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ABSTRACT 

 

SIMULATIONS OF CARBON AND NITROGEN DYNAMICS IN TURFGRASS SYSTEMS 

USING THE DAYCENT MODEL 

 Ecosystem modeling offers an opportunity to better understand the carbon and nitrogen 

dynamics in a certain ecosystem.  Modeling provides a way for researchers to expand their 

research to larger scales or other situations where field measurements are difficult or costly to 

conduct.  In this study, the DAYCENT ecosystem model was parameterized and validated under 

home lawn conditions.  Long-term effects of irrigation and fertilization on turfgrass quality, soil 

carbon and nitrogen sequestration, and nitrous oxide (N2O) emissions were investigated.  The 

DAYCENT model was also used as a tool to develop best management practices (BMPs) for a 

Kentucky bluegrass lawn. 

 Clipping yields, evapotranspiration (ET), deep percolation, nitrate leaching, and soil 

temperature of a Kentucky bluegrass lawn were simulated and compared with the measured 

values from a three-year lysimeter study.  Parameters that control damping factors of soil 

temperature and nitrate leaching rate were modified to reflect the unique properties of turfgrass 

ecosystems.  The prediction of weekly ET and deep percolation of the three years was acceptable 

(r > 0.6).  The simulated clipping yield was improved compared to the monthly time step 

CENTURY ecosystem model, with the r value increased from -0.32 to 0.74.  

Modeled N2O emissions were validated for Kentucky bluegrass (Poa pratensis L.) and 

perennial ryegrass (Lolium perenne L.). The annual cumulative N2O emissions predicted by the 

DAYCENT model were close to the measured emission rates of Kentucky bluegrass sites in 
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Colorado (within 16% of the observed values).  For the perennial ryegrass site in Kansas, the 

DAYCENT model overestimated the N2O emissions for all treatments by about 200% (urea and 

ammonium sulfate at high rate and urea at low rate).  After including the effect of biological 

nitrification inhibition (BNI) in the root exudate, the DAYCENT model properly simulated the 

N2O emissions for all treatments (within 8% of the observed values).   

After calibration and validation, the DAYCENT model was further used to predict best 

management practices (best irrigation and nitrogen fertilization rates) for a Kentucky bluegrass 

lawn.  Irrigation that decreases from 100% potential evapotranspiration (PET) to 60% PET is 

predicted to reduce 50-percent of annual net production in the semi-arid region.  The model 

simulation suggested that  gradually reducing fertilization as the lawn ages from 0 to 50 years  

would  significantly reduce long-term nitrate leaching and N2O emissions when compared to 

applying nitrogen at a constant rate (at 150 kg N ha
-1 

yr
-1

).  Our simulation indicates that a 

Kentucky bluegrass lawn could change from a sink to a weak source of greenhouse gas (GHG) 

emissions about 20 to 30 years after establishment. 
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CHAPER 1. DEVELOPMENT OF BEST TURFGRASS MANAGEMENT PRACTICES 

USING THE DAYCENT MODEL 

1.1 SUMMARY 

To predict the best management practices for lawns in Colorado, the DAYCENT 

ecosystem model was parameterized and applied on a turfgrass ecosystem.  In this study, the 

daily time step DAYCENT model was parameterized and validated using field-measured data on 

clipping yields, evapotranspiration (ET), deep percolation, nitrate leaching, and soil temperature 

from a three-year lysimeter study.  The prediction of ET and deep percolation was acceptable for 

the three years (r > 0.6).  The simulation result for clipping yield was improved compared to the 

monthly time step CENTURY ecosystem model, with the r value increased from -0.32 to 0.74.  

The long-term irrigation effect on Kentucky bluegrass (Poa pratensis L.) biomass and soil 

carbon and nitrogen was also examined.  We predicted a 50-percent drop in the annual net 

production as irrigation decreases from 100% potential evapotranspiration (PET) to 60% PET in 

this semi-arid region.  The simulation result suggests that the annual fertilization rates should be 

gradually reduced to approximately half of the initial rates after 10 years for both moderately and 

highly managed lawns, and that the rates could be further reduced with increasing age of the 

turfgrass stand.   

1.2 INTRODUCTION 

Turfgrasses are extensively used in United States urban landscapes, including in 

residential, commercial, and institutional lawns, parks, sports fields, and golf courses.  For 

example, in Larimer County (montane forests excluded), Colorado, urban lawns occupy 6.4 

percent of the land area (Kaye et al., 2004).  In the continental United States, turfgrass area is 
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estimated to be 163,800 km
2
, which is three times larger than that of any irrigated crop (Milesi et 

al., 2005).  As a result of urbanization, which has proceeded at unprecedented rates and extents 

during the past few decades in the United States, large areas of crop, forest, and native vegetation 

are being converted into urbanized landscapes (Milesi et al., 2005; Golubiewski, 2006).  

Urbanization is predicted to continue over the next 15 years (Alig et al., 2004).  Accompanying 

this growth and development is likely to be a rapid increase in urban areas of turfgrass.   

Turfgrass ecosystems require intensive management; and to maintain a high-quality lawn, 

individual homeowners and landscape managers must provide both irrigation and fertilizer input.  

As such, outdoor water use accounts for about 55 percent of the residential water use in urban 

areas along the Colorado Front Range each year, most of which is used in landscapes (Waskom 

and Neibauer, 2010).  In addition, the fertilizer used on urban turfgrass is estimated at rates 

similar to or exceeding those of cropland systems (Law et al., 2004).  These human inputs—

water and fertilizer—appear to alter the storage and fluxes of carbon and nitrogen, with possible 

influence on carbon sequestration, greenhouse gas budget, nitrate leaching, and air and water 

quality in urban and suburban areas, as well (Petrovic, 1990; Qian et al., 2003; Kaye et al., 

2004).  Computer modeling, as research illustrates, is one of the best ways to study the middle- 

to long-term (10 to >100 years) carbon and nitrogen dynamics as affected by the impact of 

irrigation and fertilization management. 

1.2.1 CENTURY and DAYCENT Models 

The CENTURY model is a monthly step ecosystem model that has been parameterized 

and used to simulate turfgrass ecosystems in golf course and home lawn conditions 

(Bandaranayake et al., 2003; Qian et al., 2003).  Originally, the CENTURY model was designed 
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for simulations of medium- to long-term changes in soil organic matter, plant productivity, and 

other ecosystem parameters.  In the golf course study, the CENTURY simulated data compared 

well with measured, long-term soil organic carbon (SOC) data, with age ranging from one to 45 

years with a coefficient of determination (R
2
) of 0.67 for fairways and 0.78 for putting greens 

(Bandaranayake et al., 2003).  Regarding home lawn conditions, the CENTURY model correctly 

simulated annual cumulative clipping yields over three years, although the seasonal trend was 

mis-timed (Qian et al., 2003).  Despite its usefulness, monthly time step has its limitations in 

simulating turfgrass management.  In contrast to crop management practices, turfgrass 

management practices, such as mowing and irrigation, are usually conducted on a weekly or 

daily basis.  To develop useful best management practices (BMPs) for turfgrass, a daily time-step 

model is therefore ideal; a finer time-step model could also provide short-term (<10 years) 

predictions, which are more desirable for turfgrass managers and homeowners.   

The DAYCENT model (Parton et al., 1998; Del Grosso et al., 2001) is the more recently 

developed, daily time-step version of the CENTURY model (Parton et al., 1987; Parton et al., 

1993; Parton et al., 1994).  The DAYCENT model uses a finer time scale than the CENTURY 

model in modeling decomposition, nutrient flows, soil water, and soil temperature, and has 

increased spatial resolution for soil layers.  The key submodels of the DAYCENT model are 

plant production, soil organic matter (SOM) decomposition, soil water and temperature 

dynamics, and trace gas fluxes.  The DAYCENT model has been well-validated and successfully 

applied to various ecosystems and locations in the world (Del Grosso et al., 2005; Pepper et al., 

2005; Li et al., 2006).  The newer, advanced features of the DAYCENT model now give us an 

opportunity to simulate and predict daily carbon and nitrogen dynamics in turfgrass ecosystems.   
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The goal of this study is to evaluate different management strategies to improve 

sustainability in human-dominated turfgrass ecosystems using the DAYCENT model.  The 

objectives of this study were:  

1) To parameterize and validate the DAYCENT model under home lawn conditions; 

2) To predict the long-term impacts of different management practices (irrigation and 

fertilization) on primary productivity, carbon sequestration, and nitrogen leaching. 

3) To develop BMPs for a Kentucky bluegrass lawn to reduce fertilization requirements, 

water requirements, and nitrate leaching.   

1.3 MATERIALS AND METHODS 

1.3.1 Field Experiment 

Field data for model parameters modification and validation came from a three-year 

study of an eight-year-old Kentucky bluegrass (Poa pratensis L.) site in the Colorado Front 

Range.  In this experiment, three on-site bucket lysimeters were established a year before the 

experiment to measure turfgrass water use and nitrate leaching. 

The lysimeters were made from polyvinyl chloride (PVC) tubes and measured 30.5 cm in 

diameter and 80 cm deep.  A 1.3-cm thick PVC drainage plate was installed, which separated the 

tube into two compartments.  The compartment at the top of the lysimeters measured 60 cm in 

depth, and the compartments at the bottom measured 20 cm in depth.  Below each drainage plate 

was an air space connected to a one-cm diameter PVC air inlet tube open to the air at the top of 

the lysimeter.  Soil cores, which fit the lysimeters, were excavated and carefully filled into the 

top compartment.  Lysimeters were buried into the soil, and the turfgrass canopies in the 
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lysimeters were maintained at the same level as turfgrass surrounding the lysimeters.  A soil 

temperature sensor was placed at 15 cm below the soil surface outside each of the lysimeters.  

Adjacent to each lysimeter, two precipitation gauges were recessed into the ground to measure 

the amount of precipitation each location received from rainfall and from applied irrigation.   

Irrigation was applied through an automatic sprinkler system, based on the estimated 

reference evapotranspiration for mowed grass using the Kimberly-Penman equation (Allen et al., 

1989) with a coefficient of 0.8 for turfgrass, which was recommended by “Reference 

Evapotranspiration Calculator version 2.0” (Allen, 1990).  Mixtures of urea and sulfur-coated 

urea were applied at 187, 122, and 164 kg N ha
-1

 yr
-1

, respectively, in the three years (Table 1.1).  

The turfgrass was mowed weekly at 5.1 cm using a mower with a mulching deck to return 

clippings.  The clippings from three 1 m × 18.3 m strips were collected each week and weighed.  

Sub-samples from each of these collections were oven-dried, and dry weight was determined; the 

dried clippings were subsequently analyzed for nitrogen content using the Kjeldahl nitrogen 

method (Watkins et al., 1987).  On a similar site with the same management, verdure biomass 

was measured in June and July.    

Cumulative deep percolation was collected from lysimeters and measured weekly.  All 

samples were refrigerated at 4 °C and subsequently analyzed for nitrates using a Cd-Reduction 

Method (U.S. EPA, 1979).  The lysimeters were lifted from the soil and weighed each week 

during the growing season, both before and after deep percolations were drained off into a 

graduated cylinder.  Weekly cumulative ET was calculated using the weight difference between 

the current and preceding weeks for each bucket lysimeter and corrected for precipitation, 

irrigation applications, and leachate.   
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ET = Precipitation+Irrigation-Percolation+(Weightt-1-Weightt) 

Weightt-1 is the weight of lysimeters at the beginning of a measurement week. 

Weightt is the weight of lysimeters at the end of a measurement week following 

collecting percolation. 

1.3.2 Simulation of the Field Study 

We parameterized the DAYCENT model to simulate the field study.  Parameters, 

including the ratio of carbon allocation above ground and below ground; lignin content; 

belowground carbon to nitrogen ratio; and decomposition rates of soil organic matter, were 

obtained from Qian et al. (2003).  Minimum aboveground C/N ratio has been set as 9.6, which 

was measured from clippings of lawns in Colorado (Golubiewski, 2006).  Our field observed soil 

temperature and nitrate leaching data were used to modify the DAYCENT model.  Based on the 

field study, the damping factor coefficient for calculating soil temperature by layer was increased 

to 0.0045.  The parameters controlling nitrate leaching were reduced (fleach1 and fleach3 were 

set 0.1 and 0.2, respectively).  Observed clipping yield, leaf nitrogen content, ET and deep 

percolation rates, which were not used for parameterization, were compared with simulated 

results to validate the model.  To assess the model performance, Pearson product-

moment correlation coefficient (r) was calculated for comparisons.   

Information on weather, soil, and management practices was needed for conducting 

simulations.  Daily maximum/minimum temperatures and precipitation in our study were 

obtained from the weather station on site.  The soil was a Fort Collins, Colorado, loam (fine-

loamy, mixed, superactive, mesic Aridic Haplustalf; 29% clay, 54% sand, and 17% silt).   
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In the study, we simulated turfgrass management practices of fertilization, irrigation, and 

mowing.  The turfgrass site received consistent management both before and during the period of 

the field experiment; we simulated the previous land use as cropland and the turfgrass growth for 

eight years with high maintenance.  To model the effect of slow-release nitrogen, sulfur-coated 

urea was simulated as several applications of quick-release fertilizer, according to the release rate 

described by Salman, et al. (1989).  Urea was modeled as the input of NH4
+
 into soil; ammonia 

volatilization loss in the process of converting urea to NH4
+ 

by urease was not considered since 

volatilization loss is usually small under common conditions (Petrovic, 1990).  Irrigation was 

assumed to be rain events in this simulation as the version of the DAYCENT model we used in 

this study cannot otherwise schedule irrigation water on a daily basis.  Mowing is a unique 

management practice for turfgrass and was treated as a harvest event in our DAYCENT model 

(Qian et al., 2003).  In our simulation, mowing was scheduled at the same date as that in the field 

experiment.  Each mowing was simulated as leaving approximately 3366 kg ha
-1 

aboveground 

live biomass, which is the average of observed verdure biomass, and removing the rest.  

1.3.3 Long-term Simulations 

After the simulation for the three years, long-term (50 years since turfgrass 

establishment) simulations were then conducted for the field experimental site using fifty-year 

daily weather data (from 1961 to 2010) recorded for Fort Collins, Colorado (National Climatic 

Data Center, weather station no. 53005).  In these simulations, we predicted the influences of 

long-term management practices (irrigation and fertilization) on the carbon and nitrogen 

dynamics.  Firstly, we compared the effect of three irrigation levels while applying fertilization 

at a same constant rate of 90 kg N ha
-1

 yr
-1

.  Irrigation rates were based on model predicted 

potential evapotranspiration (PET), which was calculated by using a modified Penman-Monteith 
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equation, and at 60%, 80%, 100% PET replacement rates.  Irrigation was scheduled every three 

days.  Secondly, we predicted the effect of long-term fertilization at two constant rates with same 

irrigation of 100% PET replacement.  Fertilization rates of 90 kg N ha
-1

 yr
-1

 and 150 kg N ha
-1

  

yr
-1

 for medium- and high-quality turfgrasses, as suggested by Koski and Skinner (2011), was 

applied equally in April, May, and October for 50 years. 

To estimate the long-term effect of management on turfgrass quality, aboveground net 

primary productivity (ANPP), which has been suggested to indicate turfgrass quality, was used 

as indication in the present study (Qian et al., 2003; Walker et al., 2007).  Kaye et al. (2005) 

measured annual ANPP of 1800 kg C ha
-1

 yr
-1

 for low- to medium-quality lawns in Colorado.  

Aboveground net primary productivity of a medium- to high-quality lawn was found to be 2800 

kg C ha
-1

 yr
-1

 by Qian et al. (2003).  We also added leaf nitrogen content as another indicator for 

turfgrass quality.  Leaf nitrogen content was found closely related to the greenness of turfgrass 

(Rodriguez and Miller, 2000).  Rodriguez and Miller (2000) suggest that a leaf with three percent 

to four percent nitrogen content corresponds to a quality rating of 4 to 7 out of 10, which 

represents a medium-quality turfgrass.  The DAYCENT model outputs include the monthly 

average shoot carbon to nitrogen ratio.  We converted this ratio to nitrogen content, assuming the 

carbon content of dried biomass is 43 percent (Kaye et al., 2005; Golubiewski, 2006).   

1.3.4 Developing BMPs 

Based on the results of long-term simulations, irrigation and fertilization rates were 

adjusted to select BMPs for the Kentucky bluegrass experimental site.  Best irrigation and 

fertilization rates were selected to maintain turfgrass at high and medium turf quality.  First, best 

levels of irrigation were selected.  Then, we conducted many runs using different levels of 
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nitrogen input and picked up the minimal nitrogen rate, which results in the desired annual 

productivity and leaf nitrogen content.  The criteria for a medium-quality lawn included an 

annual ANPP of at least 1800 kg C ha
-1

 yr
-1

 and a growing season mean leaf nitrogen content of 

at least 3 percent (Kaye et al., 2005).  A high-quality lawn was defined as a lawn with an annual 

ANPP of at least 2800 kg C ha
-1

 yr
-1

 and leaf nitrogen content above 4 percent (Rodriguez and 

Miller, 2000; Qian et al., 2003).  The best nitrogen rates were predicted by the DAYCENT 

model for two scenarios: clipping fully returned and 50-percent returned.  Nitrogen fertilizer was 

simulated as NH4
+
 type and applied three times each year.   

1.4 RESULTS AND DISCUSSION  

1.4.1 Measured and Simulated Results 

Measured data showed that soil temperature at 15 cm depth closely related to the change 

of air temperature but with less fluctuation (Fig. 1.1).  Measured soil temperature was used for 

DAYCENT parameterization.  After modifying the damping factor coefficient for calculating 

soil temperature, the DAYCENT model properly simulated the observed trends in soil 

temperature with a Pearson product-moment correlation coefficient (r) 0.68 (Fig. 1.1).  The 

characteristics of the soil under turfgrass cover changed after land conversion from agricultural 

use.  The modification of the damping factor for soil temperature was because of the thatch layer, 

which has the effect of insulation.  Thatch, a tightly intermingled layer of dead and living stems 

and roots, is known to develop between the soil surface and the zone of green vegetation of 

Kentucky bluegrass (Beard, 1973).  The value of damping factor coefficient for calculating soil 

temperature for turfgrass was similar to that used for forests with a floor organic layer. 
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Our field data showed very low nitrate leaching for the three years (0.03, 0.08, and 0.03 g 

N m
-2

 yr
-1

 in Year 1, 2, and 3, respectively).  This is in agreement with previous studies that have 

shown that turfgrass has a low potential for leaching, considering the rate of fertilization applied 

every year (Petrovic, 1990; Miltner et al., 1996; Easton and Petrovic, 2004; Barton and Colmer, 

2006).  Since the default parameters controlling nitrogen leaching were derived from cropland 

experiments, we used our field experiment results to modify these parameters.  Simulated nitrate 

leaching was reduced to the level of measured values after the modification of leaching 

parameters (Fig. 1.2).  One source of uncertainty, which was difficult to assess, was the effect of 

soil disturbance caused by the transfer of soil into the lysimeters.   

Field observed ET, deep percolation, clipping yield, and clipping nitrogen content were 

used to validate the DAYCENT model.  Measured ET in growing seasons totaled 73.8, 73.8, and 

69.4 cm for the three years, respectively.  The simulated total ET rates are close to the measured 

values, 73.7, 71.7, and 68.0, respectively. In all three years, highest weekly ET in each growing 

season was observed in June and July (Day 150 to 200, Fig. 1.3).  An unusually high weekly ET 

rate of approximately 5 cm was observed in May of Year 2, close to the highest rate in June and 

July of that year.  The DAYCENT model predicted similar trends for weekly ET; the correlation 

coefficients were 0.85, 0.69 and 0.61, respectively (Fig. 1.3).  In addition, the DAYCENT model 

predicted deep percolation with an overall Pearson’s r value of 0.84 (Fig. 1.4).       

Clipping yield reflects the aboveground growth of turfgrass.  We observed substantially 

higher clipping yield in Year 1 than the other two years (Fig 5a).  The high yield was a result of 

the vigorous growth of Kentucky bluegrass in the spring of Year 1; clippings of 1990 kg ha
-1

 

were collected in May, which are 235% and 150% of those in the same month of Year 2 and 
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Year 3, respectively.  The DAYCENT model simulated the annual clipping yields close to 

measured values with deviation of no more than nine percent (Fig.5a).  The DAYCENT model 

also predicted the general seasonal trend of growth with an overall correlation coefficient of 

r= 0.74 (Fig. 1.5b, c, and d) compared to a correlation coefficient of -0.32 of the simulation using 

the CENTURY model (Qian et al., 2003).  This is partially because, unlike the CENTURY 

model, the DAYCENT model included photoperiod effects on growth, which indicates that 

growth will slow in the fall as the day length decreases.  One weakness of this simulation is the 

assumption that verdure biomass is constant during the growing season.  However, variation in 

verdure biomass has been observed in different months of the same year, with fertilization and 

irrigation as factors in variation (Falk, 1980). 

The observed nitrogen content of shoots appeared to increase from spring to fall during 

the growing season (Fig. 1.6).  The low nitrogen content in the spring can be explained by the 

high biomass produced in this period, or the dilution of leaf nitrogen (Kaye et al., 2005).  

Simulated annual average nitrogen contents were 4.3 percent, 4.4 percent, and 4.4 percent, which 

are comparable to the measured averages of 3.6 percent, 4.3 percent, and 4.3 percent for the three 

years, respectively.   

The DAYCENT model properly simulated the seasonal change of turfgrass ET, 

percolation, and clipping yield and provided acceptable annual rates.  After validation, we used 

the DAYCENT model to predict long-term effect of irrigation and fertilization management on 

turfgrass quality, carbon and nitrogen sequestration, and nitrate leaching. 
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1.4.2 The Influence of Different Management Regimes in Long–term Simulations 

Irrigation plays an important role in turfgrass management, especially in semi-arid areas, 

such as Colorado, where water is the primary limiting factor for turfgrass growth.  The effect of 

replacing 100 %, 80 %, and 60 % PET on ANPP is shown in Fig.7.  The output indicated that 

irrigation that replaced 100 % PET results in the highest ANPP.  Irrigation at 60 % PET reduced 

ANPP, which can be an indicator of turfgrass quality, by about half in most years, compared to 

100 % PET. 

Fu et al. (2004) found that the visual quality of Kentucky bluegrass was greatly reduced 

as irrigation was decreased from 100 % ET to 20 % ET in Kansas.  Within the same level of 

irrigation, the year-to-year difference of ANPP was mainly due to air and soil temperatures, since 

high temperatures significantly limit the growth of cool-season grass (Watschke et al., 1972; 

Youngner and Nudge, 1976; Aldous and Kaufmann, 1979).  The ANPP of medium-quality lawns 

in Colorado is reportedly about 1800 kg C ha
-1

 yr
-1

 (Kaye et al., 2005), while the ANPP of a 

medium- to high-quality lawn is approximately 2800 kg C ha
-1

 yr
-1

 (Qian et al., 2003).  Our 

simulation suggests that irrigation at the amount of 60 % to 100 % PET irrigation is required for 

Kentucky bluegrass turfgrass grown in Colorado to achieve an acceptable ANPP.  In years with 

more favorable temperatures and rainfall for turfgrass growth, 60 % PET irrigation could support 

medium- to high-quality lawns with ANPP of approximately 2700 kg C ha
-1

 yr
-1

.   

Nitrogen fertilization is also critical for maintaining high turfgrass quality.  With an 

irrigation level of 100 % PET, high nitrogen fertilization typically results in higher productivity 

(up to 23 %) in 25 years following turfgrass establishment (Fig. 1.8a).  However, as turfgrass 

ages, the requirement for nitrogen fertilizer gradually reduces.  There is no difference of 
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predicted ANPP for the two nitrogen rates after 25 years.  Leaf nitrogen content was predicted to 

be significantly affected by nitrogen fertilization.  In the first 10 years after establishment, 90 kg 

N ha
-1

 yr
-1 

resulted in average nitrogen content of 3.2 percent, corresponding to low to medium 

turf quality (Fig. 1.8b).  Annual average nitrogen content increases to 4percent if turfgrass was 

fertilized for 20 years with 90 kg N ha
-1

 yr
-1

.  In contrast, fertilized with 150 kg N ha
-1

 yr
-1

, 

turfgrass was predicted to be of high quality (leaf nitrogen content above 4 percent) about 3 years 

after establishment.  

The DAYCENT model predicted that increased irrigation results in higher soil carbon 

sequestration rates (Fig. 1.9a).  Soil carbon sequestration is a function of plant productivity and 

SOM decomposition (Parton et al., 1987).  About 8.8 Mg C ha
-1

 more carbon was sequestered 

when irrigation was increased from 60 % PET to 100 % PET across 50 years.  Similarly, more 

soil organic nitrogen was sequestered under long-term irrigation at 100 % PET (Fig. 1.9b).  

Compared to low nitrogen input, high nitrogen input did not dramatically increase carbon 

sequestration, but significantly increased the soil organic nitrogen content (Fig. 1.9a and b).   

With continuous fertilization of 90 kg N ha
-1

 yr
-1

, the annual nitrate leaching prediction 

was very low for 35 years under all irrigation scenarios (Fig. 1.9c).  After 35 years, nitrate 

leaching began to increase.  The total nitrogen leaching amounts across 50 years were 97, 107, 

and 341 kg N ha
-1

 in our simulation for 60 %, 80 %, and 100 % PET irrigation, respectively, 

when fertilized with 90 kg N ha
-1

 yr
-1

 .  Using 150 kg N ha
-1

 yr
-1

 constantly with 100 % PET 

irrigation, we predicted the nitrate leaching to remain low for 10 to 15 years, then to rise 

substantially (Fig. 1.9c).   

1.4.3 Best Management Practices Generated by DAYCENT Model 
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Based on the findings in the long-term simulations, we developed BMPs for the lawn to 

maintain high quality and medium quality.  Irrigation levels of 80 % PET and 100 % PET were 

selected for medium and high turf quality, respectively.  The best nitrogen rates, as the 

DAYCENT model predicts, for high quality and medium quality are described for clipping fully-

returned (Fig.10a) and clipping 50-percent returned (Fig. 1.10b) scenarios.  A high-quality lawn 

required approximately twice the amount of fertilizer used to maintain medium quality every 

year for the first two decades.  A newly established lawn required nitrogen fertilizer of 240 and 

120 kg N ha
-1

 yr
-1

 to maintain high quality and medium quality with clippings fully returned, 

respectively.  The simulation indicated that two to three years after establishment, the 

fertilization rate could be reduced to 140 kg N ha
-1

 yr
-1

 and 80 kg N ha
-1

 yr
-1

.  In addition, the 

rate could be further reduced to about 50 kg N ha
-1

 yr
-1

 at 40 to 50 years.  Clipping removal 

represented a large of amount of nitrogen loss from soil (Heckman et al., 2000; Qian et al., 

2003).  Under the scenario of returning 50 percent of clippings, lawns required 30 to 80 kg N ha
-1

 

yr
-1

 more nitrogen fertilizer than that of the clippings fully-returned scenario (Fig. 1.10b).  

Studies have suggested that lawns may act as a nitrogen sink, because large amounts of nitrogen 

were sequestrated into SOM (Porter et al., 1980; Higby and Bell, 1999).  Under turfgrass cover, 

nitrogen immobilization would likely continue for decades until reaching equilibrium between 

immobilization and mineralization; the soil organic nitrogen (SON) sequestration rate decreased 

to a minimum after decades as equilibrium was reached (Porter et al., 1980; Higby and Bell, 

1999).  Our simulations showed a decreasing trend of SON sequestration rate, but it would take 

more than 50 years for this lawn to reach equilibrium (Fig. 1.11b). 

Model output suggested that a highly managed lawn had higher carbon sequestration rate 

(1.13 Mg C ha
-1

 yr
-1

) than a medium-quality lawn, which showed a rate of 0.78 Mg C ha
-1

 yr
-1

 in 
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the first 10 years after conversion from agricultural land.  Approximately 10 Mg ha
-1

 more 

carbon (37 percent) can be sequestered by high-quality turfgrass than medium-quality turfgrass 

in 50 years (Fig. 1.11a).  Although we did not have long-term data to validate the effect of 

different management regimes on SOC, these rates are within the reported range for turfgrass 

ecosystems.  Our simulated carbon sequestration rate was 1.13 Mg C ha
-1

 yr
-1 

for highly managed 

turfgrass within 10 years after conversion from cropland, which is similar to the rate of 1.0 Mg C 

ha
-1

 yr
-1

 in golf courses in Colorado as Qian and Follett reported (2002).  This is also consistent 

with the rate of 0.69 Mg C ha
-1

 yr
-1

 over 40 years in golf courses in New Zealand (Huh et al., 

2008).  However, Selhorst and Lal (2011) estimated the mean rate of carbon sequestration in 

fairways in Ohio as 3.55 Mg ha
-1

 yr
-1

, which is more than two times higher than the other two 

golf course studies.  It is likely that this study included thatch layer as SOC, since the measured 

SOC content in the 0 to 2.5 cm soil layer reached 16 percent.  Currently, different studies vary 

regarding whether or not to include thatch layer in determining SOC.  In studies of Qian and 

Follett (2002) and Qian et al. (2010), the thatch layer was not included in the soil carbon 

sequestration calculation.  Regarding home lawns, Golubiewski (2006) has studied the carbon 

pools of 53 sites in Colorado’s Front Range.  The SOC in 0-20 cm soil that was established with 

turfgrass for 50 years averaged 48 Mg ha
-1

(i.e. 0.96 Mg ha
-1

 yr
-1

) which is similar to our 

prediction.  Regarding nitrate leaching, the DAYCENT model predicted that that the BMP for 

high-quality turfgrass resulted in a higher annual nitrate leaching rate (due to high nitrogen input) 

than the BMP for medium-quality turfgrass (Fig. 1.11c).  Nevertheless, this rate of nitrate 

leaching was significantly lower than the conventional constant fertilization of 150 kg ha
-1

 yr
-1

 

for high-quality turfgrass (Fig.8c). 
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To apply the predicted best nitrogen rates for broader use, we should consider site-to-site 

differences.  Nitrogen fate is affected by soil property; we expect best nitrogen rates would vary 

for soils with different texture and SOM levels.  Ammonia volatilization nitrogen loss is difficult 

to assess since loss rate could vary due to type of fertilizer, management, and environmental 

conditions; reported loss ranges from nearly zero to 60% of the total applied nitrogen (Titko et 

al., 1987; Petrovic, 1990; Wood et al., 2007).  In our simulations, ammonium-type fertilizer was 

used and assumed to be properly managed without significant nitrogen loss through 

volatilization.  Additionally, our experimental site was not planted with trees; more nitrogen and 

water could be needed for sites with trees present, as trees have extensive root systems and 

compete for nutrients and water with grasses.  In summary, as turfgrass management practices 

vary and there are differences in climate and soil properties, we suggest that the best nitrogen 

input rates can be determined by simulations with site-specific information.   

1.5 CONCLUSIONS 

Compared to the CENTURY model, turfgrass management simulated by the daily time-

step DAYCENT model was more in line with actual practices.  The performance of the 

DAYCENT model on Kentucky bluegrass lawns is acceptable and reliable.  Our results show 

that the DAYCENT model has the potential for use as a tool to predict best management 

practices by using site-specific information.  The DAYCENT model predicted that 80 % PET 

irrigation can maintain a medium-quality lawn in Colorado with average precipitation, and this 

rate can be further reduced to 60 % PET in years with more favorable temperature and rainfall 

for cool-season grass growth.  The nitrogen fertilization rates should be reduced to 

approximately half of the initial rates after 10 years of establishment for both medium- and high-

quality Kentucky bluegrass lawns.  Our simulation showed that the best DAYCENT-predicted 
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nitrogen fertilization rates could greatly reduce nitrate leaching, compared to conventional, 

constant nitrogen fertilization rates over a long term.  To apply the DAYCENT model to broader 

use on turfgrass, we suggest the model be tested in various other turfgrass ecosystems and 

climates.   
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Table 1.1.  Fertilizer application schedule in field experiment. 

 April May June July August October Total 

 ————————————kg N ha
-1

—————————————

— 
Year 1 52†  40 43  52 187 

Year 2  31   43 48 122 

Year 3 82    82  164 

†Urea and sulfur-coated urea were in a ratio of 1:1, except in Year 3, which was a ratio of 1:2. 
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Fig. 1.1: Comparison of measured and simulated soil temperature at 15-cm depth. 
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Fig. 1.2: Comparison of measured and simulated annual nitrate leaching after the modification of 

the parameters that control nitrate leaching.  
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Fig. 1.3:  Comparison of measured and simulated weekly evapotranspiration (ET) for three years.  
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Fig. 1.4: Comparison of measured and simulated weekly deep percolation for three years.  
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Fig. 1.5: Comparison of measured and simulated annual and monthly cumulative clipping yields. 
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Fig. 1.6: Measured nitrogen content of mown clippings.  
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Fig. 1.7: Model simulated annual aboveground net primary productivity (ANPP) for three 

irrigation levels. Fertilizer was applied at 90 kg N ha
-1

 yr
-1

. Irrigation was applied through 

growing season.  
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Fig. 1.8: Model simulated (a) ANPP and (b) leaf nitrogen content for a lawn receiving fertilizer 

of 150 kg N ha
-1

 yr
-1

 (HN) and 90 kg N ha
-1

 yr
-1

 (LN). 
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Fig. 1.9: Model simulated (a) soil organic carbon, (b) soil organic nitrogen, and (c) nitrate 

leaching for three irrigation levels with fertilizer of 90 kg N ha
-1

 yr
-1

 (LN) and 100 % potential 

evapotranspiration (PET) irrigation with fertilizer of 150 kg N ha
-1

 yr
-1

N (HN).  Fertilizer was 

applied for 50 years with clippings returned.  



28 

 

 

 

 

               

Fig. 1.10: Model predicted best nitrogen input rates for medium- and high-quality lawns with (a) 

clippings fully returned and (b) 50-percent clippings returned.   
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Fig.1.11: Model predicted (a) soil organic carbon, (b) soil organic nitrogen, and (c) nitrate 

leaching of a lawn using model-predicted best nitrogen input rates.  
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CHAPTER 2. SIMULATION OF N2O EMISSIONS AND ESTIMATION OF GLOBAL 

WARMING POTENTIAL IN TURFGRASSES USING THE DAYCENT MODEL 

2.1 SUMMARY 

Nitrous oxide (N2O) emissions are an important component of the greenhouse gas (GHG) 

budget for turfgrasses.  To estimate N2O emissions and the global warming potential (GWP), the 

DAYCENT ecosystem model was parameterized and applied to turfgrass ecosystems.  The 

annual cumulative N2O emissions predicted by the DAYCENT model were close to the 

measured emission rates of Kentucky bluegrass (Poa pratensis L.) sites in Colorado (within 16% 

of the observed values).  For the perennial ryegrass (Lolium perenne L.) site in Kansas, the 

DAYCENT model initially overestimated the N2O emissions for all treatments by about 200% 

(urea and ammonium sulfate at high rate and urea at low rate).  After including the effect of 

biological nitrification inhibition (BNI) in the root exudate of perennial ryegrass, the DAYCENT 

model correctly simulated the N2O emissions for all treatments (within 8% of the observed 

values).  After calibration and validation, the DAYCENT model was further used to simulate 

carbon sequestration and N2O emissions of a Kentucky bluegrass lawn under a series of 

management regimes.  The model simulation suggested that gradually reducing fertilization as 

the lawn ages from 0 to 50 years  would  significantly reduce long-term N2O emissions by 

approximately 40% when compared to applying nitrogen at a constant rate (at 150 kg N ha
-1 

yr
-1

).  

Our simulation indicates that a Kentucky bluegrass lawn could change from a sink to a weak 

source of GHG emissions about 20 to 30 years after establishment. 
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2.2 INTRODUCTION 

Global warming is predicted to continue in the next several decades as currently there is 

no effective way for mitigation (IPCC, 2007).  The increase in anthropogenic greenhouse gas 

(GHG) concentrations is likely the main cause of observed increase in global average 

temperatures (IPCC, 2007).  Ecosystems have been found to play important roles in GHG 

emissions.  For example, agriculture, in whole, is estimated to account for 13.5% of the total 

global GHG emissions by IPCC (2007).  However, some ecosystems, such as native vegetation 

could serve as a sink for GHG emissions (Del Grosso et al., 2005).  Turfgrass, which is a unique 

highly managed ecosystem, occupies large area in urbanized land.  The role of turfgrass in GHG 

budget is still not clear.  In Larimer County, Colorado turfgrass occupies 6.4 percent of the land 

area (Kaye et al., 2004).  In the continental United States, turfgrass area is estimated to be three 

times larger than that of any irrigated crop (Milesi et al., 2005).  Since urban area is expected to 

expand rapidly in the USA in the next a few decades, turfgrass may contribute more to the total 

GHG budget (Alig et al., 2004; Kaye et al., 2004).   

Few studies have been conducted on calculating the net global warming potential (GWP) 

for turfgrasses.  The major components of GWP of lawns may include: a) GHGs from soil; b) 

energy costs associated with turfgrass maintenance, and c) soil carbon sequestration.  

Greenhouse gases emitted from soil are mainly carbon dioxide (CO2), nitrous oxide (N2O), and 

methane (CH4) (IPCC, 2007).  Energy costs of turfgrass maintenance include manufacturing and 

transporting fertilizer and pesticides, using electricity for treating and transporting irrigation 

water, and combusting fuel in mowing.  Soils could mitigate GHG emissions by carbon 

sequestration.  Currently, it is not clear whether a turfgrass ecosystem plays a role as a net source 

or sink of GHG emissions.  Intensive management is reported to increase soil carbon 
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sequestration rate (Qian et al., 2003).  However, in the meantime, management increases the 

energy cost from the use of irrigation water and fertilizer.  Additionally, applying nitrogen 

fertilizers leads to increased nitrous oxide (N2O) emissions (Bremer, 2006; Groffman et al., 

2009; Zirkle et al., 2011).  One study conducted in California has shown that turfgrasses serve as 

either sources or sinks of global warming depending on fertilization rates (Townsend-Small and 

Czimczik, 2010).  The estimated GWPs for ornamental lawns with low (100 kg N ha
-1

 yr
-1

) and 

high (750 kg N ha
-1

 yr
-1

) fertilizer input were -108 g CO2 m
-2

 yr
-1

 and 286 g CO2 m
-2

 yr
-1

, 

respectively.  However, the fertilization rate of 750 kg N ha
-1

 yr
-1

 in this experiment is 

considered extremely high and rarely used in turfgrass industry (Law et al., 2004).   

Nitrous oxide is a GHG, which is estimated to have 298 times the GWP of CO2 over a 

100 year period (IPCC, 2007).  Total global N2O emissions were estimated to account for 7.9% 

of the anthropogenic GHGs in terms of CO2-equivalent (IPCC, 2007).  Regarding agriculture, 

2.1 (0.4-3.8) Tg N of N2O was emitted directly from agricultural soils each year, which is 

approximately 12% of the total N2O emissions from the biosphere (Mosier et al., 1998; Albritton 

et al., 2001).  The recorded emissions from frequently fertilized turfgrasses range from 0.5 to 6.4 

kg N ha
-1 

yr
-1

 (Guilbault and Matthias, 1998; Kaye et al., 2004; Bremer, 2006; Groffman et al., 

2009; Livesley et al., 2010; Townsend-Small and Czimczik, 2010).  In a previous study, urban 

lawns in Colorado were reported to emit greater amounts of N2O than those of wheat and native 

grassland (Kaye et al., 2004).  Lawns in California were observed to emit N2O at rates 

comparable to corn fields and greater than those of vegetable fields (Townsend-Small et al., 

2011).  
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N2O fluxes result from microbial activities in soil.  Both soil nitrification and 

denitrification processes can emit N2O.  Nitrification is the oxidation of NH4
+
 to NO2

-
 and the 

oxidation of NO2
-
 to NO3

-
 by microbial populations.  Nitrification is optimal in aerobic 

conditions since this oxidation requires O2 as the terminal electron acceptor (Bateman and 

Baggs, 2005).  Denitrification rises dramatically when soil is under anaerobic conditions; 

heterotrophic bacteria and fungi reduce NO3 
−
 and NO2 

−
 to N2O or N2 when O2 is limiting 

(Bateman and Baggs, 2005).  Nitrous oxide emissions are closely related to several 

environmental factors.  One is soil nitrogen availability.  Nitrogen availability can be increased 

by applying nitrogen fertilizer, which provides substrate (NH4
+ 

or /and NO3
-
) for nitrification and 

denitrification.  Fluxes of N2O rise significantly after nitrogen fertilization (Kaye et al., 2004; 

Bremer, 2006; Townsend-Small and Czimczik, 2010).  Soil moisture, which could alter the 

oxygen status of soil, is another factor that plays an important role in the composition of N2O 

from nitrification and denitrification (Smith et al., 1998; Dobbie et al., 1999).  Additionally, soil 

temperature and labile organic carbon have been also identified to influence N2O fluxes (Parton 

et al., 2001).   

In aerated soils, the majority of N2O emissions are from nitrification.  As nitrification 

coverts immobile NH4
+
 to mobile NO3

-
, which is susceptible to leaching out of the soil profile, 

some species of plants have been found to suppress nitrification by releasing nitrification 

inhibitory compounds from their roots (Munro, 1966).  Recently, this phenomenon was 

intensively studied and termed biological nitrification inhibition (BNI).  Using sensitive 

bioassay, BNI was successfully identified and quantified (Subbarao et al., 2009).  The BNI 

capacity appears to be a relatively widespread phenomenon in tropical pasture grasses but also 

was found in C3 plants (Subbarao et al., 2007).  Compared to tropical grass Brachiaria 
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humidicola, which showed a near total suppression of nitrification, relatively low degree of BNI 

was found in root exudates of Italian ryegrass (Lolium multiflorum Lam.) in the study.  In an 

earlier soil incubation experiment, Moore and Waid (1971) have observed that root washing of 

perennial ryegrass (Lolium perenne L.) exhibited pronounced and persistent effects in reducing 

nitrification (80% reduction).  Reduction in nitrification could result in decrease in N2O 

emissions from the process.  If fertilized with NH4
+ 

type of fertilizer, soil with BNI present is 

expected to emit less N2O from both nitrification and denitrification, since the substrate of 

denitrification (NO3
-
) is the product from the process of nitrification.  In a field experiment over 

3 years, Brachiaria pastures were reported to suppress soil N2O emissions by >90%; two other 

pasture grasses that have a low to moderate level of BNI capacity suppressed N2O emissions by 

about 50% (Subbarao et al., 2009).    

Methane (CH4) is another GHG that has 21 times the GWP of CO2 over a 100 year period 

(IPCC, 2007).  Soil could either uptake or emit CH4, depending on soil properties and conditions 

(Brady and Weil, 2008).  Aerobic soils have been found to be sinks of CH4 because bacteria 

oxidize CH4 as an energy and carbon source in non-saturated soils (Dutaur and Verchot, 2007).  

Water-saturated systems like wetlands and paddy soils (rice fields) that facilitate microbial 

production of CH4 are sources (Ojima et al., 1993; Chan and Parkin, 2001).  There are few 

studies conducted on CH4 emissions in turfgrass ecosystems.  Kaye et al. (2004) found that 

lawns in Colorado could uptake CH4 at a rate of 0.15 g C m
-2

 yr
-1

, which is half that of native 

grasslands.  Groffman and Pouyat (2009) observed lawns as either weak net sinks or weak 

sources of CH4 in a five-year experiment; the uptake rates of CH4 in lawns were significantly 

lower than those in forests.   
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Soil carbon sequestration has been seen as a way to mitigate GHG emissions (IPCC, 

2007).  Compared to croplands, turfgrass receives few disturbances like tillage which facilitate 

the decomposition processes and thus has high rate of carbon sequestration (Qian and Follett, 

2002).  Turfgrass ecosystems are highly managed; both root and shoot productivity increase after 

the conversion of native grassland or agricultural land to urban turfgrass (Falk, 1976; Falk, 

1980).  The residue of the dead biomass would add to soil organic carbon (SOC) pools soil.  

Qian and Follett (2002) reported that golf fairways could sequestrate SOC at a rate of 1.0 Mg   

ha
-1

 yr
-1

 during the first 0 to 25 years after turfgrass establishment in Colorado.  After examining 

53 lawns in Colorado’s Front Range, Golubiewski (2006) found that lawn grass produced more 

biomass and stored more C than local prairie or agricultural fields.  Lawns within Denver (>25 

years of age) were reported to have almost 2-fold higher SOC densities than in shortgrass steppe 

soils (Pouyat et al., 2009).   

In recent years, experiments of estimating net GWPs from various ecosystems have been 

conducted.  The difficulty of assessing GWPs by conducting short-term field experiments is 

that there are many components in GWP calculation and large spatial and temporal variations.  

One easier way to estimate trace gas emissions and GWPs for ecosystems is computer modeling.  

One of the widely used models is DAYCENT.  The DAYCENT model is an ecosystem model, 

which incorporates the most recent improvements in the understanding of soil carbon and 

nitrogen dynamics (Parton et al., 2001).  The DAYCENT model has been used to simulate trace 

gas emissions for major crops in the United States and to estimate the net GWP (Del Grosso et 

al., 2005).   
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The DAYCENT model has the ability to simulate fluxes of N trace gases.  Although the 

correlation between simulated and observed N2O flux was found poor on a daily basis in some 

simulations, the DAYCENT model was able to reproduce soil textural and treatment 

differences and the observed seasonal patterns of gas flux emissions (Parton et al., 2001).  The 

trace gas submodel has been validated using data from various ecosystems and locations in the 

world (Del Grosso et al., 2002; Stehfest and Müller, 2004; Del Grosso et al., 2005; Pepper et 

al., 2005; Li et al., 2006; Adler et al., 2007; Del Grosso et al., 2008).  Currently no research is 

available to compare the DAYCENT-predicted N2O flux with measured data in turfgrass lawns. 

 Previously, the DAYCENT model has been adjusted to simulate turfgrass ecosystems and 

validated using data of biomass, evapotranspiration, leaching, and soil temperature (Chapter 1).  

The DAYCENT model could model the seasonal trend of turfgrass growth and soil water 

dynamics and gives fairly good annual outputs on these parameters.  The CENTURY ecosystem 

model, which is the previous version of the DAYCENT model, has been used to simulate SOC in 

both golf course and home lawn conditions (Bandaranayake et al., 2003; Qian et al., 2003).  The 

SOC submodel has been tested using soil carbon sequestration data from golf courses 

(Bandaranayake et al., 2003).   

 In this study, we used the DAYCENT model to predict the carbon and nitrogen fluxes in 

a turfgrass ecosystem and estimated the GWPs by using model outputs and literature 

information.  The objectives of this study are:  

1) To validate the DAYCENT model on N2O emissions from turfgrasses.  

2) To simulate the impact of different management practices on N2O emissions.  

3) To predict the GWP for a Kentucky bluegrass lawn in Colorado.    
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2.3 MATERIALS AND METHODS 

2.3.1 DAYCENT Model Description 

The DAYCENT model was developed based on the CENTURY model, which has been 

widely used in simulations of medium to long term (10 to >100 years) changes in soil organic 

matter (SOM), plant productivity, and other ecosystem parameters for the major ecosystems in 

the world (Parton et al., 1987; Parton et al., 1993; Parton et al., 1994).  The DAYCENT model 

uses daily time scale in modeling decomposition, nutrient flows, soil water, and soil temperature 

and has increased spatial resolution for soil layers.  The main inputs of the DAYCENT model 

are: (1) soil texture, (2) daily weather data (maximum/ minimum air temperature and 

precipitation), (3) plant type, and (4) management practices (e.g., amount and timing of fertilizer 

applied). 

 N2O emissions from both nitrification and denitrification are modeled.  Modeled N2O 

fluxes from nitrification are a function of soil NH4
+ 

concentration, water-filled pore space 

(WFPS), temperature, and texture.  N2O emissions from denitrification are a function of soil 

NO3
-
 concentration, WFPS, heterotrophic respiration, and texture.  It should be noted that, in the 

version of the DAYCENT model used in this study, denitrification is assumed to occur only 

when WFPS is above ~0.55 and the rate increases exponentially when WFPS increases from 

~0.55 to ~0.90.  In the DAYCENT model, ammonium is assumed to be distributed only in 0-15 

cm soil because of its immobility while nitrate is distributed throughout the soil profile.  The 

SOC simulated by the DAYCENT model is within 0 to 20 cm of soil profile.  The labile C 

availability is approximated by simulated heterotrophic respiration.   
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2.3.2 Simulation of the Field Experiments 

In this study, measured N2O fluxes from experiments conducted by Kaye et al. (2004) 

and Bremer (2006) were used to evaluate the performance of the trace gas submodel.  We 

simulated turfgrass management including irrigation, fertilization, and mowing.  Parameters for 

turfgrass were from Chapter 1.  Soil information was obtained from soil analysis reports.  

Previous land use before each experiment was simulated according to land use history.   

In the experiment of Kaye et al. (2004), N2O fluxes were measured for one-year period 

on three turfgrass sites (one institutional lawn and two home lawns) dominated by Kentucky 

bluegrass (Poa pratensis L.) in Fort Collins, Colorado.  Fluxes of N2O from soil were estimated 

by using static soil chambers (Mosier et al., 1991; Mosier et al., 1997).  Sampling dates were 

approximately twice per month during the growing season and monthly during the winter.  

Additional samples were collected before and after fertilization and irrigation events.  Fluxes 

were measured between 9:00 and 13:00 which is used to represent the average flux value for the 

day.  The annual emission rates are calculated using linear interpolation between measurement 

dates (Kaye et al., 2004).  The soil analysis results of the sites are shown in Table 2.1.  Soil 

temperature and soil moisture were measured on gas-sampling dates.  Fertilizer applied in June 

and October totaled 110 kg N ha
-1 

yr
-1

.  The institutional lawn was fertilized with urea (46-0-0).  

The two home lawns used commercial fertilizer (25-5-5) (Jirdon Agri Chemcials, Inc, Morrill, 

NE).  The nitrogen form in this commercial fertilizer is NH4
+
.  Irrigation schedule was not 

documented in this experiment.  The total amount of irrigation applied during the growing 

season is 54±4 cm/yr.   
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To simulate the irrigation of the three Kentucky bluegrass lawns, we divided the total 

amount of sprinkler irrigation from May to October into each month according to the monthly 

evapotranspiration predicted by the DAYCENT model to mimic the common irrigation 

management in this area.  All three sites were converted to lawns about 60-100 years ago.  To 

estimate the soil property affected by long-term management, turfgrass maintenance practices 

were modeled for 80 years.  The intensity of management in previous years was adjusted 

according to the management history and the SOC levels measured at the time of the experiment 

(Table. 2.2).  The daily weather data were obtained from the online data base of Colorado 

Climate Center (Station number: 53005, Fort Collins).   

The experiment of Bremer (2006) was carried out on a perennial ryegrass (Lolium 

perenne L.) turf in Manhattan, Kansas with three fertilization treatments: urea at two rates (250 

and 50 kg N ha
-1 

yr
-1

) and ammonium sulfate at 250 kg N ha
-1 

yr
-1

.  Measurement method of 

nitrous oxide fluxes was similar to the Colorado experiment (Kaye et al., 2004).  Samples were 

collected weekly and more frequent measurements were taken after fertilizer applications.  The 

soil texture was 32% sand, 44% silt and 24% clay with pH 7.2.  Total soil carbon was 3% in top 

15 cm soil and we assume the total soil carbon was equal to organic carbon since pH is less than 

7.4 (Schumacher, 2002).  The estimated SOC in 0-20 cm soil was 7.2 Mg ha
-1

.  Mowing was 

conducted once or twice weekly at 7.5 cm.  Irrigation was applied three times weekly to keep 

turfgrass from drought stress.  Soil moisture and temperature at 5 cm were measured daily.  

Ammonium and nitrate concentrations in the top 10 cm soil were measured 4 times during 

growing season.   
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The ryegrass site has been established with turfgrass since 1960.  We simulated moderate 

turfgrass management for 45 years.  Urea and ammonium sulfate are both NH4
+
 type of 

fertilizers; the DAYCENT model simulated both of them as NH4
+
 added into the soil.  The 

applications of herbicide and fungicide were not simulated.  To estimate the effect of BNI, we 

decreased the nitrification coefficient (a multiplier on the nitrification rates; range 0 to 1.0) from 

0.8 (default value) to 0.1 in a 0.1 step and compared the annual cumulative emissions with the 

measured values. Weather data were provided by Kansas State University Research and 

Extension (Website: http://www.ksre.ksu.edu/wdl/; Station ID: Manhattan).   

To evaluate the model simulation effectiveness, correlation analysis was performed by 

comparing measured vs. simulated N2O emissions for both Colorado and Kansas experiments.  

Pearson product-moment correlation coefficient (r) was calculated for the simulated daily fluxes.  

Annual cumulative emission rates were compared with measured values.  

2.3.3 Long-term Predictions for a Kentucky Bluegrass Lawn 

After validation of the DAYCENT model, we predicted the impact of long-term turfgrass 

management (fertilization and irrigation) on N2O emissions on a Kentucky bluegrass lawn near 

Fort Collins, CO.  The soil was a Fort Collins loam (54% sand, 29% clay, and 17% silt).  The 

lawn was converted from agriculture at Year 0 of our simulation.  Weather data from 1961 to 

2010 were used to drive the simulations, which were obtained from National Climatic Data 

Center (NCDC, weather station no. 53005).  First, we used 3 different levels of potential 

evapotranspiration (PET) replacement (60%, 80%, and 100% PET) to predict the effect of 

irrigation under constant fertilization of 90 kg N ha
-1 

yr
-1

 for 50 years.  Irrigation was scheduled 

every 3 days.  Then, to predict the effects of fertilization, we compared two fertilization 

http://www.ksre.ksu.edu/wdl/
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scenarios: constant nitrogen rate of 150 kg N ha
-1 

yr
-1

 and the best nitrogen rates developed in 

Chapter 1 for the lawn to achieve high quality; both of the scenarios are under 100% PET 

irrigation.  The best nitrogen rates were the predicted minimal nitrogen rates which result in a 

lawn with the annual aboveground net primary productivity (ANPP) of at least 2800 kg C ha
-1

 yr
-

1
 and leaf nitrogen content above 4% (Rodriguez and Miller, 2000; Qian et al., 2003).  The 

DAYCENT-generated best management practice (BMP) of nitrogen fertilization was 240 kg N 

ha
-1

 yr
-1

 in first 3 years after establishment, 140 kg N ha
-1

 yr
-1 

in year 3 to 6, 110 kg N ha
-1

 yr
-1 

year 7 to 17, and 50 kg N ha
-1

 yr
-1

 at 40 to 50 years after establishment. The fertilizers used in the 

simulation were NH4
+
 type and all clippings were left on site.   

2.3.4 Global Warming Potential 

We calculated GWP for the Kentucky bluegrass lawn in Fort Collins, CO in three 

management scenarios: 1) BMPs predicted by DAYCENT to achieve high turf quality, 2) BMPs 

predicted by DAYCENT to achieve medium turf quality (Chapter 1), and 3) conventional 

practices for high quality lawns (100% PET irrigation and fertilization of 150 kg N ha
-1 

yr
-1

).   

The output from the long-term simulations, including N2O emission rates and net carbon 

sequestration rates, were converted to CO2 equivalents and used for GWP estimation for the 

Kentucky bluegrass lawn.  Our calculation also included the energy cost from maintenance 

(mowing, irrigation, fertilization, and pesticide application), which were estimated by using 

published data, as described below.   

The Outdoor Power Equipment Institute (Sahu, 2008) estimated fuel use of 0.00094 L   

m
-2

 for a typical walk-behind mower.  The emission of gasoline combustion is 2347.4 g CO2 L
-1
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(U.S. EPA, 2011).  Mowing was conducted weekly in this area from April to October (28 times 

yr
-1

).  The annual GWP from mowing was calculated to be 61.6 g CO2 m
-2

 yr
-1

.   

GWPmowing= Gasoline use by mower *Emission from unit gasoline combustion*Number 

of mowing events 

The irrigation water used in home lawns is mainly from city potable water supply system 

in the city of Fort Collins, CO.  The energy cost of Fort Collins’ water supply was 0.125 kWh  

m
-3

, including water treatment and distribution (Tellinghuisen, 2009).  The carbon dioxide 

emissions coefficient for electric utilities for Colorado is 929 g CO2 kWh
-1

 (U.S. EIA, 2001).  

The annual total emission from treating and distributing irrigation water is estimated at 116.0 g 

CO2 m
-3

.  The total amount of irrigation water was predicted by the DAYCENT model.  

GWPirrigation=Energy intensity of water supply*CO2 emissions coefficient*Total irrigation 

 Estimates of GHG emissions from manufacture and transportation of nitrogen fertilizer 

are 3.3 to 6.6 g CO2 g
-1

 (Lal, 2004).  The conversions for phosphorus and potassium are 0.37 to 

1.1 and 0.37 to 0.73 g CO2 g
-1

 respectively (Lal, 2004).  We use means of 4.8, 0.73, and 0.55 g 

CO2 g
-1

 for N, P, and K in our calculation.  A common lawn fertilizer ratio is 5-1-2 (Zirkle et al., 

2011).  Regarding pesticide application, we used the averages of annual GWP of pesticide on 

turfgrass (5.5 and 11.7 g CO2 m
-2

 yr
-1

 for medium and high quality turfgrass) which are estimated 

by Zirkle et al. (2011).   
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2.4 RESULTS AND DISCUSSION 

2.4.1 Simulated N2O Emissions from Kentucky Bluegrass Lawns in Colorado 

The predicted annual cumulative N2O emissions from Kentucky bluegrass lawns were 

within 16% of the observed values (Fig. 2.1).  The observed annual rate of N2O emissions of the 

institutional lawn was approximately 42% higher than the other two lawns, which is probably 

due to its higher SOM content (Christensen and Christensen, 1991; Merino et al., 2004; Li et al., 

2005).  The simulated trends of daily fluxes are acceptable; the Pearson’s r equals 0.57, 0.60, and 

0.53 for Home lawn A, Home lawn B, and Institutional lawn on daily basis, respectively (Fig. 

2.2).  The observed and simulated results both showed that N2O fluxes increased dramatically 

right after fertilization, although the DAYCENT model underestimated these peaks.  The 

observed high fluxes in February 2001 were not simulated by the DAYCENT model, which 

likely resulted from the failure of simulating high soil water content at the time of soil thawing.   

Although the simulation of daily N2O fluxes needs improvement, the DAYCENT model 

is able to predict annual cumulative emissions from Kentucky bluegrass lawns in Northern 

Colorado.  The DAYCENT model is an intermediate complexity biogeochemical model which 

only requires inputs that are relatively easy to obtain.  As described by Del Grosso et al. (2008), 

the accuracy of the DAYCENT model on simulating daily fluxes of N2O might be not very high 

compared to that of more complex mechanistic models which require much more detailed inputs.  

An example of highly mechanistic model is ecosys (Grant et al., 2006).  However, it is more 

practical to use the DAYCENT model to assess cumulative N2O emissions without detailed input 

data (Del Grosso et al., 2008).   
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In our simulation, nitrification is modeled as the main source of N2O emissions for the 

three lawns (>93% of total N2O).  The proportion of N2O from nitrification and denitrification is 

a function of O2 availability that is affected by soil water status.  Nitrification was active when 

soil water content is relatively low and denitrification becomes the main source when soil is 

under anaerobic conditions.  With frequent and relative light irrigation, the three Kentucky 

bluegrass lawns (medium-textured soils) should emit most of N2O through nitrification process 

as the soils are usually under aerobic conditions in the semi-arid area. 

2.4.2 Simulated N2O Emissions from Perennial Ryegrass Lawns in Kansas 

In the perennial ryegrass experiment, the observed annual N2O emissions showed little 

difference between treatments of urea and ammonium sulfate at rate of 250 kg N ha
-1 

yr
-1

.  

Approximately 50% more N2O emissions were found in high nitrogen rate than low nitrogen 

rate.  Initially, the DAYCENT model overestimated annual emission rates by 218%, 210%, and 

189% for treatments of ammonium sulfate at high rate, urea at high rate, and urea at low rate, 

respectively.  We then modified the nitrification rates to simulate the effect of BNI.  The annual 

emissions for three nitrogen treatments can be approximated within 8% of the observed values 

by setting the nitrification coefficient in the model to 0.3 (Fig. 2.3).  The Pearson’s r of predicted 

daily fluxes of N2O was 0.50, 0.65, and 0.78 for treatments of ammonium sulfate at high rate, 

urea at high rate, and urea at low rate, respectively (Fig. 2.4a and b).  Our simulation indicated 

that soil nitrification was reduced by 50 to 64% after the modification of nitrification coefficient.  

This reduction of N2O emissions is similar to that found in a tropical grass Panicum maximum 

(approximately 50%), which was detected the same level of BNI capacity as ryegrass (Subbarao 

et al., 2007; Subbarao et al., 2009).  Although nitrification was suppressed, the DAYCENT 
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model simulated that N2O emitted from nitrification was still the major component of the total 

emissions (66% for the high N treatment and 80% for the low N treatment).   

Soil temperature was correctly simulated in the growing season (Fig. 2.5a and b).  The 

underestimation of soil temperature in winter time (up to 7.8 °C) likely results from the 

underestimation of the insulating effect of thatch and snow cover.  Soil water content was not 

well simulated in the winter period by the DAYCENT model as well (Fig. 2.5c).  Soil 

ammonium and nitrate availability plays important roles in simulating nitrification and 

denitrification.  Measured soil ammonium and nitrate concentrations for four measurement days 

in 2004 were compared with simulated results (Fig. 2.6).  The simulated soil ammonium and 

nitrate concentrations in the high nitrogen rate treatments were overestimated but acceptable 

considering the high rate of fertilization.   

Negative N2O flux or N2O uptake has been found in various other ecosystems (Chapuis-

Lardy et al., 2007), which has also been observed in this ryegrass study.  However, it is still in 

debate whether negative values should be treated as errors or measurement ‘noise’ (Chapuis-

Lardy et al., 2007).  The DAYCENT model does not simulate the uptake of N2O since the 

mechanism of soil uptake of N2O is unclear.   

2.4.3 Long-term Effects of Different Irrigation Levels on N2O 

Soil water status and soil nitrogen dynamics are closely related to irrigation.  The long-

term prediction of N2O emissions for a Kentucky bluegrass lawn irrigated with 60% PET, 80% 

PET, and 100% PET replacement are shown in Fig. 2.7a.  Our simulation results indicate that 

60% PET irrigation results in the highest annual N2O emissions in 30 years, which is 

approximately twice as high as that of 100% PET irrigation applied with the same amount of 
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fertilizer in most of the years.  In contrast, in the last 10 years of our simulation, annual 

emissions were slightly higher in 100% PET irrigation.  The reason is likely that 60% PET 

replacement results in retardant growth of turfgrass and a reduction in nitrogen uptake, thus more 

mineral nitrogen accumulating in the top soil layer (Fig. 2.7b).  When there is abundant mineral 

nitrogen in the soil (>40 years in Fig. 2.7b), annual N2O emission rates are not very different for 

the three irrigation levels.  The result may be explained by simulated soil WFPS, which was 

found to closely relate to N2O emissions (Smith et al., 1998; Dobbie et al., 1999).  Daily average 

water-filled pore space in our simulation of 100% PET irrigation was in a range from 0.4 to 0.5 

(WFPS of 0.5 corresponds to the field capacity) for most of the time in growing season.  Water-

filled pore space for 60% PET irrigation mainly fluctuated between 0.25 and 0.5.  According to 

Parton et al. (2001), in the DAYCENT model, the effect of WFPS on nitrification is highest 

when WFPS is approximately 0.4 in medium-textured soil.  The effect drops from 1.0 to 0.8 

when WFPS decrease from 0.4 to 0.3.  Changing irrigation from replacing 60% to 100% PET 

probably resulted in little difference on nitrification rate in the sandy clay loam soil when NH4
+
 

is not a limiting factor.  The majority of N2O emissions are modeled to be emitted through 

nitrification as denitrification was not simulated when WFPS is less than 0.55 (Parton et al., 

2001).  The highest annual N2O emissions in our simulation were predicted to reach 6.1 kg N   

ha
-1 

yr
-1 

at Year 46 in 100% PET scenario, which is comparable to the estimated annual rate of 

6.4 kg N ha
-1 

yr
-1

 in golf course fairways in Arizona with high nitrogen input in preceding years 

(Guilbault and Matthias, 1998).   

2.4.4 Long-term Effects of Different Nitrogen Fertilization Regimes on N2O 

Using constant rate for nitrogen fertilization for many years is commonly found in the 

management of lawns. However, constant nitrogen rates may result in over- or under-fertilization 
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and pose potential risks to turfgrass quality and may cause environmental threats (e.g. nitrate 

leaching).  In our long-term prediction, with fertilization of 150 kg N ha
-1 

yr
-1

 constantly, N2O 

emissions increased dramatically in the first 15 years and leveled off at an average rate of 

approximately 5 kg N ha
-1 

yr
-1

 after 15 years (Fig. 2.8).  By applying the model-generated best 

nitrogen rates, annual N2O emissions were maintained at the range of 0.6 to 3.1 kg N ha
-1 

yr
-1

 

from year 10 to 50, which is approximately half of the emission rate of using conventional 

constant nitrogen rate.  The N2O emissions were predicted to be higher in the first ten years using 

the model-generated best nitrogen rates because larger amount of nitrogen was applied to help 

turfgrass to establish and exhibit high quality.  In 50 years, gradually reducing fertilization as the 

lawn ages would  significantly reduce long-term N2O emissions by approximately 40% when 

compared to applying nitrogen at the constant rate (150 kg N ha
-1 

yr
-1

). 

2.4.5 Global Warming Potential 

Total energy cost from turfgrass maintenance (the sum of GWPs for mowing, 

fertilization, irrigation, and pesticide application) accounts for the largest proportion of the total 

emissions (65-80 %) in the first decade for the three scenarios.  Mowing, irrigation and 

fertilization individually contribute to nearly equal proportions of emissions in first decades in 

the scenario of conventional management (Fig. 2.9a).  With constant 150 kg N ha
-1 

yr
-1

 

fertilization, the GWP of N2O emissions increases to around 2250 g CO2 m
-2

 decade
-1

 (half of the 

total positive GWP), while other components of positive GWPs remain the same level.  In the 

scenario of best management practices predicted by the DAYCENT model for a high quality 

lawn, the total emissions tend to decrease though decades (Fig. 2.9b).  As fertilization rate is 

reduced through time, the energy cost of fertilization decreases while the GWP of N2O emissions 

is kept stable at an average rate of 1210 g CO2 m
-2

 decade
-1

.   
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The GWPs of carbon sequestration vary slightly for the scenarios of constant nitrogen 

rate and model predicted BMPs for a high quality lawn.  It is predicted that nearly 4000 g CO2  

m
-2 

carbon could be sequestrated in the first decade.  The sequestration rates gradually decrease 

as the lawn ages.  The soil used in our simulation is a sandy clay loam with 29 percent clay.  

Higher clay content soil could probably be able to sequestrate substantially more carbon in a 

long-term since clay particles provide greater protection to SOM (Bandaranayake et al., 2003).  

Maintaining a lawn with medium quality instead of high quality is predicted to significantly 

reduce total emissions by more than 30 percent (Fig. 2.9c).  However, the carbon sequestration 

rates will be also reduced due to lower fertilizer and irrigation input; only 2700 g CO2 m
-2 

could 

be sequestrated in the first decade.   

The model predicted that the amount of water needed for irrigation range approximately 

from 40 to 80 cm per year, which resulted in GWPs of 46 to 93 g CO2 m
-2

 yr
-1

.  Since Fort 

Collins Water Utility relies on gravity-fed surface supplies; global warming potential of 

irrigation is likely just half or less than half of those of some cities in the South Metro area of 

Colorado, which use substantial amounts of energy for pumping groundwater from the Denver 

Basin aquifers (Tellinghvuisen, 2009).  Methane uptake was not included in our calculation.  

Lawns in Colorado were found to be sinks of CH4 with annual uptake rate of 0.15 g C m
-2

;
 
that 

equals to 4.2 g CO2 m
-2

 yr
-1

, which is negligible compared to N2O emissions (Kaye et al., 2004).   

In summary, both high and medium quality Kentucky bluegrass lawns of medium-

textured soils were predicted to serve as a sink of carbon for at least two decades.   
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2.5 CONCLUSIONS 

Computer modeling provides a relatively easy way for assessing the GHG budget for 

ecosystems.  Our study showed that the DAYCENT model can properly simulate the annual N2O 

emissions for Kentucky bluegrass lawns.  The simulation for perennial ryegrass indicates that 

BNI might play an important role in reducing N2O emissions.  Over a long term, a Kentucky 

bluegrass lawn was predicted to emit more N2O when irrigation was applied by replacing 60% 

PET than that of 100% PET.  The model suggests that gradually reducing fertilization as the 

lawn ages from 0 to 50 years would significantly reduce long-term N2O emissions.  The long-

term interaction of fertilization and irrigation should be further studied in different soil 

conditions.  In all three scenarios for estimating GWPs, GHG emissions from maintenance 

accounts for 50% to 80% of the total emissions in each decade.  Keeping a constant high 

fertilization rate of 150 kg N ha
-1

 yr
-1

 could substantially increase GWP of N2O to half of the 

total emissions.  Our DAYCENT model generated best nitrogen rates for a high quality lawn 

could help reduce the amounts of the positive GWP by 25% in 50 years compared to those of the 

conventional nitrogen rates but maintain a similar soil carbon sequestration rate.  Further studies 

are needed to assess the GWPs for lawns of different soil textures and in different climates. 
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Table 2.1.  Soil site properties of 0-15 cm in the experiment conducted by Kaye et al. (2004). 

Site Sand  Clay  Silt Bulk density pH 

 -----------%--------- g cm
-3

  

Home lawn A 47 30 24 1.15 7.5 

Home lawn B 74 12 14 1.21 7.7 

Institutional lawn 53 22 26 1.21 7.8 
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Table 2.2.  Soil organic carbon (SOC) of three Kentucky bluegrass sites in the experiment 

conducted by Kaye et al. (2004). 

Site 0-15 cm 15-30 cm 0-20 cm 

(estimated†) 

 -------------------------------g C m
-2

------------------------------- 

Home lawn A 4226 2452 5044 

Home lawn B 4918 990 5248 

Institutional lawn 5128 3108 6164 

†Estimated SOC in 0-20 cm of soil was the sum of SOC in top 15 cm and 1/3 of SOC in 15-30 

cm of soil.  The DAYCENT model simulates SOC in the top 20 cm soil 
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Fig. 2.1: The comparison of measured and simulated annual N2O emissions from three lawns in 

Colorado. 
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Fig. 2.2: The comparison of measured and simulated daily N2O fluxes from three lawns in 

Colorado.  Measured data were from the experiment conducted by Kaye et al. (2004).  Arrows 

indicate the fertilization dates. 
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Fig. 2.3: The comparison of measured and simulated annual N2O emissions from a perennial 

ryegrass site with three nitrogen treatments (UH: urea, 250 kg N ha
-1

 yr
-1

; AS: ammonium 

sulfate, 250 kg N ha
-1

 yr
-1

; UL: urea, 50 kg N ha
-1

 yr
-1

).  Measured data were from an experiment 

in Kansas (Bremer, 2006).    
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Fig. 2.4: The comparison of measured and simulated daily N2O fluxes.  Perennial ryegrass was 

fertilized at nitrogen rates of (a) 250 kg N ha
-1

 yr
-1

 or at (b) 50 kg N ha
-1

 yr
-1

 using ammonium 

sulfate or urea.  Arrows indicate the fertilization dates.   
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Fig. 2.5: The comparison of measured and simulated (a) daily maximum, (b) minimum soil 

temperature, and (c) soil volumetric water content.  Soil temperature and water content was 

measured at 5 cm depth.  Simulated results were the model output of the 2 to 5 cm soil layer. 
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Fig. 2.6: The comparison of measured and simulated soil ammonium and nitrate concentrations.  Fertilizer was applied at rates of (a 

and b) 250 kg N ha
-1

 yr
-1

 or (c and d) 50 kg N ha
-1

 yr
-1

.  
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Fig. 2.7: Model predicted (a) annual N2O emissions and (b) annual average soil mineral nitrogen 

content in top 10 cm soil for 3 irrigation levels for a Kentucky bluegrass lawn in Colorado. 
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Fig. 2.8: Model predicted annual N2O emissions for two management scenarios (Predicted best 

nitrogen rate: using the predicted best N rate for a high quality lawn in Chapter 1; Constant 

nitrogen rate: fertilizer applied at 150 kg N ha
-1

 yr
-1

).   
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Fig. 2.9: Estimated global warming potentials (GWPs) for lawns using (a) conventional management, BMPs generated by the 

DAYCENT model for a lawn to maintain (b) high quality and (c) medium quality. 
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