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ABSTRACT 
 
 
 

SPINAL CORD AND MENINGEAL MECHANICS: VISCOELASTIC 
 

 CHARACTERIZATION AND COMPUTATIONAL MODELING 
 
 
 

Suffering a spinal cord injury (SCI) can be physically, emotionally, and financially devastating. 

With the complex loading environment typically seen in SCI events, finite element (FE) 

computational models provide an important economical and ethical option for investigating the 

mechanical etiology of SCI, evaluating prevention techniques, and assessing clinical treatments. 

To this end, numerous research groups have developed FE models of the spinal cord using 

various degrees of material and structural sophistication. However, the level of model 

complexity that is necessary to achieve accurate predictions of SCI has not been explicitly 

investigated as few studies have reported applicable tissue behavior.  

 

What are reported in the literature as “spinal cord mechanical properties” are most commonly 

based on ex-vivo tests of the spinal-cord-pia-arachnoid construct (SCPC). The pia and arachnoid 

maters are fibrous meningeal tissues that closely envelope the spinal cord, and together are 

referred to as the pia-arachnoid-complex (PAC). Currently available data demonstrate the PAC’s 

importance in the overall SCPC stiffness and shape restoration following compression. However, 

only one previous study has reported mechanical properties of isolated spinal PAC, and 

therefore, conclusions about its contribution to SCPC mechanics are largely unknown. 

Additionally, it has been shown that SCPC material properties begin to degrade within 90 

minutes of death. Considering the experimental difficulties and ethical concerns associated with 
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in-vivo mechanical testing of the SCPC, determining the relationship between in-vivo and ex-vivo 

viscoelastic properties would allow researchers to more accurately analyze existing ex-vivo data.  

 

Therefore, the overarching goal of this work is to address the current gaps in knowledge 

regarding spinal cord and meningeal tissue mechanics and incorporate the developed material 

models into a FE model. Comparisons of ex-vivo and in-vivo porcine SCPC non-linear 

viscoelastic behavior revealed significantly different acute behaviors where the ex-vivo condition 

exhibited a higher stress response but also relaxed quicker and to a greater extent than the in-vivo 

condition. Although it only made up less than 6% of the ovine SCPC volume, the PAC was 

found to significantly affect the non-linear viscoelastic behavior of the SCPC which supports the 

conclusion that it plays an important protective mechanical role. Examining the fitting and 

predictive accuracy of linear, quasi-linear, and non-linear viscoelastic formulations to SCPC, 

cord, and PAC stress-strain data, non-linear formulations are recommended to model the SCPC 

and cord response to arbitrary loading conditions while the QLV is recommended for the PAC. 

 

This work provides researchers with novel insights into the complex mechanical behavior of the 

spinal cord and PAC. The experimental results represent an important addition to the limited 

literature on in-vivo versus ex-vivo neural tissue viscoelastic properties; they are also the first to 

quantify the non-linear elastic behavior of spinal PAC and the non-linear viscoelastic properties 

of the isolated spinal cord. Finally, the computational portion of this work provides a detailed 

report of the effects of viscoelastic formulation complexity on FE model prediction accuracy and 

computational time allowing researchers interested in modeling SCI to make informed decisions 

about the balance of accuracy and efficiency necessary for their specific modeling efforts. 
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CHAPTER 1: BACKGROUND 

 

1.1 Significance 

The annual incidence rate of spinal cord injury (SCI) in the United States has been estimated to 

be between 43 and 71 per million – representing approximately 20,000 new injuries each year 1,2. 

Despite the relatively low incidence rate, SCI can have very serious and lasting consequences. Of 

the 20,000 new injuries per year, up to 30% prove fatal before they can be treated at a hospital. 

Those who survive are often faced with significant neurological, psychological, and financial 

hardships related to their injury. Unlike many other debilitating conditions, SCI primarily affect 

young people, with up to 70% of the patients living with an SCI between 15 and 35 years of age 

1–3. While it is impossible to measure the personal cost of lost independence, satisfaction, and 

lifestyle, over $7 billion is spent annually in the United States on direct costs such as 

hospitalizations, medications, rehabilitation, and equipment related to SCI. With the addition of 

$2.5 billion in indirect costs from lost productivity, the total annual cost to society due to SCI is 

approximately $9.5 billion 4–6.  

 

This significant societal impact has motivated much research on the cause, prevention, and 

treatment of SCI over the past fifty years. As the initiation of the vast majority these injuries is a 

mechanical insult to the spinal column 1,2, a requisite first step in understanding how damage 

occurs is characterization of the behavior of the tissues that make up the spinal column, including 

the spinal cord itself. Despite the work of many research groups around the world, there still 

exist important unanswered questions regarding the properties of the spinal cord and meningeal 
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tissues. This current work aims to address a number of these questions through experimental and 

computational modeling methodologies. 

 

1.2 Spinal Column Structural Anatomy 

Since the majority of SCI occur at the cervical level and these injuries result in the highest rates 

of mortality and morbidity 2,3,7, the cervical spine is the focus of this work. The following 

sections describe the structure of the human and ovine cervical spines. Since a subset of the 

experimental data was collected from the lumbar spine of a pig, the porcine lumbar spine is also 

discussed briefly. The biological and anatomical similarities between the human, sheep, and pig 

spines support the use of ovine and porcine models to study spinal mechanics and injury.   

 

1.2.1 Human Cervical Spine 

The bony structure of the human cervical spine is composed of the seven vertebrae of the neck 

that run from the base of the skull to the height of the shoulders (Fig. 1.1A). The shape and 

articulating surfaces of the cervical vertebrae allow for a larger range of motion than that of the 

thoracic and lumbar spinal levels 8. As shown in Fig. 1.1B, the spinal cord is situated in the canal 

created by the posterior processes of the vertebrae. At the cervical level, this canal is 

approximately 25 mm in the transverse direction and 16 mm in the anterior-posterior direction 9. 

The human cervical spinal cord is also oval in shape with a larger transverse diameter (11.5 – 

13.5 mm) than anterior-posterior diameter (6 – 8.3 mm) based on in-vivo imaging 10,11 and ex-

vivo cadaveric measurements 12,13. The cord itself is composed of a central region of gray matter 

surrounded by white matter (as detailed in Section 1.4.1) 14–16. Between each pair of adjacent 

vertebrae, nerve roots from the spinal cord exit the spinal canal through foramina, which are held 
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open by the height of the intervertebral disc (Fig. 1.1). These nerve roots extend beyond the 

spinal region to innervate various regions of the upper body as a part of the peripheral nervous 

system.  

 

The entire central nervous system (brain and spinal cord) is surrounded by three connective 

tissue meningeal layers: the dura mater, the arachnoid mater, and the pia mater, as shown in Fig. 

1.1B and 1.1C. The dura mater is the outermost and strongest of the three meninges, and has 

been reported to be 80 – 350 μm thick in the human spine 17–19. It is separated from the perimeter 

surface of the spinal canal by the epidural space, which is typically occupied by adipose tissue. 

The arachnoid mater is separated from the inner surface of the dura mater by the relatively thin 

subdural space. The arachnoid mater, often described as a delicate spider-web like structure, 

connects to the underlying pia mater through trabecular extensions within the subarachnoid 

space. The subarachnoid space is also occupied by cerebrospinal fluid and vasculature. The pia 

mater is the innermost of the meninges and closely envelopes the spinal cord. The thickness of 

the pia mater in humans has been reported to be 60 μm at the optic nerve 20 and 200 μm at the 

thoracic and lumbar regions 21. Detailed descriptions of the structure and properties of the tissues 

that make up the spinal cord and meningeal layers can be found in Section 1.4. 
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1.2.2 Ovine Cervical Spine 

Due to ethical and logistical complications related to human central nervous system research, 

animal models are often used to study spinal cord and meningeal tissue properties and SCI. 

While rat or mouse models are the most common 7,22–27, anatomical and physiological 

differences between the rodent and human spine often result in poor translation of research 

results 28–30. Therefore, many groups have begun to use large-animal models (e.g., cat, dog, pig, 

sheep, cow, and non-human primate) that more closely approximate the human spine. Due to our 

research group’s close relationship with the Preclinical Surgical Research Laboratory at 

Colorado State University which provided access to both expert knowledge and fresh samples, 

the ovine (sheep) model was primarily utilized in this work.  

Figure 1.1: A) Sagittal view of the human cervical spine [BodyParts3D, licensed under CC 
Attribution-Share Alike 2.1 Japan]; B) Axial view of single human cervical vertebra 
[Debivort, licensed under CC Attribution-Share Alike 3.0 Unported]; C) Spinal meningeal 
layers [Adapted from 16 with permission of McGraw-Hill Education] 

C) 

A) B) 

Intervertebral 

Disc 
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Dura Mater 
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Similar to the human cervical spine, the bony structure of the ovine cervical spine consists of 

seven vertebrae that connect the base of the skull to the thoracic spinal region 9,31,32 (Fig. 1.2A). 

Although the shape of the cervical vertebrae differ between humans and sheep, their structure 

and function is remarkably similar 9,32. As shown in Fig. 1.2B, the canal occupied by the spinal 

cord is more circular than in humans, with an average diameter of 13 – 16 mm 9,32. However, the 

dimensions of the ovine spinal cord itself are similar to that of humans (transverse diameter: 

10.33 – 11.67 mm; dorsal-ventral diameter: 7.5 – 8 mm 31,33). The general organization of the 

central nervous system and the peripheral nervous system is the same as in humans, with nerve 

roots exiting through intervertebral foramina to innervate other areas of the animal (Fig. 1.2B). 

Although not studied nearly as extensively as humans, the organization of ovine meningeal 

tissues and the spaces between each is the same. The thickness of ovine spinal dura at the 

cervical level has been reported as 350 ± 90μm 34 while the thickness of the ovine pia mater has 

not been reported previously.  

 

        
 

 

 

A) B) 

Figure 1.2: A) Anterior, sagittal, and posterior view of the ovine cervical spine; B) Axial view 
of single ovine cervical vertebra (D: dura mater, SC: spinal cord, NR: nerve root). Reprinted 
with permission from Cain and Fraser 32. 
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1.2.3 Porcine Lumbar Spine 

Six vertebrae make up the bony structure of the porcine lumbar spine and connect the thoracic 

spine to the sacrum. Similar to the human cervical and lumbar levels, the porcine lumbar spinal 

canal is oval in shape with a larger transverse diameter than dorsal-ventral diameter 

(approximately 15 – 17mm versus 10 – 12mm 35–37). The porcine spinal cord has been reported 

as smaller than the human and ovine cervical cord with a transverse diameter of 7 – 7.7mm and a 

dorsal-ventral diameter of 5.2 – 5.6mm 38–40. The organization of meninges is the same as for 

human and ovine spines 41. The thickness of the porcine dura mater at the lumbar level has not 

been reported, but at the cervical level it has been measured as 80 ± 10μm 17. The thickness of 

the porcine pia mater has also not been reported in the literature.  

 

1.3 Spinal Cord Injury Mechanisms and Modeling 

Despite over a century of research, SCI are still not well understood and therefore the best 

methods for their prevention, diagnosis, and treatment are debated. The following section 

describes current knowledge and efforts to understand SCI based on clinical observation, animal 

experimental models, and computational simulation. Taken together, the literature suggests that 

the different injury mechanisms observed clinically cause different patterns of tissue damage and 

neurological deficits. The severity of neurological impairment is related to localized cord 

mechanics, specifically maximum principal strain 23,42–47. 

 

1.3.1 Human Injuries 

The pathophysiology of SCI can be characterized as a primary mechanical injury to the spinal 

column followed by a biochemical and cellular response 2,48. The primary injury is typically 
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caused by high-velocity dynamic events such as traffic accidents, falls, violence, or sport or 

recreational activities (which together account for 75 – 90% of all cases) 1–3,7,42,49. The specific 

clinical mechanism of these injuries can generally be classified as contusion/compression, 

dislocation/transection, distraction, or any combination thereof 2,7,43,44,48,50.  

 

Contusion injuries are the result of transient transverse compressive forces on the spinal cord. 

These types of injuries may be due to vertebral burst fractures where bone fragments are 

propelled into the spinal canal and impact the cord 43,46,48,51,52. Compressive injuries are the result 

of more prolonged compressive forces and can be caused by herniated or ruptured intervertebral 

discs or vertebral fracture 2,48,50. Combined contusion-compression injuries, where an initial 

impact is followed by persistent compression, are the most common 2,38,44,48,53. Dislocation 

injuries occur when the cord is subjected to shear forces caused by relative nonphysiologically 

motion of adjacent vertebrae, often due to fracture and/or damage to the intervertebral disc 

2,43,46,50,54 as shown in Fig. 1.3. Depending on the severity of the dislocation and the presence of 

bone fragments in the canal, partial or complete transection of the spinal cord at the affected 

level is possible, although rare 2,7.  

 

While the injury mechanisms discussed above can typically be observed using standard clinical 

radiography or computed tomography (CT) procedures, distraction injuries are much more 

difficult to diagnose without magnetic resonance imaging (MRI) 2,24,55,56. It is thought that SCI 

without radiographic abnormality (SCIWORA) are distraction injuries 2,48,49,56,57. Distraction or 

whiplash injuries at the cervical level are caused by over extension or flexion of the neck, 

resulting in damage to spinal ligaments and tensile forces on the spinal cord 7,23,24,26,46,48,50,55,56,58. 
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This type of injury is common in motor vehicle accidents, where there is sudden acceleration or 

deceleration of the head relative to the torso 24,42,55,59. 

  

 

 
1.3.2 Large Animal Experimental Models of SCI 

Inducing SCI in in-vivo animal models has allowed researchers to explore the connections 

between global loading conditions and local injury patterns and neurological deficit. Such 

methods typically involve anesthetizing the animal, surgically removing the posterior elements 

of the vertebrae to expose the dura mater, transecting a portion of the dura mater, and using 

mechanical means to create an injury to the exposed SCPC. The first such animal model was 

developed over a century ago when Allen published the preliminary results of a weight-drop 

contusion model for dogs in 1911 60. As they are relatively inexpensive and readily available, 

rats and mice have been the focus of the majority of SCI modeling efforts with numerous 

publications describing methods of creating reproducible and controlled transection, contusion, 

compression, distraction, and dislocation SCI 7,23,26,44,50,61. However, concerns about differences 

Figure 1.3: Mid-sagittal MR image showing dislocation SCI at the C6/C7 level. Reprinted 
with permission from Theodotou et al 54. 
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in anatomy and physiology between rodents and humans have led other research groups to adopt 

larger animal SCI models that may better approximate human injuries 7,39,62–66.  

Non-human primate models provide the most direct correlation to humans 32,63,65, but the costs 

and risks associated with their care preclude them as an option for many researchers 39,67,68. In a 

recent survey of over 300 researchers and clinicians in the SCI-field, over half of respondents felt 

the rodent model was insufficient (with 31% feeling strongly so) while 65% agreed that 

treatment effectiveness in non-primate large animal models was necessary before human clinical 

trials. Interestingly, less than half of respondents thought effectiveness in primate models was 

necessary before human trials 28. Accordingly, many research groups have chosen other large 

animals such as the pig, sheep, cat, dog, and cow to study spinal mechanics and model SCI 

7,9,71,32,39,53,62,64,66,69,70. For example, the International Collaboration on Repair Discoveries 

(ICORD) group at the University of British Columbia has published extensively on the use of a 

miniature pig model to study the functional, histological, and biochemical effects of SCI. As 

shown in Fig. 1.4, this model uses a weight-drop impactor instrumented with a load cell to create 

contusion-compression SCI at the porcine thoracolumbar level 39,40,62,64,72,73.  

 

 
Figure 1.4: Custom weight-drop system used by the ICORD group to create contusion-
compression SCI in a porcine animal model. Reprinted with permission from Lee et al. 39 
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The anatomical and vascular similarities between the sheep and human spine 9,32,33,66 has 

motivated the use of ovine models in in-vivo studies of spinal cord blood flow 74; cerebrospinal 

fluid (CSF) flow 75,76; spinal nerve development and injury 33,77; intervertebral disc morphology 

9; and most frequently, spinal surgery techniques 9,78–82. Although less common than porcine 

models, ovine SCI models have also been utilized since the 1970s 53,66,78,83–87. Wilson et al. 

developed an ovine SCI model that utilized a weight-drop technique (similar to that of the 

ICORD group) to create a repeatable moderate contusion injury to the thoracic spinal cord; 

behavioral and electrophysiological tests were used to confirm the extent of injury over time  

66,86.  

 

While published rodent models are capable of creating SCI by each of the three injury 

mechanisms (contusion/compression, dislocation, distraction), the majority of large animal 

models published to date use a drop-weight method to create contusion or contusion-

compression SCI. Specifically, several rat distraction SCI models have been published in the last 

fifteen years 23,26,50,61, but this important injury mechanism has yet to be consistently modeled in 

a large animal. In light of the fact that distraction injuries are more difficult to diagnose 2,24,55,56 it 

is critically important for researchers to elucidate the relationships between tensile loading 

conditions, injury patterns, and neurological deficit in order to best inform clinicians. To the 

author’s knowledge, only two research groups have attempted to address this by publishing the 

results of in-vivo distraction injuries in a large animal model 58,69,88,89. In the early 1980’s, Hung 

et al. introduced an in-vivo “elongation” model in which a segment of lumbar cat SCPC was 

stretched between 1.1 to 1.5 times its original length 88. Similar to other reports of large animal 

SCI models, there were inconsistent initial motor and sensory deficiencies 7,39,66, but all normal 
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function was recovered within 4 weeks 88. Hung et al. not only presented the feasibility of 

creating a distraction SCI in a large animal model, but also characterized the in-vivo mechanical 

properties of the spinal cord 88,90,91. Such efforts are important for informing future SCI modeling 

endeavors. Detailed information on the mechanical properties of spinal tissues is provided in 

Section 1.4. 

 

1.3.3 Computational Models of SCI 

While in-vivo animal SCI models can provide data linking global loading conditions to injury 

patterns and neurological deficit, computational models of the spine can provide insight into how 

these global loading conditions lead to a localized mechanical response of the affected tissues. 

Unlike in-vivo animal modeling, finite element (FE) computational modeling allows researchers 

to conduct very controlled SCI simulations and relate global loading conditions to internal tissue 

stress and strain distributions 24,42–44,52. Therefore, FE modeling is an important economical and 

ethical way of informing the design of in-vivo animal experiments and directly studying the 

mechanical etiology of SCI.  

 

FE models are composed of meshed geometries or volumes to which material properties are 

assigned. The sophistication of the geometric and material model can be scaled depending on the 

desired level of FE model complexity, with a trade-off between computational cost and 

consistency with the particular physical condition being modeled. Specific simulation conditions, 

such as boundary constraints and loading scenarios, are then applied to the model; the FE model 

is considered “validated/verified” if the resultant model predictions agree with experimental 

results.  
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As large animal models require significantly greater financial and logistical resources than rodent 

models, many researchers attempt to optimize the design of large animal SCI experiments prior 

to utilization. Optimization techniques can take the form of scaled-down tests on rodent models, 

preliminary tests on synthetic surrogate materials, and/or FE modeling 43,67. As exemplified in 

Sparrey et al. 67, effective use of FE modeling to simulate the intended injury mechanism can 

determine the sensitivity of various tissue response measures (e.g., displacement, stress, energy, 

etc.) to experimental variables (e.g., impactor alignment and velocity). Such modeling efforts 

allow researchers to identify specific combinations of experimental input parameters that are 

expected to result in the intended level of neurological damage, thereby reducing the number of 

actual animals needed to develop a standardized large animal SCI model 63,67.  

 

While FE modeling can be used to improve in-vivo SCI animal models, it is more often used 

directly to gain insight into the mechanical aspects of SCI 24,42,43. FE models are particularly 

useful in studying complex human injury scenarios that are difficult to recreate or measure using 

in-vivo animal models (e.g., the very rapid distraction seen in motor vehicle accidents). However, 

it is important to note that the predictive value of a FE model for a given application is dependent 

on the chosen geometry, material models, and validation method 45,59,92–94. For the case of spinal 

FE modeling, the geometry may be based on medical imaging data (e.g., MRI or CT) 44,45,52,67, 

cadaveric measurements 42,43, published anatomical descriptions 51,59,92, or any combination 

thereof 24,46. The spinal cord itself is typically modeled as one homogenous material 43,51,52,67,92 or 

as a construct of gray and white matter regions 24,42,44–46,59,93. The pia mater meningeal layer or 

PAC is frequently excluded from FE models 24,42–46,51,52,67,92. Inclusion of other spinal 

components (e.g., vertebrae, intervertebral discs, spinal ligaments, dura mater, CSF, etc.) 
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depends on the SCI condition being modeled. For example, as most in-vivo animal SCI models 

involve localized removal of the dura mater and direct insult to the exposed SCPC, FE 

simulations would typically not include the dura mater.  Some of the most geometrically 

inclusive FE models for studying SCI are those developed by Russell et al. 44 and Khuyagbaatar 

et al. 46 The human cervical FE model recently published by Khuyagbaatar et al. is shown in Fig. 

1.5. FE models that are geometrically relevant to this dissertation include that of Sparrey at al. 93 

and Ichihara, Kato, and Taguchi et al. 57,94–98 which include only the gray matter, white matter, 

and PAC/pia mater as shown in Fig. 1.6.   

 

     

 

 

 

Figure 1.5: A) Sagittal view of a relatively geometrically inclusive human cervical spine FE 
model; B) Axial view of single vertebral level of same FE model. Reprinted with permission 
from Khuyagbaatar et al. 46 
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When spinal or meningeal tissues are included in a FE model, the material behavior assigned to 

them may vary from linearly elastic 24,42,95–98,43,46,51,52,57,92–94 to hyperelastic 46,51,59,67,92,93 to 

viscoelastic 44,45,57,94,97, or some combination thereof. While the spinal cord (or white matter and 

gray matter) is usually modeled with more sophisticated behavior, the dura and PAC, when 

included, are usually assigned isotropic linearly elastic properties 46,51,57,92–94,97. The choice of 

material model is dependent not only on the desired level of model complexity, but also on the 

availability of experimental data applicable to the condition being modeled. Section 1.4 describes 

previous work on characterizing the various aspects of the in-vivo and ex-vivo spinal tissue 

behavior.  

 

 

 

Figure 1.6: FE model of the SCPC including the gray and white matter of the spinal cord and 
the pia mater. Reprinted with permission from Nishida et al. 98 
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1.4 Relevant Tissue Material Properties 

Knowledge of the material properties of spinal and meningeal tissues under various loading 

conditions is required in order to make valid conclusions about SCI based on the clinical 

observation, experimental animal modeling, and computational simulation work discussed in 

Section 1.3. Accordingly, numerous studies have focused on characterizing the structure and 

mechanical properties of the SCPC, isolated cord, and dura mater using histological, ex-vivo, and 

in-vivo techniques. Unfortunately, the PAC has received less attention. This section describes the 

composition and structure of each of the spinal and meningeal tissues (cord gray matter, cord 

white matter, pia mater, arachnoid mater, and dura mater) and material models that have been 

used to describe their mechanical behavior.  

 

1.4.1 Isolated Spinal Gray Matter and White Matter 

Composition and Structure: The spinal cord itself is composed of a butterfly-shaped region of 

gray matter surrounded by a periphery of white matter; the cross-sectional area of the spinal cord 

as well as the ratio of gray to white matter varies with spinal level 11,14,99. The cross-sectional 

morphology of the spinal cord is also characterized by the central canal (a small CSF-filled 

cavity through the center), the shallow posterior median sulcus, and the deeper anterior median 

fissure 14,15 (Fig. 1.7). The gray matter region of the spinal cord contains neuronal cell bodies and 

certain types of support (glial) cells, while the white matter region contains mainly myelinated 

axons 15,99–101. While most areas of the gray matter do not display a cellular organizational 

pattern, the axons of the white matter form longitudinally aligned tracts 100–108.  In general, the 

anterior (or ventral) portion of the spinal cord is responsible for motor control of skeletal muscle 

while the posterior (or dorsal) portion is responsible for processing and relaying sensory 
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information 14,15,99. This distribution of function helps explain why different injury mechanisms, 

which load distinct regions of the cord, can cause different neurological symptoms. 

 

 

 

Mechanical Behavior: Obtaining the mechanical properties of neurological tissues, including 

those of the brain and spinal cord related to studies of SCI, is difficult for many reasons: in-vivo 

methods can be logistically and ethically challenging; their low stiffness makes harvesting and 

experimentally testing ex-vivo samples complicated; and their properties degrade relatively 

quickly following death 109–111. While most reports on the effect of time post-mortem on 

neurological tissue structure and mechanical properties show no significant changes within the 

first 3 – 6 hours 101,110–112, some researchers suggest much shorter testing time frames 113,114. 

Further, the behavior of neurological tissues has been shown to depend on numerous 

experimental parameters including load modality (e.g., compression, tension, or shear), strain-

rate, preconditioning protocol, and donor age. However, these effects have been studied almost 

Figure 1.7: The cross-sectional area and ratio of white to gray matter in the human spinal cord 
varies with spinal level. Reprinted from 99 with permission from Oxford University Press, 
USA  
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exclusively in brain tissue and the relative influence of each effect remains controversial 

101,113,115,116. 

 

Since it requires dissection of the spinal cord, only ex-vivo mechanical tests of isolated spinal 

gray and white matter have been reported. Samples have been tested using a pipette aspiration 

method 114, in tension using a traditional materials testing system 94,95, and in indentation and 

tension using atomic force microscopy 100. White matter samples have also been tested in 

unconfined compression 113. Although both tissues have been shown to exhibit hyper-viscoelastic 

behavior (or non-linear elastic time-dependence) 94,100,113,114, linear elastic moduli are typically 

reported and used as inputs for FE models 95,114. The above studies reported conflicting 

relationships between isolated gray and white matter properties. Ozawa et al. 114 and Ichihara et 

al. 94,95 both used a combined experimental and FE modeling approach (in which the material 

properties assigned to the tissues in the FE model were adjusted until the predictions matched 

experimental values), but the studies reported different results. Ozawa et al. reported both tissues 

have an elastic modulus of approximately 3.5kPa, while Ichihara et al. reported a much stiffer 

response for both tissues, with a higher modulus for gray matter than white matter when 5% – 

35% strain is applied to the tissues. These discrepancies may be due to differences in testing 

method and range of applied strain analyzed 94,95,114. Atomic force microscopy has also reported 

a stiffer response for spinal gray matter than white matter at the cellular level 100. While Ozawa 

reported no significant effect of testing direction (transverse, coronal, or sagittal) 114, atomic 

force microscopy has showed spinal white matter to be transversely anisotropic 100, which may 

reflect the alignment of axons into longitudinal tracts.   
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In perhaps the most in-depth analysis of isolated white matter mechanical properties, Sparrey et 

al. reported the effects of strain-rate, preload, and peak strain on peak stress and hyperelastic 

fitted parameters in unconfined compression 113. It was found that experimental variability was 

partially influenced by time post-mortem and sample aspect ratio (i.e., diameter/height), but not 

the use of a preload. Despite experimental variability, the peak stress was shown to increase with 

increasing strain-rate (across the range of 0.005/sec – 5.0/sec) and the use of a preload. The two 

fitted parameters of the Ogden hyperelastic model were also influenced by strain-rate, the use of 

a preload, and the peak strain. Finally, the study also reported the optimized coefficients of a 

quasi-linear viscoelastic model of the tissue 113.  A different viscoelastic formulation for white 

matter and gray matter was reported by Ichihara et al. to characterize the tensile response 94.  

 

1.4.2 Isolated Pia Mater, Arachnoid Mater, and PAC 

Composition and Structure: As discussed briefly in Section 1.2.1, the pia mater is the innermost 

of the meninges and closely follows the surface of the spinal cord. The thin membrane is 

composed mainly of type I and type III (reticular) collagen fibers embedded in an amorphous 

matrix with some elastin fibers present 21,117–119. While some studies have described it as a two-

layer structure, the composition and organization of each layer is debated 21,118. Using various 

microscopy techniques, spinal pia has been characterized as a loose connective tissue with no 

dominant fiber orientation 21,117. However, a recent polarized light microscopy study of the rat 

pia mater found three longitudinally aligned bundles of collagen and reticular fibers 119. 

Although considered by some to be distinct from the pia mater, denticulate ligaments run along 

each lateral surface of the pia mater at the cervical and thoracic levels. Described as dense 

longitudinally-aligned collagenous strips, the denticulate ligaments tether the pia mater and 
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underlying spinal cord to the dura mater through 21 pairs of small triangular extensions which 

provide lateral stability 119–122.  

 

At the cranial level, a network of small trabeculae separate the arachnoid and pia maters, creating 

the subarachnoid space that contains CSF and vasculature; this network of collagen and elastin 

fibers creates a web-like appearance which gives rise to the name “arachnoid” matter 

15,20,21,99,122,123. While this trabecular network is thought to not be as extensive at the spinal level, 

it serves the same purpose. In the human spine, two main arteries (the anterior spinal artery in the 

anterior median fissure and posterior spinal artery the posterior median sulcus) traverse the 

subarachnoid space to supply the spinal cord. The ovine spine features a similar ventral spinal 

artery, but may have one main or two smaller equally spaced dorsal arteries 32,78. In addition to 

the longitudinal alignment of axons in the spinal cord white matter and collagen in the 

denticulate ligaments, these major blood vessels may also contribute to the anisotropic behavior 

of the SCPC.  

 

An analysis of the ultrastructure of the leptomeninges at the spinal level shows that at there is pia 

and arachnoid cell overlap within the trabeculae and denticulate ligament extensions, with 

collagen fibers extending continuously from one tissue to the next 21,122. This intimacy between 

the two tissues often results in them being referred to together either as the leptomeninges or the 

pia-arachnoid complex (PAC) 21,122,124,125.  

 

Mechanical Behavior: Due to challenges in collecting and mechanically testing such thin tissues 

(reported as approximately 200 μm for human spinal samples 21, 24 μm for bovine cranial 
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samples 124, 130 μm for porcine spinal samples 59, and 12 μm for rabbit spinal samples 118), 

reports on the properties of isolated leptomeninges are rare. This paucity of information is 

compounded by the fact that poorly described dissection techniques may result in the mechanical 

behavior of the PAC being attributed to the pia mater alone. Due to differences in the relative 

size of subdural and subarachnoid spaces between cranial and spinal meninges, such 

identifications may depend on the source of sample 15,126. To the author’s knowledge only two 

groups have previously published the results of mechanical tests performed on what is identified 

as isolated spinal pia 59,117. It should be noted that since the PAC is collagen-based, there is less 

concern of rapid post-mortem degradation (as compared to neurological tissues), but testing 

temperature and humidity are still influential 59,117,124,125.  

 

In 1978, Tunturi reported “the pia mater [of the dog thoracic spine] and its loose connective 

tissue were easily stripped from the cord after a longitudinal incision” but did not mention the 

arachnoid mater. This previous study tested samples of the tissue isolated in incremental 

longitudinal elongation and only reported its qualitative elastic behavior until failure at 

approximately 30% strain 117. In 2006, Kimpara et al. included the results of “a series of tensile 

experiments using porcine [cervical] pia mater” but gave no detail on the collection of samples 

beyond that it was carefully peeled away from the spinal cord. Figure 1.8 indicates the three 

anatomical collection sites of the 20 mm by 1 mm samples that were tensioned-to-failure at 

strain-rates of 0.005, 0.05, or 0.5/sec. The resulting stress-strain curves were fit to a linear model 

determine the elastic modulus for each of the 9 combinations of site and strain-rate. For all three 

sites, the average elastic modulus increased with strain-rate although no statistical analysis was 

performed to determine the significance of these increases. Differences between sites were 
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determined to be due to inclusion of the denticulate ligament or holes from exiting nerve roots in 

the test samples. Kimpara et al. went on to use 39.3MPa as the modulus for the pia mater and 

63.9MPa as the modulus for the denticulate ligament in their FE model. Similar to the results 

reported by Tunturi, the tissue was found to fail at approximately 35% strain 59. 

 

 

 

 

In contrast to the scarcity of information on spinal PAC, Jin et al. has published numerous 

reports of the mechanical behavior and associated material models of bovine cranial PAC 123–127. 

Aimedieu et al. also published preliminary results of tensile experiments on bovine cranial pia 

mater, but only reported bi-linear tissue stiffness as cross-sectional area measurements were not 

obtained 128. Interestingly, both groups reported similar specimen preparation techniques but 

differed in the nomenclature used to describe the tissue collected (PAC versus pia mater). This 

Figure 1.8: Kimpara et al. tested porcine spinal pia mater from three sites (identified by the 
red boxes) in tension-to-failure at one of three strain-rates. Reprinted with permission from 
Kimpara et al. 59 
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preparation technique involved removing the skull (which is assumed to also remove the dura 

mater), laying a sheet of paper or polyethylene on the exposed brain surface, cutting around this 

sheet into the brain, harvesting this construct from the cranial cavity, and carefully removing the 

brain tissue from the opposite surface following immersion in saline 123–125,128.  

 

Unlike the Aimedieu study, Jin et al. utilized a histological procedure to measure the thickness of 

the PAC (reported as 23.6 ± 5.8μm 124,125), which allowed for post-hoc calculation of engineering 

stress. Jin et al. also reported a bi-linear behavior for the cranial PAC under tension as shown in 

Fig. 1.9, with an average initiation of failure at approximately 26% strain 124. Tests at 0.05, 0.5, 

5, and 100/sec strain-rates showed the tangent modulus of both linear regions and the ultimate 

stress to be strain-rate dependent above 0.5/sec. The elastic moduli of the high-strain linear 

region were approximately 7 MPa, 8 MPa, 11 MPa, and 40 MPa, for each of the respective 

strain-rates. Tests in two orthogonal directions (coronal and sagittal) revealed no significant 

effect of sample orientation 124 which supports the contention that cranial PAC has no dominant 

in-plane fiber alignment. Jin et al. went on to develop material models to represent the 

transversely isotropic viscoelastic behavior of the bovine cranial PAC in tension, normal traction, 

and shear 123,125–127.  
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Another experimental approach, which avoids testing the PAC itself, is to infer its mechanical 

properties by removing its contribution to SCPC behavior 105,118. In this method, the results of 

mechanical tests on the spinal cord with the native PAC intact (i.e., on the SCPC) are compared 

to those obtained when the PAC is cut 105 or completely removed 118. Mazuchowski and Thibault 

reported a 16-fold decrease in elastic modulus under longitudinal tension once three circular 

incisions were made through the pia mater 105.  Ozawa et al. measured the incremental transverse 

elongation of spinal cord segments with and without the pia mater and determined a 3-fold 

difference in elastic moduli. By histologically measuring the tissue thickness (reported as 12 ± 

3μm) and representing the composite SCPC as a Voigt mechanical model, the elastic moduli of 

the pia mater was calculated as 2.3MPa (460 times that of the cord with the membrane removed). 

Ozawa also demonstrated a significant decrease in transverse compressive stiffness and recovery 

of cross-sectional shape following removal of the pia mater 105,118. As with other studies, no 

mention of the arachnoid mater was made so it is unclear if the initial tests included both intact 

Figure 1.9: Jin et al. reported a non-linear relationship between stress and strain for cranial 
PAC under uniaxial tension-to-failure; the two elastic moduli (E1 and E2 shown above) were 
found to be strain-rate dependent over 0.5/sec. Reprinted with permission from Jin et al. 124 
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leptomeninges or just the pia mater. However, the results from these studies demonstrate that the 

leptomeninges play an important role in the mechanical behavior of the SCPC.  

 

1.4.3 Spinal-Cord-Pia-Arachnoid Construct (SCPC) 

Composition and Structure: The majority of “spinal cord” mechanical properties reported in the 

literature are obtained from tests of constructs containing the neural tissues of the cord itself and 

the intact pia (and likely arachnoid) mater. Detailed descriptions of the composition and structure 

of each component is discussed above in Section 1.4.1 and Section 1.4.2. As previously stated, 

the pia mater closely envelops the spinal cord which makes its removal without damaging the 

underlying cord tissue difficult. As most publications do not mention the meninges beyond 

indicating the removal of the dura mater, it is typically assumed that the arachnoid mater is either 

removed as a part of the dura mater or does not sufficiently influence the measured mechanical 

properties to warrant inclusion in the experimental description. Unless explicitly stated, the 

following mechanical properties are assumed to be that of the spinal cord with intact pia and 

arachnoid maters (SCPC), but void of the dura mater.  

 

Mechanical Behavior: In contrast to the relatively limited number of publications on the 

mechanical behavior of isolated spinal white matter, gray matter, and PAC, the SCPC has been 

studied under various loading conditions by numerous researchers. It should be noted that since 

the SCPC includes the spinal neural tissue, experimental parameters such as loading modality 

(e.g., compression, tension, or shear), strain-rate, preconditioning protocol, and time post-

mortem are all expected to influence the resulting behavior to some degree.  
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Compressive SCPC Properties: Although many animal models involve transverse compression 

of the SCPC in order to create contusion or contusion-compression SCI, the only mechanical 

parameters typically recorded are those related to the creation of consistent injuries (e.g., time, 

force, and displacement). Since the primary goal of such animal modeling is to study the 

resulting pathology and evaluate possible therapeutic interventions (as opposed to the 

determination of specific mechanical properties), resulting mechanical data or tissue material 

models are rarely reported 101,129,130. However, the force-displacement data that is reported is 

sometimes used to validate FE models 42,43,45,93. In 1982, Hung et al. reported the non-linear 

stress-strain behavior of the in-vivo feline SCPC under gradually applied (quasi-static) transverse 

compression 70. Although only reported for one animal, the compressive elastic moduli was 

constant at approximately 2kPa up to 10% strain before increasing to approximately 15kPa at 

30% strain 70. In contrast to the quasi-static loading rate used by Hung et al., Fradet et al. tested 

ex-vivo porcine SCPC sections in transverse compression at strain-rates of 0.5/sec, 5/sec, and 

50/sec 38. Based on ramp-to-damage tests, the strains at which damage occurred (73%, 68%, and 

64%, respectively) and linear elastic moduli (5.5Pa, 8.4Pa, and 9.4Pa, respectively) were both 

strain-rate dependent. The results of cyclic tests performed at the same strain-rates showed the 

SCPC viscous response was also rate-dependent 38.     

  

Tensile SCPC Properties: Tensile testing of the SCPC is much more common than compression. 

In 1978 and 1980, Tunturi provided initial evidence of the viscoelastic nature of the construct by 

providing the stress-strain and stress-relaxation behavior of the ex-vivo canine SCPC under 

incrementally applied tension 101,117,131. As discussed briefly in Section 1.3.2, Hung et al. and 

Chang et al. measured the in-vivo stress-strain 69,88,90 and/or stress-relaxation 91 response of feline 
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88,90,91 and canine 69 SCPC under tension. In these in-vivo studies, the dura mater was cut open at 

the level of testing, the CSF was drained, and rings were glued onto the exposed SCPC surface 

which interfaced with the materials testing stand (Fig. 1.10) 69,88,90,91. At the relatively low strain-

rates tested (0.0003/sec – 0.003/sec), the SCPC displayed a linear stress-strain behavior up to 5% 

strain, with an elastic modulus (0.25 MPa – 0.4 MPa) dependent on strain history and strain 

magnitude (Fig. 1.11) 69,88,90,91,101. This viscoelastic behavior was explicitly examined by Chang 

et al. by measuring the stress-relaxation response of the feline SCPC under various strain-

magnitudes and strain-rates 91. Chang et al. reported linear viscoelastic behavior (i.e., strain-

independent relaxation) for strains below 1%, but a non-linear viscoelastic (i.e., strain-dependent 

relaxation) behavior at higher strains 91. Section 1.5 contains a comparison of viscoelastic 

formulations and their assumptions.  

 

It should be noted that the linear stress-strain response reported by Hung et al. and Chang et al. 

in-vivo (Fig. 1.11) has not been observed ex-vivo by any other research group. It has been 

suggested that the lack of toe region in the in-vivo data may be due to a pre-strain that holds the 

axons and collagen fibers at a less crimped configuration 101.  
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More recently, the tensile behavior of the SCPC has been investigated at higher strain-rates ex-

vivo. Mazuchowski and Thibault reported that the neo-Hookean elastic modulus of human SCPC 

is insensitive to strain-rates spanning 0.2/sec – 10/sec, with an average value of 1.4MPa. It 

should be noted that the tests were performed up to 48 hours after death which has been reported 

to confound observed mechanical properties 105. Oakland et al. reported the elastic modulus of 

Figure 1.10: Schematic of the in-vivo experimental setup of Hung and Chang et al. which was 
used for viscoelastic characterization of the feline SCPC. Reprinted with permission from 
Hung and Chang 69 

Figure 1.11: Hung and Chang et al. found the in-vivo behavior of the feline SCPC to be 
history dependent as evident in the distinct loading and unloading curves. Reprinted with 
permission from Hung et al. 90 
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the bovine SCPC increased from 1.2MPa within 3 hours post-mortem to almost 2MPa at 72 

hours post-mortem under identical loading conditions (0.24/sec strain-rate) 109. Unlike 

Mazuchowski and Thibault, Bilston et al. 108, Fiford et al. 25, and Clarke et al. 22 have reported an 

increase in elastic modulus with increasing strain-rate for human, adult rat, and neonate rat 

SCPC, respectively (Fig. 1.12).  Fiford et al. also reported that the stress-relaxation data could 

not be adequately represented by quasi-linear viscoelastic formulations and a fully non-linear 

viscoelastic model (in which the degree of relaxation depends on strain-magnitude) was 

necessary 25.  

 

 

 

In 2014, Shetye et al. presented the results of stress-relaxation tests of fresh porcine SCPC 

samples. The samples were tested in stress-relaxation to 1% – 5% strain at a strain-rate of 0.1/sec 

132. As shown in Fig. 1.13, the amount of relaxation was highly dependent on the magnitude of 

applied strain explicitly demonstrating the (fully) non-linear viscoelastic behavior of the SCPC 

132.  

Figure 1.12: The strain-rate dependent non-linear stress-strain behavior of ex-vivo neonate 
and adult rat SCPC samples tested under tension at strain rates between 0.002 – 0.2/sec. 
Reprinted with permission from Clarke et al. 22 
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While the previously mentioned studies investigated the response of the SCPC to longitudinal 

(i.e., axial) tension, Ozawa et al. reported transverse tensile properties. This study reported a non-

linear stress response of the ex-vivo rabbit SCPC to incrementally applied transverse tension with 

an average elastic modulus of 16kPa 118. Comparing this modulus to those obtained from 

longitudinal tensile tests supports the assumption of SCPC transverse isotropy, with a much 

stiffer response in the direction of white matter axon and PAC fiber alignment.  

 

In-vivo vs. Ex-vivo Mechanical Properties: To the author’s knowledge only two previous 

publications have attempted to directly compare the SCPC in-vivo response with that exhibited 

ex-vivo. It has been postulated that changes in blood perfusion, hydration, and temperature may 

all affect the measured mechanical properties of the SCPC 69,101. Hung et al. compared the in-

vivo tensile modulus to the in-situ modulus measured one hour after induced cardiac arrest and 

Figure 1.13: The normalized stress-relaxation response of the ex-vivo porcine SCPC 
demonstrates the strain-dependent relaxation behavior. Reprinted with permission from 
Shetye et al. 132 
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reported a 22% increase 69. The report went on to show that this in-situ modulus increased 14-

fold when the SCPC was removed from the body and not hydrated for one hour 69. Chang et al. 

explored changes in the stress-relaxation behavior of the feline SCPC following death. Despite 

the hydration and temperature being maintained in-situ, the elastic modulus and relaxation 

response was significantly affected by time post-mortem (Fig. 1.14) 91. While this study 

demonstrated important differences between in-vivo and ex-vivo viscoelastic behavior, it did not 

quantify how these differences manifest in fitted viscoelastic models.  

 

 

 

 

1.4.4 Spinal Dura Mater 

Composition and Structure: The dura mater is the outermost of the meninges, separated from the 

arachnoid mater and vertebral canal surface by the subdural and epidural spaces, respectively. 

Although thicker, the dura mater has a similar composition to that of the pia mater – collagen 

fibers embedded in an amorphous matrix with some elastin fibers 133,134. Various microscopy 

studies of human and animal dura mater have described it as a layered dense connective tissue 

Figure 1.14: A comparison of the in-vivo stress-relaxation behavior of the feline SCPC to that 
obtained in-situ 1.5, 3, and 4.5 hours after death. Reprinted with permission from Chang et al. 
91 
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with a predominately longitudinal fiber alignment, although the degree of alignment is somewhat 

debated 17,133–136. The dura is connected to the underlying meninges and spinal cord through 

extensions of the denticulate ligaments as discussed in Section 1.4.2.  

 

Mechanical Behavior: Experimental and FE simulations of vertebral burst fractures have shown 

that the dura mater functions to shield the underlying tissues from excessive mechanical loads 

and reduce cord deformation during traumatic loading scenarios 52,137,138. Given this functional 

importance, multiple research groups have characterized the dura’s mechanical properties under 

various loading conditions including uniaxial tension at various strain rates 27,52,135, uniaxial 

tension in the longitudinal and circumferential directions 17,133,135, and quasi-static biaxial tension 

34. Taken together, these studies demonstrate that the dura mater exhibits an anisotropic 

viscoelastic response with a stiffness up to 100 times that of the spinal cord in tension. However, 

unlike other viscoelastic soft tissues, it has been reported that the dura’s mechanical response is 

not rate-dependent at relatively low strain rates (i.e. 0.01/sec to 1/sec) 135. As damage to the dura 

mater has important implications for SCI, our research group recently investigated the strain-

dependent accumulation of sub-failure damage in spinal dura mater during longitudinal tension. 

This work has been published as a Research Paper in the ASME Journal of Engineering and 

Science in Medical Diagnostics and Therapy (DOI: 10.1115/1.4038261) and is included as 

Appendix A. 

 

1.5 Viscoelastic Model Formulations 

As discussed above, many of the investigations of spinal and meningeal tissue mechanical 

properties only report a tangent elastic modulus calculated as the slope of the stress-strain curve. 
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While such moduli may be accurate in predicting the behavior of the tissues exposed to very 

slow (i.e., quasi-static) strain-rates and relatively small strain magnitudes, there is explicit 

evidence in the literature demonstrating that these tissues display time-dependent behavior. 

Therefore, many groups have utilized viscoelastic formulations, which describe the time-

dependent relationship between stress and strain, in order to better model the tissue response 

under the dynamic conditions applicable to SCI 22. The following section introduces the types of 

viscoelastic theory often used to model the response of biological tissues (linear, quasi-linear, 

and non-linear viscoelasticity) and present the specific formulations that were utilized in this 

dissertation.  

 

1.5.1 General Features of Viscoelasticity 

Creep, stress-relaxation, hysteresis, and strain-rate dependent stiffness are characteristic 

phenomena which demonstrate the viscoelasticity of a material under study. Creep characterizes 

the increase in strain over time when a material is subjected to a constant stress. In a sense, 

stress-relaxation is the opposite behavior as it describes the decay of stress over time when a 

material is subjected to a constant strain (e.g., Fig. 1.13 and Fig. 1.14). While creep testing has 

only been performed on samples of isolated white and gray matter using atomic force 

microscopy 100, stress-relaxation of isolated white matter 94,113, isolated gray matter 94, dura mater 

27,134, and the SCPC 22,25,91,108,131,132,139 have been reported in the literature. Hysteresis describes 

the dissipation of energy during cyclic loading and is manifested as distinct loading and 

unloading stress-strain curves (e.g., Fig. 1.11). This phenomenon has been reported for isolated 

white and gray matter 114 and the SCPC 69,88,90,91. Strain-rate dependent stiffness describes the 

observed increase in material stiffness when loaded at higher rates (e.g., Fig. 1.12). This behavior 
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has been reported for isolated white matter 94,113, isolated gray matter 94, pia mater 59, dura mater 

27,140, and the SCPC 22,25,38,91,108,131.   

 

1.5.2 Linear Viscoelasticity (LV) 

Since the current stress state of a viscoelastic material depends on loading history, it is necessary 

to define a general function that can describe the behavior under any arbitrary strain input. Such 

a strain input can be described by a series of discrete Heaviside-step-function changes in strain:  

 𝜀(𝑡) =∑∆𝜀𝑖𝐻(𝑡 − 𝜏𝑖)𝑟
𝑖=1  (1.1) 

where ∆𝜀𝑖 is the change in strain magnitude for the 𝑖𝑡ℎ (of a total of 𝑟) discrete strain steps which 

occurs at time 𝜏𝑖, 𝑡 is the current time, and 𝐻(𝑡 − 𝜏𝑖) is the Heaviside step function. The 

Boltzman superposition principle can then be imposed to describe the summed effect of these 

strain steps on the stress response 141:  

 𝜎(𝑡) =∑∆𝜀𝑖𝐸(𝑡 − 𝜏𝑖)𝐻(𝑡 − 𝜏𝑖)𝑟
𝑖=1  (1.2) 

where 𝐸(𝑡) is the continuous time-dependent relaxation modulus and is often modeled by the 

discrete Prony series:  

 𝐸(𝑡) = 𝐸∞ +∑𝐸𝑖𝑁
𝑖=1 𝑒−𝑡 𝜏𝑖⁄  (1.3) 

where 𝐸∞ represents the long-term equilibrium behavior, 𝐸𝑖 is the Prony coefficient corresponding to 

time constant 𝜏𝑖, and 𝑁 defines the finite number of exponential Prony terms in the series. As the 

number of strain steps (𝑟) goes to infinity, the sum converges to the hereditary integral:  
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 𝜎(𝑡) = ∫ 𝐸(𝑡 − 𝜏)𝐻(𝑡 − 𝜏)𝑡
0 𝑑𝜀(𝜏) (1.4) 

where 𝜏 is a time variable of integration representing the history effect 141. For 𝑡 > 0, 𝐻(𝑡 − 𝜏) = 1 since the Heaviside function is equal to unity at any value above zero. Therefore, 

the stress in a linearly viscoelastic material exposed to any differentiable strain history is given 

by 141:  

 𝜎(𝑡) = ∫ 𝐸(𝑡 − 𝜏)𝑡
0 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏 (1.5) 

 

Linear viscoelastic (LV) models have been used previously to describe the tensile response of ex-

vivo dura mater 27 and the in-vivo SCPC 91. LV assumes a linear relationship between stress and 

strain at any given time (i.e., both the elastic and viscous aspects of the material behave in a 

linear fashion). If this assumption is valid, two main conditions will be met during stress-

relaxation: 1) to satisfy the assumption of linear elastic behavior, the peak stress must vary 

linearly with applied strain; 2) to satisfy the assumption of linear viscous behavior, the relaxation 

modulus must be independent of applied strain. Figure 1.15 shows the stress-relaxation response 

of a LV material subjected to a range of ramp-and-hold strain inputs.  
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However, as previously discussed in Section 1.4.3, the behavior of the SCPC violates both of the 

above assumptions. Although isolated PAC has not previously been examined in stress-

relaxation, it is expected that (like other soft collagen-based tissues) it would also violate the 

above assumptions. Therefore, it is expected that constitutive models that are able to incorporate 

nonlinearity in the elastic response (quasi-linear viscoelasticity) or both the elastic and viscous 

responses (non-linear viscoelasticity) would better predict the transient behavior of the spinal 

tissues under study.  

 

1.5.3 Quasi-Linear Viscoelasticity (QLV) 

Compared to linear viscoelasticity, QLV formulations relax the linear elastic response constraint 

allowing for the incorporation of elastic nonlinearity (hyperelastic behavior). Therefore, the QLV 

stress response is dependent on both time and strain via the separable convolution of the linear 

viscous and non-linear elastic response 142:  

 𝜎[𝜀(𝑡), 𝑡] = ∫ 𝐺(𝑡 − 𝜏) 𝜕𝜎𝑒(𝜀)𝜕𝜀 𝜕𝜀(𝜏)𝜕𝜏 𝑑𝜏𝑡
0  (1.6) 

Figure 1.15: During stress-relaxation, the peak stress of a linearly viscoelastic material 
increases linearly with strain magnitude while the relaxation behavior does not depend on 
strain magnitude (right panel displays the first second of the stress response only) 
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where the reduced relaxation function 𝐺(𝑡) represents the linear (i.e., independent of strain) 

viscous behavior and 𝜎𝑒(𝜀) represents the non-linear elastic behavior. For the case of QLV, the 

relaxation modulus was represented by the following Prony series: 

 𝐺(𝑡) = 𝐺∞ +∑𝐺𝑖𝑒−𝑡 𝜏𝑖⁄𝑁
𝑖=1  (1.7) 

subjected to the constraint: 

 𝐺1 + 𝐺2 + 𝐺3 +⋯𝐺𝑁 = 1 (1.8) 

QLV is a popular choice for researchers working with soft biological tissues since it allows for 

separate characterizations of the elastic and viscous behaviors. QLV formulations have 

previously been applied in studies of spinal white matter 113,143 and SCPC 108 mechanics. 

 

1.5.4 Non-linear Viscoelasticity (NLV) 

While QLV relaxes the restriction on the elastic aspect of a viscoelastic material, a linear 

behavior is still assumed for the viscous component. Therefore, such models are unable to 

capture the strain-dependent relaxation behavior (e.g., Fig. 1.13 for the porcine SCPC). As 

shown in Fig. 1.16, non-linear (or fully non-linear) viscoelasticity models non-linearity in both 

the elastic and viscous response. As the elastic and viscous behaviors of the SCPC have been 

shown to be strain-dependent, many research groups have developed and applied non-linear 

viscoelastic (NLV) formulations to their experimental data 22,25,91,132,139. Unlike QLV, the 

relaxation function for NLV is modeled as a non-separable convolution integral: 

 𝜎[𝜀(𝑡), 𝑡] = ∫ 𝐸[𝜀(𝜏), 𝑡 − 𝜏]𝑡
0 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏 (1.9) 

where the relaxation modulus 𝐸[𝜀(𝑡), 𝑡] is now dependent on both time and strain and is 

responsible for describing both elastic and viscous nonlinearities. As with the LV and QLV 
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formulations, 𝜏 is a time variable of integration representing the history effect while 𝑡 is the 

current time. For the case of NLV, the relaxation modulus is approximated by the following 

Prony series: 

 𝐸[𝜀(𝑡), 𝑡] = 𝐸∞(𝜀) +∑𝐸𝑖(𝜀)𝑒−𝑡 𝜏𝑖⁄𝑁
𝑖=1  (1.10) 

where the Prony weights (𝐸∞ and 𝐸𝑖) are functions of strain.  

 

  

 

 
 
 
1.5.5 Numerical Integration Method 

The specific numerical integration approach (i.e., the direct fit method) utilized in this 

dissertation leverages the unique properties of the Prony series to approximate the relaxation 

moduli in Eq. (1.5), Eq. (1.6), and Eq. (1.9) to enable efficient calculation of the current stress 

from a state variable defined in the previous step. The development and validation of this 

methodology has been published as a Research Article in PLoS One (DOI: 

10.1371/journal.pone.0190137) and is included as Appendix B. 

 

Figure 1.16: During stress-relaxation, the peak stress of a non-linearly viscoelastic material 
increases disproportionally with strain magnitude and the relaxation behavior depends on 
strain magnitude (right panel displays the first second of the stress response only) 
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1.6 Summary 

Despite over a century of research, the prevention and treatment of spinal cord injuries (SCI 

continue to represent significant challenges. The complexity of the events that lead to SCI has 

prompted many researchers to study its mechanical etiology. Experimental and computational 

modeling have contributed significantly to the current understanding of the correlations between 

global injury mechanisms, local tissue response, and resulting neurological damage. 

Computational finite element (FE) models in particular allow researchers to simulate injuries that 

are difficult to study via experimentation using animal models or diagnose clinically (e.g., 

distraction or whiplash injuries) and also facilitate predictions of internal tissue stress and strain.  

 

Appropriate use of such FE models, however, requires knowledge of the geometry and material 

behavior of the tissues involved. While the literature shows that the “spinal cord” is a construct 

of neural and meningeal tissues which exhibits non-linear viscoelastic behavior, geometric and 

material simplifications are frequently employed in the development of FE models. Despite 

evidence of its importance to both the tensile and compressive response of the construct, 

exclusion of the spinal pia-arachnoid-complex (PAC) is one of the most common geometric 

simplifications. Since the development, experimental characterization, and computational 

implementation of fully non-linear viscoelastic formulations are complicated and 

computationally expensive, material model simplifications are also common. Further, since the 

material properties of neural tissues have been shown to differ between in-vivo and ex-vivo 

conditions, even the use the non-linear viscoelastic models developed from ex-vivo data may not 

accurately reflect the behavior related to SCI.  
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Without quantifying the effects of the simplifications described above, FE model users are 

unable to make fully informed decisions about the level of complexity required to accurately 

simulate the mechanistic underpinnings of SCI. Therefore, the overarching goals of this 

dissertation are to quantify the relationship between in-vivo and ex-vivo viscoelastic properties, 

to delineate the mechanical contribution of the PAC to the global SCPC behavior, and to 

elucidate the effects of material model simplification on FE model predictions. 

 

1.7 Specific Aims 

In order to achieve the aforementioned goals, the following specific aims were proposed:  

 

Specific Aim 1: Characterize the relationship between in-vivo and ex-vivo SCPC non-linear 

viscoelastic behavior.  

Previously collected data from stress-relaxation tests of porcine lumbar SCPC samples 

were fit to a fully non-linear viscoelastic formulation using a novel numerical integration 

approach. One data set was obtained from freshly excised samples (the ex-vivo set), while 

the other data set was collected from live animals under general anesthesia (the in-vivo 

set). The ability of the viscoelastic formulation to model SCPC behavior of each set was 

assessed by quantifying its ability to predict independently observed dynamic cyclic 

behavior (i.e., data excluded from initial fitting). The stress-relaxation response and 

resulting fitted parameters of each data set were compared to determine the extent to 

which ex-vivo and in-vivo SCPC viscoelastic properties differ. The results represent an 

important addition to the limited literature comparing in-vivo to ex-vivo SCPC 

viscoelastic properties.   
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Specific Aim 2: Determine the contribution of the PAC to the non-linear viscoelastic behavior of 

SCPC.  

The non-linear viscoelastic properties of the ex-vivo ovine cervical SCPC, isolated cord, 

and PAC were determined using the same formulation utilized in Specific Aim 1. Freshly 

excised SCPC samples were subjected to a stress-relaxation and dynamic cyclic testing 

protocol within four hours of euthanasia. The PAC was then carefully removed from the 

construct and the same series of tests were performed on the isolated components. As in 

Specific Aim 1, independent data from each tissue were used to assess each model’s 

predictive capability. The cyclic stress response and fitted parameters of each data set 

were compared to determine differences in mechanical behavior. The results were the 

first to quantify the non-linear mechanical behavior of spinal PAC and the first to 

characterize the non-linear viscoelastic properties of the isolated spinal cord. 

 

Specific Aim 3: Interrogate the effects of viscoelastic material model sophistication on numerical 

and finite-element model prediction accuracy. 

The data collected in Specific Aim 2 were fit to linear, quasi-linear, and non-linear 

viscoelastic formulations using the same numerical integration approach to determine 

differences in fitting ability. As in the two previous aims, these developed material 

models were then used to predict independent data to determine differences in predictive 

ability. These predictions were performed both analytically and using a FE model of each 

sample condition’s average geometry. By comparing the computational run times and 

predictive accuracy of the difference viscoelastic formulations, the results provided 
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detailed knowledge of the trade-offs between efficiency and accuracy in modeling the 

behavior of the tissues. 
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CHAPTER 2: COMPARISON OF IN-VIVO AND EX-VIVO VISCOELASTIC 

BEHAVIOR OF THE SPINAL CORD1 

 

2.1 Introduction 

Traumatic spinal cord injury (SCI) represents a significant health challenge with approximately 

20,000 new injuries occurring every year in the United States alone 1,2. Over $7 billion is spent 

annually in the United States on direct costs related to SCI, including hospitalizations, 

medications, rehabilitation, and equipment. With the addition of $2.5 billion in indirect costs 

from lost productivity, the total annual financial burden of SCI is estimated to be approximately 

$9.5 billion 4–6. This substantial financial impact has motivated extensive research efforts with 

respect to the causes, prevention, and treatment of SCI over the past fifty years. As traumatic SCI 

is caused by a sudden mechanical injury to the spinal column 1,2, computational models of the 

spine represent a powerful method for studying the effect of global loading conditions on the 

localized mechanics of individual spinal tissues. Finite element (FE) computational modeling 

allows researchers to conduct very controlled SCI simulations and examine the resultant internal 

tissue deformation and stress distribution 24,42–44,52. FE models are particularly useful in studying 

complex human injury scenarios that are difficult to recreate and/or measure using in-vivo animal 

models (e.g., very rapid distraction seen in motor vehicle accidents). However, the predictive 

accuracy of a FE model for any given application is dependent on the chosen geometry, material 

models, and validation method 45,59,92–94. 

 

                                                      

1 This chapter has been published as a Full Length Research Article in Acta Biomaterialia (DOI: 

10.1016/j.actbio.2017.12.024). All content has been adapted with permission from Elsevier. 
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The choice of material model is dependent not only on the desired level of model complexity, 

but also on the availability of experimental data applicable to the condition being modeled. 

Experimentally characterizing the mechanical properties of individual neurological tissues 

(including those of the brain and spinal cord) is difficult for many reasons: in-vivo methods can 

be logistically and ethically challenging, their relatively low stiffness makes harvesting and 

physically testing ex-vivo samples complicated, and their properties degrade relatively quickly 

post-mortem 109–111. While most reports on the effect of time post-mortem on neurological tissue 

structure and mechanical properties show that no significant changes occur within the first 3–6 h 

101,110–112, other data suggest tissue degradation may occur over shorter periods of time 113,114. 

Further, the behavior of neurological tissues has been shown to depend on numerous 

experimental parameters, including deformation modality (e.g., compression, tension, shear), 

testing direction (e.g., axial or transverse), strain-rate, preconditioning protocol, and donor age. 

However, these effects have been studied almost exclusively in brain tissue and the relative 

contribution of each effect remains controversial 101,113,115,116.  

 

Even with use of animal models, significant financial and logistical challenges have resulted in a 

paucity of information in the literature regarding the in-vivo viscoelastic mechanical behavior of 

spinal tissues, including that of the spinal cord with intact pia mater and arachnoid mater. This 

three-part construct is commonly referred to as the ‘‘spinal cord” 22,25,69,108,109,132, but for 

specificity we will refer to this assembly as the ‘‘spinal cord and pia-arachnoid complex” 

(SCPC). Researchers that have collected in-vivo mechanical data from SCPC samples often used 

relatively low strain-rates, making the applicability of these studies to investigations of the 

typical traumatic spinal cord injury questionable 69,70,88,90,91. Ex-vivo experimental procedures 



44 

 

have attempted to control temperature and humidity to best recapitulate the in-vivo environment, 

but the lack of blood perfusion and degradation over time postmortem complicate such efforts. 

 

To the authors’ knowledge, only two previous studies have directly compared the in-vivo and ex-

vivo SCPC response under similar testing conditions. Hung et al. compared the in-vivo tensile 

modulus to the in-situ modulus in a canine model. Despite the same hydration conditions, a 22% 

increase in elastic modulus was reported one hour after induced cardiac arrest 69. The report went 

on to show that this in-situ modulus increased 15-fold when the SCPC was removed and not 

hydrated for one hour 69. Chang et al. explored changes in the stress-relaxation behavior of the 

feline SCPC following death. Even though SCPC hydration and temperature were maintained in-

situ, the elastic modulus and extent of relaxation significantly increased with increased time 

postmortem 91. While these studies elucidated important differences between in-vivo and ex-vivo 

mechanical properties, neither explicitly demonstrated how to extrapolate in-vivo properties from 

their ex-vivo experiments. 

 

Due to the lack of a robust comparison between in-vivo and ex-vivo mechanical properties, 

researchers are often forced to assume simplified material properties based on the relatively low 

strain-rate in-vivo stress-strain and stress-relaxation curves or those properties based on ex-vivo 

viscoelastic testing protocols. Without knowledge of the specific viscoelastic changes that 

manifest ex-vivo, the extent to which these assumptions accurately reflect in-vivo SCI is 

unknown. An initial step towards understanding the implications of such assumptions in FE 

modeling of SCI is to quantify the viscoelastic changes that manifest ex-vivo under non-injurious 

conditions. Therefore, the goal of this study was to determine the relationship between in-vivo 
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and ex-vivo large animal SCPC viscoelastic behavior. This study fit previously published ex-vivo 

data 132, which demonstrated the non-linear viscoelastic behavior of the SCPC, and newly 

collected in-vivo data to a nonlinear viscoelastic model using a numerical integration approach. 

This work represents the first report of in-vivo non-linear viscoelastic behavior of the porcine 

model and the first comparison of in-vivo and ex-vivo SCPC non-linear viscoelastic behavior. 

 

2.2 Materials and Methods 

2.2.1 Ex-vivo experimentation 

The details of ex-vivo experimental setup can be found in Shetye et al. 132, but is presented 

briefly herein. Six fresh thoracolumbar SCPC sections (100–150 mm in length) were harvested 

from six-month old female Yucatan pigs. Small sections of PCV tubing were attached to either 

end of the SCPC using commercial grade cyanoacrylate glue to create a construct that was 

approximately 60 mm in length. This construct was loaded into the two metal clamps of a 

custom-built horizontal uniaxial testing stand, with one clamp rigidly attached to a high 

resolution linear actuator (0.15625 µm step length, T-LLS105, Zaber Technologies, BC, Canada) 

and the other clamp attached to a stationary 44.5 N capacity load cell (Model 31, Senotec, 

Honeywell, Columbus, OH). Samples were immersed in a room temperature saline bath during 

testing to prevent dehydration. Mechanical testing of ex-vivo SCPC was initiated within 60 

minutes post-mortem to prevent tissue degradation. 
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2.2.2 In-vivo experimentation 

2.2.2.1 Surgical exposure 

This study was performed under the approval of the Animal Care Committee of the University of 

British Columbia (IACUC protocol #: A16-0311). Six-month old, female Yorkshire pigs (body 

weights ranging from 26.5 to 34.5 kg, n = 6) were anesthetized and underwent open surgical 

exposure of the thoracolumbar spine. Following surgical exposure, posterior spinal 

instrumentation was attached to the vertebrae. Specifically, pedicle screws were rigidly attached 

to the vertebrae that were located adjacent to the testing site. Spinal rods were locked to the 

pedicle screws and provided horizontal (i.e., parallel to the axis of the SCPC) stabilization for the 

mechanical testing system that extended out of the surgical site (Fig. 2.1A, B). The posterior 

vertebral elements and local dura mater were then excised from the region to be tested (Fig. 

2.1C). 

 

2.2.2.2 Experimental setup 

Consistent with the aforementioned ex-vivo work, small sections of PVC tubing were attached 

with cyanoacrylate glue to either end of the exposed SCPC region to create a sample gauge 

length of approximately 65 mm (Fig. 2.1C). Although a different clamping system was utilized 

to grip the PVC tube sections (allowing for better visualization of the surgical site), the overall 

testing configuration remained the same as the ex-vivo experiments. The uniaxial test stand 

described above, consisting of a high-resolution linear actuator and a stationary load cell, was 

lowered onto the vertical posts such that its weight was supported by the vertebrae as shown in 

Figs. 2.1A and B. Visual inspection ensured that the test stand and its rigidly attached clamps 



47 

 

aligned with the midline of the attached PVC tubing before the clamps were locked in place. The 

SCPC was bathed in surgical saline for the duration of the in-vivo experimental testing. 

 

 
 
2.2.3 Mechanical testing 

Nearly identical testing procedures were used for the ex-vivo and in-vivo experiments. 

Preconditioning to the highest strain magnitude to be tested was performed to create a consistent 

strain history as recommended by Cheng et al. 144 and Clark et al. 22. For the ex-vivo samples, 

Figure 2.1: Experimental setup for in-vivo SCPC tensile testing. (A) Schematic of 
experimental setup showing pedicle screws, horizontal spinal rods, and vertical posts that 
provided a rigid support for the test stand. (B) Inverted uniaxial test stand was aligned with 
the SCPC and locked to vertical posts. (C) Local removal of posterior elements and 
dura mater allowed for attachment of PVC tubing and gripping by surgical clamps. 
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100 cycles to 5% engineering strain at 1 Hz were applied, while the in-vivo samples were 

preconditioned for 50 cycles to 3% engineering strain at 1 Hz. The test protocol for ex-vivo 

samples included 5 stress-relaxation tests (1%, 2%, 3%, 4%, and 5% engineering strain) and 1 

dynamic cyclic test (2% engineering strain at 1 Hz), while that for the in-vivo samples included 4 

stress-relaxation tests (1%, 2%, 2.5%, and 3% engineering strain) and 1 dynamic cyclic test (2% 

engineering strain at 1 Hz). For both ex-vivo and in-vivo stress-relaxation tests, the ramping rate 

was kept constant at 6 mm/s (representing a strain rate of approximately 0.1/sec) and the 

relaxation time was 100 s. The order of the tests was randomized for each sample to minimize 

any order effects. The tissue was allowed to recover unloaded for 1000 s between each test. Prior 

to the start of each test, a 0.5 N preload was used to establish the gauge length for that test. A 

custom LabVIEW (National Instruments, Austin, TX) code was used to control the actuator and 

simultaneously collect resultant force data at 100 Hz from the load cell. The initial gauge length 

and associated input displacement necessary to obtain the required global strain level was 

manually recorded.  

 

Post-hoc analysis of preliminary data from the in-vivo animals revealed that the external 

ventilation created breathing artifacts in the recorded force data. Therefore, ventilation was 

paused during the first and last 7 s of the in-vivo tests.  

 

After testing was complete, and the animal euthanized for the in-vivo case, the mid-substance of 

the SCPC sample was cut into 4 sections and imaged with a 10MP digital camera. The cross-

sectional area of each SCPC section was measured using ImageJ (National Institutes of Health, 

Bethesda, MD), and the average of the four measurements was used for post-hoc engineering 
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stress calculations for each sample. Strain data were calculated using the actuator displacements 

relative to the measured sample gauge lengths, and therefore, reflected the desired global strain 

magnitude. 

 

2.2.4 Viscoelastic modeling 

2.2.4.1 Model formulation 

Our group has previously published data demonstrating the non-linear viscoelasticity of the ex-

vivo SCPC 132, and the results of fitting this data to a non-linear viscoelastic formulation using 

the Comprehensive Viscoelastic Characterization (CVC) method 132,145–147. The CVC method 

corrects for finite ramp times during stress-relaxation experiments and determines the strain-

dependence of each Prony weight post-hoc by plotting the fitted Prony weights as a function of 

strain 132. The formulation presented below represents a new characterization technique (called 

the direct fit method) that allows for direct determination of the strain-dependence of fitted Prony 

weights using a numerical integration approach that avoids the need to store the stress value at 

every previous time point of the analysis. Below we provide an abbreviated derivation of the 

novel features of the direct fit method with additional details on the derivation of the formulation 

provided in 148.  

 

Uniaxial non-linear viscoelastic material behavior may be represented by the hereditary (or 

convolution) integral 149–151: 

 𝜎[𝜀(𝑡), 𝑡] = ∫ 𝐸[𝜀(𝜏), 𝑡 − 𝜏]𝑡
0 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏, (2.1) 

where 𝜎 is stress, 𝜀 is strain, 𝑡 is time, 𝜏 is a time variable of integration representing the history 

effect, and 𝐸(𝑡, 𝜀) is the material’s relaxation modulus that describes the non-linear time 
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dependent relationship between stress and strain. The continuous relaxation spectrum is 

approximated by the discrete spectrum Prony series: 

 𝐸[𝜀(𝑡), 𝑡] = 𝐸∞(𝜀) +∑𝐸𝑖(𝜀)𝑒−𝑡 𝜏𝑖⁄𝑁
𝑖=1 , (2.2) 

where 𝐸𝑖(𝜀) is the strain-dependent Prony weight corresponding to time constant 𝜏𝑖, 𝐸∞(𝜀) 
represents the long-term strain-dependent modulus, and 𝑁 defines the finite number of 

exponential Prony terms. Combining Eq. (2.1) and Eq. (2.2) yields the following definition 

for stress at the current time, 𝑡: 
𝜎[𝜀(𝑡), 𝑡] = ∫ {𝐸∞(𝜀) +∑𝐸𝑖(𝜀)𝑒−(𝑡−𝜏) 𝜏𝑖⁄𝑁

𝑖=1 }𝑡
0 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏
= 𝐸∞(𝜀) ∗ 𝜀(𝑡) + ∫ {∑𝐸𝑖(𝜀)𝑒−(𝑡−𝜏) 𝜏𝑖⁄𝑁

𝑖=1 }𝑡
0 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏. (2.3) 

We now introduce a history state variable that is used to recursively update the stress at each 

incremental time step; the history state variable at the current time 𝑡 is defined as: 

 ℎ𝑖[𝜀(𝑡), 𝑡] = ∫ {𝐸𝑖(𝜀)𝑒−(𝑡−𝜏) 𝜏𝑖⁄ }𝑡
0 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏, (2.4) 

such that Eq. (2.3) can be recast as: 

 

 
𝜎[𝜀(𝑡), 𝑡] = 𝐸∞(𝜀) ∗ 𝜀(𝑡) +∑ ℎ𝑖[𝜀(𝑡), 𝑡]𝑁𝑖=1 . (2.5) 

The stress at the next time step, 𝑡 + ∆𝑡, is given as: 

 𝜎[𝜀(𝑡 + ∆𝑡), 𝑡 + ∆𝑡] = 𝐸∞(𝜀) ∗ 𝜀(𝑡 + ∆𝑡) +∑ ℎ𝑖[𝜀(𝑡 + ∆𝑡), 𝑡 + ∆𝑡]𝑁𝑖=1 , (2.6) 

where the updated history variable is: 
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 ℎ𝑖[𝜀(𝑡 + ∆𝑡), 𝑡 + ∆𝑡] = ∫ {𝐸𝑖(𝜀)𝑒−(𝑡+∆𝑡−𝜏) 𝜏𝑖⁄ }𝑡+∆𝑡
0 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏. (2.7) 

Equation (2.7) can be expanded by use of the summation rule for definite integrals and inputted 

into Eq. (2.6) to yield the following expression for the stress at the next time step: 

 

𝜎[𝜀(𝑡 + ∆𝑡), 𝑡 + ∆𝑡]
=∑ ∫ {𝐸𝑖(𝜀)𝑒−(𝑡+∆𝑡−𝜏) 𝜏𝑖⁄ }𝑡

0 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏𝑁𝑖=1
+∑ ∫ {𝐸𝑖(𝜀)𝑒−(𝑡+∆𝑡−𝜏) 𝜏𝑖⁄ }𝑡+∆𝑡

𝑡 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏                 𝑁𝑖=1+𝐸∞(𝜀) ∗ 𝜀(𝑡 + ∆𝑡), 
(2.8) 

where the first integral term represents the effect of the past loading events, the second integral 

term represents the effect of the current loading event, and the final term represents the effect of 

the material’s long-term (equilibrium) response. Application of the product law of exponentials, 

the 2nd mean-value theorem of integrals, and the central difference rule, yields the following 

expression for Eq. (2.6): 𝜎[𝜀(𝑡 + ∆𝑡), 𝑡 + ∆𝑡]= 𝐸∞(𝜀) ∗ 𝜀(𝑡 + ∆𝑡)
+∑ {ℎ𝑖[𝜀(𝑡), 𝑡] ∗ 𝑒−∆𝑡 𝜏𝑖⁄ + 𝐸𝑖(𝜀) ∗ (1 − 𝑒−∆𝑡 𝜏𝑖⁄ )(∆𝑡 𝜏𝑖⁄ ) ∆𝜀}𝑁𝑖=1 . (2.9) 

Using the incremental notation 𝑓𝑛+1 = 𝑓𝑛 + ∆𝑓𝑛, where 𝑓 is an incremental variable, 𝑓𝑛 is the 

variable value at the preceding increment, and ∆𝑓𝑛 is the current variable increment, the 

following incremental formulation for non-linear viscoelasticity is obtained: 
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𝜎𝑛+1 = 𝐸∞(𝜀) ∗ 𝜀𝑛+1
+∑ {ℎ𝑖[𝜀(𝑡), 𝑡] ∗ 𝑒−∆𝑡𝑛 𝜏𝑖⁄ + 𝐸𝑖(𝜀) ∗ (1 − 𝑒−∆𝑡𝑛 𝜏𝑖⁄ )(∆𝑡𝑛 𝜏𝑖⁄ ) ∆𝜀𝑛+1}𝑁𝑖=1 . (2.10) 

It should be noted that evaluating Eq. (2.9) or Eq. (2.10) at the current time step requires storage 

of the history state variable, ℎ𝑖[𝜀(𝑡), 𝑡], from only the previous time step. Also, unlike the 

previously developed CVC method 132,145,147, Eq. (2.10) can be used to fit both cyclic and stress-

relaxation experimental curves as it can be applied to any arbitrary strain history. 

 

2.2.4.2 Fitting procedure and model assessment 

As in our work with the CVC method, a 4-term Prony series was used to approximate the 

relaxation modulus with each Prony weight represented by a second-order polynomial function 

of strain: 

 𝐸𝑖(𝜀) = 𝐶1𝜏𝑖𝜀 + 𝐶2𝜏𝑖𝜀2 (2.11) 

 𝐸∞(𝜀) = 𝐶1∞𝜀 + 𝐶2∞𝜀2 (2.12) 

where 𝐶1 and 𝐶2 are coefficients that define the strain dependence of each Prony weight, 

resulting in a total of 10 fitted coefficients. Decadal time constants (𝜏1 = 0.1, 𝜏2 = 1, 𝜏3 =10, 𝜏1 = 100 s) were also prescribed to capture both the short-term and longer-term aspects of 

the SCPC behavior. For each sample, simultaneous fits of all stress-relaxation data were 

performed using MATLAB’s (R2014b, Mathworks, Natick, MA) fmincon function, a 

constrained non-linear minimization algorithm, to obtain the 𝐶1 and 𝐶2 coefficients for each 

strain-dependent Prony weight [𝐸𝑖(𝜀)]. Each Prony weight was constrained to be positive and 

monotonically increasing in order to satisfy thermodynamic restrictions. As multiple curves were 
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fit simultaneously, the root mean squared errors (RMSE) for each stress-relaxation curve in the 

fit were summed, and this sum was minimized in the MATLAB algorithm. 

 

The validity of the fitted coefficients for modeling the nonlinear viscoelastic behavior of the 

SCPC was determined by predicting the stress response of independent data that were not 

included in the fits. For both in-vivo and ex-vivo, the average coefficients obtained from the 

stress-relaxation fits were used with the average strain history of the cyclic tests to predict the 

average cyclic stress response. Similar to coefficient validation methods used for the CVC 

method 132,145,152, the predictive ability of the fitted parameters was assessed via RMSE (a global 

measure) and percent error (a point-wise measure) between the predicted and averaged 

experimental curve. These results were compared to the experimental variability of each 

condition by assessing the RMSE and percent error resulting from a one standard deviation from 

the average stress response. 

 

2.2.4.3 Statistical methods 

Statistical analyses were performed in RStudio (vd1.0.153, RStudio, Inc. Boston, MA; vR-3.4.1) 

with two- or three-factor repeated measures ANOVAs for assessing differences in the relaxation 

response data and unpaired t-tests for assessing differences in the fitted coefficients. Model 

residual plots were used to confirm normality and equal variance. A Tukey p-value adjustment 

was included for any multiple pairwise tests. The threshold for statistically significant 

differences was defined as p < .05. 
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2.3 Results 

2.3.1 Stress-relaxation response 

As shown in Fig. 2.2, both the ex-vivo and in-vivo stress-relaxation data demonstrated non-linear 

viscoelastic behavior as evidenced by a significant increase in relaxation with increasing strain 

magnitude (ex-vivo: total relaxation 1% < 2% < 3%, p < .001 for all three comparisons; in-vivo: 

total relaxation 1% < 3%, p < .001 and 2% < 3%, p = .001). Table 2.1 shows the average percent 

relaxation for each shared strain level at decadal time points (isochrones) after peak stress. The 

extent of relaxation of the ex-vivo samples was greater than the in-vivo samples at all strain levels 

and time points, with all differences being statistically significant except for the initial 0.1 s time 

point. 

 

 

 
Ex-vivo 

1% strain 

In-vivo 

1% strain 

Ex-vivo 

2% strain 

In-vivo 

2% strain 

Ex-vivo 

3% strain 

In-vivo 

3% strain 

0.1 sec  4.6 ± 0.9% 0.7 ± 0.6% 4.3 ± 0.7% 0.8 ± 0.8% 3.8 ± 0.7% 0.8 ± 0.7% 

1 sec 
10.7 ± 1.4% 

A 
3.4 ± 2.8%  

A 
13.0 ± 2.8% 

D 
4.5 ± 3.8%  

D 
13.9 ± 2.6% 

G 

5.5 ± 3.5% 
G 

10 sec 
18.4 ± 4.0% 

B 
10.2 ± 5.7% 

B 
25.7 ± 7.0% 

E 
13.5 ± 7.4% 

E 
31.8 ± 5.5% 

H 

19.2 ± 6.4% 
H 

100 

sec 

29.0 ± 6.2% 
C * 

21.5 ± 
11.6% 

C + 

42.6 ± 
10.4% 

F * 

27.1 ± 
14.1% 

F ^ 

54.2 ± 6.3% 
I * 

36.3 ± 
10.4% 
I + ^ 

Table 2.1: Extent of relaxation (i.e., normalized stress response) for ex-vivo and in-vivo 
samples at 4 decadal time points after the peak stress. Ex-vivo samples displayed greater 
relaxation (common letters indicate a significant difference between ex-vivo and in-vivo), 
while both conditions displayed increasing relaxation at greater applied strain (common 
symbols indicate a significant difference between strain levels within the experiment group). 
Data presented as mean ± standard deviation. {A: p = .048; B: p = .026; C: p = .041; 
D: p = .022; E: p = .002; F: p < .001 G: p = .025; H: p = .001; I: p < .001; *: p < .001 for all 
three ex-vivo comparisons; +: p < .001 (in-vivo 1% vs. 3%); ^: p = .001 (in-vivo 2% vs. 3%)} 
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Figure 2.2: Normalized mean stress-relaxation response at (A) 1%, (B) 2%, and (C) 3% 
applied engineering strain demonstrate strain-dependent relaxation for both ex-vivo and in-

vivo SCPC samples. At all three strain magnitudes, the ex-vivo samples experienced greater 
relaxation. Shaded regions indicate ±1 standard deviation from the mean. 
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Figure 2.3 displays the isochronal average stress response of the ex-vivo and in-vivo samples at 

five decadal time points after peak stress as a function of applied strain. At all isochrones 

examined during the 2% and 3% tests, the ex-vivo samples displayed a significantly stiffer 

response than the in-vivo samples. As expected from Fig. 2.3, the peak stresses measured during 

the stress-relaxation tests were also significantly higher for the ex-vivo samples as compared to 

the in-vivo samples at 2% and 3% strain (2%: 50 ± 10 kPa vs. 24 ± 9 kPa, p < .001; 3%: 72 ± 5 

kPa vs. 30 ± 10 kPa, p < .001). 

 

Linear fits of the isochronal data between the stress responses at the three strain magnitudes 

demonstrates that the slopes at the initial .01 and 0.1 s time points are significantly greater than 

that at the 10 s and 100 s time points for both the ex-vivo and in-vivo samples. These values were 

also significantly different between ex-vivo and in-vivo samples. As shown in Fig. 2.4, the rate of 

increase for the ex-vivo samples was significantly greater than that of the in-vivo samples at all 5 

decadal time points examined. 
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Figure 2.3: Isochronal plots of the stress response for ex-vivo and in-vivo samples at 5 decadal 
time points of the shared stress-relaxation tests. The ex-vivo samples displayed a 
stiffer response than the in-vivo samples for all isochrones of the 2% and 3% strain tests, 
while no difference was observed for the 1% test. * indicate a significant difference (p < 
.05) between ex-vivo and in-vivo stress response. Data presented as mean ± standard deviation 
at each time point and strain magnitude. 
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2.3.2 Viscoelastic modeling 

The new direct fit technique captured the stress-relaxation data well, with an average RMSE 

across all samples and tests of 5 kPa for the ex-vivo samples and 1 kPa for the in-vivo samples 

(approximately 7% and 4% of the average peak stresses, respectively). Figure 2.5 provides 

representative model fits for each data set. Table 2.2 provides the fitted expressions for each 

strain dependent Prony weight. Significant differences were found in the 𝐶2𝜏1 (p < .001), 𝐶2𝜏2 (p = 

.006), and 𝐶2𝜏3 (p < .001) terms; these coefficients are associated with the non-linearity of the 

relaxation modulus component at 𝜏 = 0.1, 1, and 10 s, respectively. 

 

As expected from the larger positive 𝐶2 terms, the in-vivo relaxation modulus component is more 

concave at the shortest time constants (0.1 s and 1 s), while that of the ex-vivo condition is 

approximately linear (Fig. 2.6). At the 10 s time constant, the larger negative 𝐶2 term for the ex-

Figure 2.4: Fitted linear slopes of isochrone curves. As expected for a non-linear viscoelastic 
material, this difference decreases as relaxation time increases. For all 5 isochrones, the ex-

vivo samples displayed a significantly higher strain dependence compared to the in-vivo 
samples. *Indicate a significant difference (p < .05) between ex-vivo and in-vivo stress-strain 
fitted slope. Data presented as the slope mean ± standard deviation for each isochronal curve. 
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vivo condition produces a more convex relaxation modulus component. Both ex-vivo and in-vivo 

curves displayed a convex response at the 100 s time constant and steady-state, with very little 

difference in overall steady-state response (i.e., 𝐸∞). 

 

Figure 2.5: Representative non-linear viscoelastic model fits obtained using the direct fit 
technique for the (A) ex-vivo and (B) in-vivo stress-relaxation data. Inset plots depict the 
initial second of the data. In each plot, the experimental data is shown as dark circles while 
the model fit is a continuous red line. For each SCPC sample, all stress-relaxation data were 
fit simultaneously resulting in an average RMSE across all samples and tests of 4.87 kPa for 
ex-vivo data and 1.04 kPa for in-vivo data. 

  

 

  

A 

B 
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The coefficients from the stress-relaxation fits (Table 2.2) were used to predict the ex-vivo and 

in-vivo stress response from the average dynamic cyclic strain input (20 cycles to 2% strain at 1 

Hz). As shown in Fig. 2.7, the predicted stresses for both cases fell well within one standard 

deviation of the measured stress. For the ex-vivo case, the prediction had an RMSE of 2.6 kPa 

(approximately 6% of the peak cyclic stress), which was less than the 5.3 kPa experimental 

variability (i.e., the RMSE of a 1 standard deviation from the mean). The percent error for the 

prediction was significantly lower than that resulting from experimental variability (p < .001). 

For the in-vivo case, the prediction had an RMSE of 2.1 kPa (approximately 8% of the peak 

stress), which was less than the 3.3 kPa experimental variability. The percent error for the 

prediction was significantly lower than that resulting from experimental variability (p < .001). 

Analyzing only the initial second of the dynamic cyclic response, the ex-vivo prediction had an 

All units MPa Ex-vivo In-vivo 𝑪𝟏𝝉 = 𝟎.𝟏 67.67 ± 12.97 8.04 ± 14.71 𝑪𝟐𝝉 = 𝟎.𝟏 * -173.39 ± 305.35 1207.27 ± 396.99 𝑪𝟏𝝉 = 𝟏 14.83 ± 9.50 0.39 ± 0.94 𝑪𝟐𝝉 = 𝟏 * 69.05 ± 200.95 359.8 ± 112.16 𝑪𝟏𝝉 = 𝟏𝟎 40.93 ± 8.94 8.31 ± 11.83 𝑪𝟐𝝉 = 𝟏𝟎 * -383.79 ± 98.74 75.45 ± 298.23 𝑪𝟏𝝉 = 𝟏𝟎𝟎 34.30 ± 5.24 20.11 ± 18.06 𝑪𝟐𝝉 = 𝟏𝟎𝟎 -399.16 ± 52.66 -159.15 ± 346.55 𝑪𝟏∞ 11.67 ± 7.42 11.54 ± 13.01 𝑪𝟐∞ -115.71 ± 75.15 -93.57 ± 315.13 

Table 2.2: Non-linear viscoelastic fitted coefficients from the numerical integration approach 

for ex-vivo and in-vivo conditions where 𝐸𝑖 = 𝐶1𝜏𝑖𝜀 + 𝐶2𝜏𝑖𝜀2. The 𝐶2 terms at the 0.1, 1, and 10 

s time constants, associated with the non-linearity of the relaxation modulus component at 
that time constant, were significantly different (p < .05) between experimental groups. 
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RMSE of 5.0 kPa (approximately 12% of the initial cycle peak stress) compared to the 7.1 kPa 

measure of experimental variability, while the in-vivo prediction had an RMSE of 2.9 kPa 

(approximately 11% of the initial cycle peak stress) compared to the 3.3 kPa experimental 

variability. The percent error over this initial second was also significantly less than experimental 

variability for both ex-vivo (p < .001) and in-vivo (p = .001) predictions. Comparing the average 

ex-vivo and in-vivo dynamic cyclic response, the greater ex-vivo stiffness and relaxation seen in 

the stress-relaxation data was also observed in the cyclic data as a higher stress response and 

reduction in peak stress from the 1st to the 20th cycle.  
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Figure 2.6: Plots of each relaxation modulus component (i.e., Prony series weight) as a 
function of applied engineering strain. Based on the second-order polynomial used to 
approximate each modulus component, the 𝐶1 term is associated with the slope of the 
relaxation modulus component while the 𝐶2 term is associated with the non-linearity. 
Distinct ex-vivo and in-vivo profiles can be seen at the lower time constants, while 
those at 𝜏 = 100 and the steady state are more similar in shape. 
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2.4 Discussion 

While it has been recognized that the mechanical behavior of neural tissues is influenced by the 

absence of blood perfusion, the post-mortem time before testing, and other conditions 101,109–

Figure 2.7: Non-linear viscoelastic model predictions of (A) ex-vivo and in-vivo (B) dynamic 
cyclic response to a 1 Hz, 2% strain input. Both model predictions fell within ±1 standard 
deviation from the respective mean experimental response (dashed lines). The frequency of 
the experimental average has been reduced in these plots to improve visibility of the 
predicted response. 
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111,115, very few studies have quantified these effects on the SCPC in-vivo response. Without 

identifying the viscoelastic changes that occur ex-vivo, computational models investigating 

spinal cord mechanics are often forced to use either the narrowly available data that has been 

collected in-vivo at relatively low strain-rates 69,70,88,90,91, or the viscoelastic models based on ex-

vivo experimentation 22,25,38,108,132. To surmount these shortcomings, this study is the first to 

quantitatively compare the non-linear viscoelastic behavior of the ex-vivo and in-vivo SCPC as 

well as provide validated modeling coefficients for both conditions. Consistent with previous in-

vivo 91 and ex-vivo work 132, both conditions displayed nonlinear viscoelastic behavior in stress-

relaxation, with greater relaxation observed at higher applied strain magnitudes. Moreover, the 

ex-vivo samples relaxed significantly quicker and to a greater extent than the in-vivo samples 

when subjected to the same strain magnitude. This increase in ex-vivo relaxation was also 

observed by Chang et al. in studies of the feline SCPC before and after death, although the 

specific alterations with respect to the relaxation behavior was not quantified 91. Our isochronal 

data also support this conclusion of unique relaxation behavior as the difference between stress 

responses is significantly greater for the ex-vivo samples at all relaxation times examined. 

Therefore, the relaxation of the ex-vivo samples is more sensitive to increases in applied strain 

than the in-vivo samples. It should be noted that the relationship between the stress response and 

applied strain for each isochrone is expected to be non-linear for viscoelastic materials. 

However, in the current study, these relationships had strong linear correlations which may have 

resulted from: (1) the relatively few datum points (three total) used to fit the isochronal data, and 

(2) the relatively small applied strain magnitudes (1%, 2%, and 3%). Specifically, previous ex-

vivo 22,101,108,109 and in-vivo 69,90 tensile studies have shown that there is a transition in elastic 

behavior between 2% and 4% strain; therefore, the SCPC may have been in a linear elastic 
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region for the current investigation, which allowed for the use of a single linear correlation to 

describe each isochrone. Other evidence of non-linear viscoelastic behavior is the strongly strain-

dependent relaxation behavior and the strongly strain-dependent Prony weights for both in-vivo 

and ex-vivo samples. 

 

The isochrones also show that at 2% and 3% strain the ex-vivo samples are significantly stiffer 

than the in-vivo samples and undergo a higher stress at all points of the relaxation, including the 

peak stress. This increase in stiffness is also consistent with data previously reported by Hung et 

al. in studies of the canine SCPC 69. The fact that ex-vivo, the SCPC displays a stiffer response 

but experiences greater relaxation has important implications for SCI modeling and treatment. 

While it is accepted that larger applied strains result in more severe neurological deficits 

26,44,50,58,61,69,88,153, the suggested injurious thresholds of 10–14% strain 44,153 do not take into 

account any time-dependent behavior. The results of this study suggest that the use of ex-vivo 

SCPC experimental data would lead to significant model overpredictions of the stress response 

in the acute time frame (i.e., at least the first 100 s of the analysis). Further, the use of ex-vivo 

characterization data would over-predict the acute relaxation due to a traumatic event (i.e., 

applied strain to the SCPC), and therefore, under emphasize the effect of dwell time at the 

applied strain. In-vivo studies have reported a significant effect of distraction or compression 

duration on neurological injury 26,39,154 suggesting that the severity of neurologic impairment is 

highly time-dependent. The reduction of in-vivo SCPC relaxation, as compared to ex-vivo, also 

supports the current clinical practice of early intervention for SCI; the removal of non-

physiological strain (e.g., through anatomic reduction) as soon as safely possible has been shown 

to have positive effects on patient recovery 155–158. 
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Figs. 2.4 and 2.6 also emphasize important differences and similarities in the short-term and 

long-term ex-vivo and in-vivo response. Figure 2.4 shows that both conditions are most sensitive 

to increases in applied strain over the initial 1 s of relaxation, although to differing extents as 

previously discussed. Also supporting the distinct short-term relaxation behavior are the 

relaxation modulus component plots of Fig. 2.6. While ex-vivo and in-vivo conditions have 

similar relaxation responses for 𝜏4 and almost identical steady-state responses, the relaxation 

components for 𝜏1, 𝜏2, and 𝜏3 are more divergent. This suggests that for quasi-static analyses of 

SCPC behavior, the use of ex-vivo data may be appropriate, but attempts to accurately model 

dynamic or injurious scenarios should include in-vivo viscoelastic material characterizations. 

 

The presented non-linear viscoelastic modeling methodology efficiently fit both ex-vivo and in-

vivo stress-relaxation responses. Although the RMSE values for the ex-vivo fits were greater than 

that previously reported for CVC method fits of the same data (0.365 kPa 132), this is expected as 

the CVC method fits each curve independently while the direct fit method fits all response curves 

for each sample simultaneously. It is believed that coefficients obtained from fits of all available 

data are more likely to reflect the average behavior of that sample, as indicated by the lower 

prediction RMSE for the current work compared to the previous CVC prediction (2.6 versus 3.5 

kPa). As shown in Fig. 2.7, each nonlinear viscoelastic model presented was validated through 

predictions of the respective dynamic cyclic response whereas both predictions fell well within 

the range of experimental variability. It should be noted that the standard deviation values used 

to quantify cyclic data experimental variability were based on nonnormalized responses. 

Therefore, the variability of the cyclic data (Fig. 2.7) appears greater than that for the stress-

relaxation data in Fig. 2.2 where the data were normalized to the peak stress before average and 
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standard deviation calculations were made. Although some global relaxation was captured by 

these predictions (ex-vivo prediction: final cycle peak stress 90% of initial peak; in-vivo 

prediction: final cycle peak stress 96% of initial peak), it was less than what was measured 

experimentally (ex-vivo: 79%; in-vivo: 90%). While developing a formulation to include an 

increase in the degree of global relaxation with concomitant cycle number would be one method 

for further improvement of the presented methodology, from a clinical standpoint, the SCPC is 

rarely subjected to periodic cycling of this nature and such an enhancement to the viscoelastic 

formulation used herein would most likely not substantially improve future modeling efforts that 

seek to investigate spinal cord mechanics and injury. As the goal of this work was to characterize 

differences in the overall viscoelastic response of the in-vivo and ex-vivo SCPC, the fitting 

procedure evenly weighted the data over the 100 s stress-relaxation test. This method ensured 

adequate fitting of the relaxation behavior and resulted in coefficients that better predicted the 

overall cyclic behavior than coefficients obtained by weighting the short-term (i.e., ramp-phase) 

data in each fit. Incorporation of a weighting function to optimize fitting of the short-term 

response would likely improve short-term predictions, but as indicated below, additional high 

rate experimentation is necessary to characterize short-term injurious behavior. 

 

There were several limitations to this study. Firstly, the breed of pig utilized in the in-vivo 

experimental work differed than that of the ex-vivo work. This change was necessary based on 

animal availability. Previous studies have reported similar mechanical SCPC properties across 

several species 25,69,90,101,108,109, and any differences between two breeds of similarly sized pigs is 

anticipated to be negligible. Secondly, the use of global strain histories based on inputs to the 

linear actuator assumes instantaneous acceleration for the stress-relaxation tests and perfect 
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sinusoidal motion for the cyclic test, resulting in a homogeneous strain field across the length of 

the sample. Localized strain measurements using optical methods or micro-mechanical 

transducers are nearly intractable in an in-vivo testing environment due to blood coagulation and 

field of view restrictions. These methods are also confounded by mid-substance creep 

phenomena. As the stress response was a global measure (i.e., the reaction force at the fixed end 

of the sample normalized to average cross-sectional area), a global strain measure was also 

utilized. Further, as the same equipment and analyses were used for both the ex-vivo and in-vivo 

experimentation, it is unlikely that the use of localized strain measures would substantially 

change the conclusions drawn from the presented data. Thirdly, the temperature of the in-vivo 

and ex-vivo tissues during testing may have been different. The in-vivo tissue was submerged in 

surgical saline and other fluids (e.g., blood and cerebral spinal fluid) that were warmed by body 

temperature while the ex-vivo tissue was submerged in room temperature saline. As a result, the 

observed difference in tissue viscoelastic behavior may be due (in part) to differences in 

experimental temperatures. Temperature sensitivity studies of other neural tissues have revealed 

temperature-dependent responses in shear 159 but not in compression 160. To the authors’ 

knowledge, the effect of temperature on the tensile viscoelastic behavior of neural tissues has not 

been reported. 

 

Finally, the strain magnitudes and strain rates examined in the current study are relatively low as 

compared to those values that are expected to occur during injury 44,153,161,162. Due to difficulties 

in consistent gripping of the SCPC, robust tensile experimental data above 5% strain is difficult 

to obtain. In order to avoid such difficulties and minimize surgical time, the lower range of 1–3% 

strain was chosen for the in-vivo experimentation, and thus, was the limit for our direct 
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comparison with the ex-vivo data. Inclusion of experimental data at higher applied strains would 

affect the presented fitted coefficients as the strain dependence of each Prony weight is obtained 

directly from each fit. Indeed, even the exclusion of the 4% and 5% tests from the ex-vivo data 

fits resulted in two significantly different fitted parameters. For this reason, the comparison of 

stress response (e.g., the isochrones) provides more insight into the quantitative viscoelastic 

differences between ex-vivo and in-vivo conditions than comparison of specific fitted 

coefficients. As the differences were more pronounced with increasing strain, it is expected that 

these differences would become even more apparent at higher strains. The presented model 

coefficients accurately predicted the response of each condition to a strain magnitude included in 

the range of fits (2%), but the use of the presented coefficients to model the response to higher 

strains may not produce accurate predictions. 

 

2.4.1 Conclusions 

In summary, this study is the first to report a detailed quantitative comparison of ex-vivo and in-

vivo viscoelastic SCPC behavior. Ex-vivo and in-vivo stress-relaxation data from the same animal 

model demonstrate that each condition exhibits distinct non-linear viscoelasticity at relatively 

low strain magnitudes (1–3%). The stress-relaxation data of each sample were fit to a non-linear 

viscoelastic model using a novel numerical integration approach. The resulting average 

coefficients were validated based on their ability to predict the respective dynamic cyclic 

response within experimental variability (±1 standard deviation). The significant differences 

between ex-vivo and in-vivo behavior underscores the necessity of in-vivo data collection to 

enable the development of more accurate material models which are applicable to studies of SCI. 
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Future work will also include application of the presented model to mechanical tests of ex-vivo 

SCPC, pia and arachnoid meningeal layer, and isolated cord parenchyma. 
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CHAPTER 3: VISCOELASTICITY OF SPINAL CORD AND MENINGEAL TISSUES2 

 

3.1 Introduction 

Traumatic spinal cord injury (SCI) is typically initiated by high-velocity, dynamic events such as 

traffic accidents, falls, violence, or sport/recreation injuries 1–3,7,42,49. Due to the complex loading 

environments which occur during SCI, it is difficult to accurately model human injury and/or 

measure local tissue mechanical forces using in-vivo animal surrogates. In contrast, 

computational models provide an efficient, economical, and ethical method for investigating SCI 

mechanical etiology, prevention techniques, and clinical treatments. As tissue deformation and 

stress have been shown to correlate with injury severity and neurological impairment 23,42–47, 

finite element (FE) computational modeling allows researchers to conduct very controlled SCI 

simulations and predict the resultant internal tissue response (and associated injury severity) 

under various conditions 24,42–44,52. However, it is important to highlight that the predictive value 

of an FE model is dependent on the implementation of accurate geometric and material models 

45,59,92–94. 

 

In the majority of FE models of the spine, the spinal cord itself is typically modeled as one 

homogenous material 43,51,52,67,92 or as a construct of gray and white matter regions 24,42,44–46,59,93, 

while explicit modeling of the innermost meningeal layers (the pia and arachnoid maters) is 

frequently neglected 24,42–46,51,52,67,92. The material models assigned to the various spinal cord 

components vary in complexity from linearly elastic 24,42,95–98,43,46,51,52,57,92–94 to hyperelastic 

                                                      

2 This chapter has been published as a Full Length Research Article in Acta Biomaterialia (DOI: 

10.1016/j.actbio.2018.05.045). All content has been adapted with permission from Elsevier. 
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46,51,59,67,92,93 to viscoelastic 44,45,57,94,97, or some combination thereof. The material models 

utilized to represent the homogenous spinal cord are often developed using experimental data 

collected from spinal cord samples with at least the pia mater intact 25,45,69,70,90,108. However, as 

most published experimental procedures do not include detailed descriptions of dissection 

techniques beyond removal of the dura mater, it is difficult to determine if the arachnoid mater is 

also present (and contributing) to the reported results. These results are often reported as the 

mechanical properties of the gestalt ‘‘spinal cord”. For specificity in this work, the three-part 

construct of the neural and connective tissues will be referred to as the spinal-cord pia-arachnoid 

construct (SCPC), with the spinal cord parenchyma referred to as the cord, and the construct of 

the innermost meninges as the pia-arachnoid complex (PAC). 

 

As shown by the experimental results of Ozawa et al. 118 and Mazuchowski and Thibault 105, the 

presence of the PAC significantly effects the mechanical response of the SCPC. Specifically, 

comparisons of the response before and after PAC removal show a significant decrease in the 

compressive 118 and tensile stiffness 105, as well as shape recovery after compression 118. 

However, to the authors’ knowledge, only one study has reported quantitative mechanical 

properties of isolated spinal PAC 59. Unfortunately, little detail was provided with respect to the 

dissection of samples and only a strain-rate dependent linear elastic modulus was reported. 

 

While some groups have included a distinct pia mater in their computational models 57,93–98,143, 

the lack of appropriate mechanical properties in the literature constrains the predictive fidelity of 

explicitly modeling this tissue. For example, in a parametric FE study of the effect of material 

properties on the magnitude and distribution of stress and strain in the cord cross-section, 
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Sparrey et al. concluded that ‘‘pia mater characteristics had limited (<4% change) effects on 

outcomes” 93. However, the pia mater was modeled as a linearly elastic membrane with the 

tangent modulus varied from 600 kPa to 3 MPa 93. While this range includes the modulus 

reported by Ozawa et al. 118, it does not include the higher stiffness values reported by Kimpara 

et al. for spinal pia mater 59 and by Jin et al. for cranial pia mater 127. Indeed, a subsequent study 

by Sparrey which implemented the 40 MPa linear elastic modulus reported by Kimpara et al. 

concluded distinct modeling of the pia mater was necessary to match experimental measurements 

and tissue damage 143. However, since the experimental results of Kimpara et al. and Jin et al. 

suggest the pia mater is a viscoelastic material, tangent moduli may not be adequate to describe 

its behavior under dynamic conditions. Jin et al. has published numerous studies of the 

viscoelastic response of cranial PAC under a variety of loading conditions 123–125,127,163, but due 

to differences in ultrastructure 21,122,164,165, application of these properties to spinal PAC is 

questionable. 

 

Therefore, the goal of this study was to compare the viscoelastic behavior of the isolated PAC, 

the isolated cord, and the SCPC to determine the mechanical contribution of each component. A 

novel numerical integration approach 139,148 was used to develop non-linear viscoelastic material 

models for each of the three tissues. Each material model was then validated through predictions 

of an independent (i.e., not included in the original model fits) data set. The results presented 

herein represent the first known published account to: (1) describe the nonlinear behavior of 

spinal PAC; (2) characterize the viscoelastic properties of the isolated cord; and (3) publish 

validated non-linear viscoelastic material models for the PAC and cord. These findings will 
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allow researchers interested in modeling spinal cord injuries to make informed decisions about 

the balance of accuracy and complexity necessary for their specific modeling endeavors. 

 

3.2 Materials and Methods 

3.2.1 SCPC preparation 

Eight cervical spines (C0–C7) were collected from skeletally mature (greater than 4 years old) 

ewes immediately following euthanasia for unrelated research studies. The spinal-cord 

meningeal complex, including the dura mater, was carefully removed from the spinal canal 

through gross dissection, use of an oscillating saw, and transection of nerve roots. As the dura 

mater is relatively loose at the cranial aspect (where it was previously connected to the cranial 

dura mater), surgical scissors were used to create a longitudinal cranial-to-caudal cut in the dura 

mater. Transection of denticulate ligament extensions and exiting nerve roots allowed for en-bloc 

removal of the dura mater. Before trimming the nerve roots, the surrounding PAC tissue was 

gently pushed back toward the SCPC surface. Vasculature and cerebral spinal fluid evident in 

samples collected using the above technique confirm the arachnoid mater remained intact during 

removal of the dura mater (Fig. 3.1A) 20,21,122,123,164,165. After discarding any SCPC section 

containing visible damage, a single length of approximately 60 mm was selected for 

experimental testing. Two or three of these sections were typically collected from each cervical 

spine, but due to the time constraints associated with ex-vivo neural tissue experimentation 101,109–

112, only one section per animal was tested. Small sections of PVC tubing (approximately 10 mm 

in length) were attached to each end of the SCPC section using commercial grade cyanoacrylate 

adhesive (Loctite Gel Control, Henkel Corporation, Rocky Hill, CT; Fig. 3.1B). Throughout the 

preparation process, phosphate-buffered saline spray was used to maintain tissue hydration. 
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3.2.2 Experimental testing 

The SCPC section was loaded into a uniaxial test stand (Fig. 3.2A) consisting of sand-paper 

lined metal clamps, a high-resolution linear actuator (0.15625 µm step length, model: T-LLS105, 

Zaber Technologies, BC, Canada), and a 44.5 N capacity load cell (Model 31, Sensotec, 

Honeywell, Columbus, OH) 139. A 4.2MP camera (Grasshopper3, Point Grey, BC, Canada) was 

centered above the sample. Graphite powder was applied to the surface of the PVC tubing facing 

the camera before the first mechanical test was performed to introduce sufficient optical texture 

and allow for post-hoc calculation of displacement via digital image correlation. 

 

 

 

 

Figure 3.1: A) Fresh ovine SCPC section with small bubble of cerebrospinal fluid near right 
end, B) SCPC-PVC construct prepared for longitudinal tension testing, C) Sheet of isolated 
PAC removed from SCPC surface, the black areas are from graphite powder on opposite face 
of the translucent tissue, D) isolated cord devoid of PAC ready for longitudinal tension 
testing. All scale bars = 10 mm. 
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Following 100 cycles of preconditioning to 5% engineering strain, two stress-relaxation and four 

dynamic cyclic tests (three 5-cycle tests and one 2-cycle test) were performed. Specifically, the 

following mechanical tests were performed in a randomized order with a 0.5 N preload (to 

establish reference length), a minimum of 4 min of unloaded recovery, and hydration between 

each test: stress-relaxation tests to 3% and 5% strain (6 mm/s ramping rate, 100 s relaxation 

period); dynamic cyclic tests to 5% strain at target frequencies given by 𝑓𝑖 = 1 2𝜋𝜏𝑖⁄  where 𝜏𝑖 = 

0.1, 1, 10, and 100 s (approximately 1.6 Hz, 0.16 Hz, 0.016 Hz, and 0.0016 Hz, respectively). 

The resulting average strain-rates for the dynamic cyclic tests are given by 2𝑓𝑖𝜀 = 0.1𝑓𝑖 = 

 

 

Figure 3.2: The uniaxial test stands used for SCPC, cord (A) and PAC (B) longitudinal 
tension testing consisted of a grip rigidly attached to a stationary load cell, a second grip 
rigidly attached to a high-resolution actuator, and a digital camera positioned directly above 
the tissue sample to enable image-based strain measurements. Apart from the grips, the same 
equipment was used for all SCPC, cord, and PAC tests. 
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approximately 16%/sec, 1.6%/sec, 0.16%/sec, and 0.016%/sec. The lowest frequency (i.e., quasi-

static) cyclic test consisted of only two cycles to shorten the overall duration of the testing 

procedure in order to avoid time sensitive neural tissue degradation effects 101,109–112. Due to 

equipment limitations and the increase in sample length with relaxation (especially for the 

isolated cord), the speed required to reach the highest target frequency was occasionally 

unobtainable; for these cases, the maximum speed of the actuator was used. During each test, the 

reaction force was collected from the load cell at 100 Hz while series of images were collected 

from the camera at a frequency scaled to the speed of the test (between 1 and 45 frames per 

second). A custom LabVIEW code controlled the actuator and synchronized data collection. 

 

3.2.3 Cord and PAC dissection and testing 

Following the completion of the six mechanical tests of the SCPC, it was removed from the test 

stand and washed free of graphite powder using saline. Under a lighted magnifying loop, a 

shallow incision was made adjacent to the anterior median fissure near one of the PVC tubing 

sections. Small surgical scissors extended this incision to the opposite PVC tubing section, 

creating a longitudinal opening in the PAC. The PAC was then removed from the circumference 

of the SCPC in an incremental fashion by carefully lifting the edge away from the cord surface 

and separating it at this interface; the ends of the PAC were cut as close to the PVC tubing edges 

as possible. The resulting PAC sheet (Fig. 3.1C) was covered with saline soaked gauze and 

stored in an airtight container while the isolated cord sample (Fig. 3.1D) was mechanically tested 

using the same test stand and procedure outlined for the SCPC above. Following the completion 

of cord mechanical tests, thin cross-sectional slices taken near the mid-substance of the sample 

were imaged using the high-resolution camera for post-hoc cross-sectional area measurements 
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and subsequent stress calculations. All mechanical tests of neural tissue (i.e., that of the SCPC 

and cord conditions) were performed within 5 h of animal sacrifice. The configuration of the 

uniaxial test stand was then modified with the metal clamps replaced with thin film grips (FC-40, 

Imada, Northbrook, IL) for PAC testing (Fig. 3.2B). 

 

Apart from a lower preload (0.25 N versus 0.5 N), the same testing procedure described above 

was applied to the PAC sample. Following the completion of PAC testing, images of the sample 

in the testing configuration and with the grips turned perpendicular to the camera were collected 

for post-hoc width and thickness measurements, respectively. 

 

3.2.4 Data analysis 

ImageJ (v1.48, National Institutes of Health) was used to perform dimensional measurements for 

PAC cross-sectional area calculations and direct cord cross-sectional area measurements; these 

areas were used to convert respective measured force data to engineering stress. The sum of the 

cord and PAC cross-sectional areas represented the cross-sectional area of the SCPC for stress 

calculations. The series of images collected during each experimental test were converted to 

strain data using a MATLAB-based digital image correlation program 166. For every image, the 

relative displacement of each end of the sample (averaged over an approximately 200 mm2 area) 

was normalized to the gauge length of the initial test image. Application of this analysis 

procedure to images of a surrogate material translated through the camera field of view 

demonstrated an error of less than 0.06% strain. Since the collection rate of the force and image 

data differed, a smoothing-spline was used to obtain the interpolated global strain at each time of 

recorded stress. 
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For each of the three tissues, the initial cycle of the resulting stress-strain curves of the four 

dynamic cyclic tests were simultaneously fit to the non-linear viscoelastic convolution integral 

(Eq. (3.1)) using a novel characterization technique (the direct fit method) that is detailed in 

previous publications 139,148. Briefly, this technique allows for the direct determination of the 

strain-dependence of the discrete Prony series used to approximate the relaxation modulus (Eq. 

(3.2)) and avoids the need to store the stress [𝜎(𝜀, 𝑡)] at all previous time points through use of a 

history state variable [ℎ𝑖[𝜀(𝑡), 𝑡], Eq. (3.4)] that is recursively updated at every time step: 

𝜎[𝜀(𝑡), 𝑡] = ∫𝐸[𝜀(𝜏), 𝑡 − 𝜏] 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏,𝑡
0  (3.1) 

where the viscoelastic kernel function, 𝐸[𝜀(𝜏), 𝑡], is represented as the Prony series 

𝐸[𝜀(𝜏), 𝑡] = 𝐸∞(𝜀) +∑𝐸𝑖(𝜀)𝑒−𝑡 𝜏𝑖⁄4
𝑖=1 . (3.2) 

Using the direct fit method, the current stress is defined as 𝜎[𝜀(𝑡 + ∆𝑡), 𝑡 + ∆𝑡]= 𝐸∞(𝜀)𝜀(𝑡 + ∆𝑡)
+∑ {ℎ𝑖[𝜀(𝑡), 𝑡]𝑒−∆𝑡 𝜏𝑖⁄ + 𝐸𝑖(𝜀) (1 − 𝑒−∆𝑡 𝜏𝑖⁄ )(∆𝑡 𝜏𝑖⁄ ) ∆𝜀} ,4𝑖=1  

(3.3) 

with 

ℎ𝑖[𝜀(𝑡), 𝑡] = ∫ {𝐸𝑖(𝜀)𝑒−(𝑡−𝜏) 𝜏𝑖⁄ }𝑡
0 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏, (3.4) 

where 𝜀 is the strain at the current time (𝑡 + ∆𝑡), 𝐸∞(𝜀) is the long-term strain-dependent 

modulus, and 𝐸𝑖(𝜀) is the strain-dependent Prony weight corresponding to the time constant 𝜏𝑖 
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(𝜏1 = 0.1, 𝜏2 = 1, 𝜏3 = 10, and 𝜏4 = 100 s). Each of the five strain-dependent Prony weights were 

represented as a second-order polynomial function, resulting in a total of ten fitted coefficients: 𝐸(𝜀) = 𝐶1𝜀 + 𝐶2𝜀2 (3.5) 

MATLAB’s (R2014b, Mathworks, Natick, MA) fmincon function, a constrained non-linear 

minimization algorithm, was used to determine the set of fitted coefficients which resulted in the 

lowest root mean squared error (RMSE) when summed across the four cyclic curves included in 

the fit. In order to satisfy thermodynamic requirements, each Prony weight [𝐸𝑖(𝜀)] was 

constrained to be positive and monotonically increasing. 

 

The coefficients obtained from fits of the cyclic data were averaged across like samples to create 

one non-linear viscoelastic material model for each of the three tissues. In line with previously 

published validation methods 132,145,152, the ability of these developed models to predict the non-

linear viscoelastic behavior of each tissue under independent loading conditions (i.e., those not 

included in model fits) was assessed. The RMSE and percent error between the averaged 3% and 

5% measured stress-relaxation response and the response predicted by the material model were 

calculated and compared to the degree of experimental variability (defined by the RMSE and 

percent error resulting from a one standard deviation in mean response). 

 

3.2.5 Statistical methods 

SAS Studio (3.71 University Edition, SAS Institute, Cary, NC) was used to perform all statistical 

analyses. SAS PROC MIXED procedures were used to develop mixed linear models for cyclic 

peak stress measurements and fitted coefficients with the sample treated as a random effect. A 

logarithmic transformation was applied to the raw cyclic stress data before the analysis was 
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performed in order to achieve normality and equal variance (as assessed by model residual 

plots). A Tukey p-value adjustment was implemented for all subsequent comparisons of least 

squares means between the SCPC, isolated cord, and isolated PAC values. 

 

Paired t-tests were performed to assess differences in the percent error of the model predictions 

and the percent error associated with the experimental variability. Statistically significant 

differences were defined as those resulting in p < 0.05. 

 

3.3 Results 

In order to mitigate the effects of post-mortem neural tissue degradation 101,109–112, all 

experimental tests of the SCPC and cord conditions were completed within 5 h of animal 

sacrifice (SCPC: mean 2.8 h, max 3.5 h; cord: mean 4.5 h, max 5 h). Based on average cross-

sectional area measurements, the cord parenchyma represented 94.5% of the total SCPC area 

(84.22 ± 14.05 mm2). The PAC’s mean circumference and thickness were measured to be 22.24 

± 2.71 mm and 0.20 ± 0.04 mm, respectively, resulting in a mean area of 4.57 ± 1.22 mm2. 

 

3.3.1 Cyclic stress response 

At all four cyclic frequencies tested, the PAC exhibited a significantly greater peak stress than 

the SCPC, and the SCPC peak stress was significantly greater than the isolated cord (Fig. 3.3). 

As expected for viscoelastic materials, the peak stress for all conditions increased with increasing 

test frequency (i.e., strain-rate). For the PAC and isolated cord, the quasi-static test stress was 

significantly less than that of the two highest frequency tests (1.6 Hz and 0.16 Hz). Additionally 

for the isolated cord condition, the 0.016 Hz tests was significantly different than the 1.6 Hz and 
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quasi-static test (Fig. 3.3). The increase in stress with increasing test frequency failed to reach 

statistical significance for the SCPC condition. 

 

 

 

 

 

 

To obtain measures of intra-test relaxation, the peak stresses of each cycle were normalized to 

that of the first cycle. For the five cycle tests (those conducted at 1.6 Hz, 0.16 Hz, and 0.016 Hz), 

these data were plotted as a function of cycle number and fit to the power function 𝑦 = 𝐴𝑥𝑏 (Fig. 

3.4). Statistical analysis of the rate (exponential 𝑏 term) revealed the isolated cord experienced 

significantly greater cycle-to-cycle relaxation than the SCPC and PAC at all three frequencies. 

While all conditions displayed decreasing relaxation with increasing test frequency, only the 

isolated cord 1.6 Hz and 0.016 Hz measurements were found to be statistically different. 

Consistent with these results, total intra-test (first to final cycle) relaxation was significantly 

greater for the cord condition than both the SCPC and PAC (Table 3.1). For the two cycle quasi-

static test, total intra-test relaxation of the cord (18.5 ± 4.6%) was significantly greater than the 

Figure 3.3: The average peak stress of each cyclic test frequency (error bars represent standard 
deviations); note the larger y-axis scale for the PAC condition. Like symbols indicate 
significant differences across conditions at the same test frequency whereas  
PAC > SCPC > cord at all four frequencies tested. Like letters indicate significant differences 
across frequencies within a condition with significant strain-rate effects found for the isolated 
cord and PAC but not for the SCPC. 
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relaxation of the SCPC (7.4 ± 2.9%) but not significantly different than that of the PAC (12.6 ± 

5.5%). 

 

 

 

 

 

 

 

 

 

Test Frequency SCPC Cord PAC 

1.6 Hz 9.0 ± 4.8 % 28.7 ± 8.6 % 11.1 ± 8.6 % 

0.16 Hz 11.7 ± 4.7 % 31.5 ± 8.1 % 16.7 ± 10.9 % 

0.016 Hz 13.2 ± 4.7 % 39. 9 ± 9.7 % 19.0 ± 10.9 % 

Table 3.1: Total intra-test relaxation for the three five-cycle tests. At all three test frequencies, 
the isolated cord condition experienced significantly greater relaxation than the SCPC and 
PAC. Data are presented as average ± standard deviation. 

Figure 3.4: Average normalized peak stress per cycle for the three five-cycle tests as well as 
associated power law fits; standard deviations are not included to allow readability of the plot. 
At all three test frequencies, the cord condition exhibited significantly greater cycle-to-cycle 
relaxation than the SCPC and PAC. 
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3.3.2 Viscoelastic modeling 

The direct fit method simultaneously fit the cyclic data well, with average RMSE across all 

samples and test frequencies of 2.44 kPa, 1.75 kPa, and 41.92 kPa for the SCPC, cord, and PAC 

conditions, respectively. These RMSE values represent approximately 6%, 10%, and 8% of the 

SCPC, cord, and PAC cyclic peak stresses, respectively. Statistical analysis of the RMSE 

percentages revealed equivalent fitting ability across all three conditions for the 1.6 Hz, 0.16 Hz, 

and 0.016 Hz tests, while the relative fitting error for the quasi-static cord curves were 

significantly higher than those of the SCPC (p = 0.01). Representative fits of a single sample in 

all three conditions are shown in Fig. 3.5. The resulting fitted coefficients for each condition are 

provided in Table 3.2. Significant differences between the conditions were found for the 𝐶2𝜏1, 𝐶2𝜏4, and 𝐶2∞ fitted coefficients, which describe the quadratic dependence on strain of the 

relaxation modulus components at 𝜏1 = 0.1 s, 𝜏4 = 100 s, and equilibrium. These differences can 

be seen in plots of each Prony series weight (as defined in Eq. (3.5)) as variations of the convex 

or concave strain-dependent response at that time constant (Fig. 3.6). At the shortest time 

constant (𝜏1 = 0.1 s), the large positive 𝐶2𝜏1 term of the SCPC relaxation modulus component is 

reflected as a significantly more concave response than the isolated cord and PAC. At the longest 

time constants (𝜏4 = 100 s and equilibrium), the large negative 𝐶2𝜏4 terms of the PAC relaxation 

modulus component represent a significantly more convex response than the isolated cord at 

both time constants and the SCPC at 𝜏4 = 100 s. 
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 Figure 3.5: Representative non-linear viscoelastic model fits of one sample in all three 
conditions; although all four cycles of each condition were simultaneously fit, the curves 
have been separated to enable visibility of the faster tests. The formulation was able to fit the 
cyclic data well with average RMSE values of approximately 6%, 10%, and 8% of the SCPC, 
cord, and PAC peak stresses. The reduction in stress seen in the 0.16 Hz PAC test was due to 
a slight adjustment of the self-aligning grips and was also reflected in the strain data. 
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(All units MPa) SCPC Cord PAC 𝑪𝟏𝝉𝟏 24.7 ± 13.1 38.9 ± 19.8 219.5 ± 176.1 𝑪𝟐𝝉𝟏 * 4727.7 ± 3926.2 -230.0 ± 352.2 755.7 ± 4296.0 𝑪𝟏𝝉𝟐 21.1 ± 36.0 11.4 ± 9.6 10.0 ± 18.9 𝑪𝟐𝝉𝟐 353.3 ± 979.0 32.6 ± 296.6 821.5 ± 1847.7 𝑪𝟏𝝉𝟑 20.9 ± 32.1 17.2 ± 10.1 82.0 ± 108.9 𝑪𝟐𝝉𝟑 305.9 ± 544.6 -188.6 ± 124.3 1.1 ± 2240.8 𝑪𝟏𝝉𝟒 27.8 ± 23.5 10.4 ± 4.8 212.7 ± 143.4 𝑪𝟐𝝉𝟒 * 80.9 ± 744.8 -108.4 ± 60.2 -1868.4 ± 1424.9 𝑪𝟏∞ 37.1 ± 12.5 1.7 ± 3.9 155.0 ± 45.1 𝑪𝟐∞ * -592.4 ± 242.0 -17.3 ± 50.3 -1432.1 ± 479.9 

Table 3.2: Non-linear viscoelastic model fitted coefficients for all three conditions where 𝐸𝑖 = 𝐶1𝜏𝑖𝜀 + 𝐶2𝜏𝑖𝜀2 (Eq. (3.5)). The terms marked with *, which are associated with the non-

linearity of the relaxation modulus component at that time-constant, were found to be 
significantly different between conditions. Data are presented as average ± standard deviation. 
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To validate the resulting material model for each condition, the average measured strain inputs 

for the independent (i.e., not included in the fitting procedure) 3% and 5% stress-relaxation tests 

were implemented into Eq. (3.3) with the average fitted coefficients. The measured stress 

response as well as that predicted by Eq. (3.3) for each condition and strain magnitude are shown 

in Fig. 3.7. Apart from overpredictions of the acute PAC response, the predictions of all six 

curves fell within 1 standard deviation of the measured stress. The unweighted RMSE for each 

prediction was considerably lower than that of experimental variability (i.e., the RMSE resulting 

Figure 3.6: Plots of each relaxation modulus component as a function of applied strain given 
by the second-order polynomial in Eq. (3.5) and the fitted coefficients in Table 3.2; note the 
larger y-axis scale for the short-term 𝜏 = 0.1 s plot. 
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from 1 standard deviation from the mean). For the SCPC, the RMSE of the predictions for the 

3% and 5% strain tests were approximately 5% and 2% of the peak stress, respectively, 

compared to the 15% and 23% experimental variability recorded for these tests. For the cord, the 

RMSE of the predictions were approximately 3% of the peak stress compared to 20% for the 

observed experimental variability. Finally, the RMSE of the PAC predictions were 

approximately 7% of the peak stress compared to 21% experimental variability. The percent 

error for all six predictions were significantly less than their associated experimental variability 

(p < 0.001 for all). The material models for all three conditions overpredicted the peak stress 

response. The percent error of these overpredictions varied from 2% for the isolated cord 3% 

stress-relaxation response to 32% for the PAC 5% stress-relaxation response (the errors for the 

3%, 5% stress-relaxation predictions are respectively: SCPC: 6%, 18%; cord: 2%, 7%; PAC: 

21%, 32%, respectively). Comparing the average response of each condition, the substantially 

higher peak stress for the PAC and the greater degree of relaxation for the isolated cord noted in 

the cyclic data was also evident in the stress-relaxation data. 
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3.4 Discussion 

It is well known that the predictive accuracy of FE computational models is dependent on how 

accurately the geometries and material properties implemented in the model reflect the native 

condition being simulated. Many models of the spinal cord do not include explicit geometries for 

 Full Test First 2 Seconds 

SCPC 

0.03ε RMSE = 5% 

0.05ε RMSE = 2% 

  

Cord 

0.03ε RMSE = 3% 

0.05ε RMSE = 3% 

  

PAC 

0.03ε RMSE = 8% 

0.05ε RMSE = 7% 

  

Figure 3.7: The non-linear viscoelastic models developed from fits of cyclic data were able to 
predict the average stress-relaxation response of each condition to 3% and 5% applied strains; 
the acute response is shown as a subplot to the right of the complete 100 s test. Apart from an 
over-prediction of the peak PAC stress response to the 5% applied strain, all predictions fell 
within ±1 standard deviation of the average response (shaded area). 
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the innermost meninges, and those which do include what is identified as pia mater often utilize 

linearly elastic material models to describe its behavior, despite experimental evidence that the 

tissue is substantially viscoelastic 59,127. However, with no published viscoelastic models of 

isolated spinal PAC available, researchers are forced to make these simplifications. The current 

study fills this critical gap in the literature by providing a validated non-linear viscoelastic model 

for not only spinal PAC, but also for the isolated cord parenchyma and the SCPC. This study 

also provides the first quantitative comparison of the viscoelastic behavior of these conditions. 

 

The superior stiffness of the spinal PAC relative to the underlying neural tissue has been reported 

as early as the work of Tunturi in the 1970’s 117. Although no study has quantitatively compared 

the mechanical behavior of spinal PAC and isolated cord, comparisons of the SCPC and cord 

have been published. Mazuchowski and Thibault reported an approximate 15-fold decrease in 

longitudinal modulus after ‘‘incision of the pia mater” 105. While the peak stress of the isolated 

cord was found to be significantly lower than the SCPC in this study, the difference between 

these two tissues was not nearly as large as has been previously reported (Fig. 3.3). This 

discrepancy is most likely due to neural tissue degradation over the 48 h between death and the 

mechanical testing reported by Mazuchowski and Thibault 105. Relative to fibrous soft tissues 

(e.g., the PAC), the properties of neural tissues degrade rapidly post-mortem 101,109–112. The 

average 2.5-fold (range: 1.6–3.2) difference in SCPC and cord peak stress observed in this study 

is much closer to that reported by Ozawa et al. for samples tested in transverse tension 

immediately after animal sacrifice 118. 
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The two experimental comparison studies discussed above 105,118 report a single elastic modulus 

for the SCPC and cord. To enable comparison with previous reports of SCPC, cord, and PAC 

tensile elastic moduli, a linear modulus was estimated from the second half of each 5% stress-

relaxation ramp. The estimated SCPC elastic modulus of 2 MPa is in good agreement with other 

studies of the longitudinal tensile response of the tissue 105,108,109, while the estimated PAC elastic 

modulus of 17 MPa is within the range reported by Kimpara et al. for tensile tests at a similar 

strain rate (0.05/sec) 59. As Kimpara et al. separated the PAC into denticulate ligament (elastic 

modulus of 31 MPa), posterior median septum (25 MPa), and posterolateral sulcus (11 MPa) 

sections prior to mechanical tests, it is difficult to directly compare these values to that estimated 

for the intact PAC. The 0.9 MPa estimated modulus for the cord is consistent with the response 

of isolated white and gray spinal matter 94,95,114 but is an order of magnitude greater than that 

reported by Mazuchowski and Thibault for SCPC samples with ‘‘incised pia mater” 105. As 

stated above, the very small elastic modulus observed in that study may be due to prolonged 

post-mortem time prior to mechanical testing. 

 

Examining the relative cycle-to-cycle relaxation behavior, it is clear the PAC significantly 

reduces SCPC relaxation (Fig. 3.4). It may be expected that the response of the SCPC would 

display gestalt (i.e., averaged) viscoelastic character relative to its components, as observed for 

the peak stress response. However, as can be seen in Fig. 3.4 and Table 3.1, the SCPC 

experiences less relaxation than both the PAC and cord at all test frequencies. This suggests the 

importance of the interaction between the PAC and cord in the viscous response of the SCPC. In 

tests of the SCPC, any circumferential pre-tension in the PAC further resists elongation by 

limiting the mid-substance contraction (i.e., Poisson’s effect). Indeed, a slight opening of the 
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SCPC was noted when the initial longitudinal incision in the PAC was performed. Because the 

PAC was tested as a sheet, the contribution of circumferential tension was lost, and therefore, not 

reflected in the relaxation behavior of the isolated PAC. These results are consistent with the 

observation of Ozawa et al. that the stiff PAC provides a constraint on the surface of the cord, 

which prevents changes in circumference. Furthermore, the significant cord relaxation is also in 

agreement with Ozawa’s conclusion that the PAC “produces a large strain energy that is 

responsible for shape restoration following decompression” 118. 

 

The relaxation modulus component plots in Fig. 3.6 demonstrate the influence of the PAC on the 

viscoelastic response of the SCPC is most evident in the acute time-frame at higher applied strain 

magnitudes. At the 𝜏1 = 0.1 s and 𝜏2 = 1 s time-constants, the relaxation modulus of the SCPC is 

in better agreement with the PAC than the isolated cord at almost all applied strain magnitudes. 

However, at longer time constants, the SCPC appears to transition from a PAC-dominated 

response to a more PAC-independent (i.e., similar to the isolated cord) response. Based on the 

relative trajectories of the 𝜏1 = 0.1 s and 𝜏2 = 1 s time-constant curves, the divergence of the 

SCPC and isolated cord short-term behavior increases with increasing applied strain. This 

suggests the PAC is critical to the SCPC response under injurious loading scenarios which occur 

on the order of milliseconds to seconds and result in greater applied strains than those utilized in 

this study. 

 

As shown in Fig. 3.7, the isolated cord model best predicted the associated stress-relaxation 

response while the PAC model prediction displayed the greatest error, with over-prediction of 

the short-term stress response at both strain magnitudes. Comparing the average stress-relaxation 
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response of the cord and PAC conditions, it appears the non-linear viscoelastic formulation 

utilized in the current work is best suited for modeling a gradual, more consistent, relaxation 

response, such as that displayed by the isolated cord. The rapid reduction of stress followed by 

very little further relaxation seen in the PAC response was not as well predicted by its fitted 

model. While the SCPC experienced less overall relaxation, the reduction in stress was more 

consist over the 100 s tests as compared to the PAC, which was reflected as better overall 

predictions. One possible method for improving the predictions of all three conditions would be 

to utilize different time constants for the relaxation modulus Prony series. Decadal time constants 

from 0.1 to 100 s were chosen in an attempt to capture both the short-term and long-term 

response, but it is possible that differences in composition and structure between the three 

conditions result in different relaxation time distribution spectra 167. Indeed, the average stress-

relaxation responses shown in Fig. 3.7 support the hypothesis of distinct relaxation domains. 

Based on these results, it is expected that the use of smaller time-constants may facilitate 

corrections of the acute over-predictions seen in Fig. 3.7. 

 

Overall, it is notable that the use of single cycle stress-strain data from four moderate strain-rate 

tests were able to predict independent viscoelastic data with less than 8% error. One significant 

advantage of the presented formulation over previously used characterization methods is the 

ability to capture non-linear viscoelastic behavior from cyclic tests to a single strain-magnitude 

as opposed to longer stress-relaxation tests to various strain levels 148. Multiple cycles were 

collected at each frequency to enable comparisons of viscous behaviors but fits of the initial 

cycle only proved to be the more predictive of the stress-relaxation response than fits of the final 

cycle only or all test cycles. This can be expected as the ramp of the stress-relaxation test is most 
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similar to the initial cycle which does not experience the intra-test preconditioning of previous 

cycles. The use of a single initial cycle also promotes testing and fitting efficiency as it negates 

the need for extensive testing protocols and reduces the computational costs associated with 

fitting additional stress-strain data. 

 

There are a number of limitations of the presented work which should be noted. Firstly, the 

strain-magnitudes (3%–5%) and strain-rates (quasi-static to 20%/sec) utilized are well below that 

expected to occur during SCI 44,153,161,162. Accordingly, the developed non-linear viscoelastic 

models are only valid over these conditions and may not produce accurate predictions of the 

response to injurious scenarios. As the results of this initial study demonstrate the significance of 

the PAC to the viscoelastic behavior of the spinal cord, additional characterization of the isolated 

PAC and cord under injurious loads and loading-rates is strongly encouraged. A second 

limitation is the sequential nature of the characterization protocol; SCPC testing must be 

completed before isolated cord testing can begin, which precludes randomization of the testing 

procedure. As previously stated, the timing of neural tissue characterization is critical due to 

relatively quick post-mortem degradation 101,109–112. To ensure the differences in SCPC and cord 

behavior observed were not simply due to differences in time post-mortem, an additional pilot 

sample was mechanically tested in a shorter time frame. Only a subset of the SCPC tests were 

performed to enable completion of cord testing within 3 h following animal sacrifice. The peak 

stresses and normalized relaxation behavior of this sample fell within one standard deviation of 

those tested within 5 h, suggesting the effects of differing SCPC and cord testing time were 

minimal. Ideally, in-vivo data of all three conditions would be used for comparison as previous 

data have shown differences between the ex-vivo and in-vivo SCPC mechanical behavior 69,91,139. 
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However, removal of the PAC in-vivo would not only be extremely experimentally challenging 

but would also lead to localized neural tissue death due to the vascular function of the tissue. 

 

3.4.1 Conclusions 

In conclusion, this work represents an important contribution to the knowledge of spinal and 

meningeal mechanics as it represents the first study to compare the SCPC, isolated cord, and 

PAC under the same testing conditions. The results show the spinal cord parenchyma has very 

little inherent stiffness and is reliant on the PAC for rigidity and recovery from loading, 

consistent with the limited previous works 105,118. Despite composing only 5.5% of the SCPC 

cross-section, the intact PAC significantly influences both its elastic and viscous behavior, 

especially in the acute time frame, which may have important implications for FE modeling of 

SCI. The effect of strain-rate, cycle-to-cycle relaxation, and strain-dependence of relaxation 

modulus components observed for all three conditions add to already compelling evidence of 

time-dependent SCPC, PAC, and isolated cord behavior 22,25,59,90,94,113,132. These results 

emphasize the importance of using viscoelastic material models, such as the validated models 

presented herein, in FE studies of the spinal cord. Future work will include the development of 

user subroutines for the implementation of the presented material models into FE software in 

order to study the effect of structural (e.g., inclusion of an explicit PAC geometry) and material 

(e.g., non-linear viscoelastic behavior) complexities on resultant cervical spine model 

predictions. 
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CHAPTER 4: COMPARING PREDICTIVE ACCURACY AND COMPUTATIONAL 

COST FOR VISCOELASTIC MODELING OF SPINAL CORD TISSUES 3  

 

4.1 Introduction 

The significant neurological, psychological, and financial losses associated with spinal cord 

injuries (SCI) have motivated substantial research efforts on their prevention, cause, and 

treatment. However, in order to draw valid conclusions from clinical observation, experimental 

animal modeling, and computational simulation, knowledge of the material properties of the 

relevant biological tissues is required. Accordingly, a variety of experimental techniques have 

been employed to examine the mechanical behavior of isolated neural tissues (e.g., gray and 

white matter of the spinal cord), meningeal tissues (e.g., pia-arachnoid-complex), and 

combinations thereof. These studies have demonstrated the important viscoelastic nature of the 

tissues, which is manifested as creep 100, stress-relaxation 22,25,91,94,108,113,131,132,139,168, hysteresis 

69,88,90,114, and strain-rate dependent stiffness 22,25,38,59,94,108,113,168 behaviors. As these data have 

progressively elucidated more advanced knowledge of these temporal material behaviors, the 

material formulations utilized to model neural tissues have concomitantly increased in 

sophistication from linear elastic to hyperelastic to viscoelastic. While it is now widely accepted 

that they exhibit time-dependent behavior, there is limited quantitative information regarding the 

accuracy and computational resource trade-offs of using linear viscoelastic (LV), quasi-linear 

viscoelastic (QLV), or (fully) non-linear viscoelastic (NLV) formulations.  

                                                      

3 This chapter is under review as a fundamental research article to the International Journal for 

Numerical Methods in Biomedical Engineering. 
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Reports of tensile testing of the spinal cord with intact leptomeninges (i.e., spinal-cord-pia-

arachnoid-construct, SCPC) are relatively common in the literature. Several publications have 

provided explicit experimental evidence of the NLV nature of the SCPC because its relaxation 

behavior has been rigorously shown to be dependent on the applied strain magnitude 91,132,139. 

Chang et al. has previously reported a transition from LV to NLV behavior around 1% strain for 

the in-vivo feline SCPC 91. However, QLV formulations remain the default for experimental 

characterization and computational modeling of the SCPC 44,45,108,143,169. This discrepancy may 

be due to the relative ease of model development and implementation in commercial finite 

element (FE) software packages. In addition, the observed reliance on QLV is also likely due to 

the lack of information about how the choice of viscoelastic formulation affects resultant model 

predictions.  

 

Compared to the SCPC, viscoelastic characterization of its isolated components, namely the 

neural tissue (i.e., cord) and the pia-arachnoid-complex (PAC), is rare. Due to this paucity of 

data, determining the appropriate level of material model complexity is even more challenging. 

Samples of isolated spinal neural tissue have been tested in unconfined compression 113 and axial 

tension 94,168, but the NLV behavior of this tissue has not been explicitly demonstrated to-date. 

Accordingly, QLV formulations are typically used to characterize and model spinal white matter 

and gray matter 57,94,97,113,143. Information on isolated PAC behavior is even more limited; with 

the exception of one recent publication 168, it has been modeled exclusively as linearly elastic 

57,59,93,94,97,98. Jin et al. has provided evidence of, and material models for, the viscoelastic 

behavior of cranial PAC 123,163, but it is unknown if differences in cranial and spinal PAC 

structure prevent a direct translation of results.  
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To the authors’ knowledge, there have been no publications to-date which quantitatively 

compare the abilities of LV, QLV, and NLV formulations to fit and predict the temporal 

mechanics of the SCPC, isolated cord, or PAC. Without this information, researchers interested 

in modeling SCI are unable to make fully informed decisions regarding the balance of accuracy 

and computational efficiency appropriate for their specific modeling objectives. Therefore, the 

goal of this work was to critically appraise the trade-offs in predictive accuracy and 

computational efficiency associated with the use of more sophisticated viscoelastic formulations 

in fitting dynamic cyclic experimental data and predicting independent stress-relaxation data for 

all three tissue conditions (SCPC, isolated cord, and PAC).  

 

4.2 Materials and Methods 

4.2.1 Experimental testing 

Stress-strain data collected from ovine SCPC, isolated cord, and PAC as part of a previous study 

were used for the current analysis. While the details of the previous study can be found 

elsewhere 168, the experimental testing technique is briefly described here. Eight ovine cervical 

spines were collected immediately following animal euthanasia (for unrelated studies). From 

each spine, a single SCPC sample measuring approximately 60mm in length was extracted and 

tested in uniaxial tension as detailed below. Following the completion of SCPC testing, the PAC 

was circumferentially removed from the surface of the construct. The resulting planar sheet of 

PAC was placed between pieces of saline-soaked gauze and stored in an airtight container while 

the same mechanical testing procedure was performed on the isolated cord. To minimize the 

effects of post-mortem neural tissue degradation 101,109–112, all SCPC and isolated cord 

mechanical tests were completed within 5 hours of animal sacrifice. Following the completion of 
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isolated cord testing, the uniaxial test stand configuration was modified to allow for the same 

series of mechanical tests to be performed on the PAC sheet. 

 

The mechanical testing procedure for all three tissue conditions (SCPC, isolated cord, and PAC) 

consisted of 100 cycles of preconditioning to 5% engineering strain, two stress-relaxation tests, 

and four dynamic cyclic tests. Experiments were performed in a randomized order with a 

minimum of 4 minutes of unloaded recovery and hydration between each test. For the stress-

relaxation procedures, the samples were strained to 3% and 5% engineering strain at a ramping 

rate of 6mm/s and allowed to relax for 100 seconds. For the dynamic cyclic procedures, the 

samples were cycled to 5% engineering strain at four frequencies: 1.6Hz, 0.16Hz, 0.016Hz, and 

0.0016Hz. The 1.6Hz, 0.16Hz, and 0.016Hz tests consisted of five cycles, while the lowest 

frequency (i.e., quasi-static) test consisted of only two cycles to minimize testing time.  

 

4.2.2 Viscoelastic modeling 

4.2.2.1 Model fitting 

For each sample tissue condition, the dynamic cyclic stress-strain-time data were simultaneously 

fit to NLV, QLV, and LV formulations using the direct fit method. As detailed previously 

139,148,168, the direct fit method is a viscoelastic characterization technique which leverages the 

unique properties of the Prony series to avoid storage of the stress at all previous points of the 

loading history. For each viscoelastic formulation, MATLAB’s (R2018a, Mathworks, Natick, 

MA) fmincon function was used to determine the set of fitted coefficients which minimized the 

sum of the root mean squared errors (RMSE) across all four frequency curves included in the fit. 
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The fits were performed using parallel-processing with 2 cores (Intel Core i5-6300U processor) 

on a laptop computer with 8GB of installed RAM.  

 

4.2.2.2 Model validation 

The fitted coefficients for each formulation were averaged across similar tissue conditions to 

create a total of 9 viscoelastic models, one for each combination of formulation complexity 

(NLV, QLV, LV) and tissue condition (SCPC, cord, PAC). The ability of these material models, 

based on fits of dynamic cyclic data, to predict independent viscoelastic behavior was assessed 

via RMSE and percent error measures between the average experimental stress-relaxation 

response and that predicted by the material model. This validation procedure was performed in 

MATLAB by directly applying the average strain histories and fitted coefficients to the same 

code used for fitting with the time required to perform these calculations recorded. 

 

In order to demonstrate FE implementation of each formulation, this validation procedure was 

also performed in Abaqus/Explicit (version 2018, Dassault Systemes Simulia Corp., Johnston, 

RI). The constitutive behavior was defined as VUMAT user subroutines, with a subroutine 

written for each viscoelastic formulation. For each tissue condition, a single one-dimensional 

two-node linear-displacement truss element (T3D2) was created and assigned length and cross-

sectional area dimensions based on average experimental measurements. A density of 1000 

kg/m3 was utilized for all three tissue conditions 46,92,102,143,170. One end of the model was pinned 

in the axial direction while an axial displacement was applied to the other end to match the 

experimentally measured strain histories. The computational modeling was performed on a 
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Linux-based workstation with 126GB of installed RAM using the 16 cores of an Intel Xeon E5-

2683 v4 processor. 

 

4.2.2.3 Linear Viscoelastic (LV) Formulation 

LV models assume a linear relationship between stress and strain at any given time (i.e., the 

elastic and viscous aspects of a material’s behavior are linear). The general uniaxial response of 

an LV material may be modeled using the hereditary, or convolution, integral given as 149–151: 

 𝜎(𝑡) = ∫𝐸(𝑡 − 𝜏) 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏𝑡
0 . (4.1) 

where 𝜎 is engineering stress, 𝜀 is engineering strain, 𝑡 is time, 𝜏 is a time variable of integration, 

and 𝐸(𝑡) is the LV strain-independent relaxation modulus. All viscoelastic formulations 

presented herein utilized a 4-term Prony series with fixed decadal time constants to represent the 

continuous relaxation modulus: 𝜏1 = 0.1, 𝜏2 = 1, 𝜏3 = 10, and 𝜏4 = 100 seconds. For the case of 

LV, the relaxation modulus was represented by the following Prony series: 

 𝐸(𝑡) = 𝐸∞ +∑𝐸𝑖𝑒−𝑡 𝜏𝑖⁄4
𝑖=1 , (4.2) 

where 𝐸∞ is the steady-state relaxation coefficient and 𝐸𝑖 is the Prony coefficient associated with 

the time constant 𝜏𝑖. The direct fit method 139,148,168 allows for stress after time increment ∆𝑡 (𝜎[𝑡 + ∆𝑡]) to be defined in terms of a history state variable, ℎ𝑖(𝑡), which is recursively updated 

at every time step: 
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𝜎(𝑡 + ∆𝑡) = 𝐸∞𝜀(𝑡 + ∆𝑡) +∑{(ℎ𝑖(𝑡))(𝑒−∆𝑡 𝜏𝑖⁄ ) + 𝐸𝑖𝜏𝑖[1 − 𝑒−∆𝑡 𝜏𝑖⁄ ] [∆𝜀∆𝑡]}4
𝑖=1 , (4.3) 

 ℎ𝑖(𝑡) = ∫{𝐸𝑖𝑒−(𝑡−𝜏) 𝜏𝑖⁄ } [𝑑𝜀(𝜏)𝑑𝜏 ] 𝑑𝜏𝑡
0 . (4.4) 

Therefore, the LV formulation contained a total of five fitted coefficients (𝐸1, 𝐸2, 𝐸3, 𝐸4, 

and 𝐸∞) which were constrained to be positive in the fitting procedure in order to satisfy 

thermodynamic restrictions. 

 

4.2.2.4 Quasi-linear viscoelastic (QLV) formulation 

QLV formulations enable the inclusion of elastic non-linearity by allowing the elastic and 

viscous aspects of the response to be modeled separately. As proposed by Fung 142, the uniaxial 

QLV formulation takes the form: 

 𝜎[𝜀(𝑡), 𝑡] = ∫𝐺(𝑡 − 𝜏) 𝑑𝜎𝑒(𝜀)𝑑𝜀 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏𝑡
0 , (4.5) 

where 𝜎𝑒(𝜀) represents the instantaneous non-linear elastic (i.e., hyperelastic) behavior and 𝐺(𝑡) 
is the reduced relaxation modulus describing the strain-independent viscous behavior. In this 

study, the hyperelastic behavior was modeled using the 1-term Ogden constitutive equation 

113,171: 

 𝜎𝑒(𝜀) = 2𝜇𝛼 [(𝜀 + 1)𝛼−1 − (𝜀 + 1)−𝛼 2⁄ −1], (4.6) 
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such that 

 𝜎𝑒(𝜀)𝑑𝜀 = 2𝜇𝛼 [(𝛼 − 1)(𝜀 + 1)𝛼−2 + (1 + 𝛼2) (𝜀 + 1)−𝛼 2⁄ −2], (4.7) 

where the Ogden fitted parameters 𝜇 and 𝛼 represent the shear modulus and non-linearity, 

respectively. For the case of QLV, the reduced relaxation modulus, 𝐺(𝑡), was modeled using the 

following Prony series: 

 𝐺(𝑡) = 𝐺∞ +∑𝐺𝑖𝑒−𝑡 𝜏𝑖⁄4
𝑖=1 , (4.8) 

where 𝐺𝑖 is the Prony coefficient associated with the time constant 𝜏𝑖 and 𝐺∞ is the steady-state 

relaxation coefficient. Equation 4.8 is subject to the constraint 

 𝐺1 + 𝐺2 + 𝐺3 + 𝐺4 + 𝐺∞ = 1. (4.9) 

Therefore, the specific QLV formulation used in this study was: 

𝜎[𝜀(𝑡), 𝑡] = 2𝜇𝛼 [(𝛼 − 1)(𝜀 + 1)𝛼−2 + (1 + 𝛼2) (𝜀 + 1)−𝛼 2⁄ −2] 
∗ ∫ {𝐺∞ +∑𝐺𝑖𝑒−(𝑡−𝜏) 𝜏𝑖⁄4

𝑖=1 } 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏𝑡
0 . (4.10) 

Following the same direct fit method derivation for LV, the current stress and history state 

variable [ℎ𝑖(𝑡)] for the QLV formulation were defined as:  
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𝜎[𝜀(𝑡 + ∆𝑡), 𝑡 + ∆𝑡] = 2𝜇𝛼 [(𝛼 − 1)(𝜀 + 1)𝛼−2 + (1 + 𝛼2) (𝜀 + 1)−𝛼 2⁄ −2] 
∗ {𝐺∞𝜀(𝑡 + ∆𝑡) +∑{(ℎ𝑖(𝑡))(𝑒−∆𝑡 𝜏𝑖⁄ ) + 𝐺𝑖𝜏𝑖[1 − 𝑒−∆𝑡 𝜏𝑖⁄ ] [∆𝜀∆𝑡]}4

𝑖=1 }, 
(4.11) 

 ℎ𝑖(𝑡) = ∫{𝐺𝑖𝑒−(𝑡−𝜏) 𝜏𝑖⁄ } [𝑑𝜀(𝜏)𝑑𝜏 ] 𝑑𝜏𝑡
0 . (4.12) 

Therefore, the QLV formulation contained a total of seven fitted coefficients (𝜇, 𝛼, 𝐺1, 𝐺2, 𝐺3, 𝐺4, and 𝐺∞) which were constrained to be positive, with the relaxation coefficients 

also subjected to the constraint given in Eq. (4.9). 

 

4.2.2.5 Non-linear Viscoelastic (NLV) Formulation 

NLV models allow for non-linearity in both the elastic and viscous aspects of a material’s 

behavior. Unlike QLV models where these aspects are described by separate functions, the NLV 

relaxation modulus is a non-separable function of strain and time. The uniaxial response of an 

NLV material may be represented using a similar equation as that presented for LV 149–151:  

 𝜎[𝜀(𝑡), 𝑡] = ∫𝐸[𝜀(𝜏), 𝑡 − 𝜏] 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏𝑡
0 , (4.13) 

where 𝐸(𝜀, 𝑡) is the relaxation modulus that simultaneously describes both elastic and viscous 

(i.e., time-dependent) non-linearities. For the case of NLV, the Prony series took the following 

form: 
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 𝐸[𝜀(𝑡), 𝑡] = 𝐸∞(𝜀) +∑𝐸𝑖(𝜀)𝑒−𝑡 𝜏𝑖⁄4
𝑖=1 , (4.14) 

where 𝐸∞(𝜀) is the steady-state strain-dependent relaxation modulus and 𝐸𝑖(𝜀) is the strain-

dependent Prony weight associated with the time constant 𝜏𝑖. Following the same procedure as 

above, the current stress was defined in terms of a history state variable, ℎ𝑖[𝜀(𝑡), 𝑡], which was 

recursively updated at every time step: 

𝜎[𝜀(𝑡 + ∆𝑡), 𝑡 + ∆𝑡] = [𝐸∞(𝜀)][𝜀(𝑡 + ∆𝑡)] +∑{(ℎ𝑖[𝜀(𝑡), 𝑡])(𝑒−∆𝑡 𝜏𝑖⁄ ) + [𝐸𝑖(𝜀)]𝜏𝑖[1 − 𝑒−∆𝑡 𝜏𝑖⁄ ] [∆𝜀∆𝑡]}4
𝑖=1 , (4.15) 

 ℎ𝑖[𝜀(𝑡), 𝑡] = ∫[𝐸𝑖(𝜀)][𝑒−(𝑡−𝜏) 𝜏𝑖⁄ ] [𝑑𝜀(𝜏)𝑑𝜏 ] 𝑑𝜏𝑡
0 . (4.16) 

The strain-dependence of the five Prony series weights [𝐸𝑖(𝜀) and 𝐸∞(𝜀)] were defined as 

second-order polynomials:  

 𝐸(𝜀) = 𝐶1𝜀 + 𝐶2𝜀2 
(4.17) 

where 𝐶1𝜏𝑖 and 𝐶2𝜏𝑖 are fitted coefficients defining the linear and quadratic strain dependence of 𝐸𝑖, respectively. Thus, a total of ten fitted coefficients were obtained for the NLV formulation. 

To satisfy thermodynamic restrictions, each Prony weight function [𝐸(𝜀)] was constrained to be 

positive and monotonically increasing over the strain range of the fits. 
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4.2.3 Statistical analysis 

All statistical analyses were performed using JMP statistical software (version 13.0.0, SAS 

Institute Inc., Cary, NC). To determine differences in formulation fitting ability, linear mixed 

models with fixed (formulation, cyclic frequency, formulation-frequency interaction) and 

random (sample, sample-test interaction) effects were used to compare curve fit RMSE values. 

The same procedure with a single fixed effect was used to determine any differences in fitting 

time between formulations. To determine differences in fitted coefficients across tissue 

conditions, linear mixed models with condition, coefficient, and their interaction treated as fixed 

effects and sample as a random effect were utilized. For the case of the QLV and LV 

formulations, the fitted coefficients were square root transformed before statistical modeling to 

improve residual normality and distribution. To statistically compare the ability of each 

viscoelastic formulation to predict important features of the stress-relaxation response, the 

predicted peak stress, equilibrium stress (i.e., that at 100 seconds), and percent relaxation of each 

viscoelastic prediction were compared to that of each experimental sample. One-way repeated 

measures ANOVAs were then used to compare the absolute errors of each viscoelastic 

formulation for each tissue condition, strain-magnitude combination. Tukey HSD p-value 

corrections were used for multiple comparisons. 

 

4.3 Results 

4.3.1 Dynamic cyclic data fits 

For the SCPC condition, the NLV and QLV formulations fit the data equally well with an 

average RMSE across all samples and cyclic frequencies of 2.4 kPa (approximately 6% of the 

average peak stress). However, the RMSE of the LV formulation was significantly larger than 
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both the NLV (p < 0.01) and QLV formulations (p < 0.01) and averaged 4.2 kPa. The same 

pattern was observed for the PAC condition, where the NLV and QLV formulation fits resulted 

in average RMSE values of approximately 41 kPa (8% of peak stress). The LV formulation fits 

had an average RMSE of 58 kPa, which was significantly greater than the other two formulations 

(p < 0.01 for both comparisons). For the isolated cord, the QLV formulation fit the cyclic data 

with a significantly lower RMSE compared to the NLV formulation (1.4 kPa vs. 1.7 kPa, p = 

0.01), while the LV RMSE (1.6 kPa) was not significantly different than the NLV or QLV 

RMSE values. The 1.4 kPa RMSE of the QLV formulation represented approximately 9% of the 

average peak stress of the cord condition. Representative fits of each viscoelastic formulation are 

provided as supplemental figures C1 – C3 in Appendix C. For all three tissue conditions, the 

NLV fits required significantly longer computational run times than the QLV and LV fits (p < 

0.01 for all six comparisons). Across all tissue conditions, LV fits were accomplished within an 

average of 30-40 seconds, the QLV fits were accomplished within an average of 1-2 minutes, 

while the NLV fits were accomplished in an average of 1 hour (with a maximum time of 1.7 

hours) using two parallel processors. 

 

The average fitted coefficients for the QLV and LV formulations are given in Table 4.1 and 

Table 4.2, respectively (NLV characterization can be found in 168). For the QLV formulation, 

significant differences between tissue conditions were found for the Ogden hyperelastic 

parameters but not the reduced relaxation modulus coefficients. The fitted shear modulus (𝜇) was 

significantly greater for the PAC than the SCPC and cord (both p < 0.01). The fitted term 

representing the non-linearity of the hyperelastic response (𝛼) was found to be greatest for the 

SCPC (p < 0.01 for both PAC and cord comparisons), followed by the cord, which was 
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significantly greater than the PAC (p = 0.02). For the LV formulation, all relaxation modulus 

fitted coefficients except 𝐸2 were significantly higher for the PAC than the other two tissue 

conditions (all comparisons p < 0.01 except 𝐸3 PAC vs. Cord p = 0.02). The steady-state 

relaxation modulus term, 𝐸∞, of the SCPC was also significantly greater than that of the cord (p 

= 0.03). 

 

 

 

 

(unitless unless noted) SCPC Cord PAC 𝝁 (MPa) * 0.4 ± 0.2 0.3 ± 0.1 3.6 ± 1.0 𝜶 * 54.9 ± 15.2 22.9 ± 6.0 18.8 ± 12.3 𝑮𝟏 0.52 ± 0.06 0.61 ± 0.11 0.44 ± 0.06 𝑮𝟐 0.09 ± 0.11 0.09 ± 0.10 0.05 ± 0.10 𝑮𝟑 0.08 ± 0.09 0.20 ± 0.09 0.07 ± 0.11 𝑮𝟒 0.14 ± 0.07 0.09 ± 0.04 0.23 ± 0.14 𝑮∞  0.17 ± 0.10 0.01 ± 0.03 0.21 ± 0.09 

(All units MPa) SCPC Cord PAC 𝑬𝟏 * 0.89 ± 0.32 0.64 ± 0.33 6.61 ± 2.02 𝑬𝟐 0.33 ± 0.32 0.11 ± 0.10 0.93 ± 2.13 𝑬𝟑 * 0.16 ± 0.21 0.24 ± 0.14 1.75 ± 1.67 𝑬𝟒 * 0.39 ± 0.24 0.13 ± 0.05 3.81 ± 2.38 𝑬∞ * 0.49 ± 0.15 0.02 ± 0.07 3.46 ± 0.84 

Table 4.1: Fitted coefficients for the QLV formulation where 𝜇, 𝛼 are the Ogden hyperelastic 
model parameters as defined in Eq. (4.7) and 𝐺𝑖 represent the coefficients of the reduced 
relaxation modulus as defined in Eq. (4.9). Significant differences between tissue conditions 
are indicated with * symbols. 

Table 4.2: Fitted coefficients for the LV formulation where 𝐸𝑖 represent the coefficients of the 
relaxation modulus as defined in Eq. (4.15). Significant differences between tissue conditions 
are indicated with * symbols. 
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4.3.2 Stress-relaxation predictions 

To differentiate acute and long-term predictive accuracy, two RMSE values were calculated 

between each model prediction and the average stress-relaxation response: (1) the unweighted 

RMSE of the first two-seconds and (2) the weighted RMSE (wRMSE) of the remaining 98-

seconds according to 145,146,172:  

 𝑤(𝑡∗) = 14 (𝑒−𝑡∗ 𝜏1⁄ + 𝑒−𝑡∗ 𝜏2⁄ + 𝑒−𝑡∗ 𝜏3⁄ + 𝑒−𝑡∗ 𝜏4⁄ ). (4.18) 

where 𝑡∗ is the time relative to the end of the two-second acute phase.  

 

The RMSE values are reported for both the 3% strain and 5% strain predictions obtained from 

both MATLAB and Abaqus FE modeling in Table 4.3. Figures 4.1 – 4.6 show the acute 

viscoelastic predictions while supplemental Figs. C4 – C9 (in Appendix C) show predictions of 

the entire 100-second test. 

 

4.3.2.1 SCPC 

Predictions of the acute SCPC response to the 5% applied strain history are shown in Fig. 4.1A, 

with the associated percent residuals of each prediction shown in Fig. 4.1B. For both MATLAB 

and FE predictions, the acute response was equally well-predicted by the QLV and NLV 

formulations, while the LV formulation RMSE values were approximately 1.5 times greater. 

Examining only the prediction of average peak stress, the QLV formulation over-predicted the 

average peak stress by approximately 10% and the LV formulation under-predicted the average 

peak stress by a similar degree. The NLV formulation over-predicted the average peak stress by 

approximately 17%, however there were no statistically significant differences in the percent 
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errors of individual sample peak stresses (p > 0.75). According to both MATLAB and FE 

predictions, the long-term response to the 5% applied strain was best predicted by the NLV 

formulation, followed by the LV formulation and then the QLV formulation. The extent of 

individual sample relaxation (35 ± 11% of peak stress) was equally well-predicted by the three 

formulations (p = 0.20). Similarly, there was no significant difference between viscoelastic 

formulations in their ability to predict the final (i.e., equilibrium) stress value of individual 

samples (p = 0.47). 

 

The predictions (and associated normalized residuals) of the acute SCPC response to the 3% 

applied strain history are shown in Fig. 4.2. In contrast to the 5% applied strain case, the NLV 

formulation predicted the 3% acute response better than the QLV formulation, which in turn 

outperformed the LV formulation in both the MATLAB and FE procedures. Examining only the 

average peak stress predictions, all viscoelastic formulations resulted in over-predictions, with 

the LV demonstrating significantly greater errors than the other two formulations (MATLAB 

percent errors: LV > QLV p = 0.015, LV > NLV p = 0.020; FE percent errors: LV > QLV p = 

0.024, LV > NLV p = 0.011). Also in contrast to the 5% strain case, the long-term response was 

best predicted in both MATLAB and Abaqus by the LV formulation, followed by the NLV 

formulation, and then the QLV formulation. However, percent errors in the predictions of 

relaxation extent (experimental average of 27 ± 4% of peak stress) were significantly greater for 

the LV formulation, followed by the QLV formulation, and then the NLV formulation (p < 0.001 

for all comparisons under both prediction methods). As with the 5% strain magnitude, there was 

no significant difference between viscoelastic formulations in their ability to predict the final 

(i.e., equilibrium) stress value of individual samples (p > 0.50). 
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Figure 4.1: Predictions of the acute SCPC response to the 5% applied strain history (A) and 
the normalized residuals of each prediction (B). Over this range, the RMSE of the NLV and 
QLV formulations were approximately equivalent while the LV error was greater.  

A 

B 
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Figure 4.2: Predictions of the acute SCPC response to the 3% applied strain history (A) and 
the normalized residuals of each prediction (B). Over this range, the RMSE of the NLV 
formulation prediction was lower than the QLV and LV formulations. 
 

A 

B 
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4.3.2.2 Cord 

The predictions of the acute stress-relaxation response of the isolated cord to the 5% applied 

strain are shown in Fig. 4.3. Unlike the SCPC, the acute and long-term cord response was best 

predicted by the LV formulation, followed by the QLV formulation, and then the NLV 

formulation. The acute RMSE values for the LV and QLV formulation were similar, but the 

wRMSE values of the long-term response were approximately 2.5 times greater for the QLV 

formulation. The average peak stress was best predicted by the QLV formulation, followed by 

the NLV formulation, and then the LV formulation, but there was no significant difference in the 

percent errors in individual sample peak stress predictions (p > 0.096). There was also no 

significant difference in the prediction error of individual sample relaxation extent (experimental 

average 71 ± 7%, p = 0.81). The prediction results for the acute and long-term response to the 

3% applied strain followed a different pattern than the 5% case (Fig. 4.4). The NLV formulation 

predicted the acute response best, followed by the QLV formulation, and then the LV 

formulation. The over-predictions of average peak stress also followed this pattern, although the 

differences in percent error for individual sample peak stresses was not significant across all 

viscoelastic formulations (p > 0.149). Similarly, the long-term response was best predicted by the 

NLV formulation, followed by the QLV formulation, and then the LV formulation using both 

prediction methods, but there was no significant difference in formulation ability to predict 

individual sample relaxation extent (60 ± 10%, p = 0.96). For both strain magnitudes there was 

no significant difference in individual final stress value prediction errors (5%: p = 0.09; 3%: p = 

0.23). 
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Figure 4.3: Predictions of the acute isolated cord response to the 5% applied strain history (A) 
and the normalized residuals of each prediction (B). Over this range, the RMSE of the LV 
formulation prediction was lower than the QLV and NLV formulations. 
 

A 
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Figure 4.4: Predictions of the acute isolated cord response to the 3% applied strain history (A) 
and the normalized residuals of each prediction (B). Over this range, the RMSE of the NLV 
formulation prediction was lower than the QLV and LV formulations. 

A 

B 
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4.3.2.3 PAC 

The predictions of the isolated PAC acute stress-relaxation response to the 5% and 3% applied 

strain histories are shown in Figs. 4.5 and 4.6, respectively. The 5% average stress-relaxation 

response was best predicted by the LV formulation, followed by the QLV formulation, and then 

the NLV formulation according to all measures of predictive accuracy. The predictions of 

average peak stress followed the same pattern, with over-predictions increasing with increasing 

model complexity. Analysis of percent errors of individual sample peak stress predictions 

showed the NLV formulation prediction to be significantly worse than the LV formulation in 

MATLAB (p = 0.046). However, interestingly, when examining the percent errors related to 

individual sample relaxation, the QLV formulation best predicted the relaxation extent 

(experimental average 39 ± 13%), followed by the LV formulation, and then the NLV 

formulation. For the MATLAB predictions, the NLV formulation errors were significantly 

greater than the other two formulations (p < 0.001 for QLV comparison and p = 0.024 for LV 

comparison). For the FE predictions, the QLV formulation errors were significantly less than the 

other two formulations (p < 0.001 for NLV comparison and p = 0.034 for LV comparison). The 

prediction accuracy measures for the 3% applied strain followed a different pattern than the 5% 

case, with the QLV formulation resulting in the best predictions followed by the NLV 

formulation, and then the LV formulation using both prediction methods. The average peak 

stress over-prediction errors for the QLV and NLV formulations were similar, while that of the 

LV was substantially greater. This finding was also reflected in the percent errors of individual 

sample peak stresses (MATLAB percent errors: LV > QLV p = 0.002, LV > NLV p = 0.011; FE 

percent errors: LV > NLV p = 0.001, LV > QLV p = 0.002). The NLV formulation was best, 

followed by the QLV formulation, and then the LV formulation, at matching the total relaxation 
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observed in experimentally which averaged 36 ± 8%. For both prediction methods, the LV 

formulation errors were significantly greater than that of the other two formulations (NLV 

comparison: p < 0.001 for both; QLV comparisons: p < 0.001 for MATLAB and p = 0.011). For 

the FE predictions, the difference between the QLV and NLV formulation percent errors was 

also significant (p = 0.003). As for the SCPC and isolated cord conditions, there was no 

significant difference in formulation ability to predict the equilibrium stress value of individual 

samples (5%: p = 0.99; 3%: p = 0.62). 
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Figure 4.5: Predictions of the acute isolated PAC response to the 5% applied strain history (A) 
and the normalized residuals of each prediction (B). Over this range, the RMSE of the LV 
formulation prediction was lower than the QLV and NLV formulations. 

A 
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Figure 4.6: Predictions of the acute isolated PAC response to the 3% applied strain history (A) 
and the normalized residuals of each prediction (B). Over this range, the RMSE of the QLV 
formulation prediction was lower than the NLV and LV formulations. 

A 

B 
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4.3.2.4 Computational run times 

Predictions of the 3% and 5% stress-relaxation response were preformed simultaneously in 

MATLAB, but separately in Abaqus. Pooling all three tissue conditions, the time required to 

compute predictions in MATLAB was greater for the NLV formulation than the QLV 

formulation (113 milliseconds vs. 87 milliseconds, p = 0.042), while the 96-millisecond average 

duration of LV formulation predictions was not significantly different. As expected, the 

predictions performed in Abaqus took significantly longer than those in MATLAB (p < 0.001 for 

both strain levels). However, there was no significant difference between formulation prediction 

time for the 5% stress-relaxation (p = 0.34) or 3% stress-relaxation (p = 0.11) response in 

Abaqus when tissue conditions were pooled. There was also no significant difference in the time 

required for the 5% and 3% stress-relaxation predictions in Abaqus (p = 0.17). Across all three 

tissue conditions and both strain levels, the NLV formulation FE predictions took approximately 

4 minutes, the QLV formulation FE predictions took approximately 5 minutes, and the LV 

formulation FE predictions took 6 minutes. 
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4.4 Discussion 

Accurate modeling of the mechanical behavior of spinal tissues is critical for understanding the 

initiation of spinal cord injuries and exploring possible preventative and treatment options 

through FE analysis. Researchers must evaluate the required degree of accuracy for their specific 

modeling aims, but these evaluations are subjective as there have been no quantitative 

comparisons of using LV, QLV, NLV formulations for these tissues. This study addressed this 

shortcoming by explicitly demonstrating the abilities of the above listed viscoelastic 

(All units kPa) 

SCPC Cord PAC 

Acute 

RMSE 

Long-term 

wRMSE 

Acute 

RMSE 

Long-

term 

wRMSE 

Acute 

RMSE 

Long-

term 

wRMSE 

5
%

 S
tr

a
in

 MATLAB 

NLV 3.81 0.30 2.51 0.30 132.5 16.4 

QLV 3.33 1.28 1.25 0.23 72.7 11.9 

LV 5.42 1.03 1.19 0.09 38.0 6.2 

FE 

NLV 3.23 0.24 2.24 0.26 103.4 12.9 

QLV 3.82 1.35 1.31 0.24 62.8 10.4 

LV 5.16 0.98 1.17 0.09 28.5 5.8 

3
%

 S
tr

a
in

 MATLAB 

NLV 0.73 0.20 0.75 0.10 58.6 8.6 

QLV 1.05 0.32 1.09 0.12 33.4 4.7 

LV 2.56 0.15 1.81 0.24 82.7 11.3 

FE 

NLV 0.77 0.23 0.65 0.09 43.7 6.5 

QLV 0.90 0.27 1.53 0.17 41.4 5.9 

LV 3.01 0.19 2.29 0.29 93.1 12.8 

Table 4.3: Unweighted acute (first 2 seconds only) and weighted long-term (remaining 98 
seconds) RMSE values for each viscoelastic formulation prediction. Within each strain 
magnitude, prediction method (MATLAB or FE), and tissue condition group, the lowest 
value has been bolded. 
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formulations to fit and predict the stress-strain behavior of the SCPC, the isolated cord, and the 

PAC. The results of this study will allow researchers to make more objective evaluations of 

which viscoelastic formulation to implement in their work based on the availability of applicable 

experimental data, required computational resources, and desired model accuracy. 

 

Within a specific viscoelastic formulation, the significant differences in fitted coefficients reflect 

differences in tissue condition (SCPC vs. cord vs. PAC) behavior. For the QLV formulation, 

significant differences in the hyperelastic response of the tissues were found. The PAC was 

shown to have a significantly greater shear modulus (𝜇) than the SCPC and isolated cord, which 

is consistent with other studies of relative tissue stiffness 105,117,118. Interestingly, the non-linearity 

(𝛼) of the SCPC was significantly greater than both of its sub-components. This may be due to 

sliding or interfacial shear deformation in connecting fibers at the interface between the isolated 

cord and PAC membrane. In the LV formulation, the relaxation modulus coefficients 

characterize both the elastic and viscous response. Therefore, the significantly greater 𝐸1, 𝐸3, 𝐸4, 

and 𝐸∞ values for the PAC also reflect its greater stiffness as noted above 105,117,118. 

 

Across all tissue conditions, relative fitting accuracy was not necessarily indicative of relative 

prediction accuracy, even when fits and predictions occurred at the same strain magnitude. For 

example, the LV formulation errors for fits of PAC cyclic data were significantly higher than 

those of the QLV and NLV formulations, but the LV formulation was able to best predict the 

peak, acute, and long-term 5% stress-relaxation response. Similarly, the cyclic response of the 

isolated cord was fit best by the QLV formulation, but the acute and long-term 5% stress-

relaxation response were predicted best by the LV formulation (Table 4.3). These discrepancies 
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in fitting and prediction relative accuracies underscore the importance of material model 

validation through prediction of independent data. Such validation procedures allow for the 

evaluation of a model’s overall utility in characterizing behavior under differing loading 

protocols.  

 

Comparing the top and bottom sub-tables of Table 4.3, it is clear that the RMSE values for the 

5% stress-relaxation predictions and the 3% stress-relaxation predictions follow distinct patterns. 

These patterns suggest that the choice of viscoelastic formulation for modeling these tissues 

should depend, in part, on the availability of experimental data at the strain level of interest. For 

the case of the isolated sub-components (i.e., the PAC and cord), the simplified LV formulation 

was able to best predict data at the same strain magnitude used to fit the model (5%). However, 

predictions at a different applied strain magnitude (3%), required a more sophisticated 

formulation to accurately represent both the acute and long-term response. This necessary 

increase in model complexity was reflected in the NLV and QLV formulations having the lowest 

RMSE values for the 3% isolated cord and PAC response, respectively. For both the isolated 

cord and PAC, the formulation that had the lowest prediction errors at the same strain magnitude 

as the fitted data, also had the highest prediction errors at the differing strain magnitude. 

However, the results of the SCPC predictions were more mixed that those of its sub-components. 

For both the 5% and 3% stress-relaxation cases, the simplified LV formulation had the highest 

degree of error in predicting the acute SCPC response. The relative long-term predictive 

accuracy is inverted compared to that of the isolated cord; for the SCPC, the most sophisticated 

formulation (NLV) best predicted the response at the same strain magnitude as the fitted data, 
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while the most simplistic formulation (LV) best predicted the response at a differing strain 

magnitude.  

 

Examining the predictions of individual sample peak stresses, the increase in formulation 

complexity necessary to accurately predict the 3% stress response was true for all three tissue 

conditions (Table 4.4 indicates the viscoelastic formulation that resulted in the lowest error for 

each predictive accuracy measure within a tissue condition and applied strain magnitude). For 

the PAC, this is reflected in a shift from the LV formulation for the 5% strain magnitude to the 

QLV or NLV formulation for the 3% case to obtain the best predictions. For the cord, this shift 

from 5% to 3% is the QLV formulation to the NLV formulation. The change in best formulation 

for SCPC peak stress predictions from the 5% to 3% strain magnitudes is more subtle, but it still 

reflects the required increase in complexity from LV or QLV to QLV or NLV.   

 

 

 

Tissue 

Condition 

Strain magnitude 

relative to fitted 

data 

Peak Stress 

(% error) 

Acute Response 

(RMSE) 

Long-term 

Response 

(wRMSE) 

SCPC 
Same (5% ε) QLV/LV NLV/QLV NLV 

Different (3% ε) NLV/QLV NLV LV 

Cord 
Same (5% ε) QLV LV LV 

Different (3% ε) NLV NLV NLV 

PAC 
Same (5% ε) LV LV LV 

Different (3% ε) NLV/QLV QLV QLV 

Table 4.4: Depending on the tissue condition, strain magnitude, and response of interest, the 
viscoelastic formulation given resulted in the best prediction of stress-relaxation response. 
Bolded values in the peak stress column indicate a significant difference between at least one 
other formulation. 
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Another consideration for researchers in deciding which viscoelastic formulation to implement is 

the relative fitting and prediction times. The significant differences in formulation fitting times 

are most likely due to the relative complexity of the fitting constraints. For the QLV and LV 

formulations, the fitted coefficients themselves were constrained, with the additional simple 

linear equality given in Eq. (4.9) for the QLV formulation. In contrast, for the NLV formulation, 

Eq. (4.17) and its derivative must be evaluated for each Prony weight at every time point to 

confirm adherence to the constraints. However, after the initial greater computational cost of 

obtaining the NLV formulation material models, there were no marked difference in the time 

required for each formulation to predict the stress-relaxation response under both numerical and 

FE settings. While the difference in NLV and QLV formulation MATLAB prediction duration 

was statistically significant, the maximum difference of less than 30 milliseconds is not 

practically relevant. 

 

There are a few limitations within the current work that should be noted. Firstly, the 

experimental data were all collected at strain-rates and strain-magnitudes lower than that 

expected to occur during injury 44,153,161,162. It is possible that under larger strains, the tissues 

would demonstrate greater elastic non-linearity, which could not be accurately captured by the 

LV formulations. The second limitation is the unknown effects of computational resource scaling 

in both fits and FE predictions. As discussed above, the difference in required fitting time was 

substantial (approximately 1 minute for LV and QLV formulations compared to over 1 hour for 

the NLV formulation); however, only two parallel processors were utilized in this study. It is 

expected that with greater computational power, Eq. (4.17) could be evaluated for each Prony 

weight in parallel, reducing the time needed to verify the NLV constraints. Conversely, 
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differences in FE prediction time may manifest between formulations if the analysis is extended 

to multi-element models. Finally, all the presented viscoelastic formulations and material models 

are for one-dimensional analyses only. Without data on the transverse behavior of each tissue 

condition or a three-dimensional constitutive equation, all FE modeling was limited to utilizing 

truss elements. Future work will include development and FE implementation of three-

dimensional viscoelastic formulations to address important questions regarding the effect of 

geometric and material model complexity on stress distributions through the cross-section of the 

tissues. 

 

4.4.1 Recommendations and conclusions 

The results presented herein provide researchers with the necessary evidence to inform their 

decisions about which viscoelastic formulation to implement when working with specific spinal 

tissues. The study results also reiterate the need for material model validation, as fitting accuracy 

was not always correlated with predictive accuracy. As shown in Table 4.4, the choice of 

viscoelastic formulation for each tissue depends on available experimental data and the response 

feature of interest. In general, the use of LV or QLV formulations may be justified when 

experimental data at the strain level of interest is available, although this is not typically the case. 

The true value of a material model is its ability to determine the expected response of a tissue 

under arbitrary loading conditions. According to the analysis above, this requires an increase in 

viscoelastic formulation complexity from LV to QLV (or even LV to NLV for the case of the 

isolated cord) or from QLV to NLV. Based on the results of this study, the authors will utilize 

the QLV formulation to characterize PAC behavior and the NLV formulation to characterize the 

isolated cord and SCPC mechanical behaviors in future modeling efforts. 
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CHAPTER 5: CONCLUSION 

 

5.1 Summary of Findings 

The results of this dissertation represent important contributions to the understanding and 

modeling of spinal tissue mechanical behavior. The experimental and computational 

methodologies presented will enable researchers to conduct more thorough characterizations of 

the tissues involved and make more informed decisions regarding how best to model their 

respective observed responses.  

 

In this dissertation, post-mortem changes in spinal-cord-pia-arachnoid-construct (SCPC) elastic 

and viscous behaviors were quantified through comparisons of in-vivo and ex-vivo stress-strain 

data. The ex-vivo condition was found to exhibit a stiffer response but also experienced greater 

relaxation than samples tested in-vivo. Non-linear viscoelastic modeling of both conditions 

revealed this divergent behavior to be most significant over the short-term (0.1 – 1 second) 

response. These results have two important implications for researchers interested in modeling 

spinal cord injury: (1) explicit evidence of strain-dependent relaxation under both in-vivo and ex-

vivo conditions compels the use of a non-linear viscoelastic formulation to characterize the 

SCPC response, and (2) the use of non-linear viscoelastic formulations developed from ex-vivo 

experimentation will result in over-predictions of SCPC stress and degree of relaxation.  

 

The contribution of the pia-arachnoid-complex (PAC) to the viscoelastic response of the SCPC 

was also demonstrated through the implementation of a novel dissection technique. For the first 

time, experimental data from SCPC was quantitatively compared to that of both of its sub-
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components (neural tissue of the isolated cord and the PAC). Despite making up less than 6% of 

the cross-section, the PAC was shown to significantly influence the elastic and viscous response 

of the SCPC supporting the conclusion that the PAC plays an important mechanical role in 

protecting the underlying cord. The non-linear viscoelastic formulations developed for each 

tissue provides for increased finite element (FE) model geometric and material fidelity which is 

expected to improve prediction accuracy of internal stress and strain distributions. 

 

Finally, linear (LV), quasi-linear (QLV), and non-linear viscoelastic (NLV) formulations were 

developed based on our novel direct fit method numerical integration approach. The ability of 

each of these formulations to accurately fit and predict the mechanical behavior of the SCPC, 

cord, and PAC were quantitatively compared. The presented results allow researchers to identify 

which viscoelastic formulation would provide the most accurate prediction for each tissue based 

on existence of experimental data at the strain level of interest and the response feature of 

interest (e.g., peak stress versus long-term response).  Specifically,  

• SCPC, experimental data at strain level, peak stress: LV or QLV 

• SCPC, experimental data at strain level, acute response: NLV or QLV 

• SCPC, experimental data at strain level, long-term response: NLV 

• SCPC, no experimental data at strain level, peak stress: NLV or QLV 

• SCPC, no experimental data at strain level, acute response: NLV 

• SCPC, no experimental data at strain level, long-term response: LV 

• Cord, experimental data at strain level, peak stress: QLV 

• Cord, experimental data at strain level, acute response: LV 

• Cord, experimental data at strain level, long-term response: LV 

• Cord, no experimental data at strain level, peak stress: NLV 

• Cord, no experimental data at strain level, acute response: NLV 

• Cord, no experimental data at strain level, long-term response: NLV 

• PAC, experimental data at strain level, peak stress: LV 

• PAC, experimental data at strain level, acute response: LV 

• PAC, experimental data at strain level, long-term response: LV 

• PAC, no experimental data at strain level, peak stress: QLV or NLV 

• PAC, no experimental data at strain level, acute response: QLV 
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• PAC, no experimental data at strain level, long-term response: QLV 
 

The computational run times for the viscoelastic model fits and associated predictions (using 

both numerical and FE methods) provides additional context for the effect of increased 

complexity to the NLV formulation. 

 

5.2 Future Work 

As indicated in Sections 2.4, 3.4, and 4.4 there are a number of logical extensions to the work 

presented of this dissertation. This future work can be generally classified as the collection of 

additional experimental data or the improvement of the presented viscoelastic formulations.  

 

Experimental limitations precluded the collection of mechanical data under conditions applicable 

to the dynamic events of spinal cord injury. Therefore, future work should include ex-vivo 

analysis of the SCPC, isolated cord, and PAC under applied strains (up to 10%) and strain-rates 

(up to 2000%/s) indicative of injury. Use of these new data with the viscoelastic characterization 

techniques described in this dissertation would provide novel insights into damage-induced 

changes in each tissue’s viscoelastic response. Such characterizations would also provide 

material models that accurately represent the tissue behavior under conditions important to the 

study of spinal cord injury prevention, diagnosis, and treatment.  

 

As distraction was the injury mechanism of interest, experimental data were collected under 

uniaxial, longitudinal tension only. However, the same techniques described in this dissertation 

could be used with transverse compression data to study the more common contusion injury 

mechanism. As indicated in Section 1.3.2, animal models of contusion injuries are currently 



131 

 

established and may provide the in-vivo SCPC data necessary to determine if the post-mortem 

viscoelastic changes seen in longitudinal tension also manifests in transverse compression. 

Collection of transverse data would also provide the basis for investigation of the anisotropic 

behavior of the SCPC, isolated cord, and PAC. Ex-vivo transverse compression and transverse 

tension tests of the SCPC and isolated cord have been reported previously, but biaxial tests of 

spinal PAC should be performed to determine its anisotropic behavior. 

 

Finally, to enable volumetric representation of the SCPC, cord, and PAC in FE models, the 

viscoelastic formulations presented in this dissertation should be extended to three-dimensions. 

This requires not only the collection of data describing the transverse and/or biaxial behavior of 

each tissue (as described above), but also application of our direct fit method numerical 

integration technique to three-dimensional constitutive equations. Development and FE 

implementation of three-dimensional viscoelastic formulations would allow researchers to 

address important questions regarding the effect of geometric and material model complexity on 

stress and strain distributions through the cross-section of the spinal cord. 
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APPENDIX A: DAMAGE ACCUMULATION MODELING AND RATE DEPENDENCY 

OF SPINAL DURA MATER4 

 

A.1 Introduction 

Based on tangent modulus measurements of uniaxial tensile tests on both human and bovine 

spinal samples [1–4], the dura mater is up to 100 times stiffer than the spinal cord and pia mater 

tissues that it encases. Accordingly, the dura mater plays an important stability role in the overall 

behavior of the spinal-cord-meningeal complex (SCM). Together with the cerebrospinal fluid it 

contains, the dura mater functions to shield the weaker spinal cord from excessive mechanical 

loads and reduce cord deformation during traumatic loading scenarios such as vertebral burst 

fracture events [5–7]. Given its functional importance, multiple research groups have 

characterized the dura’s mechanical properties under various loading conditions, including 

uniaxial tension at various strain rates [7–9], uniaxial tension in the longitudinal and 

circumferential directions [4,9,10], and quasi-static biaxial tension [11]. Taken together, these 

studies have demonstrated that the dura mater exhibits a nonlinear viscoelastic response. 

However, unlike other viscoelastic soft tissues, it has been reported that the dura’s mechanical 

response is not rate dependent at relatively low strain rates (i.e., 0.01–1/s) [9].  

 

The material models developed from the aforementioned studies have provided properties that 

can be implemented into computational models of the SCM in order to improve our 

understanding and simulation of spinal cord injuries (SCI). Specifically, due to the complex 

                                                      

4 This appendix section has been published as a Research Paper in the Journal of Engineering 

and Science in Medical Diagnostics and Therapy (DOI: 10.1115/1.4038261). All content has 
been adapted with permission from the American Society of Mechanical Engineers. 
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loading that often leads to SCI, finite element (FE) models have traditionally been used as a 

robust means to determine the internal stresses and strains necessary to link the local mechanical 

environment to resulting tissue damage and/or long-term injury severity. These relationships 

between internal mechanical parameters and resultant damage are critical to the study, treatment, 

and prevention of SCI. Numerous research groups have developed FE models of the SCM for 

investigating the mechanical underpinnings of contusion (during vertebral burst fracture events), 

distraction, and dislocation events that lead to SCI [7,12–16]. Despite the known functional 

importance of the dura mater in protecting the spinal cord, most material models found in these 

FE models use simplifying assumptions of isotropic or anisotropic elasticity [7,14,15]. While 

such FE models have provided valuable insight into spinal mechanics and internal stress/strain 

patterns, many researchers in this area have concluded that additional characterization of the 

components of the SCM is necessary to accurately model the etiology of SCI [14–16], including 

mechanisms to simulate dynamic tissue damage [16]. Therefore, a thorough description of the 

material behavior of spinal dura mater, including damage characterization during the sub-failure 

and failure regimes, is necessary to comprehensively investigate SCI. 

 

One method for incorporating post yield softening behavior of soft tissues into FE models is to 

implement continuum viscoelastic damage formulae [17–20]. Specifically, a variety of models 

have been used to describe the failure of vasculature [21–23]; tendon and ligament [24,25]; 

vaginal [26]; and rectus sheath [27] tissues. However, this technique has not yet been extended to 

describe the failure behavior of any tissue of the SCM. Therefore, the aim of this study is to 

characterize the damage accumulation behavior of the spinal dura mater under uniaxial loading. 

Additionally, while it has been reported that the hyperelastic parameters fitted to dura tension-to-
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failure tests are not strain-rate dependent [9], it is unknown whether the parameters used to 

describe damage accumulation are rate dependent. Therefore, a secondary objective of this study 

is to compare the damage accumulation process at three different strain rates. 

 

A.2 Materials and Methods 

A.2.1 Specimen preparation 

Four ovine cervical spines (C2–C7) were collected from animals euthanized at Colorado State 

University’s Surgical Research Laboratory for unrelated studies. Until mechanical testing was 

performed, spines were wrapped in saline-soaked gauze and stored at -20°C. A single freeze-

thaw cycle preservation technique has been shown to not significantly affect the mechanical 

properties of the dura mater [4,9] and other fibrous soft tissues [28–31]. On the day of testing, 

the spine was thawed at room temperature and the SCM was carefully removed via gross 

dissection, transection of the pedicles, and resection of the nerve roots. A longitudinal cranial-to 

caudal incision was performed on the dura mater and the denticulate ligaments were severed to 

release the dura from the underlying meninges and cord. 

 

As controversy still exists over the ultrastructural and mechanical differences between 

longitudinal and circumferential samples of spinal dura [4,7–9], a simple uniaxial tension-to-

failure test in the dura’s longitudinal direction (i.e., aligned with the long-axis of the SCM) was 

chosen as the procedure for modeling the damage accumulation in spinal dura. Longitudinal 

strips measuring 35 mm by 5 mm were cut from the sheet of dura mater, avoiding areas where 

exiting nerve roots would produce localized effects. This procedure yielded approximately 15 

test specimens per spine that were subsequently randomized to one of the three strain rate 
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groups. In order to keep the tissue adequately hydrated, samples waiting to be tested were placed 

in a saline bath at room temperature. 

 

A.2.2 Mechanical testing 

Uniaxial testing was performed using a custom-built test stand consisting of a 44.5-Newton load 

cell (model 31, Sensotec, Honeywell, Columbus, OH), a linear actuator with a 0.16 µm 

resolution (T-LLS105, Zaber Technologies, Vancouver, BC, Canada), two thin film grips (FC-

20, IMADA, Northbrook, IL), and a 4.2-megapixel camera (Grasshopper3, Point Grey, 

Richmond, BC, Canada) positioned directly above the grips (Fig. A1(a)). To prevent slippage at 

the grip interface, 7.5mm squares of water proof 180 grit sandpaper were attached with a small 

amount of cyanoacrylate to either end of each dural sample before it was placed in the grips. The 

sample was then loaded to a 0.5 N preload and digital images were acquired with the grips at 0° 

(the test orientation) and turned 90° (as shown in Fig. A1(b)). ImageJ (NIH, Bethesda, MD) was 

used to obtain five thickness measurements from the 90° image (Fig. A1(b)), five width 

measurements from the 0° image, and one length measurement (also from the 0° image). These 

measurements were used to determine the mean sample cross-sectional area and original length 

for post-hoc stress and strain rate calculations, respectively. Using displacement control of the 

linear actuator, each sample was tensioned to failure at 0.01 mm/s, 1 mm/s, or 6 mm/s 

(representing strain rates of 0.0005 ± 7.27 x 10-5/s, 0.051 ± 0.008/s, and 0.284 ± 0.044/s, 

respectively). Figures A1(c)–A1(e) show a sample at the preload, just prior to mid-substance 

failure and just after failure. 
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In order to follow the damage testing procedure outlined by Martins et al., the dural samples 

were not preconditioned prior to the pull-to-failure test [27]. Reaction forces were recorded at 

1000 Hz for the 1 mm/s and 6 mm/s speeds and at 100 Hz for the quasi-static speed (0.01 mm/s). 

Images were collected at 45 Hz for all tests (to monitor for grip slip and verify site of failure). 

Saline irrigation (1 drop per minute) was used to keep samples hydrated during the 0.01 mm/s 

test; the short duration of the 6 mm/s and 1 mm/s tests (<2 min) precluded the need for intra-test 

hydration. 

 

Only samples that failed mid-substance with no evidence of slippage were retained for analysis. 

The final sample sizes for the quasi-static, 1 mm/s, and 6 mm/s loading-rate groups were 14, 21, 

and 10, respectively. As global stretch measurements are needed for the modeling of failure 

Figure A1: (a) Uniaxial testing apparatus with labeled components; (b) five thickness 
measurements were made via analysis of images taken with grips turned at a 90° orientation 
from the testing configuration. A representative tension-to-failure test showing the sample at 
(c) 0.5 N preload, (d) prior to mid-substance failure, and (e) immediately following mid-
substance failure. 
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behavior, actuator displacement was converted to global stretch using, 𝜆 = (𝐿𝑜 + ∆𝐿)/𝐿𝑜 where 𝐿𝑜 is the preload length and ∆𝐿 is the recorded actuator displacement. Cauchy stress was 

obtained using 𝜎 = 𝜆 ∗ (𝐹 𝐴0⁄ ), where 𝐹 is the force (in Newtons) and 𝐴0 is the cross-sectional 

area (in mm2). Statistical analysis of dimensional measurements revealed no significant 

differences between groups, with an overall average initial length of 20.81 ± 3.17 mm, width of 

4.29 ± 0.90 mm, and thickness of 0.18 ± 0.04 mm. 

 

A2.2.3 Constitutive modeling 

The nonlinear directional damage model for fibrous biological soft tissues first proposed by 

Calvo et al. [19] and further developed in 2008 [32] and 2012 [27] was used to fit the data in this 

study. This is an uncoupled directional damage model which defines different damage 

characteristics for the collagen fibers and the ground substance material (matrix). Assuming that 

the damage process only affects the isochoric elastic part of the deformation [17], the free-energy 

density (𝛹) of the continuum damage model can be expressed as follows: 

 𝝍(𝑪,𝑴,𝐷𝑚, 𝐷𝑓) = 𝝍𝑣𝑜𝑙(𝐽) + (1 − 𝐷𝑚)𝝍̅0𝑚(𝑪) + (1 − 𝐷𝑓)𝝍̅0𝑓(𝑪,̅𝑴) (A11) 

where 𝑴 is defined as the tensor product of the fiber direction vector in the undeformed 

configuration, 𝑪 is the modified right Cauchy–Green tensor (defined by 𝑪 = 𝑭𝑻𝑭, where 𝑭 is the 

product of the deformation gradient tensor, 𝑭, and the cube root of its determinant, 𝐽−13), and 𝝍̅0𝑚 

and 𝝍̅0𝑓 denote the elastic response of the undamaged matrix and collagen fibers, respectively 

[18,27]. The terms (1 − 𝐷𝑚) and (1 − 𝐷𝑓) represent the reduction factors for damage as a 

function of the deformation (stretch) [17]; the damage parameters, 𝐷𝑚 and 𝐷𝑓, are normalized 

[0,1] values related to how the matrix and fibers, respectively, accumulate damage. As proposed 



150 

 

by Simo [17], the evolution of damage parameters are given by a series of piecewise and 

irreversible functions 𝐷𝑘(𝛯𝑡𝑘), with 𝑘 representing either the matrix (𝑚) or the fibers (𝑓). The 

interior functions, 𝛯𝑡𝑘, are defined as time (𝑠) functions. 

 𝛯𝑠𝑘 = √2𝝍̅0𝑘[𝑪(𝑠)] (A12) 

The maximum values of 𝛯𝑠𝑘 over the past time history 𝑠 ∈ (−∞, 𝑡) are defined as 𝛯𝑡𝑘. 

 𝛯𝑡𝑘 = max𝑠∈(−∞,𝑡)√2𝝍̅0𝑘[𝑪(𝑠)] (A13) 

The criterion for damage to occur is given by the following expression [17]: 

 𝛷𝑘(𝑪(𝑡), 𝛯𝑡𝑘) = √2𝝍̅0𝑘[𝑪(𝑡)] − 𝛯𝑡𝑘 ≤ 0 (A14) 

meaning, at any time (𝑡) of the loading procedure, that if the above equality is fulfilled for the 

matrix or fibers, then damage increases in that component of the tissue. The function describing 

the evolution of damage [𝐷𝑘(𝛯𝑡𝑘)] is given by 

 𝐷𝑘(𝛯𝑡𝑘) = {                     0, 𝑖𝑓  𝛯𝑡𝑘 < 𝛯𝑚𝑖𝑛0𝑘𝜉2[1 − 𝛽𝑘(𝜉2 − 1)], 𝑖𝑓 𝛯𝑚𝑖𝑛0𝑘 ≤ 𝛯𝑡𝑘 ≤ 𝛯𝑚𝑎𝑥0𝑘1, 𝑖𝑓 𝛯𝑡𝑘 > 𝛯𝑚𝑎𝑥0𝑘  (A15) 

where 𝜉 = 𝛯𝑡𝑘 − 𝛯𝑚𝑖𝑛0𝑘𝛯𝑚𝑎𝑥0𝑘 − 𝛯𝑚𝑖𝑛0𝑘  and is a dimensionless variable, and 𝛯𝑚𝑖𝑛0𝑘  and 𝛯𝑚𝑎𝑥0𝑘  are variables 

associated with the strain energy at which initial and total damage, respectively, occur during the 

loading procedure [17,32]. Therefore, the elastic response of the tissue is given by the behavior 

up to 𝛯𝑚𝑖𝑛0𝑘 , while the damage accumulation properties are characterized by the behavior after the 𝛯𝑚𝑖𝑛0𝑘  threshold is passed. Given the irreversible nature of the damage, a constraint is imposed 

that the damage evolution function 𝐷𝑘(𝛯𝑡𝑘) must be monotonically increasing with 𝛯𝑡𝑘, 𝛽𝑘 ∈



151 

 

[−1.0, 1.0] [26,32]. The 𝛽𝑘 terms are affected by the other fitting parameters and the size of the 

damage region of the curves [27]. 

 

A.2.3 Fitting procedure 

The spinal dura was assumed to be incompressible (i.e., 𝐼3 = 𝐽2 = 1), which simplifies the free-

energy density function given in Eq. (A1) [27]. 

 𝝍 = (1 − 𝐷𝑚)𝝍̂0𝑚(𝑪) + (1 − 𝐷𝑓)𝝍̂0𝑓(𝑪,𝑴) (A16) 

For the case of uniaxial tension in the x3-direction, 𝜆3 = 𝜆, 𝜆1 = 𝜆2 = 𝜆−12 and 𝐼4 = 𝜆2. 

Therefore, the Cauchy stress tensor is diagonal with 𝜎33 = 𝜎 and 𝜎11 = 𝜎22 = 0. The total strain 

energy (𝝍) is the superposition of the strain energies of the isotropic matrix (𝝍̂𝑖𝑠𝑜𝑚 ) and the 

anisotropic collagen fibers (𝝍̂𝑎𝑛𝑖𝑓
). 

 𝝍 = 𝝍̂𝑖𝑠𝑜𝑚 + 𝝍̂𝑎𝑛𝑖𝑓
 (A17) 

The isotropic response of the dural matrix was modeled with the exponential strain energy 

function proposed by Demiray et al. [33], while the anisotropic response of the dural collagen 

fibers was modeled with the piecewise function proposed by Calvo et al. [26]. 

 𝝍̂𝑖𝑠𝑜𝑚 = 𝑐1𝑐2 {exp [𝑐22 (𝐼1 − 3)] − 1} (A18) 

In this formulation, it is assumed that the anisotropic fiber term only contributes to the total 

strain energy when the fibers are stretched (𝐼4 > 𝐼40). The terms 𝐼40 and 𝐼4𝑟𝑒𝑓  characterize the 

location and length of the toe region of the response. In the previous equations, 𝑐1, 𝑐3 > 0 

 𝝍̂𝑎𝑛𝑖𝑓 = {  
    0,       𝑖𝑓  𝐼4 < 𝐼40𝑐3𝑐4 {exp[𝑐4(𝐼4 − 𝐼40)] − 𝑐4(𝐼4 − 𝐼40) − 1},       𝑖𝑓 𝐼40 < 𝐼4 < 𝐼4𝑟𝑒𝑓𝑐5√𝐼4 − 𝐼40 + 𝑐6 ln(𝐼4 − 𝐼40) + 𝑐7,       𝑖𝑓 𝐼4 > 𝐼4𝑟𝑒𝑓  

(A1

9) 
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represent parameters that are analogous to the stiffnesses of the matrix and fibers, respectively, 

while 𝑐2, 𝑐4 > 0 are dimensionless parameters that characterize the matrix and fiber 

nonlinearity, respectively. It should be noted that 𝑐5, 𝑐6,  𝑐7 are not independent as they ensure 

continuity of the strain field, the stress field, and the derivative of stress [26,27]. 

 

Fitting of the experimental data was performed with the fmincon function in MATLAB (version 

R2012b, The MathWorks, Natick, MA) via constrained nonlinear optimization of 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝐼40, 𝐼4𝑟𝑒𝑓 , 𝛯𝑚𝑖𝑛𝑚 , 𝛯𝑚𝑎𝑥𝑚 , 𝛯𝑚𝑖𝑛𝑓
, 𝛯𝑚𝑎𝑥𝑓

, 𝛽𝑚, and 𝛽𝑓. In order to facilitate adequate fitting of the failure 

phase of the curves, which occurred much more rapidly than the ramp phase, the data were 

resampled to create a balance between the ramp and failure phases. Quality of the fits was 

assessed by root-mean-square error (RMSE) between the experimental Cauchy stress and stress 

given by the fitted damage model strain energy function. The results presented are the 

parameters that resulted in the lowest RMSE for each test. 

 

Large standard deviations were noted for some of the fitted parameters. Accordingly, an outlier 

analysis was performed on each parameter group according to the method described by Moore 

and McCabe [34]. Specifically, any datum point more than 1.5 times the interquartile range 

above the third quartile value or below the first quartile value was identified as an outlier. Tests 

containing any parameter identified as an outlier were excluded, resulting in final sample sizes of 

9, 14, and 7 for the quasi-static, 1 mm/s, and 6 mm/s speed groups, respectively. These reduced 

data were used to determine statistical differences. 
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SigmaPlot software (version 13.0, Systat Software, San Jose, CA) was used for all statistical 

analyses. To determine statistical differences between strain rate groups, Shapiro-Wilk and 

Brown-Foresythe tests were performed to test for normality and equal variance, respectively. 

Data that passed both tests were analyzed with a one-way ANOVA and post-hoc Student-

Newman-Keuls tests. Data that failed either the normality or equal variance test were analyzed 

with a Kruskal-Wallis one-way ANOVA on ranks and post-hoc Dunn’s tests. To determine 

statistical differences between related parameters within a strain rate group (e.g., comparing the 

stiffness of the matrix, 𝑐1, to that of the fibers, 𝑐3), Shapiro-Wilk tests were performed for 

normality, followed by paired t-tests. A p-value of 0.05 was selected to define statistical 

significance. 

 

A.3 Results 

All stretch-stress curves demonstrated strong nonlinearity, which is characteristic of hydrated 

collagen fiber-reinforced soft tissues. The majority of test data displayed a smooth increase in 

stress up to a maximum value, followed by a rapid decrease to zero. A small subset displayed 

minor decreases in stress during the ramp phase and/or plateaus in stress during the failure phase 

(Fig. A2). No significant differences were found between the three strain rate groups with respect 

to the maximum failure stress (p = 0.313) or the stretch at the maximum stress (p = 0.598). The 

data from the two highest speed groups fit the continuum damage model well (Fig. A2), with 

maximum RMSE values of 0.27 MPa (<1.5% of average maximum stress) and 0.47 MPa (<3% 

of average maximum stress) for the 6 mm/s and 1 mm/s loading-rate groups, respectively. The 

RMSE values for the quasi-static strain-rate fits were slightly higher, with a range of RMSE 
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values from 0.36 to 1.48 MPa. The average RMSE of 0.95 MPa represents approximately 6% of 

the quasi-static strain-rate group’s average maximum stress. 

 

 

 

 

 

The average fitted parameters for the reduced data set (that excluding identified outliers) are 

shown in Table A1. Statistically significant differences were found between the strain-rate 

groups for 𝑐3 (stiffness of the fibers), 𝑐4 (nonlinearity of the fibers), 𝛯𝑚𝑖𝑛𝑚  (associated with the 

strain energy at the initiation of matrix damage), 𝛯𝑚𝑎𝑥𝑓
 (associated with the strain energy at 

complete fiber damage), and 𝛽𝑓 (related to size of the damage region of the fibers). Statistically 

Figure A2: Representative experimental stretch-stress curves (colored symbols) from each 
strain-rate group demonstrate the elastic nonlinearity which is characteristic of hydrated 
fibrous soft tissues. The group averages for maximum failure stress, stretch at maximum 
stress, and the model fit (black curve) RMSE are also given. 
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significant differences within strain-rate groups were also found between the following 

parameter pairs: 𝑐1 and 𝑐3 (stiffness of the matrix and fibers, respectively); 𝑐2 and 𝑐4 

(nonlinearity of matrix and fibers, respectively); 𝛯𝑚𝑖𝑛𝑚  and 𝛯𝑚𝑖𝑛𝑓
 (associated with the strain 

energy at the initiation of damage in the matrix and fibers, respectively); and 𝛯𝑚𝑎𝑥𝑚  and 𝛯𝑚𝑎𝑥𝑓
 

(associated with the strain energy at complete matrix damage and fiber damage, respectively). 

 

 

 

 

 
Quasi-Static 

(0.0005 ε/sec) 
1mm/s 

(0.051 ε/sec) 
6mm/s 

(0.284 ε/sec) 
P-value of 

ANOVA 𝒄𝟏 (MPa) 4.25 ± 2.90 3.95 ± 1.89 2.69 ± 2.44 F p = 0.301 𝒄𝟐 (-) 9.82 ± 5.63 A 15.87 ± 9.05 D 15.46 ± 8.23 G p = 0.196 𝒄𝟑 (MPa) 3.10 ± 1.18 a 5.05 ± 2.78 b 29.56 ± 21.86 a, b, F p < 0.001 * 𝒄𝟒 (-) 1.70 ± 0.58 c, A 1.54 ± 0.67 d, D 0.37 ± 0.28 c, d, G p < 0.001 * 𝑰𝟒𝟎 (-) 1.16 ± 0.10 1.14 ± 0.06 1.17 ± 0.08 p = 0.644 𝑰𝟒𝒓𝒆𝒇 (-) 1.60 ± 0.29 1.58 ± 0.21 1.63 ± 0.30 p = 0.911 𝜩𝒎𝒊𝒏𝒎  (MPa1/2) 0.62 ± 0.23 e, B 0.77 ± 0.37 f 1.20 ± 0.25 e, f p = 0.003 * 𝜩𝒎𝒂𝒙𝒎  (MPa1/2) 1.10 ± 0.30 C 1.25 ± 0.18 E 1.28 ± 0.23 H p = 0.245 𝜩𝒎𝒊𝒏𝒇
(MPa1/2) 1.32 ± 0.26 B 1.11 ± 0.55 0.72 ± 0.51 p = 0.051 𝜩𝒎𝒂𝒙𝒇
 (MPa1/2) 1.33 ± 0.25 g, C 1.49 ± 0.24 h, E 1.83 ± 0.44 g, h, H p = 0.008 * 𝜷𝒎 (-) -0.11 ± 0.47 0.24 ± 0.44 0.27 ± 0.71 p = 0.257 𝜷𝒇  (-) -0.40 ± 0.41 i 0.32 ± 0.54 i -0.10 ± 0.59 p = 0.009 * 

Table A1: Fitted parameters (average ± std. deviation). Significant differences (p < 0.05) 
between strain-rate groups are denoted with superscripted lower-case letters {a: p < 0.001;    
b: p = 0.003; c: p < 0.001; d: p = 0.002; e: p = 0.003; f: p = 0.006; g: p = 0.007; h: p = 0.020; 
i: p = 0.008}. Significant differences (p < 0.05) between related parameters within the same 
strain-rate group are denoted with capital letters {A: p = 0.001; B: p < 0.001; C: p = 0.005;  
D: p < 0.001; E: p < 0.001; F: p = 0.018; G: p = 0.003; H: p = 0.019}. 
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The average 𝑐3 value of the 6 mm/s loading-rate group was significantly greater than that of 

quasi-static (p < 0.001) and the 1 mm/s (p = 0.003) groups, whereas the difference in 𝑐3 between 

the 1 mm/s and the quasi-static groups was not statistically significant (p = 0.898). The 𝑐4 

parameter exhibited the opposite pattern; the average 𝑐4 value of the 6 mm/s loading-rate group 

was significantly less than both the quasi-static (p < 0.001) and the 1 mm/s (p = 0.002) groups, 

while the difference between the 1 mm/s and quasi-static groups was not statistically significant 

(p = 0.99). When comparing the stiffness parameters 𝑐1 and 𝑐3 for within strain-rate groups, 𝑐3 

was significantly greater than 𝑐1 for the 6 mm/s loading rate (p = 0.018). When comparing the 

nonlinearity parameters 𝑐2 and 𝑐4 within strain-rate groups, 𝑐4 was significantly less than 𝑐2 at 

all speeds (p = 0.001, p < 0.001, p = 0.003 for the quasi-static group, 1 mm/s loading-rate group, 

and 6 mm/s loading-rate group, respectively). 

 

The value of 𝛯𝑚𝑖𝑛𝑚  (associated with the strain energy at the initiation of damage to the matrix) 

showed significant differences between the strain rate groups; the 6 mm/s loading-rate 𝛯𝑚𝑖𝑛𝑚  was 

significantly greater than that of both the quasi-static (p = 0.003) and 1 mm/s loading-rate (p = 

0.006) groups. As with other parameters, the difference between the 𝛯𝑚𝑖𝑛𝑚  for the quasi-static and 

1 mm/s loading-rate groups was not statically significant (p = 0.278). The value of 𝛯𝑚𝑎𝑥𝑓
 

(associated with the strain energy at complete fiber damage) followed the same pattern with 

respect to strain rate; the value for the 6 mm/s loading-rate group was significantly greater than 

that of both the quasi-static group (p = 0.007) and the 1 mm/s group (p = 0.020), but the 

difference between the quasi-static and 1 mm/s groups was not significant (p = 0.214). The 

minimum and maximum 𝛯 terms within a strain-rate group also showed significant differences. 𝛯𝑚𝑖𝑛𝑓
 was significantly greater than 𝛯𝑚𝑖𝑛𝑚  at the quasi-static rate (p < 0.001), while 𝛯𝑚𝑎𝑥𝑓

 was 
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significantly greater than 𝛯𝑚𝑎𝑥𝑚  at all three rates (p = 0.005, p < 0.001, p = 0.019 for the quasi-

static, 1 mm/s loading-rate, and 6 mm/s loading-rate groups, respectively). 

 

The 𝛽𝑓 parameter, which describes the size of the damage region for the fibers, was significantly 

greater for the 1 mm/s loading-rate group than the quasi-static group (p = 0.008), but no other 

significant differences were found for this or the 𝛽𝑚 parameter. No significant differences in the 𝐼40 and 𝐼4𝑟𝑒𝑓  parameters, which relate to the nonlinear toe region of the response curve, were 

found between strain rate groups (p = 0.644 for 𝐼40 and p = 0.911 for 𝐼4𝑟𝑒𝑓). No other significant 

differences were found between strain rates groups or related parameters within strain rate 

groups. 

 

A.4 Discussion 

Despite multiple studies in the literature on the tension-to-failure properties of spinal dura mater 

from both cadaveric and animal sources [4,8–10,35,36], this is the first study to apply a damage 

constitutive model to the dura and relate the model’s parameters to strain-rate effects. These data 

and damage formulation can be implemented into finite element computational models of the 

SCM to improve the accuracy of simulations of spinal cord injury scenarios and dynamics. 

 

As the continuum damage model used in this investigation is phenomenological in nature, the 

results obtained by application of the model (i.e., the damage parameters) are not easily 

interpreted. However, given the form used to model the anisotropic response of the fibers, 𝝍̂𝑎𝑛𝑖𝑓
 

(Eq. (A9)), the 𝑐3 term relates to fiber stiffness, while the 𝑐4 term relates to the nonlinearity of 

the elastic fiber response. The significant differences found between strain-rate groups for 𝑐3 and 
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𝑐4, therefore, follow the expectant strain-rate dependent behavior of viscoelastic materials 

wherein a stiffer and more linearized response is characteristically obtained at higher strain rates 

[9,37–41]. Persson et al. fit uniaxial tensile tests of bovine dura matter at three strain rates to an 

Ogden model and reported an increase in 𝐺 (i.e., stiffness) and a decrease in 𝛼 (i.e., nonlinearity) 

with increasing strain rate for longitudinal samples, but the differences failed to reach statistical 

significance [9]. Our data extended these results by explicitly finding that parameters associated 

with fiber stiffness and nonlinearity were significantly affected by strain rate. 

 

The lack of significant strain-rate dependence with respect to the stiffness (𝑐1) and nonlinearity 

(𝑐2) of the isotropic matrix, 𝝍̂𝑖𝑠𝑜𝑚  (Eq. (A8)), suggest that the matrix material is less rate-sensitive 

than the fibers, and that the differences seen in global properties are mainly due to the 

viscoelastic fiber response. The differences between 𝑐1 (matrix stiffness) and 𝑐3 (fiber stiffness) 

also support the conclusion that the fibers are primarily responsible for globally observed strain-

rate dependency. At 6 mm/s, the stiffness of the fibers was, as expected, significantly higher than 

that of the matrix. However, at 1 mm/s, this difference was not significant and at the quasi-static 

loading-rate the stiffness of the fibers approximated that of the matrix. This pattern suggests that 

at very slow strain rates the matrix and fiber stiffness is nearly equivalent, but any increase in 

strain rate creates a non-proportionally greater increase in stiffness in the fibers. The significant 

difference between 𝑐2 (matrix nonlinearity) and 𝑐4 (fiber nonlinearity) was also as expected for a 

fiber-reinforced composite; while collagen fiber straightening (i.e., uncrimping) does contribute 

to composite nonlinearity, the majority of composite nonlinearity can usually be attributed to 

intrinsic properties of the matrix [42–45]. 
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As the other eight fitted parameters are not directly relatable to the tissue’s physical properties, it 

is slightly more difficult to draw conclusions about their significance. The two parameters related 

to the elastic response of the tissue not discussed earlier, 𝐼40 and 𝐼4𝑟𝑒𝑓 , were not significantly 

different between strain-rate groups. These parameters are associated with the stretch values that 

define the beginning and end of the curve’s toe region. The lack of significance between strain-

rate groups show that, despite differences in behavior within the toe region (𝑐3 and 𝑐4), the 

location and length of the toe region seems to be unaffected by strain rate. The values obtained 

for both parameters were similar to those reported in studies applying the same damage model to 

other soft tissues (rectus sheath: 𝐼40 =  1.00 −  1.44 [27]; vaginal tissue: 𝐼40 =  1.05 − 1.31, 𝐼4𝑟𝑒𝑓 =  1.46 − 2.10 [26]). However, the toe region identified by 𝐼40 and 𝐼4𝑟𝑒𝑓  in the current 

study comprised a larger portion of the total stretch-stress curve than those found in the 

aforementioned studies. It is expected that the characteristics of the global toe region would 

depend not only on the nonlinearity of the matrix and fibers, but also on the distribution, density, 

and alignment of the fibers. Differences in these tissue-specific properties could account for the 

differences seen between studies. 

 

The parameters related to the damage response of the tissue (namely, 𝛯𝑚𝑖𝑛𝑚 , 𝛯𝑚𝑎𝑥𝑚 , 𝛯𝑚𝑖𝑛𝑓
, 𝛯𝑚𝑎𝑥𝑓

, 𝛽𝑚, and 𝛽𝑓) also showed significant differences between strain-rate groups and between related 

parameters within the same strain-rate group. Although the change in 𝛯𝑚𝑖𝑛𝑚  from the quasi-static 

to the 1 mm/s loading rate was not significant, the increase in 𝛯𝑚𝑖𝑛𝑚  across all three strain rates 

suggests that the initiation of damage to the matrix may be delayed at higher strain rates. 𝛯𝑚𝑖𝑛𝑓
 

(related to the initiation of damage to the fibers) showed the opposite trend with respect to strain 

rate, although none of the differences reached significance; the decrease in 𝛯𝑚𝑖𝑛𝑓
 with increasing 
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strain rate suggests that the fibers incur damage earlier in the loading process at higher strain 

rates. If a linear relationship between strain rate and the 𝛯𝑚𝑖𝑛 terms is assumed (Fig. A3), it is not 

surprising that the only significant difference between 𝛯𝑚𝑖𝑛𝑚  and 𝛯𝑚𝑖𝑛𝑓
 was observed at the quasi-

static loading rate. Interestingly, the slopes of the proposed linear relationships are equal in 

magnitude (to within two decimal places). According to these data, at relatively low strain rates 

the matrix incurs damage before the fibers, but at strain rates above 15%/s damage is initiated in 

the fibers before the matrix. 

 

 

 

 

 

Examining the terms related to complete damage, both 𝛯𝑚𝑎𝑥𝑚  and 𝛯𝑚𝑎𝑥𝑓
 increased with increasing 

strain rate, but the only differences that reached significance were between the 𝛯𝑚𝑎𝑥𝑓
 of the 6 

Figure A3: 𝛯𝑚𝑖, which is related to the strain energy at which initial damage occurs, appears 
to follow a linear pattern with respect to strain rate in both the matrix and fibers (R2 values of 

0.99 and 0.97, respectively). While 𝛯𝑚𝑖𝑛𝑚  increases with increasing strain rate, 𝛯𝑚𝑖𝑛𝑓
 decreases 

at almost the exact same rate. Letters indicate significant differences. 
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mm/s loading-rate group and that of the other two groups. In comparing the fiber and matrix 

terms, 𝛯𝑚𝑎𝑥𝑓
 was significantly greater than 𝛯𝑚𝑎𝑥𝑚  at all three strain rates; this suggests that the 

matrix fails before the fibers such that the stress just prior to tissue failure is fully supported by 

the fibrous component. This pattern was also reported in damage model fits for rectus sheath [27] 

and vaginal tissue [26]. Figure A4 shows these results in graphical form by plotting the damage 

parameters 𝐷𝑚  and 𝐷𝑓 (defined in Eq. (A5) as functions of 𝛯𝑚𝑖𝑛𝑚 , 𝛯𝑚𝑎𝑥𝑚 , 𝛽𝑚 and 𝛯𝑚𝑖𝑛𝑓
, 𝛯𝑚𝑎𝑥𝑓

, 𝛽𝑓, 

respectively) at all three strain rates. The initiation of damage relates to the deviation of the 

damage parameter from zero, while complete damage relates to the maximum value of the 

damage parameter (typically one). For a minority of the tests, especially those at the quasi-static 

strain rate, the load did not return completely to zero following mid-substance failure; for these 

cases, the damage parameter did not reach one and complete damage was taken as the maximum 

value obtained. In line with the strain-rate-dependent differences found for 𝛯𝑚𝑖𝑛𝑚 , the initiation of 

damage to the matrix occurs at higher stretch levels for the 6 mm/s loading-rate compared to the 

quasi-static and 1 mm/s loading rates. Also, in line with the strain-rate-dependent differences 

found for 𝛯𝑚𝑎𝑥𝑓
, complete fiber damage occurs at higher stretch levels for the 6 mm/s loading 

rate compared to the quasi-static and 1 mm/s loading rate. 

 

Examining the difference between the initiation of damage and failure (𝛯𝑚𝑖𝑛 versus 𝛯𝑚𝑎𝑥) also 

provides insight into the failure process of each component. While there is a relatively large gap 

in 𝛯𝑚𝑖𝑛𝑚  and 𝛯𝑚𝑎𝑥𝑚  at the two lower strain rates, this gap is greatly reduced at the 6 mm/s loading 

rate (from an average of 0.48 MPa-1 to 0.08 MPa-1). This can also be seen in Fig. A4. The 

majority of matrix damage parameter curves at the quasi-static and 1 mm/s loading rate display 

an exponential shape, while all curves at the 6 mm/s loading rate display very steep slopes. This 
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suggests that when increasing the loading rate from 1 mm/s to 6 mm/s, the matrix transitions 

from accumulating damage gradually to experiencing sudden failure with rapid damage 

accumulation. As for the gap between 𝛯𝑚𝑖𝑛𝑓
 and 𝛯𝑚𝑎𝑥𝑓

, it appears to increase almost linearly as a 

function of strain rate from 0.01 MPa-1 at the quasi-static rate to 1.11 MPa-1 at the 6 mm/s (or 

0.284/s) rate. In Fig. A4, this is shown as a gradual shift from very steep slopes to a more gradual 

accumulation of damage. All of the quasi-static 𝐷𝑓 curves are nearly vertical lines (representing a 

brittle-like behavior), whereas almost all of the 𝐷𝑓 curves for the 6 mm/s loading-rate group 

show an exponential shape. This suggests that at higher strain rates the fibers display a more 

ductile behavior, taking on more energy before failing. 
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With significant strain-rate effects between the damage behavior of both components at 6 mm/s 

compared to the other two speeds, these findings may represent a protective mechanism of the 

dura mater. During normal voluntary neck motion, the spinal tissues are exposed to strain rates 

Figure A4: Plots of 𝐷𝑓 and 𝐷𝑚 [0,1] versus stretch. Damage initiates when the damage 

parameter deviates from zero and is considered complete when the damage parameter is equal 
to unity. In a subset of the quasi-static tests, the force did not completely return to zero 
following mid-substance failure; therefore, for these samples, the damage parameter does not 
extend all the way to one. Most of the 𝐷𝑚 curves approach unity before the 𝐷𝑓 curves, 

indicating that the matrix completely fails prior to fiber failure regardless of strain rate. 
Variations in damage behavior can be seen as the change in slope between components at the 
same strain rate or between the same components at different strain rates. 
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between 0.04 and 0.24/s [1]. The strain rates in this study (0.0005, 0.051, and 0.284/s) were 

chosen to represent the quasi-static rate, a rate typically experienced during voluntary motion, 

and a rate slightly above the typical range. At the 0.284/s rate, the initiation of damage to the 

matrix and the complete damage of the fibers were significantly delayed (occurring later in the 

loading cycle). This suggests that the tissue is able to support a higher strain energy without 

failing at higher loading rates. Therefore, in determining if tissue damage has occurred, the rate 

of loading (not only the maximum load or displacement reached) is significant. This distinction 

is important for any study of SCM injuries and suggests that computational models that use only 

static loading and/or static tissue damage properties are not capable of fully capturing the 

underlying tissue injury mechanisms. 

 

There are limitations to the above work that should be noted. For this initial study, only the 

longitudinal loading direction was analyzed as it has greater implications for the injury 

mechanism of interest, i.e., whiplash (or neck hyperflexion). In order to accurately model 

damage accumulation from circumferential loading, such as from excessive cerebrospinal fluid 

pressure, the aforementioned study should be repeated using the orthogonal loading direction. 

Similarly, based on structural and mechanical differences between spinal and cranial dura mater 

[8], it is unclear if the models developed above would be appropriate for use in cerebral 

investigations (e.g., models of traumatic brain injury or subdural hematoma). The strain rates 

utilized, while slightly above those seen in the tissue during normal voluntary motion, are still 

well below those reported for injurious levels [46–48]. Therefore, it is unknown if the differences 

seen between 1 mm/s and 6 mm/s can be extrapolated to higher speeds. Also, each group 

contained a relatively small sample size. It is possible that more significant differences would be 
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found if additional samples were included in the analysis. Finally, as with most fitting 

procedures, there can be uncertainties regarding the identification of local versus global 

minimums and the uniqueness of the fitted results. This is especially true when the number of 

fitted parameters is relatively high. The application of an outlier analysis allowed for 

identification of fits that fell outside the typical range, and while this is an accepted practice 

when working with biological tissues [49–51], the differences identified between parameters 

may vary if the full data set had been analyzed instead of the reduced data set. However, of the 

nine statistically significant differences between strain-rate groups (as identified from the 

reduced data set), six remained significantly different (p < 0.05) or trended that way (p < 0.1), 

when the full data set was examined. This suggests that there are indeed differences between the 

groups that are obscured by one or two relatively large or small fitted coefficients. Again, 

additional samples could affect the outlier analysis or reduce the number of outliers. 

 

Despite the above limitations, the results presented in the current study encourage additional 

work with the presented damage constitutive model. Future work will include testing of dura 

mater at higher strain rates, including those indicative of injury (up to 20/s), to explicitly 

investigate the role that protective mechanisms may play in dural damage accumulation. The 

small sample size precluded an analysis of anterior versus posterior differences, but there is 

evidence to suggest that the anterior dura mater may behave differently than the posterior dura 

mater [10]. Specifically, since major spinal cord injury scenarios load the anterior and posterior 

aspects of the dura differently, future work will include a regional comparison of the damage 

accumulation process. Finally, the damage model will be applied to other tissues of the SCM, 

including the pia mater and the spinal cord (treating longitudinal axons as fibers). 



166 

 

A4.1 Conclusions 

In conclusion, this work is the first to report the application of a constitutive damage model to 

the dura mater. The results show distinct damage behaviors for the matrix and fiber constituents 

and that the damage effects vary with applied strain rate. These differences suggest a possible 

protective mechanism occurring at strain rates above what the tissue experiences during normal 

voluntary neck motion. Given these findings, it is imperative that the formulation presented 

herein be implemented into finite element computational models of the SCM in order to improve 

the accuracy of simulations of spinal cord dynamics and injury/damage scenarios. 
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APPENDIX B: THE DEVELOPMENT AND VALIDATION OF A NUMERICAL 

INTEGRATION METHOD FOR NON-LINEAR VISCOELASTIC MODELING5 

 

B.1 Introduction 

Viscoelastic theory describes the time-dependent relationship between stress and strain and is 

commonly used to describe the mechanical behavior of biological tissues. For viscoelastic 

materials, the current stress state is dependent upon all previous loading events. This history-

dependent behavior complicates numerical analyses of viscoelastic materials because the stress 

at each step throughout the entire loading history must be computed and stored in order to obtain 

the current stress. For three-dimensional finite element models, computing and storing the stress 

tensor at each integration point and time step quickly becomes computationally intractable. To 

simplify numerical analyses for linear and quasi-linear viscoelastic materials, a discrete series of 

exponentials (such as a Prony series) is often used to approximate the continuous time-dependent 

relaxation spectrum. 

 

As demonstrated by Puso and Weiss [1] for quasi-linear viscoelasticity (QLV), the unique 

properties of a discrete relaxation spectrum may allow for the current stress to be computed 

using only the stress from the previous time step, thereby greatly reducing computational 

expense. Fung's theory of QLV [2,3] is a popular choice for researchers working with soft tissues 

due to its relatively straight-forward incorporation of hyperelastic formulations to describe 

elastic non-linearity. For example, it is widely used to describe the behavior of connective (e.g., 

                                                      

5 This appendix section has been published as a Research Article in PLoS ONE (DOI: 

10.1371/journal.pone.0190137). All content has been adapted as allowed for creative commons 
attribution licensing for open access articles. 
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tendon [1,4] and ligament [1,5-7]) and spinal (e.g., spinal cord [8,9], brain [10], and dura mater 

[11]) tissues subjected to static and dynamic loading regimes. However, increasing evidence has 

demonstrated that these tissue types display fully non-linear viscoelasticity [12-17], wherein the 

non-linear elastic response cannot be separated from the non-linear time-dependent response. 

 

The comprehensive viscoelastic characterization (CVC) method previously developed by our 

research group has been shown to accurately predict the non-linear viscoelastic cyclic response 

of both connective and spinal tissues based on fits of stress-relaxation data [13,18,19]. However, 

this technique is limited in three important ways: (1) it is restricted to fitting only stress-

relaxation data, (2) it requires fits of individual stress-relaxation curves at each strain magnitude 

tested, and (3) it determines the strain-dependent behavior of the tissue post-hoc (from a 

subsequent fit of the strain-dependent behavior of the individual curve fits). To increase 

modeling flexibility and address each limitation above, the present study develops a novel 

numerical integration technique (called the direct fit method) for fully non-linear viscoelastic 

modeling. This novel methodology leverages the unique properties of the Prony series to allow 

the current stress to be computed from a deformation-dependent state variable stored from the 

preceding time step only. Similar to the formulation developed for QLV theory [1], the following 

non-linear viscoelastic formulation greatly improves computational tractability by avoiding the 

need to store the stress at each time step of the analysis. The following sections will present the 

derivation of our numerical integration technique, demonstrate its implementation using 

computational methods, and verify its ability to fit non-linear viscoelastic data by recovering a 

set of known non-linear viscoelastic coefficients. The significant advantage of a fully non-linear 
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viscoelastic formulation over a linear viscoelastic formulation is also explicitly demonstrated 

through direct comparison of the fitting results. 

 

B.2 Materials and Methods 

B.2.1 Model development 

This section outlines the direct fit approach for non-linear viscoelastic modeling which calculates 

the current stress from a state variable stored from the preceding time step only (as opposed to 

every previous time step). A linear viscoelastic (i.e., strain-independent relaxation behavior) 

formulation follows the same derivation except where noted. 

 

Uniaxial non-linear viscoelastic material behavior may be represented by the hereditary (or 

convolution) integral: 

 𝜎[𝜀(𝑡), 𝑡] = ∫ 𝐸[𝜀(𝜏), 𝑡 − 𝜏]𝑡
0 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏, (B2) 

where 𝜎 is stress, 𝜀 is strain, 𝑡 is time, 𝜏 is a time variable of integration representing the history 

effect, and 𝐸(𝑡, 𝜀) is the material relaxation modulus that describes the non-linear time-

dependent relationship between stress and strain. The form of the relaxation modulus must be 

continuous and monotonically decreasing in order to satisfy thermodynamic restrictions [20]. 

When modeling biological tissues, it is common to approximate the continuous relaxation 

spectrum 𝐸(𝑡, 𝜀) by a discrete Prony series. For the case of non-linear viscoelasticity, the 

following strain-dependent Prony series has been shown to successfully capture the strain- and 

time-dependent behavior of several types of biological tissues [13,18,19,21]: 
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 𝐸[𝜀(𝑡), 𝑡] = 𝐸∞(𝜀) +∑𝐸𝑖(𝜀)𝑒−𝑡 𝜏𝑖⁄𝑁
𝑖=1 , (B2) 

where 𝐸𝑖(𝜀) is the strain-dependent Prony weight corresponding to time constant 𝜏𝑖, 𝐸∞(𝜀) 
represents the long-term strain-dependent modulus, and 𝑁 defines the finite number of 

exponential Prony terms. For linear viscoelasticity, the Prony weights and long-term modulus are 

replaced with constant (strain independent) coefficients: 

 𝐸(𝑡) = 𝐸∞ +∑𝐸𝑖𝑒−𝑡 𝜏𝑖⁄𝑁
𝑖=1  (B3) 

In order to satisfy the monotonically decreasing restriction on the relaxation modulus, the non-

linear strain-dependent Prony weight functions must be positive and monotonically increasing 

(or a positive constant for linear viscoelasticity) and the time constants must be positive. 

Combining Eq. (B1) and Eq. (B2) yields the following definition for stress at the current time 𝑡, 
assuming 𝜀(0) = 0: 

𝜎[𝜀(𝑡), 𝑡] = ∫ {𝐸∞(𝜀) +∑𝐸𝑖(𝜀)𝑒−(𝑡−𝜏) 𝜏𝑖⁄𝑁
𝑖=1 }𝑡

0 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏
= ∫ 𝐸∞(𝜀)𝑡

0 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏 + ∫ {∑𝐸𝑖(𝜀)𝑒−(𝑡−𝜏) 𝜏𝑖⁄𝑁
𝑖=1 }𝑡

0 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏
= 𝐸∞(𝜀)[𝜀(𝑡) − 𝜀(0)] + ∫ {∑𝐸𝑖(𝜀)𝑒−(𝑡−𝜏) 𝜏𝑖⁄𝑁

𝑖=1 }𝑡
0 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏

= 𝐸∞(𝜀)𝜀(𝑡) + ∫ {∑𝐸𝑖(𝜀)𝑒−(𝑡−𝜏) 𝜏𝑖⁄𝑁
𝑖=1 }𝑡

0 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏. 
(B4) 

 

A strain-dependent history state variable is defined to recursively update the stress at each 

incremental time step: 
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 ℎ𝑖[𝜀(𝑡), 𝑡] = ∫ {𝐸𝑖(𝜀)𝑒−(𝑡−𝜏) 𝜏𝑖⁄ }𝑡
0 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏, (B5) 

such that Eq. (B4) can be recast as: 

 

 
𝜎[𝜀(𝑡), 𝑡] = 𝐸∞(𝜀)𝜀(𝑡) +∑ ℎ𝑖[𝜀(𝑡), 𝑡]𝑁𝑖=1 . (B6) 

The stress at the next time step, 𝑡 + ∆𝑡, is given as: 

 𝜎[𝜀(𝑡 + ∆𝑡), 𝑡 + ∆𝑡] = 𝐸∞(𝜀)𝜀(𝑡 + ∆𝑡) +∑ ℎ𝑖[𝜀(𝑡 + ∆𝑡), 𝑡 + ∆𝑡]𝑁𝑖=1 , (B7) 

where the updated history variable is: 

 ℎ𝑖[𝜀(𝑡 + ∆𝑡), 𝑡 + ∆𝑡] = ∫ {𝐸𝑖(𝜀)𝑒−(𝑡+∆𝑡−𝜏) 𝜏𝑖⁄ }𝑡+∆𝑡
0 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏. (B8) 

Equation (B8) can be expanded by use of the summation rule for definite integrals: ℎ𝑖[𝜀(𝑡 + ∆𝑡), 𝑡 + ∆𝑡]
= ∫ {𝐸𝑖(𝜀)𝑒−(𝑡+∆𝑡−𝜏) 𝜏𝑖⁄ }𝑡

0 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏
+ ∫ {𝐸𝑖(𝜀)𝑒−(𝑡+∆𝑡−𝜏) 𝜏𝑖⁄ }𝑡+∆𝑡

𝑡 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏. 
(B9) 

Inputting Eq. (B9) into Eq. (B7) yields the following expression for the stress at the next time 

step: 

 𝜎[𝜀(𝑡 + ∆𝑡), 𝑡 + ∆𝑡]
=∑ ∫ {𝐸𝑖(𝜀)𝑒−(𝑡+∆𝑡−𝜏) 𝜏𝑖⁄ }𝑡

0 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏𝑁𝑖=1
+∑ ∫ {𝐸𝑖(𝜀)𝑒−(𝑡+∆𝑡−𝜏) 𝜏𝑖⁄ }𝑡+∆𝑡

𝑡 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏                                        𝑁𝑖=1+𝐸∞(𝜀)𝜀(𝑡 + ∆𝑡), 
(B10) 
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where the first term represents the history effect (integrated over all previous loading events), the 

second term represents the effect of the current loading event, and the final term represents the 

effect of the equilibrium response. 

 

Using the product law of exponentials, the history state variable, ℎ𝑖[𝜀(𝑡), 𝑡], could be factored 

out of the first term of Eq. (B9): 

∫ {𝐸𝑖(𝜀)𝑒−(𝑡+∆𝑡−𝜏) 𝜏𝑖⁄ }𝑡
0 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏 = ℎ𝑖[𝜀(𝑡), 𝑡] {∫ {𝐸𝑖(𝜀)𝑒−(𝑡+∆𝑡−𝜏) 𝜏𝑖⁄ }𝑡0 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏∫ {𝐸𝑖(𝜀)𝑒−(𝑡−𝜏) 𝜏𝑖⁄ }𝑡0 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏 }

= ℎ𝑖[𝜀(𝑡), 𝑡] {𝑒−𝑡 𝜏𝑖⁄ 𝑒−∆𝑡 𝜏𝑖⁄ ∫ {𝑒𝜏 𝜏𝑖⁄ }𝑡0 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏𝑒−𝑡 𝜏𝑖⁄ ∫ {𝑒𝜏 𝜏𝑖⁄ }𝑡0 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏 } = ℎ𝑖[𝜀(𝑡), 𝑡]𝑒−∆𝑡 𝜏𝑖⁄ . 
(B11) 

The second mean-value theorem of integrals states that for continuous functions 𝑓(𝑥) and 𝑔(𝑥) ≥ 0 over 𝑥 ∈ [𝑎, 𝑏], there exists 𝑐 ∈ (𝑎, 𝑏) such that ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥 = 𝑓(𝑐) ∫ 𝑔(𝑥)𝑑𝑥𝑏𝑎𝑏𝑎 . 

This theorem is imposed on the second term of Eq. (B9) such that: 

∫ {𝐸𝑖(𝜀)𝑒−(𝑡+∆𝑡−𝜏) 𝜏𝑖⁄ }𝑡+∆𝑡
𝑡 𝑑𝜀(𝜏)𝑑𝜏 𝑑𝜏 = 𝑑𝜀(𝑘)𝑑𝜏 ∫ {𝐸𝑖(𝜀)𝑒−(𝑡+∆𝑡−𝜏) 𝜏𝑖⁄ } 𝑑𝜏𝑡+∆𝑡

𝑡 , (B12) 

with 𝑘 ∈ (𝑡, 𝑡 + ∆𝑡). The time steps are assumed to be small enough that the error associated 

with linear interpolation between sequential strain values is negligible. Accordingly, by the 

central difference rule: 

 

 

𝑑𝜀(𝑘)𝑑𝜏 = 𝜀(𝑡 + Δ𝑡) − 𝜀(𝑡)𝑡 + Δ𝑡 − 𝑡 = ∆𝜀∆𝑡. (B13) 

Using Eq. (B13), the second term of Eq. (B9) may be evaluated as: 
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∆𝜀∆𝑡 ∫ {𝐸𝑖(𝜀)𝑒−(𝑡+∆𝑡−𝜏) 𝜏𝑖⁄ } 𝑑𝜏 =𝑡+∆𝑡
𝑡 𝐸𝑖(𝜀)∆𝜀∆𝑡 {𝜏𝑖 𝑒−(𝑡+∆𝑡−𝜏) 𝜏𝑖⁄ |𝜏∈[𝑡,𝑡+∆𝑡]}

= 𝐸𝑖(𝜀)𝜏𝑖∆𝜀∆𝑡 (1 − 𝑒−∆𝑡 𝜏𝑖⁄ ). (B14) 

Therefore, Eq. (B9) may be simplified as: 

ℎ𝑖[𝜀(𝑡 + ∆𝑡), 𝑡 + ∆𝑡] = ℎ𝑖[𝜀(𝑡), 𝑡]𝑒−∆𝑡 𝜏𝑖⁄ + 𝐸𝑖(𝜀)𝜏𝑖∆𝜀∆𝑡 (1 − 𝑒−∆𝑡 𝜏𝑖⁄ ). (B15) 

and Eq. (B7) can be recast as: 𝜎[𝜀(𝑡 + ∆𝑡), 𝑡 + ∆𝑡]= 𝐸∞(𝜀)𝜀(𝑡 + ∆𝑡)
+∑ {ℎ𝑖[𝜀(𝑡), 𝑡]𝑒−∆𝑡 𝜏𝑖⁄ + 𝐸𝑖(𝜀) (1 − 𝑒−∆𝑡 𝜏𝑖⁄ )(∆𝑡 𝜏𝑖⁄ ) ∆𝜀}𝑁𝑖=1 . (B16) 

Using the incremental notation 𝑓𝑛+1 = 𝑓𝑛 + ∆𝑓𝑛, where 𝑓 is an incremental variable, 𝑓𝑛 is the 

variable value at the preceding increment, and ∆𝑓𝑛 is the current variable increment, the 

following incremental formulation for non-linear viscoelasticity is obtained: 𝜎(𝜀𝑛+1)𝑛+1 = 𝐸∞(𝜀)𝜀𝑛+1
+∑ {ℎ𝑖[𝜀(𝑡), 𝑡]𝑒−∆𝑡𝑛 𝜏𝑖⁄ + 𝐸𝑖(𝜀) (1 − 𝑒−∆𝑡𝑛 𝜏𝑖⁄ )(∆𝑡𝑛 𝜏𝑖⁄ ) ∆𝜀𝑛+1}𝑁𝑖=1 . (B17) 

Following similar mathematical development, the analogous equation for linear viscoelasticity 

is: 

𝜎𝑛+1 = 𝐸∞𝜀𝑛+1 +∑ {ℎ𝑖(𝑡)𝑒−∆𝑡𝑛 𝜏𝑖⁄ + 𝐸𝑖 (1 − 𝑒−∆𝑡𝑛 𝜏𝑖⁄ )(∆𝑡𝑛 𝜏𝑖⁄ ) ∆𝜀𝑛+1}𝑁𝑖=1 . (B18) 
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It should be noted that evaluating Eq. (B17) or Eq. (B18) at the current time step requires only 

the history state variable from the previous time step (ℎ𝑖[𝜀(𝑡), 𝑡] for non-linear viscoelasticity 

and ℎ𝑖(𝑡) for linear viscoelasticity). Unlike the CVC method previously developed by our group 

[13,19], the presented formation may be fit to an arbitrary strain history and may be used in a 

data fitting algorithm to directly determine the non-linear strain-dependence of each Prony 

weight. 

 

B.2.2 Model validation 

The numerical integration technique for our direct fit method, and its associated non-linear 

viscoelastic model, were validated based on its ability to recover coefficients used to create 

idealized experimental data. These stress-strain data were created by specifying the mathematical 

formulae and coefficients of the non-linear relaxation modulus (𝐸[𝜀(𝜏), 𝑡]), the associated time 

constants, and the strain magnitude. Values were chosen based on the experimental data 

provided in Troyer et al. for ovine Achilles tendon [19]. In this previous work, the non-linear 

viscoelastic relaxation modulus was approximated by a 4-term Prony series, where each strain-

dependent Prony weight was described with a two-term polynomial function: 

 𝐸𝑖(𝜀) = 𝐶1𝜏𝑖𝜀 + 𝐶2𝜏𝑖𝜀2, (B19) 

 𝐸∞(𝜀) = 𝐶1∞𝜀 + 𝐶2∞𝜀2. (B20) 

The time constants were fixed at decadal values (𝜏1 = 0.1 s, 𝜏2 = 1 s, 𝜏3 = 10 s, 𝜏4 = 100 s) in 

order to adequately capture both the short-term and long-term response of the tissue. The 𝐶1 and 𝐶2 coefficients obtained via the CVC method (Table B1, [19]) were input into Eq. (B17) to 

create idealized experimental data for two types of viscoelastic experiments: static stress-

relaxation and dynamic cyclic tests. The idealized experimental data of each type were then 
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simultaneously fit, in their entirety, to both the presented non-linear and linear viscoelastic 

models using MATLAB's (R2014b, Mathworks, Natick, MA) fmincon constrained non-linear 

optimization function. For the non-linear viscoelastic fits, each Prony weight was constrained to 

be positive and monotonically increasing in order to satisfy thermodynamic restrictions. For the 

linear viscoelastic fits, the Prony constants were constrained to be positive. Since multiple curves 

were fit simultaneously, the root mean squared errors (RMSEs) for individual curves in the fit 

were summed and used to define the objective function minimized by the MATLAB algorithm. 

 

The accuracy of model fits were assessed by computing the RMSE between each idealized 

experimental stress-strain curve and that predicted by each viscoelastic model. For the nonlinear 

viscoelastic model, the recovery of input 𝐶1 and 𝐶2 coefficients was assessed by the percent error 

for each of the 10 coefficients. 

 

B.3 Results 

B.3.1 Stress-relaxation 

Six idealized stress-relaxation experimental curves were created to match the experimental work 

by Troyer et al. [19]. Specifically, stress-relaxation experiments at 1%, 2%, 3%, 4%, 5%, and 6% 

engineering strain at a ramping strain-rate of 0.1/sec with a dwell time of 100 seconds were 

created using the coefficients in Table B1. An initial guess value of 100 was used for all ten 

fitted coefficients in the simultaneous fits of the six experimental curves. As shown in Fig. B1, 

the non-linear viscoelastic model fit the idealized experimental curves very well, including the 

non-linear stress-strain behavior during the ramping phase, with RMSE values ranging from 1.4 

to 12.5 Pa (average RMSE = 5.25 Pa). These RMSE values are approximately six orders of 
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magnitude less than the peak stress, representing less than 0.003% of the peak stress. On 

average, there was less than a 0.28% difference between the fitted coefficients and the 

coefficients used to create the experimental curves (range 0.0001% to 2.18%, Table B1). 

 

 

 

Contrary to the non-linear viscoelastic model, the linear viscoelastic model was unable to 

describe the strain-dependent stress-relaxation data. As shown in Fig. B2, the linear model could 

not capture the non-linear stress-strain behavior during the ramping phase nor the non-linear 

strain-dependent relaxation response. The RMSE values for the linear model fit were up to six 

orders of magnitude larger than the values obtained for the non-linear model fit. The RMSE 

 
Input Coefficients 147 

(MPa) 

Stress-Relaxation 

(n=6) Coefficient 

Recovery Error 

Dynamic Cyclic (n=3) 

Coefficient Recovery 

Error 𝑪𝟏𝝉 = 𝟎.𝟏 901.1 0.01% 0.003% 𝑪𝟐𝝉 = 𝟎.𝟏 8437 0.05% 0.01% 𝑪𝟏𝝉 = 𝟏 343.5 0.16% 0.01% 𝑪𝟐𝝉 = 𝟏 -684.1 2.18% 0.12% 𝑪𝟏𝝉 = 𝟏𝟎 331.2 0.03% 0.01% 𝑪𝟐𝝉 = 𝟏𝟎 -1201.2 0.24% 0.08% 𝑪𝟏𝝉 = 𝟏𝟎𝟎 476.5 0.002% 0.02% 𝑪𝟐𝝉 = 𝟏𝟎𝟎 -363.4 0.07% 0.90% 𝑪𝟏∞ 4403.1 0.0001% 0.001% 𝑪𝟐∞ -9959.3 0.001% 0.01% 

Average  0.28% 0.12% 

Table B1: Input and recovery error of non-linear viscoelastic coefficients. The proposed 
numerical integration direct fit method for non-linear viscoelastic characterization was able to 
recover input non-linear viscoelastic coefficients using both stress-relaxation and dynamic 
cyclic stress-strain data with average errors well below 1%. 
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values for the linear model fit ranged from 0.20 to 2.27 MPa representing an average 80% of the 

peak stress. 

 

 

 

 

Figure B1: Non-linear stress-relaxation fits. The proposed numerical integration direct fit 

method for non-linear viscoelastic characterization was able to accurately fit the idealized 
stress-relaxation experimental data, including the non-linear stress-strain behavior during the 
ramping phase and the strain-dependent relaxation indicative of non-linear viscoelastic 
behavior. 
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Figure B2: Linear stress-relaxation fits. The linear viscoelastic formulation was not able to 
capture the idealized strain-dependent stress-relaxation data, resulting in large RMSE values 
compared to those of the non-linear viscoelastic formulation. 
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B.3.2 Dynamic cyclic 

The ability of the direct fit method to recover input coefficients from dynamic cyclic data was 

also examined. Similar to the stress-relaxation methodology, idealized experimental data were 

created using the same time constants and relaxation modulus coefficients obtained in Troyer et 

al. [19] (Table B1). Three idealized experimental dynamic cyclic data curves consisting of 10 

cycles to the maximum strain level of interest (6%) at 0.01Hz, 0.1Hz, and 1Hz were created for 

fitting. As with the stress-relaxation fits, an initial guess of 100 was used for all ten coefficients 

in the simultaneous fits of the three curves. 

 

The non-linear viscoelastic model also fit the cyclic data very well, with RMSE values (2.75, 

2.24, and 1.66 Pa) almost seven orders of magnitude less than the peak stress (Fig. B3). The 

cyclic fits also exhibited strong coefficient recovery with an average 0.12% difference between 

the fitted coefficients and the coefficients used to create the idealized experimental curves (range 

0.001% to 0.9%, Table B1). 

 

Figure B4 shows the results of fitting the linear viscoelastic model to the same three dynamic 

cyclic curves. As with the stress-relaxation data, the linear viscoelastic model was unable to 

capture the strain-dependent viscoelastic response with RMSE values six orders of magnitude 

larger than those obtained for the non-linear model fit. The linear model resulted in RMSE 

values of 1.44, 1.47, and 1.65 MPa, which represents approximately 10% of the peak stresses. 
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Figure B3: Non-linear dynamic cyclic fits. The proposed direct fit method accurately fit the 
idealized dynamic cyclic response at three frequencies. These curves were fit simultaneously 
but are plotted separately to improve visualization of the higher frequency fits. Images in the 
right column show the first cycle of the fit for each frequency. 
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Figure B4: Linear dynamic cyclic fits. The linear viscoelastic formulation was unable to fit 
the idealized dynamic cyclic response, resulting in very large RMSE values compared to 
those of the non-linear viscoelastic formulation. These curves were fit simultaneously but are 
plotted separately to improve visualization of the higher frequency fits. Images in the right 
column show the first cycle of the fit for each frequency. 
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B.4 Discussion 

With increasing experimental evidence that the mechanical behavior of many biological tissues 

is not adequately captured by linear and quasi-linear viscoelastic formulations, there is a 

significant need for computationally tractable fully non-linear viscoelastic modeling methods. 

The novel direct fit method presented herein provides a number of advantages over other non-

linear techniques, including that of the CVC method [13,18,19]. Specifically, through the use of 

a strain-dependent Prony series representation of the relaxation modulus and the product law of 

exponentials, the direct fit method does not require storage of the stress at each time step of the 

loading history. Instead, the new method recursively updates a strain-dependent history state 

variable. The new method also permits simultaneous fits of all experimental data from each 

sample, which is believed to result in a better approximation of the sample's behavior than 

averaging the results of individual curve fits. In addition, by fitting the data curves in their 

entirety, the non-linearity is directly determined from the fits themselves instead of post-hoc 

analyses (as with the CVC method). Finally, the direct fit method also allows for more 

experimental flexibility since it may be fit to an arbitrary strain history (e.g., stress-relaxation 

and cyclical experiments or combinations thereof). While the CVC method is both efficient in its 

fits and accurate in its predictions [13,19], it is limited to fitting the stress-relaxation response 

only. Since non-linear viscoelastic characterization based on stress-relaxation data require 

multiple tests at varying strain magnitudes, this experimental procedure can require significant 

experimental testing time. For tissues whose mechanical properties demonstrate a relatively 

quickly post-mortem degradation profile, such as neural tissues [22-24], the ability to fit fewer 

cyclic experiments for the same predictive accuracy is a very important advantage. 

 



188 

 

Strong recovery of all ten input coefficients from both stress-relaxation and cyclic experimental 

data validates the use of the direct fit method for non-linear viscoelastic characterization. It is 

important to note that, on average, the cyclic fits were better at recovering the input coefficients 

than the stress-relaxation fits. As the strain history is continuously changing over the course of 

the test, the strain-dependent Prony weights are more sensitive when fitting cyclic data compared 

to strain-stagnant relaxation data. 

 

While the non-linear viscoelastic model fit the idealized experimental data very well, the linear 

viscoelastic model performed much worse with RMSE values of up to 200% of the peak stress. 

The inability of the simplified linear viscoelastic model to fit the idealized experimental data 

demonstrates the need for fully non-linear viscoelastic models to characterize the mechanical 

behavior of many biological tissues. As seen in Figs. B2 and B4, the linear formulation of the 

presented model was unable to capture non-linear elastic or non-linear viscous behavior, both of 

which are commonly seen in the mechanical response of connective and neural tissues [12-17]. 

 

Limitations of the direct fit method developed herein include the restriction to uniaxial tension 

and the use of a simple polynomial model to capture the strain-dependent Prony weights. While 

uniaxial tension tests are popular experimental methods for characterizing both connective and 

neural tissues, we plan to extend the method to include descriptions of anisotropic behavior by 

investigating strain energy-based formulations to describe the strain-dependence of the Prony 

weights. In future work, we will use the numerical integration direct fit method to characterize 

the viscoelastic behavior of spinal cord and meningeal tissues in order to improve the time-

dependent mechanical behavior predictions of spinal cord injury finite element models. 
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APPENDIX C: SUPPLEMENTAL FIGURES FOR CHAPTER 46 
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6 This appendix section is under review as supplemental information for a fundamental research 

article to the International Journal for Numerical Methods in Biomedical Engineering. 

Figure C1: Representative fits of SCPC condition data to all three viscoelastic formulations; 
for the SCPC condition, the fit RMSE values of the LV formulation were significantly larger 
than those of the other two formulations. Although all four cycles were fit simultaneously, the 
curves have been separated to enable visibility of the faster tests. 
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  Figure C2: Representative fits of isolated cord condition data to all three viscoelastic 

formulations; for the cord condition, the fit RMSE values of the NLV formulation were 
significantly larger than those of the QLV formulation while the LV formulation values were 
not statistically different than the other two formulations. Although all four cycles were fit 
simultaneously, the curves have been separated to enable visibility of the faster tests. 
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  Figure C3: Representative fits of PAC condition data to all three viscoelastic formulations; for 

the PAC condition, the fit RMSE values of the LV formulation were significantly larger than 
those of the other two formulations. Although all four cycles were fit simultaneously, the 
curves have been separated to enable visibility of the faster tests; the reduction in stress seen 
in this 0.16 Hz test was due to a slight adjustment of the self-aligning grips and was also 
reflected in the strain data. 
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Figure C4: Predictions of the SCPC response to the 5% applied strain history (A) and the 
normalized residuals of each prediction (B). The long-term wRMSE of the NLV formulation 
prediction was lower than that of the LV and QLV formulations. 
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Figure C5: Predictions of the SCPC response to the 3% applied strain history (A) and the 
normalized residuals of each prediction (B). The long-term wRMSE of the LV formulation 
prediction was lower than that of the NLV and QLV formulations. 
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Figure C6: Predictions of the isolated cord response to the 5% applied strain history (A) and 
the normalized residuals of each prediction (B). The long-term wRMSE of the LV 
formulation prediction was lower than that of the QLV and NLV formulations. 
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Figure C7: Predictions of the isolated cord response to the 3% applied strain history (A) and 
the normalized residuals of each prediction (B). The long-term wRMSE of the NLV 
formulation prediction was lower than that of the QLV and LV formulations. 
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Figure C8: Predictions of the isolated PAC response to the 5% applied strain history (A) and 
the normalized residuals of each prediction (B). The long-term wRMSE of the LV 
formulation prediction was lower than that of the QLV and NLV formulations. 
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Figure C9: Predictions of the isolated PAC response to the 3% applied strain history (A) and 
the normalized residuals of each prediction (B). The long-term wRMSE of the QLV 
formulation prediction was lower than that of the NLV and LV formulations. 


