),δv1(q),δv2(q),δv3(q),δv4(q)), the fluctuation

contribution to the Hamiltonian can be written as:

H = ε0 +
1

2

∑

q

u(−q)
( ↔

M(q)+
↔
N (q)

)

u(q). (3.15)

The matrices
↔
M(q) and

↔
N (q) can be written in block matrix form, composed of four separate

4×4 blocks. They are:

↔
M = 2S







↔
M 11(q)

↔
M 12(q)

↔
M 21(q)

↔
M 22(q)






(3.16)

M 11
i j = cos(q · ri j )(ui ·

↔
J i j ·u j −δi j

∑

l

wl ·
↔
J l j ·w j )

M 12
i j = cos(q · ri j )(ui ·

↔
J i j ·v j )

M 21
i j = cos(q · ri j )(vi ·

↔
J i j ·u j )

M 22
i j = cos(q · ri j )(vi ·

↔
J i j ·v j −δi j

∑

l

wl ·
↔
J l j ·w j )

↔
N =µB







↔
N 11(q) 0

0
↔
N 22(q)






(3.17)

N 11
i j = N 22

i j = δi j wi ·
↔
g i ·B .

Diagonalizing this harmonic spin-wave Hamiltonian yields the classical spin-wave dispersions

κν(q) as a function of the wavevector q . Since the classical spin-wave Hamiltonian is quadratic,

the partition function and free energy of the classical spin waves can be calculated exactly. As-

suming the above diagonalization has been performed to find the normal modes, φν(q), and
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dispersions, κν(q), the partition function and free energy are given by

Z =
∫

[

∏

q

8
∏

ν=1
dφν(q)

]

e− 1
T

(

ε0+ 1
2

∑

q
∑8

ν=1κν(q)φν(q)φν(−q)
)

(3.18)

= e− ε0
T

∏

q

8
∏

ν=1

√

2πT

κν(q)
(3.19)

=⇒ F = ε0 +
T

2

∑

q

8
∑

ν=1
ln

(

κν(q)
)

−N T ln(2πT ). (3.20)

If there are Nq = N
4 wavevectors in the sum, then the free energy per spin is

f = ε0

N
+ T

8Nq

∑

q

8
∑

ν=1
ln

(

κν(q)
)

−T ln(2πT ). (3.21)

Note that the entropy per spin, s, can be calculated using s =− ∂ f

∂T
. Computing this, but keeping

only the terms that depend on the spin-wave dispersions κν(q), yields

s =− 1

8Nq

∑

q

8
∑

ν=1
ln

(

κν(q)
)

. (3.22)

The dispersions κν(q) for each of the FEPC states are shown in Fig. 3.9 at various relevant

choices of the applied field (e.g. at the merger transitions).

Monte Carlo simulations and parameters

Monte Carlo simulations are performed on systems of classical Heisenberg spins with N =

16L3 sites, where L3 is the number of cubic unit cells. The spin length is |S| = 1/2. Several update

algorithms are used together: the heatbath method, over-relaxation and parallel tempering.

Parallel tempering is done every 100 Monte Carlo steps (MCS) and overrelaxation is done at

every MCS. Thermalization is made in two steps: first a slow annealing from high temperature

to the temperature of measurement T during te MCS followed by te MCS at temperature T .

After thermalization, measurements are done every 10 MCS during tm = 10 te MCS.

The characteristics of our simulations are typically:
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Figure 3.9: Classical spin-wave dispersions for all Palmer-Chalker states that are degenerate in their
energy, for a given field direction and magnitude. The shaded grey box represents energy scales below
the zero-field Monte Carlo critical temperature of Tc ≈ 160 mK. The chosen wavevectors are taken from
the Brillouin zone of the FCC lattice. Note that some curves may overlap at high-symmetry points or due
to their degeneracies in a field (e.g. 〈x y〉h and 〈x y〉h for B ≥ 0.82 T along the [100] direction).
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• 4 < L < 10,

• 106 ≤ tm ≤ 5.107 MCS,

• 100 different temperatures (regularly spaced) between 0 and 200 mK for parallel temper-

ing.

Please note that different exchange parameters for Er2Sn2O7 have been investigated, within

the error bars of Ref. [16]. In particular, a systematic search in the [111] direction has shown a

consistent increase of the transition temperature between 0 and 0.4 T, confirming the robust-

ness of the reentrance in this exchange-parameter region.

Analysis of the [110] results

Here we discuss the Monte Carlo phase diagram in a [110] field [Fig. 3.2(b) of the main text].

There are two occurrences of reentrance, as well as a pronounced dip in Tc that occurs between

them. As with the [100] and [111] phase diagrams, these three features can also be understood

as originating from soft modes that arise at the merging of T = 0 FEPC states. In this field and

at T = 0, the six FEPC states do not all minimize the energy (for reasons discussed later on

in this section). Therefore, when determining the merging of FEPC states, we primarily con-

sider those ground states which simultaneously minimize the energy [as shown in Fig. 3.8(e)],

since these are the states the system can be found in. Hence, as B is increased from 0 and ap-

proaches a merging transition (between 〈xz〉h and 〈y z〉h) around B ≈ 0.4 T, soft modes arise [see

Fig. 3.9(e)] and increase the thermal fluctuations within the ordered phase, producing the first

(lower) reentrance. As B continues to increase to and above B ≈ 0.42 T, however, the merging

FEPC states that provided these soft modes (namely, 〈xz〉h and 〈y z〉h) are no longer energeti-

cally preferred [see Fig. 3.8(e) and Fig. 3.9(f)]. These soft modes are therefore removed from

the system, taking away their entropic support and producing a dip in Tc. As B is increased

further and enters the region 0.57 T < B < 1.12 T, soft modes still arise [Fig. 3.9(g)], although

there are no merger transitions between FEPC ground states, only between ground and excited
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states [Fig. 3.8(e)]. These soft modes give rise to the second (upper) reentrance. Since they are

sustained for a range of B , the upper reentrant lobe is broad in the B direction.

Although the mechanisms of reentrance are similar to the other two directions, the mean

field theory results for the [110] field direction do stand out among the three field directions

we studied, given that the zero temperature phases differ from those at finite temperature. The

objective of the remainder of this section is to clarify this difference.

Consider very low temperatures T = ǫ where ǫ→ 0+. When T = 0 exactly, Eq. (3.9) reduces

to just the energy, whereas Eq. (3.11) implies that mi a = Hi a

|Hi a | . For T = ǫ, mi a ≈ Hi a

|Hi a | . As well, the

free energy now gains a contribution from the entropy, namely − 1
Nβ

∑

i ,a ln(Zi a). Using Ai a =

β|Hi a | in the partition function:

− 1

Nβ

∑

i ,a
ln(Zi a) =− 1

Nβ

∑

i ,a
ln

(

4π

β|Hi a |
sinh

(

β|Hi a |
)

)

=− ǫ

N

∑

i ,a
ln

(

4πǫ

|Hi a |

)

+ ln

(

sinh

( |Hi a |
ǫ

))

.

As ǫ→ 0+, ǫ ln(ǫ) → 0 as well. Hence, the first term in the above summation is not an important

contribution to the entropy at T = 0+. On the other hand, sinh
(

|Hi a |
ǫ

)

scales roughly as e
|Hi a |

ǫ for

ǫ→ 0+, and hence,

− 1

Nβ

∑

i ,a
ln(Zi a) ≈− ǫ

N

∑

i ,a
ln

(

e
|Hi a |

ǫ

)

≈− 1

N

∑

i ,a
|Hi a |. (3.23)

When temperature becomes finite, the entropic contribution is therefore related to the average

magnitude of the local fields.

As shown in Eq. (3.8), there are two contributions to this local field: the local field resulting

from the exchange between moments, and the local field resulting from the Zeeman coupling

to the applied field B . When B = 0, only the first contribution is active. For the exchange pa-

rameters used here, the exchange couplings create local fields that move the spins into their

Palmer-Chalker states, hence making these the ground state configurations. When B is turned
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on, we must consider the second contribution, given by Eq. (3.4). Assuming a pure easy-plane

anisotropy on each sublattice, there are four g -tensors to consider [1]:

←→
g0 = g⊥

3















2 −1 −1

−1 2 −1

−1 −1 2















,←→g1 = g⊥
3















2 1 1

1 2 −1

1 −1 2















,

←→
g2 = g⊥

3















2 1 −1

1 2 1

−1 1 2















,←→g3 = g⊥
3















2 −1 1

−1 2 1

1 1 2















.

For a [110] field, a remarkable coincidence occurs: the Zeeman contribution µBg
µν

i a
Bν for two

sublattices (namely, sublattices 1 and 2) lie within the x y plane, exactly parallel to the spin

configuration of the 〈x y〉 and 〈x y〉 Palmer-Chalker states in Table 3.1. As such, for low fields in

the [110] direction, these spins do not cant out of their original positions; the local fields from

the exchange and Zeeman contributions add in parallel. Returning to Eq. (3.23), this lack of

canting is the origin of the slight entropy difference between the Palmer-Chalker states that lie

in the x y-plane (where the two contributions add in parallel) and out of the x y-plane (where

the two contributions are not parallel). A similar discrepancy should be expected at T = 0:

mi a = Hi a

|Hi a | at T = 0, so this lack of canting will discriminate between the x y-planar and non-

x y-planar states. This effect is therefore the origin of the difference between the T = 0 and

T = 0+ phases. It should be noted that this is not an order-by-disorder effect. The Z2 symmetry

found at low fields and at T = 0+ is not a subset of the original Z4 symmetry found at low fields

and at T = 0. Rather, the Z2 symmetry corresponds to the two x y-planar Palmer-Chalker states,

whereas the Z4 symmetry corresponds to the other four Palmer-Chalker states.

Lastly, Fig. 3.10 shows the multiplicity of the FEPC spin configurations without considering

the free energy degeneracies. As such, it is not a true phase diagram of the system, but it re-

veals how the FEPC are changing as the field and temperature are varied, without considering

which states actually minimize the free energy. It demonstrates that there is a merging of FEPC
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Figure 3.10: Diagram denoting the discrete symmetry of each phase as a function of field H and temper-
ature T within mean field theory, for the [110] field direction. Note that the free energies of each FEPC
state is not considered here. Hence this is not a true phase diagram but merely represents the degeneracy
and merging of FEPC spin configurations.

states occurring in the system, in agreement with Fig. 3.8(e). Whether or not these merging

FEPC states have soft modes that influence the system depends on whether these FEPC states

minimize the free energy and hence are actually selected within simulations, as explained in

the main text. Nevertheless, even if free energy considerations complicate which FEPC states

are merging and which soft modes are active, Fig. 3.10 shows that mergers are still the origin of

soft modes in the [110] field.

Monte Carlo simulations at low field in the [110] direction

At low field in the [110] direction, there are four FEPC ground states {〈xz〉h ,〈y z〉h ,〈xz〉h ,〈y z〉h}

and two FEPC excited states {〈x y〉h ,〈x y〉h} [see Fig. 3.8]. The very small energy gap between

them means that it is not obvious which order is stabilised at finite temperature.

The easiest way to differentiate between the ground and excited states in Monte Carlo simu-

lations is via the z-component of the Palmer-Chalker order parameter, mPCz [see Fig. 3.11(a,b,c)

panels]. mPCz is finite for the two excited states, while it is zero for the four ground states. We

show that as the system size is increased, mPCz vanishes for B = 0.1 and 0.15 T, which means

the FEPC excited states are not stable for B & 0.1 T. For B = 0.05 T on the other hand, simula-

tions are difficult to thermalize and the evolution with system size is not monotonic. Hence,
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Figure 3.11: Differentiation between the ground and excited states in Monte Carlo simulations via the
z-component of the Palmer-Chalker order parameter, mPCz (a,b,c). mPCz is finite for the two excited
states, while it is zero for the four ground states. Here we show that as the system size is increased, mPCz

vanishes for B = 0.1 and 0.15 T, which means the FEPC excited states are not stable for B & 0.1 T. For
B = 0.05 T on the other hand, simulations are difficult to thermalize and the evolution with system size
is not monotonic. As for the four FEPC ground states, they can be divided into two pairs. For 〈xz〉h

and 〈y z〉h , the x-component of the Palmer-Chalker order parameter is positive, mPCx > 0. For 〈xz〉h and
〈y z〉h , mPCx < 0. As shown in panels (d,e,f), mPCx always gets more positive for large system sizes, which
means that the Z2 states at low [110] field are 〈xz〉h and 〈y z〉h . At very low temperatures, T < 40 mK, the
data split into two groups because of the broken ergodicity in simulations between 〈xz〉h and 〈y z〉h . All
of these simulations were done for tm = 5.107 Monte-Carlo steps.

we cannot rule out the presence of the FEPC excited states at finite temperature, as predicted

by mean field theory in the previous section. That being said, this possible co-existence would

only arise at very low field, B . 0.1 T, and thus not affect the mechanism for reentrance.

As for the four FEPC ground states, they can be divided into two pairs. For 〈xz〉h and 〈y z〉h ,

the x-component of the Palmer-Chalker order parameter is positive, mPCx > 0. For 〈xz〉h and

〈y z〉h , mPCx < 0. As shown in panels (d,e,f), mPCx always gets more and more positive for large

system sizes, which means that the Z2 states at low [110] field are 〈xz〉h and 〈y z〉h . At very

low temperatures, T < 40 mK, the data split into two groups because of the broken ergodicity
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in simulations between 〈xz〉h and 〈y z〉h . Please note, all of these simulations were done for

tm = 5.107 Monte-Carlo steps.

Monte Carlo simulations in the [111] direction

In Figure 3.12, we reproduce the phase diagrams in a [111] field as signalled via the Palmer-

Chalker and Γ5 order parameters, as well as the quantity m6φ (defined below) to differentiate

between ψ2 and ψ3 states. The contour of the phase diagram is clearly visible in panels (a) and

(b). However, as explained in the main text, in order to understand the reentrance at B ∼ 0.5

T, we need to consider the evolution of the angle φ. The ψ2 (ψ3) states are characterized by

φ≡ nπ/3 (+π/6) for n = 0, ...,5. Hence, the quantity m6φ ≡ mΓ5 cos
(

6φ
)

is equal to +1 (-1) for ψ2

(ψ3) states. The yellow region at finite temperature for B ∼ 0.5 T thus indicates the dominance

of ψ2 order in this region, as discussed in the main text. All of these simulations were done for

L = 6 and tm = 5.107 Monte-Carlo steps.
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Figure 3.12: Here we reproduce the phase diagrams in a [111] field as signalled via the (a) Palmer-Chalker
and (b) Γ5 order parameters, as well as the quantity (c) m6φ (defined above) to differentiate between ψ2

and ψ3 states.
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3.5 Ongoing work

The purpose of continuing this work is twofold: First, we would like to accurately deter-

mine the exchange parameters of the relative Hamiltonian in order to quantitatively compare

our phase diagram to theoretical models. Second, we need to find evidence of the spin-wave

mode softening related to the reentrant feature to corroborate our theory of reentrance. We

have explored both of these through inelastic neutron scattering at the Cold Neutron Chop-

per Spectrometer (CNCS) at Oak Ridge National Laboratory, the details of which are described

below.

Determination of relative exchange parameters

As introduced in Ref. [37], we can determine the interaction parameters of the pyrochlore

Hamiltonian (Eqn. (3.1)) from field polarized paramagnetic neutron scattering using linear spin

wave theory (LSWT). For this reason, we performed INS measurements on co-aligned single
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crystals of Er2Sn2O7 on the CNCS spectrometer at ORNL using a dilution insert and vertical

field magnet. We aligned 22 single crystals (Figure 3.13) such that the field is applied along

the [11̄0] and we probe the HHL scattering plane. A total mass of approximately 50 mg with

a mosaic spread of 4◦ was achieved. Measurements were performed at 0,3 and 7 T at base

temperature of 0.05 mK with an incident energy of Ei = 2.5 meV (energy resolution at elastic

line of 0.07 meV). The sample was rotated 180◦ with 2◦ steps about the vertical direction in

order to probe a sufficient amount of the HHL plane.

We utilized the MATLAB package SpinW [190] to attempt to fit the four interaction param-

eters, J1−4 (making no assumptions about the strength of the DM interaction, J4), using fixed

g-values previously found from CEF measurements [38], (g⊥, g∥) = (7.52,0.054). Unfortunately,

due to the large parameter space, a global best fit is not readily achieved. It is possible that

Er2Sn2O7 is similar to Yb2Ti2O7 in that there is a line of best fit [117, 191], and non-linear least

squares fits only show shallow minima. We can, however, compare our experimental spin-wave

results to the calculated spin-waves expected from the interaction parameters found from poly-

crystalline INS [16], which are

(J1, J2, J3, J4) = (+0.0696,+0.0753,−0.1064,+0.0372) meV. (3.24)

We see in Figure 3.13 b) and c) that the spin-wave dispersions associated with these interaction

strengths do not accurately represent the single crystal data. This clearly shows that the de-

termination of the actual interaction parameters is not only necessary to quantitatively model

Er2Sn2O7 and the field dependent phase diagram, but also to accurately place Er2Sn2O7 on the

ground state phase diagram. We are in the process of using exhaustive least squares fits, as well

as non-linear regression alternatives such as Bayesian non-linear regression, to obtain a more

accurate fit of the interactions. Additionally, undertaking an EPR measurement would be useful

to corroborate the g-values, as the fit is highly susceptible specifically to the exact value of g∥.
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Figure 3.13: Spin-wave scattering of Er2Sn2O7 in the field polarized state with an applied field of 3 T (7 T
background subtracted) and T ≈ 0.05 K in the a) HH0 and b) HH1̄ planes. Incident energy was 2 meV and
the calculated spin-wave dispersions using the parameters from Ref. [16]. c) Co-aligned single crystals
used for this study, with a total mass around 50 mg.

Spin-wave mode softening

The smoking gun to verify our theory that reentrance is linked to soft modes is the detec-

tion of the spin-wave mode softening. Therefore, we performed another INS experiment on

CNCS using the same co-aligned single crystals as the previous measurement. To see the mode

softening, an incident energy of Ei = 1.55 meV with energy resolution of 0.02 meV was utilized.

From the spin-wave calculations, in a [11̄0] field we expect to see mode softening up to the dip

in the phase diagram, where the soft modes suddenly disappear (Figure 3.9 e-g). For this rea-

son, we measured the spin-waves with an applied field of 0.5,0.65, and 0.75 T with 5 T used for

background subtraction. The sample was rotated through 90◦ with 2◦ steps such that the [111]

and [002] zone centers were covered.

Importantly, we do find evidence of mode softening as the field is increased from 0.5 T to

0.65 T. This can be seen in the high-field subtracted energy vs. intensity cut shown in Figure 3.14

a) and b). Further analysis, including more cuts around zone centers, careful folding for better

statistics, and a more robust background subtraction, are needed to make absolute conclusions

about the softening. However, we did not see the disappearance of the soft modes. In addition

to the softening, we find an unexpected intervening magnetic order, reminiscent of a
(1

2
1
2

1
2

)

order, as is seen in the elastic slice in Figure 3.14 c) and d) at 0.5 T. This is perhaps another
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Figure 3.14: Field dependent energy vs. intensity cuts around the [002] zone centers, 5 T background
subtracted. a) Cut along [0,0,2±0.2] and b) [0±0.2,0±0.2,2] showing the spin wave softens above 0.5 T.
The elastic line (not background subtracted) at c) 0.5 T and d) 0.65 T shows an intervening

(1
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)

phase.

manifestation of phase competition that is linked to reentrance, although further theoretical

investigations are necessary.
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Chapter 4

Dipolar correlations found in candidate octupolar

spin ice Ce2Sn2O7

4.1 Context

This chapter consists of a manuscript in preparation for publication on the discovery of

diffuse dipolar correlations found from neutron diffraction measurements in the candidate oc-

tupolar spin ice material Ce2Sn2O7. The full authorship is:

D. R. Yahne, B. Placke, R. Schaefer, O. Benton, M. Powell, J. W. Kolis, C. Pasco, A. F. May, E. M.

Smith, B. D. Gaulin, M. D. Frontzek, S. A. Calder and K. A. Ross, [unpublished] (2022).

Contributions

Single crystal samples were synthesized by L. D. Sanjeewa, M. Powell and J. W. Kolis. Poly-

crystalline samples of Ce2Sn2O7 were synthesized by M. Powell and J. W. Kolis, while samples of

Ho2Ti2O7 were synthesized by D. R. Yahne and T. Wecker. Single crystal heat capacity measure-

ments were performed by D. R. Yahne under the supervision of K.A. Ross. Powder heat capacity

measurements were performed by C. Pasco under the supervision of A. F. May. D. R. Yahne mea-

sured the powder neutron diffraction pattern with assistance from beamline scientists S. Calder

and M. Frontzek. D. R. Yahne also performed a mail-in PDF measurement with assistance from

the NOMAD team. RMC calculations were performed by D. R. Yahne with the assistance of J.

A. M. Paddison. In progress numerical linked cluster calculations are being carried out by B.

Placke, R. Schaefer, and O. Benton. All work performed on sister compout Ce2Zr2O7 was under-

taken by E. M. Smith and B. D. Gaulin. The paper was written by D. R. Yahne, S. Calder, and K.

A. Ross.
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4.2 Research Article

Introduction

The rare-earth pyrochlores, R2M2O7, where R3+ is a rare-earth ion and M4+ can be a range

of transition metal ions, host a wealth of exotic phenomena due to their canonical frustrated

geometry, range of single-ion anisotropy, and the ability to map to a pseudo-spin- 1
2 . The subtle

and complex interplay of anisotropic exchange, dipolar interactions, and higher order effects,

can stabilize a variety of different ground states from classical spin ice, to the highly entangled

quantum spin liquid (QSL) [26, 33, 147, 148]. Even when displaying more conventional ground

states, such as long-range order, many of the rare-earth pyrochlores lie on phase boundaries be-

tween different ordered phases [1, 16, 191, 192, 193], and the ability to tune across these bound-

aries through chemical pressure, disorder, or anisotropy, makes the rare-earth pyrochlores a

model system for finding unconventional physics.

In the heavy 4 f rare-earth magnets, the single ion physics dominates over two-ion interac-

tions, with the hierarchy of Coulomb interactions and spin-orbit coupling, followed by crystal

field (CEF) effects from the surrounding charged environment. The CEF breaks the degener-

ate free-ion ground state, and in the case of the pyrochlore oxides of interest, leads to a ground

state doublet that can be classified how it transforms under the point group symmetry group

and time reversal symmetry [33]. The doublets resulting from non-Kramers’ ions (even number

of electrons) are described by a pseudo-spin, where one component transforms like a magnetic

dipole, and the other two transform as magnetic quadrupoles. For Kramers’ ions (odd number

of electrons), there are two classes of doublets, one where all components of the pseudo-spin

transform as magnetic dipoles and therefore behaves identically to a spin- 1
2 , and the "dipolar-

octupolar" (DO) doublet, where two components transform as a magnetic dipole and the other

component transforms as a magnetic octupole.

DO pyrochlores, where R = Ce, Sm, or Nd, occur when the single-ion ground state doublet is

described by only the |3m
2 〉 states (m = 1,3,5...). The low energy physics of the DO pyrochlores

can be described by a simple XYZ Hamiltonian [33, 34],
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HXYZ =
∑

〈i , j 〉

[

J x̃S x̃
i S x̃

j + J ỹ S
ỹ

i
S

ỹ

j
+ J z̃S z̃

i S z̃
j

]

− gzµB

∑

i

h · ẑi

(

S z̃
i cosθ+S x̃

i sinθ
)

, (4.1)

where Sα̃ are the pseudospin components in the local α̃ = x̃, ỹ , z̃ coordinate frame (related

to the local x, y, z coordinate frame by a rotation of θ about the y axis), gz is the g-factor,

h is the magnetic field, and ẑi is the local anisotropy axis. The resulting zero field ground

state phase diagram reveals a large parameter region hosts either an octupolar or dipolar QSL

phase [4]. Recently, experimental work has highlighted Ce2Zr2O7 and Ce2Sn2O7 as QSL candi-

dates [3, 18, 42, 45, 46]. Extensive neutron scattering, heat capacity, and theoretical calculations

have constrained Ce2Zr2O7 to lie within the U(1)π QSL state at low temperatures, on a bound-

ary between octupolar and dipolar character. Similarly, neutron scattering measurements were

performed on Ce2Sn2O7 and revealed broad diffuse scattering at high scattering vectors, a sig-

nal attributed to an octupolar spin ice or higher order multipoles [18, 194]. This difference in

ground states is surprising given the chemical similarities between Ce2Zr2O7 and Ce2Sn2O7,

and perhaps points to a method of phase boundary tuning.

Along the same vein, many pyrochlores are sensitive to disorder effects, which can result in

vastly different ground states of nominally the same system, the most famous example being

that of Yb2Ti2O7 [195, 196, 197, 198, 199]. Ce-based pyrochlores are likely no exception to this,

as the non-magnetic Ce4+ oxidation state is stable and are thus potentially more prone to ox-

idation effects than other pyrochlore systems. Therefore, great care must be taken during the

synthesis and analysis of Ce-based pyrochlores to accurately assess the physics at hand.

Experimental Methods and Results

Single crystal and powder samples of Ce2Sn2O7 were grown via a hyrdothermal synthesis

method [176]. The benefit of hydrothermal synthesis is that it requires significantly lower tem-

perature and can therefore avoid the effects of the volatile tin oxide. Approximately 13 grams of

the pyrochlore stannate was prepared using a mixture of 30−50% SnO (Sn4+) and 70−50% SnO2

(Sn2+) in order to reduce any residual Ce4+ to Ce3+, thus minimizing the external impurities. We
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Figure 4.1: a) PDF analysis of Ce2Sn2O7 from total neutron scattering data taken on the NOMAD beam-
line at room temperature. The Fourier transform and background subtraction was performed using the
PDFgetN3 program, and Rietveld refinement utilized the PDFgui software. The fitted curve (red) shows
good agreement with the data, indicating no local distortions in the sample. The slight disagreement at
small neighbor distances is due to the asymmetric peak shape on NOMAD [17]. b) Room temperature
powder neutron diffraction on beamline HB-2A, and refined parameters can be found in Table 4.1.

expect there to be negligible stuffing of the A-site Ce3+ on the B-site Sn4+ due to the large size

difference (1.01 vs. 0.69), unlike Yb and Ti, (0.87 vs. 0.61) in Yb2Ti2O7. Additionally, such stuff-

ing would create a corresponding defect in the oxide lattice, leading to a noticeable change in

color. Our powders are bright yellow with a green tint (Fig. 4.3 d), showing no evidence of oxida-

tion effects while in air, in stark contrast to the sister compound Ce2Zr2O7 which turns black on

the order of hours. Furthermore, we have collected temperature dependent full-sphere single

crystal x-ray data sets at 100, 200, and 300 K. We refined the oxygen atoms on lower symmetry

sites and see no flattening or movement of the thermal ADP’s, suggesting little to no evidence

of defects in the oxide lattice to any measurable concentration. The refined lattice parameter of

10.6464(4) Å, within 0.01 Å of that found in Ref. [44] and Ref. [18], also suggests minimal oxida-

tion has occurred. The remaining question is whether there is evidence of Ce4+ stuffing on Sn4+

sites, which is possible given the comparable ionic radii (0.87 vs. 0.69). Our x-ray refinement

places an upper bound of 3% or less Ce4+ on the B-site, but the x-ray sensitivity precludes us

from determining the exact percentage of stuffing.
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Room temperature powder neutron diffraction (PND) measurements were performed on

beamlines HB-2A at the High Flux Isotope Reactor (HFIR) and NOMAD at the Spallation Neu-

tron Source (SNS) at Oak Ridge National Laboratory (ORNL). Room temperature PND on HB-2A

(Figure 4.1 b) utilized the Ge(115) monochromator for an incident wavelength of 1.54 Å, and the

resulting diffraction pattern was refined using the Fullprof software suite which implements the

Reitveld refinement method [138]. We find a lattice parameter of 10.64542(5) Å, in agreement

with our single crystal x-ray diffraction. A small non-magnetic impurity of CeO2 is present, and

makes up ∼ 3% of the material by weight. The total scattering measurement on NOMAD, with

a Qmax = 40 Å−1, allows an atomic pair distribution function (PDF) analysis to be performed

to further constrain the local structure of our sample (Figure 4.1 a). The PDF gives an atom

by atom histogram of all of the pair-pair correlations in a material as a function of real-space

distance r . We utilized PDFgetN3 and PDFgui [200, 201] to process the data and perform the

PDF refinement, respectively. Through this, we found a similar lattice parameter as HB-2A, and

there was no evidence of significant local structure distortions. We note that the poor fit in the

low-r region in real space is due to the asymmetry in the NOMAD peak shape in reciprocal space

[17], i.e. it is an artifact of the Fourier transform performed during the PDF analysis and is not

intrinsic to the sample.

Heat capacity measurements were performed on a single crystal of Ce2Sn2O7 (Fig. 4.2 a)

down to 50 mK using a Quantum Design PPMS with dilution insert, and similar measurements

on powder were performed down to 1.8 K. Our single crystal results differ from literature, but

we note that the entropy, found from extending the data using a power law extrapolation to

zero at T = 0, plateaus near the expected value of R ln(2) for a well-isolated Kramers’ doublet

ground state (Fig. 4.2 b), while Ref. [18] does not. This stark contrast is indeed surprising, as

the author’s of Ref. [18] took great care in surveying the level of disorder in their sample through

atomic PDF and thermogravimetric analysis. Nevertheless, in agreement with Ref. [18], we do

not find evidence of a transition to long-range order down to 50 mK. We see a broad peak in the

heat capacity, the shape of which is similar to that of the sister compound Ce2Zr2O7, although
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Figure 4.2: a) Single crystal heat capacity compared to previously published polycrystalline data by
Ref. [18]. Power law extrapolations down to 0 K were utilized to achieve a reasonable estimate of the
entropy. Please note that the data presented here is the total heat capacity (not lattice subtracted), while
the Sibille et. al data is Cmag, however, the phonon contribution at low temperature is expected to be
quite low and thus should not affect the conclusions of this work. b) The entropy recovered over the full
temperature range, showing our work plateaus at R ln(2), expected for a well-isolated single-ion doublet.
The Pauling spin ice entropy is also shown.

shifted to lower temperature. Polycrystalline measurements were more challenging to obtain

because the powder would not readily pelletize since it could not be sintered. Silver powder

was added to equal mass of polycrystalline Ce2Sn2O7 and pressed to form a pellet. After careful

background subtraction, the powder heat capacity data was found to be in good agreement

with the single crystal measurements within mass error.

We collected low temperature PND on WAND2 using the Ge(113) monochromator, with in-

cident wavelength of 1.488 Å, and a closed-cycle refrigerator with a base temperature of 0.3 K.

The high flux and 3He position-sensitive detector makes WAND2 an ideal instrument for prob-

ing weak, diffuse neutron signals that are expected for octupolar scattering at high-Q. However,

we do not find any increase in intensity at high-Q, and instead, we find a diffuse signal at low

scattering angle, reminiscent of a dipolar spin-ice (Figure 4.3 a). The temperature dependence
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in Figure 4.3 b) suggests this low-Q diffuse scattering onsets near 1.5 K where we also see the

initial increase in the heat capacity.

Discussion & Conclusions

Due to the apparent similarity of our diffuse signal with a dipolar spin ice, we performed

Reverse Monte Carlo (RMC) using SPINVERT [202] to determine the number of tetrahedra that

obey the 2-in-2-out ice rule. From simple counting statistics, we expect a lattice of perfectly

random Ising spins to have 37.5% of tetrahedra that obey the ice rule, while, experimentally, a

classical spin ice, like Ho2Ti2O7, should have ≥ 80%. The RMC calculations find that 44.4±1.0%

of tetrahedra satisfy the ice rule in Ce2Sn2O7, which indicates that there is only a slight favoring

of the ice-rule configuration, but Ce2Sn2O7 has clearly not ordered into a spin ice. It is likely

that this is due to thermal fluctuations from not being cooled far enough in to the spin ice re-

gion, as the integrated intensity of the diffuse scattering is not fully saturated at the lowest mea-

sured temperature. We expect the diffuse intensity and number of tetrahedra in the spin-ice

configuration would increase as the temperature is reduced further. Alternatively (or, perhaps,

additionally), quantum fluctuations could be at play, or there may be a mixing (or crossover)

between dipolar and octupolar spin ice that is unable to be modeled by the RMC program, both

of which would act to decrease the number of tetrahedra that obey the ice rule.

It is surprising that we are unable to reproduce the high-Q diffuse scattering from nominally

the same sample. The similarities between our work and that of Ce2Zr2O7, however, could point

to a dipolar QSL nature in Ce2Sn2O7. The contrast of this to the previously discovered octupolar

QSL of Ref. [18] corroborates that Ce2Zr2O7 (and Ce2Sn2O7) likely lies on a boundary between

octupolar and dipolar character [3]. We are in the process of undertaking numerical linked

cluster calculations to simultaneously fit the heat capacity, magnetic susceptibility, and neutron

diffraction to constrain the interaction parameters and ultimate ground state. The sensitivity

to disorder effects suggests Ce2Sn2O7 could lie in proximity to many phase boundaries. Further

studies to quantify the level of disorder in these samples is necessary to fully understand how

to tune across these phase boundaries.
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Figure 4.3: a) Diffuse neutron scattering from data taken on WAND2 at 300 mK. All data has been con-
verted to absolute units, and high temperature data was used for background subtraction. We com-
pare the Ce2Sn2O7 diffuse scattering to that of known dipolar spin ice material Ho2Ti2O7, as well as the
Ce2Sn2O7 high-Q diffuse scattering found by Sibille et al. [18]. b) High temperature subtracted diffuse
scattering as a function of temperature. The intensity increase near Q = 0.6 Å−1 is clearly seen and onsets
around 1.5 K. c) A single crystal of Ce2Sn2O7 used for heat capacity measurements and d) the polycrys-
talline sample used for powder heat capacity and neutron diffraction measurements.

In summary, we have found diffuse scattering reminiscent of a dipolar spin ice in the oc-

tupolar spin ice candidate Ce2Sn2O7. While the precise difference in the polycrystalline sam-

ples is currently unclear, the difference in ground state points to a strong sensitivity to disorder

which needs to be investigated further through PDF or XAFS measurements. Our current un-

derstanding suggests that Ce2Sn2O7 may be proximal to many phase boundaries, such as the

dipolar/octupolar phase boundary, similar to Ce2Zr2O7. Further investigations of Ce2Sn2O7

and Ce2Zr2O7 could help elucidate the effects of phase competition, as was recently done for

the pyrochlore stannate Er2Sn2O7.
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Table 4.1: Refined room temperature parameters for Ce2Sn2O7 from neutron diffraction on HB-2A using
the Fullprof Rietveld refinement.

Lattice parameter (Å): 10.64542(5) Space group: Fd-3m Temperature: 300 K
Atoms x y z B11 B22 B33 B12 B13 B23

Ce (16d) 0.75 0.75 0.5 0.0005(1) 0.0005(1) 0.0005(1) -0.0031(10) 0.00031(10) 0.00031(10)
Sn (16c) 0.5 0.75 0.25 0.00019(10) 0.00019(10) 0.00019(10) -0.00002(9) -0.00002(9) 0.00002(9)
O (48f) 0.625 0.625 0.3307(1) 0.00089(8) 0.00089(8) 0.00076(10) 0.00047(11) 0 0
O (8b) 0.625 0.625 0.625 0.0009(2) 0.0009(2) 0.0009(2) 0 0 0

Lambda (Å): 1.54 RBragg: 2.07 R f : 1.34

4.3 Supplemental Material

Neutron Rietveld Refinement Details

Room temperature neutron diffraction was performed on beamline HB-2A with an incident

wavelength of λ= 1.54Å (Figure 4.1 b). Rietveld refinement using the Fullprof software suite was

utilized for fitting the lattice parameters and occupancy, and the values of refined errors can be

found in Table 4.1. A non-magnetic CeO2 phase was necessary to account for some spurious

peaks, and was found to make up less than 3% of the sample by weight. Refined parameters

are found to be in agreement with Ref. [18] PND taken on the HRPT beamline at SINQ, Paul-

Scherrer Institute.

Room temperature time-of-flight total scattering was performed on the NOMAD beamline,

taking advantage of the mail-in program (Figure 4.1 a). The returned data was carefully back-

ground subtracted and given in S(Q) and G(r ) for a variety of Qmax cut off values. Ideally, an

infinite Q-range would be used for the Fourier transform from S(Q) → G(r ), however this is

obviously not possible. The maximum value of Q chosen will effect the real-space resolution

(larger Qmax corresponds to higher resolution) as well as termination ripples. For this reason,

we used a Qmax = 40 Å−1. The refined pattern and fitted lattice parameter of 10.6476 Å agrees

well with the experimental data and therefore we do not have evidence of oxidation.
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Chapter 5

Conclusion

This work explored the unique magnetism in three rare-earth based geometrically frustrated

magnets, exemplifying the variety of exotic magnetism these systems can host due to the vary-

ing single-ion and exchange anisotropy. In Chapter 2, we introduced a quasi-2D isosceles trian-

gular lattice material, K3Er(VO4)2, where we find an unusual magnetic structure of alternating

AFM layers with zero moment layers. Heat capacity measurements found this transition to

long-range order occurs at 155 mK, and a full R ln(2) entropy is recovered which indicates that

the odd magnetic structure is a fully ordered state. Therefore, we hypothesize that the structure

is due to the strong XY single-ion anisotropy, suggested from magnetometry measurements,

which acts to suppress the ordered out-of-plane pseudo-spin-1/2 magnetic moments. From

the relation µi = gi i Si , we propose that gzz would be very small, such that neutron scattering

does not detect any µz . Rotation magnetization and inelastic neutron measurements have been

performed to corroborate this, however currently analysis can only confirm that gzz < gx y .

In Chapter 3 we used extensive heat capacity measurements and theoretical techniques,

including classical Monte Carlo, mean field theory, and spinwave calculations, to elucidate

the underlying mechanisms behind reentrance found in the field vs. temperature phase dia-

gram of the effective spin-1/2 rare-earth pyrochlore oxide Er2Sn2O7. These results indicate that

reentrance is linked to soft modes arising from phase competition. The origin of the phase com-

petition depends on the applied field direction, but stems from either the enhanced competi-

tion with the nearby Γ5 AFM phase or from competing zero temperature field-evolved Palmer-

Chalker ground states. In both cases, the soft modes enhance thermal fluctuations which cause

the specific ordered phase to be entropically stabilized, thus forming a reentrant phase diagram.

This work relied on the use of single crystals to explore the anisotropic nature of the reentrant

phase diagram, and we have carried out further inelastic neutron scattering measurements to
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both experimentally verify the existence of soft modes as well as to better constrain the ground

state model.

Lastly, in Chapter 4, we explored the diffuse scattering of a dipolar-octupolar rare-earth py-

rochlore oxide, Ce2Sn2O7. We discovered that our neutron diffraction results were not in agree-

ment with previous literature results, which originally placed Ce2Sn2O7 within an octupolar

quantum spin liquid ground state. After undertaking room temperature neutron diffraction

and atomic PDF measurements to determine the sample quality, we find no obvious sample

differences or distortions. It is unclear why the scattering from nominally the same material

leads to strikingly different results. Nevertheless, our neutron diffraction resulted in a broad,

diffuse signal at low scattering vectors, reminiscent of a dipolar spin-ice. The similarities to sis-

ter compound Ce2Zr2O7 suggest that Ce2Sn2O7 could lie on a phase boundary that is sensitive

to minor disorder.

The study of these frustrated magnetic systems motivates further exploration of other rare-

earth based geometrically frustrated magnets. While an experimental realization of a quantum

spin liquid state is theoretically possible, higher order interactions often make this challenging.

However, the potential for furthering our fundamental understanding of classical and quantum

magnetism is readily achievable even when a QSL state is not realized. The zero moment layers

of K3Er(VO4)2 have allowed us to better understand the effects of single-ion anisotropy in a lay-

ered magnetic structure. The discovery of reentrance in Er2Sn2O7 has allowed us to learn more

about the effects of phase competition. While the origin of differing scattering in Ce2Sn2O7 re-

mains unclear, it has the potential to uncover phase boundary tuning, or perhaps even disorder,

mechanisms. This work shows the versatile playground of exotic magnetism that can be found

through the exploration of rare-earth geometrically frustrated magnets.

118



Bibliography

[1] H. Yan, O. Benton, L. Jaubert, and N. Shannon, Phys. Rev. B 95, 094422 (2017).

[2] A. M. Hallas, J. Gaudet, and B. D. Gaulin, Annu. Rev. Condens. Matter Phys. 9, 105 (2018).

[3] E. M. Smith, O. Benton, D. R. Yahne, B. Placke, J. Gaudet, J. Dudemaine, A. Fitterman,

J. Beare, S. Bhattacharya, T. DeLazzer, et al., pp. 1–17 (2021), 2108.01217.

[4] O. Benton, Phys. Rev. B 102, 104408 (2020).

[5] Physical Property Measurement System Dilution Refrigerator User’s Manual, Quantum De-

sign, San Diego, CA, 6th ed. (2013).

[6] C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, New York, NY, 2005), 8th

ed.

[7] Magnetic Property Measurement System MPMS3 User’s Manual, Quantum Design, San

Diego, CA, 15th ed. (2016).

[8] V. F. Sears, Neutron News 3, 26 (1992).

[9] H. Moeini and S. A. Hosseini, Radiat. Phys. Chem. 177, 109092 (2020).

[10] H. Schober, Neutron scattering instrumentation (Springer, 2009), pp. 37–104.

[11] T. Proffen, S. J. Billinge, T. Egami, and D. Louca, Z. Krystallog. 218, 132 (2003).

[12] S. E. Palmer and J. T. Chalker, Phys. Rev. B 62, 488 (2000).

[13] A. Poole, A. S. Wills, and E. Lelièvre-Berna, J. Phys. Condens. Matter 19, 452201 (2007).

[14] L. Savary, K. A. Ross, B. D. Gaulin, J. P. C. Ruff, and L. Balents, Phys. Rev. Lett. 109, 167201

(2012).

119



[15] M. Shirai, R. S. Freitas, J. Lago, S. T. Bramwell, C. Ritter, and I. Živković, Phys. Rev. B 96,
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