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ABSTRACT 
 
 
 

BEHAVIORAL RESPONSE OF MULE DEER TO NATURAL GAS DEVELOPMENT IN 
 

 THE PICEANCE BASIN 
 
 
 

One of the primary threats to the conservation of biodiversity is the loss and modification of 

habitat due to land-use change (Sala et al. 2000). Over the last decade, large expanses of North 

America have experienced major land-use change due to rapid increases in energy development 

(United States Energy Information Administration [U.S. EIA] 2012). This development is 

projected to continue to increase, with over 200,000 km2 of new land estimated to be impacted 

by 2030 (McDonald et al. 2009, U.S. EIA 2014). Energy development causes numerous 

environmental impacts, including air (Armendariz 2009, Howarth et al. 2011), water (Jackson et 

al. 2011), and noise pollution (Francis et al. 2009), conversion and fragmentation of habitat 

(Sawyer et al. 2006), increases in wildlife mortality (Kunz et al. 2007) and invasions of non-

native species (Bergquist et al. 2007). In addition, development requires a large infrastructure 

(i.e., roads, pipelines, and transmission lines) which can exacerbate these impacts (Forman and 

Alexander 1998).  

 Although the recent increase in energy development has occurred across numerous 

sectors, exploration and production of energy from hydrocarbon (oil and natural gas) resources 

has seen a particularly rapid increase (U.S. EIA 2012). One of the main reasons for this increase 

has been technological advancements (i.e., directional drilling and hydraulic fracturing) that have 

allowed for development of resources that previously were economically unviable. The resulting 

land-use change has raised concerns over the impacts to wildlife, with a number of recent studies 
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documenting impacts to an array of species (Naugle 2011).  For some species these impacts are 

direct, with the development itself causing mortality (Timoney and Ronconi 2010), or being 

linked to alteration of important parameters related to population growth (Aldridge and Boyce 

2007, Sorensen et al. 2008, Doherty et al. 2010, Holloran et al. 2010, Wasser et al. 2011). For 

other species, the impacts are more nuanced and depend on species life history strategies and the 

nature of development (Dale et al. 2008, Moseley et al. 2009, Francis et al. 2011a, Francis et al. 

2011b, Hamilton et al. 2011).  For the majority of studied species, these effects are behavioral, 

including altered habitat selection, (Doherty et al. 2008, Sawyer et al. 2009b, Carpenter et al. 

2010, Harju et al. 2010, Harju et al. 2011), and movement or home range patterns (Dyer et al. 

2002, Sawyer et al. 2009b, Webb et al. 2011c). Such behavioral responses can lead to increased 

nutritional stress (Wasser et al. 2011), lower abundance (Ingelfinger and Anderson 2004, Walker 

et al. 2007a, Dale et al. 2008), decreased survival, and altered reproductive behavior and success 

(Dzialak et al. 2011c, Jarnevich and Laubhan 2011, Webb et al. 2011a), ultimately leading to 

population declines (Walker et al. 2007b, Sorensen et al. 2008). Despite the fact that behavioral 

responses are among the most commonly documented impacts of hydrocarbon development, 

understanding the specific nature of these responses is complex. Developments are constructed 

in stages that differ in their intensity, and human activity at these developments and along related 

infrastructure varies spatially and temporally, as well as among different development types 

(e.g., well pads in different stages of construction; Sawyer et al. 2009a). In addition, behavioral 

responses and subsequent population-level impacts of development are highly species-specific 

and might not be manifested for time periods of up to a decade (Webb et al. 2011a). In light of 

the substantial complexities in the relationship between energy development and wildlife, 
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obtaining a more complete understanding of these responses is a critical step in informing 

wildlife management, and development and mitigation plans.   

 

Mule deer and hydrocarbon development 
 
 
In western North America, much of the recent hydrocarbon development has overlapped with the 

range of mule deer (Odocoileus hemionus). Mule deer is a recreationally and economically 

important species, with over 80,000 animals harvested each year in the state of Colorado alone.  

However, deer populations across Western North America have declined over the last 20 years 

from historical highs (Unsworth et al. 1999), and recent research has highlighted hydrocarbon 

development as a potential driver of large scale displacement of deer from preferred areas on 

their winter range (Sawyer et al. 2006). On winter range, deer face a net negative energy balance 

due to limited access to forage (Parker et al. 1984, Torbit et al. 1985), often leading to high over-

winter mortality (Bartmann and Bowden 1984). During summer, resources are abundant, but 

deer face high energetic demands as they birth and rear between 1 and 3 fawns (Wallmo et al. 

1977, Wallmo 1981). Increased disturbance from energy development could displace deer from 

preferred areas during either season, leading to higher energy expenditure, decreased foraging 

time, or increased predatory exposure. Thus, obtaining a more complete understanding of the 

potential impacts of development is critical for the conservation and management of the species.   

My dissertation focuses on the behavioral response of adult female mule deer to ongoing 

natural gas development in the Piceance Basin of Northwestern Colorado. The Piceance Basin is 

a top energy reserve in the United States, containing natural gas and oil shale. In addition, this 

area holds one of the largest migratory mule deer herds in North America. As discussed above, 

the response of wildlife to development is complicated by the dynamic and variable nature of 
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development, along with climatic conditions and deer condition, age, and reproductive status. I 

focus on behavioral responses of individual deer in an attempt to address some of this 

complexity. Throughout my dissertation (aside from Chapter 1, which is a review) I utilize 

global positioning system (GPS) radio collar data and contemporary statistical techniques 

developed in the field of animal movement ecology to assess the complex behavior of mule deer. 

Over the last decade, the field of animal movement ecology has progressed rapidly (Nathan et al. 

2008), with a major focus on the development of methods that account for the complex spatial 

and temporal structure in movement data (e.g., Morales et al. 2004, Johnson et al. 2008b, Hooten 

et al. 2010, McClintock et al. 2012a). This progression has provided a plethora of new tools for 

ecologists to use in understanding animal behavior. However, these methods are difficult to 

implement for practitioners and thus the development of new methods has far outpaced their use 

in applied conservation and management contexts. I use these methods to gain insight into mule 

deer behavior, and to assess the impacts of natural gas development on these behaviors.   

This dissertation is organized as follows. In chapter one, I review the global knowledge 

on the impacts of five energy sectors on terrestrial wildlife to set my work in the context of the 

current state of knowledge. In chapter two, I assess the effects of helicopter capture on mule deer 

behavior. The purpose of this chapter was to understand how our capture methods influenced 

subsequent inference related to mule deer behavior. In chapter three, I assessed an assumption of 

one of the primary methodologies used to examine the habitat selection process in animals, and 

one which I make use of in a later chapter, resource selection functions (RSFs). In chapter four, I 

apply what was learned in chapter three to mule deer data, fitting RSFs to winter range data from 

2008 – 2010. In chapter five, I assess landscape factors influencing seasonal range size and 

philopatry of mule deer to understand the influence of development on mule deer space use. In 
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chapter six, I examine the factors influencing foraging behavior of mule deer to understand how 

development impacts this behavior. Finally, in chapter seven, I assess the relationship between 

mule deer genetics, migratory behavior, and condition.  
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CHAPTER ONE 
 
 
 

CHARACTERIZING THE IMPACTS OF EMERGING ENERGY DEVELOPMENT ON  
 

WILDLIFE, WITH AN EYE TOWARDS MITIGATION 
 
 
 

INTRODUCTION- RAMIFICATIONS OF THE NEW ENERGY FUTURE  
 
 
 
Global demand for energy is projected to increase by 40% in the next 20 years (International 

Energy Agency (IEA) 2009). With the potential peak in world conventional oil production (Kerr 

2011), rising oil prices (Erturk 2011), and concerns over greenhouse gas emissions and 

subsequent climate change (IPCC 2007), energy demand increasingly will be met with 

alternative and unconventional (e.g., gas shale, oil sands) energy sources. The numerous 

economic and societal benefits of alternative and unconventional domestic energy production 

(e.g., job creation, national security), technological advancements such as hydraulic fracturing 

(United States Energy Information Administration (U.S. EIA) 2010; Kerr 2010) and directives 

and legislative mandates for renewable energy (U.S. EIA 2008, European Commission 2009) 

have spurred a rapid increase in global alternative and unconventional energy production over 

the last decade (IEA 2009, U.S. EIA 2010). This production, and related development, is poised 

to continue its upward trajectory (IEA 2009), with over 200,000 km2 of new land projected to be 

developed in the U.S. alone by 2035 (McDonald et al. 2009). From an ecological perspective, 

development can cause large-scale and novel alterations to ecosystems, resulting in habitat loss 

and fragmentation (Leu et al. 2008, McDonald et al. 2009) that strongly impact terrestrial 

wildlife populations and their ecosystems. In light of the new energy future, understanding and 
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mitigating the impacts of energy development will be one of the major global challenges for 

ecologists in the coming decade. 

 The potential environmental effects of energy development (e.g., water contamination, 

deforestation, climate change) garner much public interest and engender important debates. It is 

critical that the impacts of development to wildlife are part of this conversation, and that the best 

knowledge on this issue is available to decision makers. As such, there is an explicit need to 

summarize and synthesize the current literature on the impacts to wildlife in order to (1) 

characterize the type of development-caused environmental risks to wildlife, (2) understand 

general patterns of wildlife responses, (3) summarize results that offer guidance for mitigating 

impacts through on-site mitigation and best management practices (BMPs; i.e., measures 

employed by industry that reduce environmental impacts), and (4) highlight the need for such 

information where it is lacking. To this end, we reviewed the literature on recent energy 

development and development mitigation throughout the world. For the U.S. and Canada, where 

the majority of such research was focused, we quantified and summarized impacted species, the 

geographic location and ecoregions where research on impacts took place, and the robustness of 

study designs in terms of informing mitigation measures.  

 

IMPACTS OF EMERGING ENERGY SECTORS TO WILDLIFE 
 
 
 
Five energy sectors have driven the global increase in energy development: unconventional oil 

and gas, wind, bioenergy (including biofuels and biomass electricity production), solar, and 

geothermal energy (IEA 2009, U.S. EIA 2010). These sectors differ in their geographic 

locations, spatial extent, and impacts to wildlife, and thus have received various levels of 
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attention in the literature. We conducted a systematic review of the global literature on the 

impacts of the above energy sectors to terrestrial wildlife (see Appendix 1 for a detailed 

description of the review protocol and resulting literature). We focused on empirical studies or 

meta-analyses that examined wildlife impacts relative to these sectors, while excluding model-

based simulation studies. We did not review impacts from conventional oil development, as this 

type of development has been ongoing for several decades and is on the decline (U.S. EIA 2010). 

Finally, we used detailed information from studies specific to the U.S. and Canada for direct 

quantification of impacts to species as well as the geographic locations and ecoregions impacted 

(the latter for the U.S. alone).  These focal countries dominated the published literature (>70% of 

reviewed studies; Appendix 1), hold major reserves of unconventional oil and natural gas and 

substantial potential for renewable energy (Lu et al. 2009; World Energy Council (WEC) 2010, 

2012, Dinçer 2011), are two of the largest global producers (Table 1.1), and have publicly 

available information on energy production and potential. The U.S. and Canada also are on the 

forefront of developing cutting-edge production methods (e.g., hydraulic fracturing) that are 

likely to expand into other regions.  Thus, the energy development and subsequent 

environmental impacts in these countries reflect the current, and likely future, global trends in 

development (IEA 2009). 

 

Wind 
 
 
Although the debate on environmental impacts of many energy sectors has focused on carbon 

emissions or pollutants, the primary impact of wind energy has been to wildlife. The most 

common impact of this sector was the direct mortality of bats and birds from collisions with 

wind turbines (Table 1.2; Kunz et al. 2007; Kuvlesky et al. 2007; Rydell et al. 2010). The spatial 
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distribution of studies in the reviewed literature was limited, focusing on the U.S., Canada, or 

Western Europe despite substantial global potential and interest (Lu et al. 2009; Table 1.1). In 

the U.S. and Canada, the population repercussions of this mortality source were of greatest 

concern for bats due to the magnitude of such mortality, and the lack of information on 

demography and population sizes (Kuvlesky et al. 2007). Most mortalities in this region were of 

migratory, tree-dwelling bats (Kunz et al. 2007; Appendix 1). The patterns of mortality in 

Europe stood in contrast to the U.S. and Canada, as migratory and non-migratory bats were 

killed in similar proportions, and the species for which mortalities were most common were 

generally thought to have stable populations (Rydell et al. 2010). Despite these differences, the 

underlying mechanisms for these mortalities appeared to be similar between the two continents, 

and included bats engaging in behaviors that make them more susceptible to collisions, or being 

attracted to turbines for roosting or foraging. In general, these proximate causes for collisions 

remained untested, but the ultimate driver appeared to be that wind farms were located in high-

use areas (Kunz et al. 2007, Rydell et al. 2010).  

 As with bats, siting of wind farms in areas actively used by birds (e.g., flyways) was a 

major driver of mortalities (Kuvlesky et al. 2007). In North America, fewer birds (relative to 

bats) were killed due to collisions with turbines, and population-level consequences have not 

been documented (Kuvlesky et al. 2007), while in Europe wind turbine collisions likely have 

contributed to the decline of some species (e.g., the Egyptian vulture (Neophron percnopterus); 

Carrete et al. 2009), and impacted breeding success and fecundity of others (e.g., the griffon 

vulture (Gyps fulvus) and the white-tailed eagle (Haliaeetus albicilla); Dahl et al. 2012; 

Martinez-Abrain et al. 2012). On both continents wind farms negatively impacted bird 

abundance and elicited behavioral responses (e.g., avoidance), though this impact was species 
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and site dependent (de Lucas et al. 2004, Stewart et al. 2007, Pearce-Higgins et al. 2009, Garvin 

et al. 2011; Appendix 1).  

 Aside from bats and birds, we found only 6 studies that examined impacts of wind energy 

on terrestrial wildlife (two on ungulates, three on desert tortoises (Gopherus agassizii) and one 

on ground squirrels (Spermophilus beecheyi); see Appendix 1 for citations). Ungulates in these 

studies showed no behavioral responses to wind energy. Likewise tortoises showed no 

population-level response, but mortality related to culverts in wind energy facilities was 

hypothesized to be a potentially significant source of mortality. Ground squirrels showed 

behavioral alteration likely due to acoustic masking from wind turbines. 

 

Bioenergy 
 
 
The debate over the environmental impacts of bioenergy has centered on carbon emissions and 

deforestation, but the cultivation of crops used in this sector can elicit large-scale land-use 

change with implications for wildlife (Fargione et al. 2010). Importantly, bioenergy production 

occurs on all continents, but the literature on the impacts to wildlife is limited to only a few 

countries (e.g., the U.S., United Kingdom, and Indonesia; Table 1.1). This literature can be 

categorized by the nature of land conversion required for bioenergy cultivation. In temperate 

regions, where we only found studies from the U.S., Canada, and the United Kingdom, 

herbaceous crops (e.g., corn or miscanthus (Miscanthus giganteus)) and short-rotation woody 

crops (e.g., poplar (Populus spp.) or willow (Salix spp.)) were typically cultivated on lands that 

already have been converted for agricultural purposes (though in the U.S. some of these lands 

have been reclaimed; i.e., through the Conservation Reserve Program). In tropical regions, crops 

such as oil palm (Elaeis guineensis) and sugarcane (Saccharum spp.) were harvested as biodiesel 
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feedstocks and often required land conversion from primary or secondary native forests. 

Although cultivation of these crops occurred in a number of countries, we only found studies 

from Borneo, Malaysia, and Guatemala (Appendix 1). 

 The environmental impacts of oil palm cultivation has become a global conservation 

issue in the last decade (Fitzherbert et al. 2008). Oil palm cultivation and its associated 

deforestation represents one of the greatest threats to biodiversity in some tropical countries 

(Koh et al. 2011). Literature on the direct impacts to wildlife largely focused on bird diversity, 

with oil palm plantations having substantially lower diversity and disproportionately lower 

numbers of sensitive and rare species than non-palm forests (Fitzherbert et al. 2008, Danielsen et 

al. 2009, Edwards et al. 2010). The degree of biodiversity loss depended on the proximity of 

plantations to intact native forest or forest fragments (Koh 2008) and likely was related to lower 

vegetative diversity and limited food resources in plantations. Most research on the impacts of 

bioenergy production from oil palm to wildlife was from southeast Asia, but oil palm could be 

grown throughout the tropics, with similar conservation implications (Butler and Laurance 

2009). Similar to oil palm, the production of biodiesel from sugarcane or soy (Glycine sp.) 

contributed, along with other factors, to land clearing in the Amazon (Nepstad et al. 2008). 

Although empirical research on the direct impacts to wildlife in this area was lacking, large-scale 

deforestation will impact a host of species across numerous taxonomic groups. Critically, 

deforestation of the Amazon was not only a result of local demand for bioenergy, but influenced 

by global markets. Increased production of bioenergy from corn in the U.S. was linked to raising 

prices for soy, and thus further Amazonian land clearing for production of this crop (Laurance 

2007).  
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 In temperate regions, the most commonly documented impacts of herbaceous bioenergy 

crops was lower songbird and small mammal species richness, diversity, and abundance relative 

to reference areas (e.g., field margins or undisturbed grasslands; Semere & Slater 2007; Sage et 

al. 2010; Riffell et al. 2011; Robertson et al. 2011a; Robertson et al. 2011b). These patterns, 

however, depended on the surrounding land use (Bellamy et al. 2009).  Furthermore, if bioenergy 

crops composed only a small proportion of the landscape, an increase in species richness could 

result (Meehan et al. 2010) through increased habitat heterogeneity (Roth et al. 2005, Robertson 

et al. 2011a). In some areas, bioenergy crops such as corn provided high quality forage for large 

herbivores, thus cultivation was hypothesized to alter space-use of these animals (Walter et al. 

2009b).  

 Short-rotation woody crops, planted in temperate regions, increased nesting habitat for 

birds in some areas, and enhanced species diversity and abundance for birds, mammals and some 

reptiles relative to undisturbed forest, but potentially decreased amphibian diversity and 

abundance (Berg 2002, Sage et al. 2006, Dhondt et al. 2007; see Appendix 1). For birds, the 

understory vegetation in woody bioenergy crops provided an important food source (Fry and 

Slater 2011). Again, these impacts depended on the surrounding habitat and the type of land that 

was converted for energy development. The largest body of research on impacts of woody 

bioenergy crops to wildlife was from the United Kingdom, where historically much of the land 

was converted to farmland. Thus, these impacts may not apply for areas where cultivation occurs 

at the expense of natural habitat. 

 As with other energy sectors, the impacts of bioenergy crops differed by species and, 

therefore, their cultivation led to altered species composition (Roth et al. 2005, Riffell et al. 

2011). Specific  responses varied by crop, land type, (Berg 2002, Tilman et al. 2006, Semere and 
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Slater 2007, Meehan et al. 2010, Robertson et al. 2011a), and harvest practices (Roth et al. 

2005), and depended on the remaining habitat within crops or plantations (Koh 2008). These 

impacts were of greatest conservation concern when crops or plantations replaced native forests, 

crop margins, or lands in conservation holdings (Riffell et al. 2011). Such conversion is likely to 

become more common with greater economic incentives for bioenergy crop cultivation. Another 

major concern with herbaceous and woody bioenergy production was the potential for crops to 

become invasive species. Many prospective bioenergy crops have similar characteristics to 

successful invasive species (e.g., rapid growth with little chemical or nutrient input) and were 

more likely to become invasive than reference plants (Buddenhagen et al. 2009). For wildlife, 

such invasions are likely to act synergistically with other bioenergy impacts.  

 

Unconventional Oil and Gas 
 
 
Unconventional oil or natural gas reserves exist on every continent, and their development is set 

to become a major energy sector worldwide (WEC 2010, 2012). Information on global 

production of unconventional natural gas and assessments of reserves, however, are noticeably 

lacking at this time, while unconventional oil extraction currently occurs in few countries (Table 

1.1). The U.S. and Canada produce the greatest amount of unconventional oil and natural gas 

energy globally (U.S. EIA, 2010, WEC 2012) and, reflectively, the related literature was 

predominantly concentrated on these countries (Appendix 1). With development likely to 

increase globally in coming years, the impacts documented in this region are salient globally. 

Development of unconventional oil and natural gas broadly impacted wildlife by (a) 

fragmentation through the creation of complex road and pipeline networks, (b) direct habitat 

conversion from the development footprint, (c) eliciting behavioral responses, particularly 



 
 

9 

avoidance, due to development related activity (construction, increased human activities and 

anthropogenic noise), and (d) inviting further fragmentation, resource extraction and direct 

mortality of wildlife through increased human access to wild lands. Globally, studies mainly 

focused on impacts to large mammals. Importantly, we note that global studies did not 

distinguish between conventional and unconventional development and, therefore, we limited 

our review to a select group of key studies outside the U.S. and Canada (see Appendix 1 for 

detailed discussion of evaluation protocols).  In the U.S. and Canada, most studies documented 

negative impacts of unconventional oil and natural gas development to wildlife (Fig. 1.1). 

Studies of these impacts focused mainly on ungulates, greater sage grouse (Centrocercus 

urophasianus), and a variety of song bird species.  

 The impacts of unconventional oil and gas development on ungulates and other large 

mammals were well characterized due to the economic and conservation importance of these 

species. For large mammals, behavioral impacts were most commonly documented and included 

large-scale displacement from developed areas and around development infrastructure (Sawyer 

et al. 2006), altered movement or home range patterns (Dyer et al. 2002), and more fine-scale 

behavioral modifications likely in response to variable human activity, traffic, or disturbance 

from seismic exploration (Dyer et al. 2002, Sawyer et al. 2009a, Wrege et al. 2010, Wasser et al. 

2011). These responses varied by spatial scale and across species, and not all large mammals are 

impacted by development infrastructure (Kolowski and Alonso 2010, Rabanal et al. 2010).  

 Few studies documented population-level impacts for specific species of large mammal 

from development, though oil and natural gas extraction likely has influenced population 

declines of caribou (Rangifer spp.; Sorenson et al. 2008; Wasser et al. 2011), led to decreased 

survival of elk (Cervus elaphus; Dzialak et al. 2011b), and contributed to heightened grizzly bear 
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(Ursus arctos) mortality (Nielsen et al. 2006). One study documented increased nutritional and 

psychological stress of caribou, likely in response to human activity related to oil and natural gas 

development (Wasser et al. 2011). Although direct population-level impacts from this sector 

were infrequently documented, in Africa development contributed to unsustainable levels of 

bushmeat extraction due to increased human presence (Thibault and Blaney 2003) and any 

increases in development that may accompany unconventional oil and gas development are 

likely to exacerbate this situation. Impacts of oil and gas development on the migrations of large 

mammals have not been rigorously examined, but it is likely that migrations of some individuals 

will be disrupted by development (Sawyer et al. 2009b). Lastly, altered behavioral patterns could 

lead to increased vulnerability to predators for certain species.   

  For bird species the most common impact of oil and gas development was reduced 

abundance around development infrastructure (Pitman et al. 2005, Jarnevich and Laubhan 2011). 

Such impacts often were species-specific, leading to alterations in species composition in 

developed areas (Bayne et al. 2008, Gilbert and Chalfoun 2011). Anthropogenic noise produced 

from oil and gas extraction also altered species composition (Bayne et al. 2008, Francis et al. 

2011a; Appendix 1), which indirectly influenced plant pollination and seed dispersal (Francis et 

al. 2012). Such noise affected reproductive parameters such as mate pairing success, age 

distribution, and nesting frequency and abundance (Francis et al. 2011a; Appendix 1).  Noise 

also caused birds to alter their song characteristics, which can exacerbate negative impacts and 

potentially increased predatory exposure (Francis et al. 2011a; Appendix 1). Other, less 

commonly reported impacts from unconventional oil and natural gas development included 

changes in songbird territory size and shape due to habitat alteration from seismic exploration 

(Machtans 2006; Appendix 1), and direct mortality or contamination from landing on wastewater 
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ponds produced from oil and gas drilling and oil sands extraction, or ingesting toxicants therein 

(Gurney et al. 2005, Ramirez 2010). Seismic exploration and wastewater ponds accompany 

almost any development project in this sector, so such impacts likely were more widespread than 

suggested by the literature. Although there was little research on the impacts of oil and gas 

development to bird species outside of the U.S. and Canada, the creation of development related 

roads and other linear features in the tropics will likely hasten human-caused deforestation and 

colonization of forested areas (Laurance et al. 2009).  

 Although specific only to the U.S. and Canada, impacts of energy development on sage 

grouse were possibly the best characterized due to their conservation status (listed as warranted 

but precluded under the Endangered Species Act in the U.S. and endangered under Canada's 

Species at Risk Act) and overlap with significant unconventional natural gas reserves. Research 

on the response of sage grouse to energy development primarily was focused on understanding 

the reasons for population declines.  Numerous studies documented impacts that directly affect 

sage grouse reproductive output in developed areas, including lower frequency of nest initiation 

(Lyon and Anderson 2003), greater probability of brood loss (Aldridge and Boyce 2007), and 

lower recruitment of juveniles to leks (Holloran et al. 2010). In addition, sage grouse had 

decreased lek attendance (a metric used to monitor populations; Doherty et al. 2010) and lower 

survival probability (Holloran et al. 2010) in developed areas. Sage grouse also avoided areas 

around developments (Doherty et al. 2008). These impacts likely were exacerbated by the fact 

that development decreased available grouse habitat, while increasing habitat for predators (Bui 

et al. 2010) and mosquitoes carrying West Nile virus (Zou et al. 2006), to which grouse are 

susceptible. Regulations were in place to provide protection for sage grouse in areas being 
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actively developed for natural gas, though these regulations likely were insufficient (Doherty et 

al. 2008).  

 Studies on the impacts of unconventional oil and gas development on species other than 

birds and large mammals was limited (Fig. 1.1). We found only one study examining the 

influence of oil and gas development on amphibians or reptiles with no documented response 

(see Appendix 1). 

 

Solar and Geothermal 
 
 
We found no empirical peer-reviewed research on the impacts of either solar or geothermal 

energy development on wildlife. These sectors also are the least developed globally (Table 1.1). 

Lovich and Ennen (2011) reviewed the available literature (mostly from unpublished reports) 

and hypothesized that habitat loss and fragmentation, and microclimate alteration around solar 

arrays were the most likely impacts to wildlife (Table 1.2). The desert southwest of the U.S. 

holds some of the greatest potential for solar energy in the U.S. and Canada, thus wildlife in this 

area face the greatest threat (Table 1.3; Lovich & Ennen 2011). Similar to other sectors, the 

location of solar arrays relative to wildlife migration routes and critical habitat figures to be 

important in dictating the conservation implications (Lovich and Ennen 2011).   

Geothermal energy development can involve the emission of pollutants (Pimental 2008), and 

will involve habitat alteration and related impacts, at least at a small scale (Table 1.2). Literature 

on empirical studies regarding impacts from this sector was lacking globally. The majority of 

geothermal energy potential in the U.S. and Canada lays in the west and southwest of the U.S. 

(Table 1.3; Appendix 2).  
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Summary, General Patterns, and Research Needs 
 
 
The impacts of energy development to wildlife varied among species and sectors (Table 1.2). In 

our quantification of studies from the U.S. and Canada, most studies documented negative 

impacts (Fig. 1.1). Behavioral alterations in response to development were the most common 

impact reported and likely precede demographic or population-level consequences. Behavioral 

responses included large-scale displacement, as well as more nuanced changes to habitat 

selection and movement patterns related to habitat fragmentation. Fragmentation is an 

unavoidable byproduct of development, potentially resulting in both the loss of migratory routes 

and decreased connectivity within and between populations, as well as further impacts related to 

human access to wild lands. The preponderance of behavioral alterations may have resulted from 

the large body of research on unconventional oil and gas development in the U.S. and Canada, 

for which behavioral responses were typical, or due to a disproportionate number of studies in 

this sector focused on behavioral impacts over other factors. Broadly, across studies in different 

regions, results demonstrated wide variation in the response of species to the same or similar 

disturbance, thus altered species composition and interactions appear to be a likely outcome of 

any development project. Although less common, the impacts with the most direct conservation 

implications included those that caused decreased survival, altered reproduction, and population 

declines. These impacts were documented for some species in response to unconventional oil and 

natural gas development and wind energy but were undocumented in other sectors, probably 

reflecting limited research.  

 Although the literature on impacts of unconventional and alternative energy development 

to wildlife has initiated important discussion and further research, a number of major 

shortcomings exist and must be addressed. Importantly, the literature was severely limited 
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geographically, both globally (Table 1.1) and in the U.S. and Canada (Fig. 1.2). In many cases, 

research on impacts in the U.S. and Canada did not overlap the ecoregions with the greatest 

potential for development (Olson et al. 2001; Table 1.3; see also Appendix 2), and similar 

patterns likely exist worldwide. Such ecoregions and the component species are potentially at the 

greatest risk but severely understudied (see Appendix 2). In addition, the literature was focused 

on few species (Fig. 1.1), and the majority of studies were retrospective (less than 20% of the 

reviewed studies from the U.S. and Canada had any before-after component). These factors 

strictly limit the inferences that can be drawn from such studies. A broadening of the current 

knowledge base in terms of both species and geography, as well as more robust study design are 

needed to assess the impacts to wildlife.   

 

BEST MANAGEMENT PRACTICES AND ON-SITE MITIGATION  
 
 
 
Identifying the wide variety of energy development driven impacts to wildlife is the first step in 

understanding how each sector is altering environments. Subsequently, providing tangible 

recommendations on mitigating these impacts is important to successful conservation actions 

aimed at ensuring more sustainable development. Here we summarize the BMPs and on-site 

mitigation measures suggested in the published literature and highlight the need for such 

research where it is lacking (see also Appendix 1).  

 

Wind 
 
 
Direct mortality, the primary impact to wildlife from wind energy development, is more easily 

quantified than the often indirect impacts related to other sectors. Thus, in many cases mitigation 
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can produce more tangible results (i.e., mortality reduction), and a number of studies directly 

assessed mitigation in a before-after context (Fig. 1.3). For bats, increasing the wind speed at 

which turbines begin spinning (cut-in speed) was shown to effectively reduce mortalities 

(Baerwald et al. 2009, Arnett et al. 2010). For birds, seasonal stoppages, upgrading turbines to 

newer and taller models, moving food sources to reduce collision potential, and stopping turbines 

during certain wind conditions reduced mortalities (Smallwood and Karas 2009, Smallwood et 

al. 2009b, Martinez-Abrain et al. 2012). In addition, in areas of intensive monitoring, stopping 

specific turbines when birds were seen flying nearby reduced mortalities (de Lucas et al. 2012).    

 The above studies provided the best guidance on mitigation measures. Despite the fact 

that many studies were not designed to directly test mitigation (Fig. 1.3), documentation of 

disproportionate mortality at certain turbines or wind farms was used to suggest BMPs and on-

site mitigation measures. Chief among these measures was locating wind farms to avoid areas of 

generally high density of birds and bats, feeding and foraging sites for soaring birds, migratory 

routes, nesting areas, and bat colonies (Kuvlesky et al. 2007, Smallwood et al. 2007, Carrete et 

al. 2009, Baerwald and Barclay 2011, Dahl et al. 2012). Risks associated with development 

siting can be readily assessed in the predevelopment environmental impact assessment stage, 

however in some cases such assessments were misleading (e.g., Ferrer et al. 2012) and would be 

more accurate if conducted at the individual turbine level taking species-specific factors into 

account (e.g., for soaring birds avoid placement in areas that produce certain winds; de Lucas et 

al. 2008; de Lucas et al. 2012; Ferrer et al. 2012). For bats, echolocation detectors were 

suggested to be effective for such assessments (Weller and Baldwin 2012). In addition, building 

wind farms on developed lands (e.g., agricultural lands) could benefit wildlife by reducing land 

use change (Kiesecker et al. 2011). Aside from adequately assessing the locations of wind farms, 
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stopping wind turbines during times when bats and birds are particularly active or vulnerable (for 

birds during times when food was limited; Martinez-Abrain et al. 2012; for bats when insects 

were most active, during clearer weather, falling barometric pressure, just after sunset and 

particularly at taller turbines; Barclay et al. 2007; Horn et al. 2008; Baerwald & Barclay 2011) 

was projected to provide the greatest reduction in mortalities. In addition, assessing the 

effectiveness of seasonal shutdowns is recommended (Johnson et al. 2004b), as is removal of 

specific turbines at which there are a disproportionate number of collisions (Carrete et al. 2009). 

Habitat offsets, particularly for areas with traits described above, have been suggested as a means 

of decreasing population level impacts to birds (Smallwood and Thelander 2008). Other 

mitigation measures, such as altering the physical characteristics of turbines, may be effective 

but vary geographically, and among species in the same area (see Appendix 1). Many of these 

recommendations likely are species and site specific and not widely applicable.  

 Although most of the research on wind energy impacts to wildlife focused on mortalities 

among avian and bat species, research on non-volant species was limited and produced equivocal 

results (see Appendix 1). Impacts are likely species and site specific, and will require further 

research to elucidate general patterns useful for mitigation. 

 

Bioenergy  
 
 
Suggested measures for the mitigation of bioenergy impacts to wildlife varied widely depending 

on the crop and region. In tropical regions, where crops often replaced native forests, extensive 

pre-development assessments of economic benefits and environmental costs were suggested to 

fully understand impacts (Danielsen et al. 2009). In addition, if crops replace areas of high 

conservation value, habitat offsets may be required to ensure sufficient habitat is left unaltered 
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(Edwards et al. 2010). In some cases improvements within plantations (e.g., promoting 

understory or epiphytic growth) and maintenance of forest fragments nearby plantations were 

suggested to enhance biodiversity (Koh 2008). Ultimately, ensuring large tracts of native forest 

are left intact will provide the greatest conservation benefit. 

 In temperate regions the cultivation of bioenergy crops may require no new development 

(i.e., use of previously cultivated lands). In these areas, degraded land brought back into 

production with high diversity polycultures of plants could in fact increase habitat for some 

wildlife species (Tilman et al. 2006). Thus, the discussion of BMPs and mitigation in temperate 

regions centered not on the development itself but on the conservation value of the cultivated 

land and what crops were planted. A greater proportion of studies directly assessed mitigation for 

this sector than any other (Fig. 1.3), and a number of suggestions for BMPs and mitigation were 

provided. For birds that may nest in bioenergy crops, harvesting post-fledging was offered as an 

important BMP (Roth et al. 2005). In addition, maintaining habitat structure through planting 

mosaics of harvested and unharvested crops, or crops and undisturbed land was suggested to 

provide a greater amount of habitat for a range of species (Murray and Best 2003, Roth et al. 

2005, Sage et al. 2010). With short-rotation woody crops, the specific vegetative characteristics 

of cultivated species influenced nesting propensity for certain species of birds and, therefore, site 

and species specific guidelines will need to be developed in new areas (Verschuyl et al. 2011). 

As with herbaceous crops, in short-rotation woody crops, maintaining habitat diversity by 

planting a variety of cultivars positively impacted a diverse array of species (Dhondt et al. 2007). 

For small mammals, habitat appeared to be enhanced by maintaining residual coarse-woody 

debris and constructing piles or windrows (Sullivan et al. 2011; Appendix 1). We caution that the 

literature on bioenergy was limited in geographic extent  and with expansion of these crops into 
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other countries, mitigation measures will depend greatly on current land use and management 

goals (e.g., if endangered species are present in an area, then general species diversity likely will 

be of lesser concern).  

 A number of other studies assessed wildlife response to bioenergy crops and made 

mitigation suggestions based on their findings. High diversity polycultures (Tilman et al. 2006), 

or crops that mimic native vegetation were recommended for planting on degraded lands 

(Semere and Slater 2007, Meehan et al. 2010, Robertson et al. 2011a, Robertson et al. 2011b). 

Again, any measures that increase habitat diversity or maintain within-crop structural variability, 

such as rotational harvest or planting crops at the intersection of two habitat types is likely to 

increase habitat for a range of species (Berg 2002, Sage et al. 2006, Robertson et al. 2011a). 

Lastly, maintaining weed species within crops through soil disturbance during harvest, or 

maintaining crops in different stages of maturity was offered as a means to provide food sources 

and habitat for wildlife species (Bellamy et al. 2009, Fry and Slater 2011). In contrast, 

cultivation of crop margins, lands in conservation holdings and the conversion of native habitats 

negatively impacted wildlife (Riffell et al. 2011).  

 

Unconventional Oil and Gas 
 
 
Unconventional oil and natural gas differs from other sectors in that, typically, the energy 

resource, and thus the extraction period, is finite (though we note that new technologies can 

extend the life span of infrastructure, with development potentially lasting several decades). 

Therefore, on-site mitigation and BMPs are critical for bringing wildlife through the 

development period, after which habitat can be restored. Several BMPs and on-site mitigation 

measures were outlined to address the impacts of this sector (Table 1.2). However, few studies 
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were designed to directly test mitigation in a before-after comparison, or even correlatively (Fig. 

1.3), and thus few measures were supported in the literature. Those studies that were designed in 

this manner provided the most definitive evidence for the efficacy of specific BMPs or on-site 

mitigation and we first discuss these measures.  

 Although unconventional oil and natural gas development typically only removes a small 

proportion of physical habitat (oil sands mining being a notable exception), the location and 

interface of these surface disturbances with wildlife space use can amplify or reduce its impacts. 

Several methods were suggested to manage this interface. Anthropogenic noise that elicits a 

multitude of behavioral responses by wildlife, our understanding of which is in its infancy, can 

be managed with a number of methods. Such methods included selective placement in relation to 

natural noise barriers, installing fewer, centralized compressors, constructing noise retaining 

walls, or installing noise suppression devices on compressors (Bayne et al. 2008, Francis et al. 

2011a; Appendix 1). Similarly, installation of remote liquid gathering systems reduced human 

activity at well pads and thus decreased behavioral impacts (Sawyer et al. 2009a). Clustering 

developments, maintaining buffers between development and critical habitat (e.g., nesting 

habitat), and designing projects to maintain sufficient cover or “refuge” habitat were 

recommended to provide haven from the perceived risk associated with development (Sawyer et 

al. 2009a; Appendix 1). Particularly if developments are clustered in future projects, 

maintenance of sufficient undeveloped habitat will be important to avoid numerous large 

development clusters with little habitat in between. Reducing the fragmentation caused by linear 

features (i.e., pipelines and seismic lines) so as to limit impediment to wildlife movement or 

territory formation was suggested by revegetation or simply constructing more narrow features, 

particularly in areas of extensive seismic exploration (e.g., boreal Canada; Machtans 2006). 
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Lastly, issues associated with birds landing on wastewater ponds were reduced by using 

innovative deterrent methods or by placing netting over ponds (Ronconi and Cassady St. Clair 

2006, Ramirez 2010). 

 Although the above studies provided the best guidance for mitigation, a number of other 

studies made useful suggestions based on documentation of wildlife response to development. 

Such suggestions, though less supported than those above, provide useful starting points for 

more directed studies of mitigation measures. Specifically, employing methods to decrease 

infrastructure and human activity were commonly suggested mitigation measures from studies 

documenting behavioral responses to development. Limiting public access to industrial roads 

also was recommended to decrease mortalities of some mammal species (Nielsen et al. 2006, 

Dzialak et al. 2011c). Helicopter-assisted or remote seismic exploration could decrease 

behavioral impacts and subsequent displacement of and stress to some wildlife species in the 

long term, though care must be taken as the use of helicopters negatively impacts other species 

(Dyer et al. 2002, Doherty et al. 2010, Kolowski and Alonso 2010, Wasser et al. 2011). 

Helicopter-assisted exploration may be particularly important in tropical areas, where 

fragmentation leads to progressively greater threats to biodiversity (Laurance et al. 2009). The 

above measures will provide disproportionate benefits for certain species (e.g., African elephants 

(Loxodonta africana); Rabanal et al. 2010), or if employed during sensitive time periods (e.g., 

lekking for sage grouse) or in sensitive habitat (e.g., nesting habitat; Lyon & Anderson 2003). In 

instances where the buffering of critical habitat, or maintenance of refuge habitat are not 

possible, enhancing existing habitat through treatments or planting of native vegetation may be 

effective alternatives (Aldridge and Boyce 2007). Habitat improvements also could be used to 

offset nutritional stress that may occur with development disturbance. Lastly, in areas where 
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bushmeat hunting is of particular concern resource extraction companies may need to prohibit 

human access and hunting (Thibault and Blaney 2003). 

 On-site mitigation and BMPs have the potential to effectively reduce impacts of 

unconventional oil and natural gas development on certain species.  Other species, however, 

simply do not coexist well with energy development. Numerous studies documented negative 

impacts to both caribou and greater sage grouse from development in the U.S. and Canada, and 

although BMPs and though on-site mitigation measures were suggested by some studies, these 

typically involved maintaining large tracts of undeveloped land or employing large buffer 

distances between development and critical habitat (see Appendix 1). Such measures may only 

be viable in limited circumstances and, in the best case, will be difficult to implement; 

identifying critical habitat (buffered adequately from development) and determining how much 

is required is a daunting task and likely to be inexact. Thus, for these species, prioritizing habitat 

or populations to keep undeveloped, while promoting development in other areas (i.e., habitat 

offsets), may be the most effective mitigation measures (Doherty et al. 2010, Schneider et al. 

2010). For better or worse, such measures can only be undertaken after sufficient evidence has 

been accrued to indicate the lack of effective BMPs or on-site mitigation measures. 

 

Solar and Geothermal  
 
 
We found no research on mitigating the impacts of solar or geothermal development on wildlife, 

thus no recommendations were supported by the literature. Energy is produced from these 

sectors in most regions of the world (Table 1.1) and the most likely impacts from both sectors are 

displacement from areas around development, leading to altered species composition and 

behavior (Table 1.2). Best management practices and mitigation measures from other sectors are 
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likely to be applicable; in particular, proper siting of these developments through pre-

development assessments will undoubtedly be of importance in reducing impacts to wildlife.   

 

MITIGATION FOR A SUSTAINABLE ENERGY FUTURE  
 
 
 
Recent and emerging energy development impacts wildlife species through the reduction and 

fragmentation of habitat, displacement, and direct mortality, all of which can contribute to 

population declines. At the same time, energy development provides numerous societal benefits 

and is a strategically important domestic objective for many countries. Thus, reduction of 

impacts through creative mitigation measures and BMPs will be important for resolving these 

contradictory issues and securing a sustainable energy future.     

 Although the development of mitigation measures and BMPs is in its infancy in many 

areas and sectors, the literature offered a number of promising measures. Common to all 

reviewed energy sectors was the importance of rigorous pre-development assessments. 

Determining environmental characteristics of areas slated for development and dynamics in 

wildlife occupancy is essential for predicting likely impacts. In many cases, such assessments 

will lead to the identification of sites where mitigation may be economically unfeasible (e.g., 

migratory flyways requiring shutting down of wind farms for large portions of the year). In these 

cases, areas of higher conservation priority may be unsuitable for the proposed energy 

development and could be protected as an offset for development of less important areas 

(Doherty et al. 2010, Schneider et al. 2010). 

 In regions where development is deemed to be feasible, assessments can provide further 

guidance on which BMPs or mitigation measures will be most effective. In general, the literature 



 
 

23 

suggested that impacts of all of the reviewed sectors can be reduced by spatially and temporally 

consolidating development activity and infrastructure, thereby localizing impacts. Any methods 

that reduce human activity and presence on the land (e.g., liquid gathering systems at natural gas 

well pads) or decrease the propagation of anthropogenic noise (e.g., concentrated compressor 

stations with sound retaining barriers) appear to be broadly applicable as well. Unfortunately, the 

mitigation approaches suggested in the literature tended to be less targeted and our understanding 

of their effectiveness is limited. In particular, with oil and natural gas development there are 

multiple interacting, and potentially synergistic impacts (e.g., sound disturbance, fragmentation, 

human activity), and few studies pinpointed the mechanisms eliciting wildlife responses. In 

contrast, due to the nature of development and of impacts, assessments of mitigation for wind 

and bioenergy tended to be more straightforward, and the literature provided suggestions for 

mitigation in greater detail. Despite the broad generalities discussed here, measures reported may 

be valid only at the development densities and for the particular disturbances studied.  It is likely 

that development thresholds exist, and exceeding these thresholds will lead to population-level 

consequences. Few studies addressed such prospects, but it is important that potential thresholds 

are investigated. In addition, due to the lack of research in many ecoregions and countries that 

are or will become developed (Fig. 1.2; Table 1.1 & 1.3), the applicability of the BMPs and 

mitigation measures outlined above to other areas is uncertain.  

 Although predevelopment assessments are clearly desirable for any development project, 

we note that energy infrastructure currently exists for which assessments can no longer be made. 

In such cases, several of the above mitigation measures may not be possible (e.g., selecting 

infrastructure location), and measures that can be implemented retroactively should be 



 
 

24 

attempted, while other measures not dependent upon predevelopment assessments (e.g., 

increasing wind turbine cut-in speed) should be explored.  

 Despite the mitigation measures offered above, a preponderance of the reviewed studies 

were not designed to explicitly test mitigation (Fig. 1.3). Indeed, in the literature from the U.S. 

and Canada 36% of oil and gas studies, 30% of wind studies, and 23% of bioenergy studies made 

no mention of measures to mitigate documented impacts. Only 19% of oil and gas studies, 15% 

of wind studies and 38% of bioenergy studies were designed to examine the effectiveness of 

mitigation in a before-after context or even correlatively (Group 1 and 2 in Fig. 1.3; Appendix 

2). Furthermore, we note that for many studies it was often difficult to determine the extent to 

which the effectiveness of mitigation measures was assessed. Thus, the majority of suggested 

BMPs and mitigation measures discussed above should be considered provisional, until they are 

examined by future studies, in different ecological contexts, and with robust study designs aimed 

at directly assessing mitigation. In addition, a handful of studies were designed to allow for 

assessments of mitigation, but did not report on this aspect. We urge researchers to put BMPs 

and mitigation at the forefront of their findings, as this will aid future researchers, managers, 

regulators, and industry.  

 The above shortcomings have led to a situation where the current literature is not broad 

enough to provide mitigation strategies for the breadth of species and ecosystems being affected 

by expansion of unconventional and renewable energy development. Furthermore, the paucity of 

research on the impacts to ecoregions, sectors, species, and entire countries is a concern as we 

move forward with best practices and mitigation recommendations. Importantly, we found 

limited research on the impacts of development to amphibians and reptiles. In the U.S. and 

Canada, little work was published from the eastern U.S., where large-scale natural gas 
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development has been ongoing in the Marcellus shale, and where entire ecoregions lie squarely 

within some of the richest reserves on the continent (Table 1.3; Appendix 2). Globally, the lack 

of research from entire countries and regions is even more apparent (Table 1.1).  

 Addressing the shortcomings in the energy development literature will require a shift 

from solely identifying impacts to directly addressing BMPs and on-site mitigation measures that 

can be part of sustainable solutions to development impacts. Such a direction will require studies 

that either seek to obtain a mechanistic understanding of development impacts (i.e., what is 

actually causing documented patterns) or directly test BMPs and mitigation measures in an 

experimental framework. Such efforts will require collaboration with both industry and 

government regulatory agencies and will hold numerous benefits for all involved. Knowledge of 

development plans can be used to implement before-after-control-impact designs, dialogue with 

industry and regulatory agencies can allow for studies that directly assess the efficacy of 

economically and biologically feasible mitigation measures and BMPs (see Arnett et al. 2010 for 

an example) and, lastly, collaborations increase the likelihood of actual implementation of 

research findings. These collaborations will require researchers willing to engage industry, but 

also it is essential that industry is open and transparent with development data and plans, as such 

information is a necessity for robust study designs. Further, it is crucial that industry abides by 

development plans where such plans formed the basis for research design, as alteration of 

development activities can be fatal to research projects and, therefore, our ability to derive 

meaningful inference about the system and question. Ideally, collaborative planning needs to be 

implemented in the pre-development process to ensure the greatest return from such endeavors. 

We note that such a shift will take time to implement, and as noted above energy development 

already has occurred in vast areas throughout the world. Thus mitigation measures that show the 
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most promise should be implemented immediately, but their provisional nature must be 

understood by all involved. These measures can be assessed for their efficacy regularly and an 

adaptive framework can be used to alter mitigation when necessary.    

 Due to the known environmental impacts of energy development, funds will continue to 

be available for mitigation and BMPs. Applied wildlife ecology research must play a role in 

reconciling the intertwined costs and benefits of development and provide realistic 

recommendations for the most effective use of such funds. We call for researchers to 

unambiguously outline the BMPs and on-site mitigation measures suggested by their results, and 

to be more explicit in the recommendation of potentially subjective measures, such as habitat 

offsets and maintenance of critical habitat (i.e., how much, what type, and what entails critical 

habitat). Such efforts will ensure a greater probability of implementation of BMPs and on-site 

mitigation measures, and a more efficient and effective use of funds. Large-scale domestic 

energy development represents a new reality for terrestrial ecosystems, and conservation 

consequences are inevitable. Designing and implementing creative and effective BMPs and on-

site mitigation measures will be one of the major conservation challenges of the next 20 years. 

Current research must rise to meet this reality with innovative studies designed to address these 

challenges.  
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TABLES 
 
 
 
Table 1.1. Energy produced by region from five unconventional or alternative energy sectors (bioenergy-biofuels and biomass 
electricity, wind, solar, geothermal, and unconventional oil) number of countries in each region, number of countries producing energy 
for each sector, and number of countries with studies on the impacts of bioenergy and wind energy development on wildlife*. 
Region (no. of 
countries) 

Wind† (no. 
countries 
producing )  

No. countries 
with studies; 
wind  

Biofuelsǂ ; 
biomass 
electricity† 

(no. countries 
producing) 

No. countries 
with studies; 
bioenergy 

Solar† (no. 
countries 
producing )  

Geothermalǂ 
(no. countries 
producing )  

Shale oil§; 
other 
unconventional 
oil¶ (no. 
countries 
producing) 

Africa (56) 1.96 (8) 0 0.99; 1.47 
(13) 

0 0.04 (8) 1.52 (1) 0; 0 (0) 

Asia and 
Oceania (46) 

78.75 (20) 0 99.21; 37.94 
(19) 

2 4.42 (19) 26.59 (7) 375; 24 (2) 

Central and 
South 
America (44) 

3.29 (20) 0 588.25; 36.79 
(22) 

1 0.001 (6) 3.16 (5) 200; 14778 (5) 

Eurasia (16) 0.62 (8) 0 4.36; 3.56 (5) 0 < 0.001 (1) 0.44 (1) 355; 773 (3) 
Europe (40) 142.44 (27) 8 248.31; 

137.32 (29 ) 
4 21.98 (31) 10.22 (7) 0; 1191 (3) 

Middle East 
(14) 

0.26 (4) 0 0.1; 0.05 (2) 0 0.43 (2) 0 (0) 0; 0 (0 ) 

North 
America (6) 

100.52 (3) 2 914.42; 77.04 
(3) 

2 1.44 (3 ) 21.95 (3 ) 0; 6645 (3 ) 

*No studies were found examining the impacts of solar and geothermal energy development to wildlife. Unconventional oil studies 
were not quantified because the source (i.e., conventional versus unconventional) was not determinable from global studies (see 
Appendix 1). Information on unconventional natural gas production was not available globally. 
†Billion kilowatt hours produced. Data obtained from the United States Energy Information Administration 
(http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm) 



 
 

28 

ǂThousand barrels per day produced. Data obtained from the United States Energy Information Administration 
(http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm) 
§Thousand tons produced. Data obtained from (World Energy Council 2010). 
¶Million barrels produced. Data obtained from (World Energy Council 2010). 
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Table 1.2. For each energy development sector, the identified and hypothesized (likely) impacts to wildlife, suggested best 
management practices (BMPs) and on-site mitigation measures for reducing impacts, and suggested research needs. Identified impacts 
and suggested BMPS and on-site mitigation measures are listed in order of their frequency in the reviewed literature. 
Sector Identified impacts  Likely impacts  BMPs and on-site mitigation measures Research needs 
Wind Direct mortality 

Altered behavior and 
displacement 

Decreased fecundity 
Decreased breeding 

success 
Acoustic masking 

Altered species 
composition 

Avoid siting near bat colonies or in 
habitat used for nesting, migration, 
foraging, soaring for large birds, or 
other activities that may encourage 
collisions  

Curtailment during sensitive seasons, 
times of high insect activity (bats), low 
wind (bats), high wind (birds), clear 
weather and immediately after sunset 
(bats), and when threatened species are 
present (birds), 

Increase cut-in speed 
Replace older towers (birds) 
Removal of towers with high mortality 

rate 
Move known anthropogenic food 

sources (scavenging birds) 
Install shorter towers for bats and fewer, 

larger towers for birds 
Habitat offsets (birds) 
Deploy echolocation devices during 

assessments 
Pre-development assessment  
 

Behavioral impacts 
Economic analyses to 

optimize cut-in speed 
and stoppage times 

Population and 
demographic 
information for bats 
(U.S. and Canada) 

Greater geographic 
breadth of bird 
research 

Further research into 
reasons for collisions 

Bioenergy Decreased species 
richness, diversity, 
and abundance 

Altered species 
composition Increased 

Declining 
populations  

Plant native species or high diversity 
polycultures 

Maintain mosaic of harvested and 
unharvested land 

Maintain native habitat in proximity to 

Research on impacts to 
a greater diversity of 
species 

Research on global 
impacts of bioenergy 
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invasive species  
Large-scale 
deforestation 
Altered space-use 
patterns 

crops 
Harvest after fledging of bird nestlings 
Harvest to maintain structural diversity 

in vegetation 
Plant woody crops that support nesting 

habitat 
Plant larger woody crop plots 
Plant on degraded or already cultivated 

lands 
Promote understory vegetation 

(epiphytes in oil palm plantations; 
weeds in herbaceous crops) 

Habitat offsets 
Create piles or windrows of coarse 

woody debris 
 

production in North 
America 

Focused research on 
dedicated bioenergy 
crops 

Unconventional 
oil and natural 
gas 

Altered behavior, 
movement,  home 
ranges and territories 

Altered reproduction 
Altered species 
composition   
Acoustic masking 
Declining populations 
Decreased survival 
Direct mortality 
Reduced abundance 
Increased stress  
Increased hunting 
pressure 

Loss of migratory 
routes 

Increased predation 
Increased illegal 

hunting 

Restricted development in and around 
critical habitat 

Maintenance of refuge habitat  
Re-vegetation and habitat enhancements 
Traffic and access restrictions 
Narrow seismic lines  
Siting of developments in areas obscured 

by vegetation or topography 
Noise suppression and barriers 
Clustered development 
Helicopter assisted or remote 

development 
Habitat offsets 
Directional drilling 
Setback distances from critical habitat 
Remote liquid gathering systems 
Install predator deterrents around 

Assessments of impacts 
to migratory routes 

Identification of 
thresholds above 
which demographic 
and population-level 
impacts occur 

Untangling of response 
to multiple activities 

Noise mitigation 
methods 
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developments 
Liberal harvest of primary prey  
Remotely activated deterrents 
Increased pipeline height 
Pre-development assessment 
 

Solar  Displacement 
Altered behavior 
Altered species 

composition 
Loss of migratory 

routes  
 

Pre-development assessment  Basic research on 
impacts to wildlife 

Geothermal  Displacement 
Altered behavior 
Altered species 

composition 

Pre-development assessment Basic research on 
impacts to wildlife 
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Table 1.3. Top 5 ecoregions with greatest potential for energy development, by sector, for the continental United States. Ecoregions 
less than 100 km2 were excluded. Area values indicate total ecoregion area (km2) in the continental U.S. See Appendix 2 for 
methodology. 
Rank  Unconventional oil 

and gas (percent 
overlapped by 
basins; area km2) 

Wind (percent in 
wind power class 5 
and 6; area km2)* 

Bioenergy (mean 
tons / km2/ year; 
area km2) 

Solar (mean kWh 
potential; area km2) 

Geothermal (percent 
in class 1 and 2; 
area km2)† 

1 Allegheny 
Highlands forests 
(100%; 101,492) 

Cascade Mountains 
leeward forest 
(93%; 16, 236) 

Central tall 
grasslands (166.83; 
259,845) 

Mojave desert 
(7,470; 131,271) 

Eastern Cascades 
forests (84%; 
56,208) 

2 Western Gulf 
coastal grasslands 
(100%; 78,295) 

South Central 
Rockies forests 
(85%; 159,790) 

Willamette Valley 
forests (156.20; 
15,201) 

Sonoran desert 
(7,271; 116,759) 

Sierra Madre 
Occidental pine-oak 
forests (84%; 7, 
267) 

3 East Central Texas 
forests (100%; 
55,067) 

British Columbia 
mainland coastal 
forests (78%; 
14,611) 

Central Pacific 
coastal forests 
(151.53; 41,855) 

Sierra Madre 
Occidental pine-oak 
forest (7,170; 7,267) 

Snake-Columbia 
shrub steppe (82%; 
220,029) 

4 Mississippi lowland 
forests (99%; 
121,921) 

Wasatch and Uinta 
montane forests 
(70%; 41, 481) 

Puget lowland 
forests (126.93, 
15,579) 

Arizona mountain 
forests (7,032; 
109,135) 

Colorado Rockies 
forests (80%; 
133,295) 

5 Tamaulipan 
mezquital (99%, 
59,906) 

Colorado Rockies 
forests (68%; 
133,295) 

Mississippi lowland 
forests (126.87; 
121, 921) 

Colorado plateau 
shrublands (6,777; 
326,767) 

Great Basin shrub 
steppe (75%; 
337,545) 

*Power class descriptions obtained from National Renewable Energy Lab (http://www.nrel.gov/gis/data_ wind.html): (5) 7.5-8.0 m/s 
(excellent potential); (6) 8.0-8.8 m/s (outstanding potential).  
†Class descriptions obtained from National Renewable Energy Lab (http://www.nrel.gov/gis/data_geothermal.html) and describe 
geothermal energy potential with class 1 and 2 being the most favorable. 
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FIGURES 
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Figure 1.1. Number of U.S. and Canada focused studies summarized by (A) taxonomic group and energy sector and (B) whether they 
documented negative, neutral, or positive responses by wildlife. Several studies focused on multiple species or treatments (e.g., 
bioenergy crop type) and thus could have multiple responses. 
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Figure 1.2. Location of reviewed studies and energy potential by sector in the United States for 
(A) unconventional oil and natural gas, (B) wind energy, and (C) Bioenergy. Diagonal lines 
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indicate states where 1-5 studies have been conducted, and cross-hatches indicate states where 
greater than 5 studies have been conducted.  
*Unconventional oil and natural gas basin layers obtained from the U.S. Energy Information 
Administration (http://www.eia.gov/pub/oil_gas/natural_gas/analysis_publications/maps 
/maps.htm ).  
†Wind and biomass layers obtained from the National Renewable Energy Laboratory 
(http://www.nrel.gov/gis/).  
ǂPower classes indicate the wind energy potential estimated from 50 m wind speeds, with 1 being 
the lowest and 6 the highest.  
§Values for biomass represent potential tons / km2 / year of both biofuels and biomass burned for 
heating and electricity.  
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Figure 1.3. Proportion of U.S. and Canada focused studies that discuss mitigation, categorized by 
study design; (1) studies that explicitly assessed the response of wildlife to the implementation or 
simulation of a BMP or mitigation measure, with a before-after component (for bioenergy this 
includes studies examining harvest practices and different plant cultivars), (2) correlative studies 
that were designed to directly assess the response of wildlife to existing mitigation, and (3) 
correlative studies that examined the response of wildlife to development and inferred mitigation 
from their findings.  
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CHAPTER TWO 
 
 
 

EFFECTS OF HELICOPTER CAPTURE AND HANDLING ON MOVEMENT BEHAVIOR 
 

OF MULE DEER  
 
 
 

INTRODUCTION 
 
 
 
Technological advances such as global positioning system (GPS) radio collars (Cagnacci et al. 

2010), heat sensitive vaginal implant transmitters indicating the birth of neonates (Bishop et al. 

2007), and advanced physiological monitoring equipment (Laske et al. 2011) allow detailed and 

novel research on wildlife. The employment of such approaches necessitates the capture and 

handling of animals, which potentially can lead to mortality (Jacques et al. 2009), injury (Cattet 

et al. 2008), and altered behavior (Neumann et al. 2011) in focal individuals. As capture 

programs continue to become more common, assessment of the impacts of capture and handling 

on wildlife is needed to ensure ethical standards and the validity of analyses of movement or 

space-use behavior.  

 Advancements in statistical methods have allowed researchers to use relocation data from 

GPS collars to make inferences on complex processes such as habitat selection (Aarts et al. 

2008) and behavioral switching (Morales et al. 2004). Such studies typically operate under the 

implicit assumption that individual animals exhibit normal behavior after capture, and that these 

behaviors can be extrapolated to the greater population. If capture and handling alter these 

behaviors, then this assumption is violated, leading to the 
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potential for biased results. As such, determining the existence of such alterations and 

subsequently the period over which data are biased by capture and handling is broadly applicable 

to movement and spatial ecology research and their application for wildlife management 

objectives. 

 A number of studies have assessed capture effects on behavioral metrics in free ranging 

wildlife, and the potential impacts include displacement from areas around capture sites (Chi et 

al. 1998, Moa et al. 2001), altered space and habitat use (Morellet et al. 2009), and depressed 

movements (Cattet et al. 2008, Quinn et al. 2012). Defining what constitutes normal behavior for 

comparison to post-capture behavior is often a difficult task. Using visual observations of 

collared and uncollared animals, Arzamendia and Villa (2012) found that collared and sheared 

vicuna (Vicugna vicugna) moved significantly more post-capture than unprocessed animals, 

though they did not determine if the response was due to the shearing or capture. Likewise, 

Nussberger and Ingold (2006) compared visual observations of collared and uncollared alpine 

chamois (Rupicapra rupicapra) and found no effect of collars, but they did not assess behaviors 

immediately following capture.  Although uncollared animals provide natural controls, they 

rarely are accessible for comparison because of difficulties in making direct and accurate 

behavioral observations. In the absence of true controls, Neumann et al. (2011) compared 

movements of collared moose (Alces alces) before and after recapture, finding increased 

movements for a short time period post- relative to pre-recapture. Although this framework 

provides useful insight into how capture might cause departures from normal behavior, it is 

susceptible to erroneously ascribing changes in behavior to capture effects that may be normal 

seasonal variation (e.g., Ager et al. 2003). Such behavioral changes could obscure or heighten 
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perceived capture effects and to date have not been accounted for in assessments of capture and 

handling on animal behavior. 

 Our objectives were to examine the effect of live capture, handling, and transportation to 

a central processing site on the movements of mule deer (Odocoileus hemionus) that we 

recaptured between 1 and 4 times, and to compare them to individuals that we did not recapture 

at the same time. This design allows for understanding capture effects on wildlife behavior and 

allows for understanding of these effects in the context of typical seasonal behavior. 

 

STUDY AREA 
 
 
 
This study took place on mule deer winter range in the Piceance Basin of Northwestern 

Colorado, near the town of Meeker. Winter range in this area is topographically diverse, with 

elevation ranging from 1,700 m to 2,300 m. The dominant vegetation type was a mix of pinyon 

pine (Pinus edulis), Utah juniper (Juniperus osteosperma), and big sagebrush (Artemisia 

tridentata). Dominant human activity in the area included natural gas extraction and hunting 

during the fall. Deer in this area were migratory and inhabited winter range between October and 

May (Lendrum et al. 2012, 2013). 

 

METHODS  
 
 
 
Data Collection  
 
 
We captured adult (>1 yr old) female mule deer between January 2008 and March 2012 as part 

of ongoing research in the Piceance Basin. Prior to December 2010, we surveyed outlined 
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capture areas with a helicopter and captured deer opportunistically. Starting in December 2010, 

we selected a group of deer to recapture every December or March for the following 2 years 

(Table 2.1). If deer that were scheduled for recapture died, we replaced them with a randomly 

captured deer. We recaptured deer by locating them via aerial telemetry from a helicopter or 

fixed-wing aircraft. Upon location, the helicopter capture crew obtained visual confirmation of 

the focal deer (all collars were fit with unique placards to aid in visual identification of 

individuals) and captured them using a net gun. We then blindfolded and hobbled the deer, and 

administered 0.5mg/kg of Midazolam (a muscle relaxant) and 0.25 mg/kg of Azaperone (an anti-

anxiety drug) intramuscularly to alleviate capture-related stress (we administered a standard dose 

of both drugs to each deer based on an average weight of 75 kg). We transported deer to a central 

processing site typically within 2 km of the capture site (extreme distances were within 5 km) 

where we took standard measurements and samples. During March captures, we assessed the 

pregnancy status of all deer and fit a subset (n = 5) with vaginal implant transmitters, requiring 

increased processing times (see Bishop et al. 2007, 2011 for further details). We fit each deer 

with a GPS radio collar (G2110D, Advanced Telemetry Solutions, Isanti, MN, USA) and 

released them at the processing site immediately following the collection of samples and collar 

attachment. We recorded the time the deer arrived at the processing site as the capture time. All 

procedures were approved by the Colorado State University (protocol ID: 10-2350A) and 

Colorado Parks and Wildlife (protocol ID: 15-2008) Animal Care and Use Committees.         

 Deer that we opportunistically captured prior to December 2010 were fit with GPS radio 

collars set to attempt a relocation once every 5 hours. The group of deer we selected to be 

recaptured starting in December 2010 were fit with GPS collars set to attempt a relocation once 
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every 30 minutes or once every hour. We recaptured all of these deer in December 2011, and 

recaptured a subset in March 2011 and/or March 2012 (see Table 2.1 for further details).  

 All collars were set to automatically drop off deer after a time period of 12–17 months 

(i.e., Apr of the year following capture). Once we retrieved collars, we downloaded relocation 

data. Although we did not explicitly design our capture efforts to assess capture effects, we 

collected the March data in such a way as to allow a before-after-control-impact (BACI) analysis 

because of temporally overlapping before-after data from deer that were both recaptured and 

those that were not. For analysis, we separated these data into 4 groups (Table 2.1). The first 

included data from deer that were recaptured while wearing GPS collars in March (hereafter 

March recapture data; Table 2.1). The second group acted as a control for this group and was 

comprised of deer that were wearing collars during a March capture (i.e., they had been captured 

and collared the previous December) but were not recaptured in March (hereafter March control; 

Table 2.1). The third group consisted of deer that were recaptured while wearing a GPS collar in 

December (i.e., they had been captured previously; hereafter December recapture data; Table 

2.1). The final group acted as a control for the December recapture data and was comprised of 

deer fit with GPS collars that were not recaptured during a December capture (hereafter 

December control; Table 2.1). The December control deer did not provide a true control as they 

were not temporally overlapping with the December recapture data, thus we do not make direct 

quantitative comparisons between December recapture and control data, we only make 

qualitative comparisons based on the patterns resulting from the models below. In addition, 

because the December controls were on a 5-hour relocation schedule, whereas December 

recapture data were on an hourly or 30-minute relocation schedule, we rarefied the finer scale 

data to match the resolution of the control data for all comparative analyses below.   
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 Analysis focused on movements derived from relocations collected 1 month prior and 1 

month following recapture. Captures generally took place during the first week of December or 

March, and we used the mean capture date across all years to categorize control data for pre- and 

post-recapture comparisons. Deer in this area are migratory (approx. median winter range leave 

date is 7 May, approx. median fall winter range arrival date is 22 Oct; C. R. Anderson, Colorado 

Parks and Wildlife, unpublished data), so we excluded any summer range or migration data 

falling within this period. We classified spring migration as the time when deer made a directed 

movement away from their winter range and did not return, and fall migration as when deer 

made directed movement away from summer range until they ceased directed movement on 

winter range. We removed any locations with a positional or horizontal dilution of precision 

(PDOP/HDOP) greater than 10. In addition, we removed erroneous locations identified by 

unrealistic movements: the largest 95% of movements that upon visual examination in ArcMap 

10.1 (Environmental Systems Research Institute, Redlands, CA, USA) were the result of a single 

outlier location. We used the resulting data to examine the effect of recapture on movement 

behavior. In all subsequent analyses, the movement data consist of multiple observations from 

the same individual, and thus are not independent. To account for the nested nature of the data, 

we used hierarchical (i.e., random effects) models, fit in a Bayesian framework, to assess the 

effects of recapture on movements. Unless otherwise noted, we fit all models with intercepts 

varying by individual (i.e., a random effect on intercept). We fit all models in R with the 'rjags' 

package (Plummer 2013; for JAGS code and specifics on models see online supporting 

information). 

 

 



 
 

44 

Movement Behavior Analyses 
 
 
We fit a series of models on combined pre- and post-recapture movements to assess the influence 

of handling on movement behavior. In cases where analyses indicated a difference between pre- 

and post-recapture movements, we conducted further analyses directly comparing recapture 

movements with the control data.   

  Using the recapture data, we calculated the 24-hour daily displacement (straight-line 

distance between the first and last location of each day) for every deer 1 month prior to and 1 

month after recapture. For post-capture data, we started calculations at midnight on the day of 

capture, to standardize across deer with different capture times. We fit a model to the 

displacement distances for the March and December data separately, with a binary covariate for 

if the displacement was post-recapture (i.e., 1 indicating if the movement was post-recapture and 

0 if it was pre-recapture). We allowed both the intercept and the coefficient for pre- versus post-

recapture to vary across individuals.  

 We calculated the movement rate (m/hr) for all locations. We fit a model to movement 

rates from the December and March recapture datasets (2 models total) examining a single 

covariate: whether the movement was before or after a recapture. We allowed both the intercept 

and the coefficient for pre- versus post-recapture to vary across individuals. As these models 

showed differences between pre- and post-recapture movement rates, we next examined the 

control data. We fit models to movement rates from the December and March control datasets 

for comparison with the recapture models. Because the March control data temporally 

overlapped the March recapture data, allowing for direct comparisons among datasets, we next 

fit a model to the 1) post-recapture and control data and 2) the pre-recapture and control data for 

March, with a binary covariate indicating if the movement was a recapture or control movement. 
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The combination of these models allows us to assess whether the patterns seen in the recapture 

data differed from those of the control data, which would indicate an effect of capture. If control 

and recapture data displayed similar patterns, this would indicate no effect of capture.    

 To further explore the potential for temporal effects of capture and handling on 

movement rates, we fit a series of additional models to all recapture and control datasets 

separately, in which the number of days post-recapture was a covariate (see online supporting 

information). We included the distance moved from the home range as a covariate and tested 

models with different functional forms for the effect of the number of days since the capture 

event on movement rates (i.e., linear, quadratic, or log; see online supporting information). We 

compared models using the deviance information criteria (DIC; Spiegelhalter et al. 2002, but 

with the effective number of parameters as formulated in Plummer 2012). For all models, the 

movement rate was natural log transformed to assure proper support (i.e., untransformed 

movement rates are strictly positive and cannot be modeled using linear regression; see online 

supporting information for specifics of models).  

 

Home Range Return Analysis 
 
 
 We calculated the time it took for deer to return to their home range following recapture as the 

number of hours from release to the time when a deer arrived back on the 100% minimum 

convex polygon (MCP) home range. We calculated MCPs around the data from 1 month prior to 

recapture using the 'adehabitat' package (Calenge 2006) in the R statistical software (R Core 

Team 2013), which we then imported into ArcMap 10.1 to calculate return times. To standardize 

return times across data derived from collars with different relocation schedules, we used linear 

interpolation to estimate locations every 30 minutes (i.e., the midpoint of the straight line 
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between hourly locations). For deer whose MCP overlapped the processing site, we set the time 

to return at 0 hours. We then fit a model to the natural log-transformed home range return times 

and included covariates for if the capture event took place in March (i.e., December capture was 

the reference category) and the distance (in meters) between the processing site and the closest 

point of the MCP.  

 

RESULTS 
 
 
 
We recaptured 58 deer at some point throughout the study; we recaptured 26 deer once, 15 deer 

twice, 7 deer 3 times and 10 deer 4 times for a total of 117 recapture events. Because of capture 

myopathy (2 deer), poor GPS fix success, and some deer being too far away from the processing 

site and thus being recaptured and released at the capture location, we were left with 104 

recapture events with which we could assess home range return times, and 99 events with which 

we could assess 24-hour displacements and movement rates. Of the 58 deer that we recaptured, 

26 were not subsequently recaptured in March 2011 or March 2012, thus the March control data 

were comprised of locations from 26 deer. The December control data were comprised of 

locations from all 61 December control deer.         

 

Movement Analyses 
 
 
The trend in daily displacement distance suggested that displacement (straight line movement 

between the first and last location of each day) was shorter during the 30 days prior to recapture 

than the 30 days post-recapture in both March and December, though the differences were small 

(pre-recapture Dec: 𝑥 = 745 m, SD = 646; post-recapture Dec: 𝑥 = 757 m, SD = 893; pre-
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recapture Mar: 𝑥 = 633 m, SD = 808; post-recapture Mar: 𝑥 = 638 m, SD = 770), and the 95% 

credible intervals of the model coefficients for pre- versus post-recapture overlapped 0 (Dec: β = 

0.06, 78% of posterior > 0; Mar: β = 0.1, 93% of posterior > 0). Although these values indicate 

little departure from pre-recapture behavior when examined in monthly aggregates, daily net 

displacement clearly was elevated the first day after recapture (i.e., from midnight on the day of 

capture, until the following midnight) and slightly elevated the remainder of the first week (Fig. 

2.1). 

 Mule deer movement rates were substantially greater the day of recapture than during any 

other time during the month before or after recapture, and were substantially greater than any 

control deer movements (Figs. 2.2 and 2.3). Recapture data movement rates were greater post-

recapture than pre-recapture in March (pre-recapture: 𝑥 = 82 m/hr, SD = 145; post-recapture: 𝑥 = 

108 m/hr, SD = 177; β = 0.24, 100% of posterior > 0). In contrast, recapture data movement rates 

were lower post-recapture than pre-recapture in December, though only slightly (pre-recapture: 𝑥 

= 85 m/hr, SD = 120; post-recapture: 𝑥 = 81 m/hr, SD = 109; β = −0.06, 86% of posterior < 0). 

Control data models showed similar patterns; March control movement rates were greater after 

the mean March capture date (pre-mean capture date: 𝑥 = 87 m/hr, SD  = 143; post-mean capture 

date: 𝑥 = 110 m/hr, SD = 164; β = 0.26, 99% of posterior > 0), and December control movement 

rates were less after the mean December capture date (pre-mean capture date: 𝑥 = 70 m/hr, SD  = 

82; post-mean capture date: 𝑥 = 60 m/hr, SD = 69; β = −0.1, 99% of posterior < 0). The models 

directly comparing March recapture and control data indicated that both pre- and post-recapture 

movements were significantly less than pre- and post-mean capture date control movements 

(post-recapture β = −0.14, 100% of posterior < 0; pre-recapture β = −0.09, 100% of posterior < 

0).   
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 The model examining movements as a function of the number of days since recapture 

clarified these patterns, with model predictions showing a slight quadratic relationship with time 

since recapture, though the 95% credible intervals of the predicted movement rates overlapped at 

all times (Figs. 2.2 and 2.3). Predicted December recapture movements declined similarly to the 

December control data, but 95% credible intervals never overlapped. We caution that the 

December recapture and control data came from different years and thus these results must be 

interpreted with caution (Figs. 2.2 and 2.3; see online supporting information for detailed model 

results).  

 

Home Range Return Analysis 
 
 
The time to return to the MCP was highly variable among deer, ranging from 0 (0.5 when 

excluding deer whose MCP overlapped the processing site) to greater than 1,800 hours. Mean 

time for deer to return to their MCP after recapture was 37 hours (SD = 84), with a median of 14 

hours. The model of return time also indicated that deer took longer, on average, to return in 

March than December (Dec median = 14 hours, 𝑥 = 30 hours, SD = 83; Mar median = 13 hours, 

𝑥 = 43 hours, SD = 85; β = 0.29, 94% of posterior > 0; see online supporting information for 

detailed model results). When data from deer whose MCP overlapped the processing site were 

excluded, these values increased slightly (overall median = 15 hours, 𝑥 = 40 hours, SD = 86; Dec 

median = 15 hours,  𝑥 = 33 hours, SD = 86; Mar median = 14 hours, 𝑥 = 46 hours, SD = 87). 

Although the mean times indicate an average of greater than 1 day to return to their MCP, 71% 

of deer returned within 1 day, 81% within 2 days, 85% within 3 days, and 92% within 4 days. 

The remaining deer took substantially longer to return, though we note that in several cases, 

these deer used areas immediately adjacent to the MCP for long periods of time. In effect, these 
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deer likely had returned to their home range areas, but the 30 days of data we used likely 

underestimated winter home ranges (post-hoc review of the data confirmed that these deer 

indeed used these areas during other years or other times during the same winter). The distance 

we moved a deer from their home range was a strong predictor of the time to return (β = 0.67, 

100% of posterior > 0), with a mean predicted increase in return time of approximately 4 hours 

for every additional kilometer moved from the home range.  

 

DISCUSSION 
 
 
 
We examined movements of GPS collared mule deer following live recapture and transportation 

to a central processing facility and compared these movements to pre-recapture movements and 

to movements of control animals that were not recaptured. Deer exhibited substantially elevated 

movements immediately following recapture, but these movements either returned to pre-capture 

levels within a few days post-recapture, or showed differences from pre-recapture movements 

that were similar to control deer.  

 The control animals allowed us to tease apart the effects of recapture on mule deer 

movement rates from natural seasonal behavior. Deer in March elevated their movements post-

recapture. March represents a time when much of the winter snow in our study area has melted, 

and spring green-up is in its early stages, when deer likely have used their fat reserves. This 

interaction between physiology and changing ecological factors likely drove these increased 

movements. These changes were seen in both the recapture and temporally overlapping control 

data highlighting that the changes were ecologically driven. Deer in December slightly decreased 

their movements after recapture. December is the onset of winter, when forage availability is 
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declining, snow accumulates, and deer decrease their activity to maintain energy stores 

(Anderson 1981). Thus, the documented decline in movements in December also likely 

represents natural seasonal patterns. Although the December control and recapture data were not 

temporally overlapping prohibiting a quantitative comparison, their trends were similar, 

supporting this assessment. The presence of control deer enabled us to make these connections; 

we might otherwise have attributed these changes in movement to capture effects.  

 To return to their home range after capture, deer typically made long movements, causing 

elevated movement rates and daily displacements in the first days after recapture. The time after 

recapture that the deer movement rates began to decline was congruous with the time it took for 

deer to return to their home ranges. Thus, the major impact of our capture methods on deer, at 

least in terms of movement behavior, seems to have resulted from being removed from areas 

with which they were familiar. These findings indicate that mule deer behavior is largely 

unaffected by our capture methods beyond the first few days after capture, and any subsequent 

behavioral analyses are unlikely to be influenced by capture.  

 The capture procedure that we employed (helicopter net gunning followed by transport to 

a central processing site) is only 1 method used to capture ungulates. However, our results are 

similar to studies of capture effects on other ungulate species captured using different methods. 

Neumann et al. (2011) examined behavior of moose that were darted from a helicopter and found 

that individuals increased movement for a short time period following recapture, though animals 

in their study were fully chemically immobilized. Neumann et al. (2011) also suggested that 

movements declined from an elevated level shortly after recapture. Arzamendia and Villa (2012) 

captured vicunas by herding and also found short-term increases in movements following 

capture, though they attributed this to pelage loss from shearing increasing thermal stress on 
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captured animals. Neither of the above studies documented any subsequent depression in 

movements, but Morellet et al. (2009), working with roe deer (Capreolus capreolus) captured by 

driving deer into nets, and Quinn et al. (2012), working with white-tailed deer (Odocoileus 

virginianus) captured via a variety of ground methods, found decreased activity and decreased 

movement, respectively, following capture, which they interpreted as acclimation to collars and 

recovery from capture. Their capture protocols did not involve transport from the capture site, so 

deer in our study may prioritize returning to familiar areas. Despite the differences in capture 

protocols, the fact that any capture related effects were short lived in our study indicates that 

helicopter capture via net gunning does not have long-term effects on mule deer behavior beyond 

the first few days. Because deer behavior was affected for at least the first day by movement to 

the processing site, we cannot assess the impact of helicopter capture alone. To our knowledge, 

no literature has assessed the behavioral impacts of helicopter net gunning and release on site, 

thus we are unable to compare our findings to attempt to isolate the effect of transport to the 

processing site. However, movement to a processing site as opposed to release on site is likely to 

affect deer more heavily, and thus the finding of no substantial impact on deer behavior beyond 

the first few days indicates that capture and release of deer on site probably has minimal 

behavioral impacts.  

 Free ranging wildlife clearly are affected by capture and handling, but the nature of these 

effects depend on the mode of capture and whether animals are processed on-site or transported 

elsewhere. In capture efforts such as ours, where a large number of individuals are captured (>40 

per day on some days), and technical procedures requiring substantial expertise are required, on-

site processing might not be an option. However, the most apparent capture effects were short 

lived, with deer returning to indistinguishable behavior within as little as a day for some 
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individuals. We did not assess the impact of multiple captures on mule deer because, although 

we recaptured some individuals multiple times, the sample size of deer recaptured greater than 2 

times was not sufficient to test the effects of multiple captures. Such impacts on behavior might 

exist, but were not obvious in our sample.  

 

Management implications 
 
 
Capture and handling is a necessary component of any research or monitoring project requiring 

the instrumentation of animals. These efforts affect animal behavior and thus must be continually 

assessed and re-evaluated to ensure the best techniques available are being used, and that capture 

is not affecting animal welfare or the data being collected. For mule deer being captured with 

helicopter net gunning and transported to a processing site, removal of the first day of data is 

strongly suggested, and removing the first 4 days of data will likely control for any impacts due 

to removal from the home range. If deer are recaptured while wearing a GPS collar, eliminating 

data up until the deer has returned to its pre-capture home range appears to be sufficient for 

minimizing any such effects. Alternatively, daily movements could be examined to determine 

when elevated movements have ceased. Where concerns exist over the potential influence of 

capture on results, analyses could be performed both excluding and including various amounts of 

data and results could be contrasted.  
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TABLES 
 
 
 
Table 2.1. Details of groups of captured mule deer used in analyses of capture effects in the 
Piceance Basin, Colorado, 2008–2012.  
Group Details Number used in 

analysis 

December control Randomly captured 2008–2009; fix rate 5 hourly; not 

recaptured  

61 

March control Captured December 2010 or 2011; fix rate hourly or 

half hourly; not recaptured during March 2011 or 2012 

26 

December 

recapture 

Captured December 2010 or March 2011; fix rate 

hourly or half hourly; recaptured December 2011 

41 

March recapture Captured December 2010 or 2011; fix rate hourly or 

half hourly; recaptured during March 2011 or 2012, and 

December 2011 

38 
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FIGURES 
 
 
 

 

Figure 2.1. Daily displacement (straight line distance between first and last location within each 
day) as a function of the number of days since recapture for mule deer recaptured in the Piceance 
Basin, Colorado, 2008–2012. Black lines represent mean daily post-recapture displacement 
(solid line) ± standard deviation (dashed lines), and gray lines represent overall mean 
displacement prior to recapture (solid line) ± standard deviation (dashed lines). 
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Figure 2.2. (A) Mean movement rates of mule deer in March in the Piceance Basin, Colorado, 2008–2012. Black solid lines represent 
mean values for recaptured deer and gray for control deer.  Dashed lines represent means ± 1 standard deviation for recaptured deer 
and dotted lines represent means ± 1 standard deviation for control deer. (B) Predicted log movement rates (m/hr) of mule deer in 
March. Black solid lines represent mean predicted movement rates for recaptured deer and gray for control deer. Dashed lines 
represent the bounds of 95% credible intervals. For control deer, the number of days since recapture represents the number of days 
since the mean recapture date. 
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Figure 2.3. December mean movement rates for (A) recaptured mule deer and (B) control mule deer (i.e., deer that were not 
recaptured) and predicted log movement rates for (C) recaptured mule deer and (D) control mule deer in the Piceance Basin, Colorado, 
2008–2012. Solid lines represent mean values and dashed lines represent means ± 1 standard deviation (A and B) or the bounds of 
95% credible intervals (C and D). For control deer, the number of days since recapture represents the number of days since the mean 
recapture date.
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CHAPTER THREE 
 
 
 

PRACTICAL GUIDANCE ON CHARACTERIZING AVAILABILITY IN RESOURCE 
 

SELECTION FUNCTIONS UNDER A USE-AVAILABILITY DESIGN 
 
 
 

INTRODUCTION 
 
 
 
Habitat selection is a behavioral process by which animals choose the most suitable locations in 

order to maximize fitness (Fretwell and Lucas 1969). Understanding the selection process can 

provide insight into population regulation, species interactions, and predator-prey dynamics 

(Morris 2003) and thus is fundamental to animal ecology. With advancements in global 

positioning system (GPS) radio telemetry and geographic information systems (GIS), the data 

required to examine habitat selection patterns of free-ranging animals are increasingly available, 

spurring a proliferation of recent studies on this topic. 

 The most common method for examining habitat selection patterns from GPS radio collar 

data is the resource selection function (RSF, see Table 3.1; Manly et al. 2002, Johnson et al. 

2006). Resource selection functions typically are fit in a use-availability framework, whereby 

environmental covariates (e.g., elevation) at the locations where the animal was present (the used 

locations) are contrasted with covariates at random locations taken from an area deemed to be 

available for selection (the availability sample; Manly et al. 2002, Johnson et al. 2006). Such 

methods are inherently based on models for spatial point processes (as are many species 

distribution models; e.g., Warton and Shepherd 2010), however logistic regression, which 
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asymptotically approximates a point process model (Johnson et al. 2006, Aarts et al. 2012), 

typically is used to estimate coefficients (but see Baddeley and Turner 2000, Lele and Keim 

2006, Johnson et al. 2008b, and Aarts et al. 2012 for alternate approaches). Logistic regression 

allows researchers to easily obtain inference on selection or avoidance of covariates and to 

generate maps for use in subsequent analysis (Boyce and McDonald 1999). Such methods have 

been used to examine numerous ecological processes and address important management 

questions, including the interplay between habitat and dispersal (Shafer et al. 2012), the presence 

of ecological traps (Northrup et al. 2012b), and functional responses in wildlife interactions with 

anthropogenic development (Hebblewhite and Merrill 2008, Matthiopoulos et al. 2010).  

 The relative ease of fitting RSFs has made them popular in animal ecology. However, 

these methods offer a number of methodological challenges (e.g., Aarts et al. 2008). In 

particular, the size and spatial extent of the availability sample can significantly influence 

coefficient estimates and subsequent inference (Boyce et al. 2003, Boyce 2006, Warton and 

Shepherd 2010). Despite this fact, there is a striking lack of robust guidance for choosing the 

availability sample and most applied studies likely are incorrectly sampling availability (Pearce 

and Boyce 2006, Warton and Shepherd 2010). Here we illustrate the influence of the availability 

sample size and spatial extent on inference from RSFs under the most commonly used sampling 

designs, with the goal of offering robust guidance for practitioners. We first review pertinent 

literature regarding the availability sample and summarize recognized issues. We then illustrate 

the influence of the availability sample on coefficient estimates through simulations and an 

empirical analysis of GPS data from mule deer (Odocoileus hemionus), and provide guidance on 

how best to implement robust RSFs. 
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The use-availability framework and important considerations 
 
 
 For RSFs fit under a use-availability design, the used locations are a realization from the used 

distribution 𝑓𝑈(𝒙) (see Table 3.1), which can be written as a weighted version of the availability 

distribution 𝑓𝐴(𝒙)  (Johnson et al. 2006, Lele and Keim 2006, Hooten et al. 2013): 

 
𝑓𝑈(𝒙) =

𝑤(𝒙′𝜷)𝑓𝐴(𝒙)
∫𝑤(𝒙′𝜷)𝑓𝐴(𝒙)𝑑𝒙

 
(1) 

where 𝒙 is a vector of environmental covariates, with a corresponding vector of coefficients, 𝜷. 

In this weighted distribution (1), 𝑤(𝒙′𝜷) is the RSF, and can be interpreted as how the animal 

selects habitat from 𝑓𝐴(𝒙). The RSF can take a number of functional forms (e.g., probit, logistic; 

Lele 2009), however Johnson et al. (2006) prove that, provided 𝑤(𝒙′𝜷) takes the exponential 

form [i.e., 𝑤(𝒙′𝜷) = 𝑒𝒙′𝜷], logistic regression can be used to obtain unbiased estimates of 𝜷. 

When using logistic regression, the RSF approximates a spatial point process model and can be 

interpreted as the expected number of used locations per unit area (Warton and Shepherd 2010, 

Aarts et al. 2012). Thus, Poisson regression also can be used to obtain unbiased estimates of 𝜷 in 

(1), with the dependent variable being the number of used locations within a discrete spatial unit. 

The intercept in Poisson regression scales the RSF to the number of used locations, but as with 

logistic regression has no biological meaning (Fithian and Hastie 2012).  

 The purpose of the availability sample is to approximate the integral in the denominator 

of (1), and if this sample is too small then the point process model itself is poorly approximated 

and any inference drawn from the resulting coefficients is incorrect. In determining the size of 

the availability sample it is the ratio of used to available location that is of paramount 

importance, with larger ratios providing worse approximations (Fithian and Hastie 2012). 

Although these factors imply that the availability sample should be as large as possible, there is a 
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tradeoff between size and computation time, with little guidance on optimal sample size. Manly 

et al. (2002) suggest sensitivity analyses be conducted to determine the sample size. Several 

studies have suggested that a minimum of 10,000 locations are required (Lele and Keim 2006, 

Lele 2009, Barbet-Massin et al. 2012), and Aarts et al. (2012) report that samples of 10,000 

locations provide accurate estimates for data simulated from a single covariate. Both Warton and 

Shepherd (2010) and Aarts et al. (2012) also indicate that regular (as opposed to random) 

sampling of the availability space can reduce the sample needed to approximate the point process 

model. Likewise, Fithian and Hastie (2012) show that weighting the availability sample by an 

arbitrarily large value can accomplish the same. In addition, Barbet-Massin et al. (2012) suggest 

that the modeling framework (e.g., GLM, GAM or machine learning methods) can influence the 

number of availability points needed. Despite these suggestions, ad hoc approaches to choosing 

the size of the availability sample appear to be the norm (e.g., 1 point per km2; Hebblewhite and 

Merrill 2008), and likely under-sample availability, thus poorly approximating the integral in (1) 

(Warton and Shepherd 2010). However, it is unclear how such under-sampling influences 

coefficient estimates in a real-world example where researchers assess multiple correlated 

environmental factors across large landscapes and for multiple individuals. 

 As with the sample size, the spatial extent over which availability is drawn can 

substantially influence coefficient estimates and subsequent inference (Johnson 1980, Garshelis 

2000, Boyce et al. 2003, Beyer et al. 2010). This extent depends on the scale of inference desired 

(i.e., 1st, 2nd, 3rd, or 4th order selection; Johnson 1980), and the availability sample must match 

the scale of inference or there could be strong biases in the interpretation of coefficient estimates 

(Beyer et al. 2010). This issue has rarely been addressed explicitly from a methodological 

perspective (but see Beyer et al. 2010). Instead studies typically compare used locations to 
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availability samples drawn across differing spatial extents (Johnson 1980, Boyce et al. 2003, 

Boyce 2006), and interpret differences in coefficients as the behavioral response of the animal to 

habitats at different scales. In most GPS studies, however, animal locations are not independent 

from one another (i.e., they are autocorrelated), which causes difficulties in inference from RSFs. 

With the exception of Johnson et al. (2008b) the issue of autocorrelation in habitat selection 

studies only has been addressed in terms of model assumptions (i.e., independence of errors; 

Fieberg et al. 2010). When animal locations are sampled at high resolution, the habitat available 

to be selected also is autocorrelated (Hooten et al. 2013), an issue that has been largely 

overlooked. Despite this autocorrelation, inference can be obtained at the desired scale through 

thinning of autocorrelated data, or accounting for autocorrelation explicitly in the model (Hooten 

et al. 2013). Without proper correction or thinning, comparing used locations to a misinterpreted 

availability sample (i.e., areas that were not accessible to the animal) complicates the 

interpretation of coefficients. These coefficients likely represent some mix of a behavioral 

response to the environmental factors, and noise induced by the distribution of the covariates on 

the landscape and the movement of the animal (Beyer et al. 2010). The interaction between 

spatial extent from which availability is drawn, autocorrelation in landscape covariates, and the 

availability sample size is of critical importance and has not been assessed.  

 

METHODS 
 
 
 
We examined the influence of the size and spatial extent of the availability sample on RSF 

coefficient estimates. Using simulations, we first examined the most common scale of inference 

in the applied literature: selection of habitat within the home range (3rd order selection; Johnson 



 
 

63 

1980). Next we examined selection of habitat from within a buffer around each used location (3rd 

/4th order selection), again using simulation. We also examined the consequences of inaccurately 

assessing availability in both cases. Finally we examined these scales of selection in an analysis 

of GPS data from mule deer in the Piceance Basin, Colorado. All analyses herein were 

conducted in the R statistical software (R Core Team 2012). 

 

3rd order simulation 
 
 
We simulated used animal locations as an inhomogeneous Poisson spatial point process (IPP) on 

a true landscape in the Piceance Basin in northwestern Colorado. Locations were simulated as a 

function of a single environmental covariate (elevation) with 𝑤(𝒙′𝜷) = 𝑒𝛽0+𝛽1𝑥 across a subset 

of the study area (here 𝛽1 = 2, and we varied  𝛽0 to achieve desired used sample sizes). We then 

drew 1,000,000 random locations across (A) the same spatial extent as the used locations 

(hereafter the “matched sample”) and (B) an area greater than that from which use was simulated 

(hereafter the “mismatched sample”). The mismatched sample simulates a situation in which 

what was truly available to be selected by the animal is inaccurately assessed by the researcher. 

From the larger availability samples, we randomly drew smaller samples ranging in size from 

100 to 50,000 (100, 500, 1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000, 10,000, 

30,000, and 50,000) and fit RSFs using logistic regression. We repeated this process 500 times 

for three different ratios of used to available locations (80, 650 and 3,500 used samples), and 

calculated the expectation of the coefficient estimator [𝐸(𝛽̂1)] and the 95% simulation envelope. 

 To assess the interaction between landscape heterogeneity, availability sample size, and 

spatial extent, we repeated the above analyses on simulated landscapes with varying levels of 

autocorrelation for a binary and a continuous covariate (see Appendix 3). For the binary 
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covariate we varied the proportion of the landscape composed of that covariate. We simulated 

use and fit models as above (with 𝛽1 = 0.5) for matched and mismatched availability. We 

calculated the coefficient estimator and 95% simulation envelope for two ratios of use to 

availability (600 and 6,000 used samples, though only the former for the binary covariate).  

 

3rd/4th order simulation 
 
 
A common approach to characterizing availability in RSFs entails delineating a buffer around 

each used location, with the buffer radius determined by the movement of the animal (e.g., the 

mean Euclidean displacement between locations; Boyce et al. 2003), and assessing availability 

within each buffer. In this case (1) is then modified such that 

 
𝑓𝑖
𝑈(𝒙)  =

𝑤(𝒙′𝜷)𝑓𝑖
𝐴(𝒙)

∫𝑤(𝒙′𝜷)𝑓𝑖
𝐴(𝒙)𝑑𝒙

 
(2) 

where 𝑓𝑖𝐴 is the availability distribution for point 𝑖. RSFs are fit using conditional logistic 

regression, with the used points matched to the available points within their respective buffers. 

To examine the influence of the size of the availability sample on coefficients estimated with this 

approach, we randomly placed 500 buffers with a 100 m radius (size was chosen arbitrarily) on 

landscapes simulated with different levels of autocorrelation. We then simulated use as an IPP 

within each buffer with 𝑤(𝒙′𝜷) = 𝑒𝛽0+ 𝛽1𝑥 (a single point was then randomly selected to act as 

the used location). We then drew 1,000 random locations within each buffer. From this sample 

we drew availability samples ranging from 1 to 500 points, repeating this process 500 times for 

each sample size, from which the expectation of the coefficient estimator and 95% simulation 

envelope were calculated. We repeated this process for a mismatched availability sample, drawn 

from within a 200 m buffer drawn around the same centroids as above.  
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Mule deer analysis 
 
 
We explored the above issues using an empirical dataset from 53 female mule deer captured and 

fit with GPS radio collars set to attempt a fix once every 5 hours between 2008 and 2010 (C.R. 

Anderson unpublished data). Though these data arise from a movement process, they are 

commonly used to fit RSFs, approximating a point process model, and thus all of the same issues 

apply. We fit RSFs in a use-availability framework separately for each deer, examining a suite of 

14 environmental covariates expected to influence deer habitat selection based on preliminary 

analysis (Appendix 4) and compared 3 approaches for sampling availability. The first two 

methods were based on home range estimates, where 100,000 random locations were drawn for 

each animal across both the 100% minimum convex polygon (MCP) and a polygon delineated by 

buffering all locations for each individual by the mean Euclidean displacement between locations 

(400 meters), and combining these into a single polygon for each deer. These analyses provide 

inference at the 3rd order of selection. Aside from controlling for differing availability, we made 

the assumption that that the GPS locations were independent, following the advice of Otis and 

White (1999). We next examined location-based availability for a limited number of individuals 

by buffering each use location by 400 meters and drawing 1,000 random locations within each 

buffer. For all analyses we extracted and standardized �𝑥−𝑥̅
𝜎𝑥
� all continuous predictor covariates 

for every used and available location, and randomly selected subsets of the availability sample; 

for the MCP and buffered polygon we selected samples ranging from 100 to 50,000 locations, 

and for the movement buffers between 5 and 500 locations per buffer. We fit RSFs to individual 

deer using either logistic regression or conditional logistic regression. We repeated this process 

1,000 times and recorded the expectation of the coefficient estimator and 95% intervals of the 
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mean coefficient estimates (i.e., 95% quantiles of the group of all 1,000 𝛽̂ from the model 

iterations; note these are not simulation envelopes). For a subset of individuals, we drew 

5,000,000 random locations across their MCP and repeated this process, drawing availability 

samples ranging from 5,000 to 1,000,000 locations. 

 

RESULTS 
 
 
 
Simulations 
 
 
In all matched sample analyses examining 3rd order selection, with true or simulated covariates, 

coefficient estimates were unbiased and converged to an accurate value at availability samples of 

10,000 or less (Fig. 3.1D-F, and Appendix 5). In the mismatched sample analysis, 𝐸(𝛽̂1) was 

consistently biased on the true landscape regardless of sample size and differed substantially 

between small and large availability samples (Appendix 5). We note that in discussing bias 

throughout, we are not strictly discussing a statistical bias, as the model is accurately estimating 

coefficients for the given used and available samples, but rather a bias in inference as results do 

not reflect the data generating process at this order of selection. With a smaller used sample size, 

the above issues were less pronounced. In both analyses the simulation envelope was wider with 

fewer used samples (Fig. 3.1, and Appendix 5).  On simulated landscapes, autocorrelation 

substantially influenced both the bias and the size of the availability sample needed for 

convergence (Fig. 3.1). For the continuous covariate, when autocorrelation was weak, 𝐸(𝛽̂1) was 

unbiased and converged rapidly, but both bias and the size of the availability sample needed for 

convergence increased with autocorrelation. This bias is not directly a result of autocorrelation, 

but rather autocorrelation increases the degree of imbalance between the true and sampled 
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availabilities in the mismatched sample analysis. Again, a larger availability sample was needed 

for convergence with larger ratios of use to availability, and in some cases convergence was not 

reached even at very large sample sizes. For the binary covariate, coefficient estimates 

converged rapidly. With moderate autocorrelation, estimates were biased but the degree of bias 

depended on the proportion of the landscape composed of that covariate (Appendix 3). 

Coefficient estimates from RSFs examining 3rd/4th order selection converged to a stationary 

value at availability samples of 20-100 points per buffer and were unbiased for the matched 

sample analysis (Appendix 5). With a mismatched sample, estimates were influenced by 

autocorrelation, though bias was only an issue at moderate levels of autocorrelation (Appendix 5) 

and estimates converged at similar sample sizes as for the matched sample. 

 

Mule deer analysis 
 
 
Results varied substantially among individuals and among covariates within individuals. For 

many animals, coefficient estimates were highly variable at small availability samples, but 

appeared to converge to a consistent value at sample sizes ranging from 1,000 to 10,000 

locations, or higher (Fig. 3.2A). However, for many individual and covariate combinations there 

were substantial differences between 𝐸(𝛽̂) at small sample sizes and the value to which it 

eventually converged (Fig. 3.2B-C). For a few individuals, coefficient estimates did not converge 

until extraordinarily large availability samples were used (Fig. 3.2B). These patterns often were 

not consistent among covariates within the same individuals, and appeared to be a function of the 

individual and covariate combination (though for some individuals these issues persisted across 

covariates). In addition, these results were not consistent between availability samples drawn 

from the MCP and the buffered polygon. When examining 3rd/4th order selection coefficient 
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estimates were consistent at samples of 20 points per buffer or greater (Fig. 3.2D). We found no 

cases of extreme differences in 𝐸(𝛽̂) between small and large availability samples as seen in the 

3rd order analyses. In addition, the scale of the conditional analysis limited inference to those 

covariates that the deer interacted with locally, but reduced or eliminated our ability to make 

inference on interactions at a larger scale (e.g., broad avoidance of a covariate). 

 

DISCUSSION 
 
 
 
It has long been recognized that the definition of the availability sample is critical when 

estimating RSFs in a use-availability framework (Johnson 1980, Manly et al. 2002). However, to 

date there has been little formal assessment of how coefficient estimates are influenced by the 

size of this sample, with examinations of spatial extent set in a biological rather than a 

methodological context (but see Beyer et al. 2010). Thus, there is little guidance for researchers 

using these methods. Our results indicate that both factors must be carefully considered to avoid 

analytical and interpretive biases. 

 The availability sample must be large enough to avoid significant numerical integration 

error. If a sufficiently large sample is not used then the model does not accurately approximate a 

point process model, and any inference is compromised. However, a sufficient size is dependent 

on the animal, the covariates, the ratio of use to availability, and an accurate representation of 

what is available to the animal. In simulations with matched samples, coefficient estimates were 

similar at all availability sample sizes and relatively few locations were needed for estimates to 

converge (<10,000 3rd order analysis, and <100 per buffer for 3rd/4th order analysis). In 

simulations with a mismatched sample, more locations were needed for convergence in the 3rd 
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order analysis, but the expectation of the coefficient estimators were biased at all sample sizes 

and differed substantially between small and large samples.  

 Attributes of the environmental covariates heavily influenced the interpretational bias of 

coefficient estimates, but these factors were related to the scale of inference. At the 3rd order, 

bias was evident for covariates with moderate and high spatial autocorrelation.  This issue was 

only present with moderate autocorrelation when examining the 3rd/4th order, with almost no bias 

at the highest levels of autocorrelation. Autocorrelation induces bias because a mismatch in true 

and sampled availability in geographic space leads to an imbalance in parameter space. Thus, the 

level of imbalance appears to result from an interaction between the autocorrelation structure and 

the extent over which availability is sampled. With the 3rd/4th order analysis the spatial extent is 

such that the imbalance was greatest at moderate levels of autocorrelation, likely relating to the 

size of the covariate patches relative to the extent of the availability sample. With increasing 

buffer sizes in this analysis, similar bias likely would occur at higher autocorrelation.  

 In the deer analysis, estimates often differed substantially between small and large 

availability samples, but more locations typically were needed for convergence than in 

simulations. The results of the deer analysis paired with those from the mismatched simulations 

point to a likely inaccurate assessment of what was available to the animal at the 3rd order, with 

unclear results for the 3rd/4th  order (i.e., neither the simulations nor the deer analysis exhibited 

large differences between coefficient estimates at small and large availability samples). Thus, it 

is possible that an interpretational bias resulted from incorrectly assessing what was available to 

be selected by the deer. Beyer et al. (2010)  suggest that in such cases the term preference should 

be used in place of selection to highlight that the behavioral process has not been captured. We 

agree that some differentiation is needed and our results provide some guidance for conditions 



 
 

70 

that are likely to cause a mismatch between the scale of availability and the scale of desired 

inference (e.g., autocorrelation, and small ratios of use to availability; however we note that these 

results appear highly context and individual dependent). Although 3rd/4th order analyses appear 

to provide less bias between small and large availability samples, we caution that location based 

analyses can be more computationally intensive and limit inference regarding interactions that 

occur at a larger scale than that of the movement process (i.e., avoidance of covariates at the 3rd 

order will not be captured). In addition, because the spatial extent of availability is reduced with 

this method, there can be little variation within certain environmental variables leading to high 

multicollinearity and an ill-posed model. More sophisticated methods for assessing selection and 

behavior exist that can address the issues described here, including movement-based RSFs that 

account for temporal autocorrelation (e.g., Johnson et al. 2008b, Hooten et al. 2010, Hooten et al. 

2013), hierarchical methods providing robust population-level inference (Duchesne et al. 2010), 

and methods that explicitly account for the influence of availability (Matthiopoulos et al. 2011). 

We note that these methods require advanced statistical knowledge and do not guard against 

interpretational bias. 

 The results of our analyses highlight the myriad of issues that can influence coefficient 

estimates in RSF analysis, but the question of the degree to which inference is impacted remains. 

For studies that use RSFs to strictly draw inference from resulting coefficients, it seems clear that 

there is the potential for interpretational bias, likely exacerbated by high serial autocorrelation in 

telemetry locations. However, RSFs often are used solely to produce maps for subsequent 

analysis or for use in management (Boyce and McDonald 1999, Northrup et al. 2012b, Shafer et 

al. 2012). Often, such maps are categorized into broad bins and cross validated or validated with 
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other data (Johnson et al. 2006). In these cases, small biases might have little impact on the 

resulting map, particularly if validations indicate a highly predictive surface.  

 

Practical guidance and conclusions 
 
 
While our results highlight numerous issues that can affect inference from RSF analyses, they 

also offer guidance. (1) Most critically, a sufficiently large availability sample must be used. If 

this sample is insufficient, then logistic regression does not approximate the point process model 

as intended, and no faith can be put in coefficient estimates. A sensitivity analysis of the 

availability sample size at the spatial extent of interest should be included in any RSF analysis. 

Such assessments could follow the methods presented here, and those suggested elsewhere (e.g., 

Manly et al. 2002, Warton and Shepherd 2010, Aarts et al. 2012) where multiple samples of 

varying sizes are tested until coefficient estimates converge.  

(2) Provided a sufficiently large sample will be used, how availability is drawn depends directly 

on the desired scale of inference. Once this is determined, accurately defining what is available 

to the animal and matching the scale of availability to the desired scale of inference is paramount 

in studies aimed at obtaining inference on selection behavior. Such definitions are difficult to 

obtain, thus, when examining serially autocorrelated GPS data, multiple scales of availability 

should be considered and knowledge of the system in question will be critical in interpreting 

responses across scales. However, we note that inference is likely prone to bias, which can vary 

across covariates relative to differences in autocorrelation structure, and coefficients might not 

represent the behavioral process (Beyer et al. 2010).  

(3) Where bias in inference is likely, behavioral interpretation should be avoided. In such cases, 

mapping applications validated with other data are still useful (Shafer et al. 2012).  
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(4) Extremely large availability samples will be needed in some systems, which may add 

computing time, thus researchers will need to decide what level of consistency is desired, assess 

selection at a different scale, or identify and remove problem individuals (i.e., those for which 

convergence failed). Otherwise, methods such as regular sampling of availability, or weighting 

of the availability sample could be explored (Aarts et al. 2012, Fithian and Hastie 2012).  

The fields of animal movement and habitat selection are evolving at a rapid pace due to vast 

improvements in data collection. Analyses of these data increasingly are being used in resource 

management decision making and planning, making robust analysis and inference critically 

important. With such an ever-evolving field that has potential societal implications, the need to 

continually assess methods and assumptions is paramount.  
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TABLES 
 
 
 
Table 3.1. Terms used in RSF analysis and their definitions, adapted from Manly et al. (2002), 
Johnson et al. (2006), Lele and Keim (2006), Beyer et al. (2010), and Aarts et al. (2012). 
Term Definition 

Habitat The set of biotic and abiotic factors characterizing the space an 

animal inhabits. In RSF analysis, a set of environmental covariates at 

discrete locations in space, meant to approximate these factors. 

Use The exploitation of habitat to meet a real or perceived biological 

need. In RSF analysis, the presence of an animal at a location. 

Used distribution The probability density functions for all animal locations over a 

specific time period. 𝑓𝑈(𝒙) in the weighted distribution. 

Used sample A measured subset of the used distribution. 

Availability The amount and configuration of habitat over an area of interest. 

Availability distribution The probability density function of all locations available to be 

selected over an area of interest. 𝑓𝐴(𝒙) in the weighted distribution. 

Availability sample A measured, user-defined subset of the availability distribution (used 

to approximate the integral in the weighted distribution (1)). 

Selection Use disproportionate to availability. 

Resource selection 

function (RSF) 

Any function proportional to the probability of selection of habitat. 

𝑤(𝒙′𝜷) in the weighted distribution.  
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FIGURES 
 
 
 

 

Figure 3.1. Continuous landscape covariates simulated as a Gaussian random field with low 
(𝜙 = 0.001), moderate (𝜙 = 10) or high (𝜙 = 100) autocorrelation, and expectations of the 
coefficients (black points) and 95% simulation envelopes (solid lines) from 500 RSF model 
iterations as a function of availability sample size, with matched or mismatched availability 
compared to small (600) or large (6,000) used sample sizes. Dotted lines represent the value used 
for simulation. Models were fit with logistic regression in all cases.  
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Figure 3.2. Expectation of the coefficients (solid line) and upper and lower 95% intervals 
(dashed lines) of mean coefficient estimates from 1,000 RSF model iterations as a function of 
availability sample size, for distance to edges for deer 10 (A) for elevation for deer 62 (B), and 
for distance to streams for deer 2 (C and D). In A availability was drawn from the buffered 
polygon, for B and C it was drawn from the MCP, and for D it was drawn from buffers around 
each location. Models were fit with logistic regression for A-C and with conditional logistic 
regression for D. 
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CHAPTER FOUR 
 
 
 

IDENTIFYING THRESHOLDS IN HUMAN IMPACTS TO WILDLIFE: HYDROCARBON 
 

DEVELOPMENT ALTERS SPATIAL AND TEMPORAL PATTERNS OF HABITAT  
 

SELECTION IN MULE DEER 
 
 
 

INTRODUCTION 
 
 
 
Ecological theory predicts that animals distribute themselves across landscapes by selecting 

habitats for foraging and resting that maximize their fitness (Fretwell and Lucas 1969). 

Examinations of habitat selection provide insight into individual-based ecological processes 

(e.g., drivers of site fidelity; Switzer 1997, and tradeoffs between foraging and predation risk; 

Creel et al. 2005), but also to larger scale factors influenced by population distribution and 

abundance (e.g., speciation; Rice 1987, population dynamics; Pulliam and Danielson 1991, and 

dispersal; Shafer et al. 2012). Understanding drivers of habitat selection is fundamental to 

ecology, and critical to the management and conservation decision-making process in the face of 

global habitat loss and alteration.  

 Human disturbance can alter habitat selection patterns of animals (e.g., Sawyer et al. 

2006), but the nature of this response and subsequent ramifications for species is complex. 

Humans can cause large-scale displacement of animals, leading to functional habitat loss 

disproportionately greater than the area that is directly disturbed (Sawyer et al. 2006). Responses 

also can be more nuanced, with humans being perceived as akin to predators, driving behavioral 

shifts reflecting the tradeoffs between security and other demands such as foraging or 
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reproduction (Frid and Dill 2002, Hebblewhite and Merrill 2008). Alternatively, animals can be 

attracted to human developments due to associated resources, or as protection against predation 

(Berger 2007). This attraction can positively impact animals, but can lead to greater potential for 

negative encounters with humans (Johnson et al. 2004a) and the formation of ecological traps 

(e.g., Northrup et al. 2012b). In light of the array of complex responses of animals to human 

disturbance, research on the mechanisms underlying impacts are critical for developing 

appropriate mitigation measures.  

 Over the last decade, Western North America has seen a rapid increase in hydrocarbon 

(oil and natural gas) exploration and production on public lands (United States Energy 

Information Administration [USEIA] 2012). This landscape-level disturbance can have a number 

of negative impacts on animals, detailed information of which is needed to aid in developing 

mitigation strategies (Northrup and Wittemyer 2013). However, understanding the impact of 

hydrocarbon development and subsequent mitigation measures is complex as the associated 

disturbances are spatially variable and temporally dynamic and their cumulative effects not well 

understood, which can obfuscate animal responses. In light of this complexity, there is a need for 

more complete information on the ways in which animals respond to development. Specifically, 

detailed understanding of the distance at which different types of development elicit responses 

from animals is critical for quantifying habitat impacts and assessing effective mitigation 

strategies. 

 During the last decade substantial hydrocarbon development has occurred on mule deer 

(Odocoileus hemionus Rafinesque) winter range, where the species faces acute welfare issues 

related to decreased access to high quality forage (Parker et al. 1984). Mule deer in western 

North America experienced major population declines across their range (Unsworth et al. 1999) 
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and recent studies have shown  deer to experience alterations of habitat selection patterns and 

large scale displacement in response to hydrocarbon development (Sawyer et al. 2006, Sawyer et 

al. 2009a). Obtaining information on the impact of development on deer habitat selection 

patterns is thus a major management priority throughout areas of the west, as extraction is 

projected to continue to increase over the next several decades (USEIA 2014).  

 We fit resource selection functions (RSFs) in a hierarchical Bayesian framework to 

understand responses of a mule deer population to hydrocarbon development on winter range. 

Resource selection functions are the most commonly used approach to examine the habitat 

selection process, but a major methodological and conceptual hurdle to their application is the 

sensitivity of results to habitat availability definitions (Johnson 1980, Hooten et al. 2013, Lele et 

al. 2013, Northrup et al. 2013). With technological advances in global positioning system (GPS) 

radio collars, animal location data are being collected at increasingly fine scales revealing 

complex temporal autocorrelation structures (Wittemyer et al. 2008, Boyce et al. 2010) that can 

compound methodological issues related to availability in RSF analyses. Though methods exist 

for potentially managing this autocorrelation (see Fieberg et al. 2010 for a review), approaches 

for addressing autocorrelation at the scale of the availability sample are limited. Using methods 

developed in the animal movement literature, Hooten et al. (2013) propose a dynamic 

movement-based method for determining availability on an individual and location-by-location 

basis. We apply a similar methodology to address three questions; 1) how does hydrocarbon 

development (roads and well pads) influence deer habitat selection?, 2) do deer respond to 

energy development differently at night than during the day?, and 3) at what spatial scale do 

mule deer most strongly respond to different development features? Our results provide insights 

into the spatial and temporal factors influencing mule deer habitat selection and the influence of 
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energy development on this behavior. We offer guidance for the mitigation of development 

impacts on wildlife.  

 

METHODS 
 
 
 
Study Area 
 
 
We examined mule deer habitat selection on winter range in the Piceance Basin in Northwestern 

Colorado, USA, (39.954 degrees N, 108.356 degrees W; Fig. 4.1), during a time of ongoing 

production of natural gas. Deer in this area migrate from high elevations during the summer to 

low elevation winter range, with winter range occupancy generally occurring between October 

and May (Lendrum et al. 2013, Northrup et al. 2014b). The area is topographically diverse and 

dominated by sagebrush (Artemisia tridentata Nutt.) and a pinyon pine (Pinus edulis Engelm.) 

and Utah Juniper (Juniperus osteosperma Torr.) shrubland complex. The vegetation of the area 

is described in detail by Bartmann & Steinert (1981) and Bartmann, White & Carpenter (1992). 

The dominant human activity in the area is natural gas extraction, with winter cattle grazing 

occurring primarily in the valley bottoms. The area is popular for hunting during the fall, and 

experiences warm, dry summers and cold winters, with the majority of moisture resulting from 

snow melt in the spring.    

 

Mule deer data 
 
 
We monitored adult (>1 year old) female mule deer on their winter range between January 2008 

and December 2010. Deer were captured using helicopter net gunning and were fit with store-on-
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board global positioning system (GPS) radio collars (G2110D, Advance Telemetry Systems, 

Istanti, MN, USA and model 4400, Lotek Wireless, Newmarket, ON, Canada) programmed to 

attempt a relocation once every 5 hours. All procedures were approved by the Colorado State 

University (protocol ID: 10-2350A) and Colorado Parks and Wildlife (protocol ID: 15-2008) 

Animal Care and Use Committees. Collars were equipped with timed release mechanisms, set to 

release after 16 months, at which point collars were recovered, and data were downloaded. Due 

to the potential behavioral impacts of capture on mule deer (Northrup et al. 2014a), we censored 

all data for one week following capture. Deer in this area are migratory so we only included data 

occurring between the termination of fall migration and the initiation of spring migration. 

Migration termination and initiation were estimated visually in ArcMap 10 (Environmental 

Systems Research Institute, Redlands, CA, USA). We removed all locations for which the 

positional dilution of precision (PDOP) was >10 (<1% of locations; D'eon and Delparte 2005, 

Lewis et al. 2007). We calculated the percent of successful GPS fixes for each individual by 

dividing the number of total locations by the number of attempted fixes. Overall fix success rate 

was 93%, which exceeds the threshold commonly used to indicate the need for habitat-bias 

corrections in habitat modeling (Frair et al. 2004, Hebblewhite et al. 2007). Lastly we divided 

locations into night and day, with night classified as the time between sunset and sunrise 

(http://aa.usno.navy.mil/data/docs/RS_OneYear.php).  

 

Predictor variables 
 
 
We chose a set of covariates for RSF modeling that we hypothesized to be important predictors 

of deer resource selection based on previous studies (Pierce et al. 2004, Sawyer et al. 2006, 

Sawyer et al. 2009a, Stewart et al. 2010). We downloaded the location of all oil and natural gas 
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wells in the study area from the Colorado Oil and Gas Conservation Commission website 

(cogcc.state.co.us), which maintains a daily updated database of the locations, drilling onset date 

and drilling completion date of oil and natural gas wells throughout the state. We classified each 

well in our study area into one of three classes; 1) wells actively being drilled, 2) wells that were 

actively producing natural gas with no drilling activity, and 3) wells that were abandoned (see 

Appendix 6 for further details). We created a series of time-specific spatial layers representing 

the status of each well accurate to the day. These layers were generated for the entire time period 

during which collared deer were active on winter range in the study area (Oct – May of each 

year). We grouped individual wells by pad visually using a layer for well pads digitized from 

aerial imagery from the National Agricultural Imagery Program (NAIP). We then classified each 

pad as a drilling, producing, or abandoned pad for every day of the study period. If a pad had any 

wells that were being actively drilled, the entire pad was classified as drilling. Likewise, if the 

pad had both abandoned and producing wells, it was classified as producing.  

 Using the resulting data, we created different covariates to represent active natural gas 

development. Our approach consisted of fitting a single model structure with nested concentric 

buffers around well pads (Table 4.1). Including concentric buffers in the models allows us to 

identify the distance at which deer ceased to respond to well pads. We created 8 covariates for 

this model: the number of well pads within 400 meters of well pad edges (drill_400 and 

prod_400), the number of pads between 400 and 600 meters (drill_600 and prod_600), the 

number of pads between 600 and 800 m (drill_800 and prod_800) and the number of pads 

between 800 and 1,000 m (drill_1000 and prod_1000). The smallest buffer distance assessed 

(i.e., 400 m) corresponded to the approximate mean distance moved between successful 

relocations spaced 5 hours apart. We initially attempted to assess responses to the number of 
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pads within 200 meters but convergence failed for both night and day models that included these 

covariates after more than 2 million iterations (traceplots showed poor mixing). On closer 

examination, this appeared to result from few used deer locations within 200 m of well pads 

classified as drilling (23 locations during the night [0.17% of night time locations] and 17 

locations during the day [0.11% of daytime locations]). We excluded abandoned pads from 

analysis as there was no extraction activity associated with these pads.   

 In addition to the well pad covariates, we included the terrain variables slope (slope), and 

elevation (elev), calculated from a digital elevation model. We digitized all roads in the study 

area from the NAIP imagery and calculated the distance to the nearest road from each location 

(d_rds). We obtained land cover data from the Colorado Vegetation Classification 

Project (http://ndis.nrel.colostate.edu/coveg/). This land cover database has 69 classes, however 

our study area is dominated by two classes (44% sagebrush and 39% pinyon-juniper). Thus, we 

classified each pixel as treed or open (tree). Lastly we calculated the distance to treed edges 

(d_edge). 

 

Model formulation 
 
 
We estimated RSFs separately for night and day locations using hierarchical conditional logistic 

regression (sensu Duchesne et al. 2010), in a Bayesian framework where all coefficients varied 

by individual. In this framework, each used location is paired with a set of random locations 

drawn from an area deemed to be immediately available to the animal at that time (Boyce 2006). 

Following Revelt and Train (1998), and Duchesne et al. (2010), the probability that an animal 

(𝑛) chooses a resource unit (𝑦) represented by a suite of habitat covariates (𝒙𝒚) from a set of 



 
 

83 

available alternative resource units (𝑱), represented by suite of habitat covariates (𝒙𝒋) at time 𝑡 

can be written as follows: 

[𝑦𝑡𝑛|𝜷𝑛] =
exp�𝒙𝒚𝒕𝒏

′ 𝜷𝒏�
∑ exp (𝒙𝒋𝒕𝒏

′ 𝜷𝒏)𝐽
𝑗=1

 

Using this probability mass function we can estimate coefficients for each individual and the 

population as a whole by placing the model in a Bayesian hierarchical framework as follows: 

𝜷𝒏 ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(𝝁𝜷,σβ2I) 

𝝁𝜷 ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(𝟎, 1000000I) 

log�𝜎𝛽2� ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(0, 1000000) 

 

Characterizing availability 
 
 
In a RSF fit using conditional logistic regression, each used location is paired with random 

locations sampled within a distance of the used location presumed to be immediately available to 

the animal (Boyce 2006). There is no standard approach for determining this distance for 

drawing availability though methods in the literature include using the distance moved between 

GPS locations (Boyce et al. 2003), or drawing from empirical step length and turn angle 

distributions (Fortin et al. 2005). Although such methods clearly have biological underpinnings, 

few definitions of availability have accounted for the dynamic movement behavior of animals. 

Contemporary methods developed in the animal movement literature provide new avenues to do 

so (e.g., Hooten et al. 2013). We used the continuous-time correlated random walk (CTCRW) 

model described by Johnson et al. (2008a) to categorize availability (sensu Hooten et al. 2013). 

The CTCRW model describes movement as an Ornstein-Uhlenbeck process, where the velocity 

of an animal at the current time step is dependent on its previous velocity, an autocorrelation 
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parameter, and an error term scaled by the time between known locations (Johnson et al. 2008a). 

Hooten et al. (2013) use the results of the CTCRW model to characterize resource availability as 

the predictor distribution for the location and velocity of an animal at any time, which is a 

description of the uncertainty in the location at the current time given all preceding data.  

 We fit the a CTCRW model for each individual animal using the 'crawl' package  

(Johnson et al. 2008a) in the R statistical software (R Core Team 2013). The coordinates of a set 

of random locations were drawn from the predictor distribution for each used location. To ensure 

a sufficiently large availability sample (Northrup et al. 2013), we explored the stability of 

covariate estimates from models fit to varying availability sample sizes (5, 25, 50, 100, 250, 500 

and 1,000 random locations per used location). Drawing from a set of 10,000 random locations 

per observed location, we ran 25 models at each availability sample size to examine variation in 

coefficient estimates as a function of the availability sample. Once the sample size that provided 

stable covariate estimates had been determined, we drew a single sample of that size for each 

individual for the hierarchical model described above.  

 

Model fitting 
 
 
Using the model formulation and data described above, we fit models to deer locations across all 

years. We first standardized all continuous predictor covariates �𝑥−𝑥̅
𝜎
�. We tested for correlations 

among covariates that appeared in the same model (Appendix 7) to ensure that no covariates 

were highly correlated (|r| > 0.7). Using the Bayesian hierarchical framework described above, 

we fit RSFs using a Markov-Chain Monte Carlo (MCMC) procedure written in the R 

programming language. We ran 2 parallel chains for each model for 1,000,000 iterations, 

discarding the first 100,000 as burn-in. We selected starting values for each parameter chain that 
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were expected to be overdispersed relative to the posterior distributions and monitored 

convergence to the posterior distribution by examining traceplots of MCMC samples against 

iterations to determine if there was proper mixing, and by calculating the Gelman-Rubin 

diagnostic (mean values < 1.1 indicate convergence; Gelman and Rubin 1992). In addition to 

fitting the single model structure discussed above, we also fit a set of models each with a single 

covariate representing the number of well pads within overlapping buffer distances (see 

Appendix 7 for more details). One of the most basic assumptions of model fitting is that the 

model is a faithful representation of the data generating process. One method for testing this 

assumption in Bayesian modeling is the posterior predictive check, which compares a posterior 

distribution of predicted data to the true data (see examples in Gelman and Hill 2007). We 

performed a posterior predictive check for our RSF models by first calculating a posterior 

distribution of the probability of each available location associated with each used location being 

selected by the deer. We then calculated the proportion of available locations that were predicted 

to be selected at a higher probability than the used location to which they were associated. If the 

model was accurately representing the data generating process than the used location would be  

predicted to be selected at a higher probability than the majority of the available locations.   

 

RESULTS 
 
 
 
Model specifications 
 
 
We monitored 53 adult female mule deer across 3 years, for a total of 29,083 winter range (Oct – 

May) locations (𝑥̅ = 548.7 locations per deer). Between 250 and 500 available locations per used 

location were needed to provide sufficiently accurate estimation of coefficients. Upon initiation 
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of model fitting, 500 locations proved to be computationally infeasible on a high-performance 

supercomputer. Thus we included 300 available locations per used location. All parameters 

converged to their posterior distribution (i.e., all mean Gelman-Rubin values were less than 1.1). 

There were strong similarities to the models fit with concentric buffers and those fit with single 

covariates representing the number of pads within overlapping buffers (Appendix 7), thus we 

only present results of the concentric buffers analysis. Posterior predictive checks indicated that 

the model predicted deer would select the used locations with a greater probability than the 

majority of the available locations (Appendix 7).   

 

Ecological drivers of selection 
 
 
Deer selected open areas over treed areas and areas further from edges during the night, although 

during the day, deer selected treed areas over open areas and areas closer to edges (Fig. 4.2). In 

addition, deer selected areas closer to roads during the night than during the day (Fig. 4.3). 

Throughout the day and night, deer selected areas with steeper slopes and at higher elevations, 

though the strength of this selection was higher during the night (Table 4.1, Fig. 4.2). Deer 

responses to well pads of both types varied by buffer distance (Fig. 4.4). During both night and 

day deer avoided drilling well pads at the 0-400 meter buffer and the 400-600 m buffer. During 

the night this avoidance persisted to the 600-800 meter and 800-1,000 meter buffers, but was 

relatively weak at the furthest buffer distance. Contrarily, deer showed no avoidance of the areas 

600-800 meters and 800-1,000 meters from drilling well pads during the day (Fig. 4.4). During 

the day, deer also avoided well pads actively producing natural gas at the 0-400 meter buffer and 

400-600 meter buffer, while showing no avoidance of the areas between 600 and 1,000 meters 

from these pads (Fig. 4.4). During the night deer displayed mild avoidance of producing well 
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pads at the smallest distance (0-400 meters), while displaying selection for areas at all other 

buffer distances (Fig. 4.4).  

 

DISCUSSION 
 
 
 
The habitat selection patterns of deer in our system were strongly influenced by hydrocarbon 

development, with deer displaying both spatial displacement and alterations in temporal 

behavioral patterns relative to these features. The nature of these responses differed depending 

on disturbance type, time of day, and the distance from development. Our methodology, which 

accounted for the dynamic nature of deer behavior in the resource availability sample and 

ensured the sample was conditioned by time and location, distinguished between responses to 

different development types and how these responses varied by time of day (night and day). 

These results advance our understanding of how animals perceive and adjust their behavior to 

minimize exposure to human disturbances, offering important insight for measures to mitigate 

the impacts of hydrocarbon development.   

 The drilling stage of development elicited the strongest response by deer in our system. 

Deer strongly avoided areas within 600 meters of well pads with active drilling at all times, and 

this avoidance persisted out to 1,000 meters at night (with strongest responses within 800 

meters). During both times, the strength of avoidance of drilling well pads increased as distance 

decreased, with essentially no locations falling within 200 meters of these pads. Sawyer, 

Kauffman & Nielson (2009a) also documented a greater avoidance of active drilling than other 

developments by mule deer, indicating that this activity is the predominate stressor during 

hydrocarbon development. Thus, measures aimed at mitigating impacts from drilling, such as 
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seasonal drilling stipulations, sound and light barriers, and approaches to reduce truck traffic, are 

likely to have the greatest benefit to deer.  

 The other development infrastructure (i.e., roads and producing pads) altered deer 

behavior, but to a lesser extent. Deer avoided the areas closest to both of these development 

types to some degree, but the strength and scale of the responses varied between night and day, 

with stronger avoidance during the day when deer also selected areas with greater vegetative 

cover. It appears deer temporally modulate their behaviors so as to avoid these features during 

the most disturbing times of day (e.g., in relation to circadian traffic pulses). Dzialak et al. 

(2011a) documented a similar pattern for elk in a natural gas field, with animals subject to 

disturbance selecting "security cover" more strongly during the day. This behavior might be a 

common response by mobile wildlife to disturbance that has any type of temporal signature (e.g., 

roads; Northrup et al. 2012a).  

 Understanding the spatial scale at which wildlife behavior is impacted by human 

disturbance is critical for developing effective mitigation strategies and quantifying the human 

footprint of development on natural systems. Our analysis design, examining selection or 

avoidance of concentric buffers around development, allowed us to identify the threshold 

distance where avoidance ceased. Deer displayed complete avoidance of areas within 200 meters 

of well pad edges (approximately 2% of the severe winter range used by deer in our study). This 

distance should be considered the minimum at which indirect habitat loss occurs. However, 

reductions in use were demonstrated to a distance of at least 800 meters around drilling pads at 

night, and 600 meters around producing pads during the day. These distances equate to greater 

than 20% of the severe winter range being impacted by producing pads (area within 600 m) and 

2% by drilling pads (area within 600 m; the density of drilling pads is much lower in the study 
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area), during the day, with 6% impacted by producing pads (area within 200 m) and 6% by 

drilling pads (area within 800 m) during the night. In addition, 28% of the severe winter range 

fell within 100 m of roads (the area avoided strongly by deer during the day) and 15% fell within 

50 m of roads (the area avoided by deer during the night). Although these values do not equate to 

complete habitat loss, they do indicate that more than half of the severe winter range was 

impacted by development during the day, and more than one quarter of the range was impacted 

during the night. The costs of this reduction (avoidance by deer) likely include the time lost 

during travel or from foraging in suboptimal areas during times of high human activity (Lima 

and Dill 1990, Creel and Christianson 2008), both of which can have impacts on condition and 

ultimately reproductive success (Houston et al. 2012). It is important to recognize that fitness 

costs of range avoidance likely are compounded during the winter when deer face a negative 

energy balance. The spatial scales of reduced use relative to specific types of infrastructure as 

defined in this study should be considered by managers when attempting to develop mitigation 

strategies.        

  In a recent published assessment of mule deer response to natural gas development, 

Sawyer et al. (2006) found larger-scale displacement of deer from the area around development 

than those reported here. Although our results show similar general behavioral responses (i.e., 

alteration of habitat selection patterns), the scale of displacement in the Piceance was less. This 

likely relates to differences in the landscapes between the study areas, where the Piceance system 

has substantially greater topographic and vegetative diversity than the open, flat areas in the 

Pinedale area of Wyoming where Sawyer et al. (2006) conducted their work. We hypothesize 

that the structural diversity of the habitat and topography provide refuge areas for deer in our 

system at relatively close proximity to infrastructure that allows them to behaviorally mediate 
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impacts. Such natural structure that can provide refuge for wildlife should be considered and 

maintained by managers and developers when planning projects, through spacing of roads and 

pads to ensure sufficient areas outside the 800 meter buffers around drilling pads and 100 meter 

buffers around roads.   

 

Management Implications 
 
 
Oil and gas development is projected to continue to increase on public lands in the United States 

(McDonald et al. 2009). Quantifying the spatial extent of development related impacts to 

wildlife is critical for appropriately gauging the repercussions of negative impacts and 

identifying potential mitigation measures, which  are critical for sustainable development 

practices (Northrup and Wittemyer 2013). Deer respond most strongly to drilling (in this study 

and the Pinedale system). This disturbance is temporary, as human activity declines once drilling 

is complete and wells begin producing (Sawyer et al. 2009a), providing an opportunity to 

structure development in a manner that allows refuge habitat during the most acute periods of 

stress. Many drilling pads in an area, as might occur with rapid development,  leads to large 

functional losses in habitat, apparently driving abandonment of areas by deer (e.g., Sawyer et al. 

2006). Where development is conducted at lower densities, or in a manner that ensures that 

sufficient area is left undeveloped (i.e., refuge habitat is maintained), impacts are likely to be 

reduced. Even where drilling occurs in a manner that provides refuge, consideration of the spatial 

structure of the final footprint of roads, producing wells and facilities is critical in order to ensure 

adequate space for deer to structure their behaviors in a manner that mitigates negative impacts 

during the late stage production phase. Coupling spatial patterning of the permanent footprint 

with approaches that reduce human activity at these areas, such as remote liquid gathering 
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systems, will reduce the amount of disturbance (e.g., Sawyer et al. 2009a) and subsequently any 

negative impacts. Contrasting results from the Piceance Basin and Pinedale provides insight to 

features that allow deer to behaviorally mediate disturbance (though this should not be construed 

as eliminating all negative impacts; Lima and Dill 1990), though the exact nature of these 

components in different systems requires more rigorous examination. Therefore, it is critical for 

future studies to identify thresholds to gain better understanding of the disturbance-habitat 

relationship and ensure sustainable development in areas with sensitive wildlife. 
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TABLES 
 
 
 
Table 4.1. Covariate names, median (med.) posterior coefficient values and proportion (prop.) of 
posteriors above and below 0 for resource selection function models fit to GPS data from female 
mule deer in the Piceance Basin, Colorado, USA during the night and day separately.  
Covariate Night 

med. 

Night Prop. < 

0 

Night Prop. > 

0 

Day 

med. 

Day Prop. < 

0 

Day Prop. > 

0 

d_edge 0.11 0.00 1.00 -0.17 1.00 0.00 

slope 0.17 0.00 1.00 0.05 0.01 0.99 

elev 0.91 0.00 1.00 0.69 0.00 1.00 

d_rds -0.35 1.00 0.00 0.17 0.00 1.00 

d_rds2 -0.43 1.00 0.00 -0.30 1.00 0.00 

tree -0.27 1.00 0.00 0.08 0.01 0.99 

prod_400_2 -0.06 0.71 0.29 -0.41 1.00 0.00 

drill_400_2 -0.73 0.99 0.01 -0.82 1.00 0.00 

prod_600_2 0.08 0.19 0.81 -0.14 0.98 0.02 

drill_600_2 -0.40 0.96 0.04 -0.28 0.99 0.01 

prod_800_2 0.12 0.03 0.97 -0.04 0.77 0.23 

drill_800_2 -0.27 0.95 0.05 0.00 0.49 0.51 

prod_1000 0.07 0.05 0.95 0.02 0.29 0.71 

drill_1000 -0.09 0.78 0.22 0.04 0.29 0.71 

 



 

93 

FIGURES 
 
 
 

 

Figure 4.1. Location of study area in the United States, and outline of winter range study area used by female mule deer in the Piceance Basin in 
Northwest Colorado 
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Figure 4.2. Posterior distributions of population-level coefficients for RSF models during the (A) day and (B) night for 53 female mule deer in 
the Piceance Basin Northwest Colorado. Dashed line indicates 0 selection or avoidance of the habitat features. Displayed coefficients are for 
non-well pad covariates only, but are taken from models including well pad covariates. 'Edge' refers to the distance to treed edges in meters, 
'Slope' was measured in degrees, 'Elev' refers to elevation in meters, 'Roads' refers to the distance to roads in meters, and 'Tree' refers to treed 
landcover. 
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Figure 4.3. Posterior distributions of population-level coefficients related to natural gas development for RSF models during the (A) day and (B) 
night for 53 female mule deer in the Piceance Basin Northwest Colorado. Dashed line indicates 0 selection or avoidance of the habitat features. 
'Drill' and 'Prod' refer to well pads where there was active drilling or not, respectively. The numbers following 'Drill' or 'Prod' represent the 
concentric buffer over which the number of well pads was calculated (e.g., 'Drill 600' is the number of well pads with active drilling between 400 
and 600 meters from the deer location).  
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Figure 4.4. Posterior distribution of predicted selection as a function of distance to roads from resource selection functions models fit to data 
during the (A) day and (B) night for 53 female mule deer in the Piceance Basin Northwest Colorado.  
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CHAPTER FIVE 
 
 
 

ENVIRONMENTAL DYNAMICS AND ANTHROPOGENIC LANDSCAPE CHANGE  
 

ALTER PHILOPATRY AND RANGE SIZE IN A NORTH AMERICAN CERVID 
 
 
 

INTRODUCTION 
 
 
 
Animals restrict their movements within a given area, or home range (Burt 1943). This range 

must contain all of the requisite resources for survival and reproduction during a given period 

and thus information on the dynamics and drivers of range-use provide valuable insight into 

animal ecology. Understanding how animals use space is fundamental to understanding social 

structure of populations (Vonhof et al. 2004) and habitat selection (Johnson 1980), as well as 

broader ecological and evolutionary processes, including ecosystem stability (Makarieva et 

al. 2005), and the adaptive potential of populations (Stiebens et al. 2013). Furthermore, 

information on the influence of environmental and anthropogenic perturbations on animal 

ranges is essential to conservation and management and facilitates prediction of how species 

might respond to global environmental change.  

 Two aspects of range-use dynamics that are of primary importance to animal ecology 

are fidelity to annual and seasonal ranges (range philopatry), and range size. There is ample 

theoretical work supporting the evolutionary benefits of philopatry. Memory or learning that 

enhances knowledge of forage resource quality has been shown to be an important factor in 

optimal foraging (Eliassen et al. 2009, Olsson and Brown 2010, Berger-Tal and Avgar 2012), 

where the efficiency of future searches increases relative to experience with successful 

foraging sites (Benhamou 1994). Motor learning allows for animals to better avoid predators 

and discourage intruders as their familiarity with an area increases (Stamps 1995). In 
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addition, the degree of philopatry is expected to vary depending on the predictability and 

spatial heterogeneity of the habitat, the cost of changing ranges, age, and life expectancy 

(Switzer 1993). The empirical literature demonstrates the broad propensity for philopatric 

behavior across many species, indicating the importance of this strategy (e.g., pine marten; 

Phillips et al. 1998, white-tailed deer; Lesage et al. 2000, caribou; Dalerum et al. 2007, elk; 

Webb et al. 2011c, and wildebeest; Morrison and Bolger 2012). Although some species show 

high philopatry regardless of variation in environmental or anthropogenic factors (e.g., 

Lesage et al. 2000, Tracz et al. 2010), variation in philopatry has been related to breeding 

status (Morrison and Bolger 2012), population density (Lesage et al. 2000) and both natural 

and anthropogenic disturbance (Linnell and Andersen 1995, Faille et al. 2010, Webb et al. 

2011c).  

 Scaling relationships between range size, body mass and energetics are a fundamental 

principle of ecology (McNab 1963, Harestad and Bunnell 1979, Swihart et al. 1988), while 

intraspecific variation in range size often is examined under the framework of optimal 

foraging theory. This theory predicts that animals will maximize energy intake while 

minimizing movement (Charnov 1976, Pyke et al. 1977), and thus individuals in areas of 

greater forage availability should have smaller ranges. Several empirical studies have 

provided validation for these theoretical underpinnings with higher forage availability being 

related to smaller ranges in roe deer (Tufto et al. 1996, Kjellander et al. 2004, Said and 

Servanty 2005), red deer (Rivrud et al. 2010), and moose during certain times of the year 

(van Beest et al. 2011). However, these predictions are complicated during different life 

history stages, and by inter and intraspecific interactions (Fretwell and Lucas 1969, Brown et 

al. 1999, Frid and Dill 2002). Accordingly, range size has been found to vary with multiple 

environmental, social and individual factors not directly related to forage, including 

reproductive status  (Said et al. 2005, van Beest et al. 2011), age (Said et al. 2009), climate 
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and weather (Sweanor and Sandegren 1989, Rivrud et al. 2010, van Beest et al. 2011), 

population density (Tufto et al. 1996), landscape heterogeneity at varying scales (Kie et al. 

2002), and anthropogenic development (Walter et al. 2009a, Faille et al. 2010, Webb et al. 

2011c).  

 Anthropogenic disturbance (e.g., roads and settlements) can impact range dynamics 

(e.g., size and intensity of use) of wild animals by altering habitat selection (Ciuti et al. 2012, 

Northrup et al. 2012a), or driving displacement (Linnell and Andersen 1995, Stephenson et 

al. 1996, Webb et al. 2011c), but studies have been infrequent and often show equivocal 

results (e.g., Edge et al. 1985, Tracz et al. 2010). Assessing such impacts informs our 

understanding of how animals perceive anthropogenic stressors and can provide insight into 

the resilience of populations to disturbance that might be otherwise elusive; for example high 

site philopatry in the face of declining habitat quality might increase the vulnerability of 

populations (e.g., as has been suggested in caribou; Faille et al. 2010).   

 Mule deer (Odocoileus hemionus Raf.) populations have experienced dramatic 

declines across much of their range in recent decades (Unsworth et al. 1999), with spatial 

displacement resulting from energy development being recently identified as a potentially 

aggravating factor (e.g., Sawyer et al. 2006). Mule deer are recognized to be highly 

philopatric (Robinette 1966, Garrott et al. 1987). Thus, their range-use dynamics are of 

particular relevance to management and offer insight into their susceptibility to disturbance 

from anthropogenic environmental change. 

 We examined size and annual overlap (philopatry) of individual female mule deer 

winter and summer ranges in the Piceance Basin in Northwest Colorado, USA (near the town 

of Meeker at 40.0394 degrees N and 107.9108 degrees W) using data collected from global 

positioning system (GPS) radio collars. We exploited advances in animal movement 

modeling that incorporate complexity in the movement process to produce movement-based 
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estimates of fine-scale space use (e.g., Wall et al. 2014). The incorporation of the movement 

process into estimates of spatial distribution allows for statistically robust utilization of high 

resolution movement data. We used these range estimates to compare mule deer seasonal 

ranges and examine their dynamics across years. Because range-use dynamics are largely 

determined by foraging behavior, we predicted that the relatively consistent and high quality 

summer forage would drive greater philopatry. In contrast, the more dynamic nature of winter 

range, due to snowfall, would lead to lower philopatry.  In addition, we examined variation in 

range size and philopatry in relation to a suite of landscape covariates (primary productivity 

measured as normalized difference vegetation index [NDVI], snow depth, cover features and 

the degree of development within an individual deer's range) and individual covariates (deer 

age and body condition), as well as differences in annual deer density on winter range.   

 

METHODS 
 
 
 
Study area 
 
 
The study was conducted in the Piceance Basin in Northwest Colorado (Fig. 5.1). The area is 

comprised of a pinyon pine (Pinus edulis Engelm.) and Utah Juniper (Juniperus osteosperma 

Torr.) shrubland complex and has a high degree of topographic diversity. For a detailed 

description of the vegetation of the area see Bartmann & Steinert (1981) and Bartmann, 

White & Carpenter (1992). The dominant anthropogenic activity was natural gas 

development, which fluctuated in intensity throughout the study period. The study was 

focused on two winter range areas, the Ryan Gulch and North Ridge areas (Fig 5.1). The 

Ryan Gulch area had moderate development related to natural gas extraction, while the North 

Ridge area was undeveloped, though did contain a minor road network and a number of 

houses. Deer in the broader study area are migratory and deer in North Ridge migrate to a 
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different summer range than those in Ryan Gulch. In addition, deer density in North Ridge 

was greater than that of Ryan Gulch (14.45-22.84 deer km-1 in North Ridge throughout the 

study and 7.04-8.87 deer km-1 in Ryan Gulch; Anderson Jr. 2014). 

 

Deer data 
 
 
Adult (> 1 year old) female mule deer were captured in the two study areas using helicopter 

net gunning. There was an initial capture during March 2010, and subsequent recaptures 

every December and March between December 2010 and March 2013. Starting in December 

2010, capture areas were flown with a helicopter and deer were opportunistically captured to 

replace any individuals lost from the cohort to establish and maintain a sample of 50 collared 

individuals (see Appendix 8 for detailed capture data). Throughout the three year study 

period, 62 individual deer were tracked for multiple years (50 in the Ryan Gulch study area 

and 12 in the North Ridge study area). For more details on capture procedure see Northrup et 

al. (2014a). 

 During capture, deer were weighed using a portable scale, a body condition score was 

estimated by palpating the rump (Cook et al. 2001, Cook et al. 2007, Cook et al. 2010), the 

thickness of subcutaneous rump fat and the longissimus dorsi muscle were measured using a 

portable ultrasound (Stephenson et al. 1998, Cook et al. 2001, Stephenson et al. 2002), and 

age was estimated using tooth replacement and wear (Robinette et al. 1957, Hamlin et al. 

2000). The body condition score, rump fat and longissimus dorsi muscle measurements were 

used to calculate the percent ingesta-free body fat (hereafter fat) of each deer at the time of 

capture following Cook et al. (2010). Lastly, each individual was fit with a GPS radio collar 

(G2110D, Advanced telemetry Systems, Isanti MN, USA) set to attempt a relocation on one 

of two schedules: 1) hourly between September 1 and June 30 and once every two hours 

between July 1 and August 31 (deer captured in December 2010 and March 2011); 2) every 
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30 minutes between September 1 and June 15 and hourly between June 16 and August 31 

(deer captured after March 2011). Different duty cycles were used due to a change in the 

battery capacity of collars between the first and second year of captures. Following recapture, 

death, or collar release, GPS data were downloaded.  

 Due to the potential for capture to alter deer behavior, all data occurring 4 days after 

capture were censored for deer during their first capture, while data between recapture and 

return to the minimum convex polygon (MCP) from one month prior to capture were 

censored (Northrup et al. 2014a). In instances where this MCP overlapped the processing site, 

the data from the first day of following capture were censored. For the remaining data, the 

speed (distance/time) between all locations was calculated and the fastest 1% of movements 

was examined to determine if they were induced by erroneous locations (i.e., single outlier 

locations). In such cases, these outlier locations were removed. The remaining data were 

categorized as being on either winter or summer range, while data during migration were 

excluded. Migrations were determined visually in Arcmap 10.1 (Environmental Systems 

Research Institute, Redlands, CA), with spring migration classified as the time period 

initiated when deer began directed movement away from winter range without return, until 

they ceased directed movement on summer range; fall migrations were classified as the time 

period initiated when deer began directed movement away from summer range without 

return, until they ceased directed movement on winter range. Because deer returned to winter 

range prior to the capture date each year (early December), and we opportunistically captured 

new deer each year, there were unequal winter range samples among deer (i.e., deer that were 

opportunistically captured each December had shorter datasets). Thus, for winter, all data 

prior to the capture date in December were removed when estimating ranges. Because GPS 

locations were collected on different schedules across the study, data were rarefied to the 

coarsest scale available (1 hour during winter and 2 hours during summer). For any deer that 
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died, the data for the season during which it died were removed unless their death fell within 

one month of the median migration time of all other deer. Lastly, one deer made several long 

movements between winter and summer range throughout the summer. This deer was 

included in the winter range analyses but excluded from the summer analyses.  

 

Estimation of ranges 
 
 
A continuous-time correlated random walk (CTCRW) model  (Johnson et al. 2008a, Johnson 

et al. 2008b) was fit to the data from each individual deer, year, and season (summer or 

winter) combination using the ‘crawl’ package (Johnson et al. 2008a) in the R statistical 

software (R Core Team 2013). This model represents an Ornstien-Uhlenbeck process and 

takes the following form (modified from Johnson et al. 2008a with the mean velocity set to 0 

to indicate no drift): 

𝑣𝑐𝑡+Δ = 𝑒−𝛽Δ𝑣𝑐𝑡 + 𝜖𝑐 (1) 

𝜖𝑐|Δ~𝑁𝑜𝑟𝑚𝑎𝑙 �0,𝜎2
1 − 𝑒−2𝛽Δ

2𝛽
� (2) 

where 𝑣𝑐 is the instantaneous velocity along each coordinate axis (c; longitude or latitude), 𝛽 

is an autocorrelation parameter, Δ is the difference in time between consecutive locations and 

𝜖𝑐 is a coordinate specific error term (i.e., a single error term for latitude and a single term for 

longitude). Using the above velocity model, the location of the animal at any point in time 

can be obtained using integration (modified from Johnson et al. 2008a): 

𝑠𝑡 = 𝑠0 +  �𝑣(𝑢)𝑑𝑢
𝑡

0

 (3) 

where 𝑠𝑡 is the position at time 𝑡 and 𝑣 is the velocity of the animal. Johnson et al. (2008a) 

describe how the CTCRW model can be used to estimate the probability of an animal being 

at any location at any point during a sampling period given its recorded positions. Extended 
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over a specified time period and area, these probabilities can be combined to produce a 

utilization distribution (UD) similar to that produced by other home range estimators such as 

kernel density estimators (reviewed by Kie et al. 2010). This model is ideal for range 

estimation in that the autocorrelation parameter allows incorporation of behavioral dynamics 

that are clustered in time (e.g., foraging or resting bouts) and the variance in the estimates of 

locations are directly incorporated into the UD, thus addressing concerns over uncertainty in 

the UD itself (e.g., as discussed by Fieberg et al. 2005).  

 The CTCRW model was used to estimate the summer and winter range UDs for each 

deer, year and season combination. Although theoretically these utilization distributions are 

continuous in space and time, in practice both the sampling area and sampling interval must 

be discrete. Thus, deer locations were predicted for every minute between the first and last 

location in each dataset, and the probability of use was summed over a 5 meter grid and 

weighted to ensure the resulting UDs summed to 1. A sensitivity analysis was conducted to 

determine the optimal cell size and sampling interval (see Appendix 9).  

 Using the resulting UDs (Fig. 5.2), 3 metrics related to home range size and overlap 

were calculated. First, polygons representing the smallest area containing 50% and 99% of 

the density of the UDs were created and the area of these polygons (hereafter the 50% and 

99% highest density ranges) were calculated. Next, the overlap of the UDs coming from any 

two years for which we had deer data was calculated. The overlap metric was calculated as:  

overlap =
∑ 𝑈𝐷1𝑖 ∩ 𝑈𝐷2𝑖
𝐼
𝑖=1

∑ 𝑈𝐷1𝑖 ∪ 𝑈𝐷2𝑖
𝐼
𝑖=1

 (4) 

Where 𝐼 represents the number of cells over which the UDs were calculated (see Fig. 5.3 for 

illustrative exampled). The result is a value ranging from 0 (no overlap), to 1 (complete 

overlap with identical probabilities). As there were three years of data available for some 

deer, differences in the distributions of overlap values for ranges separated by one and two 
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years were assessed using a Wilcox rank sum test. All analyses above were conducted using 

the R statistical software. 

 

Factors influencing range size and overlap 
 
 
To examine the factors influencing range size and philopatry, a series of regression models 

were fit with the size and overlap metrics as the response variables. Temporally dynamic and 

static covariates of natural, anthropogenic and individual deer characteristics (Appendix 10) 

were calculated over the outlines of the 50% or 99% highest density ranges. In addition, the 

annual winter range population density was included as a covariate in all winter models of 

size, and the difference in density between years was included as a covariate in all winter 

models of overlap. For the overlap analysis, the outlines of the ranges for the two years of 

interest were combined and the annual differences in temporally dynamic covariate values 

were calculated. For NDVI, snow and body fat covariates, the absolute differences between 

the two years of interest were calculated (assessing if the magnitude of differences in these 

variables explained changes in range use). For the development covariates, the difference 

between the second and first year was calculated in order to preserve the direction of the 

change (i.e., an increase or decrease). In the analysis of range size, the density and number of 

well pads and facilities (compressor stations, natural gas plants and other non-well pad 

industrial facilities) were excluded due to artifacts induced by the nature of the analysis. That 

is, by chance the number of pads will increase as range size increases, causing an artifactual 

correlation between the number of pads and range size. Although formulating these 

covariates as density can theoretically ameliorate these issues, all deer had between 1 and 3 

pads or facilities in their range, causing an artefactual negative relationship between range 

size and density. Thus, these covariates were excluded. The body fat of deer was estimated 

from the regression equation presented in Cook et al. (2010), and thus has uncertainty 
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associated with estimate. To incorporate this uncertainty into our model, below, we estimated 

the true fat within the model, putting a normal prior on the true fat with mean equal to the 

observed fat and standard deviation as presented in Cook et al. (2010; see Appendix 11). For 

the overlap analysis the uncertainty was incorporated into the fat measures from each year 

separately and then the difference between years was calculated at each iteration in the 

algorithm presented below.  

 Models were fit to the overlap and size metrics using beta and gamma regression 

respectively in a Bayesian framework in R and JAGS using the 'rjags' package (Plummer 

2012). Because there were multiple years of data from individual deer, models were fit with 

intercepts varying by individual (see Appendix 11 for model specifications). First, all 

continuous covariates other than fat were standardized �𝑥−𝑥̅
𝜎
� and pairwise correlations 

among all predictor covariates were calculated. Next, a series of models incorporating all 

combinations of covariates that were correlated at less than |0.7| were fit. Multiple 

representations of snow, NDVI, and road density were tested in different models (Appendix 

11). The Watanabe-Akaike Information Criteria (WAIC; Watanabe 2010), asymptotically 

equivalent to leave-one out cross validation and appropriate for hierarchical Bayesian models 

(Gelman et al. 2013, Hooten and Hobbs 2014), was used to compare models. Each algorithm 

was run for 125,000 iterations, discarding the first 25,000 as burn-in, to construct posterior 

distributions for each parameter. Two chains were obtained for each model, using starting 

values that were expected to be overdispersed relative to the posterior distribution, and 

convergence was assessed using the Gelman-Rubin diagnostic (Gelman and Rubin 1992) and 

by examining trace plots of each parameter. The median coefficient value and the proportion 

of the posterior falling to each side of 0 were calculated for each coefficient. Summer models 

were fit to the data for deer from the Ryan Gulch study area only, as deer from the North 

Ridge study area use a summer range for which characterization of anthropogenic features 
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was infeasible. In addition, these deer use winter range areas that are close in proximity (< 20 

km), while their summer ranges are greater than 100 km apart. Winter models were fit to data 

from both study areas. 

 To assess whether our data were consistent with our models we performed posterior 

predictive checks on the best models (Gelman and Hill 2007). Posterior predictive checks are 

done by producing a posterior realization of the entire dataset at each MCMC iteration and 

comparing characteristics of the simulated data to the observed data (Gelman and Hill 2007). 

For all regressions we compared the mean and the squared deviance of the simulated data to 

the real data at each MCMC iteration and calculated Bayesian p-values as the proportion of 

iterations for which these parameters were greater in the real data compared to the simulated 

data.  

 

RESULTS 
 
 
 
Utilization distribution overlap 
 
 
All tracked deer returned to the same general area on both summer and winter range in all 

years. Overlap values of UDs for both seasons were nearly identical for ranges separated by 1 

year and 2 years (1 year winter 𝑥̅ = 0.29 and 2 years 𝑥̅ = 0.32, W = 830, p = 0.31; 1 year 

summer 𝑥̅ = 0.49, and 2 years 𝑥̅ = 0.48, W = 608, p = 0.88). There was greater overlap in 

mule deer UDs during summer (𝑥̅ = 0.49) than winter (𝑥̅  = 0.30; Wilcox rank sum test W = 

6375, p < 0.0001), with some individuals displaying overlap close to 80% on summer range. 

Posterior predictive checks indicated that the models could reproduce adequate realizations of 

the data (Bayesian p-values for summer mean = 0.54, winter mean = 0.49, summer squared 

deviance = 0.59, winter squared deviance = 0.80).  
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 The overlap of the UDs during summer increased with an increase in the number of 

well pads actively producing natural gas (Fig. 5.4) and the proportion of the range comprised 

of treed land cover, while overlap weakly declined with greater differences between years in 

the average NDVI (Table 5.1). During winter, the UD overlap was negatively related to the 

density of natural gas facilities (Fig. 5.4), the difference in the average NDVI between years, 

and the proportion of the range comprised of treed land cover, while overlap was positively 

related to the density of major roads (Table 5.1). Overlap weakly declined with an increase in 

the number of pads with active drilling and deer age (Table 5.1). There was no relationship 

between overlap and annual differences in winter range density (Table 5.1).  

 

Range size 
 
 
Deer used a greater overall area during the winter (99% size 𝑥̅ = 5.79 km2) than summer 

(99% size 𝑥̅ = 2.27 km2; Wilcox rank sum test W = 1203, p < 0.0001) and the area they used 

most intensively during the winter (50% size 𝑥̅ = 0.70 km2) also was greater than during 

summer (50% size 𝑥̅ = 0.24 km2; Wilcox rank sum test W = 11868, p < 0.0001). Posterior 

predictive checks indicated that the models could reproduce adequate realizations of the data 

during the winter, but during the summer the squared deviance of the real data was greater 

than that of the simulated data during a large proportion of the MCMC iterations (Bayesian p-

values for summer 99% range mean = 0.36, summer 50% range mean = 0.36, winter 99% 

range mean = 0.39, winter 50% range mean = 0.35, summer 99% range squared deviance = 

0.92, summer 50% range squared deviance = 0.94, winter 99% range squared deviance = 

0.73, winter 50% squared deviance = 0.30). These results likely indicate that the model was 

not adequately capturing the variance in the data during the summer.  

The 99% summer range size was positively related to the body fat of deer in the 

following December and the density of pipelines and negatively related to terrain ruggedness 
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and age (Table 5.2). Though weaker, range size also was negatively related to average NDVI 

(Fig. 5.5) and the density of major roads (Table 5.2). Similarly, the size of the 50% summer 

range was positively related to the fat of the deer in the following December and the density 

of all roads, and negatively related to deer age, terrain ruggedness, the density of pipelines, 

and the average NDVI of the range (Fig. 5.5; Table 5.2). 

 The 99% winter range size was negatively related to terrain ruggedness, the density of 

pipelines, and the winter range deer density, while positively related to the proportion of the 

range comprised of treed land cover (Table 5.2).  In addition, range size was weakly 

negatively related to the average NDVI (Fig. 5.5), and age, while weakly positively related to 

the total snow on each deer’s range (Table 5.2). The size of the 50% winter range was 

negatively related to terrain ruggedness, and the winter range deer density, and weekly 

negatively related to the average NDVI (Fig. 5.5), density of major roads, and age (Table 

5.2). Similar to summer, fatter deer also had larger 50% highest density winter ranges.   

 

DISCUSSION 
 
 
 
An understanding of drivers of space use and philopatry is fundamental to animal ecology. 

Animals are philopatric for numerous reasons, including the foraging benefits of memory and 

learned resource locations (Benhamou 1994, Eliassen et al. 2009), enhanced predator 

avoidance and increased ability to exclude conspecifics (Stamps 1995). Mule deer in our 

study exhibited a high degree of philopatry to both their summer and winter ranges, 

highlighting the importance of spatial familiarity and memory to this species. During 

summer, energy acquisition is likely the primary driver of behavior for deer as they are 

birthing and rearing fawns, which is an energetically costly activity, as well as accruing fat 

stores to survive the winter (Tollefson et al. 2010). During this time, deer exhibited high 
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philopatry within a small, intensively used space. The high philopatry during summer might 

also be related to past success in raising fawns in an area. During winter, temporal and spatial 

variation in snow depth makes the landscape much more dynamic and deer are primarily 

concerned with energy conservation (Torbit et al. 1985). Philopatry in winter was 

significantly lower than that in summer as predicted (Switzer 1993). At this time, fawns also 

are more mobile, which might further influence the degree of philopatry during winter.  

 Environmental and individual factors influenced the degree of philopatry in mule 

deer. As expected, greater differences in habitat productivity between years decreased the 

degree of philopatry as deer ranged over larger areas when productivity was lower. During 

these times, deer still used the same general area, but their intensity of use of specific 

locations varied as they likely searched farther afield for forage. Importantly, the summer of 

2012 was a year of substantial drought in our study area (summer precipitation in 2011 total 

= 13.84 cm; 2012 total = 5.38 cm; 2013 total = 9.63 cm; http://www.nohrsc.noaa.gov/). 

which might have driven large differences in habitat productivity and the subsequent 

responses in range philopatry. Tree cover also was important to overlap in both seasons, 

though with contrasting effects (positive during summer and negative during winter). During 

summer, deer are rearing fawns and predation risk for fawns is high (Pojar et al. 2004), and 

cover thus might be more important than in winter as a result.  

 Lastly, anthropogenic development was an important predictor of philopatry in line 

with other studies demonstrating development can drive displacement from preferred areas 

(Northrup and Wittemyer 2013). There was lower philopatry during the winter on ranges 

where there were more industrial facilities (natural gas and other), as well as when active 

drilling increased. During summer, there was a positive relationship between philopatry and 

the change in well pads actively producing gas (i.e., transitioning from the highly active 

drilling phase to the relatively inactive producing stage in a gas well lifecycle). Thus, deer 



 
 

111 

showed greater philopatry when disturbance (i.e., drilling, which is the stage of greatest 

activity) decreased and lower philopatry when new wells were drilled in their range.  

 Identification of the factors driving philopatry in our study area align with our 

understanding of deer behavior and biology. Deer rely heavily on the use of well known 

areas. Such behavior is expected to be selected for when heterogeneity in sites is low and 

when the habitat is predictable (Switzer 1993), which supports our findings that departures 

from high philopatry in our system occur because of environmental or human-induced 

landscape dynamics. Importantly, changes in philopatric behavioral strategies might occur 

only after a time lag (Switzer 1993), leaving deer susceptible to detrimental effects of 

suboptimal behavior. Although development densities are not currently high enough to cause 

abandonment of ranges (e.g., as seen by Sawyer et al. 2006), our findings showed that higher 

densities elicited reduced use of the previous year's range (familiar areas), potentially to their 

detriment. In light of the apparent importance of philopatric space use strategies to deer, our 

results provide an example of how anthropogenic development and land-use changes alter a 

fundamental behavior likely to have evolved to enhance deer foraging success and predator 

avoidance.  

 

Range size 
 
 
Optimal foraging theory provides a useful theoretical framework for understanding range size 

dynamics. In areas of high productivity, animals are expected to use smaller areas (Charnov 

1976, Pyke et al. 1977) and deer in our study adhered to these predictions, with productivity 

being a main determinant of (and negatively correlated with) range size. Deer used 

substantially smaller areas during summer, when range quality is higher, than during winter. 

Within seasons, individuals also used smaller areas when primary productivity was greater. 

These results resemble findings for other ungulate species (Tufto et al. 1996, Rivrud et al. 
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2010, van Beest et al. 2011), supporting the generality of the range size-productivity 

relationship. In addition, deer in areas with greater terrain ruggedness had smaller ranges, 

likely reflecting the importance of cover to deer. Our study area is topographically diverse, 

which serves as an important instrument of cover, particularly from visual stimuli and 

acoustic disturbances related to natural gas development (e.g., Blickley et al. 2012). 

 As seen in other studies of ungulate range size (e.g., Tufto et al. 1996), individuals in 

areas with higher density of deer had smaller ranges. This result suggests that deer in areas of 

greater density might be more restricted in their space use. Contrarily, the higher density in 

the North Ridge study area might be a result of higher quality habitat, which would elicit a 

similar response (i.e., smaller ranges). While these two factors cannot be disentangled, recent 

work has shown that heavy snow fall during winter causes increased densities in small areas 

(Bergman et al. 2014b), which might accentuate the density related differences observed on 

winter range in our system.  

 The individual animal characteristics of age and body condition also consistently 

influenced range size. Older deer had smaller ranges, which might indicate that older animals 

are more experienced and knowledgeable about their ranges (optimally using the area for 

nutritional and cover requirements) or better able to monopolize preferred range. In contrast, 

fatter deer had larger ranges supporting other work showing that fatter deer used more energy 

during the winter (Monteith et al. 2013). Matching summer results indicate that similar 

dynamics are occurring on both ranges, with fatter deer being able to afford greater 

movement. These results indicate that there is some benefit to having a larger range 

potentially linked to access to various welfare factors (i.e., limiting resources, thermal cover) 

or reducing predation risk. We caution that for the summer result, the post-summer fat of deer 

in our study might be confounded with the successful rearing of fawns through the summer, 

as deer with greater fat stores might be more likely to have lost fawns and not incurred the 
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cost of lactation throughout the summer. Thus, larger ranges during summer might in fact be 

related to the loss of fawns, though we lack information on reproduction to assess this 

relationship.  

   

Range estimation 
 
 
With the increasing sophistication of GPS collar technology, our ability to collect highly 

detailed and complex movement data is growing. The simultaneous advancement in methods 

for analyzing these data provides unprecedented ability to understand animal behavior. We 

used methodology developed in the animal movement modeling literature to take advantage 

of the complex nature of these data, which enables a movement-based examination of range 

dynamics at fine spatial and temporal scales (in our case 5 m). Other classic approaches do 

not incorporate the animal's movement behavior in their estimation approach, resulting in 

utilization distributions reflecting the assumptions of a point process rather than a movement 

process. Our approach employing the CTCRW method (Johnson et al. 2008a) ensured that 

space use estimation based on high resolution location data captured the movement process. 

It is important to note other methods are available that leverage this strength of high 

resolution GPS tracking data as well (e.g., Wall et al. 2014). When assessing the relationship 

between fine-scaled behaviors (such as intensively sampled movement) and landscape 

dynamics, employing technically appropriate analytical techniques is necessary.  

 

Conclusions 
 
 
The success of philopatric strategies is based on a certain degree of environmental and 

landscape-level predictability (Switzer 1993). Environmental and anthropogenic changes can 

thus negatively impact species that display high philopatry to an area. Climate driven 
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environmental change is likely to drive variability in precipitation and vegetative 

productivity. This increase in variability will reduce the predictability of ecological systems 

thus decreasing the benefits of philopatric strategies. As such, we may expect philopatric 

species to be particularly susceptible to climate change. However, management options for 

addressing this issue are limited.    

 As with climate variation, anthropogenic development clearly influenced range 

philopatry and size in our study system. In particular, the high degree of philopatry to 

summer ranges suggests the displacement of deer from their preferred summer range may be 

of concern. Summer is a critical period for rearing fawns and accruing fat prior to winter, and 

displacement during this time could be detrimental to deer. However, if much of the summer 

range is highly productive, there might be little nutritional cost to this displacement. During 

winter, our results suggest that the lower quality of forage and dynamic nature of the 

landscape require that deer use a greater amount of space. Increased development on winter 

range could further exacerbate nutritional stress during this time if it reduces the amount of 

space deer have available to them. During both seasons, deer displayed decreased philopatry 

and used larger areas when vegetative productivity was low. This finding indicates that 

during poor years deer require more area and might be particularly susceptible to 

anthropogenic impacts. Interestingly, the finding that deer increased their philopatry when 

development transitioned from drilling to the less disturbing producing stage indicates that 

deer might be resilient to short-term disturbances and that development impacts can be 

ameliorated. In respect to these findings, management and mitigations strategies for deer 

should be focused on reducing the overall density and duration, where possible, of the most 

disturbing and intensive aspects of development (i.e., drilling and large facilities).  
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TABLES 
 
 
 
Table 5.1. Covariates, median coefficient estimates (coeff.) and proportion of posteriors 
(prop.) falling above and below 0 for beta regression models fit to the bi-annual overlap 
(degree of philopatry) in the utilization distributions during summer and winter for female 
mule deer in the Piceance Basin of Northwest Colorado. Descriptions of all covariates can be 
found in Appendix 10.  
Covariatesa Median coeff. Prop. < 0 Prop. > 0 

Summer    

Overall intercept -0.06 0.64 0.36 

difference in dens_prod 0.17 0.01 0.99 

tree 0.11 0.13 0.87 

difference in avg_NDVI -0.06 0.81 0.19 

rd_dens_major -0.04 0.65 0.35 

TRI -0.04 0.63 0.37 

age -0.02 0.58 0.42 

fat 0.00 0.53 0.47 

    

Winter     

Overall intercept -0.91 1.00 0.00 

dens_fac -0.19 1.00 0.00 

tree -0.10 0.91 0.09 

rd_dens_major 0.09 0.06 0.94 

age -0.08 0.88 0.12 

difference in dens_drill -0.07 0.89 0.11 

difference in avg_NDVI -0.07 0.96 0.04 

density 0.05 0.23 0.77 
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difference in dens_pipe -0.02 0.68 0.32 

difference in fat 0.00 0.43 0.57 

difference in snow_avg -0.02 0.62 0.38 

aSee Appendix 10 for descriptions of covariates 
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Table 5.2. Covariates, median coefficient estimates (coeff.) and proportion of posteriors 
(prop.) falling above and below 0 for gamma regression models fit to the size of the 99 and 
50 percent highest density ranges during summer and winter for female mule deer in the 
Piceance Basin of Northwest Colorado. Descriptions of all covariates can be found in 
Appendix 10. 
Covariatesa Median coeff. Prop. < 0 Prop. > 0 

Summer 99%    

Overall intercept 14.12 0 1 

fat 0.04 0.00 1.00 

TRI -0.10 0.94 0.06 

dens_pipe 0.05 0.17 0.83 

age -0.08 0.92 0.08 

peak_NDVI -0.06 0.88 0.12 

rd_dens_all 0.02 0.37 0.63 

tree -0.06 0.82 0.18 

    

Summer 50%    

Overall intercept 12.05 0.00 1.00 

fat 0.03 0.00 1.00 

TRI -0.08 0.95 0.05 

avg_NDVI -0.07 0.98 0.02 

dens_pipe -0.07 0.93 0.07 

rd_dens_major 0.03 0.24 0.76 

age -0.06 0.93 0.07 

tree 0.03 0.24 0.77 

    

Winter 99%    
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Overall intercept 15.41 0.00 1.00 

TRI -0.21 0.99 0.01 

density -0.21 1.00 0.00 

dens_pipe -0.16 0.99 0.01 

tree 0.12 0.05 0.95 

avg_NDVI -0.05 0.87 0.13 

snow_total 0.06 0.19 0.81 

rd_dens_all 0.04 0.26 0.74 

age -0.04 0.81 0.19 

fat 0.01 0.24 0.77 

    

Winter 50%    

Overall intercept 13.24 0.00 1.00 

density -0.24 1.00 0.00 

TRI -0.14 0.98 0.02 

fat 0.02 0.08 0.92 

age -0.04 0.87 0.13 

peak_NDVI -0.02 0.71 0.29 

rd_dens_major -0.04 0.86 0.14 

tree -0.01 0.61 0.39 

snow_total 0.02 0.38 0.62 

aSee Appendix 10 for descriptions of covariates 
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FIGURES 
 
 
 

 

Figure 5.1. Location of study area, nearest town (Meeker, Colorado), and outlines of summer 
and winter mule deer distribution by study site (RG for Ryan Gulch, and NR for North 
Ridge). Underlying gray scale represents elevation.  
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Figure 5.2. Example of utilization distributions for a single female mule deer in the Piceance 
Basin, Northwest Colorado, USA during (A) winter 2011, (B) winter 2012, (C) summer 2011 
and (D) summer 2012. Overlap values were 0.46 and 0.77 in the winter and summer 
respectively. 
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Figure 5.3. Schematic detailing calculation of overlap between utilization distributions used in 
analyses of mule deer range overlap.  
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Figure 5.4. Predictions of range overlap with variation in (A) the density of oil and gas and other facilities during winter and (B) the 
change in density of producing well pads during summer for mule deer in the Piceance Basin, Northwest Colorado, USA. Gradient 
represents the density of the posterior predicted values.  
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Figure 5.5. Predictions of range size (km2) against normalized difference vegetation index (NDVI) in the respective season and range 
size for mule deer in the Piceance Basin, Northwest Colorado, USA for: (A) the winter 99% highest density range, (B) winter 50% 
highest density range, (C) summer 99% highest density range, and (D) summer 50% highest density range. Gradient represents the 
density of the posterior predicted values.  
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CHAPTER SIX 
 
 
 

CONDITION-DEPENDENT FORAGING STRATEGIES LEAD TO DIFFERENTIAL LOSS  
 

OF ENERGETIC RESERVES IN A TEMPERATE UNGULATE 
 
 
 

INTRODUCTION 
 
 
 
Optimal foraging theory predicts that animals will make decisions regarding when and where to 

eat to optimize overall resource gain (Macarthur and Pianka 1966, Pyke et al. 1977). Despite the 

relative simplicity of this prediction, it has been widely applied to gain insight into behavioral 

processes including predator prey interactions (Brown 1988, Brown et al. 1999), the degree of 

diet specialization (Macarthur and Pianka 1966), and the value of learning (Berger-Tal and 

Avgar 2012). As the foraging decisions of animals also dictate the time spent in different habitats 

(Charnov 1976, Wajnberg et al. 2006), these behaviors influence larger scale ecological 

processes including community structuring (Petchey et al. 2008), and population distribution and 

abundance.  

The foraging strategies of temperate ungulates have been shaped by seasonally dynamic 

constraints. For these species, winter typically is a time of nutritional limitation (Torbit et al. 

1985, Festa-Bianchet et al. 1996, Bishop et al. 2009), when most individuals lose mass while 

relying on reserves stored during the previous summer (Torbit et al. 1985, Festa-Bianchet et al. 

1996, Parker et al. 1999). Contrastingly, summer is a time of high resource availability but also 

high energetic demands due to the need to care for young and build sufficient reserves to survive 

the impending winter (Wallmo et al. 1977, Festa-Bianchet et al. 1996, Festa-Bianchet 1998, 



 
 

126 

Therrien et al. 2008). Thus, during both seasons, the foraging decisions of temperate ungulates 

are structured by current and future energetic needs (e.g., Festa-Bianchet and Jorgenson 1998). 

Although the dynamics of the allocation of energy reserves to survival and reproduction have 

been assessed empirically (Festa-Bianchet and Jorgenson 1998, Monteith et al. 2013), their 

influence on foraging decisions (and vice versa) are not as well understood outside of theoretical 

studies. Foraging theory predicts that these decisions will be strongly influenced by current 

condition (McNamara and Houston 1986, Brown 1988), however the data for assessing these 

dynamics are difficult to obtain for wide-ranging species. 

In addition to endogenous, condition-based drivers, the foraging decisions of animals are 

structured by exogenous factors. The quality and quantity of forage resources influence when 

and where animals decide to forage, but the cost of movement between patches alters expected 

gains (Charnov 1976, Pyke et al. 1977), thereby structuring landscape level space use. These 

costs likely vary across spatial and temporal scales and are influenced by expected interactions 

with predators (Lima and Dill 1990) and conspecifics, particularly in highly social species 

(Polansky et al. 2013). The impact of human activity on foraging decisions can be analogous to 

that of predators (Frid and Dill 2002), though in some cases humans may serve as predator 

shields for prey species (Berger 2007). Untangling the factors (endogenous and exogenous) 

driving the foraging decisions of animals can clarify the relationship between life history 

strategies and behavior and lend insight into behavioral adaptations to seasonal constraints (e.g., 

Therrien et al. 2008). Such an approach is increasingly important for understanding the 

landscape context under which behavioral decisions are made and the influence of human-caused 

environmental change on those decisions. 
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Despite the importance of understanding foraging decisions of free ranging animals, often 

they are difficult to observe in the wild. Thus, much of the research in this field has been 

theoretical, or focused on species or time periods that are amenable to direct measurement (e.g., 

during daytime hours in open systems). Technological advances (e.g., global positioning system 

(GPS) radio collars), provide unprecedented information on animal space use that, when coupled 

with advances in statistical modeling, provide new avenues for empirical assessments of foraging 

decisions in species (e.g., McClintock et al. 2012b, Polansky et al. 2013, Louzao et al. 2014). 

Combining these approaches with detailed information on animal condition can serve to provide 

insight into the drivers and repercussions of different foraging decisions (Louzao et al. 2014). To 

date this has been rare with large free ranging animals.  

Mule deer (Odocoileus hemionus) are predominantly migratory across their range as a 

result of seasonally variable ecological constraints in their environs (Wallmo et al. 1977). During 

the winter when forage resources are limited, deer face a net negative energy balance (Torbit et 

al. 1985), and are susceptible to mortality due to malnutrition (Unsworth et al. 1999). On 

summer range, resources are abundant (Wallmo et al. 1977), but energetic requirements are high 

as deer birth and rear between one and three fawns while also gaining sufficient energy stores to 

survive the impending winter (Wallmo 1981). These seasonal dynamics are critical for 

management and conservation of this species across Western North America where they have 

seen large-scale declines across their range in recent decades (Unsworth et al. 1999). Due to the 

lack of high quality forage on winter range, most management actions focus on improving 

nutrition during this time using habitat manipulation or supplemental feeding (e.g., Bishop et al. 

2009). However, nutritional constraints on summer range might be equally important to the 

species (Monteith et al. 2013). Understanding what drives foraging decisions, and how these 
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decisions interact with and influence mule deer condition can clarify the strategies employed by 

the species to overcome the constraints they face, providing greater understanding of life history 

strategies that can inform management actions. Here we examine the spatial and temporal 

dynamics of foraging behavior and the relationship between this behavior and condition in a wild 

population of mule deer in the Piceance Basin of Colorado, USA.  

 

METHODS 
 
 
 
Deer data 
 
 
We captured adult (> 1 year old) female mule deer in two winter range areas (North Ridge, and 

Ryan Gulch; Fig. 6.1) in the Piceance Basin of Colorado, USA (39.954 degrees N, 108.356 

degrees W), using helicopter net gunning (see Northrup et al. 2014a for details of capture 

procedure). From March 2010 through March 2013, uncollared deer were captured 

opportunistically during March and December of each year to establish and maintain a sample of 

50 tracked individuals. All individuals were recaptured each December, and 30 were recaptured 

each March (see Appendix 12 for details on capture dates of each deer) to weigh them, assess 

body condition (Cook et al. 2001, Cook et al. 2007, Cook et al. 2010), measure the depth of the 

longissimus dorsi muscle and the thickness of the subcutaneous rump fat (Stephenson et al. 1998, 

Cook et al. 2001, Stephenson et al. 2002), and estimate age using tooth replacement and wear. 

Starting in December 2010, a global positioning system (GPS) radio collar (Advanced Telemetry 

Systems, Isanti, MN, USA) set to 1 of 2 schedules (Dec. 2010 and Mar. 2011: hourly locations 

Sep. 1 to Jun. 30 and once every 2 hours otherwise; Dec. 2011/2012 and Mar. 2012/2013: half 

hourly Sep. 1 to Jun. 15 and hourly otherwise) was fit to each deer and they were released on 
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site. Different schedules were used due to an upgrade in the collar battery prior to the second 

year of the study. The mass, body condition score, rump fat and loin depth measurements were 

used to calculate the percent body fat (hereafter fat) following Cook et al. (2010). We also 

calculated lean body mass of each deer by first calculating the ingesta-free body mass following 

Cook et al. (2007), and subtracting the weight of fat, based on the percent body fat of each deer.  

 Following mortality of the deer, recapture, or collar release, GPS data were downloaded 

from collars. To ensure that data were free from effects of capture, we censored the first 4 days 

of data following the first capture (Northrup et al. 2014a). For recaptured deer, we censored all 

data between capture and the time when deer returned to an area delineated by a minimum 

convex polygon (MCP) drawn around the data one month prior to capture (Northrup et al. 

2014a). If deer did not return to this MCP within one week we censored the first week of data. If 

the processing site was contained within the MCP, we censored the first day of data. Minimum 

convex polygons were calculated using the ‘adehabitatHR’ package (Calenge 2006) in the R 

statistical software (R Core Team 2013), and return to these MCPs was determined by visually 

examining data in ArcMap 10.1 (Environmental Systems Research International, Redlands, CA 

USA). Using the resulting data, we calculated the speed moved between consecutive locations 

(m/hr) and visually examined the fastest 1% of these speeds to determine if they were the result 

of single outlier locations, indicating an erroneous fix. Any such locations were censored.  

Deer in the Piceance Basin are migratory so we classified data as occurring on winter 

range, summer range or during migration. Winter range data were classified as any data falling 

between capture (for the first year of data) or arrival on winter range (subsequent years) and 

when the deer began directed movement away from the winter range without return. Summer 

range data were classified as any data between the cessation of directed movement from winter 
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range to summer range and when the deer began directed movement away from summer range 

without return. Migratory data were classified as all remaining data. Only the resulting summer 

and winter range data were used in the analyses presented.  In addition, we censored all data 

occurring after the median migration initiation date across all deer and before the median 

migration termination date across all deer (the latter for summer only) for each of the 3 years of 

data. Winter range data were truncated to December 10 (4 days after the typical termination of 

capture efforts). Data occurring prior to this date were removed because the majority of deer 

initially were captured in December 2010 and thus had no data prior to this date and because the 

fix schedule was altered between December 2010 and December 2011. The resulting dataset 

comprised 70 deer whose resulting datasets were useable for movement modeling (17 in the 

North Ridge study area and 53 in the Ryan Gulch study area), producing 106 and 130 individual 

deer and season combinations during summer and winter, respectively. 

 

Estimation of activity budgets 
 
 
We estimated activity budget using the results of discrete-time correlated random walk models, 

formulated as hidden Markov models (hereafter CRW models). We fit these models to step 

lengths and turn angles (the distance moved between locations and the relative bearing between 

subsequent movements, respectively; Turchin 1998) for each individual deer, year and season 

combination. We followed the general approaches discussed by Morales et al. (2004) and 

McClintock et al. (2012a). Specifically, our model took the following form:  

𝑠𝑡|𝒛𝒕 ∼ gamma�𝛼𝑗 ,𝛽𝑗� 

𝜙𝑡|𝒛𝒕 ∼ von Mises�𝜇𝑗 , 𝜅𝑗� 

𝒛𝒕|𝒛𝒕−𝟏 ∼ multinomial(𝝍) 
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𝝍 ∼ Dirichlet(0.5, 0.5) 

𝛼𝑗 ∼ uniform(0, 20000) 

𝛽𝑗 ∼ uniform(0, 20000) 

𝜇𝑗 ∼ uniform(0, 2𝜋) 

log 𝜅𝑗 ∼ normal(0, 1000) 

where 𝑠𝑡 and 𝜙𝑡 are the step length and turn angle at time 𝑡, 𝒛𝒕 is a vector representing the 

underlying, unobserved behavioral state that dictates which distribution (𝑗) the step length and 

turn angle originated from. This state vector, 𝒛𝒕 is a Markov process where the probability of 

being in any state (𝑗) depends on the previous state. Thus 𝝍 is a vector of values that sum to 1, 

with a different vector for each state indicating the probability of remaining in the current state or 

transitioning to the other state. In general terms, this model indicates that the movements of an 

animal (step length and turn angle) arise from distributions (in this case a gamma for step length 

and von Mises for turn angle) that are specific to their underlying behavioral state. This 

behavioral state changes through time with probability that depends on the previous state. We fit 

a model with 2 states because acoustic assessments of mule deer behavior in our system have 

shown that they spend almost the entirety of their days either inactive (resting and ruminating) or 

foraging (Lynch et al. 2013). All models were fit in a Bayesian hierarchical framework using a 

Markov Chain Monte Carlo (MCMC) procedure written in R. The algorithm was run twice to 

obtain two chains for each parameter using starting values that were presumed to be 

overdispersed relative to the posterior distributions of the parameters. For the state matrices (𝒛 

above), the two chains were initialized with all movements in one of the two states, with the 

opposite state chosen for each of the two chains. Algorithms were run for variable numbers of 

iterations (see Appendix 13 for details) and convergence was assessed using the Gelman-Rubin 
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diagnostic (Gelman and Rubin 1992) with a value of 1.1 for means used as a threshold for 

convergence. In addition we examined traceplots of the resulting chains for all parameters to 

further assess convergence. In several instances the algorithm failed to converge for the 

dispersion parameter (𝜅) on one of the two states, due to the separate chains exploring different 

areas of the posterior that were smaller than 0.01. The convergence issues likely were a result of 

uniform turning angles for this state. We thus modified the CRW model such that the prior on the 

concentration parameter 𝜅 was a truncated normal with mean = 0, standard deviation = 10,000, 

upper bound = ∞, and lower bound = 0.01. This algorithm failed to converge for 21 winter 

models and 15 summer models (see Appendix 13 for details), with the two chains converging to 

what appeared to be local maxima. These models predominantly were those fit to data from 

winter and summer 2011 when collars were set to a less frequent fix schedule (hourly during 

winter and 2 hourly during summer). We refit these models using a Metropolis-Coupled Markov 

Chain Monte Carlo (MC3; Altekar et al. 2004) procedure in R. These MC3 algorithms converged, 

however all showed bimodality in the posteriors. This result indicates that these deer were 

moving in a manner substantially different than the remaining individuals for which the 

algorithms converged. We thus excluded these individuals from further consideration. 

 The models as presented above assume that all data are present. However there was 

variable fix success among the deployed collars. There are several methods that exist for fitting 

models similar to the CRW model with missing data (see examples in Langrock et al. 2012, 

McClintock et al. 2012a). We assessed 3 methods using simulation (see Appendix 14), and 

determined that using linear interpolation but censoring all individuals missing greater than 20% 

of their data provided the best balance between accuracy and computation time.  
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 After fitting the above models to all deer, year and season combinations we extracted the 

posteriors of the state vector (𝒛𝒕) for each location. These vectors provide the probability that the 

deer was in each of the 2 states for every location. We combined all state vectors across each day 

to obtain the total proportion of each day that a deer was predicted to be in each state, or their 

activity budget. We calculated activity budgets incorporating interpolated missing data but 

excluded all days when greater than 25% of the locations were missing for that day.  

 

Model assessment 
 
 
We took two separate approaches to assess the performance of the CRW model. First we 

conducted posterior predictive checks of the autocorrelation structure of the data (Gelman and 

Hill 2007). For each MCMC iteration, we produced a single realization of the data and calculated 

the autocorrelation function of the time series across 96 hours. The autocorrelation functions for 

all MCMC iterations were combined to derive a distribution of the autocorrelation at each time 

lag. We then calculated the autocorrelation function for the observed data and visually compared 

the simulated and observed data for each individual.  

 Next, to verify that our model could accurately identify foraging and resting bouts, we 

compared the posteriors of the state vectors to acoustical behavior data collected simultaneously 

on a subset of deer. In December, 2011 we fit collars able to continuously record the acoustic 

environment on 10 of the deer in our study (Lynch et al. 2013). Lynch et al. (2013) used these 

data to identify the continuous behaviors that deer engaged in for 5 individuals (a single day was 

examined for 4 deer, and 5 days were examined for a single deer). The authors identified 9 

behaviors: rumination, mastication during rumination, respiration during prolonged resting, 

browsing, startle events, grooming, and movement. We combined rumination, mastication during 
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rumination, respiration, and grooming into a single resting behavior, and browsing, startle events 

and movement into a foraging behavior (movement and startle events were rare and short in 

duration). We calculated the proportion of time between each GPS location that was spent in 

each of the two activities and compared these to the CRW model results. We only could compare 

the results from 3 of the deer, as the remaining 2 had poor fix success and CRW models were not 

fit for these individuals.     

 

Deer condition and behavior 
 
 
For deer captured in both December and March of each winter season, we examined the 

relationship between condition (fat and lean mass) at the start of each season with the seasonal 

changes in condition (i.e., December fat and mass compared to December-March change and 

March fat and mass compared to March-December change) using simple linear regression. In 

addition, we examined the relationship between seasonal activity budgets (derived from state 

based analyses of movements) and the change in fat and mass. We only examined the 

relationship between condition and foraging for 2012 and 2013 as the movement data from 2011 

were sampled more coarsely resulting in non-comparable activity budget estimates.  

 

Analysis of factors influencing foraging behavior 
 
 
We next examined the influence of a suite of covariates (Table 6.1; Appendix 15) on activity 

budgets in each season using hierarchical beta regression in a Bayesian framework (see 

Appendix 16 for model formulations). The covariates examined were categorized as 

environmental, anthropogenic or individual characteristics (Table 6.1; Appendix 15), and were  
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calculated at two scales: the seasonal and daily ranges. The seasonal range was calculated 

following the approach in Chapter 5, while daily ranges were assessed by buffering the path of 

each animal by their mean movement distance across the entire season. Models were fit to the 

proportion of time spent in the resting state. For the analysis at the daily scale, covariates varied 

with each day. Thus, the regressions were fit with the intercepts and all coefficients (except the 

static variables of fat, age, and study area) varying by individual. For the seasonal range scale, 

only the coefficients for temporally dynamic covariates were fit as varying by individual, while 

the coefficients for static covariates were fixed across individuals (Table 6.1). Prior to fitting the 

regression models we assessed pairwise correlations among covariates and only included 

covariates in the same model if they were correlated at r < |0.7|. In addition we standardized all 

continuous covariates �𝑥−𝑥̅
𝜎
�. 

We fit a set of models including only uncorrelated covariates (see Appendix 16 for model 

structures) and compared models using the Watanabe-Akaike Information Criteria (WAIC; 

Watanabe 2010), a Bayesian information criterion that asymptotically approximates leave-one-

out cross validation (Gelman et al. 2013, Hooten and Hobbs 2015). We fit models to each year 

and season separately resulting in 6 sets of models (3 years, 2 seasons). We fit all models using 

Stan (Stan Development Team 2014b) in the R statistical software using the package 'RStan' 

(Stan Development Team 2014a). Stan uses Hamiltonian Monte Carlo (HMC) sampling and the 

No U-Turn Sampler to fit Bayesian models with an algorithm that converges with substantially 

fewer iterations than models using other platforms such as WinBugs or JAGS (Hoffman and 

Gelman 2014). We obtained 5,000 HMC iterations for each model, discarding the first 500 as 

burn-in. We ran each algorithm twice for each model with randomly selected starting values and 

assessed convergence to the posterior distribution using the Gelman-Rubin diagnostic and by 
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examining traceplots of the HMC chains. For winter activity budgets we fit models to data from 

deer in both study areas. For the summer analysis we fit models only to the deer from the Ryan 

Gulch study area as the deer in North Ridge use a more dispersed summer range, making 

quantification of anthropogenic covariates infeasible. 

 

RESULTS 
 
 
 
Model results and evaluation 
 
 
 The CRW models clustered movements into two states, the first characterized by longer step 

lengths and the second by shorter step lengths. Turn angles were relatively similar across states 

(Appendix 17). Providing support for the fit of the model, posterior predictive checks revealed 

that our models were able to reproduce the autocorrelation structure present in the data, though 

some highly nuanced structure was not reproduced in all cases (Appendix 17). In addition, 

validation of behaviors using sound collar data indicated that the two states matched the 

behaviors of foraging and resting by deer (median difference in classification of behavior = 

0.10). Two of the deer had several missing locations overlapping with the sound collar data and 

the majority of the locations for which the modeled and sound collar behaviors diverged were for 

these locations (median difference in classification of behavior = 0.16). For the one deer with 

sound collar data available for 5 full days, there was excellent agreement between the states 

(median difference in classification of behavior = 0.06; Appendix 17). Upon closer examination, 

the remaining locations that were poorly classified by the model fell during times when the deer 

were switching between behaviors, or when they were either foraging but moving very little (i.e., 
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the step length for that time period was very short), or ruminating but the step lengths were of 

moderate distance, indicating the potential for misclassification induced by GPS error.    

 

Deer condition and behavior 
 
 
Examinations of the activity budgets resulting from the random walk models indicated strong 

seasonal patterns, with winter activity levels strongly influenced by snow depth (Tables 6.2 & 

6.3; Fig. 6.2) and summer activity influenced by NDVI during some years (Table 6.4 & 6.5; Fig. 

6.2). There was a strong negative relationship between individual deer body fat at the beginning 

of winter and the change in fat over the winter (this result was similarly strong when assessed 

using the proportion of the December fat lost by March; β = -0.82 p < 0.0001; Fig. 6.3), whereby 

deer that were fatter at the beginning of the winter lost a greater amount of fat and a greater 

proportion of their body fat over winter than those that had less fat at the beginning of winter. 

There was a similar negative relationship between body fat in March and fat change over 

summer (β = -1.26 p < 0.001; Fig. 6.3), whereby deer that had the least fat in March, gained the 

most fat over summer and gained more fat relative to their March fat. Nearly identical patterns 

existed for lean body mass, though the summer relationship was relatively weak and appeared to 

be influenced by a single data point (winter β = -0.48 p < 0.0001; summer β = -0.31 p = 0.02; 

Fig. 6.3). In addition, deer that had more fat in December lost less lean mass over winter (β = 

0.63 p < 0.001; Fig. 6.4). During the summer there was no relationship between March fat and 

the change in summer body mass (β = -0.1 p = 0.87; Fig. 6.4), though there was a weak 

relationship between the amount of mass lost over the previous winter and the amount of mass 

gained over the ensuing summer with deer that had lost more lean mass over the winter putting 

on more mass over the summer (β = -0.24 p = 0.08; Fig. 6.5). Relative to foraging behavior, deer 



 
 

138 

that foraged more during the winter lost more fat over the winter but less lean mass (fat β = -13 p 

= 0.02; mass β = 12.41 p = 0.04; Fig. 6.6). Contrarily, during the summer deer that foraged more 

gained more fat (β = 12.7 p = 0.01; Fig. 6.6). There was no relationship between activity budget 

and lean mass gained over the summer (β = -2.74 p = 0.85; Fig. 6.6).  

 

Analysis of landscape factors influencing foraging behavior 
 
 
During winter, environmental covariates were primary drivers of variation in deer foraging 

behavior (Tables 6.2 & 6.3, Appendix 16). At both scales and during all years snow was a strong 

predictor of mule deer activity budgets with deer spending more of their days resting when snow 

was deeper (Fig. 6.2). Temperature also strongly influenced activity budgets during winter with 

deer spending more time foraging when temperatures were warmer in 2011 and 2013, though not 

during 2012. During the winter of 2012, a decoupling of the influence of snow and NDVI 

demonstrated that NDVI was not an important predictor of deer activity during that winter. Deer 

also spent more time resting when they were in areas with a greater proportion of treed 

landcover, and when they were in areas of greater ruggedness, though this covariate varied by 

year and scale (Tables 6.2 & 6.3; Appendix 16). No consistent patterns emerged relative to the 

amount of daylight.   

Both individual characteristics and development covariates were less influential to deer 

activity budgets during winter (Tables 6.2 & 6.3; Appendix 16). Deer in the Ryan Gulch study 

area spent less time resting than deer in the North Ridge study area, while age and fat tended to 

be unimportant for predicting the daily activity budgets. Deer also did not strongly alter their 

activity budgets relative to well pads. However, during certain years deer did pattern their 

activity relative to facilities, pipelines, and roads. During 2011 and 2012, deer with a greater 
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number of facilities in their seasonal range spent more time foraging. Deer spent more time 

foraging when pipeline density was higher at the daily scale in 2012, but more time resting when 

pipeline density was higher at the annual scale in 2013. Deer also spent more time foraging when 

road density was higher at the daily scale in 2013, but more time resting when road density was 

higher at the annual scale in 2011 and 2012.   

Environmental factors did not influence deer summer activity budgets as consistently as 

during winter. Rather, the influence of environmental covariates tended to vary by year and 

spatial scale (Tables 6.4 & 6.5). Deer rested for more of the day when terrain ruggedness was 

high. Deer spent more time resting when NDVI was higher during 2011 and 2013 at both scales, 

but spent less time resting in these areas in 2012 at the annual scale (Tables 6.4 & 6.5). Deer also 

spent more time resting when temperatures were lower (Tables 6.4 & 6.5). All other 

environmental covariates were highly variable among years and scales, with no general patterns.  

Deer also responded variably to anthropogenic development, with no clear patterns in 

response to well pads and facilities. However, deer consistently spent more time foraging when 

pipeline density was higher at the daily scale. Deer also spent more time foraging in all years 

with higher road density at the daily scale. Both roads and pipelines were not strong predictors at 

the annual scale. Fat in the following December was strongly related to activity budgets; deer 

that ended the summer in better condition spent less time resting (i.e., more time foraging) during 

the preceding summer. As in winter, the age of the deer was important only in certain years and 

its importance varied across scales indicating it was not a strong predictor of deer activity 

budgets. 
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DISCUSSION 
 
 
 
The foraging decisions of animals reflect the tradeoffs between the costs and benefits of these 

decisions (Macarthur and Pianka 1966, Pyke et al. 1977). In seasonally variable environments, 

ungulates rely on stored energy reserves deposited during the summer to survive through the 

winter (Parker et al. 1999, Fauchald et al. 2004, Parker et al. 2009). Thus, during both seasons, 

the current and future need for these reserves must be accounted for when making foraging 

decisions. Mule deer in our study are clearly responding to these dynamics by adopting 

seasonally varying condition-dependent behavioral strategies in which the poorest condition 

individuals prioritized energy conservation during winter and energy acquisition during summer. 

These strategies were driven by differential availability of fat and protein stores and resulted in 

differential utilization of these stores depending on individual condition at the beginning of the 

season. Monteith et al. (2013) found nearly identical dynamics in mule deer in a different study 

system, and our behavioral analyses provide an underlying mechanism by which these strategies 

are undertaken. These results provide insight into the general relationship between condition, 

environment and behavior of long-lived highly mobile animals and elucidate how ungulates alter 

their behavior to optimize the use of environmental resources and their own reserves.  

During winter, mule deer range is nutritionally insufficient to support deer in a positive 

energy balance (Wallmo et al. 1977) and deer eating poor diets cannot simply consume more to 

make up for inadequate nutrition (Tollefson et al. 2010). To account for the inability to meet 

their energetic requirements, deer utilized their energy reserves, relying on both fat and protein 

up to a certain threshold, at which point no further fat reserves were able to be used and only 

protein reserves were catabolized. Thus, deer with low fat reserves at the beginning of winter 
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used more of their protein reserves. These deer were at a nutritional disadvantage and thus 

adopted an energy conservation strategy, decreasing the amount of time spent foraging and likely 

reducing their active metabolic rate. Such strategies have been seen in penned white-tailed deer 

(Ozoga and Verme 1970), where individuals given the poorest diets fed for less time and did so 

more efficiently.   

On the other end of the nutritional spectrum, those deer that came into the winter range 

with high fat reserves were able to use these reserves to meet their energetic requirements, while 

conserving more of their protein stores. The existence of different behavioral strategies that are 

condition-dependent indicates varying benefits to these strategies depending on the nutritional 

state of the animal. The use of fat and protein reserves in reindeer is sensitive to environmental 

stochasticity (Fauchald et al. 2004), and we hypothesize that stochasticity is playing an important 

role in our system as well. Movement during winter is costly, and increases disproportionately 

with increasing snow depth (Parker et al. 1984). Thus, opting for a behavioral strategy that 

requires more movement is risky when reserves are low. This hypothesis is supported by 

theoretical foraging work indicating that when resource are low foregoing foraging can be the 

optimal strategy, particularly when conservation of energy reserves is important (McNamara and 

Houston 1986). Deer in better condition might have sufficient reserves to adopt a strategy that is 

riskier if winter weather becomes severe or foraging resources are unavailable late in the season. 

For this hypothesis to hold, there would have to be some cost to switching repeatedly between 

behavioral strategies, otherwise deer would simply use whichever strategy was most effective for 

the current environmental conditions. In slight contrast to this strategy, the deer that are foraging 

for a greater amount of time might be able to be more selective in their foraging (as opposed to 

those in poor condition which might be prioritizing gross intake) or might be prioritizing the 
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acquisition of micronutrients that are important but not critical for their survival. Deer with fewer 

reserves simply might not be able to afford the risk of being as selective in their foraging.  

That deer in the poorest condition did not use all of their fat reserves prior to catabolizing 

protein highlights the importance of maintaining some fat stores. Doe body fat is an important 

predictor of fawn survival (Lomas and Bender 2007). Further, deer might only be able to 

continue to catabolize protein as long as they have some fat stores remaining (Torbit et al. 1985). 

Thus, the conservation of fat reserves might be obligatory for deer survival and reproduction. 

Verme and Ozoga (1980) also showed that in white-tailed deer lipogenesis continued even when 

deer were near starvation, indicating that this process might be obligatory. If this is the case for 

mule deer, it would explain why deer with little fat in the beginning of winter did not utilize 

these stores.  

During the summer, the foraging patterns of mule deer in our system were more 

straightforward, and match predictions of foraging theory in areas where resources are abundant. 

Deer with the lowest fat reserves foraged the most, and gained the most fat over the summer. 

However, there was no relationship between lean mass gain and foraging, indicating that all deer 

forage enough to replenish their protein reserves over the summer, but those that also have 

depleted their fat reserves must forage more to regain these stores. This interpretation is 

strengthened by the result that deer that lost more lean mass over winter gained more over the 

summer. The increased time spent foraging by individuals with the greatest energy deficit from 

winter could come at a cost to these individuals. Summer is the time when deer are rearing 

fawns, and if females are prioritizing their own energetic state over that of their fawns (e.g., as 

has been shown in bighorn sheep Festa-Bianchet and Jorgenson 1998) they could pay a 

reproductive cost during that season.   
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An important limitation of the results we present here is the lack of information on the 

presence of dependent young with does. Although nearly all females were pregnant in our study 

(~95% each year), fawn mortality likely influenced the patterns we documented. The presence of 

dependent young strongly influences the condition dynamics of mule deer does during summer 

(Monteith et al. 2013), and likely is driving the weaker relationship between March condition 

and change in condition over summer in our study.  

 

Environmental and anthropogenic factors influencing foraging behavior 
 
 
Although the condition of deer is clearly important in determining their broad-scale foraging 

patterns, landscape-level factors also influenced how much time deer spent foraging on a daily 

basis. Understanding these influences provides insight into the effect of dynamic landscapes on 

the condition-dependent strategies that we documented. During the winter, foraging behavior 

was most strongly and consistently influenced by climate. At both the daily and seasonal scale 

deer responded strongly to snow, resting more when snow was deeper. Snow is an important 

determinant of energy expenditure in mule deer (Parker et al. 1984), and it is not surprising that 

it is the primary driver of movement-based foraging decisions. Deer also responded strongly to 

temperature, foraging more when temperatures were higher. Winters in our study area are cold (𝑥̅ 

= 0° C across all years, range -25° – 18° C) and deer forage more when it is warmer, likely 

prioritizing resting and using thermal cover when it is colder. The influence of these climatic 

factors on foraging behavior provides a mechanistic link between behavior and population-level 

processes. During winter deer are susceptible to malnutrition and can face population declines 

when winter weather is severe (Unsworth et al. 1999). Although conditions during our study 

were generally favorable, the large decrease in foraging time seen across the population during 
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large snow events in the spring (Fig. 6.2) highlight that inclement weather can have substantial 

impacts to deer behavior, which we have shown to subsequently impact their energy budget. 

Lastly, deer in the Ryan Gulch study area foraged more than those in the North Ridge study area. 

The North Ridge area has a higher density of animals and thus might have higher habitat quality. 

If this is the case, deer in the Ryan Gulch area might need to forage more to meet what energetic 

demands they have during winter.  

During the summer, deer also responded to climatic and landscape features. Deer 

modified their foraging behavior relative to temperature, resting more when temperatures were 

lower. Although other studies have shown ungulates to forage more during times of lower 

temperature during the summer due to the potential for heat stress (Aublet et al. 2009), 

temperatures in our area are moderate during the summer (𝑥̅ = 18.5° C across all years, range 0° 

– 26.7° C) and likely not high enough to elicit similar responses. Interestingly, the patterns of 

deer response to NDVI during the summer varied across years. We anticipated that deer would 

forage more during times of high NDVI to maximize resource intake. This was the case during 

2012, however deer foraged less during times of high NDVI in 2011 and 2013. This result might 

indicate that when NDVI is high, deer can meet their nutritional requirements quickly and 

allocate time to other activities, such as caring for dependent young. Alternatively Wilmhurst et 

al. (1995) demonstrated that ungulates prefer foraging in areas of intermediate biomass (i.e. 

when an index such as NDVI would be below its maximum). Thus deer might have been 

responding to forage quality rather than biomass. During 2012 total summer precipitation was 

nearly half that of the other years (2011 total = 13.84 cm; 2012 total = 5.38 cm; 2013 total = 9.63 

cm; http://www.nohrsc.noaa.gov/). The low precipitation during this year could have resulted in 
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a different relationship between forage biomass and quality, with deer subsequently increasing 

their foraging time when NDVI was highest.  

Anthropogenic disturbance can greatly impact the foraging behavior of animals (Frid and 

Dill 2002). Deer in our system altered their foraging behavior relative to natural gas 

development, though they responded variably by year and season. During both the summer and 

winter, deer did not alter their behavioral patterns relative to well pads. However, deer in this 

area avoid well pads (Chapter 4) and thus they might be behaviorally mediating the impact of 

this development by avoiding them at a larger scale, with no additional effect at the scale of 

foraging decisions. Also during both seasons, though not all years, deer spent more time foraging 

when they were in areas with more pipelines and more roads. Both of these features require the 

removal of vegetation and some degree of reseeding, which could be attracting deer as a foraging 

resource. The fact that these patterns were stronger at the daily scale and not the annual scale 

strengthens this hypothesis, as deer moved to the areas with greater road and pipeline density 

during the days when they were foraging the most. Lastly, deer with more industrial facilities in 

their winter ranges spent less time foraging. Facilities are highly active features of natural gas 

development, and their presence might indicate higher overall human activity, leading to 

behavioral alterations of deer.  

 

Conclusion 
 
 
The nutritional and environmental context under which animals make their foraging decisions is 

crucial for understanding the constraints that have shaped their behaviors and ultimately their life 

history strategies. Deer in our system displayed condition-dependent behavioral strategies that 

have allowed them to adapt to conditions that vary immensely between and within seasons. 
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These strategies likely evolved to maximize over-winter survival when deer have a negative 

energy balance and are susceptible to mortality from malnutrition (Unsworth et al. 1999). Any 

impacts that alter the environment could reduce the effectiveness of these strategies. In our study 

area deer primarily altered their behavior in response to climatic factors and secondarily to 

human development. If development becomes more intense, there could be greater behavioral 

alterations than we documented. These issues will be more salient during winters with 

consistently low temperatures and/or deep snow as nutritional constraints will be more severe, 

reducing the amount of time available for foraging, and consequently causing a further reduction 

in condition. Although summer range appeared to have sufficient forage to meet nutritional 

needs of deer in our study, years of high drought, particularly following harsh winters, could 

impact deer at a population level. These issues are likely to become more pertinent as climate 

change alters moisture regimes and changes yearly temperature patterns.   
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TABLES 
 
 
 
Table 6.1. Names, descriptions, sources, pixel size (when available), and the unit of time over which the covariates were available for 
covariates used in regression models examining foraging behavior of female mule deer in the Piceance Basin of Colorado, USA.  
Covariate Description Pixel size Temporal 

scale 

Source 

Environmental     

Light Number of hours of between sunrise 

and sunset 

NA Daily http://aa.usno.navy.mil/data/docs/RS_OneYear.php 

NDVI Normalized Difference Vegetation 

Index averaged over range 

1 km × 1 

km 

Every 10 

days 

http://www.vito-eodata.be/ 

Snow Snow depth averaged over range  30 m × 30 

m 

Daily See Appendix 15 

Tree Proportion of range comprised of 

treed land cover 

25 m × 25 

m 

NA http://ndis.nrel.colostate.edu/coveg/ 

TRI Terrain ruggedness index. Squared 

difference between elevation in each 

30 m  × 

30 m 

NA Calculated from digital elevation model from 

http://seamless.usgs.gov 
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cell and 8 neighbors averaged over 

entire range 

Temp Average temperature at weather 

station closest to study site 

NA Daily http://www.nohrsc.noaa.gov 

Anthropogenic     

Drill Density of well pads with wells being 

actively drilled 

NA NA See Appendix 15 

Prod Density of well pads with producing 

wells only 

NA NA See Appendix 15 

Facilities Density of industrial facilities NA Annual See Appendix 15 

All rds Density of all roads NA NA See Appendix 15 

Major rds Density of primary roads NA NA See Appendix 15 

Pipelines Density of pipelines NA NA See Appendix 15 

     

Individual     

Age Age at capture NA Annual Measured during capture 



 
 

149 

Fat Percent ingesta-free body fat NA Annual Measured during capture 

Study Study are (North Ridge, or Ryan 

Gulch) in which the animal was 

captured 

NA NA NA 
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Table 6.2. Covariates, median posterior coefficient values and the proportion (Prop.) of 
posteriors falling above and below 0 for beta regression models with lowest WAIC values fit to 
activity budgets of mule deer in the Piceance Basin of Colorado during winter, with covariates 
calculated at the daily range scale. 
Covariate Median Prop. < 0 Prop. > 0 

M1 2011       

Intercept -0.28 0.98 0.02 

Facilities 0.00 0.61 0.39 

Snow 0.04 0.00 1.00 

TRI 0.00 0.57 0.43 

Pipelines -0.01 0.77 0.23 

Tree 0.01 0.11 0.89 

All rds 0.00 0.58 0.42 

Light -0.02 0.58 0.42 

Temp -0.05 1.00 0.00 

Age 0.02 0.40 0.60 

Fat 0.13 0.08 0.92 

Study -0.59 1.00 0.00 

    

M1 2012    

Intercept 0.24 0.03 0.97 

Facilities -0.01 0.82 0.18 

Snow 0.12 0.00 1.00 

TRI 0.06 0.00 1.00 

Pipelines -0.03 0.89 0.11 
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Tree 0.06 0.00 1.00 

All rds 0.00 0.56 0.44 

Light -0.01 0.56 0.44 

NDVI 0.00 0.37 0.63 

Temp 0.01 0.23 0.77 

Age -0.04 0.80 0.20 

Fat 0.00 0.52 0.48 

Study -0.40 1.00 0.00 

    

M2 2013    

Intercept 0.02 0.42 0.58 

Facilities 0.00 0.34 0.66 

Snow 0.21 0.00 1.00 

TRI 0.06 0.00 1.00 

Tree 0.06 0.00 1.00 

Major rds -0.02 1.00 0.00 

Light -0.14 0.98 0.02 

Temp -0.08 1.00 0.00 

Age -0.06 0.83 0.17 

Fat -0.01 0.60 0.40 

Study -0.12 0.83 0.17 
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Table 6.3. Covariates, median posterior coefficient values and the proportion (Prop.) of 
posteriors falling above and below 0 for beta regression models with lowest WAIC values fit to 
activity budgets of mule deer in the Piceance Basin of Colorado during winter, with covariates 
calculated at the annual range scale. 
Covariate Median Prop. < 0 Prop. > 0 

M1 2011       

Intercept -0.33 0.94 0.06 

Drill -0.01 0.69 0.31 

Prod -0.06 0.67 0.33 

Snow 0.03 0.00 1.00 

Light -0.08 0.73 0.27 

Temp -0.05 1.00 0.00 

Major rds 0.15 0.08 0.92 

TRI -0.16 0.88 0.12 

Age 0.00 0.51 0.49 

Fat 0.06 0.28 0.72 

Tree 0.20 0.03 0.97 

Facilities -0.17 0.93 0.07 

Study -0.54 0.97 0.03 

    

M2 2012       

Intercept 0.19 0.16 0.84 

Prod 0.01 0.44 0.56 

Snow 0.13 0.00 1.00 

NDVI 0.01 0.28 0.72 
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Light -0.04 0.71 0.29 

Temp 0.01 0.29 0.71 

All rds 0.13 0.03 0.97 

TRI -0.04 0.70 0.30 

Age -0.08 0.93 0.07 

Fat -0.02 0.65 0.35 

Tree 0.12 0.08 0.92 

Facilities -0.08 0.88 0.12 

Pipelines -0.05 0.72 0.28 

Study -0.29 0.90 0.10 

    

M3 2013       

Intercept -0.09 0.66 0.34 

Prod 0.01 0.46 0.54 

Snow 0.24 0.00 1.00 

Light -0.24 1.00 0.00 

Temp -0.08 1.00 0.00 

Pipelines 0.18 0.08 0.92 

TRI 0.22 0.10 0.90 

Age -0.05 0.72 0.28 

Fat -0.03 0.70 0.30 

Tree 0.07 0.29 0.71 

Facilities -0.05 0.68 0.32 
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Study 0.03 0.46 0.54 
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Table 6.4. Covariates, median posterior coefficient values and the proportion (Prop.) of 
posteriors falling above and below 0 for beta regression models with lowest WAIC values fit to 
activity budgets of mule deer in the Piceance Basin of Colorado during summer, with covariates 
calculated at the daily range scale. 
Covariate Median Prop. < 0 Prop. > 0 

M2 2011       

Intercept -0.83 0.96 0.04 

Facilities -0.02 0.72 0.28 

TRI 0.13 0.00 1.00 

Pipelines -0.06 0.95 0.05 

Tree -0.09 0.94 0.06 

Major rds -0.08 0.94 0.06 

NDVI 0.08 0.01 0.99 

Light 0.45 0.22 0.78 

Temp -0.05 0.98 0.02 

Age 0.11 0.40 0.60 

Fat -0.87 0.97 0.03 

       

M2 2012       

Intercept 0.49 0.00 1.00 

Facilities -0.04 0.71 0.29 

TRI 0.12 0.00 1.00 

Pipelines -0.07 0.94 0.07 

Tree 0.00 0.46 0.54 

Major rds -0.03 0.87 0.13 
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NDVI 0.00 0.58 0.42 

Light -0.44 1.00 0.00 

Temp -0.02 0.95 0.05 

Age -0.13 0.92 0.08 

Fat -0.46 1.00 0.00 

       

M2 2013       

Intercept 0.24 0.29 0.71 

Facilities -0.02 0.85 0.15 

TRI -0.02 0.72 0.29 

Pipelines -0.06 0.96 0.04 

Tree -0.02 0.63 0.37 

Major rds -0.10 0.99 0.01 

NDVI 0.06 0.03 0.97 

Light 0.08 0.42 0.58 

Temp -0.01 0.76 0.24 

Age -0.40 0.82 0.18 

Fat -0.45 0.85 0.15 
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Table 6.5. Covariates, median posterior coefficient values and the proportion (Prop.) of 
posteriors falling above and below 0 for beta regression models with lowest WAIC values fit to 
activity budgets of mule deer in the Piceance Basin of Colorado during summer, with covariates 
calculated at the seasonal range scale. 
Covariate Median Prop. < 0 Prop. > 0 

M2 2011     

Intercept -0.69 0.92 0.08 

Prod 1.30 0.05 0.95 

NDVI 0.07 0.04 0.96 

Light -0.22 0.64 0.36 

Temp -0.05 0.96 0.04 

Age -0.86 0.90 0.10 

Fat -0.97 0.96 0.04 

Facilities 0.54 0.20 0.80 

TRI 0.97 0.11 0.89 

Tree -0.30 0.66 0.34 

All rds 0.29 0.30 0.70 

Pipelines -1.33 0.96 0.04 

    

M2 2012     

Intercept 0.60 0.00 1.00 

Prod -0.21 0.89 0.11 

NDVI -0.02 0.80 0.20 

Temp -0.41 1.00 0.00 

Light -0.01 0.81 0.19 
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Age -0.10 0.76 0.24 

Fat -0.43 1.00 0.00 

Facilities 0.17 0.15 0.85 

TRI 0.04 0.40 0.60 

Tree -0.28 0.93 0.07 

All rds -0.12 0.81 0.19 

Pipelines 0.18 0.17 0.83 

    

M2 2013     

Intercept 0.79 0.00 1.00 

Prod -0.32 0.70 0.30 

NDVI 0.11 0.00 1.00 

Light -0.13 0.62 0.38 

Temp -0.01 0.79 0.21 

Age -0.03 0.53 0.47 

Fat -0.05 0.56 0.44 

Facilities -0.50 0.93 0.07 

TRI -0.25 0.77 0.23 

Tree 0.58 0.04 0.96 

All rds -0.26 0.82 0.18 
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FIGURES 
 
 
 

 



 
 

160 

Figure 6.1. Location of study area within the United States, map of study area, and summer and 
winter range outlines for mule deer in the Piceance Basin, Colorado, USA.  
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Figure 6.2. Probability of being in the resting state averaged across all individuals and locations during 2013 as a function of date 
during the (A) summer, and (B) winter plotted with average snow depth as a function of date. Probabilities were estimated using a 
discrete-time correlated random walk model fit to adult female mule deer movement data. 
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Figure 6.3. Change in (A) over-winter percent body fat as a function of December body fat (β = -
0.82, p < 0.0001), (B) over-winter lean body mass as a function of December lean body mass (β 
= -0.48, p < 0.0001), (C) over-summer percent body fat as a function of March body fat (β = -
1.26, p < 0.001),  and (D) over-summer lean body mass as a function of March lean body mass 
(β = -.31, p < 0.05),  along with lines of best fit for female mule deer in the Piceance Basin, 
Colorado, USA.  
 

 

 



 
 

164 

Figure 6.4. Change in (A) over-winter lean body mass as a function of December percent body fat (β = 0.63, p < 0.001), and (B) over-
summer lean body mass as a function of March percent body fat (β = -.1, p = 0.87),  along with lines of best fit for female mule deer in 
the Piceance Basin, Colorado, USA. 
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Figure 6.5. Change in over-summer lean body mass as a function of previous winter’s change in lean body mass (β = -0.24, p = 0.075) 
and line of best fit for female mule deer in the Piceance Basin, Colorado, USA.  
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Figure 6.6. Change in (A) over-winter change in body fat percent as a function of the proportion 
of the winter spent in the foraging state (β = 13, p < 0.05), (B) over-winter change in lean body 
mass as a function of the proportion of the winter spent in the foraging state (β = 12.41, p < 
0.05), (C) over-summer change in body fat percent as a function of the proportion of the summer 
spent in the foraging state (β = 12.70, p < 0.05), (D) over- summer change in lean body mass as a 
function of the proportion of the summer spent in the foraging state (β = -2.74, p = 0.85), along 
with lines of best fit for female mule deer in the Piceance Basin, Colorado, USA. Proportion of 
time spent foraging was estimated from discrete-time correlated random walk models fit to step 
length and turn angle data.  
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CHAPTER SEVEN 
 
 
 

FINE-SCALE GENETIC CORRELATES TO CONDITION AND MIGRATION IN A WILD  
 

CERVID 
 
 
 

INTRODUCTION 
 
 
 
Understanding variation in phenotypic traits related to fitness in wild populations is fundamental 

to the study of evolution and ecology. Such traits can be related to genetic variation at relatively 

fine spatial scales, and knowledge of these relationships can provide insight into important eco-

evolutionary processes such as inbreeding depression, local adaptation, population structure, and 

speciation (Kupper et al. 2010, Olano-Marin et al. 2011, Shafer and Wolf 2013, Shafer et al. 

2014). Moreover, these relationships can have implications for developing and implementing 

conservation and management plans that strive to account for evolutionary processes (e.g., 

maintenance of gene flow through protection of corridors, or minimizing possible effects of 

inbreeding).  

 Relationships between fine-scale genetic variation and phenotypic traits have been 

identified using a variety of methods. Chief among these in wild populations are heterozygosity-

fitness correlations (HFCs; see Chapman et al. 2009), and correlations amongst genetic 

differentiation and phenotypic or ecological divergence (Shafer and Wolf 2013). Heterozygosity-

fitness correlations are typically calculated between 

heterozygosity at neutral loci and phenotypic traits presumed to be proxies for fitness (Szulkin et 

al. 2010). Correlations can occur with a multi-locus heterozygosity (MLH) metric, indicating a 
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general genome-wide effect of inbreeding, or heterozygosity at a single locus (single-locus 

heterozygosity; SLH), indicating local (either direct or indirect) effects due to linkage to a gene 

that affects fitness (Hansson et al. 2004). For the latter, individual neutral markers are 

hypothesized to show associative overdominance as a result of the consequences of deleterious 

alleles or a fitness advantage at those linked loci (Frydenberg 1963, Houle 1989, David et al. 

1995, David 1997, Pamilo and Palsson 1998). Screening for HFCs can be described as a 

tantalizing pursuit; significant relationships are rarely found and care must be used with 

interpretation as overall effect sizes often are variable and small (Chapman et al. 2009, Kardos et 

al. 2013), and numerous concerns (but also caveats) related to the HFC exist (Szulkin et al. 

2010). Given the potential for false positives with SLH correlations, confidence in these 

relationships can be bolstered by appropriate statistical analyses and by examining the location 

of loci on the annotated genome of a related species that might provide post-hoc links to 

causative agents (e.g., Von Hardenberg et al. 2007, Kupper et al. 2010, Kardos et al. 2013).  

 In slight contrast, correlations between genetic differentiation and phenotypic (or 

ecological) divergence have been identified across taxa and appear to be relatively robust (Shafer 

and Wolf 2013, Sexton et al. 2014). Although this pattern is generally regarded as evidence for 

local adaptation (Nosil 2012), ancestral (allopatric) divergence and secondary contact can 

confound interpretations of this correlation (Bierne et al. 2013) and, similar to HFCs, must be 

factored into interpretations and models. But beyond these caveats, correlations between 

phenotypic traits and both genetic diversity and differentiation can provide important indications 

of inbreeding and local adaptation that should be considered by managers (Shafer et al. 2014).    

 

Mule deer ecology and evolution 
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Cervids (family Cervidae) are an ecologically important group of ungulate that have been the 

focus of numerous investigations into the relationship between genetic variation and phenotypic 

traits. Da Silva et al. (2009) showed that juvenile roe deer (Capreolus capreolus L.) survival was 

correlated with MLH; likewise, red deer (Cervus elaphus L.) birth weight, neonatal survival, and 

lifetime breeding success increased significantly with heterozygosity (Coulson et al. 1998, Slate 

et al. 2000), and individuals with the smallest antlers tended to have lower heterozygosity (Perez-

Gonzalez et al. 2010). Furthermore, studies have shown correlations between genetic 

differentiation and social groups in white-tailed deer (Odocoileus virginianus Zimm.; Miller et 

al. 2010), and niche overlap in mule deer (Odocoileus hemionus Raf.; Pease et al. 2009).  

 Among cervids, mule deer present an interesting species for which to examine 

correlations between phenotypic traits and genetic variation. Latch et al. (2009, 2014) showed 

that across their range there are multiple phylogeographic lineages that presumably represent 

different refugia, though the species shows minimal population-level genetic structure at large 

geographic scales (Cullingham et al. 2011b, Powell et al. 2013). Female mule deer also display 

fine-scale genetic structuring, likely due to the existence of related social groups (Cullingham et 

al. 2011b, Colson et al. 2013). In addition, hybridization can occur with white-tailed deer, with 

fairly widespread genetic introgression resulting (Carr et al. 1986, Cathey et al. 1998). Mule deer 

also exhibit substantial variation in important phenotypic traits such as body size and migratory 

behavior, both across their range (Anderson 1981, Wallmo 1981), and within populations 

(Monteith et al. 2011, Lendrum et al. 2013). Lastly, mule deer are the subject of extensive 

management programs throughout North America, due to their importance as a game species 

(e.g., it was estimated that over 30,000 mule deer were harvested in the state of Colorado in 2013 

[Colorado Parks and Wildlife 2014]).    
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 Both the aforementioned phenotypic traits are of paramount importance for survival and 

reproduction in this species. Condition is a fitness proxy as individuals rely heavily on fat and 

protein stores for survival on winter range when forage quality is low (Wallmo et al. 1977, Torbit 

et al. 1985). Body fat also influences annual survival of adult females (Bender et al. 2007), 

pregnancy and twinning rates (Johnstone-Yellin et al. 2009, Tollefson et al. 2010), and the 

probability of a female rearing a fawn through the summer (Johnstone-Yellin et al. 2009). Deer 

across much of their range migrate from high altitude, productive summer range to low altitude 

winter range and back again in the spring. Migrations typically match changes in resource 

availability (Fryxell and Sinclair 1988), with mule deer attempting to optimize migratory timing 

relative to both plant productivity and weather (snow depth and temperature) on their summer 

range (Monteith et al. 2011, Lendrum et al. 2013). The timing of migratory onset is clustered 

around a few weeks each year, but individuals show different strategies in terms of early or late 

onset dates (Monteith et al. 2011, Lendrum et al. 2013). Thus migration timing is of clear interest 

in understanding the ecology of this species and, importantly, recent work has identified a clear 

genetic component to differences in this trait in other taxa (Ruegg et al. 2014, Toews et al. 2014). 

 Both individual condition and migration are of interest to wildlife managers as recent 

anthropogenic development may threaten migratory routes for mule deer (Sawyer et al. 2005, 

Sawyer et al. 2009b), and climate change could cause trophic mismatches (Post and 

Forchhammer 2008), with phenotypic plasticity in migration being suggested as a potential 

buffer for mule deer against this process (Monteith et al. 2011). The importance of winter 

condition to deer survival has led to active research into means of improving winter condition 

through habitat manipulation and supplemental feeding (Bishop et al. 2009, Bergman et al. 

2014a). The existence of genetic correlations to these traits could provide insight into the 
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effectiveness of management programs and aid managers in making decisions in light of 

evolutionary processes.  

 Here, we examined the relationship between genetic variability and phenotypic traits in a 

wild mule deer population of the Piceance Basin, Colorado. Using an extensive dataset 

consisting of over 100 individual animals, we combined phenotypic, behavioral (global 

positioning system [GPS]), and genetic data to: (i) examine whether genetic differentiation was 

correlated to migration timing; (ii) screen for specific mitochondrial haplotypes associated with 

migration timing; and (iii) test if heterozygosity (multi-locus and single locus) was associated 

with body mass and fat. We discussed the results in light of the phylogeographic history of mule 

deer and the metabolic role of the mitochondrion, and highlight the importance of considering 

evolutionary processes in the management of this species. 

 

METHODS 
 
 
 
Sample collection and DNA extraction 
 
 
We captured adult (>1 year old) female mule deer using helicopter net gunning in four winter 

range study areas in the Piceance Basin of Northwestern Colorado (Fig. 7.1). Deer were captured 

in either December 2010 or March 2011. These dates were chosen because during December 

deer have recently migrated from summer range and typically are in their best physical 

condition, while March represents the end of winter when deer typically are in their worst 

condition. Deer were transferred to processing sites where we weighed them using a portable 

scale, estimated body condition by palpating the rump (Cook et al. 2001, 2007, 2010) and 

measured the thickness of their subcutaneous rump fat and longissimus dorsi muscle using a 
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portable ultrasound (Stephenson et al. 1998, Cook et al. 2001, Stephenson et al. 2002). The 

above measurements were used to calculate the percent ingesta-free body fat (hereafter fat) of 

each deer following Cook et al. (2010). Deer were fit with store-on-board GPS radio collars 

(Advanced Telemetry Systems, Isanti MN, USA) set to attempt a relocation on one of three 

schedules (once every 5 hours, once every 60 minutes, or once every 30 minutes - meaning the 

relocation schedules varied by individual). Blood samples were taken for genetic analysis and 

DNA was extracted using the DNeasy™ Blood and Tissue Kit (Qiagen, Inc., Valencia, CA, 

USA) following the manufacturer’s protocol. 

 

Microsatellite genotyping and DNA sequencing 
 
 
We amplified 17 microsatellite loci using a previously optimized multiplex reaction from 

Cullingham et al. (2011a) and single PCRs. The mitochondrial control region was sequenced 

using both the primers from Latch et al. (2009) and LGL215 and ISM015 from Purdue et al. 

(2006).  PCR conditions and basic population genetic analyses are available in Appendices S1, 

S2.  

 For the microsatellite data, we first used STRUCTURE 2.3.3 (Pritchard et al. 2000) to 

assess genetic structure  (1,000,000 iterations with 25% removed as a burn-in repeated five times 

for each number of possible populations (k) ranging from 1 to 5). We assumed an admixed 

model with correlated allele frequencies (Falush et al. 2003) and used the LOCPRIOR parameter 

to allow location information to assist in the clustering. Next, we calculated overall MLH as the 

average of heterozygosity at each locus, and SLH as binary variables indicating heterozygosity 

(1) or homozygosity (0) at each locus. Pairwise relatedness between all individuals was 

estimated with the Queller and Goodnight (QG) relationship coefficient using the software 



 
 

174 

SPAGEDI v.1.3 (Hardy and Vekemans 2002). We also constructed a coancestry matrix using the 

software MOL_COAN v.3 (Fernandez and Toro 2006). Here, a simulated annealing approach 

was used to create virtual common ancestors of the genotyped individuals, producing pedigree-

like relationship coefficients. Model parameters consisted of 200 steps with 5,000 solutions 

tested per step, an initial temperature of 0.01 and increase of 0.75. We simulated 2 previous 

generations, each consisting of 1,000 males and 1,000 females. 

 For mitochondrial DNA (mtDNA; conducted on a subset of individuals), we constructed 

a minimum-spanning tree among haplotypes using ARLEQUIN v. 3.5.1.3 (Excoffier and Lischer 

2010) and edited it with HapStar v0.7 (Teacher and Griffiths 2011). Neighbor-joining analysis 

using pairwise deletion and both P and K2 distances was conducted using the software package 

MEGA v.5 (Tamura et al. 2011). Bayesian analysis was conducted in MrBayes v.3.1.2 

(Huelsenbeck and Ronquist 2001) with a model of nucleotide substitution determined from 

Modeltest v.3.07 (Posada and Crandall 1998).  For the Bayesian phylogenetic analysis we used 

default priors with two independent runs of four chains (three heated) run for 10,000,000 

generations, with the first 25% discarded as a burn-in. Confidence in topologies was evaluated 

based on 1,000 bootstrap replicates (for the neighbor-joining) or posterior distributions. All three 

methods were compared to identify common mitochondrial haplogroups. 

 

Genetic correlates to phenotypic traits 
 
 
Both migration and body condition are phenotypic traits that are important to the fitness of mule 

deer. However, only condition can be thought of as a proxy for fitness. Thus, we used two 

separate analytical frameworks to examine genetic correlations with these traits. For migration 

we examined the relationship between mitochondrial haplotypes and genetic differentiation to 



 
 

175 

determine if there was a genetic component to the timing of migration (an isolation-by-ecology 

analysis, sensu Shafer and Wolf 2013). For body condition, a fitness proxy, we followed the 

general HFC framework discussed in Chapman et al. (2009).  

 

Genetic-migration correlates 
 
 
After GPS radio collars were recovered and data were downloaded, we calculated the initiation 

and termination dates of spring and fall migration (i.e., the dates at which deer started or finished 

their migration) in ArcMap 10.1 (Environmental Systems Research Institute, Redlands, CA, 

USA). Migration was demarcated as the time period during which deer traveled between their 

winter and summer home ranges. Home ranges were determined by outlining a minimum convex 

polygon around all locations that occurred prior to directed movement, without return, away 

from the summer or winter range areas.  

 We first examined the relationship between mtDNA haplogroup (derived from haplotype 

and phylogenetic analyses) and the dates of spring and fall migrations. For this analysis, we 

corrected the Julian date of migration to the earliest date among all individuals. The resulting 

data represented a count of the number of days since the earliest arriving or leaving migrant had 

terminated or initiated their migration. These data were analyzed using negative binomial 

regression (see Appendix 20 for model formulation). We included covariates for the mtDNA 

haplogroup to which each deer was assigned (categorical) as well as a covariate for the age of the 

animal and binary covariates indicating winter range study area (i.e., three separate covariates 

indicating if the deer was from a winter range study area [1] or not [0]). Before models were fit, 

correlations among covariates were examined to assess collinearity (no predictors were 

correlated at |r| > 0.7) and age was standardized �𝑥−𝑥̅
𝜎𝑥
�, a common procedure in regression to aid 



 
 

176 

in interpretability of coefficient estimates (Gelman and Hill 2007). We fitted all models under a 

Bayesian framework in JAGS (Plummer 2012) and R 3.0.1 (R Core Team 2013), using the 'rjags' 

package (Plummer 2013). See Appendix 20 for specifics of model runs and assessment of 

convergence. To assess the fit of the models we calculated residuals (observed – predicted 

values) and plotted them against the fitted values to examine any potential patterns in residuals.  

 Secondly, we examined correlations between genetic relatedness metrics and similarity in 

migration using Mantel tests. For this analysis, we calculated absolute pairwise distances 

(calculated in days) between each individual's migration termination or initiation dates leaving us 

with four matrices representing differences in migration timing for spring and fall. The 

relationships between relatedness indices (QG and coancestry) and migratory behavior (dates) 

were evaluated in R 3.0.1 (R Core Team 2013) using Mantel tests (Mantel 1967) under 10,000 

permutations as implemented by the Ecodist library (Goslee and Urban 2007). Here a 

comparison is made between relatedness and the difference in migration timing and thus a 

negative relationship is expected if there is a genetic signature (i.e., more closely related 

individuals have more similar migration timing). To account for similarities among individuals 

inhabiting similar areas or grouping together we ran two partial Mantel tests controlling for the 

distance between the centroids of individuals' winter range and summer range (Fig. 7.1). 

Significance was assessed by examining 95% confidence intervals. 
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Genetic-condition correlates 
 
 
We next examined if there was a relationship between either MLH or SLH and condition metrics 

(mass and fat) using the HFC framework. We fit hierarchical (i.e., random effects) models in a 

Bayesian framework. The presence or absence of a relationship was determined by examining 

the posterior probability distributions of each coefficient to determine the probability that either 

MLH or heterozygosity at any single locus was related to condition. In all models we included 

covariates for either MLH or SLH, the age of the animal, a binary variable for if the data came 

from a March capture (both mass and fat are expected to be lower in March), and binary 

variables indicating which of the four winter range areas the deer was captured in (as in the 

migration analysis, above). We tested between models with solely a linear effect or a quadratic 

effect of age using the deviance information criteria (DIC; Spiegelhalter et al. 2002,  but with the 

effective number of parameters calculated as in Plummer 2012). Identity disequilibrium among 

loci (i.e., covariance of heterozygosity among loci) was used to infer the validity of MLH 

correlation: accordingly we calculated g2 where a value of zero means no variance in inbreeding 

(Szulkin et al. 2010). 

 We examined the relationship between heterozygosity and mass or fat using linear 

regression and beta regression respectively. Mass was natural log transformed to ensure proper 

support (i.e., untransformed mass is strictly positive, while linear regression allows for negative 

values; log transformation addresses this issue), while beta regression was used because it is 

proper for dependent variables ranging between 0 and 1 as percent body fat does. Because there 

were multiple condition measures for certain deer (i.e., those captured in both March and 

December), for both analyses we allowed the intercept to vary by individual, estimating a 

population-level intercept (i.e., we fit a random intercept by individual), with all other coefficient 
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values fixed. See Appendix 20 for details of model parameters and convergence assessment. To 

assess the fit of the models we calculated residuals (observed – predicted values) and plotted 

them against the fitted values to examine any potential patterns in residuals. 

 

RESULTS 
 
 
 
Genotype and mitochondrial sequence data 
 
 
A total of 134 adult female deer were captured with 30 captured in the NM area, 30 in the NR 

area, 44 in the RG area, and 30 in the SM area (102 in December, and 79 in March, with 47 

caught during both capture periods; see Appendix 22 for details). Deer ranged in age from 

yearlings to over 11 years old, with a median age of 5.5 years old (See Appendix 22). All 134 

deer were genotyped at 17 loci producing a data set that was 99% complete (data available from 

the Dryad Digital Repository: http//:dryad.org/resource/doi:10.5061/dryad3vc1b). All markers 

were in Hardy-Weinberg Equilibrium and there was no evidence of linkage (diversity statistics 

by loci are presented in Appendix 19). The STRUCTURE-based analysis of the microsatellites 

suggested a single, homogenous population was most likely (i.e., had the lowest likelihood 

score). Based on winter range, FIS values were: NR = -0.05 (P = 0.02), NM = -0.02 (P = 0.16), 

RG = -0.03 (P = 0.07), and SM = 0.01 (P  = 0.31). The MOL_COAN analysis produced a matrix 

of pedigree-like coefficients for all individuals; we note the one suspected mother-daughter 

pairing had a coefficient of 0.50 suggesting the results were indeed reflective of pedigree data. 

We sequenced the mitochondrial control region in a subset of animals (n = 81). For comparison 

with data from Latch et al. (2009), we parsed the data set down to 545 base pairs (GenBank 

submission KM061069-KM061151). Examining the mtDNA, 37 unique haplotypes were 
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observed (Fig. 7.2). The neighbor joining and Bayesian phylogeny (based on a GTR+I+G 

substitution model) produced essentially the same topology (Appendix 21): a major split between 

two clades was highly supported, while a third, more tenuous clade was evident in the neighbor 

analysis with some support in the Bayesian analysis (posterior probability = 0.60). The three 

groupings are identified in the haplotype network (Fig. 7.2). 

 

Genetic correlates to phenotypic traits 
 
 
We obtained mass and fat measures on 134 adult female mule deer. Migration data were not 

obtained for all deer due to mortalities, collar failure, or because some deer were not collared 

during capture. Thus, our total sample for microsatellites analyses examining relationships with 

migration consisted of 104 and 95 deer for spring and fall migration, respectively. Our total 

sample for mtDNA analyses consisted of 65 and 59 deer for spring and fall migration, 

respectively. In addition, two deer did not leave summer range while collars were still attached 

and thus were excluded from the fall migration analyses. During spring, deer initiated migration 

between April 11 and June 1, and terminated migration between April 19 and June 21. During 

the fall, deer initiated migration between October 4 and November 8 and terminated migration 

between October 6 and November 14.  

 For all regression models hereafter we made inference based on the proportion of the 

posterior distributions that fell to one side of 0. Winter range area was related to fall migration 

termination and initiation dates, while age was not related to migration timing in any of the 

analyses (Table 7.2; Appendix 22). The mtDNA haplogroups were related to both fall 

termination and initiation, though both the effect itself and the probability of an effect were 

lower for fall initiation (Table 7.2; Appendix 22). For haplogroups identified by the Bayesian 
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phylogenetic analysis, our models predicted that deer in haplogroup 2 terminated migration 6 

days earlier on average than those in haplogroup 1 (see Fig. 7.2 for haplogroups), while for the 

neighbor joining analysis models predicted that deer in haplogroups 2 and 3 terminated 

migration on average 7 and 9 days earlier than those in haplogroup 1. Plots of residuals against 

fitted values showed no trend, though the 6 largest negative residuals were all from the NR 

winter range area, indicating the potential for a missing covariate (Appendix 22). The 

microsatellites analyses showed that related individuals generally migrated at similar times 

regardless of the distance between them on summer or winter range (Table 7.3).  

 There was weak evidence for identity disequilibrium (g2 = 0.01, P = 0.07); however, 

MLH was a poor predictor of both body mass and fat in all models (Appendix 22 Table 7.2), 

while heterozygosity at individual loci were strongly related to condition measures (Table 7.2; 

Appendix 22 Table A22.2). Because heterozygosity at individual loci were the only significant 

correlates to the phenotypic traits we continued with this model only. When examining the 

relationship between SLH and body mass, models with a quadratic term for age fit the data 

slightly better than those with a linear term, with evidence for greater body mass for middle aged 

deer compared to young or old deer (Appendix 22 Table 7.2). When examining fat, models with 

a linear effect of age fit the data slightly better, and age was a poor predictor of fat (Table 7.1; 

Appendix 22 Table A22.2). Winter range area was weakly related to both body mass and fat 

(<95% of posterior on one side of 0; Table 7.1; Appendix 22 Table A22.2). Heterozygosity at 

two loci (RT30, and P) were strongly related to fat (>95% of posterior on one side of 0; Table 

7.1; Fig. 7.3). Plots of residuals against fitted values showed a positive trend, with all of the 

largest fitted values showing positive residuals (Appendix 22). To guard against false positives, 

we refit the models with a strong 0 multivariate normal prior (with means set to 0) on the 
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coefficients, which shrinks coefficient estimates towards 0 (the standard deviation on the prior 

was taken as the standard deviation of the median coefficient values; approximately 0.14; 

Gelman et al. 2012). 

 

DISCUSSION 
 
 
 
We documented relationships between phenotypic traits recognized as being critical to fitness 

and genetic variation at a very fine spatial scale in female mule deer. These results provide 

insight into the genetic structuring of the population and the possible genetic drivers shaping the 

diversity of phenotypes and migration strategies seen in this important game species. These 

findings have potential implications for conservation and management, particularly in light of 

contemporary climatic changes and white-tailed deer expansion (Latham et al. 2011), as both 

migration timing and body condition are influential traits for mule deer survival and reproduction 

that vary among individuals in a population (Monteith et al. 2011, Monteith et al. 2013). 

Examining these traits conjointly provided a more complete picture of the genetic contributions 

to important phenotypic traits in this population and cervids in general.  

 

Genetic-migration correlations 
 
 
Fall and spring migration dates were more similar among related females. An individual’s 

mtDNA haplogroup also was a stronger predictor of fall than spring migration - even when 

controlling for winter or summer range. The mtDNA haplotype effect is particularly striking 

given there appears to be virtually no spatial clustering of haplotypes (Fig. 7.2). Female 

philopatry and relatedness among social groups would explain the pattern in the form of learning 
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(e.g., the majority of white-tailed deer fawns follow their mother's migration route; Nelson 

1998); however, our model accounted for such effects through the range covariates (i.e., if 

daughters were following their mother's migration path they would also share a winter and 

summer range), and the diversity of haplotypes suggests many different matrilines. In addition, 

upon examination of individual migratory routes, we found only 2 deer that shared an identical 

route. An analysis including males could test this hypothesis (sensu Nielsen et al. 2013) or at 

least be viewed as an independent replicate as males are more prone to disperse (Nelson 1993).  

 Interestingly, Colorado represents a confluence of several different refugial lineages 

(Latch et al. 2009), with recolonization routes and so-called hybrid hot-spot clusters falling 

directly in Northwestern Colorado (Swenson and Howard 2005). We hypothesize that the 

mtDNA effect we documented is either: i) reflective of different refugial histories and 

biogeography of the mtDNA lineages (Latch et al. 2009), where for example, mule deer 

originating in northern regions would have locally adapted phenotypes and distinct haplotypes 

linked to earlier migration times than those from the south (a carry-over effect); or ii) due to 

differences in energetics related to mtDNA, where for example Toews et al. (2014) showed that 

mitochondrial introgression (where different haplotypes had different energetic output) was 

responsible for differing migratory behavior in a warbler transition zone.  

 Monteith et al. (2011) and Lendrum et al. (2013) showed that spring migration timing is 

closely linked to plant phenology, as deer aim to arrive on their summer range close in time of 

peak plant productivity. Spring arrival dates are more likely to follow plant phenology on 

individual deer summer ranges whereas fall migration is linked to weather (temperature and 

snow on summer range), and individual characteristics such as age and condition. Monteith et al. 

(2011) suggested that prime age individuals in the best condition can adopt a strategy by which 
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they stay on summer range for longer time periods to consume higher quality vegetation despite 

the potential for being caught in adverse weather, while poorer quality individuals cannot take on 

such risks. The individual characteristics hypothesis of Monteith et al. (2011) provide support for 

the energetics scenario (ii above), whereby individuals with certain haplotypes might be better 

suited for taking on the risks associated with remaining on summer range later in the season due 

to associated differences in energetics.  

 Fine-scale natal dispersal has been shown to have a heritable basis in albatross 

(Charmantier et al. 2011), and genotype-phenotype associations are thought to be important next 

steps in migration studies (Liedvogel et al. 2011). For the carry over effect to be true, the 

mtDNA lineages must reflect nuclear differences that (at least partially) encode for differences in 

migratory behavior or have a physiological effect. Although our results cannot tease apart a 

specific nuclear or mitochondrial effect, given the mtDNA migration effect shown in warblers 

(Toews et al. 2014), we think this is worth following up on using both biochemical modeling and 

genome-wide scans (i.e., with mtDNA haplotype as the response measure or interaction term). 

Importantly, recent development in the western United States has raised concerns over the 

sustainability of mule deer migratory routes (Sawyer et al. 2005, Sawyer et al. 2009b), and under 

climate change there is the potential for trophic mismatch for migratory species, whereby 

migrations occur asynchronously with plant phenology (Post et al. 2008). Monteith et al. (2011) 

suggested that plasticity in mule deer migration might allow the species to avoid such 

mismatches; however, if there is a genetic basis for the variability in migration among 

individuals, there may be less plasticity and more natural selection at work (Nelson 1998). 

Mitochondrial introgression with white-tailed deer is likely to be unidirectional (Carr et al. 

1986), which could jeopardize the adaptive potential if hybridizations increase. However, we 
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note that there is no evidence of white-tailed deer presence in our study area, and thus 

hybridization is not a concern at this point. Thus, the potential for loss of migratory routes to 

development, combined with climate change and hybridization highlight the importance of 

maintaining the existing genetic variability in diverse migratory phenotypes.     

 

Genetic-condition correlations 
 
 
Fat is an important determinant of fitness for mule deer (Bender et al. 2007, Johnstone-Yellin et 

al. 2009, Tollefson et al. 2010). We identified two genetic markers as having relationships with 

fat, though the relationships were antagonistic (i.e., one had a positive relationship with fat and 

the other negative). Similar results have been seen in studies of both the Kentish plover 

(Charadrius alexandrinus L.; Kupper et al. 2010) and the blue tit (Parus caeruleus L.; Olano-

Marin et al. 2011). With the contrasting signals of the two markers, interpretations of what these 

relationships represent become muddled. Olano-Marin et al. (2011) viewed the negative 

correlation as evidence for direct effects of the neutral loci, with the positive correlation due to 

inbreeding. Inbreeding in our study area is not supported by the FIS values, and difficult to 

imagine given the population size and deer ecology. 

 Based on the evidence for a mixing of different mitochondrial lineages and effect sizes, 

the negative relationship to body fat of RT30 (0.99 probability and nearly double the effect size 

as all other loci) is the most likely to be genuine. However, given the concern over spurious 

HFCs we must still consider the possibility of Type I errors (i.e., false positives). The potential 

for Type I errors is of particular concern when detecting local effects and examining multiple 

models (Szulkin et al. 2010). In light of this concern, we highlight three points of support for the 

recorded relationship. First, the effect sizes of the significant coefficients were substantially 
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greater than those of the other loci (Fig. 7.3). Second, we refit all models that had significant 

coefficients, but with a strong multivariate normal prior (with means set to 0) on the coefficients. 

This approach shrinks all estimates towards 0, acting as a penalty and reducing the number of 

significant covariates (Gelman et al. 2012). In the case of the SLH – fat correlation, all 

significant results (probability of an effect >0.95) remained. Lastly, the proximity of a locus in 

question relative to genes of known effect can be taken as supportive evidence for understanding 

single-locus HFCs (Von Hardenberg et al. 2007, Kupper et al. 2010). Slate et al. (2002) observed 

considerable synteny in ruminants, and more than half of the microsatellites used in their deer 

linkage map had been used for the same purposes in cow and sheep. When we screened RT30 

against the annotated cow genome (using BLAST), both primers co-localized with 100% identity 

to a region with the closest known gene being that of TBC1D1. Interestingly, this gene regulates 

cell growth and differentiation, and has been shown to influence fat metabolism in mice and 

humans (Stone et al. 2006, Chadt et al. 2008). Given the combination of divergent mtDNA 

lineages in our study area and panmixia (k = 1), a slight disruption of co-adapted alleles that are 

linked to fat metabolism could explain the negative correlation between this locus and fat (we 

emphasize these results represent a small effect as body fat was predicted to decrease body fat by 

< 0.2% in the model). This is predicted to outcome when locally adapted lineages mix, and it has 

been recently suggested for grizzly bears in an area where they are subject to large-scale human 

assisted migration (Shafer et al. 2014). 

 Although the above lines of evidence offer support to the effect of RT30 on fat being 

genuine, given the small number of loci examined we must remain skeptical about this 

relationship. Rather, we present these findings as noteworthy and in need of confirmation by 

studies with larger samples and with genomic methods.  
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Conclusions and evolutionary applications 
 
 
We have shown fine-scale relationships between genetic variation and phenotypic traits in mule 

deer that have not been found in previous work on this species. Our study identified fine-scale 

genetic correlates to both migration timing and body fat that are likely overlooked (and probably 

unexpected) in this species. These results have potential management implications for mule deer, 

which are under substantial human pressure from a multitude of stressors (e.g., Sawyer et al. 

2006). The genetic polymorphisms in this population that are linked to phenotypic traits related 

to phenology and metabolic variation could prove important in the face of climate change and 

other anthropogenic stressors that are likely to affect both optimal timing of migration and the 

role of fat stores in survival and reproduction. Monitoring hybridization with white-tailed deer 

should also be considered with respect to the mtDNA effect, as introgression is likely to go from 

white-tailed to mule deer (Carr et al. 1986) and could alter the adaptive potential. Efforts should 

be made to better characterize additional drivers behind this phenotypic and genetic variation in 

an effort to maintain a diversity of phenotypes that might best be able to adapt to novel 

conditions.  Screening for similar associations in more imperiled deer populations (and Cervid 

species) may help shed light on local population dynamics and better inform management 

decisions.  
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TABLES 
 
 
 
Table 7.1. Covariates, median coefficient (coeff.) values, and the probability (prob.) of either a 
negative or positive effect of the covariate from multi-level beta regression on the percent body 
fat of mule deer in the Piceance Basin, Colorado.   

Covariate Median coeff. value Prob. coeff. is negative Prob. coeff. positive 

Intercept -2.15 1 0 

Age -0.05 0.89 0.11 

March Capture -0.52 1 0 

Winter range    

NR* -0.10 0.80 0.20 

RG† -0.11 0.82 0.18 

SM‡ -0.06 0.69 0.31 

Microsatellite loci    

INRA011 -0.13 0.93 0.07 

RT30 -0.24 0.99 0.01 

BBJ 0.08 0.22 0.78 

K -0.03 0.65 0.35 

BL25 0.07 0.27 0.73 

BM6438 -0.001 0.50 0.50 

BM848 -0.11 0.87 0.13 

RT7 -0.08 0.72 0.28 

N 0.09 0.22 0.78 
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ETH152 -0.004 0.52 0.48 

BM6506 0.02 0.40 0.60 

P 0.18 0.04 0.96 

D 0.092 0.13 0.87 

BM4107 0.05 0.32 0.68 

RT5 0.15 0.13 0.87 

OCAM 0.02 0.41 0.59 

R -0.08 0.81 0.19 

*Indicates deer captured in the NR winter range, with NM as the reference category 
†Indicates deer captured in the RG winter range, with NM as the reference category 
‡Indicates deer captured in the SM winter range, with NM as the reference category 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

189 

 

 

Table 7.2. Covariates, median coefficient (coeff.) values, and the probability (prob.) of either a 
negative or positive effect of the covariate from negative binomial regression model on mule 
deer fall migration termination dates from deer in the Piceance Basin, Colorado.  
Neighbor joining clades    

Covariate Median coeff. value Prob. coeff. is negative Prob. coeff. positive 

Intercept 3.08 0.00 1.00 

Age -0.09 0.88 0.12 

Winter range    

NR* 0.16 0.22 0.78 

RG† -0.38 0.96 0.04 

SM‡ -0.56 0.99 0.01 

mtDNA    

Haplogroup  2§ -0.46 0.99 0.01 

Haplogroup 3§ -0.33 0.94 0.06 

    

Bayesian clades    

Intercept 2.932 0.000 1.000 

Age -0.095 0.90 0.10 

Winter range    

NR*NRA 0.1768 0.22 0.78 

RG†RGB -0.270 0.90 0.10 

SM‡SMC -0.440 0.97 0.03 



 
 

190 

mtDNA    

Haplogroup 2§ -0.350 0.97 0.03 

    

*Indicates deer captured in the NR winter range, with NM as the reference category 
†Indicates deer captured in the RG winter range, with NM as the reference category 
‡Indicates deer captured in the SM winter range, with NM as the reference category 
§mtDNA haplogroup 1 is the reference category 
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Table 7.3. Mantel test models, Mantel's r and lower and upper confidence limits (CL), calculated through randomization, for models 
examining correlation between relatedness metrics (Queller-Goodnight (QG) and coancestry) and migration dates, for mule deer in the 
Piceance Basin, Colorado. End spring and end fall indicate the termination of spring and fall migration, respectively. Start spring and 
start fall indicate the initiation of spring and fall migration, respectively. Winter and summer distance indicate the distance between 
winter and summer range centroids. All values are presented as Mantel r (lower CL, upper CL). Vertical lines (|) indicate partial 
Mantel tests with the covariate that is controlled for following the vertical line. 

Migratory metric QG  Coancestry  

End spring -0.04 (-0.06, -0.01) -0.06 (-0.09, -0.01) 

End spring | winter distance -0.02 (-0.04, -0.001) -0.07 (-0.10, -0.03) 

End spring | summer distance -0.03 (-0.05, -0.01) -0.05 (-0.08, -0.02) 

End fall -0.04 (-0.06, -0.01) -0.02 (-0.05, 0.02) 

End fall | winter distance -0.04 (-0.06, -0.01) -0.02 (-0.05, 0.02) 

End fall | summer distance -0.04 (-0.06, -0.01) -0.02 (-0.05, 0.01) 

Start spring 0.002 (-0.02, 0.02) -0.03 (-0.07, 0.01) 

Start spring | winter distance 0.01 (-0.02, 0.02) -0.03 (-0.06, 0.01) 

Start spring | summer distance 0.01 (-0.01, 0.04) -0.02 (-0.06, 0.01) 

Start fall -0.05 (-0.07, -0.03) -0.05 (-0.08, -0.03) 

Start fall | winter distance -0.05 (-0.06, -0.01) -0.05 (-0.08, -0.03) 

Start fall | summer distance -0.05 (-0.07, -0.03) -0.05 (-0.08, -0.03) 
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FIGURES 
 
 
 

        
Figure 7.1. (A) Winter range areas (1=Ryan Gulch (RG), 2=South Magnolia (SM), 3=North 
Magnolia (NM) and 4=North Ridge (NR)) and simplifications of migratory routes, with arrows 
indicating general location of summer ranges for mule deer in the Piceance Basin, and (B) 
Location of study within the United States. Adapted with permission from Lendrum et al. (2013). 
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Figure 7.2. Mitochondrial control region haplotype network and winter range area assignments.  
Circle size is proportional to the haplotype frequency with small black circles representing 
undetected, intermediate haplotypes. Haplotypes are colored according to winter range area. The 
dashed-circle outlines and corresponding numbers are in reference to the phylogenetic clades 
(Appendix 21). 
 



 
 

194 

Figure 7.3. Box plots of coefficients for effect of microsatellite loci on mule deer body fat percent. Coefficients were obtained through 
beta regression model in a Bayesian hierarchical framework. Box plots represent median (black line) interquartile range (box bounds) 
and upper and lower 95% bounds (whiskers) of coefficient values.  
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REVIEW PROTOCOL 
 
 
 
We systematically reviewed the literature on wildlife impacts from unconventional oil and 

natural gas, wind, bioenergy, solar and geothermal energy development through standardized 

searches of Google Scholar and the Thomas Reuters Web of Knowledge. Searches were 

conducting using combinations of the terms "wildlife" or "environmental impact" and all of the 

following:  

• Energy development 

• Industrial development 

• Resource extraction 

• Petroleum 

• Oil  

• Natural gas 

• Wind 

• Wind energy 

• Biofuels 

• Bioenergy 

• Biomass energy 

• Ethanol 

• Geothermal 

• Solar 

 We reviewed peer reviewed publications on empirical research published between 

January 1, 2000 and July 1, 2012.  Studies that were not related to energy resource development 
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(i.e., did not address any aspect of development of unconventional oil and natural gas, wind, 

bioenergy, solar, or geothermal energy development as determined from the title) were excluded. 

Further screening was conducted by reviewing the abstracts of all other publications and 

excluding simulation studies and modeling exercises that lacked empirical data.  Formal meta-

analyses and reviews (for reviews only in the case of solar and geothermal, for which there were 

no empirical studies) were included.  Literature that examined wildlife responses to impacts 

hypothesized to be similar to those caused by the wind and unconventional oil and gas sectors 

but did not directly assess an energy development impact were excluded.  This included studies 

reporting on pre-development assessments and making predictions on expected impacts.   

 For literature on oil and gas research outside the U.S. and Canada the type of oil and gas 

resources (i.e., conventional versus unconventional) was not reported in the literature arising 

from our search.  Unconventional oil production is limited to only a few countries, while 

unconventional gas resources are only known in certain regions and production is largely limited 

to the U.S. and Canada (World Energy Council 2010, 2012). Public production data are 

unavailable for most countries outside of North America.  Thus, we assumed most, if not all 

global research on oil and natural gas development was conventional, and we exclude this 

research from Table A1.2, below (of note: our search produced less than ten global studies on oil 

and gas impacts). However, in the main text, we review select global literature on oil and gas 

development to provide context for likely impacts with the expected increase in unconventional 

development outside of the U.S. and Canada.   

 Although there is a rich literature throughout the world on wildlife response to agriculture 

that might be directly relevant to impacts of bioenergy development, many of these studies do 

not report on the end use of the crops and it is difficult to determine if the documented responses 
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are germane to bioenergy.  Thus, we excluded studies of agricultural impacts to wildlife unless 

they were directly assessing the response to dedicated bioenergy crops and reported that these 

crops were used for bioenergy or were set in the context of bioenergy production (e.g., studies 

assessed the impact of crops that are projected to be used in bioenergy production).  This issue is 

particularly salient to oil palm research.  Not all oil palm plantations are used for the production 

of bioenergy, and a number of studies have been published on the impacts of oil palm cultivation 

to wildlife that do not mention bioenergy.  These studies were not reviewed.  

 For the papers which fit the above criteria, we reviewed the references and citations and 

included the resulting literature that met the above criteria.  The selected literature from the 

United States and Canada is summarized in Table A1.1 and global literature is summarized in 

Table A1.2.  No first-hand research was found for solar and geothermal energy sectors, therefore 

we include reviews focusing on the impacts of these sectors. 

 

QUANTIFICATION OF SPECIES, GEOGRAPHIC LOCATIONS, IMPACTS AND  
 
MITIGATION FROM THE U.S. AND CANADA  
 
 
 
To further quantify research in the U.S. and Canada we extracted and summarized the following 

information from studies conducted in these regions: taxonomic group studied, geographic 

location, impact (negative, positive, neutral), implication for mitigation and if mitigation was 

directly assessed by the study (Table A1.1).  To assess the proportion of studies offering 

mitigation suggestions, and the robustness of study design relative to these suggestions, we 

assigned each of these studies to one of four groups based on study design and mitigation 

suggestions.  Group 1 consisted of studies that explicitly assessed the response of wildlife to the 
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implementation, or simulation of a BMP or mitigation measure, with a before-after component.  

For bioenergy this included studies examining harvest practices and different plant cultivars.  

Group 2 consisted of correlative studies that were designed to directly assess the response of 

wildlife to existing mitigation.  Group 3 consisted of correlative studies that examined the 

response of wildlife to development and inferred mitigation from their findings.  Lastly, group 4 

consisted of studies that made no mitigation suggestions.   
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TABLES 
 
 
 
Table A1.1. Peer-reviewed literature on the impacts of unconventional oil and natural gas, wind and bioenergy development on 
wildlife in Canada and U.S. The species and taxonomic group studied, processes and variables examined, documented impacts, 
inferred potential population-level impacts, implications for mitigation, and if the study discussed these impacts explicitly is 
summarized for each sector. 
Taxonom
ic group 

Common 
name 

Process(es) 
examined 

Variables 
examined 

Impact or results Potential 
population-
level 
impacts 

Implications of 
findings for 
BMPs and 
mitigation 

Implicatio
ns 
discussed 
in paper? 

Citation 

 
Oil and 
gas 

        

 
Birds 

 
Greater 
sage 
grouse 

 
Nest and 
brood 
success; 
habitat 
selection 

 
Distance to 
roads and 
wells 

 
Avoid 
development; nest 
far from 
development; 
brood near 
development; 
higher brood loss 
near development 
 

 
Decreased 
abundance; 
decreased 
reproductive 
output 

 
Enhance habitat 
in nesting and 
brooding areas* 

 
Yes 

 
(Aldridge 
and 
Boyce 
2007) 

Birds Ovenbird Home 
range size; 
territory 
size; 
overlap 
with 
seismic 
lines; 

Seismic line 
width 

Reduced territory 
size with wider 
seismic lines 

Decreased 
abundance 

Use narrow 
seismic lines 

Yes (Bayne et 
al. 2005a) 
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density 
 

Birds Ovenbird Territory 
overlap 
with 
seismic 
lines; 
abundance 

Seismic line 
density 

Reduced 
abundance at high 
density; singing 
further from 
seismic lines 

Decreased 
abundance; 
decreased 
reproductive 
output 
 

Use narrow 
seismic lines 

Yes (Bayne et 
al. 
2005b) 

Birds Various Density 
and 
occupancy 

Noise from 
compressor 
stations 

Species specific 
decline in density 
near compressor 
stations 

Decreased 
pairing 
success and 
reproductive 
output; 
decreased 
abundance 
 

Install noise 
suppression 
equipment 

Yes (Bayne et 
al. 2008) 

Mammals Pronghorn 
(Antilocap
ra 
american
a) 

Habitat 
selection 

Distance to 
roads and 
well pads 

No response to 
roads or well pads; 
decreased number 
of high use patches 
with increasing 
development 
 

Increased 
energy 
expenditure; 
decreased 
abundance 
 

Reduce 
development 

No (Beckma
nn et al. 
2012) 

Birds Greater 
sage 
grouse 

Lek 
attendance 

Recorded 
drilling and 
road noise 

Lower attendance 
at noisy leks.  
Lower male 
attendance at leks 
with road noise 
than drilling noise 
 

Decreased 
reproductive 
output 

Expansion of 
seasonal drilling 
restrictions 

Yes (Blickley 
et al. 
2012) 

Birds Common 
raven; 
greater 

occupancy 
and 
density; 

Type of 
habitat 
(towns vs. 

High occupancy 
but low density in 
oil field; decreased 

Declining 
population 

Install raven 
deterrents; harass 
and control 

Yes (Bui et al. 
2010) 
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sage 
grouse 

grouse nest 
and brood 
success 

oil field vs. 
sagebrush) 

sage grouse nest 
and brood success 
with higher raven 
occupancy 

nesting ravens; 
reduce raven 
density in source 
areas (cities and 
towns) 
 

Birds Greater 
sage 
grouse 

Habitat 
selection 

Distance to 
wells; well 
density 

Avoid areas near 
wells 

Decreased 
abundance 

Restrict 
development in 
critical winter 
habitat 
 

Yes (Carpente
r et al. 
2010) 

Birds Sprague's 
pipit; 
Baird's 
sparrow; 
savannah 
sparrow 
 

Abundance Well density Decline in 
Sprague's pipit and 
Baird's sparrow; 
increase in 
savannah sparrow 

Decreased 
abundance 

Reduce 
development 

No (Dale et 
al. 2008) 

Birds Greater 
sage 
grouse 

Winter 
habitat 
selection 
 

Well density Avoid 
development 

Decreased 
abundance 

Set aside suitable 
habitat within 
project area 

Yes (Doherty 
et al. 
2008) 

Birds Greater 
sage 
grouse 

Male lek 
attendance; 
lek 
persistence 

Well density Decreased lek 
attendance and 
persistence with 
increased density 
 

Declining 
population 

Offset habitat; 
enhance 
productivity of 
habitat; cluster 
developments 

Yes (Doherty 
et al. 
2010) 

Birds Northern 
bobwhite 

Habitat and 
nest site 
selection 
 

Distance to 
oil 
structures 

No response - - No (Dunkin 
et al. 
2009) 

Mammals Moose, 
deer, bear, 

Crossing 
rate 

Pipeline; 
pipeline 

Moose avoid 
crossing higher 

Increased 
energy 

Construct 
crossing 

Yes (Dunne 
and 
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coyote, 
lynx, wolf 

height pipelines; moose 
use crossing 
structures; no 
impact on other 
species 
 

expenditure; 
population 
fragmentati
on 

structures; raise 
pipeline height 

Quinn 
2009) 

Mammals Caribou Habitat 
selection 

Distance to 
roads, 
seismic 
lines, and 
wells 

Avoid roads, 
seismic lines and 
wells; avoid new 
developments 
more than old 
 

Decreased 
abundance 

Limit 
development in 
caribou range; 
replant seismic 
lines; reduce 
traffic 

Yes (Dyer et 
al. 2001) 

Mammals Caribou Road and 
seismic line 
crossing 

Roads and 
seismic 
lines; road 
traffic 

Avoid crossing 
roads; cross roads 
least when traffic 
highest; no 
influence of 
seismic lines 
 

Increased 
energy 
expenditure; 
population 
fragmentati
on 

Reduce traffic No (Dyer et 
al. 2002) 

Birds Greater 
sage 
grouse 

Habitat 
selection; 
nest 
success; 
brood 
success 

Distance to 
anthropogen
ic features 
(includes 
well pads) 

No impact on 
habitat selection or 
nest success; lower 
brood success 
closer to wells 

Declining 
population 

Restrict 
development in 
critical habitat; 
maintain distance 
between nesting 
habitat and 
development 
 

Yes (Dzialak 
et al. 
2011b) 

Mammals Elk Habitat 
selection 
and 
survival 

Road 
density; area 
disturbed by 
industrial 
footprint 

Decreased survival 
of individuals near 
development; 
temporal 
avoidance of 
industrial footprint 

Declining 
population 

Reclaim, restore 
and avoid critical 
habitat 

Yes (Dzialak 
et al. 
2011c) 
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and roads 
 

Mammals Elk Habitat 
selection 

Road 
density; 
distance to 
developmen
t footprint 

Avoid 
development 
during the day 

Increased 
energy 
expenditure; 
decreased 
abundance 
 

Maintain refuge 
habitat within 
developed areas 

Yes (Dzialak 
et al. 
2011a) 

Birds Greater 
sage 
grouse 

Habitat 
selection 

Distance to 
natural gas 
wells and 
roads 

Avoided roads 
during night and 
day; avoided wells 
during day but not 
night 
 

Altered 
behavior 

Mitigation should 
incorporate 
landscape scale 
component 

Yes (Dzialak 
et al. 
2012) 

Birds Ash-
throated 
flycatcher
; grey 
flycatcher 

Habitat 
use; vocal 
frequency 

Noise 
amplitude 

Decreased grey 
flycatcher 
occupancy with 
more noise; vocal 
frequency 
unaffected; ash-
throated flycatcher 
occupancy 
unaffected; 
increased vocal 
frequency  
 

Decreased 
mating 
success; 
increased 
predation 

- No (Francis 
et al. 
2011d) 

Birds Various Species 
compositio
n; density; 
nest 
predation 

Wells with 
different 
levels of 
noise 

Altered 
community 
structure; altered 
species 
interactions; no 
decline in density 

Decreased 
abundance 
of sensitive 
species; 
increased 
reproductive 
output for 

Install noise 
barriers; place 
compressor 
stations in 
centralized 
locations 

No (Francis 
et al. 
2009) 



 
 

254 

some 
individuals 
 

Birds Plumbeou
s vireo; 
Gray 
vireo 

Occupancy
; song 
frequency 
and 
duration 

Noise 
amplitude 

Increased 
minimum 
frequency and 
decreased duration 
for plumbeous 
vireo; increased 
maximum 
frequency for gray 
vireo; no impact 
on occupancy 
 

Decreased 
mating 
success; 
increased 
predation 

Install noise 
barriers; site 
compressor 
stations in 
centralized 
locations 

No (Francis 
et al. 
2011a) 

Birds Gray 
flycatcher
; Western 
scrub jay 

Occupancy 
and nest 
survival 

Wells with 
different 
levels of 
noise 

Reduced 
occupancy rate but 
increased nest 
success with more 
noise 

Decreased 
abundance; 
increased 
reproductive 
output for 
some 
individuals 
 

Install noise 
barriers; site 
compressor 
stations in 
centralized 
locations 

Yes (Francis 
et al. 
2011b) 

Birds Various Nest 
frequency; 
bird 
abundance 

Noisy vs. 
quiet areas 

Lower nest 
frequency and bird 
abundance in noisy 
areas for species 
with low 
frequency 
vocalizations; 
positive response 
for birds with high 
frequency 
vocalizations 

Decreased 
reproductive 
output and 
abundance 
for birds 
with low 
frequency 
vocalization
s 

- No (Francis 
et al. 
2011c) 
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Birds and 
small 
mammals 

Black-
chinned 
humming
bird; 
various 
small 
mammals  

Flower 
visitation; 
pollen 
transfer; 
occurrence; 
seed 
removal 

Noisy vs. 
quiet areas 

Greater flower 
visitation by 
hummingbirds and 
greater pollen 
transfer in noisy 
areas; greater 
presence of some 
small mammal 
species and greater 
seed removal in 
noisy areas 

Altered 
plant 
community 
structure 

- No (Francis 
et al. 
2012) 

Birds Tree 
swallow 

Thyroid 
hormone 
levels 

Presence in 
reclaimed 
oil sands 
wetlands 
versus 
reference 
 

T4 hormones 
greater in birds 
inhabiting nest 
boxes in reclaimed 
sites 

Decreased 
survival 

- No (Gentes 
et al. 
2007) 

Birds Brewer's 
sparrow; 
vesper 
sparrow; 
sage 
sparrow; 
horned 
lark; sage 
thrasher 

Abundance 
and species 
richness 

Well density Species richness 
unaffected; 
decreased 
abundance of 
Brewer's, sage, 
and vesper 
sparrow with 
increasing density; 
no response by 
sage thrasher; 
increased 
abundance of 
horned lark with 
increasing density 
at one site 

Decreased 
abundance 
of sensitive 
species 

Reduce 
development 

No (Gilbert 
and 
Chalfoun 
2011) 
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Birds Mallard Growth; 

toxicant 
exposure 

Exposure to 
reclaimed 
oil sands 
wetlands 
versus 
reference 
 

Birds in reclaimed 
wetlands had less 
growth and greater 
exposure to 
toxicants 

Decreased 
survival 

- No (Gurney 
et al. 
2005) 

Birds Ovenbird Pairing 
success and 
age 
distribution 

Noise from 
compressor 
stations 

Decreased pairing 
success; younger 
age distribution 
relative to 
noiseless controls 

Decreased 
reproductive 
output; 
inhibited 
predator 
detection; 
decreased 
mating 
success 
 

Install noise 
suppression 
equipment 

Yes (Habib et 
al. 2007) 

Birds Lesser 
prairie-
chicken 

Range and 
habitat 
selection 

Before vs. 
after power 
line 
construction
; number of 
wells, roads, 
power lines, 
and 
buildings in 
monthly 
range 

Range overlap 
with roads, wells, 
and power lines 
less than random; 
home range 
centroids further 
than random from 
roads, wells, 
power lines and 
buildings 

Increased 
energy 
expenditure 

Do not develop 
within certain 
distances of 
summer and 
breeding habitat 
(i.e., setbacks) 

Yes (Hagen et 
al. 2011) 

Birds Savannah 
sparrow; 
Sprague's 
pipit; 

Occurrence 
and 
abundance 

Well density Decreased 
abundance and 
probability of 
occurrence for 

Decreased 
abundance 
of sensitive 
species 

Reduce 
development 

No (Hamilto
n et al. 
2011) 
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Chestnut 
collared 
longspur 

Sprague's pipit; 
increased 
probability for 
savannah sparrow; 
no change for 
chestnut collared 
longspur 
 

Birds Greater 
sage 
grouse 

Male lek 
attendance 

Well 
density; 
presence of 
wells within 
various 
buffer 
distances 

Results varied 
among locations 
but general 
decrease in lek 
attendance with 
increasing 
development 
 

Declining 
population 

Restrict 
development 
around leks (i.e., 
setbacks) 

No (Harju et 
al. 2010) 

Mammals Elk Habitat 
selection 

Distance to 
roads and 
well pads 

Avoided roads and 
well pads 

Increased 
energy 
expenditure; 
decreased 
abundance 
 

Reduce 
development; 
maintain refuge 
habitat within 
developed area 

No (Harju et 
al. 2011) 

Birds Greater 
sage 
grouse 

Nest site 
selection; 
survival; 
lek 
recruitment
; lek 
attendance 

Distance to 
industrial 
roads and 
wells 

Decreased lek 
recruitment and 
survival in 
developed areas; 
avoid nesting near 
development 

Decreased 
abundance; 
reduced 
reproductive 
output; 
declining 
population 
 

Maintain suitable 
habitat within 
developed area 

Yes (Holloran 
et al. 
2010) 

Birds Various Density Distance to Altered species Decreased Decrease traffic; No (Ingelfing
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and 
abundance 

roads and 
pipelines 

composition; 
decline in sage 
brush obligates 
near roads; greater 
decline near roads 
with more traffic 
 

abundance 
of sensitive 
species 

cluster 
development 

er and 
Anderson 
2004) 

Mammals Caribou 
and 
wolves 

Habitat 
selection; 
predation 
and 
mortality 
sites  

Distance to 
linear 
features 
(roads, 
seismic 
lines, 
pipelines) 

Caribou avoid 
linear features; 
mortalities closer 
to linear features; 
wolves closer than 
random to roads 
when in caribou 
range 

Increased 
energy 
expenditure; 
declining 
population 

Remote 
technology for 
wells; use of 
helicopter for 
seismic 
exploration; 
rollback of trees 
onto linear 
features; 
reclamation of 
linear features 

Yes (James 
and 
Stuart-
Smith 
2000) 

Birds Lesser 
prairie 
chicken 

Lek 
occurrence 

Distance to 
anthropogen
ic features 
(includes oil 
and gas 
wells) 
 

Decreased lek 
habitat suitability 
near anthropogenic 
features 

Decreased 
abundance; 
declining 
populations 

Restrict 
development in 
areas of high lek 
occurrence 
probability 

No (Jarnevic
h and 
Laubhan 
2011) 

Mammals Caribou; 
white-
tailed 
deer; 
moose; 
wolves 

Caribou 
population 
rate of 
change and 
survival; 
wolf diet; 
density; 
proportion 

Before vs. 
after 
intensive 
developmen
t for oil 

Declining caribou 
population; 
increase in caribou 
and deer in wolf 
diets, decrease in 
moose; increase in 
deer and wolf 
density; increased 

Declining 
caribou 
population 

Liberalized 
harvest of deer 

Yes (Latham 
et al. 
2011) 
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of overlap 
between 
caribou and 
wolves 

overlap between 
caribou and 
wolves 

Mammals Grizzly 
bear 

Habitat 
selection 

Distance to 
seismic 
lines; 
habitat 
patch size 

No response to 
seismic lines; 
indirect impact on 
habitat selection 

Increased 
energy 
expenditure; 
decreased 
abundance 
 

Use narrow 
seismic lines 

No (Linke et 
al. 2005) 

Birds Greater 
sage 
grouse 

Nest site 
selection; 
nest 
success; 
nest 
initiation 
rate 

Developed 
(< 3 km 
from well or 
road) vs. 
undevelope
d 

Lower nest 
initiation rate and 
greater distance 
moved between 
lek and nest in 
developed areas 
 

Increased 
energy 
expenditure; 
declining 
population 

Restrict traffic 
during nesting 

Yes (Lyon 
and 
Anderson 
2003) 

Birds Various Territory 
size; 
seismic line 
crossing; 
distance to 
lines; 
territory 
overlap 
with lines 

Before vs. 
after 
construction 
of seismic 
lines 

At community 
level territory size 
increased but no 
other impacts; 
species specific 
declines in number 
of territories, 
avoidance of lines, 
and decline in 
territory overlap 
with lines 
 

increased 
energy 
expenditure; 
decreased 
abundance 

Use narrow 
seismic lines 

Yes (Machtan
s 2006) 

Amphibia
ns and 
reptiles 

Salamand
ers 

Capture 
proportion 

Distance 
from well 
pad edge 

Capture proportion 
highest closer to 
edges 
 

- - No (Moseley 
et al. 
2009) 
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Mammals Grizzly 
bear 

Habitat 
selection; 
mortality 
risk 

Distance to 
industry 
roads 

Select areas near 
roads; higher risk 
of mortality near 
roads 
 

Declining 
population 

Reduce traffic 
and access; 
reduce quality of 
habitat near roads 

Yes (Nielsen 
et al. 
2006) 

Birds Lesser 
prairie 
chicken 

Nest 
location 
and success 

Distance to 
anthropogen
ic features 
(includes oil 
wells) 
 

Avoid nesting near 
development in 
one study area; no 
impact of wells on 
nest success 

Decreased 
abundance 

Avoid 
development in 
nesting habitat; 
develop on 
already disturbed 
lands 

Yes (Pitman 
et al. 
2005) 

Birds Various Mortality Wastewater 
fields 

Direct mortality Declining 
population 

Deep well 
injection of 
wastewater; 
separate 
petroleum and 
surfactants from 
wastewater; place 
nets over open 
wastewater 
 

Yes (Ramirez 
2010) 

Mammals Mule deer Habitat 
selection 

Distance to 
wells; road 
density 

Avoidance of 
development 
increased over 
time with more 
development 

Increased 
energy 
expenditure; 
decreased 
abundance 
 

Employ 
directional 
drilling; limit 
public access 

Yes (Sawyer 
et al. 
2006) 

Mammals Mule deer Habitat 
selection 

Distance to 
wells with 
different 
levels of 
human 
activity 

Avoid all wells; 
stronger avoidance 
with more activity 

Increased 
energy 
expenditure; 
decreased 
abundance 
 

Install remote 
liquid gathering 
systems; employ 
directional 
drilling 

Yes (Sawyer 
et al. 
2009a) 
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Mammals Caribou Population 
rate of 
change 

Area within 
250 m of 
industrial 
features 

Populations 
declining more 
rapidly in areas 
with more 
development 

Declining 
population 

Maintain 
sufficient 
proportion of 
range 
undeveloped; use 
narrow seismic 
lines and remote 
well monitoring;  
 

Yes (Sorensen 
et al. 
2008) 

Birds Various Mortality Tailings 
ponds 

Direct mortality Declining 
population 

Create 
"compensation 
ponds" to provide 
clean water 
alternative for 
birds 
 

Yes (Timoney 
and 
Ronconi 
2010) 

Mammals Caribou Annual 
home range 
fidelity and 
overlap 

Well density No change in 
home range 
overlap or fidelity 

Declining 
population 
(high 
fidelity 
despite 
degraded 
habitat) 
 

Reduce 
development 

No (Tracz et 
al. 2010) 

Birds Greater 
sage 
grouse 

Lek 
attendance; 
lek 
persistence 

Inside vs. 
outside of 
developed 
areas 

Lek attendance 
and persistence 
lower in developed 
areas 

Declining 
population 

Restrict 
development 
around leks (i.e., 
setbacks); ensure 
sufficient sage 
brush habitat 
around leks 
 

Yes (Walker 
et al. 
2007a) 

Mammals Caribou Habitat Distance to Caribou avoid Increased Cluster human Yes (Wasser 
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and 
moose 

selection; 
nutritional 
and 
psychologi
cal stress 

roads of 
different 
activity 
levels 
(primary, 
secondary, 
tertiary) 

roads; greater 
avoidance of 
busier roads; no 
avoidance of 
seismic lines; 
moose avoid all 
linear features; 
higher 
psychological 
stress for caribou 
near roads and 
with more activity; 
higher nutritional 
stress for caribou 
in most selected 
areas  
 

energy 
expenditure; 
decreased 
abundance; 
decreased 
survival 

activity along 
roads; construct 
developments in 
areas with visual 
and auditory 
barriers; 
minimize 
secondary roads 

et al. 
2011) 

Mammals Pine 
marten 

Trapline 
activity; 
marten 
taken 

Human 
access 
(roads and 
seismic 
lines) 

Declining harvest Declining 
population 

Reduce number 
of roads and 
seismic lines by 
coordinating 
construction 
among companies 
 

Yes (Webb 
and 
Boyce 
2009) 

Mammals Elk Movement 
distance; 
tortuosity; 
home range 
size 

Distance to 
anthropogen
ic features; 
inside vs. 
outside 
developed 
area 

Smaller home 
ranges in 
developed area; 
greater tortuosity 
and movement 
distance in more 
developed areas 

Increased 
energy 
expenditure 

Avoid 
development in 
critical habitat; 
maintain refuge 
habitat within 
developed areas; 
construct 
developments in 
areas that are 

Yes (Webb et 
al. 
2011b) 
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obscured from 
view 
 

Mammals Elk Survival Proportion 
of industrial 
footprint 
within area 
used the 
week prior 
to mortality 
 

Non-significant 
decline in survival 
probability with 
increasing 
development 

Declining 
population 

Maintain refuge 
habitat within 
developed areas 

Yes (Webb et 
al. 2011a) 

Mammals Elk and 
mule deer 

Pellet 
occurrence 

Distance to 
roads and 
wells 

Decreased 
probability of 
pellets near roads 
for both species 

Increased 
energy 
expenditure; 
decreased 
abundance 
 

Maintain refuge 
habitat within 
developed areas 

Yes (Webb et 
al. 
2011d) 

Mammals Elk Home 
range size; 
annual 
home range 
overlap 

Proportion 
of home 
range 
developed 

Decrease in home 
range size and 
annual overlap 
with increasing 
development 

Increased 
energy 
expenditure; 
decreased 
abundance 

Restrict 
development in 
critical habitat; 
maintain refuge 
habitat in 
developed areas; 
construct 
developments in 
areas that are 
obscured from 
view 
 

Yes (Webb et 
al. 2011c) 

Birds Sage 
grouse 

Daily nest 
survival 

Distance to 
oil and gas 
wells; 
distance to 

Lower probability 
of survival near oil 
and gas wells; 
greater probability 

Declining 
population 

 Reduce water 
discharge to avoid 
predator 
subsidization near 

Yes (Webb et 
al. 2012) 



 
 

264 

roads of survival near 
roads 
 

wells 

         
Wind         
 
Bats 

 
Various 

 
Mortality 

 
Cut-in speed 

 
Decreased 
mortality with 
increasing cut-in 
speed 
 

 
Declining 
population 

 
Increase cut-in 
speeds 

 
Yes 

 
(Arnett et 
al. 2010) 

Bats Hoary 
bats; 
silver-
haired 
bats 

Mortality 
and activity 

Temperatur
e; wind 
speed; 
turbine 
height; 
mortality 
relative to 
activity 
 

Greater mortality 
at taller turbines 
and with greater 
activity at taller 
turbines 

Declining 
population 

Install shorter 
turbines 

No (Baerwal
d and 
Barclay 
2009) 

Bats Various Mortality Cut-in speed Decreased 
mortality with 
increasing cut-in 
speed and with 
stoppage during 
low winds 
 

Declining 
population 

Increase cut-in 
speeds 

Yes (Baerwal
d et al. 
2009) 

Bats hoary and 
silver-
haired 
bats 

Mortality 
and activity 

Activity; 
wind speed 
and 
direction; 
barometric 
pressure; 

Activity and 
mortality peaked 
in mid-august but 
differed by 
species; activity 
peaked at dusk and 

Declining 
population 

Reduce northern 
exposure of wind 
farms; stop 
turbines during 
falling barometric 
pressure and high 

Yes (Baerwal
d and 
Barclay 
2011) 
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moon 
illumination
; 
temperature;  
turbine 
position 

dawn; higher 
mortalities at 
northern end of 
facility; greater 
mortality during 
high moon 
illumination and 
falling barometric 
pressure; no 
relation to turbine 
position in rows or 
lighting; species 
specific responses 
to weather 
 

moon 
illumination 

Birds and 
bats 

Various Mortality Area swept 
by rotors; 
turbine 
height; 
megawatt 
capacity of 
turbines 
 

Higher mortality 
of bats with taller 
turbines; higher 
mortality with 
greater megawatt 
capacity 

Declining 
population 

Replace several 
small turbines 
with single large 
turbines (birds); 
install shorter 
turbines (bats) 

Yes (Barclay 
et al. 
2007) 

Birds Raptors Abundance 
and 
behavior 

Flight 
height; land 
cover; 
weather 

Avoid turbines; 
decreased 
abundance; birds 
flew within rotor 
zone 
 

Decreased 
abundance; 
displacemen
t 

- No (Garvin 
et al. 
2011) 

Birds Red tailed 
hawk 

Behavior Elevational 
and 
topographic 
characteristi

Variation in 
behavior by 
season, wind and 
topography; 

- Stop turbines 
when winds are 
strong and 
perpendicular to 

Yes (Hoover 
and 
Morrison 
2005) 
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cs; wind 
conditions; 
seasons; 
weather; 
time of day 

perched and soared 
more during light 
winds; kited 
during high winds; 
kiting most on 
west facing slopes 
with inclines > 
20% and at higher 
elevations 
 

steep slopes; paint 
blades to 
accentuate them 

Bats Various Activity Turbine 
height; wind 
speed and 
direction; 
temperature; 
turbine 
rotation 
speed; 
pressure; 
insect 
activity 
 

Bats foraging in 
turbine sweep 
zone; bat activity 
proportional to 
insect activity; 
greater activity 
with greater 
turbine speed and 
just after sunset 

- Stop turbines 
during times of 
greater insect 
activity, just after 
sunset, and during 
times predicted to 
have high bat 
activity 

Yes (Horn et 
al. 2008) 

Bats Various Mortality 
and activity 

Activity in 
areas with 
turbines and 
without; 
distance to 
woodlots; 
presence of 
lights; wind 
speed 
 

All mortalities and 
activity peak 
during summer or 
fall; no influence 
of lighting on 
mortality; no 
differences in 
activity related to 
turbines or 
distance to 
woodlot 

Declining 
population 

Stop turbines 
during certain 
seasons 

No (Jain et 
al. 2010) 
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Birds Various Mortality None Mortalities greater 
during later phases 
of development 
 

Declining 
population 

Conduct pre-
development 
assessments 

Yes (Johnson 
et al. 
2002) 

Birds Various Mortality Mortality 
during 
different 
developmen
t phases 
 

Non-significant 
but greater 
mortalities at taller 
turbines 

Declining 
population 

Install shorter 
towers 

No (Johnson 
et al. 
2003) 

Bats Various Mortality 
and activity 

Land cover; 
turbine 
lighting; 
season 

Activity and 
mortality peaked 
in mid-August; 
greater activity 
close to 
woodlands; no 
influence of 
nightly activity, 
lighting or cover 
on mortality 
  

Declining 
population 

Stop turbines 
during certain 
months 

No (Johnson 
et al. 
2004b) 

Amphibia
ns and 
reptiles 

Desert 
tortoise 

Burrow 
location 

Distance to 
roads and 
turbines 

Burrows located 
closer to roads and 
turbines than 
random locations 
 

- - No (Lovich 
and 
Daniels 
2000) 

Amphibia
ns and 
reptiles 

Desert 
tortoise 

Growth; 
sex ratio; 
mortality 

Study 
population 
in a wind 
farm 
compared to 
other studies 
in 

No impact - - No (Lovich 
et al. 
2011b) 
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undisturbed 
sites 
 

Amphibia
ns and 
reptiles 

Desert 
tortoise 

Mortality Presence of 
culverts 

Mortality 
documented in a 
culvert 

Decreased 
Survival 

Install larger 
culverts or 
excluder devices 

Yes (Lovich 
et al. 
2011a) 

Birds Various Mortality Areas with 
turbines vs. 
reference; 
habitat type; 
position of 
turbine in 
turbine 
rows; 
season 

No influence of 
habitat type; 
turbines at the end 
of turbine rows 
had greater 
mortality; greater 
mortality than 
random during 
spring 

Declining 
population 

Avoid building in 
areas with large 
bird 
concentrations 

Yes (Osborn 
et al. 
2000) 

Bats Various Mortality Land cover; 
topography 

More mortalities 
of Brazilian free-
tailed bats near 
ravine topography 
in one year; 
hotspots of 
mortality located 
near ravine 
 

Declining 
population 

Stop turbines 
during certain 
conditions (not 
specified) 

Yes (Piorkow
ski and 
O'Connel
l 2010) 

Mammals California 
ground 
squirrels 

Behavior Noisy vs. 
quiet areas 

No response to 
conspecific alert 
calls at noisy site; 
closer to burrows 
and more alert at 
noisy site 
  

Increased 
energy 
expenditure 

Site turbines 
away from 
burrows 

No (Rabin et 
al. 2006) 

Birds and 
bats 

Various Mortality Type of 
turbine 

more mortalities 
for birds at newer 

Declining 
population 

Upgrade to newer 
and more 

Yes (Smallwo
od and 
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and more powerful 
turbines; increased 
mortalities for bats 
 

powerful turbines Karas 
2009) 

Birds Various Mortality None Direct mortality Declining 
population 

Habitat offsets; 
upgrade to newer, 
more powerful, 
and taller 
turbines; design 
safer turbines; 
develop remote 
collision 
detection 
technology 
 

Yes (Smallwo
od and 
Thelande
r 2008) 

Birds Various Mortality 
and 
behavior 

Mortality 
relative to 
behavior; 
behavior 
relative to 
flock size, 
time, 
season, 
number of 
turbines 
operating 
 

Flew closer to 
turbines when not 
spinning; 
increasing 
mortalities with 
increasing flights 
through rotor zone; 
greater mortalities 
of some species 
with greater winds 

Declining 
population 

Synchronize 
turbine activity 
within turbine 
rows; maintain 
sufficient gaps 
between turbines; 
stop turbines 
during certain 
seasons and high 
winds 

Yes (Smallwo
od et al. 
2009b) 

Birds Various Mortality Energy 
capacity of 
turbines 

More mortalities at 
turbines with 
lower capacity 

Declining 
population 

Upgrade to newer 
and more 
powerful 
turbines; move 
turbines to areas 
with higher winds 

Yes (Smallwo
od et al. 
2010) 
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Birds Burrowin

g owl 
Mortality 
and 
behavior 

Behavior; 
rodent 
managemen
t activity; 
season; 
turbine type 

More mortalities 
Sept.-Dec., and at 
turbines in areas 
with rodent 
control, in areas 
with more rodents 
and near owl 
burrows; more 
mortalities at 
vertical axis 
turbines, tubular 
towers, and with 
slower moving and 
smaller turbines 

Declining 
population 

Terminate rodent 
control; install 
flight diverters; 
upgrade to newer, 
more powerful, 
and taller 
turbines; site 
turbines closer 
together; site 
turbines in areas 
where owls do 
not frequent; stop 
turbines during 
winter 
 

Yes (Smallwo
od et al. 
2007) 

Birds Burrowin
g owl 

Mortality Predicted 
likelihood 
of owl 
burrows 

More burrowing 
owl mortalities in 
areas with more 
burrows 

Declining 
population 

Upgrade to newer 
and more 
powerful turbines 
 

Yes (Smallwo
od et al. 
2009a) 

Birds Various Abundance Number of 
turbines; 
power of 
turbines; 
size of wind 
farm; time 
since 
operation 
 

Greater declines 
with low-power 
turbines; greater 
declines with 
longer operating 
times 

Decreased 
abundance 

Long-term 
monitoring post 
development 

Yes (Stewart 
et al. 
2007) 

Mammals Elk Home 
range size; 
forage 
quality 

Pre-
construction 
versus 
during 

No impact None Pre-development 
assessment to 
ensure 
infrastructure not 

Yes (Walter et 
al. 2006) 
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from 
pellets 

construction 
versus post-
construction 
of a wind 
farm 

built on areas 
with high quality 
forage 

Bats Various Nightly 
presence 

Wind speed 
and 
direction; 
moon 
illumination
; 
temperature; 
date 

Increased presence 
with low wind 
speed, higher 
temperature and 
greater moon 
illumination; 
highly variable by 
season with lowest 
activity during 
winter 

Declining 
population 

Deploy 
echolocation 
detectors to 
determine when 
changes in turbine 
operation will be 
beneficial 

Yes (Weller 
and 
Baldwin 
2012) 

         
Bioenerg
y 

        

 
Birds 

 
Various 

 
Nest site 
selection; 
nest 
success 

 
Clone type 
and 
diversity; 
year 

 
Selection by some 
species of certain 
clones; altered 
preference with 
time 
 

 
- 

 
Plant clones that 
support nesting 

 
Yes 

 
(Dhondt 
et al. 
2004) 

Birds Various Species 
richness; 
nest 
density; 
nest 
success 

Number of 
clones; 
proximity to 
forest; year; 
size; 
compared to 
richness in 
BBS 

Greater richness 
and nest density in 
larger and older 
plots; results 
similar to BBS; 
change in species 
composition over 
time  

- Plant larger plots 
to increase 
richness and nest 
success 

Yes (Dhondt 
et al. 
2007) 
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Birds Various Abundance

, density, 
diversity 

Crops likely 
to be used 
for biofuels 
vs. 
reference 
 

Lower abundance 
and diversity in 
crops, particularly 
row crops 

Decreasing 
abundance 
and 
diversity 

Replace row 
crops with 
perennials; 
harvest native 
prairies 

Yes (Fletcher 
et al. 
2010) 

Small 
mammals 

Various Abundance
, diversity, 
sex ratio, 
recruitment 

Treatment 
of post-
harvest 
coarse 
woody 
debris; 
presence of 
switchgrass 
in forest 
plots 

No impact on 
diversity, sex ratio, 
or recruitment; 
species specific 
abundance 
responses with 
invasive rodent 
more abundant in 
plots with 
switchgrass 
 

Decreased 
abundance 
of native 
rodent 

- No (Marshall 
et al. 
2012) 

Birds Various Species 
richness 

Low input 
high 
diversity 
crops 
(LIHD; e.g., 
hay, alfalfa, 
pasture 
land) vs. 
high input 
low 
diversity 
crops 
(HILD e.g., 
corn, soy) 
 

Increased richness 
with small 
amounts of HILD 
crops but decline 
with increasing 
proportion; greater 
richness with 
increase in LIHD 
crops 

Decreased 
abundance 

Plant low input 
high diversity 
crops 

Yes (Meehan 
et al. 
2010) 
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Birds Various Abundance 
and nest 
success 

Different 
levels of 
harvest in 
switchgrass 
field (fully 
harvested, 
partially 
harvested, 
unharvested
); width of 
harvested 
strips 
 

No impact of strip 
width; no overall 
impact on 
abundance; 
different impacts 
by species leading 
to altered species 
composition; 
greater nest 
success and lowest 
predation in 
unharvested fields;  

Decreased 
abundance 
for sensitive 
species; 
decreased 
reproductive 
output 

Maintain mosaic 
of harvested and 
unharvested crops 

Yes (Murray 
and Best 
2003) 

Birds and 
small 
mammals 

Various Species 
diversity 
and 
abundance 

Short-
rotation 
woody 
crops vs. 
reference 

Lower diversity 
and abundance of 
birds and 
mammals in crops; 
altered species 
composition for 
birds; effects 
decreased with 
time 
 

Decreased 
abundance 

- No (Riffell et 
al. 2011) 

Birds Various Species 
density, 
richness 
and 
abundance 

Type of 
potential 
crop (native 
prairie, 
switchgrass, 
corn); 
surrounding 
land cover; 
patch size; 
vegetative 

Greater species 
richness, 
abundance, and 
density in prairie 
and switchgrass 
than corn; positive 
relationship 
between patch size 
and richness, 
abundance, and 

Decreased 
abundance, 
richness, 
and 
diversity 

Plant perennial 
crops; harvest 
native prairies 

Yes (Robertso
n et al. 
2011b) 
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characteristi
cs (e.g., forb 
cover, litter 
density) 
 

density in prairie 
and switchgrass 
but not corn 

Birds Various Species 
richness; 
density; 
occurrence; 
abundance 

Switchgrass 
crops vs. 
native 
prairie; 
vegetative 
characteristi
cs (e.g., 
density, 
height); 
patch size 

Greater species 
richness in prairie; 
greater richness in 
larger patches; 
greater density and 
abundance with 
greater structural 
heterogeneity in 
vegetation 

Decreased 
abundance 
in 
switchgrass 
vs. native 
prairie and 
with certain 
vegetative 
characteristi
cs 
 

Implement 
harvest strategies 
that create within-
crop structural 
diversity; 
maintain mosaic 
of harvested and 
unharvested crops  

Yes (Robertso
n et al. 
2011a) 

Birds Various Bird 
richness 
and 
abundance 

Harvested 
fields vs. 
unharvested 
fields 

No change in 
abundance but 
altered community 
structure in 
harvested fields 

Decreased 
abundance 
of sensitive 
species 

Maintain mosaic 
of harvested and 
unharvested 
crops; delay 
harvest until after 
fledging 
 

Yes (Roth et 
al. 2005) 

Small 
mammals 

Red-
backed 
vole 
(Myodes 
gapperi) 

Abundance Post-
logging 
treatment of 
coarse 
woody 
debris 

Greater abundance 
with more coarse 
woody debris; 
greater abundance 
when debris 
pushed into piles 
or windrows 
 

Decreased 
abundance 
without 
mitigation 

Maintain coarse 
woody debris and 
put into piles or 
windrows 

Yes (Sullivan 
et al. 
2011) 

Birds; 
mammals

Various Species 
diversity 

Reference 
forest vs. 

Overall positive 
impact of thinning 

Decreased 
abundance 

Thin forests but 
develop species 

Yes (Verschu
yl et al. 



 
 

275 

; reptiles; 
amphibia
ns 

and 
abundance 

thinned 
forests 

on birds, mammals 
and reptiles; guild 
specific responses; 
no overall impact 
of thinning on 
amphibians but 
negative guild 
level responses; 
negative response 
with more 
intensively thinned 
plots 

of sensitive 
species 

and site-specific 
guidelines 

2011) 

Mammals White-
tailed deer 

Home 
range size; 
mean 
annual 
home range 
overlap 

Percent of 
crops in 
home range  

Percent of crops in 
home range 
increased over 
time; home range 
size decreased; 
high site fidelity 
 

Altered 
range use 
patterns 

- No (Walter et 
al. 
2009b) 

         
Solar         
 
Review 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
(Lovich 
and 
Ennen 
2011) 
 

Review - - - - - - - (Pimental 
2008) 
 

         
Geotherm
al 
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Review 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
(Pimental 
2008) 
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Table A1.2. Global peer-reviewed literature on the impacts of wind and bioenergy development 
on wildlife, excluding the United States and Canada. The country where the study took place, 
species and taxonomic group are reported for each sector.  No studies were found on the impacts 
of geothermal or solar energy, and oil and natural gas studies were excluded (see text above). 

Taxonomic group Common name Country Citation 
 

Wind 
 

   

Birds Various Spain (Barrios and 
Rodríguez 2004) 

Birds Egyptian vulture Spain (Carrete et al. 2009) 
Birds Griffon vulture Spain (Carrete et al. 2012) 
Birds White-tailed eagle Norway (Dahl et al. 2012) 
Birds Various Spain (de Lucas et al. 

2004) 
Birds and small 
mammals 

Various Spain (de Lucas et al. 
2005) 

Birds Various raptors Spain (de Lucas et al. 
2008) 

Birds Griffon vulture Spain (de Lucas et al. 
2012) 

Birds Various United 
Kingdom 

Devereux 2008- 
JAE 

Birds Red Grouse and Golden 
Plover 

United 
Kingdom 

(Douglas et al. 
2011) 

Birds Various Spain (Farfán et al. 2009) 
Birds Various Spain (Ferrer et al. 2012) 
Bats Pipistrellus pipistrellus, 

and Hypsugo savii 
Italy (Ferri et al. 2011) 

Mammals Reindeer Norway (Flydal et al. 2004) 
Birds Various Netherlands (Krijgsveld et al. 

2009) 
Birds Pink-footed geese Denmark (Larsen and Madsen 

2000) 
Birds White-tailed sea eagle Germany (Krone and 

Scharnweber 2003) 
Birds Pink-footed geese Denmark (Madsen and 

Boertmann 2008) 
Birds Eurasian griffon vulture Spain (Martinez-Abrain et 

al. 2012) 
Birds Golden Plover United 

Kingdom 
(Pearce-Higgins et 
al. 2008) 

Birds Various United 
Kingdom 

(Pearce-Higgins et 
al. 2009) 

Birds Various United 
Kingdom 

(Pearce-Higgins et 
al. 2012) 
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Bats various Meta-analysis (Rydell et al. 2010) 
Mammal and 
amphibians and 
reptiles 
 

Various Portugal (Santos et al. 2010) 

Birds Golden Eagle United 
Kingdom 

(Walker et al. 2005) 

    
Bioenergy    
Birds Various United 

Kingdom 
(Bellamy et al. 
2009) 

Birds and small 
mammals 

Various United 
Kingdom 

(Clapham and Slater 
2008) 

Birds Various Sweden (Berg 2002) 
Birds and reptiles and 
mammals 

Various Meta-analysis (Danielsen et al. 
2009) 

Birds Various Borneo (Edwards et al. 
2010) 

Birds Various United 
Kingdom 

(Fry and Slater 
2011) 

Small mammals Various Italy (Giordano and 
Meriggi 2009) 

Birds Various Borneo (Koh 2008) 
Birds Various Guatemala (Najera and 

Simonetti 2010) 
Birds Various United 

Kingdom 
(Sage et al. 2006) 

Birds Various United 
Kingdom 

(Sage et al. 2010) 

Birds and small 
mammals 

Various United 
Kingdom 

(Semere and Slater 
2007) 

Birds Various Malaysia (Sheldon et al. 2010) 
Birds Skylark Finland (Vepsalainen 2010) 
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APPENDIX 2 
 
 
 

QUANTIFYING ENERGY POTENTIAL BY ECOREGIONS 
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DESCRIPTION OF PROTOCOL 
 
 
 
We quantified the resource potential present in each ecoregion (Olson et al. 2001) for the 

continental United States, as this region had comprehensive spatial data on each of the five 

energy sectors reviewed.  We overlaid each ecoregion (Olson et al. 2001; Fig. A2.1F) with 

spatially explicit data on the resource potential for each of the 5 energy sectors: unconventional 

oil and natural gas, wind, bioenergy, solar, and geothermal.  For wind, bioenergy, solar, and 

geothermal, resource potential maps were downloaded from the National Renewable Energy 

Laboratory website (http://www.nrel.gov/gis/; Fig. A2.1B-E). We downloaded shapefiles 

representing the extent of unconventional oil and natural gas basins from the Energy Information 

Administration (http://www.eia.gov/pub/oil_gas/natural_gas/analysis_ 

publications/maps/maps.htm; Fig. A2.1A). In Arcmap 10.0 (Environmental Systems Research 

Incorporated, Redlands, CA), we used the Intersect and Zonal Statistics tools to quantify the 

resource potential overlap with each of the ecoregions.  Results of this analysis are presented in  
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FIGURES 
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Figure A2.1. Energy potential in the 48 contiguous United States for (A) unconventional oil and 
natural gas (geographic extent of basins), (B) wind energy (wind power class defined using 50 m 
wind speed; http://www.nrel.gov/gis/data_ wind.html), (C) bioenergy (tons / km2 / year biomass 
potential; http://www.nrel.gov/gis/data_biomass.html), (D) solar (kWh / year), and (E) 
geothermal (energy potential class; http://www.nrel.gov/gis/data_geothermal.html), and (F) 
ecoregions represented.  For A, basin extents are highlighted in gray.  For B-E lighter colors 
indicate greater energy potential.     
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APPENDIX 3 
 
 
 

SIMULATION OF LANDSCAPE COVARIATES USED IN CHAPTER 3 
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SIMULATION PROTOCOL 
 
 
 
To assess how resource selection function (RSF) coefficient estimates were  influenced by the 

interaction between spatial autocorrelation in environmental covariates and the size and spatial 

extent of the availability sample we fit RSFs to data simulated from environmental covariates 

that were themselves simulated as a Gaussian random field, using the grf function in the package 

'geoR': 

 𝒙 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝟎, Ʃ) 

 

(A.1) 

 
Ʃ𝑖𝑗 = 𝜎2𝑒�

−𝑑𝑖𝑗
𝜙 � 

 

(A.2) 

where 𝒙 is a simulated environmental covariate, Ʃ is a covariance matrix, 𝑑𝑖𝑗 is the distance 

between cells 𝑖 and 𝑗, and 𝜙 is the range parameter controlling the level of correlation among 

cells. At larger values of 𝜙 the landscape is more spatially autocorrelated, while small values 

produce a more random landscape (Fig. A3.1). We set 𝜎2 = 1 and varied 𝜙 from 0.001 to 100 

(0.001, 0.05, 1, 2.5, 5, 10, 20, 40, 100). Using these covariates we simulated used data as an 

inhomogeneous Poisson spatial point process, and fit RSFs with both matched and mismatched 

availability samples (see main text). Results are presented in Figures A3.2-A3.4. 

 The above analysis provided an assessment of how autocorrelation interacts with the size 

and spatial extent of the availability sample to influence RSF coefficient estimates for a 

continuous covariate. For binary covariates, the proportion of the landscape composed of that 

covariate also has the potential to influence this interaction. To examine this potential we again 

simulated environmental covariates as a Gaussian random field with 𝜙 parameters of 0.001 and 
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10. We then converted these covariates to binary covariates by selecting a threshold above which 

all values were converted to 1s and below which they were converted to 0s. We chose thresholds 

to simulate 2.5%, 25%, and 50% of the landscape being composed of the binary variable (Fig. 

A3.6). Using these covariates we simulated used data as an inhomogeneous Poisson spatial point 

process and fit RSFs with both matched and mismatched availability sample (see main text). 

Results are presented in Figure A3.6. 
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FIGURES 
 
 
 

 

Figure A3.1. Continuous environmental covariate simulated as a Gaussian random field, with 
varying 𝜙 parameters. 
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Figure A3.2. Coefficient estimator (black points) and 95% simulation envelopes (solid lines) 
from 500 RSF model iterations fit to data simulated from covariates generated as Gaussian 
random fields with varying 𝜙 parameters. Availability was drawn from the same spatial extent as 
use. Dashed lines represent the coefficient value from which the used data were simulated. 
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Figure A3.3.  Coefficient estimator (black points) and 95% simulation envelopes (solid lines) 
from 500 RSF model iterations fit to data simulated from covariates generated as Gaussian 
random fields with varying 𝜙 parameters. Availability was drawn from a different spatial extent 
as use. Dashed lines represent the coefficient value from which the used data were simulated. 
Approximately 600 used locations were simulated for each iteration. 
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Figure A3.4. Coefficient estimator (black points) and 95% simulation envelopes (solid lines) 
from 500 RSF model iterations fit to data simulated from covariates generated as Gaussian 
random fields with varying 𝜙 parameters. Availability was drawn from a different spatial extent 
as use. Dashed lines represent the coefficient value from which the used data were simulated. 
Approximately 6,000 used locations were simulated for each iteration. 
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Figure A3.5. Binary environmental covariate simulated as a Gaussian random field with 
𝜙 = 0.001 (A-C) or 𝜙 = 10 (D-F), and converted to a binary covariate composing 2.5% (A and 
D), 25 % (B and E) or 50% (C and F) of the landscape.  
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Figure A3.6. Coefficient estimator (black points) and 95% simulation envelopes (solid lines) 
from 500 RSF model iterations fit to data simulated from covariates generated as Gaussian 
random fields with 𝜙 = 0.001 (D-F) or 𝜙 = 10 (A-C and G-I), and converted to a binary 
covariate composing 2.5% (A, D & G), 25 % (B, E & H) or 50% (C, F & I) of the landscape. 
Availability was drawn from either the same spatial extent as use (A-C) or a greater spatial 
extent (D-I). Dashed lines represent the coefficient value from which the used data were 
simulated. Approximately 600 used locations were simulated at each iteration. 
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APPENDIX 4 
 
 
 

ENVIRONMENTAL COVARIATES USED IN RSF MODELING 
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Table A4.1.  Covariates, descriptions of covariates, pixel size, and source of data for environmental covariates used in habitat selection 
modeling 
Covariate Description Pixel 

Size (m) 
Data Source 

num_drill Number of drilling natural gas well 
pads within 800 m 

30 × 30 Colorado Oil and Gas Conservation Commission 
(http://cogcc.state.co.us/)  

num_prod Number of actively producing 
natural gas well pads within 800 m 

30 × 30 Colorado Oil and Gas Conservation Commission 
(http://cogcc.state.co.us/) 

elev Elevation (m) 30 × 30 United States Geological Survey seamless data warehouse 
(http://seamless.usgs.gov) 

heat Heat load index, a standardized 
index of incoming solar radiation, 
corrected for latitude (McCune and 
Keon 2002) 

30 × 30 Calculated from elevation layer, above using ArcMap 10 

slope Slope (degrees) 30 × 30 Calculated from elevation layer, above using ArcMap 10 
barren Non-vegetated land cover 30 × 30 Colorado Vegetation Classification Project 

(http://ndis.nrel.colostate.edu/coveg/) 
shrub Shrub land cover 30 × 30 Colorado Vegetation Classification Project 

(http://ndis.nrel.colostate.edu/coveg/) 
grass Grass land cover 30 × 30 Colorado Vegetation Classification Project 

(http://ndis.nrel.colostate.edu/coveg/) 
d_edge Distance to edge of treed land cover 30 × 30 Colorado Vegetation Classification Project 

(http://ndis.nrel.colostate.edu/coveg/), calculated using ArcMap 
10 

d_rds Distance to roads 30 × 30 United States Geological Survey seamless data warehouse 
(http://seamless.usgs.gov) 

traffic Traffic volume class of the nearest 
road 

30 × 30 J.M. Northrup, C.R. Anderson and G. Wittemyer unpublished 
data 

d_stream Distance to rivers and streams 30 × 30 Colorado Division of Water Resources 
(http://water.state.co.us/DataMaps/GISandMaps/Pages/GISDow
nloads.aspx) 
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APPENDIX 5 
 
 
 

RESULTS OF BASIC SIMULATIONS AND LOCATION-BASED AVAILABILITY 
 

SIMULATIONS IN CHAPTER 3 
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FIGURES 
 
 
 

 

 

Figure A5.1. Coefficient estimator (black points) and 95% simulation envelopes (solid lines) from 500 RSF model iterations as a 
function of availability sample size, with availability drawn from the same spatial extent as use, for high (A), medium (B) and low (C) 
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used sample sizes, and availability drawn from a greater spatial extent than use for high (D), medium (E), and low (F) used sample 
sizes. Dotted line represents the value used for simulation. Models were fit with logistic regression in all cases.  
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Figure A5.2. Continuous landscape covariates simulated as a Gaussian random field with 
low(𝜙 = 0.001), moderate (𝜙 = 10) or high (𝜙 = 100) autocorrelation, and expectations of the 
coefficients (black points) and 95% simulation envelopes (solid lines) from 500 RSF model 
iterations as a function of availability sample size. Used data were simulated within 100 meter 
buffers and models were fit with conditional logistic regression with availability drawn from the 
same or different (200 m buffers with identical centroids) spatial extents as use.  
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APPENDIX 6 
 
 
 

DETAILED DESCRIPTION OF WELL CLASSIFICATIONS 
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The Colorado Oil and Gas Conservation Commission data provide the location of every well 

drilled in the state, the current status of each well, and the dates drilling began (spud date), the 

date that drilling reached its deepest depth (total depth date), and the date that the well was 

completed (the test date). We first attempted to categorize each well into one of 3 classes for 

every day during which we had deer GPS data. Wells were classified as drilling on every day 

between the spud date and the test date. Wells were classified as producing on days after the test 

date until the well was listed as abandoned. Wells were listed as abandoned from the time their 

status was listed as abandoned. In several cases the status of the well could not be directly 

categorized as one of these three statuses, and instead had a status of temporarily abandoned, 

injection well (wells where fluids are injected underground), shut in (wells that have been drilled 

but are not producing natural gas), or waiting on completion (wells that have been drilled but not 

completed). These instances were infrequent, and typically it was impossible to determine the 

date of any activity associated with the well as listed dates were prior to the onset of the study or 

were missing. In light of these difficulties, we categorized all of these wells as producing. In 

addition to the above statuses, the COGCC database includes a number of records for permitted 

locations that were never drilled. To ensure that these classifications were accurate we overlaid 

the well data with aerial imagery from the National Agriculture Imagery Program (NAIP) to 

assess if these records were indeed abandoned locations or if there was evidence of disturbance.  
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APPENDIX 7 
 
 
 

OVERLAPPING BUFFERS ANALYSIS, MODEL STRUCTURES AND RESULTS OF ALL 
 

FITTED MODELS FROM CHAPTER 4 
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In addition to the single model structure discussed in the main text, where the number of well 

pads within concentric buffers was analyzed, we also fit a set of models including covariates for 

the number of well pads within overlapping buffers (Table A7.1). For this analysis we created 8 

separate covariates representing active natural gas development. We first calculated the distance 

to the closest well pad classified as either drilling or producing (d_drill and d_prod respectively). 

We next calculated the number of well pads of each type falling within buffers of different sizes 

(400 m; drill_400_2 and prod_400_2, 600 m; drill_600_2 and prod_600_2, and 800 m; 

drill_800_2 and prod_800_2). These 8 variables (continuous distance and the four buffers) 

represent separate hypotheses for the scale and nature of mule deer responses to well pads. 

Model fitting proceeded as in the main text but the total number of iterations for which 

algorithms were run and the number of iterations removed as burn-in varied by model (Table 

A7.1). We compared models using the Watanabe-Akaike Information Criteria (Watanabe 2010,  

see Hooten and Hobbs 2014 for a discussion of applications in ecology). 

 
 
 
 
 
 
 
 
 
 



 
 

302 

TABLES 
 
 
 
Table A7.1. Model numbers, covariates included in each model, Watanabe-Akaike Information Criteria (WAIC), total MCMC 
iterations, and burn-in for resource selection functions fit to GPS radio collar data from 53 adult female mule deer in the Piceance 
Basin winter range, Northwest Colorado, Jan 2008—Dec 2010.  
Model Covariates WAIC Total iterations Burn-in 

Night     

M1 d_edge  + slope +elev +d_rds +d_rds2 +prod_800_2  +drill_800_2  + tree 218,163.50 200,000 50,000 

M2 d_edge  + slope +elev + d_rds + d_rds2 +prod_600_2 +drill_600_2  + tree 219,770.30 200,000 50,000 

M3 d_edge  + slope +elev + d_rds + d_rds2 +prod_400_2  +drill_400_2  + 

tree 219,601.10 

400,000 100,000 

M4 d_edge  + slope +elev + d_rds + d_rds2 +d_prod + d_prod2 + d_drill + 

d_drill2 + tree 251,666.30 

1,800,000 700,000 

     

Day     

M1 d_edge  + slope +elev + d_rds + d_rds2 +prod_800_2  +drill_800_2  + 

tree 227,247.40 

200,000 50,000 

M2 d_edge  + slope +elev + d_rds + d_rds2 +prod_600_2 +drill_600_2  + tree 226,333.10 200,000 50,000 
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M3 d_edge  + slope +elev + d_rds + d_rds2 +prod_400_2  +drill_400_2  + 

tree 225,421.00 

400,000 50,000 

M4 d_edge  + slope +elev + d_rds + d_rds2 +d_prod + d_prod2 + d_drill + 

d_drill2 + tree 239,439.00 

1,800,000 700,000 
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Table A7.2. Covariates, median coefficient values, and the proportion (prop.) of the posterior 
falling above or below 0 for resource selection function models, fit to separate night and day 
GPS radio collar data from 53 adult female mule deer in the Piceance Basin winter range, 
Northwest Colorado, Jan 2008—Dec 2010. 
Covariate Median Prop. < 0 Prop. > 0 
Night    
M1    
d_edge 0.11 0.00 1.00 
slope 0.18 0.00 1.00 
elev 0.90 0.00 1.00 
d_rds -0.36 1.00 0.00 
d_rds2 -0.45 1.00 0.00 
prod_800_2 0.07 0.14 0.86 
drill_800_2 -0.36 0.99 0.01 
tree -0.29 1.00 0.00 
    
M2    
d_edge 0.11 0.00 1.00 
slope 0.17 0.00 1.00 
elev 0.85 0.00 1.00 
d_rds -0.38 1.00 0.00 
d_rds2 -0.47 1.00 0.00 
prod_600_2 -0.05 0.77 0.23 
drill_600_2 -0.58 1.00 0.00 
tree -0.28 1.00 0.00 
    
M3    
d_edge 0.11 0.00 1.00 
slope 0.17 0.00 1.00 
elev 0.81 0.00 1.00 
d_rds -0.40 1.00 0.00 
d_rds2 -0.47 1.00 0.00 
prod_400_2 -0.21 0.99 0.01 
drill_400_2 -0.78 1.00 0.00 
tree -0.28 1.00 0.00 
    
M4    
d_edge 0.11 0.00 1.00 
slope 0.17 0.00 1.00 
elev 1.07 0.00 1.00 
d_rds -0.37 1.00 0.00 
d_rds2 -0.45 1.00 0.00 
d_prod -0.67 1.00 0.00 
d_prod2 -0.63 1.00 0.00 
d_drill -1.51 1.00 0.00 
d_drill2 -1.37 1.00 0.00 
tree -0.29 1.00 0.00 
    
Day    
M1    
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d_edge -0.18 1.00 0.00 
slope 0.06 0.00 1.00 
elev 0.65 0.00 1.00 
d_rds 0.19 0.00 1.00 
d_rds2 -0.30 1.00 0.00 
prod_800_2 -0.12 0.98 0.02 
drill_800_2 -0.18 0.99 0.01 
tree 0.08 0.01 0.99 
    
M2    
d_edge -0.18 1.00 0.00 
slope 0.05 0.01 0.99 
elev 0.63 0.00 1.00 
d_rds 0.16 0.00 1.00 
d_rds2 -0.32 1.00 0.00 
prod_600_2 -0.23 1.00 0.00 
drill_600_2 -0.50 1.00 0.00 
tree 0.08 0.01 0.99 
    
M3    
d_edge -0.18 1.00 0.00 
slope 0.05 0.01 0.99 
elev 0.61 0.00 1.00 
d_rds 0.16 0.00 1.00 
d_rds2 -0.30 1.00 0.00 
prod_400_2 -0.36 1.00 0.00 
drill_400_2 -0.84 1.00 0.00 
tree 0.09 0.00 1.00 
    
M4    
d_edge -0.17 1.00 0.00 
slope 0.05 0.01 0.99 
elev 0.73 0.00 1.00 
d_rds 0.18 0.00 1.00 
d_rds2 -0.27 1.00 0.00 
d_prod -0.21 0.90 0.10 
d_prod2 -0.55 1.00 0.00 
d_drill 0.13 0.33 0.67 
d_drill2 -0.88 1.00 0.00 
tree 0.08 0.01 0.99 
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FIGURES 
 
 
 

 

Figure A7.1. Predicted relative probability of selection as a function of distance to well pads actively producing natural gas in meters 
from resource selection function models fit to 53 adult female mule deer in the Piceance Basin, Colorado, USA. The left panel is for 
the model from the day time and the right panel for the model from the night. Solid lines represent median posterior predicted values 
and dashed lines represent the 95% credible intervals.  
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Figure A7.2. Predicted relative probability of selection as a function of distance to well pads with active drilling in meters from 
resource selection function models fit to 53 adult female mule deer in the Piceance Basin, Colorado, USA. The left panel is for the 
model from the day time and the right panel for the model from the night. Solid lines represent median posterior predicted values and 
dashed lines represent the 95% credible intervals.  
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Figure A7.3. Results of posterior predictive check on day time RSF model with concentric 
buffers fit to winter range GPS data from 53 female mule deer. X-axis represents the proportion 
of available locations that were predicted to be selected at a lower probability than the used 
locations. 
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Figure A7.4. Results of posterior predictive check on night time RSF model with concentric 
buffers fit to winter range GPS data from 53 female mule deer. X-axis represents the proportion 
of available locations that were predicted to be selected at a lower probability than the used 
locations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

310 

APPENDIX 8 
 
 
 

MULE DEER CAPTURE DATA FOR DEER USED IN CHAPTER FIVE 
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Table A8.1. Deer unique identifiers (ID), the study area in which they were captured, the date of 
first capture, and number of summers and winters with complete datasets that could be used for 
estimating ranges of adult female mule deer in the Piceance Basin of Northwest Colorado, USA.  
Deer 
ID 

Study areaa Date of first 
capture 

# summers of complete 
data 

# winters of 
complete data 

NR110 NR December 2012 NA 1 
NR111 NR December 2012 NA 1 
NR44 NR March 2010 NA 1 
NR45 NR March 2010 NA 2 
NR47 NR March 2010 NA 3 
NR48 NR March 2010 NA 3 
NR51 NR March 2010 NA 1 
NR70 NR December 2010 NA 3 
NR71 NR December 2010 NA 2 
NR74 NR December 2010 NA 2 
NR75 NR December 2010 NA 1 
NR79 NR March 2011 NA 1 
RG1 RG March 2010 3 3 
RG100 RG March 2012 2 1 
RG101 RG December 2012 1 1 
RG102 RG December 2012 1 1 
RG103 RG December 2012 1 1 
RG104 RG December 2012 1 1 
RG105 RG December 2012 1 1 
RG106 RG December 2012 0 1 
RG13 RG March 2010 3 3 
RG15 RG March 2010 2 3 
RG19 RG March 2010 3 3 
RG24 RG March 2010 3 3 
RG25 RG March 2010 0 1 
RG3 RG March 2010 3 3 
RG4 RG December 2010 3 3 
RG5 RG March 2010 2 3 
RG65 RG December 2010 2 3 
RG66 RG December 2010 1 1 
RG67 RG December 2010 1 1 
RG68 RG December 2010 1 1 
RG69 RG December 2010 1 1 
RG7 RG March 2010 0 3 
RG70 RG December 2010 1 2 
RG71 RG December 2010 3 3 
RG72 RG December 2010 3 3 
RG73 RG December 2010 3 3 
RG74 RG December 2010 3 3 
RG75 RG December 2010 3 3 
RG76 RG December 2010 3 3 
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RG77 RG December 2010 3 3 
RG78 RG December 2010 3 3 
RG79 RG December 2010 3 3 
RG8 RG March 2010 1 1 
RG80 RG December 2010 3 3 
RG82 RG December 2010 3 3 
RG83 RG December 2010 3 3 
RG84 RG December 2010 3 3 
RG85 RG December 2010 2 3 
RG86 RG December 2010 1 1 
RG87 RG December 2010 2 2 
RG89 RG December 2010 3 3 
RG9 RG December 2010 2 2 
RG90 RG December 2010 3 3 
RG91 RG December 2010 2 2 
RG94 RG December 2011 2 2 
RG95 RG December 2011 2 2 
RG96 RG December 2011 1 1 
RG98 RG March 2012 2 1 
RG99 RG March 2012 1  0 
aNR refers to the North Ridge study area, while RG refers to the Ryan Gulch study area (Fig. 5.1 
in main text). 
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APPENDIX 9 
 
 
 

ANALYSIS OF SENSITIVITY OF UTILIZATION DISTRIBUTIONS TO SAMPLING  
 

INTERVAL AND CELL SPACING 
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Although the continuous-time correlated random walk (CTCRW) model described by Johnson et 

al. (2008a, 2008b) is continuous in both time and space, to develop utilization distributions from 

these models in practice requires discrete sampling in both dimensions. To ensure that these 

discrete representations accurately represented the continuous process we assessed the sensitivity 

of our analysis to variation in the time between predicted animal locations and the size of the 

grid over which we estimated the utilization distribution. We chose the overlap in consecutive 

year's ranges as the metric over which we would assess sensitivity. We first chose 100 animal 

locations from two separate years that were broadly overlapping in space. We fit the CTCRW 

model (Johnson et al. 2008a) to both datasets and estimated locations at every 2.5 seconds, 5 

seconds, 10 seconds, 30 seconds, 1 minute, 2 minutes, 3 minutes, 5 minutes, and 10 minutes. We 

then predicted the probability of being at any point on a grid of points spaced 5 meters apart, 

calculated the overlap between the two years of data and examined the difference in the overlap 

value across time scales (Fig. A9.1). Using only 100 locations the computer time required to 

create the utilization distributions was substantial at the finer time scales (several hours at 2.5 

seconds between locations). Thus, we attempted to balance computer time with accuracy of the 

representation of the utilization distribution and selected the 1 minute time scale to use in further 

assessment of the sensitivity of the utilization distributions to the size of the grid over which they 

were calculated (Fig. A9.1).  

 To assess the sensitivity of the utilization distributions to the size of the grid over which 

they were calculated we next estimated the utilization distributions over grids with varying 

distances between points (0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 10, 20 and 30 meters). This analysis 

showed that at a grid size of 5 m or less there was less than a 5% difference between the overlap 

values (Table A9.1).  
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 To further assess the sensitivity of the utilization distributions to the size of the grid we 

estimated utilization distributions for two full winter seasons for a single deer. We fit the 

CTCRW model as above and estimated locations every minute. We then attempted to estimate 

the utilization distribution over the same grid sizes as above. At grid sizes of less than 1 m the 

computation time became prohibitive (greater than 1 day). Thus we assessed the sensitivity of 

the overlap in utilization distributions to a reduced set of grid sizes (Table A9.2). 

 The results of the above analyses allowed us to make a decision concerning the tradeoff 

between computation time and accuracy of the approximation of the continuous process. We 

decided that predicting locations every minute and estimating the utilization distribution over a 5 

m grid was the optimal set of conditions. We note that these conditions still required substantial 

computational time. To fit all models and estimate all utilization distributions required over 1 

month of processing time on the Colorado State University ISTeC Cray High Performance 

Computing System, a supercomputer housed at Colorado State University.  
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TABLES 
 
 
 
Table A9.1. Grid cell size, resulting overlap value and the percent difference between the 
calculated overlap value and that calculated on the grid with the smallest cell size for utilization 
distributions calculated for 100 locations from consecutive years of mule deer data in the 
Piceance Basin Northwest Colorado.   
Cell size Overlap value Percent difference from smallest grid 

0.05 0.194 0 

0.1 0.194 <0.001 

0.5 0.194 0.002 

1 0.195 0.006 

2 0.196 0.01 

3 0.198 0.021 

4 0.2 0.031 

5 0.202 0.043 

10 0.213 0.09 

20 0.269 0.281 

30 0.311 0.378 
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Table A9.2. Grid cell size, resulting overlap value and percent difference between the calculated 
overlap value and that calculated on the grid with the smallest cell size for utilization 
distributions calculated for two complete winter seasons from consecutive years of mule deer 
data in the Piceance Basin Northwest Colorado.   
Cell size Overlap value Percent difference from smallest grid 

1 0.373 0 

2 0.378 0.014 

5 0.384 0.028 

10 0.384 0.028 

20 0.387 0.036 

30 0.367 -0.017 
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FIGURES 
 
 
 

 

Figure A9.1. Results of analysis assessing sensitivity of overlap in utilization distributions to the 
time between predicted animal locations assessed using the continuous time correlated random 
walk model. 
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APPENDIX 10 
 
 
 

COVARIATES USED IN REGRESSION MODELS AND DESCRIPTION OF THEIR  
 

DERIVATION 
 
 
 



 
 

320 

NATURAL GAS WELL PADS 
 
 
 
To obtain information on natural gas activity we downloaded publicly available data from the 

Colorado Oil and Gas Conservation Commission website (http://cogcc.state.co.us/). These data 

provide the location of every well drilled in the state, the current status of each well, and the 

dates drilling began (spud date), the date that drilling reached its deepest depth (total depth date), 

and the date that the well was completed (the test date). We first categorized each well into one 

of 4 classes for every day between March 1, 2010 and December 1, 2013. Wells were classified 

as drilling on every day between one week prior to the spud date and one week after the total 

depth date (one week was an arbitrary time added to account for moving the substantial amount 

of equipment required for drilling onto and off of the pad). Wells were classified as being 

between the drilling phase and producing phase on days between one week after the total depth 

date and the test date. Wells were classified as producing on days after the test date until the well 

was listed as abandoned. Wells were listed as abandoned from the time their status was listed as 

abandoned. In addition to these four statuses the COGCC database includes a number of records 

for permitted locations that were never drilled. To ensure that these classifications were accurate 

we overlaid the well data with aerial imagery from the National Agriculture Imagery Program 

(NAIP) to assess if these records were indeed abandoned locations or if there was evidence of 

disturbance. We next overlaid all remaining records that were classified as abandoned, 

producing, drilling or in the completion phase with the NAIP imagery to group wells onto well 

pads. We then classified each well pad by the status of the well undergoing the most intensive 

process for every day of the study period. Thus a pad was only classified as producing if all wells 

on the pad were producing or abandoned, was classified as between drilling and producing if any 
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wells were in this phase and all other wells were either producing or abandoned, and was 

classified as drilling if any wells were being drilled. 

 

SNOW DEPTH 
 
 
 
We predicted snow depth using a spatially distributed snow-evolution modeling system designed 

for fine spatial and temporal scale snow modeling, called SnowModel (Liston and Elder 2006). 

This model takes inputs of land cover type, elevation, latitude, temperature, relative humidity, 

precipitation, wind speed and direction and can predict snow depth at time scales as fine as 10 

minutes, and spatial scales as small as 1 m. This model accounts for numerous factors 

influencing snow depth, including sublimation, redistribution from blowing snow, forest canopy 

interception, snow density evolution, and snowpack melt (Liston and Elder 2006).  We obtained 

freely available meteorological data from 14 weather stations near our study area (data obtained 

from http://www.nohrsc.noaa.gov/interactive/html/map.html and 

http://www.wcc.nrcs.usda.gov/snotel/Colorado/colorado.html). We used these data to predict 

snow depth at a daily time scale over a 30 × 30 m cell size between October 1 and May 31 of 

every year of the sampling period.  During the first two years of the study (winters 2011 and 

2012) we placed 4 measuring stakes at locations in the study area and opportunistically measured 

the snow depth at these stakes. During winter 2013 we deployed two weather stations equipped 

with ultrasonic depth sensors (Judd Communications LLC, Salt Lake City UT, USA) which 

provided daily snow depth measurements. The snow stake and ultrasonic depth measurements 

were used to assess the performance of the SnowModel and to adjust input values of 

precipitation to best match on-the-ground measurements.  
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ROAD NETWORK 
 
 
 
To characterize the road network we digitized all roads in the study area using the NAIP imagery 

from both 2011 and 2013. There were few new roads built in the area between these years, and 

with no imagery available in 2012 we chose to create a single road network layer representing 

conditions during the summer of 2013. This area receives little traffic other than that associated 

with natural gas development, though during the fall hunting seasons (September through 

November) traffic increases. Thus we further classified the road network into primary and 

secondary roads. Primary roads included all major thoroughfares (based on width), and all roads 

leading to well pads. Secondary roads included all roads that appeared to be two tracks, trails or 

little traveled roadways, based on their appearance in the NAIP imagery.  
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TABLES 
 
 
 
Table A10.1. Names, descriptions, sources, pixel size (when available), and the unit of time over which the covariates were available 
for covariates used in regression models examining range size and bi-annual range overlap for summer and winter ranges of female 
mule deer in the Piceance Basin of Northwest Colorado, USA.  
Covariate Description Source Pixel size Time scale 
Environmental      
tree Proportion of range comprised of treed land 

cover 
Colorado Vegetation Classification 
Project 
(http://ndis.nrel.colostate.edu/coveg/) 

25 m  × 25 
m 

NA 

TRI Terrain ruggedness index. Squared difference 
between elevation in each cell and 8 neighbors 
averaged over entire range 

DEM from http://seamless.usgs.gov 30 m  × 30 
m 

 

avg_NDVI Normalized difference vegetation index 
(NDVI) averaged over area and time period of 
range 

Calculated from layers available at 
http://www.vito-eodata.be/ 

1 km × 1 km Every 10 
days 

peak_NDVI Maximum value of NDVI averaged over the 
area of the range for every 10 day period 

Calculated from layers available at 
http://www.vito-eodata.be/ 

1 km × 1 km Every 10 
days 

snow_total Total winter snow fall summed for each pixel 
and averaged over entire range 

See above 30 × 30 m Daily 

snow_avg Average winter snow fall per pixel and 
averaged over entire range 

See above 30 × 30 m Daily 

     
Anthropogenic     
rd_dens_all Density of all roads within range See above NA NA 
rd_dens_major Density of all primary roads within range See above NA NA 
dens_prod Density of well pads with producing wells 

only 
See above NA Daily 

dens_drill Density of well pads with wells being actively 
drilled 

See above NA Daily 

dens_pipe Density of pipelines Bureau of Land Management  NA Annual 
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dens_fac Density of compressor stations, natural gas 
plants, and other industrial facilities 

See above NA Annual 

     
Individual     
fat Percent ingesta-free body fat Measured during capture NA Annual 
Age Age of deer at capture Measured during capture NA Annuala 
     
Area-specific     
density Mule deer density (deer km-1) (Anderson and Bishop 2012, 

Anderson Jr. 2014)  
NA Annual 

aWhile age varied by year, when assessing overlap a difference in age was not calculated. Rather the age covariate was calculated as 
the average age between the two years of interest.  
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APPENDIX 11 
 
 
 

MODEL STRUCTURES AND FORMULATION AND RESULTS TABLES FOR CHAPTER 5 
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The range size regression was conducted using gamma regression with intercepts varying by 

individual. The model for this analysis took the following form: 

𝑦𝑖𝑗 ∼ 𝑔𝑎𝑚𝑚𝑎(𝛾,𝜔𝑖𝑗 ) 

𝛾 ∼ 𝑔𝑎𝑚𝑚𝑎(0.0001, 0.0001) 

𝜔𝑖𝑗 =
𝛾
𝜇𝑖𝑗

 

𝜇𝑖𝑗 = 𝑒𝛼𝑗+𝒙𝒊
′𝜷+𝑓𝑎𝑡𝑡𝑟𝑢𝑒𝑖

′ 𝛾 

𝛼𝑗 ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝛼,𝜎𝛼2) 

𝜇𝛼 ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(0, 1000) 

𝜎𝛼2 =
1
√𝜏

 

𝜏 ∼ 𝑔𝑎𝑚𝑚𝑎(0.0001, 0.0001) 

𝜷 ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(𝟎, 1000I) 

𝑓𝑎𝑡𝑡𝑟𝑢𝑒𝑖 ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(𝑓𝑎𝑡𝑜𝑏𝑠𝑖 , 1.471) 

 

The range overlap regression was conducted using beta regression with intercepts varying by 

individual. The model for this analysis took the following form: 

𝑦𝑖𝑗 ∼ 𝑏𝑒𝑡𝑎(𝑎𝑖𝑗, 𝑏𝑖𝑗) 

𝑎𝑖𝑗 = 𝜙𝜇𝑖𝑗 

𝑏𝑖𝑗 = �1 − 𝜇𝑖𝑗�𝜙 

𝜇𝑖𝑗 =
𝑒𝛼𝑗+𝒙𝒊

′𝜷+𝑓𝑎𝑡𝑡𝑟𝑢𝑒𝑖
′ 𝛾

1 + 𝑒𝛼𝑗+𝒙𝒊
′𝜷+𝑓𝑎𝑡𝑡𝑟𝑢𝑒𝑖

′ 𝛾
 

𝜙 ∼ 𝑔𝑎𝑚𝑚𝑎(0.0001, 0.0001) 

𝛼𝑗 ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝛼,𝜎𝛼2) 
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𝜇𝛼 ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(0, 1000) 

𝜎𝛼2 =
1
√𝜏

 

𝜏 ∼ 𝑔𝑎𝑚𝑚𝑎(0.0001, 0.0001) 

𝜷 ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(𝟎, 1000I) 

𝑓𝑎𝑡𝑡𝑟𝑢𝑒𝑖 ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(𝑓𝑎𝑡𝑜𝑏𝑠𝑖 , 1.471) 



 
 

328 

TABLES 
 
 
 
Table A11.1. Model numbers, structure, Watanabe-Akaike Information Criteria value (WAIC) 
and effective number of parameters (PD) for gamma regression models fit to the size of the 99 
percent highest density ranges during summer for female mule deer in the Piceance Basin of 
Northwest Colorado.  
Model Model structure WAIC PD 

M1 tree + dens_pipe + rd_dens_all +TRI + avg_NDVI + fat + 

age 2810.04 54.74 

M2 tree + dens_pipe + rd_dens_all +TRI + peak_NDVI + fat 

+ age 2806.89 53.66 

M3 tree + dens_pipe + rd_dens_major +TRI + avg_NDVI + 

fat +age 2820.88 58.86 

M4 tree + dens_pipe + rd_dens_major +TRI + peak_NDVI + 

fat + age 2819.41 58.68 
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Table A11.2. Covariates, median coefficient estimates and proportion of posteriors falling above 
and below 0 for gamma regression models fit to the size of the 99 percent highest density ranges 
during summer for female mule deer in the Piceance Basin of Northwest Colorado.  

M1    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept 14.12 0 1 
tree -0.06 0.82 0.18 

dens_pipe 0.06 0.15 0.85 
rd_dens_all 0.02 0.37 0.63 

TRI -0.10 0.94 0.06 
avg_NDVI -0.05 0.86 0.14 

fat 0.04 0.00 1.00 
age -0.08 0.92 0.08 

    
M2    

Covariate Median Prop. below 0 Prop. above 0 
Overall intercept 14.12 0 1 

tree -0.06 0.82 0.18 
dens_pipe 0.05 0.17 0.83 

rd_dens_all 0.02 0.37 0.63 
TRI -0.10 0.94 0.06 

peak_NDVI -0.06 0.88 0.12 
fat 0.04 0.00 1.00 
age -0.08 0.92 0.08 

    
M3    

Covariate Median Prop. below 0 Prop. above 0 
Overall intercept 14.08 0 1 

tree -0.05 0.77 0.23 
dens_pipe 0.09 0.08 0.93 

rd_dens_major -0.06 0.78 0.22 
TRI -0.12 0.98 0.02 

avg_NDVI -0.06 0.88 0.12 
fat 0.05 0.00 1.00 
age -0.08 0.94 0.06 

    
M4    

Covariate Median Prop. below 0 Prop. above 0 
Overall intercept 14.10 0 1 

tree -0.05 0.79 0.21 
dens_pipe 0.09 0.09 0.91 

rd_dens_major -0.06 0.78 0.22 
TRI -0.13 0.97 0.03 

peak_NDVI -0.06 0.90 0.10 
fat 0.05 0.00 1.00 
age -0.08 0.93 0.07 
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Table A11.3. Model numbers, structure, Watanabe-Akaike Information Criteria value (WAIC) 
and effective number of parameters (PD) for gamma regression models fit to the size of the 50 
percent highest density ranges during summer for female mule deer in the Piceance Basin of 
Northwest Colorado.  
Model Model structure WAIC PD 

M1 tree + dens_pipe + rd_dens_all +TRI + avg_NDVI + fat + 

age 

2364.66 56.27 

M2 tree + dens_pipe + rd_dens_all +TRI + peak_NDVI + fat 

+ age 

2366.08 56.96 

M3 tree + dens_pipe + rd_dens_major +TRI + avg_NDVI + 

fat + age 

2363.77 55.42 

M4 tree + dens_pipe + rd_dens_major +TRI + peak_NDVI + 

fat + age 

2363.98 55.79 
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Table A11.4. Covariates, median coefficient estimates and proportion of posteriors falling above 
and below 0 for gamma regression models fit to the size of the 50 percent highest density ranges 
during summer for female mule deer in the Piceance Basin of Northwest Colorado.  

M1    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept 12.04 0.00 1.00 
tree 0.03 0.27 0.73 

dens_pipe -0.06 0.95 0.05 
rd_dens_all 0.06 0.10 0.90 

TRI -0.07 0.90 0.10 
avg_NDVI -0.07 0.98 0.02 

fat 0.03 0.00 1.00 
age -0.06 0.92 0.08 

    
M2    

Covariate Median Prop. below 0 Prop. above 0 
Overall intercept 12.05 0.00 1.00 

tree 0.02 0.31 0.69 
dens_pipe -0.06 0.96 0.04 

rd_dens_all 0.06 0.07 0.93 
TRI -0.07 0.92 0.08 

peak_NDVI -0.06 0.96 0.04 
fat 0.03 0.00 1.00 
age -0.06 0.90 0.10 

    
M3    

Covariate Median Prop. below 0 Prop. above 0 
Overall intercept 12.05 0.00 1.00 

tree 0.03 0.24 0.77 
dens_pipe -0.07 0.93 0.07 

rd_dens_major 0.03 0.24 0.76 
TRI -0.08 0.95 0.05 

avg_NDVI -0.07 0.98 0.02 
fat 0.03 0.00 1.00 
age -0.06 0.93 0.07 

    
M4    

Covariate Median Prop. below 0 Prop. above 0 
Overall intercept 12.05 0.00 1.00 

tree 0.03 0.27 0.73 
dens_pipe -0.07 0.94 0.06 

rd_dens_major 0.04 0.19 0.81 
TRI -0.08 0.96 0.04 

peak_NDVI -0.06 0.96 0.04 
fat 0.03 0.00 1.00 
age -0.06 0.92 0.08 
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Table A11.5. Model numbers, structure, Watanabe-Akaike Information Criteria value (WAIC) 
and effective number of parameters (PD) for gamma regression models fit to the size of the 99 
percent highest density ranges during winter for female mule deer in the Piceance Basin of 
Northwest Colorado.  
Model Model structure WAIC PD 

M1 TRI + avg_NDVI + tree + dens_pipe + rd_dens_all + 

snow_avg + fat + age + density + density 

4169.91 114.42 

M2 TRI + peak_NDVI + tree + dens_pipe + rd_dens_all + 

snow_avg + fat + age + density 

4182.28 120.53 

M3 TRI + avg_NDVI + tree + dens_pipe + rd_dens_all + 

snow_total + fat + age + density 

4157.05 107.56 

M4 TRI + peak_NDVI + tree + dens_pipe + rd_dens_all + 

snow_total + fat + age + density 

4173.32 115.58 

M5 TRI + avg_NDVI + tree + rd_dens_major + snow_avg + fat + 

age + density 

4222.72 141.73 

M6 TRI + peak_NDVI + tree + rd_dens_major + snow_avg + fat + 

age + density 

4245.74 152.75 

M7 TRI + avg_NDVI + tree + rd_dens_major + snow_total + fat + 

age + density 

4208.75 135.07 

M8 TRI + peak_NDVI + tree + rd_dens_major + snow_total + fat 

+ age + density 

4226.75 143.21 
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Table A11.6. Covariates, median coefficient estimates and proportion of posteriors falling above 
and below 0 for gamma regression models fit to the size of the 99 percent highest density ranges 
during winter for female mule deer in the Piceance Basin of Northwest Colorado.  

M1    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept 15.41 0.00 1.00 
TRI -0.23 1.00 0.00 

avg_NDVI -0.06 0.92 0.08 
tree 0.12 0.04 0.96 

dens_pipe -0.16 0.99 0.02 
rd_dens_all 0.04 0.25 0.75 
snow_avg 0.01 0.43 0.57 

fat 0.01 0.26 0.74 
age -0.04 0.83 0.17 

density -0.18 0.99 0.02 
    

M2    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept 15.43 0.00 1.00 
TRI -0.23 1.00 0.00 

peak_NDVI -0.05 0.89 0.11 
tree 0.13 0.04 0.96 

dens_pipe -0.15 0.98 0.02 
rd_dens_all 0.04 0.30 0.70 
snow_avg 0.04 0.24 0.76 

fat 0.01 0.33 0.67 
age -0.05 0.84 0.16 

density -0.16 0.97 0.03 
    

M3    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept 15.41 0.00 1.00 
TRI -0.21 0.99 0.01 

avg_NDVI -0.05 0.87 0.13 
tree 0.12 0.05 0.95 

dens_pipe -0.16 0.99 0.01 
rd_dens_all 0.04 0.26 0.74 
snow_total 0.06 0.19 0.81 

fat 0.01 0.24 0.77 
age -0.04 0.81 0.19 

density -0.21 1.00 0.00 
    

M4    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept 15.42 0.00 1.00 
TRI -0.21 0.99 0.01 
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peak_NDVI -0.05 0.86 0.14 
tree 0.13 0.04 0.96 

dens_pipe -0.15 0.99 0.01 
rd_dens_all 0.04 0.26 0.74 
snow_total 0.08 0.09 0.91 

fat 0.01 0.27 0.73 
age -0.04 0.84 0.16 

density -0.20 0.99 0.01 
    

M5    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept 15.37 0.00 1.00 
TRI -0.20 1.00 0.00 

avg_NDVI -0.06 0.95 0.05 
tree 0.12 0.04 0.96 

rd_dens_major -0.15 0.99 0.01 
snow_avg 0.03 0.34 0.66 

fat 0.01 0.17 0.83 
age -0.03 0.75 0.25 

density -0.19 0.99 0.01 
    

M6    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept 15.39 0.00 1.00 
TRI -0.20 1.00 0.00 

peak_NDVI -0.06 0.91 0.09 
tree 0.13 0.03 0.97 

rd_dens_major -0.15 1.00 0.01 
snow_avg 0.06 0.18 0.83 

fat 0.01 0.20 0.80 
age -0.04 0.79 0.21 

density -0.17 0.98 0.02 
    

M7    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept 15.37 0.00 1.00 
TRI -0.19 0.99 0.01 

avg_ndvi -0.05 0.86 0.14 
tree 0.13 0.04 0.97 

rd_dens_major -0.16 0.99 0.01 
snow_total 0.07 0.16 0.84 

fat 0.01 0.17 0.83 
age -0.03 0.76 0.24 

density -0.22 1.00 0.00 
    

M8    
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Covariate Median Prop. below 0 Prop. above 0 
Overall intercept 15.37 0.00 1.00 

TRI -0.19 0.99 0.01 
peak_NDVI -0.05 0.87 0.13 

tree 0.13 0.04 0.96 
rd_dens_major -0.15 1.00 0.00 

snow_total 0.10 0.05 0.95 
fat 0.01 0.16 0.84 
age -0.03 0.78 0.22 

density -0.21 1.00 0.00 
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Table A11.7. Model numbers, structure, Watanabe-Akaike Information Criteria value (WAIC) 
and effective number of parameters (PD) for gamma regression models fit to the size of the 50 
percent highest density ranges during winter for female mule deer in the Piceance Basin of 
Northwest Colorado.  
Model Model structure WAIC PD 

M1 TRI + avg_NDVI + tree + dens_pipe + rd_dens_all + 

snow_avg + fat + age + density 

3504.22 53.19 

M2 TRI + peak_NDVI + tree + dens_pipe + rd_dens_all + 

snow_avg + fat + age + density 

3512.26 58.61 

M3 TRI + avg_NDVI + tree + dens_pipe + rd_dens_all + 

snow_total + fat + age + density 

3525.25 65.66 

M4 TRI + peak_NDVI + tree + dens_pipe + rd_dens_all + 

snow_total + fat + age + density 

3525.05 66.21 

M5 TRI + avg_NDVI + tree + rd_dens_major + snow_avg + fat + 

age + density 

3477.83 36.61 

M6 TRI + peak_NDVI + tree + rd_dens_major + snow_avg + fat + 

age + density 

3479.20 36.99 

M7 TRI + avg_NDVI + tree + rd_dens_major + snow_total + fat + 

age + density 

3481.16 38.80 

M8 TRI + peak_NDVI + tree + rd_dens_major + snow_total + fat 

+ age + density 

3475.64 35.99 
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Table A11.8. Covariates, median coefficient estimates and proportion of posteriors falling above 
and below 0 for gamma regression models fit to the size of the 50 percent highest density ranges 
during winter for female mule deer in the Piceance Basin of Northwest Colorado.  

M1    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept 13.25 0.00 1.00 
TRI -0.17 1.00 0.00 

avg_NDVI -0.03 0.77 0.23 
tree -0.02 0.67 0.33 

dens_pipe -0.06 0.92 0.09 
rd_dens_all -0.09 0.97 0.03 
snow_avg 0.00 0.53 0.47 

fat 0.01 0.10 0.90 
age -0.04 0.87 0.13 

density -0.23 1.00 0.00 
    

M2    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept 13.28 0.00 1.00 
TRI -0.17 1.00 0.00 

peak_NDVI -0.01 0.60 0.41 
tree -0.02 0.66 0.34 

dens_pipe -0.07 0.94 0.06 
rd_dens_all -0.08 0.96 0.04 
snow_avg 0.01 0.43 0.57 

fat 0.01 0.17 0.83 
age -0.05 0.90 0.10 

density -0.23 1.00 0.00 
    

M3    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept 13.25 0.00 1.00 
TRI -0.16 1.00 0.00 

avg_NDVI -0.02 0.67 0.33 
tree -0.03 0.69 0.31 

dens_pipe -0.06 0.92 0.08 
rd_dens_all -0.09 0.98 0.02 
snow_total 0.03 0.28 0.72 

fat 0.01 0.10 0.90 
age -0.04 0.87 0.14 

density -0.25 1.00 0.00 
    

M4    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept 13.28 0.00 1.00 
TRI -0.15 0.99 0.01 
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peak_NDVI 0.00 0.54 0.46 
tree -0.03 0.68 0.32 

dens_pipe -0.06 0.92 0.08 
rd_dens_all -0.09 0.97 0.03 
snow_total 0.04 0.21 0.79 

fat 0.01 0.16 0.84 
age -0.04 0.89 0.11 

density -0.26 1.00 0.00 
    

M5    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept 13.23 0.00 1.00 
TRI -0.15 1.00 0.00 

avg_NDVI -0.03 0.77 0.23 
tree -0.01 0.61 0.39 

rd_dens_major -0.04 0.87 0.13 
snow_avg 0.00 0.53 0.47 

fat 0.02 0.08 0.92 
age -0.04 0.88 0.12 

density -0.22 1.00 0.00 
    

M6    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept 13.23 0.00 1.00 
TRI -0.16 0.99 0.01 

peak_NDVI -0.03 0.74 0.26 
tree -0.01 0.59 0.41 

rd_dens_major -0.04 0.87 0.13 
snow_avg 0.00 0.50 0.50 

fat 0.02 0.07 0.93 
age -0.05 0.90 0.10 

density -0.21 1.00 0.00 
    

M7    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept 13.24 0.00 1.00 
TRI -0.14 0.98 0.02 

avg_NDVI -0.02 0.71 0.29 
tree -0.01 0.61 0.39 

rd_dens_major -0.04 0.86 0.14 
snow_total 0.02 0.38 0.62 

fat 0.02 0.08 0.92 
age -0.04 0.87 0.13 

density -0.24 1.00 0.00 
    

M8    
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Covariate Median Prop. below 0 Prop. above 0 
Overall intercept 13.24 0.00 1.00 

TRI -0.14 0.98 0.02 
peak_NDVI -0.02 0.71 0.29 

tree -0.01 0.61 0.39 
rd_dens_major -0.04 0.86 0.14 

snow_total 0.02 0.38 0.62 
fat 0.02 0.08 0.92 
age -0.04 0.87 0.13 

density -0.24 1.00 0.00 
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Table A11.9. Model numbers, structure, Watanabe-Akaike Information Criteria value (WAIC) and effective number of parameters 
(PD) for beta regression models fit to the bi-annual overlap of the utilization distributions during summer for female mule deer in the 
Piceance Basin of Northwest Colorado.  
Model Model structure WAIC PD 

M1 difference in avg_NDVI + difference in dens_prod + tree + dens_pipe + rd_dens_all + TRI + 

difference in fat + age 

-53.85 22.63 

M2 difference in peak_NDVI + difference in dens_prod + tree + dens_pipe + rd_dens_all + TRI + 

difference in fat + age 

-54.75 22.92 

M3 difference in avg_NDVI + difference in dens_prod + tree + dens_pipe + rd_dens_major + TRI + 

difference in fat + age 

-55.06 22.71 

M4 difference in peak_NDVI + difference in dens_prod + tree + dens_pipe + rd_dens_major + TRI + 

difference in fat + age 

-54.41 22.23 
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Table A11.10. Covariates, median coefficient estimates and proportion of posteriors falling 
above and below 0 for beta regression models fit to the bi-annual overlap in utilization 
distributions during summer for female mule deer in the Piceance Basin of Northwest Colorado.  

M1    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept -0.09 0.71 0.29 
difference in avg_NDVI -0.07 0.83 0.17 
difference in dens_prod 0.17 0.01 0.99 

tree 0.10 0.16 0.84 
dens_pipe -0.04 0.66 0.34 

rd_dens_all 0.06 0.29 0.72 
TRI 0.00 0.49 0.51 
fat 0.00 0.46 0.54 
age -0.01 0.54 0.46 

    
M2    

Covariate Median Prop. below 0 Prop. above 0 
Overall intercept -0.05 0.63 0.37 

difference in peak_NDVI -0.02 0.61 0.39 
difference in dens_prod 0.17 0.01 0.99 

tree 0.10 0.16 0.84 
dens_pipe -0.05 0.69 0.31 

rd_dens_all 0.05 0.33 0.67 
TRI -0.02 0.57 0.43 
fat 0.00 0.55 0.45 
age -0.01 0.53 0.47 

    
M3    

Covariate Median Prop. below 0 Prop. above 0 
Overall intercept -0.06 0.64 0.36 

difference in avg_NDVI -0.06 0.81 0.19 
difference in dens_prod 0.17 0.01 0.99 

tree 0.11 0.13 0.87 
rd_dens_major -0.04 0.65 0.35 

TRI -0.04 0.63 0.37 
fat 0.00 0.53 0.47 
age -0.02 0.58 0.42 

    
M4    

Covariate Median Prop. below 0 Prop. above 0 
Overall intercept -0.04 0.59 0.41 

difference in peak_NDVI -0.01 0.54 0.46 
difference in dens_prod 0.16 0.02 0.99 

tree 0.12 0.12 0.88 
rd_dens_major -0.07 0.74 0.26 

TRI -0.07 0.69 0.31 
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fat -0.01 0.59 0.41 
age -0.01 0.56 0.44 
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Table A11.11. Model numbers, structure, Watanabe-Akaike Information Criteria value (WAIC) and effective number of parameters 
(PD) for beta regression models fit to the bi-annual overlap of the utilization distributions during winter for female mule deer in the 
Piceance Basin of Northwest Colorado.  
Model Model structure WAIC PD 

M1 difference in dens_drill + dens_fac + difference in avg_NDVI + tree + difference in dens_pipe + 

rd_dens_all + difference in fat + difference in snow_avg + age + density 

958.94 611.96 

M2 difference in dens_drill + dens_fac + difference in peak_NDVI + tree + difference in dens_pipe + 

rd_dens_all + difference in fat + difference in snow_avg + age + density 

1068.04 665.21 

M3 difference in dens_drill + dens_fac + difference in avg_NDVI + tree + difference in dens_pipe + 

rd_dens_major + difference in fat + difference in snow_avg + age + density 

715.06 491.91 

M4 difference in dens_drill + dens_fac + difference in peak_NDVI + tree + difference in dens_pipe + 

rd_dens_major + difference in fat + difference in snow_avg + age + density 

976.40 621.61 

M5 difference in dens_drill + dens_fac + difference in avg_NDVI + tree + difference in dens_pipe + 

rd_dens_all + difference in fat + difference in snow_total + age + density 

1079.15 671.19 

M6 difference in dens_drill + dens_fac + difference in peak_NDVI + tree + difference in dens_pipe + 

rd_dens_all + difference in fat + difference in snow_ total + age + density 

1300.26 780.57 

M7 difference in dens_drill + dens_fac + difference in avg_NDVI + tree + difference in dens_pipe + 

rd_dens_major + difference in fat + difference in snow_ total + age + density 

885.34 576.60 
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M8 difference in dens_drill + dens_fac + difference in peak_NDVI + tree + difference in dens_pipe + 

rd_dens_major + difference in fat + difference in snow_ total + age + density 

1163.04 713.94 

M9 difference in dens_drill + difference in avg_NDVI + TRI + difference in dens_pipe + rd_dens_all + 

difference in fat + difference in snow_avg + age + density 

876.04 565.05 

M10 difference in dens_drill + difference in peak_NDVI + TRI + difference in dens_pipe + rd_dens_all + 

difference in fat + difference in snow_avg + age + density 

960.85 606.44 

M11 difference in dens_drill + difference in avg_NDVI + TRI + difference in dens_pipe + rd_dens_major 

+ difference in fat + difference in snow_avg + age + density 

724.63 489.76 

M12 difference in dens_drill + difference in peak_NDVI + TRI + difference in dens_pipe + 

rd_dens_major + difference in fat + difference in snow_avg + age + density 

901.90 577.20 

M13 difference in dens_drill + difference in avg_NDVI + TRI + difference in dens_pipe + rd_dens_all + 

difference in fat + difference in snow_total + age + density 

974.86 613.51 

M14 difference in dens_drill + difference in peak_NDVI + TRI + difference in dens_pipe + rd_dens_all + 

difference in fat + difference in snow_ total + age + density 

1021.55 635.41 

M15 difference in dens_drill + difference in avg_NDVI + TRI + difference in dens_pipe + rd_dens_major 

+ difference in fat + difference in snow_ total + age + density 

890.93 572.50 
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M16 difference in dens_drill + difference in peak_NDVI + TRI + difference in dens_pipe + 

rd_dens_major + difference in fat + difference in snow_ total + age + density 

1026.95 638.55 
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Table A11.12. Covariates, median coefficient estimates and proportion of posteriors falling 
above and below 0 for beta regression models fit to the bi-annual overlap in the utilization 
distributions during winter for female mule deer in the Piceance Basin of Northwest Colorado.  

M1    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept -0.89 1.00 0.00 
difference in dens_drill -0.08 0.93 0.07 

dens_fac -0.17 0.99 0.01 
difference in avg_NDVI -0.05 0.90 0.10 

tree -0.08 0.86 0.14 
difference in dens_pipe 0.00 0.53 0.47 

rd_dens_all -0.06 0.80 0.20 
difference in fat 0.00 0.54 0.46 

difference in snow_avg -0.01 0.55 0.45 
age -0.08 0.87 0.13 

density 0.01 0.43 0.57 
    

M2    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept -0.88 1.00 0.00 
difference in dens_drill -0.09 0.95 0.06 

dens_fac -0.18 0.99 0.01 
difference in peak_NDVI -0.02 0.66 0.34 

tree -0.09 0.88 0.12 
difference in dens_pipe 0.02 0.37 0.64 

rd_dens_all -0.07 0.86 0.14 
difference in fat 0.00 0.59 0.41 

difference in snow_avg 0.02 0.36 0.64 
age -0.07 0.83 0.17 

density -0.01 0.56 0.44 
    

M3    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept -0.91 1.00 0.00 
difference in dens_drill -0.07 0.89 0.11 

dens_fac -0.19 1.00 0.00 
difference in avg_NDVI -0.07 0.96 0.04 

tree -0.10 0.91 0.09 
difference in dens_pipe -0.02 0.68 0.32 

rd_dens_major 0.09 0.06 0.94 
difference in fat 0.00 0.43 0.57 

difference in snow_avg -0.02 0.62 0.38 
age -0.08 0.88 0.12 

density 0.05 0.23 0.77 
    

M4    
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Covariate Median Prop. below 0 Prop. above 0 
Overall intercept -0.90 1.00 0.00 

difference in dens_drill -0.08 0.93 0.08 
dens_fac -0.19 1.00 0.00 

difference in peak_NDVI -0.02 0.67 0.33 
tree -0.10 0.92 0.08 

difference in dens_pipe 0.00 0.48 0.52 
rd_dens_major 0.08 0.08 0.92 
difference in fat 0.00 0.51 0.49 

difference in snow_avg 0.02 0.40 0.61 
age -0.07 0.84 0.16 

density 0.02 0.39 0.61 
    

M5    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept -0.88 1.00 0.00 
difference in dens_drill -0.08 0.94 0.06 

dens_fac -0.17 1.00 0.00 
difference in avg_NDVI -0.06 0.95 0.05 

tree -0.08 0.85 0.15 
difference in dens_pipe -0.02 0.65 0.35 

rd_dens_all -0.04 0.75 0.25 
difference in fat 0.00 0.58 0.42 

difference in snow_total -0.06 0.85 0.15 
age -0.09 0.90 0.10 

density 0.04 0.23 0.77 
    

M6    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept -0.86 1.00 0.00 
difference in dens_drill -0.10 0.96 0.04 

dens_fac -0.17 1.00 0.01 
difference in peak_NDVI -0.04 0.80 0.20 

tree -0.08 0.85 0.16 
difference in dens_pipe 0.00 0.52 0.48 

rd_dens_all -0.05 0.77 0.23 
difference in fat -0.01 0.67 0.33 

difference in snow_total -0.06 0.85 0.15 
age -0.08 0.89 0.11 

density 0.05 0.25 0.75 
    

M7    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept -0.90 1.00 0.00 
difference in dens_drill -0.07 0.91 0.09 

dens_fac -0.19 1.00 0.00 
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difference in avg_NDVI -0.07 0.97 0.03 
tree -0.10 0.92 0.08 

difference in dens_pipe -0.04 0.80 0.20 
rd_dens_major 0.09 0.06 0.94 
difference in fat 0.00 0.47 0.53 

difference in snow_total -0.06 0.86 0.14 
age -0.09 0.90 0.10 

density 0.07 0.12 0.88 
    

M8    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept -0.88 1.00 0.00 
difference in dens_drill -0.09 0.96 0.04 

dens_fac -0.19 1.00 0.00 
difference in peak_NDVI -0.04 0.81 0.19 

tree -0.10 0.91 0.09 
difference in dens_pipe -0.01 0.60 0.40 

rd_dens_major 0.07 0.11 0.89 
difference in fat 0.00 0.60 0.40 

difference in snow_total -0.06 0.84 0.16 
age -0.09 0.91 0.09 

density 0.07 0.15 0.85 
    

M9    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept -0.87 1.00 0.00 
difference in dens_drill -0.09 0.94 0.06 
difference in avg_NDVI -0.06 0.93 0.07 

TRI 0.03 0.33 0.67 
difference in dens_pipe -0.02 0.68 0.32 

rd_dens_all -0.04 0.73 0.27 
difference in fat 0.00 0.58 0.42 

difference in snow_avg -0.03 0.67 0.33 
age -0.08 0.88 0.12 

density 0.03 0.31 0.69 
    

M10    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept -0.86 1.00 0.00 
difference in dens_drill -0.09 0.95 0.05 

difference in peak_NDVI -0.02 0.68 0.32 
TRI 0.05 0.28 0.72 

difference in dens_pipe 0.00 0.50 0.50 
rd_dens_all -0.06 0.82 0.18 

difference in fat -0.01 0.66 0.34 
difference in snow_avg 0.01 0.46 0.54 
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age -0.07 0.85 0.16 
density 0.01 0.46 0.54 

    
M11    

Covariate Median Prop. below 0 Prop. above 0 
Overall intercept -0.88 1.00 0.00 

difference in dens_drill -0.08 0.92 0.08 
difference in avg_NDVI -0.07 0.97 0.03 

TRI 0.05 0.30 0.70 
difference in dens_pipe -0.04 0.79 0.21 

rd_dens_major 0.06 0.18 0.82 
difference in fat 0.00 0.49 0.51 

difference in snow_avg -0.04 0.75 0.25 
age -0.09 0.91 0.09 

density 0.06 0.18 0.82 
    

M12    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept -0.87 1.00 0.00 
difference in dens_drill -0.09 0.95 0.05 

difference in peak_NDVI -0.03 0.71 0.29 
TRI 0.05 0.26 0.74 

difference in dens_pipe -0.01 0.59 0.41 
rd_dens_major 0.04 0.26 0.74 
difference in fat -0.01 0.63 0.37 

difference in snow_avg -0.01 0.54 0.46 
age -0.08 0.87 0.13 

density 0.03 0.33 0.68 
    

M13    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept -0.86 1.00 0.00 
difference in dens_drill -0.09 0.94 0.06 
difference in avg_NDVI -0.07 0.95 0.05 

TRI 0.05 0.27 0.73 
difference in dens_pipe -0.04 0.78 0.22 

rd_dens_all -0.03 0.71 0.29 
difference in fat 0.00 0.63 0.37 

difference in snow_total -0.08 0.89 0.11 
age -0.09 0.92 0.08 

density 0.06 0.18 0.82 
    

M14    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept -0.84 1.00 0.00 
difference in dens_drill -0.10 0.97 0.03 
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difference in peak_NDVI -0.04 0.79 0.21 
TRI 0.05 0.25 0.75 

difference in dens_pipe -0.02 0.65 0.35 
rd_dens_all -0.04 0.72 0.28 

difference in fat -0.01 0.74 0.27 
difference in snow_total -0.07 0.88 0.12 

age -0.09 0.90 0.10 
density 0.06 0.20 0.80 

    
M15    

Covariate Median Prop. below 0 Prop. above 0 
Overall intercept -0.87 1.00 0.00 

difference in dens_drill -0.08 0.94 0.06 
difference in avg_NDVI -0.07 0.96 0.04 

TRI 0.05 0.28 0.72 
difference in dens_pipe -0.05 0.85 0.15 

rd_dens_major 0.05 0.19 0.81 
difference in fat 0.00 0.58 0.42 

difference in snow_total -0.08 0.92 0.08 
age -0.10 0.94 0.06 

density 0.08 0.11 0.89 
    

M16    
Covariate Median Prop. below 0 Prop. above 0 

Overall intercept -0.85 1.00 0.00 
difference in dens_drill -0.10 0.96 0.04 

difference in peak_NDVI -0.04 0.79 0.21 
TRI 0.06 0.24 0.76 

difference in dens_pipe -0.03 0.73 0.27 
rd_dens_major 0.04 0.30 0.71 
difference in fat -0.01 0.70 0.30 

difference in snow_total -0.08 0.91 0.09 
age -0.09 0.91 0.09 

density 0.07 0.15 0.85 
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APPENDIX 12 
 
 
 

MULE DEER CAPTURE DATA FOR DEER USED IN CHAPTER 6 
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Table A12.1. Deer unique identifiers (ID), the study area in which they were captured, the date 
of first capture, and number of summers and winters with complete datasets that could be used 
for movement modeling of adult female mule deer in the Piceance Basin of Northwest Colorado.  

Deer 
ID 

Study areaa Date of first 
capture 

# summers of complete 
data 

# winters of 
complete data 

NR110 NR December 2012 NA 1 
NR111 NR December 2012 NA 1 
NR112 NR December 2012 NA 1 
NR113 NR December 2012 NA 1 
NR37 NR December 2012 NA 1 
NR44 NR March 2010 NA 1 
NR45 NR March 2010 NA 2 
NR47 NR March 2010 NA 3 
NR48 NR March 2010 NA 3 
NR51 NR March 2010 NA 2 
NR54 NR December 2010 NA 1 
NR66 NR December 2010 NA 1 
NR70 NR December 2010 NA 3 
NR71 NR December 2010 NA 3 
NR74 NR December 2010 NA 3 
NR75 NR December 2010 NA 2 
NR79 NR March 2011 NA 2 
RG1 RG March 2010 3 3 

RG100 RG March 2012 2 2 
RG101 RG December 2012 1 1 
RG102 RG December 2012 1 0 
RG103 RG December 2012 1 1 
RG104 RG December 2012 1 1 
RG105 RG December 2012 1 1 
RG106 RG December 2012 0 1 
RG13 RG March 2010 3 3 
RG15 RG March 2010 3 3 
RG18 RG March 2010 0 1 
RG19 RG March 2010 3 3 
RG24 RG March 2010 3 2 
RG25 RG March 2010 0 1 
RG3 RG March 2010 2 1 
RG4 RG December 2010 3 2 
RG5 RG March 2010 3 2 
RG65 RG December 2010 3 3 
RG66 RG December 2010 1 1 
RG67 RG December 2010 1 1 
RG68 RG December 2010 1 1 
RG69 RG December 2010 1 1 
RG7 RG March 2010 3 2 
RG70 RG December 2010 2 1 
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RG71 RG December 2010 3 3 
RG72 RG December 2010 3 3 
RG73 RG December 2010 3 3 
RG74 RG December 2010 3 3 
RG75 RG December 2010 3 3 
RG76 RG December 2010 3 3 
RG77 RG December 2010 3 1 
RG78 RG December 2010 3 3 
RG79 RG December 2010 3 3 
RG8 RG March 2010 1 1 
RG80 RG December 2010 3 3 
RG82 RG December 2010 3 1 
RG83 RG December 2010 3 2 
RG84 RG December 2010 3 3 
RG85 RG December 2010 3 3 
RG86 RG December 2010 1 1 
RG87 RG December 2010 2 1 
RG88 RG December 2010 0 1 
RG89 RG December 2010 3 2 
RG9 RG December 2010 2 3 
RG90 RG December 2010 3 2 
RG91 RG December 2010 2 2 
RG92 RG December 2010 0 1 
RG94 RG December 2011 2 2 
RG95 RG December 2011 2 2 
RG96 RG December 2011 1 1 
RG97 RG December 2011 0 1 
RG98 RG March 2012 2 2 
RG99 RG March 2012 1 2 

aNR refers to the North Ridge study area, while RG refers to the Ryan Gulch study area (Fig. 6.1 
in main text). 
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APPENDIX 13  
 
 
 

DETAILS OF NUMBER OF ITERATIONS RUN AND MODELS USED FOR EACH DEER 
 

AND SEASON USED IN CHAPTER 6 
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Table A13.1. Deer unique identifiers (ID), season during which the data were collected, the prior 
distribution used for the dispersion parameter (𝜅), number of iterations run, total burn-in 
removed, and whether the algorithms ultimately converged for discrete-time correlated random 
walk models fit to adult female mule deer movement data from summer range in the Piceance 
Basin of Colorado, USA.  
Deer ID Year Prior on 𝜅 No. iterations Burn-in Converged 
RG1 2011 Truncated normal 200000 25000 Y 
RG1 2012 Uniform 400000 25000 Y 
RG1 2013 NA NA NA N 
RG100 2012 Uniform 100000 25000 Y 
RG100 2013 Truncated normal 200000 25000 Y 
RG101 2013 Uniform 100000 25000 Y 
RG102 2013 Truncated normal 200000 25000 Y 
RG103 2013 Truncated normal 200000 25000 Y 
RG104 2013 Truncated normal 200000 25000 Y 
RG105 2013 NA NA NA N 
RG13 2011 Truncated normal 200000 25000 Y 
RG13 2012 Uniform 100000 25000 Y 
RG13 2013 Uniform 100000 25000 Y 
RG15 2011 Truncated normal 200000 25000 Y 
RG15 2012 Uniform 100000 25000 Y 
RG15 2013 NA NA NA N 
RG19 2011 Truncated normal 400000 50000 Y 
RG19 2012 Uniform 100000 25000 Y 
RG19 2013 NA NA NA N 
RG24 2011 NA NA NA N 
RG24 2012 Uniform 100000 25000 Y 
RG24 2013 Truncated normal 200000 25000 Y 
RG3 2012 Uniform 100000 25000 Y 
RG3 2013 Uniform 100000 25000 Y 
RG4 2011 Truncated normal 200000 25000 Y 
RG4 2012 Uniform 100000 25000 Y 
RG4 2013 Uniform 100000 25000 Y 
RG5 2011 Uniform 400000 25000 Y 
RG5 2012 Uniform 100000 25000 Y 
RG5 2013 Truncated normal 200000 25000 Y 
RG65 2011 Truncated normal 200000 75000 Y 
RG65 2012 Truncated normal 200000 25000 Y 
RG65 2013 Uniform 100000 25000 Y 
RG66 2011 Uniform 100000 25000 Y 
RG67 2011 Truncated normal 200000 25000 Y 
RG68 2011 NA NA NA N 
RG69 2011 NA NA NA N 
RG7 2011 NA NA NA N 
RG7 2012 Uniform 100000 25000 Y 
RG7 2013 Uniform 100000 25000 Y 
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RG70 2011 Truncated normal 200000 25000 Y 
RG70 2012 Truncated normal 200000 25000 Y 
RG71 2011 Truncated normal 400000 50000 Y 
RG71 2012 Uniform 100000 25000 Y 
RG71 2013 Uniform 100000 25000 Y 
RG72 2011 NA NA NA N 
RG72 2012 Truncated normal 200000 25000 Y 
RG72 2013 Truncated normal 400000 50000 Y 
RG73 2011 Truncated normal 200000 25000 Y 
RG73 2012 Uniform 100000 25000 Y 
RG73 2013 Truncated normal 200000 25000 Y 
RG74 2011 Truncated normal 200000 25000 Y 
RG74 2012 Truncated normal 200000 25000 Y 
RG74 2013 Truncated normal 400000 50000 Y 
RG75 2011 Truncated normal 400000 50000 Y 
RG75 2012 Truncated normal 200000 25000 Y 
RG75 2013 Uniform 100000 25000 Y 
RG76 2011 Truncated normal 400000 100000 Y 
RG76 2012 Truncated normal 200000 25000 Y 
RG76 2013 Uniform 100000 25000 Y 
RG77 2011 Truncated normal 200000 25000 Y 
RG77 2012 Truncated normal 200000 25000 Y 
RG77 2013 Truncated normal 200000 25000 Y 
RG78 2011 Truncated normal 400000 50000 Y 
RG78 2012 Truncated normal 200000 25000 Y 
RG78 2013 Truncated normal 200000 25000 Y 
RG79 2011 NA NA NA N 
RG79 2012 Truncated normal 200000 25000 Y 
RG79 2013 Uniform 100000 25000 Y 
RG8 2011 Truncated normal 200000 25000 Y 
RG80 2011 NA NA NA N 
RG80 2012 Truncated normal 200000 25000 Y 
RG80 2013 Truncated normal 200000 25000 Y 
RG82 2011 NA NA NA N 
RG82 2012 Uniform 100000 25000 Y 
RG82 2013 Truncated normal 200000 25000 Y 
RG83 2011 NA NA NA N 
RG83 2012 Truncated normal 200000 25000 Y 
RG83 2013 Truncated normal 200000 25000 Y 
RG84 2011 Truncated normal 200000 25000 Y 
RG84 2012 Uniform 100000 25000 Y 
RG84 2013 Uniform 100000 25000 Y 
RG85 2011 Truncated normal 200000 25000 Y 
RG85 2012 Truncated normal 200000 25000 Y 
RG85 2013 Truncated normal 200000 25000 Y 
RG86 2011 Truncated normal 200000 25000 Y 
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RG87 2011 Truncated normal 200000 25000 Y 
RG87 2012 Uniform 100000 25000 Y 
RG89 2011 Truncated normal 200000 25000 Y 
RG89 2012 Truncated normal 200000 25000 Y 
RG89 2013 Truncated normal 200000 25000 Y 
RG9 2011 NA NA NA N 
RG9 2012 Truncated normal 200000 25000 Y 
RG90 2011 Truncated normal 200000 25000 Y 
RG90 2012 Uniform 100000 25000 Y 
RG90 2013 Truncated normal 200000 25000 Y 
RG91 2011 Truncated normal 200000 25000 Y 
RG91 2012 NA NA NA N 
RG94 2012 Truncated normal 200000 25000 Y 
RG94 2013 Truncated normal 200000 25000 Y 
RG95 2012 Truncated normal 200000 25000 Y 
RG95 2013 Uniform 100000 25000 Y 
RG96 2012 Uniform 100000 25000 Y 
RG98 2012 Uniform 100000 25000 Y 
RG98 2013 Uniform 100000 25000 Y 
RG99 2012 Uniform 100000 25000 Y 
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Table A13.2. Deer unique identifiers (ID), season during which the data were collected, the prior 
distribution used for the dispersion parameter (𝜅), number of iterations run, total burn-in 
removed, and whether the algorithms ultimately converged for discrete-time correlated random 
walk models fit to adult female mule deer movement data from winter range in the Piceance 
Basin of Colorado, USA. 
Deer ID Year Prior on 𝜅 No. iterations Burn-in Converged 
NR110 2013 Uniform 100000 25000 Y 
NR111 2013 Uniform 100000 25000 Y 
NR112 2013 Uniform 100000 25000 Y 
NR113 2013 Uniform 100000 25000 Y 
NR37 2011 Uniform 100000 25000 Y 
NR44 2011 Uniform 100000 25000 Y 
NR45 2011 Uniform 100000 25000 Y 
NR45 2012 NA NA NA N 
NR47 2011 Uniform 100000 25000 Y 
NR47 2012 NA NA NA N 
NR47 2013 Uniform 100000 25000 Y 
NR48 2011 NA NA NA N 
NR48 2012 Uniform 100000 25000 Y 
NR48 2013 Uniform 100000 25000 Y 
NR51 2011 Truncated normal 200000 25000 Y 
NR51 2012 Uniform 100000 25000 Y 
NR54 2011 Uniform 100000 25000 Y 
NR66 2011 Uniform 100000 25000 Y 
NR70 2011 Uniform 100000 25000 Y 
NR70 2012 Uniform 100000 25000 Y 
NR70 2013 Truncated normal 200000 25000 Y 
NR71 2011 Uniform 100000 25000 Y 
NR71 2012 Uniform 100000 25000 Y 
NR71 2013 Uniform 100000 25000 Y 
NR74 2011 Uniform 100000 25000 Y 
NR74 2012 Uniform 100000 25000 Y 
NR74 2013 Uniform 100000 25000 Y 
NR75 2011 Uniform 100000 25000 Y 
NR75 2012 Uniform 100000 25000 Y 
NR79 2012 Uniform 100000 25000 Y 
NR79 2013 Truncated normal 200000 25000 Y 
RG1 2011 NA NA NA N 
RG1 2012 Truncated normal 200000 25000 Y 
RG1 2013 Uniform 100000 25000 Y 
RG100 2012 NA NA NA N 
RG100 2013 Truncated normal 200000 25000 Y 
RG101 2013 Uniform 100000 25000 Y 
RG103 2013 NA NA NA N 
RG104 2013 Uniform 100000 25000 Y 
RG105 2013 Uniform 100000 25000 Y 
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RG106 2013 NA NA NA N 
RG13 2011 Uniform 100000 25000 Y 
RG13 2012 Uniform 100000 25000 Y 
RG13 2013 NA NA NA N 
RG15 2011 Truncated normal 400000 50000 Y 
RG15 2012 Truncated normal 2000000 25000 Y 
RG15 2013 Uniform 100000 25000 Y 
RG18 2011 Uniform 100000 25000 Y 
RG19 2011 Uniform 100000 25000 Y 
RG19 2012 Uniform 100000 25000 Y 
RG19 2013 Uniform 100000 25000 Y 
RG24 2011 Uniform 100000 25000 Y 
RG24 2012 Uniform 100000 25000 Y 
RG25 2011 NA NA NA N 
RG3 2013 Uniform 100000 25000 Y 
RG4 2011 Truncated normal 200000 25000 Y 
RG4 2012 Uniform 100000 25000 Y 
RG5 2011 Uniform 100000 25000 Y 
RG5 2013 Uniform 100000 25000 Y 
RG65 2011 NA NA NA N 
RG65 2012 Uniform 100000 25000 Y 
RG65 2013 NA NA NA N 
RG66 2011 Uniform 100000 25000 Y 
RG67 2011 Uniform 100000 25000 Y 
RG68 2011 Uniform 100000 75000 Y 
RG69 2011 Uniform 100000 25000 Y 
RG7 2011 Uniform 100000 25000 Y 
RG7 2012 Uniform 100000 25000 Y 
RG70 2011 NA NA NA N 
RG71 2011 Uniform 100000 25000 Y 
RG71 2012 Uniform 100000 25000 Y 
RG71 2013 Uniform 100000 25000 Y 
RG72 2011 Uniform 100000 25000 Y 
RG72 2012 Uniform 100000 25000 Y 
RG72 2013 NA NA NA N 
RG73 2011 Truncated normal 200000 25000 Y 
RG73 2012 Uniform 100000 25000 Y 
RG73 2013 Uniform 100000 25000 Y 
RG74 2011 Uniform 100000 25000 Y 
RG74 2012 Uniform 100000 25000 Y 
RG74 2013 Truncated normal 200000 25000 Y 
RG75 2011 NA NA NA N 
RG75 2012 Uniform 100000 25000 Y 
RG75 2013 Uniform 100000 25000 Y 
RG76 2011 Uniform 100000 25000 Y 
RG76 2012 Uniform 100000 25000 Y 
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RG76 2013 Uniform 100000 25000 Y 
RG77 2011 NA NA NA N 
RG78 2011 Truncated normal 200000 25000 Y 
RG78 2012 Uniform 100000 25000 Y 
RG78 2013 Truncated normal 200000 25000 Y 
RG79 2011 Uniform 100000 25000 Y 
RG79 2012 Uniform 100000 25000 Y 
RG79 2013 Truncated normal 200000 25000 Y 
RG8 2011 Uniform 100000 25000 Y 
RG80 2011 Uniform 100000 25000 Y 
RG80 2012 Truncated normal 200000 25000 Y 
RG80 2013 Uniform 100000 25000 Y 
RG82 2011 NA NA NA N 
RG83 2011 Truncated normal 400000 50000 Y 
RG83 2013 NA NA NA N 
RG84 2011 Uniform 100000 25000 Y 
RG84 2012 Truncated normal 200000 25000 Y 
RG84 2013 Uniform 100000 25000 Y 
RG85 2011 Truncated normal 200000 25000 Y 
RG85 2012 Uniform 100000 25000 Y 
RG85 2013 Uniform 100000 25000 Y 
RG86 2011 Truncated normal 200000 25000 Y 
RG87 2011 Uniform 100000 25000 Y 
RG88 2011 Uniform 100000 25000 Y 
RG89 2011 NA NA NA N 
RG89 2012 Truncated normal 200000 25000 Y 
RG9 2011 Uniform 100000 25000 Y 
RG9 2012 Uniform 100000 25000 Y 
RG9 2013 Uniform 100000 25000 Y 
RG90 2011 NA NA NA N 
RG90 2013 Uniform 100000 25000 Y 
RG91 2011 Uniform 100000 25000 Y 
RG91 2012 Truncated normal 200000 25000 Y 
RG92 2012 Uniform 100000 25000 Y 
RG94 2012 Uniform 100000 25000 Y 
RG94 2013 NA NA NA N 
RG95 2012 Uniform 100000 25000 Y 
RG95 2013 Uniform 100000 25000 Y 
RG96 2013 NA NA NA N 
RG97 2012 Truncated normal 200000 25000 Y 
RG98 2012 Uniform 100000 25000 Y 
RG98 2013 Uniform 100000 25000 Y 
RG99 2012 Truncated normal 200000 25000 Y 
RG99 2013 Uniform 100000 25000 Y 
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APPENDIX 14 
 
 
 

ASSESSMENT OF METHODS FOR INTERPOLATING MISSING DATA 
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To assess the most efficient method for interpolating missing data in the discrete time correlated 

random walk model we simulated 3,000 movements (paired turn angles and step lengths) from 

the model outlined in the main text (parameter values used in simulation can be found in Table 

A14.1). This model takes the following form: 

𝑠𝑡|𝒛𝒕 ∼ gamma�𝛼𝑗 ,𝛽𝑗� 

𝜙𝑡|𝒛𝒕 ∼ von Mises�𝜇𝑗 , 𝜅𝑗� 

𝒛𝒕|𝒛𝒕−𝟏 ∼ multinomial(𝝍) 

𝝍 ∼ Dirichlet(0.5, 0.5) 

𝛼𝑗 ∼ uniform(0, 20000) 

𝛽𝑗 ∼ uniform(0, 20000) 

𝜇𝑗 ∼ uniform(0, 2𝜋) 

log 𝜅𝑗 ∼ normal(0, 1000) 

We chose values for the simulation so that there was some degree of overlap between the two 

states (Fig. A14.1). We assigned a starting location at arbitrary coordinates (1,000,000, 

1,000,000) and then forward calculated each subsequent location using the simulated turn angles 

and step lengths. We then randomly removed portions of the data, leaving 95%, 90%, 80%, 70%, 

and 60% of the dataset intact. Next, we assessed three separate methods for estimating the 

missing locations for each of the datasets. The first method was simple linear interpolation, in 

which missing locations were calculated as the average of the previous and following location. In 

this procedure, the missing locations were calculated prior to fitting the model and were included 

as the data without error. The second method was to estimate the mean and variance of the 

missing locations prior to fitting the hidden Markov models using the continuous-time correlated 

random walk model (CTCRW) described by Johnson et al. (2008a). The model described by 
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Johnson et al. (2008a) can be used to estimate a location at any point in time. We used the 'crawl' 

package (Johnson et al. 2008a) in R to fit the CTCRW models and estimate a mean and variance 

for each missing location. We then fit our CRW model, randomly drawing a realization of each 

missing location from the means and variances and recalculating the missing step lengths and 

turn angles prior to each iteration in the Markov Chain Monte Carlo procedure. Finally we 

estimated the missing locations within the model, following the general procedure of McClintock 

et al. (2012a). This model took the following form: 

𝑠𝑡|𝒛𝒕, 𝑥𝑡−1, 𝑥𝑡+1 𝑦𝑡−1,𝑦𝑡+1 ∼ gamma�𝛼𝑗 ,𝛽𝑗� 

𝜙𝑡|𝒛𝒕,𝑥𝑡−1,𝑥𝑡+1 𝑦𝑡−1,𝑦𝑡+1 ∼ von Mises�𝜇𝑗, 𝜅𝑗� 

𝒛𝒕|𝒛𝒕−𝟏 ∼ multinomial(𝝍) 

𝝍 ∼ Dirichlet(0.5, 0.5) 

𝑥𝑡 ∼ normal(𝛾𝑥, 𝜖𝑥) 

𝑦𝑡 ∼ normal�𝛾𝑦, 𝜖𝑦� 

𝛾𝑥 =
𝑥𝑡−1

2
+
𝑥𝑡+1

2
 

𝛾𝑦 =
𝑥𝑡−1

2
+
𝑥𝑡+1

2
 

log 𝜖𝑥 ∼ normal(0, 1000)  

log 𝜖𝑦 ∼ normal(0, 1000) 

𝛼𝑗 ∼ uniform(0, 20000) 

𝛽𝑗 ∼ uniform(0, 20000) 

𝜇𝑗 ∼ uniform(0, 2𝜋) 

log 𝜅𝑗 ∼ normal(0, 1000) 
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 In the above model, the coordinates of the missing locations are assumed to be normally 

distributed with mean equal to the linearly interpolated missing locations, and variance as 

formulated above.  

First, we fit the original model to the complete simulated dataset. We then used each of 

the three data interpolation methods outlined above to estimate parameters from each of the 

datasets with missing data. All simulations and model fitting were conducted in R and we fit two 

chains for each analysis using initial values that were expected to be overdispersed relative to the 

posterior. We assessed convergence to the posterior using the Gelman-Rubin diagnostic (Gelman 

and Rubin 1992). As our main interest was the classification of the states, we assessed the 

performance of the different methods by calculating a residual for the states, or the difference in 

the estimated probability of being in each state and the actual simulated state. These residuals 

range from 0 (complete agreement between the estimated state and the simulated state), to 1 

(complete disagreement). In addition, and to ensure at least near approximation of the state 

parameters, we examined the difference between the simulated and estimated state parameter 

values.  

For models fit to linearly interpolated data, and for models in which the locations were 

estimated within the MCMC, convergence was achieved for all datasets missing 20% or less of 

the data. For both of these missing data estimation methods, algorithms fit to datasets missing 

30% or more of the data did not converge. All algorithms fit to datasets for which the missing 

locations were interpolated using the CTCRW model converged. In the cases where there was a 

lack of convergence, the large amount of missing data appeared to be inundating the model with 

turn angles that were 0. Thus the model was categorizing all the missing data and all non-missing 

data with turn angles near 0 as a single state and the step lengths were providing no information 
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to the classification of states. All other movements were categorized as the other state and the 

dispersion parameter for this state was failing to converge to the posterior distribution because 

both chains were estimating extremely small values that were not overlapping but still providing 

similar probabilities. Even estimating the missing data within the model did not ameliorate this 

situation, as the most likely values for these turn angles were still 0, because of the large amount 

of missing data.  

The model fit to the complete dataset recovered the simulated values (i.e., 95% credible 

intervals covered the true value of each parameter; Table A14.2). Regardless of the method used 

to assess missing data, most models failed to recover simulated values for certain parameters 

even with most of the dataset intact (Table A14.2). For example, the only occasion in which the 

simulated value for 𝛼1 fell within the 95% credible intervals of the posterior was when 95% of 

the data were present and the CTCRW model was used to interpolate the missing data. However, 

below 95% of the dataset being present, this model failed to recover simulated values, similar to 

the other two missing data estimation methods (Table A14.2).  

Examining the residuals of the estimated states, all of the missing data estimation 

methods performed similarly for datasets with 5 and 10% of the data removed (Table A14.3). 

The models using linear interpolation and interpolation within the MCMC performed similarly to 

one another for the dataset with 20% missing data, and outperformed the CTCRW method. None 

of the methods performed well for datasets with greater than 20% of the data missing, and there 

was a noticeable increase in the residuals at this point. When examining residuals of only the 

non-missing data, all models performed similarly well, and residuals were similar to those from 

the model fit to the complete dataset. Considering the performance of the models, we chose to 

use linear interpolation while censoring all deer datasets missing more than 20% of the data. 
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TABLES 
 
 
 
Table A14.1. Parameters and parameter values used in simulation of discrete-time correlated 
random walk model.  
Parameter Value 

𝛼1 1 

𝛼2 9 

𝛽1 0.02 

𝛽2 0.06 

𝜇1 0 

𝜇2 𝜋 

𝜅1 0.5 

𝜅2 0.5 

𝜓1,1 0.7 

𝜓1.2 0.3 

𝜓2,1 0.6 

𝜓2,2 0.4 
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Table A14.2. Median parameter estimates (95% credible interval) for discrete-time correlated random walk models fit to simulated 
movement datasets with various amounts of missing data. 
Interpolation 
method 

𝛼1 𝛼2 𝛽1 𝛽2 𝜇1 𝜇2 𝜅1 𝜅2 𝜓1,1 𝜓1.2 𝜓2,1 𝜓2,2 

Complete 
dataset 

1.029 
(0.958, 
1.111) 

9.62 
(7.707, 
12.335) 

0.022 
(0.018, 
0.028) 

0.063 
(0.052, 
0.079) 

6.252 
(6.091, 
0.128) 

3.239 
(3.02, 
3.454) 

0.43 
(0.356, 
0.508) 

0.501 
(0.351, 
0.679) 

0.685 
(0.63, 
0.739) 

0.315 
(0.261, 
0.370) 

0.645 
(0.578, 
0.716) 

0.355 
(0.284
, 
0.422) 

             
Linear 
interpolation 

            

95% 
complete 

1.076 
(1.008, 
1.15) 

9.43 
(7.493, 
11.857) 

0.022 
(0.019, 
0.026) 

0.062 
(0.051, 
0.077) 

6.258 
(6.13, 
0.105) 

3.224 
(2.989, 
3.454) 

0.528 
(0.454, 
0.603) 

0.512 
(0.335, 
0.710) 

0.728 
(0.677, 
0.774) 

0.272 
(0.223, 
0.323) 

0.666 
(0.599, 
0.732) 

0.334 
(0.268
, 
0.401) 

90% 
complete 

1.12 
(1.05, 
1.18) 

9.65 
(7.36, 
12.51) 

0.021 
(0.018, 
0.024) 

0.064 
(0.051, 
0.081) 

6.21 
(6.10, 
0.04) 

3.22 
(3, 
3.45) 

0.59 
(0.51, 
0.66) 

0.62 
(0.38, 
0.89) 

0.77 
(0.72, 
0.81) 

0.23 
(0.19, 
0.28) 

0.71 
(0.63, 
0.78) 

0.29 
(0.22, 
0.37) 
 

80% 
complete 

1.21 
(1.14, 
1.3) 

6.07 
(4.84, 
7.59) 

0.024 
(0.020, 
0.029) 

0.044 
(0.036, 
0.053) 

0.005 
(6.21, 
0.08) 

3.35 
(3.09, 
3.66) 

0.93 
(0.83, 
1.02) 

0.56 
(0.21, 
0.97) 

0.77 
(0.71, 
0.82) 

0.23 
(0.18, 
0.29) 

0.65 
(0.55, 
0.74) 

0.35 
(0.26, 
0.45) 

70% 
complete 

1.16 
(1.09, 
1.22) 

1.95 
(1.78, 
2.14) 

0.016 
(0.015, 
0.017) 

0.035 
(0.032, 
0.039) 

3.93 
(3.13, 
2.82) 

6.28 
(6.28, 
0.003) 

0.0015 
(0, 
0.0017) 

170.15 
(151.98, 
29+ 
99) 

0.68 
(0.66, 
0.70) 

0.32 
(0.3, 
0.34) 

0.67 
(0.63, 
0.70) 

0.33 
(0.3. 
0.36) 

60% 
complete 

1.23 
(1.16, 
1.31) 

2.03 
(1.88, 
2.2) 

0.017 
(0.016, 
0.018) 

0.039 
(0.036, 
0.043) 

0.44 
(2.69, 
2.37) 

0.0008 
(6.28, 
0.004) 

0 (0,0) 275.51 
(250.91, 
300.85) 

0.60 
(0.58, 
0.63) 

0.4 
(0.37, 
0.42) 

0.54 
(0.51, 
0.57) 

0.46 
(0.43, 
0.49) 

             
CTCRW             
95% 
complete 

1.05 
(0.98, 

8.05 
(6.48, 

0.023 
(0.018, 

0.055 
(0.046, 

6.27 
(6.09, 

3.25 
(3.003, 

0.41 
(0.32, 

0.44 
(0.29, 

0.66 
(0.59, 

0.34 
(0.28, 

0.52 
(0.54, 

0.38 
(0.31, 
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1.13) 10.08) 0.028) 0.068) 0.16) 3.51) 0.48) 0.60) 0.72) 0.40) 0.69) 0.46) 
90% 
complete 

1.09 
(1.01, 
1.17) 

7.52 
(5.91, 
9.38) 

0.022 
(0.018, 
0.028) 

0.053 
(0.043, 
0.065) 

6.24 
(6, 
0.19) 

3.29 
(3.012, 
3.58) 

0.34 
(0.25, 
0.43) 

0.40 
(0.26, 
0.58) 

0.64 
(0.70, 
0.56) 

0.36 
(0.298, 
0.44) 

0.599 
(0.51, 
0.68) 

0.40 
(0.32, 
0.49) 

80% 
complete 

1.1 
(1.01, 
1.2) 

5.41 
(1.46, 
6.6) 

0.02 
(0.019, 
0.033) 

0.042 
(0.036, 
0.049) 

0.096 
(6.1, 
0.38) 

3.35 
(3.05, 
3.65) 

0.36 
(0.25, 
0.47) 

0.34 
(0.21, 
0.49) 

0.53 
(0.45, 
0.61) 

0.47 
(0.39, 
0.55) 

0.46 
(0.37, 
0.56) 

0.54 
(0.44, 
0.63) 

70% 
complete 

1.15 
(1.05, 
1.27) 

4.63 
(3.86, 
5.5) 

0.025 
(0.019, 
0.035) 

0.038 
(0.033, 
0.044) 

6.23 
(5.77, 
0.43) 

3.11 
(2.8, 
3.43) 

0.25 
(0.12, 
0.38) 

0.33 
(0.2, 
0.47) 

0.47 
(0.37, 
0.57) 

0.53 
(0.43, 
0.63) 

0.41 
(0.31, 
0.52) 

0.59 
(0.48, 
0.69) 

60% 
complete 

1.21 
(1.09, 
1.34) 

4.36 
(3.64, 
5.3) 

0.023 
(0.018, 
0.032) 

0.035 
(0.03, 
0.04) 

6.26 
(5.76, 
0.49) 

3.18 
(2.93, 
3.43) 

0.26 
(0.10, 
0.42) 

0. 
41 
(0.28, 
0.56) 

0.43 
(0.34, 
0.54) 

0.56 
(0.46, 
0.66) 

0.36 
(0.26, 
0.48) 

0.64 
(0.52, 
0.74) 

             
Estimation 
online 

            

95% 
complete 

1.07 
(1, 
1.14) 

9.45 
(7.5, 
11.9) 

0.022 
(0.018, 
0.026) 

0.062 
(0.051, 
0.077) 

6.18 
(6.12, 
0.13) 

3.24 
(2.99, 
3.49) 

0.47 
(0.39, 
0.54) 

0.46 
(0.27. 
0.41) 

0.72 
(0.67, 
0.77) 

0.28 
(0.23, 
0.33) 

0.66 
(0.59, 
0.73) 

0.34 
(0.27, 
0.41) 

90% 
complete 

1.12 
(1.06, 
1.19) 

9.95 
(7.45, 
12.85) 

0.021 
(0.018, 
0.024) 

0.066 
(0.051, 
0.084) 

6.19 
(6.04, 
0.04) 

3.23 
(2.96, 
3.52) 

0.47 
(0.399, 
0.55) 

0.51 
(0.29, 
0.76) 

0.77 
(0.71, 
0.81) 

0.23 
(0.19, 
0.29) 

0.70 
(0.62, 
0.78) 

0.296 
(0.22, 
0.38) 

80% 
complete 

1.22 
(1.14, 
1.3) 

7.03 
(5.41, 
9.14) 

0.023 
(0.0198, 
0.28) 

0.049 
(0.0398, 
0.062) 

0.01 
(6.20, 
0.09) 

3.40 
(3.09, 
3.84) 

0.77 
(0.69, 
0.85) 

0.51 
(0.26, 
0.97) 

0.79 
(0.72, 
0.84) 

0.21 
(0.16, 
0.28) 

0.67 
(0.56, 
0.77) 

0.33 
(0.23, 
0.44) 

70% 
complete 

- - - - - - - - - - - - 

60% 
complete 

- - - - - - - - - - - - 
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Table A14.3. Datasets with various amounts of missing data and mean residuals calculated as the mean difference between the 
simulated states and the posterior probabilities for three different methods used for missing data interpolation. Mean residuals of non-
missing data are in parentheses. 
Dataset Mean residual for linear 

interpolation 

Mean residual for 

CTCRW 

Mean residual for location estimated within 

model 

95% 

complete 

0.19 (0.17) 0.20 (0.18) 0.19 (0.18) 

90% 

complete 

0.21 (0.18) 0.24 (0.19) 0.21 (0.18) 

80% 

complete 

0.23 (0.19) 0.32 (0.21) 0.23 (0.19) 

70% 

complete 

0.44* (0.35) 0.39 (0.25) - 

60% 

complete 

0.52* (0.45) 0.44 (0.25) - 

    

 Mean residual    

Complete 0.17   
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*Residuals were calculated for algorithms that had not converged for a single dispersion parameters for means of comparison 
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FIGURES 
 
 
 

 

Figure A14.1. Step length distributions used in simulation of movement data from discrete-time 
correlated random walk models.  
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APPENDIX 15 
 
 
 

DERIVATION OF COVARIATES USED IN REGRESSION MODELS 
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ANTHROPOGENIC COVARIATES 
 
 
 
The anthropogenic covariates used in the regression modeling fell into one of 4 categories: 

pipelines, roads, industrial facilities (natural gas and other), and natural gas well pads. We 

obtained a pipeline spatial layer from the Bureau of Land Management White River Office and 

verified the existence of the pipelines in this layer by overlaying them with National Agricultural 

Imagery Program (NAIP) aerial imagery in ArcMap 10.1 (Environmental Systems Research 

Institute, Redlands, CA, USA). To examine the road network we digitized all roads in the area 

using the NAIP imagery. We further classified roads as major roads or secondary roads. Major 

roads were those that appeared to be paved or improved roads (based on their apparent width in 

the NAIP imagery), or roads that led to well pads or facilities. Natural gas and other facilities 

were identified using the NAIP imagery and through ground truthing a portion of the study area. 

Facilities in this area include natural gas plants and compressor stations and are easily 

identifiable from the NAIP imagery. We created polygonal features by digitizing the outlines of 

the facilities. To categorize natural gas well pads in our study area, we downloaded publicly 

available data on oil and natural gas wells from the Colorado Oil and Gas Conservation 

Commission (http://cogcc.state.co.us/). The Commission maintains a daily-updated database that 

contains information on the location of all wells in the state and their current status as well as the 

dates on which their status changed (e.g., from being drilled to producing natural gas). We 

categorized each well in the study area as either abandoned, producing, actively being drilled, or 

between the drilling and producing stages for all days for which we had mule deer location data. 

Wells were categorized as abandoned if their status was listed as abandoned in the database. 

Wells were categorized as producing starting on the test date. Wells were categorized as drilling 
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starting 1 week prior to the spud date, until one week after the total depth date. Wells were 

categorized as being between the drilling and producing stages starting one week after the total 

depth date, until the test date. To provide some validation of the status of the wells in the study 

area we overlaid all wells onto the NAIP imagery and assessed whether the locations provided 

were accurate. In addition, we assessed whether or not the abandoned wells were in fact 

abandoned, or if there was some infrastructure still at these sites. We next grouped wells onto 

well pads using polygonal well pad features digitized from the NAIP imagery. Pads were the 

final unit of measure used in regression models and thus we categorized each well pad into one 

of the four classes mentioned above. Pads were considered to be in the drilling phase if any wells 

were being actively drilled. Pads were considered to be in the phase between drilling and 

producing if any wells were in this phase and no wells were being drilled. Pads were considered 

to be in the producing phase if any well was producing and no wells were being drilled or were 

in the phase between drilling and producing. Pads only were considered abandoned if all wells 

on the pad were abandoned.   

 

SNOW DEPTH 
 
 
 
To examine the response of mule deer to snow on their winter range we obtained predictions of 

snow depth using a using a spatially distributed snow-evolution modeling system designed for 

fine spatial and temporal scale snow modeling, called SnowModel (Liston and Elder 2006). This 

model can predict snow depth at high temporal and spatial resolution using freely available 

meteorological inputs. Specifically the model uses relative humidity, precipitation, temperature, 

wind speed and direction to predict the amount of snow-water equivalent present on the 
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landscape. We downloaded meteorological data from 14 weather stations in or near the study 

area (data obtained from http://www.nohrsc.noaa.gov/ interactive/html/map.html and 

http://www.wcc.nrcs.usda.gov/snotel/Colorado/colorado.html) for every day between October 1 

and May 31 of each of the three winters for which we had deer GPS data. We ran the model on a 

daily time scale, producing predictions over 30 × 30 meter pixels. To validate the predictions of 

the model, during winter 2011 and 2012 we placed 4 measuring stakes throughout the study area 

and opportunistically recorded snow depths. During the winter of 2013 we deployed two weather 

stations equipped with ultrasonic depth sensors (Judd Communications LLC, Salt Lake City UT, 

USA). These data were used to assess the performance of the model and to correct values to 

match conditions seen in the study area.  
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APPENDIX 16  
 
 
 

BETA REGRESSION MODEL FORMULATIONS, MODEL STRUCTURES AND  
 

REGRESSION RESULTS 
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𝑦𝑖𝑗 ∼ beta�𝑎𝑖𝑗, 𝑏𝑖𝑗� 

𝑎𝑖𝑗 = 𝜙𝜇𝑖𝑗 

𝑏𝑖𝑗 =
1 − 𝜇𝑖𝑗
𝜙

 

𝜇𝑖𝑗 =
exp�𝛼𝑗 + 𝒙𝒊′𝜷𝒋 + 𝒛𝒊′𝜸�

1 + exp�𝛼𝑗 + 𝒙𝒊′𝜷𝒋 + 𝒛𝒊′𝜸�
 

𝜙 ∼ cauchy(0,50) 

𝛼𝑗 ∼ normal(𝜇𝛼,𝜎𝛼2) 

𝛽𝑗𝑘 ∼ normal(0,𝜎𝛽𝑘
2 ) 

𝛾𝑙 ∼ normal(0,𝜎𝛾𝑙
2 ) 

𝜎𝛼2 ∼ cauchy(0,50) 

𝜎𝛽𝑘
2 ∼ cauchy(0,50) 

𝜎𝛾𝑙
2 ∼ cauchy(0,50) 
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TABLES 
 
 
 
Table A16.1. Model names, year during which data were collected, model structure, Watananbe-
Akaike information criteria (WAIC) and effective number of parameters (PD) for beta regression 
models fit to activity budgets of mule deer in the Piceance Basin of Colorado during the winter. 
Covariates were calculated at the scale of the daily range. Activity budgets were derived from 
discrete-time correlated random walk models.  
Model Year Structure WAIC PD 

M1 2011 Facilities  + snow + TRI +  pipelines  + tree  + all 

rds + light +  temp + age + fat + study 

-10492.5 144.11 

M2 2011 Facilities  + snow + TRI + pipelines  + tree + major 

rds + light + temp + age + fat + study 

-10486.3 135.90 

M1 2012 Facilities  + snow + TRI + pipelines  + tree + all 

rds + light + ndvi + temp + age + fat + study 

-8417.58 180.88 

M2 2012 Facilities  + snow + TRI + tree + major rds + light 

+ ndvi + temp + age + fat + study 

-8375.1 171.91 

M1 2013 Facilities  + snow + TRI + pipelines + tree +all rds 

+ light + temp + age + fat + study 

-9088.97 141.47 

M2 2013 Facilities  + snow + TRI + tree + major rds + light 

+ temp + age + fat + study 

-9094.21 124.70 
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Table A16.2. Covariates, median posterior coefficient values and the proportion (Prop.) of 
posteriors falling above and below 0 for beta regression models fit to activity budgets of mule 
deer in the Piceance Basin of Colorado during winter, with covariates calculated at the daily 
scale. 
Covariate Median Prop. < 0 Prop. > 0 
M1 2011       
Intercept -0.28 0.98 0.02 
Facilities 0.00 0.61 0.39 
Snow 0.04 0.00 1.00 
TRI 0.00 0.57 0.43 
Pipelines -0.01 0.77 0.23 
Tree 0.01 0.11 0.89 
All rds 0.00 0.58 0.42 
Light -0.02 0.58 0.42 
Temp -0.05 1.00 0.00 
Age 0.02 0.40 0.60 
Fat 0.13 0.08 0.92 
Study -0.59 1.00 0.00 
    
M2 2011    
Intercept -0.28 0.98 0.02 
Facilities 0.00 0.59 0.41 
Snow 0.04 0.00 1.00 
TRI 0.00 0.52 0.48 
Pipelines 0.00 0.64 0.36 
Tree 0.01 0.12 0.88 
Major rds -0.01 0.72 0.28 
Light -0.01 0.55 0.45 
Temp -0.04 1.00 0.00 
Age 0.02 0.39 0.61 
Fat 0.13 0.09 0.91 
Study -0.58 1.00 0.00 
    
M1 2012    
Intercept 0.24 0.03 0.97 
Facilities -0.01 0.82 0.18 
Snow 0.12 0.00 1.00 
TRI 0.06 0.00 1.00 
Pipelines -0.03 0.89 0.11 
Tree 0.06 0.00 1.00 
All rds 0.00 0.56 0.44 
Light -0.01 0.56 0.44 
NDVI 0.00 0.37 0.63 
Temp 0.01 0.23 0.77 
Age -0.04 0.80 0.20 
Fat 0.00 0.52 0.48 
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Study -0.40 1.00 0.00 
    
M2 2012    
Intercept 0.27 0.02 0.98 
Facilities -0.02 0.90 0.10 
Snow 0.12 0.00 1.00 
TRI 0.05 0.01 0.99 
Tree 0.06 0.00 1.00 
Major rds 0.00 0.64 0.36 
Light 0.00 0.49 0.51 
NDVI 0.01 0.34 0.66 
Temp 0.01 0.32 0.68 
Age -0.05 0.82 0.18 
Fat 0.00 0.54 0.46 
Study -0.42 1.00 0.00 
    
M1 2013    
Intercept 0.01 0.46 0.54 
Facilities 0.00 0.39 0.61 
Snow 0.21 0.00 1.00 
TRI 0.06 0.00 1.00 
Pipe -0.03 0.99 0.01 
Tree 0.06 0.00 1.00 
All rds -0.01 0.72 0.28 
Light -0.13 0.98 0.02 
Temp -0.08 1.00 0.00 
Age -0.05 0.81 0.19 
Fat -0.01 0.60 0.40 
Study -0.12 0.83 0.17 
    
M2 2013    
Intercept 0.02 0.42 0.58 
Facilities 0.00 0.34 0.66 
Snow 0.21 0.00 1.00 
TRI 0.06 0.00 1.00 
Tree 0.06 0.00 1.00 
Major rds -0.02 1.00 0.00 
Light -0.14 0.98 0.02 
Temp -0.08 1.00 0.00 
Age -0.06 0.83 0.17 
Fat -0.01 0.60 0.40 
Study -0.12 0.83 0.17 
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Table A16.3. Model names, year during which data were collected, model structure, Watananbe-
Akaike information criteria (WAIC) and effective number of parameters (PD) for beta regression 
models fit to activity budgets of mule deer in the Piceance Basin of Colorado during the summer. 
Covariates were calculated at the scale of the daily range. Activity budgets were derived from 
discrete-time correlated random walk models. 
Model Year Structure WAIC PD 

M1 2011 Facilities + TRI + pipelines +tree + all rds + NDVI 

+ light + age + fat 

-5292.12 187.31 

M2 2011 Facilities + TRI + pipelines + tree + major rds + 

NDVI + light + age + fat 

-5298.52 153.27 

M1 2012 Facilities + TRI + pipelines + tree + all rds + NDVI 

+ light + age + fat 

-9438.16 208.28 

M2 2012 Facilities + TRI + pipelines + tree + major rds + 

NDVI + light + age + fat 

-9457.07 200.34 

M1 2013 Facilities + TRI + pipelines + tree + all rds + NDVI 

+ light + age + fat 

-4985.43 170.67 

M2 2013 Facilities + TRI + pipelines + tree + major rds + 

NDVI + light + age + fat 

-4985.6 154.13 
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Table A16.4. Covariates, median posterior coefficient values and the proportion (Prop.) of 
posteriors falling above and below 0 for beta regression models fit to activity budgets of mule 
deer in the Piceance Basin of Colorado during summer, with covariates calculated at the daily 
scale. 
Covariate Median Prop. < 0 Prop. > 0 
M1 2011       
Intercept -0.89 0.97 0.03 
Facilities 0.00 0.58 0.42 
TRI 0.12 0.00 1.00 
Pipelines -0.11 0.98 0.02 
Tree -0.12 0.98 0.02 
All rds -0.02 0.69 0.31 
NDVI 0.07 0.01 0.99 
Light 0.50 0.19 0.81 
Temp -0.05 0.98 0.02 
Age 0.06 0.45 0.55 
Fat -0.85 0.97 0.03 
       
M2 2011       
Intercept -0.83 0.96 0.04 
Facilities -0.02 0.72 0.28 
TRI 0.13 0.00 1.00 
Pipelines -0.06 0.95 0.05 
Tree -0.09 0.94 0.06 
Major rds -0.08 0.94 0.06 
NDVI 0.08 0.01 0.99 
Light 0.45 0.22 0.78 
Temp -0.05 0.98 0.02 
Age 0.11 0.40 0.60 
Fat -0.87 0.97 0.03 
       
M1 2012       
Intercept 0.50 0.00 1.00 
Facilities -0.06 0.77 0.23 
TRI 0.12 0.00 1.00 
Pipelines -0.06 0.95 0.05 
Tree 0.00 0.46 0.54 
All rds -0.01 0.81 0.19 
NDVI -0.01 0.63 0.37 
Light -0.43 1.00 0.00 
Temp -0.02 0.95 0.05 
Age -0.13 0.91 0.09 
Fat -0.47 1.00 0.00 
       
M2 2012       
Intercept 0.49 0.00 1.00 
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Facilities -0.04 0.71 0.29 
TRI 0.12 0.00 1.00 
Pipelines -0.07 0.94 0.07 
Tree 0.00 0.46 0.54 
Major rds -0.03 0.87 0.13 
NDVI 0.00 0.58 0.42 
Light -0.44 1.00 0.00 
Temp -0.02 0.95 0.05 
Age -0.13 0.92 0.08 
Fat -0.46 1.00 0.00 
       
M1 2013       
Intercept 0.21 0.32 0.68 
Facilities -0.02 0.81 0.19 
TRI -0.02 0.70 0.30 
Pipelines -0.11 0.99 0.01 
Tree -0.02 0.64 0.36 
All rds -0.05 0.92 0.08 
NDVI 0.06 0.03 0.97 
Light 0.05 0.46 0.54 
Temp -0.02 0.84 0.16 
Age -0.35 0.79 0.21 
Fat -0.36 0.79 0.21 
       
M2 2013       
Intercept 0.24 0.29 0.71 
Facilities -0.02 0.85 0.15 
TRI -0.02 0.72 0.29 
Pipelines -0.06 0.96 0.04 
Tree -0.02 0.63 0.37 
Major rds -0.10 0.99 0.01 
NDVI 0.06 0.03 0.97 
Light 0.08 0.42 0.58 
Temp -0.01 0.76 0.24 
Age -0.40 0.82 0.18 
Fat -0.45 0.85 0.15 
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Table A16.5. Model names, year during which data were collected, model structure, Watananbe-
Akaike information criteria (WAIC) and effective number of parameters (PD) for beta regression 
models fit to activity budgets of mule deer in the Piceance Basin of Colorado during the winter. 
Covariates were calculated at the scale of the seasonal range. Activity budgets were derived from 
discrete-time correlated random walk models. 
Model Year Structure WAIC PD 

M1 2011 Drill + prod + snow + light + major roads + 

TRI + age + fat + tree + facilities + study 

-10495.90 92.13 

M2 2011 Drill + prod + snow + light + all roads + TRI + 

age + fat + tree + facilities + pipe + study 

-10494.90 92.96 

M1 2012 Prod + snow + NDVI + light + major roads + 

TRI + age + fat + tree + facilities + study  

-8058.57 104.14 

M2 2012 Prod + snow + NDVI + light + all roads + TRI 

+ age + fat + tree +  facilities + pipe + study 

-8058.87 103.92 

M1 2013 Prod + snow +light +major roads + TRI +age 

+fat +tree + facilities + study 

-8871.57 67.30 

M2 2013 Prod + snow +light +all roads + TRI +age +fat 

+tree + facilities + study 

-8871.64 67.67 

M3 2013 Prod + snow +light +pipe + TRI +age +fat 

+tree + facilities + study 

-8877.95 67.61 
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Table A16.6. Covariates, median posterior coefficient values and the proportion (Prop.) of 
posteriors falling above and below 0 for beta regression models fit to activity budgets of mule 
deer in the Piceance Basin of Colorado during winter, with covariates calculated at the seasonal 
range scale. 
Covariate Median <0 >0 
M1 2011    
Intercept -0.33 0.94 0.06 
Drill -0.01 0.69 0.31 
Prod -0.06 0.67 0.33 
Snow 0.03 0.00 1.00 
Light -0.08 0.73 0.27 
Temp -0.05 1.00 0.00 
Major rds 0.15 0.08 0.92 
TRI -0.16 0.88 0.12 
Age 0.00 0.51 0.49 
Fat 0.06 0.28 0.72 
Tree 0.20 0.03 0.97 
Facilities -0.17 0.93 0.07 
Study -0.54 0.97 0.03 
       
M2 2011       
Intercept -0.41 0.97 0.03 
Drill -0.01 0.69 0.31 
Prod -0.04 0.61 0.39 
Snow 0.03 0.00 1.00 
Light -0.10 0.76 0.24 
Temp -0.05 1.00 0.00 
All rds 0.10 0.13 0.87 
TRI -0.12 0.80 0.20 
Age 0.02 0.42 0.58 
Fat 0.08 0.23 0.77 
Tree 0.19 0.05 0.95 
Facilities -0.17 0.91 0.09 
Pipelines 0.08 0.27 0.73 
Study -0.43 0.92 0.08 
       
M1 2012       
Intercept 0.34 0.04 0.96 
Prod -0.02 0.60 0.40 
Snow 0.13 0.00 1.00 
NDVI 0.01 0.29 0.71 
Light 0.00 0.51 0.49 
Temp 0.01 0.29 0.71 
Major rds 0.09 0.10 0.90 
TRI -0.05 0.74 0.26 
Age -0.05 0.80 0.20 
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Fat -0.03 0.68 0.32 
Tree 0.09 0.14 0.86 
Facilities -0.12 0.94 0.06 
Study -0.47 0.98 0.02 
       
M2 2012       
Intercept 0.19 0.16 0.84 
Prod 0.01 0.44 0.56 
Snow 0.13 0.00 1.00 
NDVI 0.01 0.28 0.72 
Light -0.04 0.71 0.29 
Temp 0.01 0.29 0.71 
All rds 0.13 0.03 0.97 
TRI -0.04 0.70 0.30 
Age -0.08 0.93 0.07 
Fat -0.02 0.65 0.35 
Tree 0.12 0.08 0.92 
Facilities -0.08 0.88 0.12 
Pipelines -0.05 0.72 0.28 
Study -0.29 0.90 0.10 
       
M1 2013       
Intercept 0.01 0.47 0.53 
Prod 0.07 0.22 0.78 
Snow 0.24 0.00 1.00 
Light -0.17 0.99 0.01 
Temp -0.08 1.00 0.00 
Major rds 0.03 0.37 0.63 
TRI 0.18 0.13 0.87 
Age -0.03 0.66 0.34 
Fat -0.02 0.63 0.37 
Tree 0.05 0.34 0.66 
Facilities 0.02 0.42 0.58 
Study -0.09 0.67 0.33 
       
M2 2013       
Intercept 0.04 0.41 0.59 
Prod 0.10 0.11 0.89 
Snow 0.24 0.00 1.00 
Light -0.17 0.99 0.01 
Temp -0.08 1.00 0.00 
All rds -0.05 0.75 0.25 
TRI 0.14 0.19 0.81 
Age -0.04 0.72 0.28 
Fat -0.02 0.65 0.35 
Tree 0.07 0.26 0.74 
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Facilities 0.04 0.30 0.70 
Study -0.12 0.72 0.28 
       
M3 2013       
Intercept -0.09 0.66 0.34 
Prod 0.01 0.46 0.54 
Snow 0.24 0.00 1.00 
Light -0.24 1.00 0.00 
Temp -0.08 1.00 0.00 
Pipelines 0.18 0.08 0.92 
TRI 0.22 0.10 0.90 
Age -0.05 0.72 0.28 
Fat -0.03 0.70 0.30 
Tree 0.07 0.29 0.71 
Facilities -0.05 0.68 0.32 
Study 0.03 0.46 0.54 
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Table A16.7. Model names, year during which data were collected, model structure, Watananbe-
Akaike information criteria (WAIC) and effective number of parameters (PD) for beta regression 
models fit to activity budgets of mule deer in the Piceance Basin of Colorado during the summer. 
Covariates were calculated at the scale of the seasonal range. Activity budgets were derived from 
discrete-time correlated random walk models. 
Model Year Structure WAIC PD 

M1 2011 Prod + NDVI + light + age + fat + facilities + TRI 

+ tree + major rds 

-5115.32 85.47 

M2 2011 Prod + NDVI + light + age + fat + facilities + TRI 

+ tree + all rds + pipelines 

-5116.61 85.87 

M1 2012 Prod + NDVI + light + age + fat + facilities + TRI 

+ tree + major 

-8864.71 104.91 

M2 2012 Prod + NDVI + light + age + fat + facilities + TRI 

+ tree + all rds + pipelines 

-8872.38 105.04 

M1 2013 Prod + NDVI + light + age + fat + facilities + TRI 

+ tree + major rds 

-4752.18 75.73 

M2 2013 Prod + NDVI + light + age + fat + facilities + TRI 

+ tree + all rds + pipelines 

-4752.86 75.70 
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Table A16.8. Covariates, median posterior coefficient values and the proportion (Prop.) of 
posteriors falling above and below 0 for beta regression models fit to activity budgets of mule 
deer in the Piceance Basin of Colorado during summer, with covariates calculated at the seasonal 
range scale. 
Covariate Median <0 >0 
M1 2011    
Intercept -0.74 0.92 0.08 
Prod 0.73 0.14 0.86 
NDVI 0.07 0.04 0.96 
Light -0.27 0.68 0.32 
Temp -0.05 0.96 0.04 
Age -0.59 0.80 0.20 
Fat -1.01 0.96 0.04 
Facilities 0.09 0.44 0.56 
TRI 0.66 0.21 0.79 
Tree -0.43 0.71 0.29 
Major rds -0.52 0.81 0.19 
    
M2 2011     
Intercept -0.69 0.92 0.08 
Prod 1.30 0.05 0.95 
NDVI 0.07 0.04 0.96 
Light -0.22 0.64 0.36 
Temp -0.05 0.96 0.04 
Age -0.86 0.90 0.10 
Fat -0.97 0.96 0.04 
Facilities 0.54 0.20 0.80 
TRI 0.97 0.11 0.89 
Tree -0.30 0.66 0.34 
All rds 0.29 0.30 0.70 
Pipelines -1.33 0.96 0.04 
    
M1 2012     
Intercept 0.60 0.00 1.00 
Prod -0.17 0.89 0.11 
NDVI -0.02 0.85 0.15 
Light -0.34 1.00 0.00 
Temp -0.01 0.79 0.21 
Age -0.18 0.92 0.08 
Fat -0.42 1.00 0.00 
Facilities 0.13 0.16 0.84 
TRI 0.21 0.11 0.89 
Tree -0.28 0.96 0.04 
Major rds 0.28 0.07 0.93 
    
M2 2012     
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Intercept 0.60 0.00 1.00 
Prod -0.21 0.89 0.11 
NDVI -0.02 0.80 0.20 
Temp -0.41 1.00 0.00 
Light -0.01 0.81 0.19 
Age -0.10 0.76 0.24 
Fat -0.43 1.00 0.00 
Facilities 0.17 0.15 0.85 
TRI 0.04 0.40 0.60 
Tree -0.28 0.93 0.07 
All rds -0.12 0.81 0.19 
Pipelines 0.18 0.17 0.83 
    
M1 2013     
Intercept 0.83 0.00 1.00 
Prod -0.16 0.62 0.38 
NDVI 0.12 0.00 1.00 
Light -0.13 0.63 0.37 
Temp -0.01 0.79 0.21 
Age -0.05 0.57 0.43 
Fat 0.01 0.49 0.51 
Facilities -0.54 0.98 0.02 
TRI -0.33 0.79 0.21 
Tree 0.62 0.02 0.98 
Major rds -0.25 0.69 0.31 
    
M2 2013     
Intercept 0.79 0.00 1.00 
Prod -0.32 0.70 0.30 
NDVI 0.11 0.00 1.00 
Light -0.13 0.62 0.38 
Temp -0.01 0.79 0.21 
Age -0.03 0.53 0.47 
Fat -0.05 0.56 0.44 
Facilities -0.50 0.93 0.07 
TRI -0.25 0.77 0.23 
Tree 0.58 0.04 0.96 
All rds -0.26 0.82 0.18 
Pipelines -0.07 0.55 0.45 
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APPENDIX 17 
 
 
 

RESULTS OF DISCRETE-TIME CORRELATED RANDOM WALK MODELS, MODEL  
 

EVALUATION AND ASSESSMENTS 
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FIGURES 
 
 
 

 
Figure A17.1. Summer range empirical turn angle (A and B) and step length (C and D) 
distributions for foraging (A and C) and resting (B and D) states identified from a discrete-time 
correlated random walk model fit to GPS data from adult female mule deer in the Piceance Basin 
of Colorado. Histograms and density plots include all movements regardless of state, weighted 
by the probability of being in each state.  
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Figure A17.2. Winter range empirical turn angle (A and B) and step length (C and D) 
distributions for foraging (A and C) and resting (B and D) states identified from a discrete-time 
correlated random walk model fit to GPS data from adult female mule deer in the Piceance Basin 
of Colorado. Histograms and density plots include all movements regardless of state, weighted 
by the probability of being in each state.  
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Figure A17.3. Representative result of posterior predictive check on the autocorrelation structure in consecutive step lengths for a 
single mule deer doe during the winter in the Piceance Basin of northwest Colorado. Black lines represent the median (solid line) and 
95% credible interval (dashed lines) of autocorrelation structure produced from the results of discrete-time correlated random walk 
model, while grey lines represent the true autocorrelation structure estimated from the data.  
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Figure A17.4. Representative result of posterior predictive check on the autocorrelation structure in consecutive step lengths for a 
single mule deer doe during the summer in the Piceance Basin of northwest Colorado. Black lines represent the median (solid line) 
and 95% credible interval (dashed lines) of autocorrelation structure produced from the results of discrete-time correlated random 
walk model, while grey lines represent the true autocorrelation structure estimated from the data. 
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Figure A17.5. Histogram of residuals calculated as the difference between the probability of the 
animal being in the resting state, as classified by the discrete-time correlated random walk, and 
the proportion of time spent resting as calculated using acoustic behavioral data.  
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Figure A17.6. Histogram of residuals calculated as the difference between the probability of the 
animal being in the resting state, as classified by the discrete-time correlated random walk, and 
the proportion of time spent resting as calculated using acoustic behavioral data.  
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Figure A17.7. Histogram of residuals calculated as the difference between the probability of the 
animal being in the resting state, as classified by the discrete-time correlated random walk, and 
the proportion of time spent resting as calculated using acoustic behavioral data. 
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APPENDIX 18 
 
 
 

PCR CONDITIONS 
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DESCRIPTION OF PCR CONDITIONS  
 
 
 
The following describes the polymerase chain reaction (PCR) conditions for chapter four. The 

multiplex microsatellite reaction consisted of 25 ng DNA, 5 μL 2× Qiagen Multiplex mix, 2 μL 

primer mix, and 0.5 μL distilled water. The 10 μl single reactions contained 0.8 μL of MgCl2 (20 

mM), 1 μL 10× PCR buffer, 2 μL of dNTPs (0.2 mM each), a 20× primer mix diluted to between 

0.24 and 0.34 μL each, 0.08 μL of Taq (0.5 units), 1 μL of DNA template (~10 ng) and Milli-Q 

water. One primer per pair was fluorescently labeled. The multiplex PCR parameters followed 

Cullingham et al. (2011a) and the single-PCRs began with an initial 3-minute denaturation at 

95°C, followed by 38 cycles of 30 seconds denaturation at 94°C, 90 seconds annealing at 49°C, 

and 30 seconds extension at 72°C. The microsatellite amplicons were loaded on an ABI 3730 

DNA sequencer (Applied Biosystems, Foster City, CA, USA) with a GS500LIZ size standard 

(Applied Biosystems). Microsatellite alleles were scored using GENEMAPPER version 4.0 

(Applied Biosystems) and deviations from Hardy-Weinberg equilibrium (HWE) were tested 

using the exact test (Guo and Thompson 1992) implemented in Genepop v.4.0 (Rousset 

2008)and FSTAT v.2.9.3 (Goudet 1995)was used to test for linkage disequilibrium. 

 The mitochondrial control region was amplified in a 25 μl PCR reaction containing ~50 

ng of template DNA, 0.2 mM each dNTP, 1× PCR buffer, 0.2 μM each primer, 1.6 mM MgCl2, 

0.1 U Taq DNA polymerase, and Milli-Q water. The PCR profile was as follows: hot-start 

followed by an initial 2-minute denaturation at 94°C, followed by 38 cycles of 30 seconds 

denaturation at 94°C, 58°C, 72°C. The run concluded after 5 minutes at 72°C. PCR success was 

determined from gel electrophoresis. PCR product (10 μl) was treated with 5 μl of ExoSAP 

(USB Corporation, OH, USA) and incubated at 37°C for 15 minutes followed by 80°C for 15 
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minutes. The ExoSAP treated PCR product was used in a sequencing reaction. Amplicons were 

directly sequenced in both directions using a Big Dye Terminator Kit (Applied Biosystems, 

Foster City, CA) and generated on an ABI 3730. Sequences were aligned using the ClustalW 

algorithm (Thompson et al. 1994). 
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APPENDIX 19 
 
 
 

MICROSATELLITE DIVERSITY STATISTICS 
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Table A19.1. Microsatellite loci, number of individuals genotyped (N), number of alleles present 
at each loci (Na), observed heterozygosity (Ho), expected heterozygosity (He), and fixation 
index (F).  
Locus N Na Ho He F 

INRA011a 134 6.000 0.500 0.489 -0.023 

RT30a 132 14.000 0.788 0.794 0.008 

BBJ2a 134 8.000 0.739 0.781 0.054 

Ka 135 5.000 0.748 0.725 -0.032 

BL25a 133 6.000 0.767 0.706 -0.086 

BM6438a 134 10.000 0.784 0.732 -0.071 

BM848a 135 9.000 0.748 0.755 0.010 

RT7a 133 8.000 0.827 0.786 -0.052 

Na 135 12.000 0.852 0.881 0.033 

ETH152a 134 10.000 0.791 0.803 0.015 

BM6506a 135 5.000 0.741 0.701 -0.056 

Pa 132 7.000 0.538 0.550 0.021 

Da 132 6.000 0.462 0.463 0.001 

BM4107a 134 11.000 0.828 0.838 0.011 

RT5a 134 10.000 0.836 0.777 -0.075 

OCAMa 129 8.000 0.628 0.558 -0.125 

Ra 131 6.000 0.634 0.619 -0.024 

Mean 133.294 8.294 0.718 0.703 -0.023 

SE 0.400 0.629 0.029 0.030 0.012 
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APPENDIX 20 
 
 
 

MODEL FORMULATION FOR MODELS USED IN CHAPTER 7 
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The following is the model formulation for the regression models used in chapter four. 

Multi-level linear regression model:  

log (𝑚𝑎𝑠𝑠𝑖𝑗)~𝑁𝑜𝑟𝑚𝑎𝑙�𝜇𝑖𝑗 ,𝜎2� 

𝜇𝑖𝑗 = 𝛼𝑖 + 𝒙𝒊𝒋′ 𝜷 

𝛼𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛼,𝜎𝛼2) 

𝜇𝛼~𝑁𝑜𝑟𝑚𝑎𝑙(0, 300) 

𝜎𝛼 =
1
�𝜏𝛼

 

𝜏𝛼~𝑔𝑎𝑚𝑚𝑎(0.001, 0.001) 

𝜷~𝑁𝑜𝑟𝑚𝑎𝑙(𝟎, 10 000𝐼) 

𝜎 =
1
√𝜏

 

𝜏~𝑔𝑎𝑚𝑚𝑎(0.001, 0.001) 

 

Multi-level beta regression model: 

𝑓𝑎𝑡𝑖𝑗~𝑏𝑒𝑡𝑎�𝑎𝑖𝑗 , 𝑏𝑖𝑗� 

𝑎𝑖𝑗 = 𝜇𝑖𝑗 × 𝜙 

𝑏𝑖𝑗 = �1 − 𝜇𝑖𝑗�𝜙 

𝑙𝑜𝑔𝑖𝑡(𝜇𝑖𝑗) = 𝛼𝑖 + 𝒙𝒊𝒋′ 𝜷 

𝛼𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛼,𝜎𝛼2) 

𝜇𝛼~𝑁𝑜𝑟𝑚𝑎𝑙(0, 300) 

𝜎𝛼 =
1
�𝜏𝛼

 

𝜏𝛼~𝑔𝑎𝑚𝑚𝑎(0.001, 0.001) 
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𝜷~𝑁𝑜𝑟𝑚𝑎𝑙(𝟎, 10 000𝐼) 

𝜙~𝑔𝑎𝑚𝑚𝑎(0.0001, 0.0001) 

 

Negative binomial regression model: 

𝑑𝑎𝑦𝑠𝑗~𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙�𝑝𝑗, 𝑟� 

𝑝𝑗 =
𝑟

𝑟 + 𝜆𝑗
 

log�𝜆𝑗� = 𝒙𝒋′𝜷 

𝜷~𝑁𝑜𝑟𝑚𝑎𝑙(𝟎, 10 000𝐼) 

𝑟~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,100) 

 

In all models, 𝑖 indexes the individual, 𝑗 indexes the observation, 𝒙𝒊𝒋 is vector of covariates for 

the 𝑖𝑡ℎ individual and 𝑗𝑡ℎ observation with corresponding vector of coefficients, 𝜷. The above 

formulations include priors, which were formulated to be diffuse. 

 For all models 2 Markov Chain Monte Carlo (MCMC) algorithms were run, with initial 

values that were expected to be overdispersed relative to the posterior distribution. Convergence 

to the posterior distribution was assessed using the Gelman-Rubin diagnostic (Gelman and Rubin 

1992), and by examining trace plots of the MCMCs. We ran the negative binomial models of 

migration timing for 400,000 iterations, discarding the first 100,000 as burn-in. We ran the MLH 

models for condition for 300,000 iterations, discarding the first 100,000 as burn-in. We ran the 

SLH models for condition for 400,000 iterations discarding the first 100,000 as burn-in. Once 

convergence was reached we calculated the median of the posterior distributions for all 

coefficients, as well as the probability that each coefficient was above and below 0. 
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APPENDIX 21 
 
 
 

PHYLOGENETIC TREES 
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Figure A21.1. Phylogenetic trees for female mule deer in the Piceance Basin, Northwest 
Colorado. 
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APPENDIX 22 
 
 
 

SUPPLEMENTAL RESULTS FOR CHAPTER 7 
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Table A22.1. Identification (ID) numbers, ages, study area, and whether individual was captured 
in December, March or both for mule deer captured in the Piceance Basin of Colorado. 
ID number Age Study area Capture period 
11890 4.5 SM December 
102352 5.5 NM December 
102353 9.5 NM December 
102354 5.5 NM December 
102357 10.5 NM December 
102358 2.5 NM December 
102363 5.5 NM December 
102365 5.5 NM December 
102368 3.5 NM December 
102370 3.5 NM December 
102371 10.5 NM December 
102374 8.5 SM December 
102375 2.5 SM December 
102376 10.5 SM December 
102377 5.5 SM December 
102380 2.5 SM December 
102384 7.5 SM December 
102385 1.5 SM December 
102386 4.5 SM December 
102390 7.5 SM December 
102391 4.5 SM December 
102392 4.5 RG December 
102396 7.5 RG December 
102398 3.5 RG December 
102407 9.5 RG December 
102408 6.5 RG December 
102409 4.5 RG December 
102410 1.5 RG December 
102411 4.5 RG December 
102412 7.5 RG December 
102413 4.5 RG December 
102416 3.5 RG December 
102417 6.5 RG December 
102418 3.5 RG December 
102419 5.5 RG December 
102420 4.5 RG December 
102421 10.5 RG December 
102423 2.5 RG December 
102426 7.5 RG December 
102427 9.5 RG December 
102429 7.5 RG December 
102430 9.5 RG December 
102431 10.5 RG December 
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102434 5.5 RG December 
102435 4.5 RG December 
102436 7.5 NR December 
102442 7.5 NR December 
102443 10.5 NR December 
102444 4.5 NR December 
102448 6.5 NR December 
102449 3.5 NR December 
102452 2.5 NR December 
102455 3.5 NR December 
102456 4.5 NR December 
102457 8.5 NR December 
11758 9.5 NR Both 
11760 5.5 NR Both 
11761 2.5 NR Both 
11767 4.5 NR Both 
11768 6.5 NR Both 
11769 8.5 NR Both 
11771 3.5 NR Both 
11772 8.5 NR Both 
11778 5.5 RG Both 
11779 5.5 RG Both 
11780 4.5 RG Both 
11781 4.5 RG Both 
11782 6.5 RG Both 
11783 4.5 RG Both 
11784 5.5 RG Both 
11787 8.5 RG Both 
11788 3.5 RG Both 
11789 6.5 RG Both 
11791 4.5 RG Both 
11792 3.5 RG Both 
11885 2.5 SM Both 
11886 5.5 SM Both 
11887 6.5 SM Both 
11888 3.5 SM Both 
11889 5.5 SM Both 
11891 10.5 SM Both 
11894 10.5 SM Both 
11899 4.5 SM Both 
11903 3.5 NM Both 
11905 3.5 NM Both 
11906 2.5 NM Both 
11908 3.5 NM Both 
11910 8.5 NM Both 
11911 4.5 NM Both 
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11913 6.5 NM Both 
11916 10.5 NM Both 
11919 2.5 NM Both 
11920 2.5 NM Both 
102393 6.5 RG Both 
102395 8.5 RG Both 
102397 6.5 RG Both 
102399 4.5 RG Both 
102401 3.5 RG Both 
102432 3.5 RG Both 
102433 9.5 RG Both 
102437 5.5 NR Both 
11756 7.5 NR March 
11759 7.5 NR March 
11762 1.5 NR March 
11764 7.5 NR March 
11765 2.5 NR Both 
11766 5.5 NR Both 
11770 6.5 NR March 
11773 6.5 NR March 
11774 5.5 NR March 
11775 3.5 NR March 
11776 2.5 NR March 
11777 11.5 RG March 
11882 5.5 SM March 
11883 7.5 SM March 
11884 8.5 SM March 
11892 4.5 SM March 
11893 8.5 SM March 
11895 10.5 SM March 
11896 4.5 SM March 
11897 3.5 SM March 
11898 6.5 SM March 
11900 7.5 SM March 
11901 3.5 SM March 
11902 7.5 NM March 
11904 3.5 NM March 
11907 7.5 NM March 
11909 4.5 NM March 
11912 6.5 NM March 
11914 4.5 NM March 
11915 8.5 NM March 
11917 4.5 NM March 
11918 8.5 NM March 
11921 6.5 NM March 
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Table A22.2. DIC values for multi-level linear regression models on mule deer body mass, and 
multi-level beta regression models on mule deer body fat relative to MLH (multi-locus 
heterozygosity) or SLH (single-locus heterozygosity). Body mass and fat were calculated from 
deer captured via helicopter net-gunning on their winter range.   
Dependent 

variable 

Model  Model structure DIC 

Mass M1 MLH + Age + March Capture + Study area -338.9 

Mass M2 MLH + Age + Age2 + March Capture + Study area -339.2 

Mass M3 SLH* + Age + March Capture + Study area -334.5 

Mass M4 SLH* + Age + Age2 + March Capture + Study area -334.6 

Fat F1 MLH + Age + March Capture + Study area -695.9 

Fat F2 MLH + Age + Age2 + March Capture + Study area -695.8 

Fat F3 SLH* + Age + March Capture + Study area -691.6 

Fat F4 SLH* + Age + Age2 + March Capture + Study area -690.9 

*SLH indicates a set of 17 dummy variables indicating if the individual was heterozygous (1) or 

not (0) at a specific locus. 
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Table A22.3. Covariates, median coefficient (coeff.) values, and the probability (prob.) of either 
a negative or positive effect of the covariate on mule deer body mass and body fat estimated 
from multi-level linear or beta regression respectively. Models presented are lowest DIC models 
for both MLH and SLH models of mass and body fat. 
Mass model 
M2 

   

Covariate Median coeff. value Prob. coeff. is negative Prob. coeff. positive 
MLH 0.117 0.24 0.76 
Age 0.036 0.03 0.97 
Age2 -0.021 0.91 0.09 
March Capture -0.1 1 0 
NR* -0.014 0.61 0.39 
RG† -0.02 0.67 0.33 
SM‡ -0.007 0.56 0.44 
    
Mass model 
M4 

   

Covariate Median coeff. value Prob. coeff. is negative Prob. coeff. positive 
Age 0.033 0.06 0.94 
Age2 -0.021 0.89 0.11 
March Capture -0.100 1 0 
NR* -0.014 0.60 0.40 
RG† -0.027 0.69 0.31 
SM‡ -0.027 0.69 0.31 
INRA011 -0.024 0.73 0.27 
RT30 -0.060 0.90 0.10 
BBJ 0.024 0.30 0.70 
K 0.036 0.20 0.80 
BL25 -0.004 0.53 0.47 
BM6438 0.010 0.42 0.58 
BM848 0.028 0.27 0.73 
RT7 0.030 0.29 0.71 
N 0.085 0.06 0.94 
ETH152 -0.034 0.77 0.23 
BM6506 0.036 0.21 0.79 
P 0.002 0.48 0.52 
D 0.010 0.40 0.60 
BM4107 0.044 0.21 0.79 
RT5 0.032 0.27 0.73 
OCAM 0.027 0.25 0.75 
R -0.038 0.82 0.18 
    
Fat model F1    
Covariate Median coeff. value Prob. coeff. is negative Prob. coeff. positive 
MLH 0.094 0.39 0.61 
Age -0.043 0.87 0.13 
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March Capture -0.515 1 0 
NR* -0.078 0.74 0.26 
RG† -0.026 0.60 0.4 
SM‡ 0.041 0.36 0.64 
    
Fat model F3    
Covariate Median coeff. value Prob. coeff. is negative Prob. coeff. positive 
Age -0.051 0.89 0.11 
March Capture -0.518 1 0 
NR* -0.104 0.80 0.20 
RG† -0.105 0.82 0.18 
SM‡ -0.059 0.69 0.31 
INRA011 -0.127 0.93 0.07 
RT30 -0.240 0.99 0.01 
BBJ 0.077 0.22 0.78 
K -0.034 0.65 0.35 
BL25 0.074 0.27 0.73 
BM6438 -0.001 0.50 0.50 
BM848 -0.108 0.87 0.13 
RT7 -0.078 0.72 0.28 
N 0.087 0.22 0.78 
ETH152 -0.004 0.52 0.48 
BM6506 0.024 0.40 0.60 
P 0.175 0.04 0.96 
D 0.092 0.13 0.87 
BM4107 0.053 0.32 0.68 
RT5 0.145 0.13 0.87 
OCAM 0.020 0.41 0.59 
R -0.076 0.81 0.19 
*Indicates deer captured in the NR study area, with NM as the reference category 
†Indicates deer captured in the RG study area, with NM as the reference category 
‡Indicates deer captured in the SM study area, with NM as the reference category 
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Table A22.4. Covariates, median coefficient (coeff.) values, and the probability (prob.) of either 
a negative or positive effect of the covariate on mule deer Spring migration termination date 
estimated from negative binomial regression model from mule deer captured in the Piceance 
Basin, Colorado.  
Neighbor joining clades    

Covariate Median coeff. value Prob. coeff. is negative Prob. coeff. positive 

Intercept 3.48 0 1 

Age 0.01 0.45 0.55 

NR* -0.23 0.93 0.07 

RG† -0.01 0.52 0.48 

SM‡ -0.02 0.56 0.44 

mtDNA cluster 2§ 0.04 0.38 0.62 

mtDNA cluster 3§ 0.04 0.39 0.61 

    

Bayesian clades    

Covariate Median coeff. value Prob. coeff. is negative Prob. coeff. positive 

Intercept 3.49 0 1 

Age 0.01 0.44 0.56 

NR* -0.23 0.93 0.07 

RG† -0.02 0.55 0.45 

SM‡ -0.03 0.58 0.42 

mtDNA cluster 2§ 0.03 0.41 0.59 

*Indicates deer captured in the NR study area, with NM as the reference category 
†Indicates deer captured in the RG study area, with NM as the reference category 
‡Indicates deer captured in the SM study area, with NM as the reference category 
§mtDNA cluster 1 is the reference category 
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Table A22.5. Covariates, median coefficient (coeff.) values, and the probability (prob.) of either 
a negative or positive effect of the covariate on mule deer Spring migration initiation date 
estimated from negative binomial regression model from mule deer captured in the Piceance 
Basin, Colorado.  
Neighbor joining clades    

Covariate Median coeff. value Prob. coeff. is negative Prob. coeff. positive 

Intercept 3.41 0 1 

Age -0.03 0.7 0.3 

NR* -0.67 1 0 

RG† -0.14 0.79 0.21 

SM‡ -0.08 0.67 0.33 

mtDNA cluster 2§ 0.01 0.48 0.52 

mtDNA 3 -0.12 0.76 0.24 

    

Bayesian clades    

Covariate Median coeff. value Prob. coeff. is negative Prob. coeff. positive 

Intercept 3.36 0 1 

Age -0.04 0.76 0.24 

NR* -0.66 1 0 

RG† -0.11 0.74 0.26 

SM‡ -0.05 0.32 0.38 

mtDNA cluster 2§ 0.04 0.38 0.62 

*Indicates deer captured in the NR study area, with NM as the reference category 
†Indicates deer captured in the RG study area, with NM as the reference category 
‡Indicates deer captured in the SM study area, with NM as the reference category 
§mtDNA cluster 1 is the reference category 
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Table A22.6. Covariates, median coefficient (coeff.) values, and the probability (prob.) of either 
a negative or positive effect of the covariate on mule deer Fall migration initiation date estimated 
from negative binomial regression model from mule deer captured in the Piceance Basin, 
Colorado.  
Neighbor joining clades    

Covariate Median coeff. value Prob. coeff. is negative Prob. coeff. positive 

Intercept 3.07 0 1 

Age -0.17 0.92 0.08 

NR* -0.1 0.62 0.38 

RG† -0.44 0.91 0.09 

SM‡ -0.78 0.98 0.02 

mtDNA cluster 2§ -0.52 0.96 0.04 

mtDNA cluster 3§ -0.55 0.95 0.05 

    

Bayesian clades    

Covariate Median coeff. value Prob. coeff. is negative Prob. coeff. positive 

Intercept 2.84 0 1 

Age -0.18 0.93 0.07 

NR* -0.08 0.59 0.41 

RG† -0.28 0.81 0.19 

SM‡ -0.59 0.95 0.05 

mtDNA cluster 2§ -0.35 0.9 0.1 

*Indicates deer captured in the NR study area, with NM as the reference category 
†Indicates deer captured in the RG study area, with NM as the reference category 
‡Indicates deer captured in the SM study area, with NM as the reference category 
§mtDNA cluster 1 is the reference category 
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Figure A22.1. Fitted values versus residuals from negative binomial model fit to migration 
timing of mule deer in the Piceance Basin of Colorado. The residuals were calculated from the 
model including mtDNA clades determined from the Bayesian analysis.  
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Figure A22.2. Fitted values versus residuals from negative binomial model fit to migration 
timing of mule deer in the Piceance Basin of Colorado. The residuals were calculated from the 
model including mtDNA clades determined from the neighbor joining analysis.  



 
 

422 

 

 

Figure A22.3. Fitted values versus residuals from hierarchical beta regression fit to percent body 
fat of mule deer in the Piceance Basin of Colorado. Residuals are from best model as determined 
by DIC (deviance information criteria). 

 

 

 


