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Abstract: 

The Cache la Poudre basin in northern Colorado provides water supplies to many agricultural 
and municipal users.  In this study we analyzed sources of variability in the water yield produced 
in the upper Cache la Poudre basin above the river forecasting location. The primary objective of 
the research was to conduct a comprehensive hydrologic analysis that included investigation of 
(1) relations between snow variables and water yield, (2) spatial snow cover patterns during the 
melt season, and (3) hydrologic modeling approaches for exploring the sensitivity of river flow 
to variability in precipitation and temperature.  Hydrologic analyses conducted for this project 
relied on precipitation, temperature, snow water equivalent (SWE), snow covered area (SCA) 
from the MODIS satellite sensor, and naturalized river flow during the snowmelt runoff season, 
which we defined as lasting from March-September.  We also used these variables in conceptual 
hydrologic models that related changes in either SCA or SWE to the quantity of runoff 
generation in different elevation zones of the Cache la Poudre basin.   

 

Analyses of the SCA illustrated spatial patterns in the snowpack for the basin.  Results showed 
that during the past decade, elevations below approximately 2,700 m (8,900 ft) had seasonally 
intermittent snow cover, whereas elevations above around 3,000 m (9,800 ft) had seasonally 
persistent snow cover that lasted well into the spring.  In a transitional snow cover zone between 
2,700-3,000 m elevation, the timing of snow cover depletion during the spring correlated with 
the rising hydrograph in the Cache la Poudre River.  Peak river flow occurred in May to early 
June, as the higher elevations with seasonally persistent snowpack were melting.  SWE 
measurements in the basin were collected at two SNOTEL sites within this seasonally persistent 
snow zone.  Peak SWE at these sites explained >60% of the variance in water yield for the Cache 
la Poudre; however the timing of peak SWE was highly variable from year to year, ranging from 
mid-March to early June.   

 

Hydrologic modeling results for 2000-2009 indicated that on average 50% of the water yield for 
the upper Cache la Poudre was produced from the elevation zone between approximately 3,000-
3,400 m, which is the elevation zone that includes the two SNOTEL sites.   The transitional 
elevation zone (2,700-3,000 m) could also produce a large fraction of total water yield, up to 
33% in 2003.  In other years the water yield from this zone was much lower, down to a minimum 
of 2% in 2006.   Model results also illustrated high sensitivity in water yield to spring 
temperature and precipitation.  Results indicate that important sources of variability in water 
yield in the Cache la Poudre are (1) spring precipitation and temperature patterns, and (2) 
variability in the magnitude of snow accumulation and runoff production from the middle 
elevation snow transition zone.    
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Previous research 

Predicting river flow in snowmelt-dominated mountain basins can be a challenge, in part because 
forecasts rely on ground observations of the snowpack that leave much of the land surface area 
under-sampled in both time and space (Bales et al., 2006).  The primary snow variable of interest 
for river flow prediction is snow water equivalent (SWE), which indicates the amount of water in 
the snowpack.  In the Cache la Poudre basin, SWE measurements are collected continuously at 
SNOTEL sites and during spring snow surveys at snow course sites (Figure 2).  While these sites 
provide useful information about the snowpack at the measurement locations, local snow 
measurement sites are not necessarily representative of the snowpack in a larger area (Molotch 
and Bales, 2005), as SWE can vary significantly over short distances in mountain terrain (Elder 
et al., 1991; Balk and Elder, 2000).   

 

One strategy for examining a snowpack over a large area is to use remotely sensed images taken 
from air or satellite.  Several methods have been developed to estimate SWE from remotely 
sensed data (Rees, 2006), but these methods are not well-suited for the steep and varied terrain of 
mountain basins.  Alternatively, studies of mountain basins have derived spatial distributions of 
SWE using combinations of image data and modeling (e.g. Cline et al., 1998; Molotch and 
Margulis, 2008) or through data assimilation methods (e.g. NOHRSC, 2004; Kolberg et al., 
2006; Andreadis and Lettenmaier, 2006).  These types of methods usually incorporate remotely 
sensed images of the snow-covered area (SCA), a variable much more easily observed from 
aircraft or satellite images.  SCA data have been used in multiple studies for both hydrologic 
simulation and forecasting (e.g. Tekeli et al., 2005; Dressler et al., 2006; McGuire et al., 2006).    

 

Hydrologic models offer a structure for relating snow variables (SWE or SCA) to runoff 
generation.  These models have a wide range of theoretical frameworks, ranging from simple 
empirical or conceptual models to more detailed physically based models.  Fully empirical 
models such as multiple regressions or principle components analysis are often employed by 
flow forecasters to predict seasonal snowmelt runoff from in situ SWE measurements. Fully 
empirical models do not attempt to represent the physical processes that convert snow to runoff.  
In contrast, conceptual or physically based models represent the snowmelt runoff process in 
some way.  A widely used snow conceptual model is the snowmelt runoff model (SRM; 
Martinec et al., 2007), which is designed to simulate snowmelt runoff directly from SCA data.  
The model links snow cover changes in elevation zones to runoff magnitude using a degree-day 
melt approach.  More detailed physically-based models (e.g. Blöschl et al., 1991; Marks et al., 
1999) simulate changes in SWE over space and time based on the snowpack energy balance.  
Because of the heterogeneity and data scarcity in mountain terrain, these more detailed models 
are generally best suited for relatively small basins (<10 km2) although they have been applied 
with some success over larger areas as well (Garen and Marks, 2005).  A reasonable guiding 
principle for selecting an appropriate hydrologic model for a basin is that the model should 
contain only as much detail as the data support.   

 
 



    6  
 

Review of Methods Used 

Hydrologic analyses conducted for this project rely on precipitation, temperature, snowpack, and 
river flow measurements during the snowmelt runoff season, which we define as lasting from 
March-September.  We focused most analyses on the years 2000-2009, as these are the years for 
which we had both SCA data and daily naturalized flow data.   

 

Data sources 

We compiled daily precipitation and temperature data for all COOP meteorological stations and 
SNOTEL stations within and near the boundaries of the upper Cache la Poudre basin (Figure 2, 
Table 1).  We also compiled maps of annual average precipitation and temperature distributions 
from the PRISM climate model (Figure 4; www.prismclimate.org).  To characterize snowpack 
properties, we compiled daily snow water equivalent (SWE) values for SNOTEL stations and 
used snow covered area (SCA) images from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) sensor on the Terra satellite.  We used the 8-day maximum SCA 
product downloaded from the National Snow and Ice Data Center (NSIDC:  
http://nsidc.org/data/modis/index.html).   

 

TABLE 1. Meteorological and SNOTEL stations within and near the upper Cache la Poudre 
basin.  

Name ID Type 
Elevation  

(m) 
Fort Collins 53005 COOP 1525 
Virginia Dale  58690 COOP 2138 
Buckhorn Mountain 51060 COOP 2256 
Rustic 57296 COOP 2347 
Hourglass 54135 COOP 2902 
Joe Wright 05J37S SNOTEL 3085 
Deadman Hill 05J06S SNOTEL 3115 

 

To analyze how precipitation, snowpack, and temperature relate to river flow, we require 
‘naturalized’ flow values.  When the Cache la Poudre River reaches the Canyon Mouth stream 
gauge, its flow has been modified by diversions into and out of the basin and by reservoir 
storage.  Our analyses use naturalized flow values at the Canyon Mouth location calculated using 
a basic accounting method: 

Naturalized flow = Observed flow + Diversions – Foreign water ± ∆Storage 

 where Diversions are any structures that remove water from the river or its upstream tributaries, 
Foreign water is any water that is imported from outside the basin boundaries into the Cache la 
Poudre or its upstream tributaries, and ∆Storage is any change in the quantity of water stored in 
reservoirs within the basin.  This accounting method does not incorporate routing of flow within 
the stream network, which contributes some uncertainty to daily naturalized flow values. 
Calculations of naturalized flow also exclude some smaller diversions that are not monitored 
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possible river flows by varying the time series of spring temperature and precipitation over the 
basin, starting either on April 1 or on May 1. 

 

Discussion of Results and their Significance 

Hydrologic analysis 

In the first set of hydrologic analyses, we examined the relations between SNOTEL station 
measurements of SWE and river discharge.  First, we compared naturalized discharge at the 
Canyon Mouth gauge to SWE measured at the two SNOTEL sites in the basin, Joe Wright and 
Deadman Hill.  These SNOTEL stations are both located close to the basin boundaries (Figure 
7).  Figure 8 shows the variability of peak SWE at each SNOTEL site relative to the variability 
of discharge during the snowmelt season, which we define as lasting from March-September.  
For all years, values of peak SWE stay within 50% of the 1981-2009 mean SWE.  River flow (Q) 
is more variable than SWE.  During the highest flow year, 1983, the discharge was over 260% of 
normal, and during the lowest flow year, 2002, the discharge was only 30% of normal.  During 
2000-2007, the years when flow forecasts tended to over-predict water yield (Figure 1), river 
flow was relatively low, having values that were on average 73% of the 1981-2009 mean.  SWE 
during these years was also lower than normal, on average 85% of the 1981-2009 mean. 

 

 

FIGURE 8.  Variability in SWE and naturalized March-September discharge (Q) at the Canyon 
Mouth gauge.  

 

   

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1980 1985 1990 1995 2000 2005

F
ra

ct
io

n 
of

 1
98

1-
20

09
 m

ea
n

Year

Mar-Sep Q

Peak SWE Joe Wright

Peak SWE Deadman



    10  

 

  
FIGURE 9.  March-September naturalized discharge (water yield) at the Canyon Mouth gauge 
vs. (a) April 1 SWE, (b) May 1 SWE, and (c) Peak SWE.   

 

Even though water yield has higher inter-annual variability than does SWE, the correlation 
between SWE and naturalized March-September flow is relatively high for peak SWE at both 
SNOTEL stations (Figure 9; Table 2).  While values of SWE are lower at Deadman Hill than at 
Joe Wright, relations between SWE and discharge are relatively similar for the two stations.  
Correlations between SWE and water yield are poor on April 1, in part because snow 
accumulation continues later into the spring at these SNOTEL sites.  The average date of peak 
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SWE is May 2 at Joe Wright and May 4 at Deadman Hill.  As a result, correlations between 
SWE and water yield improve substantially for May 1.  However, the date of peak SWE at the 
two stations can vary from mid-March to early June,  meaning that May 1 is not always an ideal 
date for water yield prediction.  The SWE variable that has the highest correlation to March-
September discharge is the peak SWE, which explains >60% of variance in discharge.  If the 
outlying high flow year (1983) is excluded, the peak SWE explains >70% of variance in 
discharge (Table 2). 

 

TABLE 2.  Coefficient of determination (R2) between SWE at SNOTEL stations and naturalized 
March-Sept discharge at the Canyon Mouth Gauge. 

 Joe Wright Deadman 
Apr 1, all data 0.29 0.30 
Apr 1, excluding 1983  0.28 0.27 
May 1, all data 0.50 0.46 
May 1, excluding 1983 0.57 0.53 
Peak, all data 0.64 0.61 
Peak, excluding 1983 0.72 0.73 

 

The two SNOTEL stations are both located at the margins of the basin, Joe Wright at 3085 m 
elevation and Deadman at 3115 m elevation.  An additional SNOTEL station was added at the 
Hourglass site (2902 m elevation) in 2008, but before then, there were no continuous 
measurements of SWE at lower elevations within the basin.  The MODIS SCA data allow us to 
examine snow behavior in parts of the basin where in situ measurements are unavailable.  Figure 
10 shows examples of how SWE at Joe Wright and SCA for the basin as a whole compare to 
naturalized discharge during snowmelt.  During many of the years shown, SWE at Joe Wright 
continued to accumulate until May.  In contrast, SCA for the basin as a whole began to decrease 
in mid-March each year, well before the high elevation snowpack at Joe Wright had begun to 
melt.  Discharge in the river generally stayed at baseflow levels until mid-April, when it began to 
rise gradually.  River flow rose to peak flow levels in mid-May to early June, when the high 
elevation snowpack was melting.   

 

To determine whether SCA data provide any useful information for predicting water yield, we 
examined correlations between SCA and naturalized discharge for spatial subsets of the basin 
(Figure 7) for years 2000-2006.   For these analyses, high R2 values represent negative 
correlations between SCA and discharge, implying that the decrease in SCA for middle 
elevations correlates with rising discharge.  These analyses show that correlations between SCA 
and discharge vary from R2 = 0.5-0.8 for the basin as a whole (Figure 11).  The correlation 
strength stratifies by elevation (Figure 12), with the highest correlations between SCA and 
discharge found for a middle elevation zone (2680-3042 m), where the R2 values are between 
0.6-0.9.  Correlations between SCA and discharge are relatively weak above and below this 
middle elevation zone.  Additional details about these analyses are given in Richer (2009) and 
Richer et al. (in review). 
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To explore the spatial patterns of SCA in greater detail, we developed composite images that 
demonstrate the likelihood of snow cover for each pixel in the basin during the snowmelt season 
(Figure 13).  As shown in Figure 13, the “Probability of Snow” for each pixel is calculated as the 
number of images with snow cover on the specified date divided by the total number of images 
in the period of analysis.  Values of 1 indicate that all images on the specified date were snow-
covered; values of 0 indicate that no images on the specified date were snow-covered.  The 
probability of snow cover for the basin shows a gradual change with elevation during late March 
and early April.  By mid-late April, however, the probability of snow images develop a sharp 
transition between low snow cover and high snow cover.  This sharp transition zone develops 
just below approximately 3000 m elevation, in the range of the middle elevation zone (4) 
highlighted in Figure 12.  The snow cover is intermittent below this transition zone, whereas 
snow cover persists well into the spring above the transition zone. 

 

Our snow cover analyses showed that the snowed cover transition zone is a prominent feature of 
the basin snowpack.  Snow cover changes only correlated consistently with runoff timing within 
this mid-elevation transition zone (Figure 12), which is located below the elevations of SNOTEL 
measurements of SWE.  Information about the spatial extent of the seasonal snowpack in these 
lower elevations could potentially be helpful in predicting early season runoff.  Our initial 
analyses comparing SCA in the transitional elevation zone to river flow during 2000-2006 
suggested that SCA in early April could be a strong predictor of March-September water yield.  
However, subsequent analyses including additional years of data showed mixed results.  Figure 
14 and Table 3 compare predictions of March-September discharge using either April 1 SWE or 
SCA from March 29 or April 6 in the snow transition zone (4).  The SCA dates correspond to the 
dates when 8-day maximum SCA images from MODIS were available.  Of the variables tested 
in Figure 14, SCA on April 6 had the strongest correlation to water yield, but its R2 value was 
still only 0.59.   

 

 
FIGURE 14.  Naturalized March-September discharge at Canyon Mouth vs. April 1 SWE (left) 
and zone 4 SCA (right) during 2000-2009. 
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TABLE 3.  Coefficient of determination (R2) between snow variables (SWE at SNOTEL stations 
or SCA in elevation zone 4) and naturalized March-Sept discharge at the Canyon Mouth Gauge.  
R2 values are derived from measurements during 2000-2009. 

 R2 
Apr 1 SWE, Joe Wright 0.53 
Apr 1 SWE, Deadman 0.44 
Mar 29 SCA, zone 4  0.41 
Apr 6 SCA, zone 4 0.59 

 

After the first week of April, SWE always out-performed SCA as a predictor variable for water 
yield.  In part this is because SCA only has potential benefit as a runoff predictor variable in 
areas like the snow transition zone, where snow cover depletion correlates with a river flow 
response.  SCA has limited utility in representing runoff under conditions when snow is melting 
from an area that remains entirely snow covered.  During 2007-2009, for example, SCA in the 
transitional elevation zone was at or near 100% on March 29 and April 6 (Figure 14), making it 
impossible to use SCA to distinguish between flow volumes for these years.  Additional years of 
data are likely needed to determine whether and how SCA data can be a useful quantitative 
addition to statistical flow forecasts.  Qualitatively, however, the SCA data do demonstrate how 
rapidly snow cover depletes from the basin and where the snowpack is seasonally persistent.  
Both of these types of information are useful for determining how much of the basin area is 
likely to contribute to river water yield.   

 

Hydrologic modeling 

Hydrologic simulation models enable us to explore mechanistic relationships between the snow 
variables we analyzed (SWE and SCA) and river flow.  We developed two separate simulation 
models, one driven by changes in SWE and the other driven by changes in SCA.  These models 
simulate discharge at the Canyon Mouth gauging location at a daily time step during March-
September for 2000-2009, the years when SCA data were available for the basin.  Models both 
have strong performance (Table 4), with average Nash-Sutcliffe Efficiency Coefficients (NSCE) 
of 0.90 for the SCA model and 0.91 for the SWE model.  Mass balance performance is described 
by the Bias statistic (B), which indicates the fractional difference between measured and 
simulated total March-September discharge.  The SWE model has a low mass balance error on 
average, whereas the SCA model tends to under-predict total discharge.  Additional details on 
hydrologic model calibration and performance are given in Kampf and Richer (in preparation). 
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TABLE 4.  Performance statistics for SCA-based and SWE-based snowmelt runoff models.  
Values are calculated using observed naturalized discharge compared to simulated discharge for 
the Canyon Mouth gauge for each March-September simulation period. 

Year SCA model SWE model 
NSCE B NSCE B 

2000 0.96 -0.04 0.93 0.00 
2001 0.94 -0.05 0.95 0.00 
2002 0.94 0.04 0.85 0.00 
2003 0.71 -0.14 0.92 -0.02 
2004 0.81 -0.06 0.83 0.00 
2005 0.94 -0.07 0.95 0.02 
2006 0.93 -0.06 0.91 -0.01 
2007 0.93 -0.01 0.94 -0.01 
2008 0.92 0.00 0.89 0.04 
2009 0.94 -0.10 0.90 0.00 

MEAN 0.90 -0.05 0.91 0.00 
 

Figure 15 shows examples of model performance during the years 2002, a low flow year, and 
2003, a relatively high flow year.  During the low flow year, 2002, the SCA model over-
predicted the total flow volume, whereas during the high flow year, 2003, the SCA model 
significantly under-predicted the total flow volume.  The SWE model had more consistent mass 
balance performance from year to year.  Both simulation models were configured to represent 
runoff generation from elevation zones, so they can demonstrate which parts of the basin were 
likely to be contributing the most water to the river.  The average contributions to runoff by 
elevation zone are shown in Figure 16.  The SWE model shows that >50% of the river flow on 
average came from elevation zone 5, which is just above the transitional elevation zone (4) that 
we identified previously from snow cover analyses (see Figures 7 and 12).  The SCA model also 
showed the highest fraction of river discharge coming from zone 5.   

 

The parts of the basin that cover the largest total surface area (zones 2 and 3) contribute only a 
minor fraction of total river flow in the SWE model.  The SCA model shows a slightly larger 
contribution to river flow from these low elevation zones; this difference between models relates 
to the model structure.  The SCA model can only simulate changes in river flow when there is a 
change in the snow-covered area.  In contrast, the SWE model can simulate changes in river flow 
when SWE depletes, but SCA stays constant.  Our data analyses indicate that the SWE model is 
likely a more accurate representation of the spatial distribution of runoff generation.  In that 
model, the snow transition zone (4, elevations 2680-3042 m), had a variable contribution to total 
basin water yield each year.  In 2003, the highest flow year during the 2000-2009 study period, 
zone 4 contributed 33% of the basin water yield.  At the other extreme, in 2006, a low flow year 
in which flow forecasts overestimated water yield (Figure 1), zone 4 contributed only 2% of the 
total water yield in the SWE model.   
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FIGURE 15.  Observed naturalized discharge and simulated discharge at the Cache la Poudre 
Canyon Mouth gauge for 2002 and 2003. 

 

 
FIGURE 16.  Average runoff production by elevation zone for the SCA model and SWE model 
during 2000-2009.  For reference, the plot also shows the fraction of total basin area within each 
elevation zone.   

80 100 120 140 160 180 200 220 240
0

5

10

15

20

25

30

35

40

Day of Year

D
is

ch
a

rg
e

 (
cm

s)

 

 
Observed
SCA model
SWE model

80 100 120 140 160 180 200 220 240
0

20

40

60

80

100

120

140

Day of Year

D
is

ch
a

rg
e

 (
cm

s)

 

 
Observed
SCA model
SWE model

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

Elevation Zone

F
ra

ct
io

n
 o

f t
ot

a
l d

is
ch

a
rg

e
/a

re
a

 

 
SCA model
SWE model
Basin area

2002 

2003 



    19  

 

 

After developing and testing the SWE model, we used this model to examine the sensitivity of 
river flow to spring precipitation and temperature.  Because this basin receives high spring 
precipitation (Figure 5) and often does not experience peak SWE until after May 1, the behavior 
of the weather in the spring months could have a significant effect on the ability to forecast 
seasonal river flow.  Here we illustrate an example sensitivity analysis for the year 2001.  In this 
example, we assume that the SWE on March 1 is represented by an average lapse function that 
assigns low SWE to low elevation and higher SWE to high elevations.  Each simulation run 
proceeds at a daily time step starting with this same March 1 SWE distribution and the input 
precipitation and temperature values from 2001 climate data.  Test scenarios then assume (1) 
temperature is unknown for April 1 to September 30, (2) precipitation is unknown for April 1 to 
September 30, (3) temperature is unknown for May 1 to September 30, and (4) precipitation is 
unknown for May 1 to September 30.  Each test scenario is run ten times, with the ten ensemble 
runs taken from the observed temperature or precipitation record for 2000-2009.    

 

 

 
FIGURE 17.  SWE model ensemble simulations illustrating the sensitivity of 2001 discharge to 
spring precipitation and temperature.  (1) Temperature varies in each simulation run starting on 
April 1; (2) Precipitation varies in each simulation starting on April 1; (3) Temperature varies in 
each simulation starting on May 1; (4) Precipitation varies in each simulation starting on May 1.  
For each set of scenarios, varying time series of temperature and precipitation are taken from 
observed records for 2000 (T0, P0) to 2009 (T9, P9). 
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Figure 17 illustrates the results of these ensemble simulation tests.  The first two scenarios are 
intended to represent river flow prediction starting on April 1.  Scenario 1 assumes that 
precipitation is known, but temperature is unknown from April 1 – September 30.  Varying the 
temperature in each of the ensemble runs creates a wide range of simulated hydrographs, which 
lead to total simulated flow volumes that range from 26% higher than observations to 24% lower 
than observed flow (Figure 18).  Where the precipitation is unknown, but temperature is known 
(Scenario 2), the range of simulated hydrographs is slightly smaller, from 11% higher than 
observed flow to 31% lower than observations (Figure 18).  Scenarios 1 and 2 demonstrate that 
without prior knowledge of precipitation and temperature for the melt season, it is difficult to 
predict accurate hydrographs.  Ensemble scenarios are less variable where precipitation and 
temperature are unknown starting later in the spring (May 1 in Scenarios 3 and 4).  For the May 
1 scenarios, variable temperature creates a wider range of simulated hydrographs than variable 
precipitation (Figures 17, 18). 

 

 
FIGURE 18.  Box and whisker plot of the bias distribution for each set of hydrograph ensembles 
in Figure 17.  The bias is calculated as the fractional difference between the total flow volume of 
the simulation and the total flow volume observed in 2001.  

  

These model sensitivity tests highlight the importance of spring temperature in determining the 
magnitude and timing of river flow.  In the model, temperature during the spring controls both 
the melting of the snowpack and whether spring precipitation falls as rain or as snow in different 
elevation zones.  Temperature patterns that favor snow accumulation can end up resulting in 
more simulated runoff because runoff coefficients are higher in the model for snowmelt than 
they are for rainfall.  Sensitivity to temperature in the simulations is also a result of the model 
structure for simulating the fraction of melt water that reaches the river.  Early in the spring, the 
model assumes that most of the melt water infiltrates and is not available for runoff, whereas 
later in the melt season, the ground becomes saturated, and more of the melt water reaches the 
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river.  Additional research could explore alternate model structures to examine whether different 
models predict similar sensitivities to spring temperature and precipitation. 

  

Principle Findings, Conclusions, and Recommendations 

Hydrologic analyses and modeling results from this study highlight several key features of the 
snowpack and runoff production in the upper Cache la Poudre basin: 

1. Snow cover analyses show seasonally persistent snowpack above around 3,000 m (9,800 
ft) elevation that lasts through the winter and early spring..  The snow cover is 
intermittent below around 2,700 m (8,900 ft) elevation. 
 

2. Modeling results indicate that on average 50% of the total basin water yield comes from 
the elevation zone between about 3,000-3,400 m (SWE model, Figure 16). 
 

3. The transitional elevation zone identified from snow cover analyses (2,700-3,000 m) has 
a variable contribution to runoff; in the highest flow year of our study period, 2003, 
model results indicated that this zone produced 33% of the total water yield, whereas in a 
lower flow year, 2006, this zone produced only 2% of the total water yield. 
 

4. The timing of snow cover depletion in the transitional elevation zone correlates with the 
timing of the rising hydrograph, but peak runoff typically does not occur until the higher 
elevation snowpack begins to melt. 

 

Our results also demonstrate several challenges in spring predictions of water yield in the Cache 
la Poudre: 

1.  April and May are the months with the highest average precipitation in the basin (Figure 
5).  Forecasting is difficult without a priori knowledge of the spring precipitation. 
 

2. Peak snow water equivalent at the two high elevation sites has occurred as early as March 
18 (2002 at Joe Wright) and as late as June 2 (1995 at Joe Wright).  This variability in the 
timing of spring snow accumulation means that it is difficult to predict water yield on 
fixed dates.  While peak snow water equivalent explains >60% of variance in water yield 
from 1981-2009, April 1 SWE and May 1 SWE predict only 30 and 50% of variance in 
water yield, respectively (Table 2). 
 

3. March-September water yield in the Cache la Poudre River at the Canyon Mouth has 
greater variability than peak snow water equivalent at the two high elevation SNOTEL 
sites, Deadman Hill and Joe Wright (Figure 8).  Our modeling results suggest two 
possible causes for variability in water yield that is inconsistent with variability in peak 
SWE: 
 

a. The elevation zone with transitional snowpack (2700-3000 m) contributes a 
variable fraction of total water yield, meaning that in some years a high quantity 
of runoff is produced in this zone, whereas in other years the runoff production in 
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this zone is low.  Additional measurements of SWE in these transitional 
elevations, for example the new SNOTEL site installed at Hourglass, should be 
helpful for water yield prediction. 
 

b. The timing of spring warming may also affect the quantity of snow that becomes 
runoff.  Model sensitivity tests show that even when spring precipitation is 
known, differences in spring temperature patterns can produce differences in 
water yield (Figures 17, 18). 
 

Because we only examined existing measurements of hydrologic variables in this study, our 
results do not demonstrate the importance of other factors such as dust on snow, sublimation, soil 
moisture, or groundwater recharge on river discharge.  Given the variables we analyzed, we 
conclude that the challenges in forecasting water yield in the Cache la Poudre relate primarily to 
(1) high variability in spring precipitation and temperature patterns, which cause the timing of 
peak snow accumulation to vary from mid-March to early June, and (2) high variability in the 
quantity of runoff production from the transitional 2,700-3,000 m (8,900-9,800 ft) elevation 
zone.  Future work could incorporate additional hydrologic processes into simulation models and 
test the sensitivity of water yield to other factors not tested in this study.   
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