
THESIS

A HEURISTIC-BASED APPROACH TO AUTOMATICALLY EXTRACT PERSONALIZED

ATTACK GRAPH RELATED CONCEPTS FROM VULNERABILITY DESCRIPTIONS

Submitted by

Subhojeet Mukherjee

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Fall 2017

Master’s Committee:

Advisor: Indrajit Ray

Indrakshi Ray

Zinta Byrne

Copyright by Subhojeet Mukherjee 2017

All Rights Reserved

ABSTRACT

A HEURISTIC-BASED APPROACH TO AUTOMATICALLY EXTRACT PERSONALIZED

ATTACK GRAPH RELATED CONCEPTS FROM VULNERABILITY DESCRIPTIONS

Computer users are not safe, be it at home or in public places. Public networks are more

often administered by trained individuals who attempt to fortify those networks using strong ad-

ministrative skills, state-of-the-art security tools and meticulous vigilance. This is, however, not

true for home computer users. Being largely untrained they are often the most likely targets of

cyber attacks. These attacks are often executed in cleverly interleaved sequences leading to the

eventual goal of the attacker. The Personalized Attack Graphs (PAG) introduced by Ubranska et

al. [24, 25, 32] can leverage the interplay of system configurations, attacker and user actions to

represent a cleverly interleaved sequence of attacks on a single system. An instance of the PAG

can be generated manually by observing system configurations of a computer and collating them

with possible security threats which can exploit existing system vulnerabilities and/or misconfigu-

rations. However, the amount of manual labor involved in creating and periodically updating the

PAG can be very high. As a result, attempt should be made to automate the process of generating

the PAG. Information required to generate these graphs are available on the Internet in the form

of vulnerability descriptions. This information is, however, almost always written in natural lan-

guage and lacks any form of structure. In this thesis, we propose an unsupervised heuristic-based

approach which parses vulnerability descriptions and extracts instances of PAG related concepts

like system configurations, attacker and user actions. Extracted concepts can then be interleaved

to generate the Personalized Attack Graph.

ii

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr.Indrajit Ray for giving me every opportunity to showcase

my abilities. Dr. Ray’s contributions to my life, education and this thesis is more than words can

describe.

I would like to thank my grandmother Smt. Sipra Ghatak, mother Mrs. Soma Mukherjee, father

Mr. Sanjoy Mukherjee and wife Antara Chakraborty for the consistent support and encouragement.

For ’MA’ and ’DIDA’, this is one step of reward for all that you have done or are still doing for

me. For ’BABA’, you taught me the maths and physics which forms the base of all my thoughts.

For Antara, only a married graduate student knows how much sacrifice their spouse makes just to

see this 100 page document. I could not thank you more, you are the best.

For Kush and Ibrahim, thanks a lot for spending a large chunk of your valuable time for tagging

my datasets. For Sachini, thanks a lot for doing so much in that first paper.

This material is based upon work supported by the National Science Foundation under Grant

No. 0905232.

iii

DEDICATION

I would like to dedicate this thesis, to my co-advisor Dr.Adele Howe; “Dr.Howe I finally

defended". Thanks for believing in a student who hardly knew C++ back then. Thank you for

making me a better writer, thinker and researcher. Also, to ’DIDA’ and ’MA’, for being the pillars

that I stand on.

iv

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

DEDICATION . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

Chapter 1 Introduction and Problem Description . 1

1.1 The Big Picture . 1

1.2 Personalized Attack Graph (PAG) . 3

1.2.1 PAG Overview . 3

1.2.2 Constructing the PAG . 5

1.3 Challenges in Extracting the PAG Concepts Automatically 6

1.4 Thesis Contribution and Organization . 8

Chapter 2 Related Work . 10

Chapter 3 Background Knowledge . 13

3.1 Stanford Parser . 14

3.2 Stanford Typed Dependency Representation 16

3.3 Wordnet . 18

3.4 SentiWordnet . 19

3.5 CVE-Details . 20

Chapter 4 Formulating the PAG concepts . 22

4.1 Pre-processing the Input Text . 22

4.2 Extracting Software Names, Versions and Modifiers (Component 1) 24

4.2.1 Creating a Sentence-Bundle . 26

4.2.2 Getting Software Names from CVE-DETAILS 28

4.2.3 Identifying Software Names in Text 30

4.2.4 Cleaning up . 35

4.2.5 Identifying Versions . 35

4.2.6 Version Decisioning . 42

4.2.7 Identifying Modifiers . 46

4.2.8 Post-Processing . 48

4.3 Extracting Attacker Actions, User Actions and Post-Condi

tions (Component 2) . 48

4.3.1 Creating a Sentence-Bundle . 50

4.3.2 Identifying Human Actors . 54

4.3.3 Classifying Indirect Actors as Humans 57

4.3.4 Assigning Attributes to Actors . 59

4.3.5 Determining the Polarity of an Actor 59

v

4.3.6 Sectioning Into Attacker Actions, User Actions and Post-Conditions . . 61

4.3.7 Cleaning up . 66

Chapter 5 Evaluation and Discussion . 69

5.1 Evaluation Preliminaries . 69

5.1.1 DataSets . 69

Joshi Corpus . 70

Our Corpus . 72

5.1.2 Evaluation Metrics . 72

5.2 Evaluating on the Joshi Corpus . 74

5.3 Evaluating on Our Corpus . 76

5.4 Effectiveness of the Heuristics . 77

5.4.1 Step 1 . 78

5.4.2 Step 2 . 79

5.4.3 Step 3 . 80

Chapter 6 Conclusion and Future work . 82

Bibliography . 84

vi

LIST OF TABLES

1.1 PAG concepts . 6

3.1 Complete Set of Syntactic tags supported by the Penn Treebank Project 16

3.2 Complete Set of Relations provided by the Stanford Typed Dependency Representation 17

3.3 Sentiment Score Calculation for “Impulsive" . 20

4.1 Grammatical Dependency List for Vulnerability Description [CVE-2010-0483] (dList) 53

4.2 Types of Attributes Assigned to Each Actor . 58

5.1 Joshi Corpus Classes vs PAG Concepts . 70

5.2 Joshi Corpus Concept Instance Distribution . 71

5.3 Our Corpus Concept Instance Distribution . 71

5.4 Results for Experiments Run on the Joshi Corpus . 74

5.5 Results for Experiments Run on Our Corpus . 76

5.6 NVD Precision and Recall P-Values [Joshi and Our Corpus] 78

5.7 NVD vs Bulletins and Blogs Precision and Recall Samples for Wilcoxon Test [Joshi

Corpus] . 79

5.8 NVD vs Bulletins and Blogs Precision and Recall P-Values [Joshi Corpus] 80

5.9 NVD vs Other Semi-Structured Precision and Recall Samples for Wilcoxon Test [Our

Corpus] . 80

5.10 NVD vs Bulletins and Blogs Precision and Recall P-Values [Joshi Corpus] 80

vii

LIST OF FIGURES

1.1 NVD Vulnerability Growth Statistics . 1

1.2 Sample Personalized Attack Graph . 5

1.3 National Vulnerability Database [CVE-2010-0483] 7

2.1 PACE Bootstrapping cycle [17] . 11

3.1 An Example Parse Tree generated by the Stanford Parser 15

3.2 An Example Typed Dependency List . 18

3.3 Software Name Repository at CVE-DETAILS . 21

4.1 Architecture of the PAG Concept Extractor . 23

4.2 An example of vulnerability description pre-processing 23

4.3 Component 1 Workflow Diagram . 25

4.4 Forming a Sentence-Bundle Tuple . 29

4.5 Results from CVE-DETAILS . 30

4.6 Selection of Software . 34

4.7 Identifying Versions . 39

4.8 Decisioning in Assigning Versions . 43

4.9 Final Output . 47

4.10 Component 2 Workflow Diagram . 49

4.11 Syntax Tree for Vulnerability Description [CVE-2010-0483] (synTree) 52

4.12 Identifying Human Actors . 56

4.13 Attributes Assigned to each Actor . 60

4.14 Determining the Type of Human Actor . 63

4.15 Segregating Actions and Post-Conditions . 67

4.16 Clean up . 68

5.1 Comparative Evaluation of Precision and Recall Scores [Joshi Corpus] 75

5.2 Comparative Evaluation of Precision and Recall Scores [Our Corpus] 77

viii

Chapter 1

Introduction and Problem Description

1.1 The Big Picture

As technology is progressing, computer systems are becoming more and more susceptible to

attacks from malicious adversaries. National Vulnerability Database (NVD) provides a bar-chart

representation (Fig. 1.1) 1 of the number of computer security vulnerabilities each year, from 1988

to 2014.

Figure 1.1: NVD Vulnerability Growth Statistics

The growing security needs demand enhanced vigilance from the system administrators and

personal computer users [29] to, among other activities, identify vulnerabilities and patch vulnera-

ble software. Vulnerability scanners like OpenVAS (http://www.openvas.org) and Nessus

1Generated by querying NVD statistics generator [http://web.nvd.nist.gov/view/vuln/

statistics] with empty string parameters

1

(http://www.tenable.com/products/nessus) help in identifying isolated vulnerabil-

ities on both networked and standalone systems. However, exploiting a single vulnerability might

not always lead to the goal of the attacker. Often a group of vulnerabilities can be exploited in

a cleverly interconnected sequence to meet the malevolent intents of the attacker. Vulnerability

scanners like OpenVAS and Nessus do not exhibit features that formally represent the interactions

between vulnerabilities and threats. This problem is solved to a great extent by making use of

Attack Trees (AT) and Attack Graphs (AG) [12, 30, 34]. ATs and AGs are data structures which

are used to relate different security vulnerabilities and capture how they could be exploited in a

systematic manner to cause security compromises. Traditionally attack graphs and attack trees are

used to analyze attack scenarios for networked systems [8,21–23] and do not focus on interactions

of vulnerabilities on a single computer. The Personalized Attack Graph (PAG) [24, 25, 32] is a

morphed representation of the traditional attack graph that is suited to analyze threats on a single

system. Apart from formally introducing the PAG in [24, 25, 32], Urbanska et al. [31] attempt to

extract information from the web (National Vulnerability Database (NVD) 2) that can be used to

build the PAG. However, their approach makes use of syntactic patterns observed in information

published by NVD and is thus suited to extracting PAG concepts from NVD only. In order to

extract concepts from more than one vulnerability database (including NVD) and build the PAG

as defined in [24, 25, 32], we need to construct a system which is independent of the syntactic

patterns observed in information published by any particular vulnerability database. In this thesis,

we leverage this idea by presenting an approach that makes use of grammatical connotations of

words and phrases in the English language to parse information obtained from the web and extract

concepts which can then be used to build the PAG.

2https://nvd.nist.gov/

2

1.2 Personalized Attack Graph (PAG)

1.2.1 PAG Overview

A Personalized Attack Graph (PAG) [24,25,32] is a graphical representation of the interactions

between vulnerabilities existing on a system and actions performed by users and attacker which

lead to a successful compromise of the system. In general, the PAG can be associated with four

different concepts. Discussed below are the four concepts with examples.

Concept 1 (Attacker Actions). Attacker Actions are propositions that represent the operations

performed by an attacker to trigger a security compromise. Attacker actions are often, if not

always, aided by actions performed by users and existing vulnerabilities on a system. Attacker

actions are formally represented as nodes in the PAG and can be either true or false with some

probability of success. More like these are examples:

• Sending crafted documents to leverage faults in the system

• Enticing users to visit malicious website

Concept 2 (User Actions). User Actions are propositions that represent the operations performed

by a user resulting in a security compromise. User actions are often, if not always, influenced by

attacker actions. User actions are formally represented as nodes in the PAG and can be either

true or false with some probability of success. The probability of a User Action is calculated using

user specific features like level-of-confidence in performing security related tasks and perceived

benefits of risky actions. More like these are examples:

• Pressing a key which might trigger the installation of a malicious executable file

• Clicking on a link, which leads to a phishing website.

Concept 3 (Software and Versions). Software and Versions are propositions that represent vulner-

able versions of softwares which can be attacked to cause a system compromise. The presence of

a vulnerable software is not enough to guarantee the successful execution of an attack. The vul-

nerability in the software needs to be exploited by actions from either users or attackers or both.

3

Software and Versions are formally represented as nodes in the PAG and can be either true or false

with some probability of success. More like these are examples:

• vBulletin 4.4.2

• TableField module 7.x-2.x

In order to fully express the concept of Software and Versions we break it down into 3 separate

concepts namely, Software Names, Versions and Modifiers. While Software Names and Versions

are self-explanatory, Modifiers are quantifiers which express the range of Versions susceptible to an

attack. Security descriptions often use phrases like “2x before 2.3" to denote vulnerable versions.

A Modifier [13] in this example denotes all version of a software with the prefix “2" and below

2.3 (2.0, 2.1 etc.). Although in section 4, we extract Software Names, Versions and Modifiers

separately, throughout this thesis we refer to them using a single concept Software and Versions.

Concept 4 (Post-Conditions). Post-Conditions are propositions that represent the impact of a suc-

cessful attack. Post-Conditions are generally intermediate nodes in a PAG that can be either true

or false with some probability of success. More like these are examples:

• Causing arbitrary code to run on a user’s machine

• Enticing users to visit malicious website

An example of a Personalized Attack Graph is shown in Fig. 1.2. The four PAG concepts

constituting the instance of the PAG shown in Fig. 1.2 are tabulated in Table 1.1. The PAG

essentially represents the interplay of the four concepts described above and is specific to a given

system. The goal node represents the eventual goal of the attacker (e.g. “Denial of service").

The sub-goals represent the effects individual attacks launched on the system (e.g. “Executing

arbitrary code"). Predecessors of the goal node signify various activities that must occur in the

home computer systems to trigger the goal or the final exploit. A set of such activities in the same

level of the tree might happen in conjunction (“AND") or disjunction (“OR") with one another

and thereby pave the path towards the execution of a different node at a higher level (lower level

4

VBScript 5.1, 5.6, 5.7, and 5.8
in Microsoft Windows

2000 SP4, XP SP2 and SP3,
and Server 2003 SP2

User uses Internet Explorer

User presses F1 key

Attacker references (1) local pathname,
(2) UNC share pathname, or (3) WebDAV

server with a crafted .hlp file in the
fourth argument

to the MsgBox function

Attacker executes arbitrary code

Denial of service

AND

Figure 1.2: Sample Personalized Attack Graph

in terms of depth from the root). A node of the graph in Fig.1.2 maps to exactly one of the four

concepts in a many-to-one manner (see Table 1.1). This implies that multiple PAG nodes can map

to a single concept, but not vice-versa. Because a PAG is composed of multiple instances of these

concepts, we cumulatively refer to them as the PAG concepts. An arc in the PAG represents the

sequence of propositions, all of which need to be true for a successful system compromise.

1.2.2 Constructing the PAG

Constructing the PAG for a specific computer requires identifying all instances of the PAG con-

cepts valid for that computer. One approach to that can be to scan the computer using vulnerability

scanners and manually identify combinations of Sofware and Versions, Attacker actions, User

Actions and Post-Conditions which can lead to a system compromise. This approach demands in-

tensive manual labor and time. Moreover, because home computer users are largely untrained [1],

this task becomes even more difficult for them. A possible solution can be to generate the PAG

5

Table 1.1: PAG concepts

Concept Content Shown In

Software and Ver-

sions

“VBScript 5.1, 5.6, 5.7, and 5.8 in Microsoft

Windows 2000 SP4, XP SP2 and SP3, and

Server 2003 SP2"

shaded-box

Attacker Action “references a (1) local pathname, (2) UNC

share pathname, or (3) WebDAV server with

a crafted .hlp file in the fourth argument to

the MsgBox function"

shaded box

User Action “uses Internet Explorer", “presses F1 key" shaded box

Post-Condition

(including even-

tual goal)

“executes arbitrary code", “Denial of ser-

vice"

plain box (goal shown

in thick bordered box)

in an automated fashion. Roughly, the automated construction of the PAG involves the following

steps:

1. Scan the system for existing vulnerabilities

2. Obtain textual descriptions of the PAG concepts related to each observed vulnerability. These

textual descriptions can then be used to represent the propositional values for the nodes of

the PAG. For instance, the PAG in Fig. 1.2 can be constructed by obtaining textual represen-

tations of the PAG concepts shown in the second column of Table 1.1.

3. Establish hierarchical relationships among the nodes.

Step 1 can be achieved easily using modern vulnerability scanners. Step 2 requires obtaining

information pertaining to the PAG concepts and is the goal of this thesis. Step 3 requires further

analysis of the extracted descriptions and is out of the scope of this thesis.

1.3 Challenges in Extracting the PAG Concepts Automatically

As discussed previously, the goal of this thesis is to obtain instances of the PAG concepts in an

automated fashion. This task is, however, accompanied by its own challenges.

Firstly, textual descriptions of the PAG concepts need to obtained from somewhere. Fortu-

nately, this information is provided in plenty on the web. Fig. 1.3 shows one such web-page

6

Figure 1.3: National Vulnerability Database [CVE-2010-0483]

hosted by the National Vulnerability Database (NVD). This page presents detailed information on

the vulnerability referred to by the identifier CVE-2014-24893. The block of text provided under

the “Overview" section in Fig. 1.3 is often referred to as a vulnerability description. The PAG

concepts are embedded in these vulnerability descriptions and in order to construct the PAG we

need to extract these concepts from the description. Table 1.1 shows the PAG concepts that can be

extracted from the vulnerability description provided in Fig. 1.3 and used to build the PAG from

Fig. 1.2.

Secondly, once the vulnerability descriptions are obtained they need to be parsed in order to

extract the PAG concepts. However, vulnerability descriptions are published and updated by human

beings. Subsequently, they are written in natural language and do not follow a pre-defined structure

or schema. The unstructured nature of the descriptions poses two serious issues for the automated

concept extraction process. Firstly, it needs to be verified whether a particular concept is present

in vulnerability description. And secondly, if it is present, which portion(s) of the descriptions

correspond to instances of that concept.

3The CVE identifier is a unique identifier assigned to newly discovered vulnerabilities. The MITRE Corporation

(http://www.cve.mitre.org/cve/identifiers/index.html) is primarily responsible for providing

these identifiers

7

1.4 Thesis Contribution and Organization

In this thesis, we aim to extract the four PAG concepts (Software and Versions, Attacker ac-

tions, User Actions and Post-Conditions) from vulnerability descriptions. Although the problem

is similar to the named entity recognition (NER) paradigm, the entities extracted in a typical NER

application (names, people, organizations etc.) do not coincide with the PAG concepts [19]. Pre-

vious works [13, 17, 19] make use of supervised/semi-supervised machine learning techniques to

extract cyber-security related concepts (the concepts they extract are not necessarily the same as

ours). However, we believe supervised learning techniques are not perfectly suited for PAG con-

cept extraction. This is because supervised learning techniques require a substantial amount of

training data and there is no publicly available annotated dataset for PAG concepts. Even if such

a dataset is generated, it requires further effort to maintain and update it if the source information

changes. In view of these issues posed by supervised learning techniques, we propose an al-

ternative unsupervised heuristic-based approach to parsing security related descriptions written in

natural language. In particular, we try to make inferences based on grammatical patterns and parts-

of-speech that are commonly used in English. For this purpose, we make use of publicly available

tools [2, 7, 14, 18], which support automated annotation and reasoning of different parts-of-speech

occurring in natural language. However, in this process we face two primary issues. Firstly, not all

judgments can be made using natural language tools. For example, to the best of our knowledge,

there does not exist an NLP tool or a publicly accepted heuristic which can establish a concrete

relation between a subject of a sentence and a set of verbs from the same sentence. Secondly, most

of these NLP tools are trained on manually annotated corpora that are not specifically tailored for

computer security. Thus the accuracy of these tools, in annotating security related concepts, might

impact the final results we obtain. To counter these two issues, we base our heuristics on semantic

patterns commonly observed in vulnerability descriptions published by the National Vulnerability

Database (NVD). For example, thoroughly observing vulnerability descriptions from NVD reveal

that Post-Conditions are generally found as substrings in the object part of a sentence.

8

The rest of the thesis is organized as follows. Chapter 2 delves into some of the previous

work done in the field of cyber-security related concept extraction. Although these works do

not necessarily focus on extracting the PAG concepts, they help in familiarizing the reader with

previous research done in the same line as ours. In Chapter 3, we provide a detailed description of

the data repository and NLP tools used for the information extraction techniques employed in this

thesis. In Chapter 4, we introduce a set of algorithms that extract PAG concepts from vulnerability

descriptions in an unsupervised heuristic-based manner. Chapter 5 provides an evaluation of the

efficiency of our approach in terms of standard metrics like precision and recall [15] followed by a

comparison of the scores to that obtained by Joshi et al. [13]. Using our evaluation we also attempt

to answer the cardinal question raised above. Finally in Chapter 6, we summarize the contributions

made in this thesis followed by the prospective future work.

9

Chapter 2

Related Work

Till date, research in the field of cyber-security related concept extraction has been limited.

Amongst the few works done in this field of research, only one focuses on extracting concepts

similar to ours. Then again concepts like User Action have been completely overlooked. This

is because previous works were not motivated by the idea of extracting concepts related to the

Personalized Attack Graphs. Nevertheless, the literature review done in this chapter helps the

reader to get acquainted with the field of cyber-security related concept extraction.

In their work, Roschke et al. [26, 27] attempt to solve a problem similar to ours. They parse

security descriptions and extract entities out of it to build attack graphs. Although they present a

comparison of 10 vulnerability databases based on the entities which can be extracted from them,

they eventually choose NVD as their main source of information. The entity extraction process is

facilitated by creating “reader plugins". Reader plugins make use of common syntactic patterns

and phrases used in vulnerability descriptions. As an example, NVD often uses the phrase “execute

arbitrary code" to describe a post-condition of an attack. The authors propose a reader plugin for

each vulnerability information source. They also propose the concept of “writer plugins" which

transform the extracted entities to forms which can be read by various applications like attack graph

generators or vulnerability analysis tools. The main problem with this approach is the use of a

distinct reader plugin for each vulnerability database. Because reader plugins make use of common

patterns and phrases, users need to identify patterns in unstructured texts across all vulnerability

databases that are candidates for the extraction process. This not only becomes tedious but also for

many vulnerability databases it is almost impossible to find syntactic patterns in descriptions. A

separate problem can occur with the maintenance of the reader plugins. If the patterns change over

the course of time, the reader plugins need to be adjusted to match the new patterns. Urbanska et

al. [31] use a similar approach, but theirs is scoped to extracting PAG concepts from NVD only.

This work suffers from the same drawbacks as observed by Roschke et al. [26, 27].

10

Figure 2.1: PACE Bootstrapping cycle [17]

PACE [17] is a bootstrapping (semi-supervised) algorithm which tries to extract 4 security

related concepts (Exploit Effect, Software Name, Vulnerability Potential Effects, Vulnerability Cat-

egory) from multiple vulnerability databases. The algorithm requires a small set of known entity-

context pairs, known patterns and an input corpus as input. The algorithm then proceeds using a

cyclic approach similar to traditional bootstrapping [20] (Fig. 2.1). Known entity-context pairs are

expressed using entity names and 5 word prefix/suffix. For example,

“exploits ... f laws in”
︸ ︷︷ ︸

prefix

+“Android”
︸ ︷︷ ︸

entity name

“and borrows...Windows”
︸ ︷︷ ︸

suffix

Once the known entity-context pairs are provided, the algorithm learns new known patterns by

comparing them to known entity-context pairs and choosing the best-ranked patterns from ones

produced by the comparisons (Fig. 2.1). Patterns are expressed using the triple [prefix, name,

suffix]. The known patterns are then used to search the input corpus and generate candidate entity

names. Candidates are then scored and the best are added to the set of known entity-names. This

process continues in a cycle, as shown in Fig. 2.1. The number of such cycles is determined by

another input to the algorithm. Because patterns are created from a small set of known entity-

context pairs, the patterns are generally accurate and take much less time to be generated than

traditional bootstrapping processes which scan the whole corpus to generate patterns. However,

PACE suffers from a few drawbacks. Firstly, the algorithm requires a very large corpus, across

multiple vulnerability databases as input. And secondly, although syntactic patterns are hard to

11

find in vulnerability descriptions, even if patterns exist, they vary largely from one database to

another. As a result, syntactic patterns extracted from one database is hardly useful to extract

patterns from another.

Joshi et al. [13] demonstrate a machine learning based algorithm to extract 7 security related

concepts: software (e.g., Adobe Reader 10.2), network terms (e.g., HTTP, SSL), attack cause

(e.g., buffer overflow), attack consequence (e.g., denial of service), file name (e.g., index.php),

hardware (e.g., Cisco Router), and modifiers (e.g.version before 10.2). In particular, they make

use of a Condition Random Field Classifier [33] with 7 feature sets to identify the concepts. The

training dataset used by them consisted of vulnerability descriptions from 30 security blogs, 240

CVE descriptions (same as extracted from NVD) and 80 Security Bulletin entries from Abode

and Microsoft. Once the concepts are extracted, they are mapped to DBPedia [3] resources and

expressed as RDF triples using classes from an existing IDS ontology4. The extracted concept

triples are accompanied with RDF triples formed by absorbing NVD XML feeds. Although some

of the concepts extracted in this work are quite similar to the PAG concepts, the authors do not

spot the User Action entity from the vulnerability texts. Moreover, since this work uses supervised

machine learning techniques, it requires sufficient domain-specific training data. To the best of our

knowledge, no such dataset exists for PAG related concepts.

Mulwad et al. [19] make of use Wikitology [11] which is an “off-the-shelf" knowledge base

of information from Wikipedia, DBpedia [3] etc to extract information related to vulnerabilities,

threats and attacks. Computer security related concepts are extracted by querying the Wikitology

knowledge base against the text descriptions and the returned concepts are pruned to a set whose

elements belong to the taxonomies under the Wikipedia category 5 “Computer_security_exploits".

The extracted concepts are then mapped to the IDS OWL ontology and DBPedia resources, similar

to the previous work [13] described in this section.

4https://github.com/ArnavJoshi/IDSOntology/blob/master/IDSv2.0.1.owl

5https://en.wikipedia.org/wiki/Special:CategoryTree

12

Chapter 3

Background Knowledge

The PAG concepts (Software and Versions, Attacker Actions, User Actions, Post Conditions)

are embedded in vulnerability descriptions available on the web. In order to formulate the PAG,

we need to extract these concepts from vulnerability descriptions written in natural language. In

Chapter 4 we propose an unsupervised heuristic-based approach to extract the PAG concepts auto-

matically. Since vulnerability descriptions are free texts expressed in natural language, in order to

devise heuristics which exploit grammatical features of these free texts we need to perform natural

language processing on them. This can be done using cleverly crafted custom-created algorithms.

Fortunately, prior research and development in the field of natural language processing and com-

puter security have led to the fabrication of tools and data repositories which can be used for this

purpose. Listed below are some of the basic requirements of our work along with the tools and

data repositories which satisfy them.

• A large part of our solution makes use of rules created by thoroughly observing the gen-

eral grammatical structures in English sentences. In particular we observe two fundamental

aspects of English grammar: parts-of-speech (like noun, verb, adjective etc.) of a word in

the context of the sentence it belongs to and grammatical dependencies between words (eg.

“attacker" is the subject of the verb “compromise" in the sentence “attacker compromised

the machine"). The Stanford Parser [14] and the Stanford Typed Dependency Representa-

tion [5,7] allow us to ascertain the parts-of-speech and inter-word dependencies in a sentence

respectively.

• Although Stanford Typed Dependency Representation assists in finding the subject of a given

verb, it does not give enough information about the subject. In particular, we seek to find

whether the subject of a verb in a sentence is in the form of a human. For example, in the

sentence “attacker compromised the machine", the subject “attacker" is a human. We make

13

use of the popular lexicon Wordnet [10,18] to deduce more information like this about actors

in a sentence.

• A computer, in general, is not intelligent enough to semantically distinguish between words

like “attack" and “accept" as actions with malicious and benign intents respectively. Senti-

WordNet [2,9] is a publicly available tool which can deduce the polarity of a word as negative

(malicious) or positive/neutral (benign). Being able to distinguish between the polarity of

words allows us to categorize actors in a sentence as malicious or benign.

• Finally, software names are mostly represented as proper nouns in a vulnerability descrip-

tion. However, the opposite might not be true, i.e. all proper nouns are not software names.

Thus after identifying proper nouns, using the Stanford Parser, we need to validate whether

they refer to popular software names. For this purpose, we match the identified proper

nouns to popular software names obtained from the software repository of the vulnerability

database CVE-DETAILS.

The rest of this chapter is subdivided into sections, each of which provides detailed information

about the Stanford Parser, the Stanford Typed Dependency Representation, WordNet, SentiWord-

Net and the CVE-DETAILS vulnerability database respectively. It is to be noted that because these

tools are designed to work on English sentences written in natural language, the examples used in

this chapter are based on routinely used English sentences and not vulnerability descriptions.

3.1 Stanford Parser

The Stanford Parser [14], uses probabilistic context-free grammars(PCFG). PCFG bases on the

use of the terminal and non-terminal symbols in POS tagging. Non-terminal symbols are those

which can have a branching factor greater than 0, i.e. they have a child node. For example, the

POS tag S(sentence/starting symbol) can have a set of children denoted by NP, V P . On the other

hand, terminal symbols do not have any children. For example, in the English vocabulary, a word

like “man" would appear as the leaf node of a parse tree and hence could be considered as a

14

Sentence : The user
pressed the f1 key.

Parse Tree:

(ROOT
 (S
 (NP (DT The) (NN
user))
 (VP (VBD pressed)
 (NP (DT the) (JJ
f1) (NN key)))
 (. .)

)

)

Figure 3.1: An Example Parse Tree generated by the Stanford Parser

terminal symbol. A derivation is a rule using which each non-terminal symbol in a sentence can

be broken down into a combination non-terminal or terminal symbols. For example, < V P >→<

V B >< NP >, where the VP on the left-hand side is the parent node and the nodes on the right

are children. This scenario is also called context-free grammar, where the single symbol on the

right can be rewritten using the rule for which it is the left-hand argument, without any contextual

information related to it. For example, < V P >→< V B >< NP > can be rewritten as <

V P >→< worked >< NP >, where VB is replaced using the rule < V B >→< worked >.

Typically the rule Left Most Derivation suggests rewriting the leftmost non-terminal symbol on the

right-hand side of a derivation with the rule that symbol is applicable to. However, many times

a single non-terminal symbol can be segregated into multiple distinct combinations of terminal

and non-terminal symbols. Under such scenarios, the sentence can produce multiple parse trees.

For example, the non-terminal symbol < V P >→< V B >< NP > can also be written as

< V P >→< V P >< PP >. This introduces a chance factor and hence leads to multiple

left-most derivation trees for a single sentence. PCFG aims to return the parse tree which has the

highest chance to represent a particular sentence.

15

Table 3.1: Complete Set of Syntactic tags supported by the Penn Treebank Project

Tag Parts-of-Speech

ADJP Adjective phrase

ADVP Adverb phrase

NP Noun phrase

PP Prepositional phrase

S Simple declarative clause

SBAR Clause introduced by subordinating conjunction or 0 (see below)

SBARQ Direct question introduced by wh-word or wh-phrase

SINV Declarative sentence with subject-aux inversion

SQ Subconstituent of SBARQ excluding wh-word or wh-phrase

VP Verb phrase

WHADVP wh-adverb phrase

WHNP wh-noun phrase

WHPP wh-prepositional phrase

X Constituent of unknown or uncertain category

Null elements

* "Understood" subject of infinitive or imperative

0 Zero variant of that in subordinate clauses

T Trace–marks position where moved wh-constituent is interpreted

NIL Marks position where preposition is interpreted in pied-piping contexts

The Stanford Parser generates a parse tree corresponding to a particular input sentence. A

sample parse tree produced by the parser is shown in Fig. 3.1. The figure shows an annotated

parse tree where each word or non-terminal symbol is annotated using POS tags from [16, 28].

The complete list of POS tags can be found in Table 3.1. The parse tree also shows the presence

of a set of syntactic tags(bracket level tags) [16, 28]. These tags are listed in Table 3.1.

3.2 Stanford Typed Dependency Representation

The Stanford Typed Dependency Representation [5, 7] expresses grammatical relationships in

terms of a directed graph [6]. A dependency or a single node in the graph can be represented

as a relation triple. For example, in the independent clause “Jack brought water"", the relation-

ship between the tokens “Jack" and “brought" can be represented in the form of a binary relation

“nsubj(brought-2, Jack-1)", which identifies “Jack" (word number 1 in the clause) as the subject

16

Table 3.2: Complete Set of Relations provided by the Stanford Typed Dependency Representation

Abbreviation Typed Dependency

acomp adjectival complement

advcl adverbial clause modifier

advmod adverbial modifier

agent agent

amod adjectival modifier

appos appositional modifier

aux auxiliary

auxpass passive auxiliary

cc coordination

ccomp clausal complement

conj conjunct

cop copula

csubj clausal subject

csubjpass clausal passive subject

dep dependent

det determiner

discourse discourse element

dobj direct object

expl expletive

goeswith goes with

iobj indirect object

mark marker

mwe multi-word expression

neg negation modifier

nn noun compound modifier

npadvmod noun phrase as adverbial modifier

nsubj nominal subject

nsubjpass passive nominal subject

num numeric modifier

number element of compound number

parataxis parataxis

pcomp prepositional complement

pobj object of a preposition

poss possession modifier

possessive possessive modifier

preconj preconjunct

predet predeterminer

prep prepositional modifier

prepc prepositional clausal modifier

prt phrasal verb particle

punct punctuation

quantmod quantifier phrase modifier

ref referent

root root

tmod temporal modifier

vmod reduced non-finite verbal modifier

xcomp open clausal complement

xsubj controlling subject

for the verb “brought" (word number 2 in the sentence). The Stanford Dependency Manual lists

50 such relations, of which 48 can be seen in Table 3.2.

17

Sentence : The user
pressed the f1 key.

Typed Dependency
list:

det(user-2, The-1)
nsubj(pressed-3, user-2)
root(ROOT-0, pressed-3)
det(key-6, the-4)
amod(key-6, f1-5)
dobj(pressed-3, key-6)

Figure 3.2: An Example Typed Dependency List

The first argument of the binary relation is referred to as the governor or head and the second

argument is referred to as the dependent [6]. In this thesis we refer to a “dependency" as a triple

represented by relation(governor, dependent). A fully annotated typed dependency representation

is shown in Fig. 3.2.

3.3 Wordnet

WordNet [18] is a database for English lexicon. It essentially classifies words into groups or

synsets based on similar senses generated by each word. WordNet can be considered as a repos-

itory for nouns, verbs, adjectives and adverbs. It contains a total of 117,000 synsets [http:

//wordnet.princeton.edu/] and each synset is linked to other synsets to form a net-

work of conceptually related words. WordNet glosses are essentially definitions assigned to each

word and signify the meaning of the word specific to the synset it belongs to. In our work, we

use these glosses to extract meanings of words, that are of importance to our approach. Word-

net is available in the electronic form [10] and can be queried using the publicly available API

RiWordNet(http://rednoise.org/rita/reference/RiWordNet.html). RiWord-

18

Net provides the interface via which we can query the WordNet dictionary for glosses. A few

examples of WordNet glosses obtained via RiWordNet are enumerated below:

1. attacker/NOUN: someone who attacks

2. user/NOUN: a person who makes use of a thing; someone who uses or employs something

3. server/NOUN: a person whose occupation is to serve at table (as in a restaurant)

Since in our approach we query glosses for only nouns, each word enumerated above is associated

with its part-of-speech, which is NOUN for all the cases. Although the definition of “server" is

inappropriate to the concept of computer security, it aids us in our approach.

3.4 SentiWordnet

SentiWordNet [2, 9] attaches Positive, Negative or Neutral sentiment to each word

in terms of a score in the range [0.0, 1.0]. It essentially attaches these polarities to each synset of

a word, i.e. each WordNet [10, 18] sense a word is assigned to. The sum of the scores assigned

to a word is always 1.0 for a single synset the word belongs to. However, for this work, we use

a simplified version of SentiWordNet 3.0 [http://sentiwordnet.isti.cnr.it/] which

uses only word labels (adjective, noun, verb, adverb) to generate sentiment scores instead of synsets

(all senses of a word which represent the same label, are clubbed together). Each word is associated

with either a positive or a negative score, and the resultant score is calculated by subtracting the

negative score from the positive score. The synsets/words under the same label are represented as

word and associated rank (eg. impulsive#4). The “rank" essentially rates a word based on its most

common synset classifications. For example, in SentiWordNet 3.0, the word “impulsive" can be

associated with 4 different WordNet synsets.

Table 3.3 is a inversely ranked order of most common appearances of the keyword “impulsive",

according to WordNet 3.0. The column diff marks the difference between positive and negative

scores for each sense of “impulsive". The final score is calculated as

19

Table 3.3: Sentiment Score Calculation for “Impulsive"

POS Rank Meaning + score - score diff diff\rank 1\rank

a 5 characterized by undue haste and lack of thought or deliberation 0 0.625 -0.625 -0.125 0.2

a 4 determined by chance or impulse or whim rather than by necessity or reason 0 0 0 0 0.25

a 3 having the power of driving or impelling 0.25 0 0.25 .083 .333

a 2 without forethought 0.125 0 0.125 0.062 .5

a 1 proceeding from natural feeling or impulse without external stimulus 0 0 0 0 1

Total .02 2.28

∑number of wordnet occurences
i

diffi
ranki∑number of wordnet occurences

i ranki
=⇒ 0.02

2.28
= .009 6

Thus the word “impulsive" generates a positive sentiment in this case.

3.5 CVE-Details

CVE-Details is a vulnerability database which provides semi-structured information on vul-

nerabilities identified by the CVE-identifier7. CVE-DETAILS reports on the same vulnerabilities

that are published in the National Vulnerability Database (NVD). As a result, the vulnerability de-

scriptions provided by CVE-details are similar to that provided by NVD. However, CVE-Details8

also acts as a repository for software names. These are the software which have been affected by

vulnerabilities having CVE-identifiers. As a result, making use of the software repository at CVE-

details limits the scope of our approach to extracting only those software names which have been

affected by vulnerabilities having CVE-identifiers. However, in absence of an absolute source of

software names we consider CVE-Details as the best available repository.

Fig. 3.3 shows an example of a list of software names displayed by CVE-DETAILS when

queried using the keyword “CSS". CVE-DETAILS supports querying the software database us-

ing HTTP GET parameters and SQL-like syntax. For example, the page shown in Fig. 3.3

is generated by querying the CVE-DETAILS database at http://www.cvedetails.com/

product-search.php with the following parameters:

6formula source: sample code at http://sentiwordnet.isti.cnr.it/

7The CVE identifier is a unique identifier assigned to reported vulnerabilities by the MITRE corporation

8http://www.cvedetails.com/product-search.php

20

Figure 3.3: Software Name Repository at CVE-DETAILS

vendor_id=0&search=%25CSS%25

As noticed above, the parameter “search" is assigned the value “%25CSS%25" which in plain text

is “%CSS%". This is similar to querying using the SQL operator “like". For the purpose of auto-

mated extraction, we query the CVE-DETAILS database at http://www.cvedetails.com/

product-search.php with “search" parameters codified in this SQL wildcard-like form. Fol-

lowing that we extract the product and vendor names (as shown in Fig. 3.3) by parsing the HTML

DOM tree representation of the web-page returned by CVE-DETAILS.

21

Chapter 4

Formulating the PAG concepts

The goal of this thesis is to be able to extract textual representations of the PAG concepts from

vulnerability descriptions provided by vulnerability databases like NVD. In this chapter, we aim to

provide an unsupervised rule-based approach to parsing vulnerability descriptions and obtaining

instances of Software and Versions, Attacker Actions, User Actions and Post-Conditions from them.

Our approach begins by pre-processing the retrieved text, where we break the text up into one or

more sentences and remove unnecessary sections of a sentence, thereby preparing it for further

analysis in the next steps of the algorithm. This is followed by two separate techniques/components

which aim at extracting two different sets of PAG concepts. The first of these components is

aimed at extracting Software Names, Versions and Modifiers. The second component focuses on

extracting Attacker Actions, User Actions and Post Conditions. Both these components are shown

in Fig. 4.1. Component dependencies like the Stanford Parser, the Stanford Typed Dependency

representation, CVE-DETAILS, WordNet and SentiWordNet (refer to Chapter 3) are also shown

in the figure. Each of the components is based on some rules composed by thoroughly observing

grammatical and syntactical patterns occurring frequently in vulnerability descriptions. It is to be

noted that vulnerability descriptions are also free text written in natural language. As a result, some

of the rules are composed by observing grammatical and syntactical patterns in natural language

text too. In course of describing the components, we state all the heuristics which are used to create

the rules.

4.1 Pre-processing the Input Text

Pre-processing the input vulnerability descriptions involve three distinct steps namely, separat-

ing out sentences from the original text, removing any parts of the sentence which are not required

in the final results and ensuring that all periods, but the terminating one, are removed from each

sentence.

22

Figure 4.1: Architecture of the PAG Concept Extractor

Figure 4.2: An example of vulnerability description pre-processing

Fig. 4.2 depicts a complete example of the actions taken to pre-process the input text. In the

first step, the original paragraph [source : NVD-(CVE-2014-2132)] is segregated into separate

sentences. In this example, we have a single sentence and hence the split operation does not have

any effect. To split a paragraph into sentences we use the sentence-splitter offered by the Cognitive

Computation Group at University of Illinois, Urbana-Champaign 9. Following that, unnecessary

sections are removed from the sentences. These are the sections of the input text which do not

contribute to the final PAG concepts. In this case, the section “aka Bug ID CSCuh52768" is

9http://cogcomp.cs.illinois.edu/software/doc/LBJ2/library/LBJ2/nlp/

SentenceSplitter.html

23

deemed unnecessary and hence removed. Enumerating all possible unnecessary sections for all

vulnerability databases is beyond the scope of this thesis and hence we manually identified a few

such sections which are repeated frequently in NVD descriptions and removed then automatically.

Finally, it is ensured that periods within a sentence are removed and the sentence ends with a

period. In this example, terms like “T28.12" and “T29.2" are reduced to “T2812" and “T292"

respectively. Removing inter-sentence periods ensures that additional natural language processing

does not treat a single sentence as a sequence of sentences. For this same purpose, it is also ensured

that input sentence ends with a period.

4.2 Extracting Software Names, Versions and Modifiers (Com-

ponent 1)

The approach to extracting vulnerable Software Names and their related Versions and Modifiers

relies on identifying words in the input vulnerability description which bear some resemblance to

common software names. The resemblance is quantified in terms of probabilities and calculated

using a set of algorithms which are described in this section. The flow of logic used in this approach

is shown in Fig. 4.3.

The process of extracting Software Names and their related Versions and Modifiers begins by

creating a Sentence-Bundle. A sentence-bundle is essentially a collection of groups of consecu-

tive proper nouns in a sentence. A sentence-bundle is formally defined in section 4.2.1. Software

names matching to the proper nouns are then downloaded from CVE-DETAILS (see section 3.5).

Groups of proper nouns are then matched to the downloaded software names to identify instances

of Software Names in the input sentence (vulnerability description). Finally, a clean-up procedure

is performed where duplicate or irrelevant instances of Software Names are removed. This is fol-

lowed by identifying instances of Versions10 in the input sentence. Versions cannot be treated as

independent entities. In other words, an instance of a Version is always linked to some instance

10Software updates and editions are also treated as versions in this thesis

24

Figure 4.3: Component 1 Workflow Diagram

of a Software Name. Thus once the versions are identified they are then linked to their corre-

sponding Software Names. Instances of Modifiers are then extracted. Modifiers are dependent on

versions since they essentially quantify ranges of versions. As a result, instances of Modifiers are

also linked to their corresponding versions. Eventually, a post-processing procedure is carried out

where similar software-version-modifier triples are combined.

To demonstrate the flow of the algorithms presented in this section we make use of the sanitized

(section 4.1) version of the vulnerability description mentioned below. This description is taken

from the National Vulnerability Database (CVE-2014-7298). We chose this description as it allows

us to demonstrate all facets of our algorithms.

25

“adsetgroups in Centrify Server Suite 2008 through 20141 and Centrify DirectControl

3x through 420 on Linux and UNIX allows local users to read arbitrary files with root

privileges by leveraging improperly protected setuid functionality."

4.2.1 Creating a Sentence-Bundle

Heuristic 1. Software names are generally expressed as groups of consecutive proper nouns.

• Eg. "Microsoft Windows and Adobe Flash Player"

Heuristic 2. If an independent clause or sentence is split into two halves around a constituent verb,

software names are included in the first or left half if the total number of proper nouns (Software

Names), numerical terms (Versions) and prepositions (Modifiers) is higher for the left half. For an

independent clause, the first or left half is a noun phrase which contains the subject of the clause.

• Eg. When the independent clause "Microsoft Windows 7 through 10 is vulnerable to a buffer

overflow attack." is split around the verb “is", the software term Microsoft Windows appears

on the left or first half since the total number of proper nouns [2] (“Microsoft", “Windows"),

numerical terms [2] (“7",“10") and prepositions [1] (“through") is higher for the left half. Note

that Microsoft Windows is also the subject of the clause.

The task of extracting Software Names, Versions and Modifiers begins by creating a sentence-

bundle.

Definition (Sentence-Bundle). A sentence-bundle is a structured representation of a sentence or a

part of a sentence and is used for the purpose of extracting Software Names. A sentence-bundle can

be viewed as a collection of groups of consecutive proper nouns (NNP) within a sentence or a part

of the sentence. A sentence-bundle also contains the Stanford Typed Dependency representation of

the sentence.

The process of preparing a sentence-bundle is described in Algorithm 1. An example is also

shown in Fig. 4.4.

The algorithm takes in a sanitized version of the input text and the parts-of-speech tagged tree

generated by the Stanford Parser (described in Chapter 3). According to heuristic 1 and 2 software

26

Algorithm 1 CreateSentenceBundle

Require: Stanford POS tagged tree (Tree), Sentence

Get resultantHalf

resultantHalf ← {}
resultantDependencyList← {}
verbToStop← first verb from the start of the sentence

1: while (End of sentence is not reached) do

2: firstHalf ← {word|word ∈ All words from the start of the sentence till verbToStop}
3: secondHalf ← {word|word ∈ All words from verbToStop till the end of the sentence}

4: score1 = |{x|x∈′CD′,′NNP ′,′IN ′ tagged words in firstHalf}|
|{x|x∈All words in firstHalf}|

5: score2 = |{x|x∈′CD′,′NNP ′,′IN ′ tagged words in secondHalf}|
|{x|x∈Allwords in secondHalf}|

6: if (score1 > score2) then

7: resultantHalf ← firstHalf
8: resultantDependencyList← Stanford Typed Dependency Tree for firstHalf
9: EndLoop

10: else

11: verbToStop← next verb from verbToStop
12: end if

13: end while

Get NNPgroups

NNPgroups← {}
NNPgroup← {}

14: for all (word ∈ resultantHalf) do

15: NNPgroup← (NNPgroup ∪ word) if POS-tag = ’NNP’

16: if (POS-tag 6∈ {′NNP ′,′ CD′}) then

17: NNPgroups← NNPgroups ∪NNPgroup
18: NNPgroup← {}
19: end if

20: end for

sentence-bundle← 〈NNPgroups, resultantHalf, resultantDependencyList〉
return sentence-bundle

names are often expressed as proper noun subjects in a sentence. However, their might be other

proper nouns in the object part of the sentence. Thus to select the proper half of the sentence

we split the sentence into two halves, centered around the first found verb. Both halves are then

attributed to a probability of being selected. The probability is calculated as:

|{x|x ∈′ CD′, ′NNP ′, ′IN ′ tagged words in half}|

|{x|x ∈ All words in half}|

27

Essentially, the probability denotes the fraction of ’CD’ (Cardinal Numbers), ’NNP’ (Proper

Nouns) and ’IN’ (Prepositions) labeled words over the total number of words in that half. The

choice of the above mentioned three tags is guided by the fact that version numbers are generally

tagged as ’CD’, while software names are tagged as ’NNP’ and modifiers like "through" are tagged

as ’IN’. If the first half attains a higher score than the second half, the former is chosen as the

resultant half or the half which contains the Software Names. On the other hand, if the second half

leads, the next found verb in the sentence is chosen and the above-described procedure is repeated.

In Fig. 4.4 the first half “adsetgroups in . . . and Unix" has a total of 14 ’CD’, ’NNP’ and ’IN’

tagged words, compared to only 2 such words for the second half. As a result, it is chosen as the

resultant half based on its precedence in terms of the score. For simplicity, we refer to the resultant

half as a sentence.

Next, following heuristic 1 consecutive proper nouns in the resultant half are clubbed together.

These groups are referred as to NNPgroups and are defined below.

Definition (NNPgroup, NNP, Query). An NNPgroup is a collection of consecutive proper nouns in

a block of text, usually the subject half of a sentence. The proper nouns constituting an NNPgroup

are considered to be consecutive if they either occur in sequence or with interleaved cardinal

numbers (CD). Each component proper noun of an NNPgroup is referred to as an NNP. An ordered

collection of proper nouns from the same NNPgroup is referred to as a Query.

NNPgroups obtained from the input vulnerability description are shown in Fig. 4.4 as a part of

the sentence-bundle. A Stanford Typed Dependency list of the resultant half is also added to the

sentence-bundle.

4.2.2 Getting Software Names from CVE-DETAILS

Heuristic 3. Majority of software names are present in the CVE-DETAILS software repository.

• Eg. Windows is present in the CVE-DETAILS repository under the vendor Microsoft.

Algorithm 2 takes a sentence-bundle as an input and generates a set of product-vendor pairs

where every the product matches to any at least one of the NNPs in the sentence. Fig. 4.5

28

Figure 4.4: Forming a Sentence-Bundle Tuple

shows an example of the product-vendor pairs extracted from CVE-DETAILS. CVE-DETAILS

provides a structured repository for common CVE-vulnerability affected software. As mentioned

in Chapter 3 CVE-DETAILS can be queried at a base URL (http://www.cvedetails.

com/product-search.php) using an SQL-like wild-card (%) operator. We send four dif-

ferent queries to CVE-DETAILS:

• CVE-DETAILS base URL + NNP

• CVE-DETAILS base URL + NNP%

• CVE-DETAILS base URL + %NNP

• CVE-DETAILS base URL + %NNP%

29

Figure 4.5: Results from CVE-DETAILS

Each of these four queries return 0 or more product-vendor pairs from CVE-DETAILS. These

product-vendor pairs are scrapped off the returned CVE-DETAILS product web-page. Some of

the product-vendor pairs are shown in Fig. 4.5. Eventually, each product-vendor pair is assigned

to the NNP (NNP.probableSoftwareList) which was used to query CVE-DETAILS for it.

4.2.3 Identifying Software Names in Text

Heuristic 4. An ordered collection of proper nouns from an NNPgroup (query) can be considered

as a probable software name (after matching to product-vendor pairs downloaded from CVE-

DETAILS) if any of the following happen in order of precedence:

1. Downloaded vendor name is present in the query.

30

Algorithm 2 getSoftwareFromCV E-DETAILS()

Require: sentence-bundle

CV E-DETAILS_base_URL ← http://www.cvedetails.com/product-search.php?vend-

or_id=0&search="

1: for all (NNPgroup in sentence-bundle.NNPgroups) do

2: for all (NNP ∈ NNPgroup) do

3: Create CVE-DETAILS queries like:

4: CV E-DETAILS_base_URL+ {NNP,NNP%,%NNP,%NNP%}
5: for each query do

6: Get all possible probable product-vendor pairs.

7: NNP.probableSoftwareList← all possible product-vendor pairs

8: end for

9: end for

10: end for

• Eg. Vendor Microsoft is present in the query “Microsoft Windows"

2. Downloaded vendor name is present in the input sentence.

• Eg. Vendor Microsoft is present in “Microsoft Windows is vulnerable to..."

3. Greatest score, denoting the fraction of number of words present in the query to that of the

product-name, is ≥ 0.5.

• Eg. Examples are provided in the algorithm description.

Once the product-vendor pairs have been retrieved, the proper nouns in an NNPgroup are as-

sembled together in a systematic manner to form queries, which are then evaluated against the

retrieved product names. Algorithm 3 and Fig. 4.6 are used to demonstrate this scenario. At first,

the proper nouns are assembled in order to form queries. This can be seen in Fig. 4.6 where the

NNPs “Centrify", “Server" and “Suite" are assembled to form the following queries :

• “Centrify"

• “Centrify Server"

• “Centrify Server Suite"

• “Server"

31

Algorithm 3 identifySoftwareNamesInText()

Require: sentence-bundle, sentence

Probable-Software-List← {}
1: for (NNPgroup in sentence-bundle.NNPgroups) do

2: for (i = 1 to |NNPgroup|) do

3: query ← {}
4: for (j = i to |NNPgroup|) do

5: query ← query ∪ jth NNP of NNPgroup
6: productV ector ← {}
7: for (NNP ∈ query) do

8: for all (product-vendor-pair ∈ NNP.probableSoftwareList) do

9: if (product ⊇ query in same order) then

10: productV ector ← productV ector ∪ product-vendor-pair
11: end if

12: end for

13: end for

14: probWithV endorSelf ← 0.0
15: probWithoutV endorSelf ← 0.0
16: probNormal ← 0.0
17: queryWithV endorSelf ← ∅
18: queryWithoutV endorSelf ← ∅
19: queryNormal← ∅
20: for all (product-vendor-pair ∈ productV ector) do

Define: prob← |query|
|{word|word∈product}|

21: if (vendor ⊆ query) then

22: if (prob > probWithV endorSelf) then

23: probWithV endorSelf ← prob
24: queryWithV endorSelf ← query
25: end if

26: else if (vendor ⊆ sentence) then

27: if (prob > probWithoutV endorSelf) then

28: probWithoutV endorSelf ← prob
29: queryWithoutV endorSelf ← query
30: end if

31: else

32: if (prob > probNormal) then

33: probNormal ← prob
34: queryNormal ← query
35: end if

36: end if

37: end for

38: if (queryWithoutV endorSelf 6← ∅) then

39: Probable-Software-List← Probable-Software-List ∪ queryWithoutVendorSelf

32

Algorithm 3 identifySoftwareNamesInText() continued..

40: else if (queryWithV endorSelf 6← ∅) then

41: Probable-Software-List← Probable-Software-List ∪ queryWithVendorSelf

42: else

43: if (probNormal ≥ .5) then

44: Probable-Software-List← Probable-Software-List ∪ queryNormal

45: end if

46: end if

47: end for

48: end for

49: end for

50: return Probable-Software-List

• “Server Suite"

• “Suite"

All product names retrieved previously by querying CVE-DETAILS with the NNPs in a query

are scanned to see if they contain the query elements in their specified order. If not, those product

names are rejected and the selected ones are put into a list. As an example, in Fig. 4.6, query

“Server Suite" is evaluated against all product names retrieved by querying CVE-DETAILS against

query elements “Server" and “Suite". Of these, two examples are shown where the product “Server

Protection Suite", along with its associated vendor (not shown in the Fig. 4.6), is kept in the

final list as it contains the words “Server" and “Suite" from the original query in the same order.

However, the product “Server" is rejected since it does not contain the word “Suite".

Once the above-mentioned list is created, each product-vendor pair in the list is compared to

the input query to generate a selection score. The score is defined as:

|query|

|{word|word ∈ product}|

Here product refers to the product names. Thus the score denotes the fraction of the size of

the query over the total number of words in the matching product name. The product with the

highest score is selected as the closest match to the query. However, if the name of the vendor for

33

Figure 4.6: Selection of Software

a product appears in the original sentence or in the query, then that product receives precedence.

This can be seen in Fig. 4.6 where the query “Suite" is assigned to the product name “Centrify

Suite" (highlighted in bold) (as the corresponding vendor “Centrify" appears in the original text),

in-spite of the product “Suite" having a greater score. The query “Centrify" has both vendor names

which match to the query, but the one having a higher score (highlighted in bold) is selected.

Similarly, the query “Server Suite" generates two product names (“Server Protection Suite" and

“Client Server Messaging Suite") by virtue of having scores greater than .5. Out of these, the

former (highlighted in bold) is selected, due to its higher score. The queries “Centrify Server"

and “Centrify Server Suite" are rejected since they do not yield any matching software names.

34

Algorithm 3 returns a set of queries which have been identified as probable software names. We

refer to the set as Probable-Software-List.

4.2.4 Cleaning up

Once the software names have been identified, a clean-up procedure is run which removes any

redundant entries by performing the following steps:

1. If a software name query is a substring of another software name query in the same NNPgroup,

then the substring software is removed. For example, from Fig. 4.6 queries/software names

“Server" and “Suite" are removed as they are substrings of the query “Server Suite".

2. If the vendors are not mentioned in the original text, they are not considered as vendors.

The significance of this step is enhanced when heuristics 5 is considered in the next subsec-

tion. According to that heuristic, if vendor names are rejected they can become potential

version/edition candidates. For example, from Fig. 4.6 vendor name “CA" is not considered

as an eventual vendor name for query “Server Suite" since it does not appear in the original

input sentence.

3. If the total score of software queries in an NNPgroup is less than or equal to .5 then that

NNPgroup is rejected. In this example, all NNPgroups have a total score of above .5 and

hence are not rejected.

4.2.5 Identifying Versions

Heuristic 5. In a sentence, terms starting with an integer ASCII character can be treated as ver-

sions.

• Eg. In “Microsoft Windows 7x." “7x" can be as a version.

In a sentence, proper noun modifiers of software names, which are not vendor names, can be

treated as updates and editions (versions).

• Eg. In “Microsoft Windows SP2." “SP2", being a proper noun modifier of “Windows", can

be as an update or edition.

35

Algorithm 4 identifyV ersions()

Require: Probable-Software-List, sentence-bundle

1: procedure ADDADJUNCTVERSION(relationList, target, step, depth, possibleAdjuncts, possi-

bleVersions)

2: queryAdjunctList← {}
3: for (dependency ∈ sentence-bundle.resultantDependencyList) do # dependency =

〈relation, governor, dependent〉 #

4: if (relation ∈ relationList) then

5: if (dependent ∈ target) then

6: if (governor 6∈ any query in Probable-Software-List}) then

7: value = governor
8: if (step = 1 ∨ step = 3) then

9: distance = (governor.pos− dependent.pos) # pos = starting position from

beginning of the sentence #

10: else if (step = 2 ∨ step = 4) then

11: distance = (governor.pos− dependent.pos) + distance of matching

target element

12: end if

13: end if

14: else if (governor ∈ target) then

15: if (dependent 6∈ any query in Probable-Software-List}) then

16: value = dependent
17: if (step = 1 ∨ step = 3) then

18: distance = (dependent.pos− governor.pos)
19: else if (step = 2 ∨ step4) then

20: distance = (dependent.pos− governor.pos) + distance of matching

target element

21: end if

22: end if

23: end if

24: depth = depth
25: tup← 〈value, distance, depth, relation〉
26: if (first character of value ∈ Z) then

27: possibleV ersions← possibleV ersions ∪ tup
28: else

29: if (step = 1 ∨ step = 2) then

30: possibleAdjuncts← possibleAdjuncts ∪ tup
31: end if

32: end if

33: end if

34: end for

35: end procedure

depth = 1

36

Algorithm 4 identifyV ersions() continued..

36: for (query ∈ Probable-Software-List) do

37: possibleAdjuncts← {}, possibleV ersions← {} # sets of 4-tuples #

* = wildcard character

pA = possibleAdjuncts, pV = possibleVersions

38: ADDADJUNCTVERSION({′nn′,′ prep_∗′,′ dep′}, query, 1, depth, pA, pV) # step 1 #

39: while true do

40: depth = depth+ 1
41: prevAd← possibleAdjuncts
42: ADDADJUNCTVERSION({′nn′,′ prep_∗′,′ dep′,′ conj′}, pA, 2, depth, pA, pV) # step 2 #

43: if (|prevAd| = |possibleAdjuncts|) then end loop

44: end if

45: end while

46: depth = 1
47: ADDADJUNCTVERSION({x|x ∈ all possible relations}, query, 3, depth, pA, pV) # step 3

#

48: while true do

49: depth = depth+ 1
50: prevV ers← possibleV ersions
51: ADDADJUNCTVERSION({x|x ∈ all possible relations}, pV, 4, depth, pA, pV) # step 4

#

52: if (|prevV ers| = |possibleV ersions|) then end loop

53: end if

54: end while

55: queryAdjunctList← queryAdjunctList∪〈query, possibleAdjuncts, possibleV ersions〉
56: end for

Identify Updates and Editions

57: for (queryAdjunct ∈ queryAdjunctList) do

58: for (adjunct ∈ queryAdjunct.possibleAdjuncts) do

59: if ((adjunct is NNP-tagged) ∧ (adjunct.relation =′ nn′) ∧ (adjunct is not a vendor))

then

60: queryAdjunct.possibleV ersions← queryAdjunct.possibleV ersions∪adjunct
61: end if

62: end for

63: end for

Heuristic 6. Version terms can have direct or indirect grammatical dependencies on probable

software names. In the case of indirect relations the intermediate grammatical dependencies are

limited to the following list of relations:

• Noun Compound Modifiers (nn)

37

• Prepositions (prep)

• Conjunctions (conj)

• Unknown Dependencies (When the grammatical dependency cannot be determined in the

worst case)

• Eg. In sentences “Windows 7 is vulnerable." and “Windows versions 7 is vulnerable." the

following dependencies can be found.

a> Windows <---- 7

b> Windows <---- version <----- 7

In the first sentence version “7" is directly dependent on software name “Windows" and in the

second sentence it is indirectly dependent via term “version".

Going by heuristics 6, in order to identify versions we need to traverse the Stanford Typed

Dependency tree and add all typed dependencies directly or indirectly related to the each NNP

in a query. While direct relations are obvious, we formalize the concept of indirect relations by

introducing the concept of adjuncts.

Definition (Adjunct). An adjunct is a term in a sentence that has a direct or indirect grammatical

dependency on a software term. An adjunct can grammatically link a software term and a version

term, a software term and another adjunct and two different adjuncts. By heuristic 6 the chain of

grammatical dependencies between an adjunct and a software terms can be a combination of the

following relations:

• Noun Modifiers (nn)

• Prepositions (prep)

• Conjunctions (conj)

38

Figure 4.7: Identifying Versions

• Unknown Dependencies (When the grammatical dependency cannot be determined in the

worst case)

39

Thus, the term “version" used in the example for heuristics 6 is essentially an adjunct linking

the software term and the version term. It is to be noted that version terms can also be linked to

software terms via other version terms.

Algorithm 4 and Fig.4.7 demonstrate the process of identifying versions. Algorithm 4 describes

a procedure addAdjunctVersion which adds a version or an adjunct to the list of versions/adjuncts

attributed to a query (probable software name). It takes in six arguments. The role of each of these

six arguments is mentioned below.

1. relationList: The set of relations to be matched. The set of relations vary at different calls

of the procedure. While identifying adjuncts and version (step 2 and 4) the set of relations is

limited to subsets of the relations mentioned in heuristic 6. While adding only versions it is

a universal set of all relations supported by the Stanford Typed Dependency representation

(refer to Table 3.2).

2. target: In process of finding adjuncts or versions, the procedure addAdjunctVersion performs

two string matches: matching relations as described in the previous bullet and matching a

term of the dependency (governor or dependent). If the governor matches, the dependent is

considered as a possible adjunct/version and vice-versa. The target set contains the terms

to be matched to the governor or dependent of a relation. For example, if the target set is

a singleton like "Microsoft", it would match to dependencies like nn("Microsoft","version")

where the governor matches and the dependent can be considered as a possible adjunct.

3. step: The step helps in distinguishing different calls to the procedure. Since different calls

use different instances of arguments, the step variable helps the procedure to function differ-

ently for different calls.

4. depth: The depth argument denotes the number of branches in the Stanford Typed Depen-

dency tree between the newly added adjunct or version dependency and the dependency

which acts as the root dependency. The root dependency is essentially the first matching de-

pendency added at steps 1 and 3. At these steps, the depth is 1. For the other steps (2 and 4)

40

it is incrementally increased. As an example, in Fig. 4.7 version “3x" is directly dependent

on query “Centrify" (refer to resultantDependencyList from Fig. 4.4). This results in a depth

of 1 for the term “3x". If another relation is dependent on version “3x", its depth will be 2

since it is 2 steps away from a direct relation to the query element “Centrify".

5. possibleAdjuncts: The current set of adjuncts associated with a query. Further adjuncts are

added to this list.

6. possibleVersions: The current set of versions associated with a query. Further versions are

added to this list.

Essentially the procedure addAdjunctVersion scans all dependencies from the Stanford Typed

Dependency tree (Sentence-Bundle.resultantDependecyList). If the governor (or dependent) matc-

hes an element from the target set and corresponding relation matches to the relationList it creates

an adjunct tuple by adding the dependent (or governor), the distance and the depth of the dependent.

Distance measures the distance of the adjunct from the query element. For example, in Fig. 4.7

query element “Centrify" is the 10th word and version “3x" is the 12th word of the sentence, which

results in a distance of 12− 10 = 2. If a second word is related to version “3x" its distance would

be calculated as the sum of the distance of “3x" (2) and the distance of the newly related word

from “3x". The procedure is called 4 times (steps 1, 2, 3 and 4 in) for each query in the list of

probable software names. After the four calls each query is attributed to a list of possibleAdjuncts

and possibleVersions in line 55 of Algorithm 4.

Fig. 4.7 demonstrates the four calls made to the “addAdjunctVersion" procedure at steps 1, 2, 3

and 4 of Algorithm 4. In step 1, our approach selects all dependencies matching the query elements

and having relation names ’nn’, ’prep_*’ (* is a wildcard here) and ’dep’. For example, from Fig.

4.4 (resultantDependencyList) term “3x" matches to query element “Centrify" (its relation is ’nn’)

and since it starts with an Integer (3), it is termed as a version. The term “adsetgroups" matches

with query element “Linux" but since it does not start with an integer it is added as an adjunct.

In step 2, all dependencies which are directly or indirectly related to the currently added adjuncts

41

and have relations in ’nn’, ’prep_*’, ’dep’ or ’conj’ are considered. From Fig. 4.4 version “3x"

is directly related to term “adsetsgroups" and hence is indirectly related to query “Server Suite"

at a depth of 2 and distance of 7. In step 3, all dependencies are matched against query elements

and are added as versions if they match and satisfy the criteria to be treated as versions. From Fig.

4.4 dependent “2008" is directly related to query element “Suite" and starts with an integer (“2").

It is thus added as a version. In step 4 all relations which directly or indirectly match currently

added versions are added as versions. This leads to version “420" being added to the version list

of query “Server Suite", since it is related to version “3x" (refer to Fig. 4.4). Finally in lines 57

to 63 of Algorithm 4, as stated in heuristic 5, adjuncts which are proper noun modifiers are added

as versions if they do not match previously (section 4.2.2) identified vendor names. Since the

adjunct “adsetsgroups" is neither a proper noun nor a noun modifier, it is not added as an update

or edition. Eventually the queries are attributed to a list of possibleVersions and added to the list

queryAdjunctList.

4.2.6 Version Decisioning

Heuristic 7. In a single sentence vulnerability description, versions are aligned in the following

manner:

1. When read from left, if the first and last occurrences of version numbers precede their corre-

sponding software names then all other version names follow the same alignment i.e. precede

their corresponding software names.

• Eg. Microsoft Windows 7, Adobe Acrobat Reader 9.0 and Mozilla Firefox 24 are vulnera-

ble.

2. When read from left, if the first and last occurrences of version numbers succeed their cor-

responding software names then all other version names follow the same alignment i.e. suc-

ceed their corresponding software names.

• Eg. Version 7 of Microsoft Windows, 9.0 of Adobe Acrobat Reader and 24 of Mozilla

Firefox are vulnerable.

42

Figure 4.8: Decisioning in Assigning Versions

3. When read from left, if the first and last occurrences of version numbers precede and succeed

their corresponding software names respectively then all other version names can either

precede or succeed their corresponding software names.

• Eg. Version 7 of Microsoft Windows, Adobe Acrobat Reader 9.0 and Mozilla Firefox 24

are vulnerable.

Heuristic 8. Versions are most closely related to their software name counter-parts and this rela-

tion can be codified empirically.

• Eg. In the sentence, “Microsoft Windows 7 and Mozilla Firefox 24 are vulnerable." both the

terms “Windows" and “Firefox" have grammatical dependencies on terms “7" and “24". However,

43

Algorithm 5 versionDecision()

Require: queryAdjunctList

status = -1
p(y) = ∃y s.t. (y is a version)∧(has all positive distances assigned to it)

p‘(y) = ∃y s.t. (y is a version)∧(has all negative distances assigned to it)

1: ∀query s.t. query ∈ queryAdjunctList
2: if (p(y) ∧ ¬ p‘(y) then

3: status = 1
4: else if ((p‘(y) ∧ ¬ p(y)) then

5: status = 2
6: else

7: status = 3
8: end if

Define: probScore = 1

distance∗depth

9: for (query1 ∈ queryAdjunctList) do

10: for (query2 ∈ queryAdjunctList) do

11: if (query1.possibleV ersions ∩ query2.possibleV ersions 6← ∅) then

pVs = possibleVersions

pV ∈ pVs

12: for all (query1.pV = query2.pV) do

13: if (status = 1) then

14: if ((query1.pV.distance < 0) ∨ ((query1.pV.distance > 0) ∧
(query2.pV.distance > 0) ∧ (query1.pV.probScore < query2.pV.probScore))) then

15: query1.pV s← query1.pV s \ query1.pV
16: end if

17: else if (status = 2) then

18: if ((query1.pV.distance > 0) ∨ ((query1.pV.distance < 0) ∧
(query2.pV.distance < 0) ∧ (query2.pV.probScore < query1.pV.probScore))) then

19: query1.pV s← query1.pV s \ query1.pV
20: end if

21: else

22: if (query1.pV.probScore < query2.pV.probScore) then

23: query1.pV s← query1.pV s \ query1.pV
24: end if

25: end if

26: end for

27: end if

28: end for

29: end for

due to their closeness to their software counterparts “7" gets assigned to “Windows" and “24" gets

assigned to “Firefox".

44

Once the versions have been assigned to the software queries, it is required to remove redundant

version assignments. For example, in Fig. 4.7 version “420" is assigned to all the queries except the

first “Centrify". Since a version can only be assigned to a single software name, it is important to

remove such redundant assignments. Heuristics 7 and 8 are aimed at removing redundant version

assignments and are realized in Algorithm 5.

Algorithm 5 begins by assigning a version alignment status to the sentence. The three statuses

(1,2 and 3) reflect the three alignment concepts presented in heuristic 7 in the same order. The

status of the example vulnerability description used in this section is 1. This can be inferred by

observing Fig. 4.8, where version “2008" (first version term) has a single occurrence with a positive

distance and no other version term (including the last occurring version term) has an all negative

list of distances. Algorithm 5 also defines a new variable probScore. The probScore is generated on

the basis of heuristics 8 and is calculated as 1

distance∗depth
. Distance and depth are terms introduced

in the previous section (4.2.5). Essentially probScore is a measure of the closeness of a version

term to the software terms it is assigned to.

Redundant version assignments are removed using version alignment status-es and rules cre-

ated from heuristics 7 and 8. The rules state that while comparing two similar version assignments

if the version alignment status is 1 and one of the version distances is negative, the association of

that version is removed from its corresponding software. In Fig. 4.8 software query “DirectCon-

trol" looses its association with version term “20141" for the above mentioned reason. However, if

both distances are positive then the software query having maximum probScore keeps the version.

Again from Fig. 4.8 version term “3x" looses its association with software queries “Server Suite",

“Centrify", “LINUX" and “UNIX" as query “DirectControl" manifests a higher probScore (1) than

all of the above mentioned queries. If version alignment status is 2, the exact opposite operations

are performed. Finally if version alignment status is 3, then the distinction is made solely on the

basis of probScore. The version assignment having a lower probScore is removed.

45

Algorithm 6 getModifiers()

Require: queryAdjunctList, sentence-bundle

1: for (queryAdjunct ∈ queryAdjunctList) do

2: for (dependecy ∈ sentence-bundle.resultantDependencyList) do

dependency = 〈relation, governor, dependent〉

3: b = (governor ∈ queryAdjunct.possibleV ersion) ∧ (dependent ∈
queryAdjunct.possibleV ersion)

4: if ((relation =′ prep_∗′) ∧b) then

5: modifier1← ′governor + ” ” + relation+ ” ” + dependent′

6: modifier2← ′relation+ ” ” + dependent′

7: if (modifier2 ∈ sentence-bundle.resultantHalf) then

8: queryAdjunct← queryAdjunct ∪modifier2
9: else if (modifier1 ∈ sentence-bundle.resultantHalf) then

10: queryAdjunct← queryAdjunct ∪modifier1
11: end if

12: else if ((relation.relationName =′ mark′) ∧b) then

13: modifier ← ′dependent+ ” ” + governor′

14: if (modifier ∈ sentence-bundle.resultantHalf) then

15: queryAdjunct← queryAdjunct ∪modifier
16: end if

17: else if ((relation.relationName =′ conj′) ∧b) then

18: modifier ← ′governor + ” ” + relation+ ” ” + dependent′

19: if (modifier ∈ sentence-bundle.resultantHalf) then

20: queryAdjunct← queryAdjunct ∪modifier
21: end if

22: end if

23: end for

24: end for

4.2.7 Identifying Modifiers

Heuristic 9. A modifier is essentially a single typed dependency in which either both the governor

and the dependent or just the dependent are version terms. The typed dependency is chosen from

the following list:

• Prepositions (prep)

• Marker (mark)

• Conjunctions (conj)

46

Figure 4.9: Final Output

For the sake of readability modifiers are expressed as a concatenation of the following strings:

governor (if a version term), relation, dependent.

In the process of extracting modifiers, all dependencies from the resultantDependencyList

component of the sentence-bundle are scanned and if the condition expressed in heuristic 9 is

satisfied, a modifier is formed by combining the governor, relation and dependent as shown in

Algorithm 6. The combination is dependent on the way dependencies are expressed by the Stan-

ford Typed Dependency representation. For example, prepositional dependencies are expressed

as conj_*(governor,dependent), where * can refer to conjunctions like “and" or “or".

Since by heuristic 9 both the governor and dependent are versions, the modifier is represented as

“governor * dependent" where * refers to the conjunction. Once the modifier string is formed, it is

47

verified whether the input sentence (sentence-bundle.resultantHalf) contains the string. If it does,

the modifier is added to the query tuple (queryAdjunct).

From Fig. 4.4 versions “3x" and “420" (both assigned to query “DirectControl" in Fig. 4.8) are

dependent on each other by the relation "prep_through". As a result, the modifier is represented as

“3x through 420".

4.2.8 Post-Processing

Finally, software queries which belong to the same NNPgroup are merged into a single software

name if they exist side-by-side in their group. Their versions and modifiers are also aggregated.

As an example, queries “Centrify" and “Server Suite" from Fig. 4.7 are merged into one single

software name “Centrify Server Suite" (as they exist side-by-side in an NNPgroup) as shown in

Fig. 4.9. Similarly, queries “Centrify" and “DirectControl" are merged into a single software name

“Centrify DirectControl".

4.3 Extracting Attacker Actions, User Actions and Post-Condi

tions (Component 2)

Component 2 takes a more logical modus operandi than component 1. The approach requires

an in-depth analysis of independent English clauses, the workflow of which is shown in Fig. 4.10.

Similar to the approach taken in component 1, we begin by creating a sentence-bundle. However,

a sentence-bundle in this section, emphasizes more on the grammatical aspects of a vulnerability

description. It contains a parts-of-speech tagged syntax tree of the vulnerability description and a

list of linguistic dependencies within the constituent words of the description. Both these contents

are required extensively in the subsequent phases of component 2. The basic theory behind the

subsequent phases is founded upon the following two points:

1. Attackers and users are humans.

2. Actions and impacts (post-conditions) are effected by humans.

48

Figure 4.10: Component 2 Workflow Diagram

Point 1 from the above enumeration is realized using the 4 phases (subsections) of this approach

and shown in Fig. 4.10. At first, human actors are identified in phase Identifying human

actors (subsection 4.3.2). Due to the nature of English language, often actors (subjects) in a

sentence are mentioned implicitly or indirectly. For example, in the sentence “The software was

compromised", the subject (possibly an attacker) is implicit. We refer to such subjects as indi-

rect actors. However, since these actors are not referenced directly in the text it is required to

verify whether they refer to human subjects. This issue is dealt with in phase Classifying

indirect actors as humans (subsection 4.3.3). Once human actors are identified, the

next requirement is to check whether they are attackers (performing actions with negative intents)

or users (performing actions with positive or neutral intents). Humans can often be classified as

malicious or benign on the basis of character traits and actions performed. In other words, by

determining the polarity of adjectives and verbs associated with the concerned actor (subject) we

49

can attempt to classify the actor as an attacker or a user. For this purpose, we first assign attributes

(adjectives and verbs) to each identified human actor in phase Assigning attributes to

actors (subsection 4.3.4) and then classify the actors as negative (attacker) and positive or neu-

tral (user) by determining the polarity of the assigned attributes in phase Determining the

polarity of an actor (subsection 4.3.5).

While the boxes (phases) shown in Fig. 4.10 under the point 1 red contour focus on finding

words which refer to attackers and users in the input vulnerability descriptions, those shown under

the point 2 red contour focus on extracting parts of the vulnerability descriptions which refer to

actions performed by both attackers and users or goals (post-conditions) achieved by attackers.

Point 2 is realized using the phases Extracting Attacker Actions, User Actions

and Post-Conditions (subsection 4.3.6) and Cleaning up (subsection 4.3.7). While the

purpose of the first phase can be gauged from its heading/name, the second phase attempts at

removing redundant action and post-condition assignments to attackers and users.

To better explain each phase/subsection shown in Fig. 4.10, we would be using the sanitized

(refer to section 4.1) version of the vulnerability description exampled below (source : NVD(CVE-

2010-0483)).

“vbscriptdll in VBScript 51, 56, 57, and 58 in Microsoft Windows 2000 SP4, XP

SP2 and SP3, and Server 2003 SP2, when Internet Explorer is used, allows user-

assisted remote attackers to execute arbitrary code by referencing a (1) local path-

name, (2) UNC share pathname, or (3) WebDAV server with a crafted hlp file in the

fourth argument (aka helpfile argument) to the MsgBox function, leading to code exe-

cution involving winhlp32exe when the F1 key is pressed. "

4.3.1 Creating a Sentence-Bundle

We begin component 2 by creating a sentence-bundle. The purpose of creating a sentence-

bundle in component 2 is distinctly different from that of component 1. As a result, we redefine

the concept of a sentence-bundle in this section.

50

(a) Top Three Levels

(b) NP-2 Subtree

(c) VP-2 Subtree

51

(d) NP-1 Subtree

Figure 4.11: Syntax Tree for Vulnerability Description [CVE-2010-0483] (synTree)

Definition (Sentence-Bundle). A sentence-bundle is a formatted grammatical representation of

a sentence and is used for the purpose of extracting Attacker Actions, User Actions and Post-

Conditions. A sentence-bundle can be viewed as a 2-tuple, the elements of which are a parts-of-

speech tagged syntax tree and the list of grammatical dependencies in an input sentence.

Fig. 4.11 and Table 4.1 represent the constituent syntax tree (synTree) and dependency list

(dList) of the sentence-bundle created for the example vulnerability description used in this section.

The syntax tree is shown in Fig. 4.11. Due to its substantial size, it is split into four subtrees, each

outlined in 4 different sub-figures. Fig. 4.11a represents the top three levels of the syntax tree.

The root node is labeled using the default “ROOT" tag. The successor of the root node, the “S"-

labelled node, represents the primary declarative/independent clause of the sentence. By its general

52

Table 4.1: Grammatical Dependency List for Vulnerability Description [CVE-2010-0483] (dList)

relation governor governor-

pos

dependent dependent-

pos

relation governor governor-

pos

dependent dependent-

pos

nsubj allows 34 vbscriptdll 1 prepc_by execute 39 referencing 43

xsubj execute 39 vbscriptdll 1 det pathname 56 a 44

prep_in vbscriptdll 1 VBScript 3 appos pathname 49 1 46

num VBScript 3 51 4 amod pathname 49 local 48

num VBScript 3 56 6 nn pathname 56 pathname 49

num VBScript 3 57 8 appos pathname 49 2 52

conj_and vbscriptdll 1 58 11 nn pathname 56 UNC 54

nsubj allows 34 58 11 nn pathname 56 share 55

xsubj execute 39 58 11 dobj referencing 43 pathname 56

nn SP4 16 Microsoft 13 dep server 63 3 60

nn SP4 16 Windows 14 amod server 63 WebDAV 62

num SP4 16 2000 15 dobj referencing 43 server 63

prep_in 58 11 SP4 16 conj_or pathname 56 server 63

nn SP2 19 XP 18 det file 68 a 65

prep_in 58 11 SP2 19 amod file 68 crafted 66

conj_and SP4 16 SP2 19 nn file 68 hlp 67

prep_in 58 11 SP3 21 prep_with server 63 file 68

conj_and SP4 16 SP3 21 det argument 72 the 70

nn SP2 26 Server 24 amod argument 72 fourth 71

num SP2 26 2003 25 prep_in file 68 argument 72

conj_and vbscriptdll 1 SP2 26 amod argument 76 aka 74

tmod used 32 SP2 26 nn argument 76 helpfile 75

nsubj allows 34 SP2 26 appos argument 72 argument 76

xsubj execute 39 SP2 26 det function 81 the 79

advmod used 32 when 28 nn function 81 MsgBox 80

nn Explorer 30 Internet 29 prep_to server 63 function 81

nsubjpass used 32 Explorer 30 vmod server 63 leading 83

auxpass used 32 is 31 aux code 85 to 84

rcmod SP2 26 used 32 xcomp leading 83 code 85

root ROOT 0 allows 34 dobj code 85 execution 86

amod attackers 37 user-assisted 35 prep_involving execution 86 winhlp32exe 88

amod attackers 37 remote 36 tmod pressed 94 winhlp32exe 88

dobj allows 34 attackers 37 advmod pressed 94 when 89

aux execute 39 to 38 det key 92 the 90

xcomp allows 34 execute 39 nn key 92 F1 91

amod code 41 arbitrary 40 nsubjpass pressed 94 key 92

dobj execute 39 code 41 auxpass pressed 94 is 93

rcmod winhlp32exe 88 pressed 94

definition, a declarative clause consists of a subject part (noun phrase) and a predicate part (verb

phrase). Sub-trees representing the subject and predicate part of the primary declarative clause are

shown in Fig. 4.11b and Fig. 4.11c respectively. However, due to the lack of printing space, the

verb phrase sub-tree (Fig. 4.11c) is continued in Fig. 4.11d. It is to be noted that some sub-figures

in Fig. 4.11 contain nodes marked with numbers (NP1, VP2 etc). These nodes are later expanded

into sub-trees in subsequent sub-figures. Table 4.1 lists the grammatical dependencies found in the

example vulnerability description used in this section. Each dependency is represented using a set

of 5 columns namely, relation, governor, governor-pos, dependent and dependent-pos. The term

“pos" refers to the position of a governor or dependent after the sentence is tokenized

53

4.3.2 Identifying Human Actors

We begin the extraction process by defining the concept of a human actor.

Definition (Human Actor). Human actors are entities that perform certain actions and are de-

picted as common noun objects in vulnerability descriptions. Human actors can include entities

that do not refer to humanoid objects. For example, terms like “server" and “machine" can be

treated as human actors. Human actors can be subdivided into the following categories:

• Attackers: Those entities that perform security-critical actions with negative or malicious

intents.

• Users: Those entities that perform security-critical actions with positive or benign intents.

They are often the victim of targeted attacks.

• Others: Those entities that perform actions with positive or benign intents. The actions

performed by these entities are not security critical and hence are not related to the PAG

concepts.

Heuristic 10. In a sentence, human actors are expressed using words that appear as dependent-s

for the following set of relations:

• Nominal Subject (nsubj)

• Agent (agent)

• Direct Object (dobj)

• Passive Nominal Subject (nsubjpass)

Heuristic 11. In a sentence, human actors are expressed using words which contain the following

singular terms in their dictionary meanings:

• Third Person Relative Pronouns

54

Algorithm 7 getHumanActors()

Require: sentence-bundle

Ensure: governor of the dependency is a verb and dependent is a noun

x← {nsubj, agent, dobj}

y ← {nsubjpass}

keywords← {“who", “whose", “anyone", “anybody", “someone", “somebody"}

1: for (dependency ∈ sentence-bundle.dList) do

dependency = 〈 relation, governor, dependent 〉

2: if (relation ∈ x) then # Direct Actor #

3: if (tokenized wordNetGloss ∩ keywords) then # wordNetGloss = dictionary meaning of a word #

4: directActorList← directActorList ∪ dependent
5: else

6: nonHumanActorList← nonHumanActorList ∪ dependent
7: end if

8: else if (relation ∈ y) then # Indirect Actor #

9: indirectActorList ← indirectActorList ∪ dependent
10: end if

11: end for

12: return directActorList, indirectActorList, nonHumanActorList

– “who"

– “whose"

• Third Person Indefinite Pronouns

– “anybody"

– “anyone"

– “somebody"

– “someone"

In Algorithm 7 we traverse the grammatical dependencies listed in Table 4.1 and attempt to

find dependencies which incorporate the relations listed in heuristic 11. For dependencies which

relate to nominal subjects, agents or direct objects we consider the dependent nouns as direct

actors if the tokenized version of their dictionary meanings contain words listed in heuristic 12.

On the other hand, if dependencies relate to passive nominal subjects we consider their depen-

55

Direct Actors WordNet Gloss

vbscriptdll N/A

58 N/A

SP2 N/A

attackers someone who attacks

code a set of rules or principles or
laws (especially written ones)

pathname N/A

server a person whose occupation
is to serve at table (as in a
restaurant)

execution putting a condemned person
to death

Indirect Actors
/indirectActorList

Explorer

key

 directActorList

attackers

server

relation governor dependent

nsubj allows vbscriptdll

nsubj allows 58

nsubj allows SP2

nsubjpass used explorer

dobj allows attackers

dobj execute code

dobj referencin
g

pathname

dobj referencin
g

server

dobj code execution

nsubjpass pressed key

 nonHumanActorList

 vbscriptdll

 58

SP2

code

pathname

execution

Figure 4.12: Identifying Human Actors

dents as indirect actors, regardless of whether their dictionary meanings refer to humans.

Dictionary meanings are retrieved as wordnet glosses (see section 3.3 for further details).

Fig. 4.12 shows the workflow as explained in Algorithm 7. Once dependencies with matching

relations (tabulated on the left) are found, either the dependent’s wordnet glosses are used to con-

firm their status as humans (direct actors) or simply added as indirect actors. A notable inclusion

in the directActorList from Fig. 4.12 is the word “server". Although in computer science vocabu-

lary “server" generally refers to a machine, in orthodox English it refers to “someone who serves"

which justifies its inclusion in the list of human actors. Apparently, such an inclusion satisfies our

needs since “server" machines can also perform activities which lead to security compromises.

56

Algorithm 8 areIndirectActorsHuman()

Require: sentence-bundle,indirectActorList, directActorList, nonHumanActorList

1: for all (indirectActor ∈ indirectActorList) do

indirectActorDependency = the original dependency from where the indirect actor was obtained

2: isNonHumanActor ← false
3: enqueue indirectActorDependency # Add to a queue #

4: while (queue is not empty) do

5: currentDependency = dequeue # Remove an element from the bottom of the queue #

6: for all (dependency ∈ sentence-bundle.dList) do

dependency = 〈governor,dependent,relation 〉

7: if (verb component of dependency = verb component of currentDependency)

then # verb component refers to either the governor or the dependent or both if they are verbs #

8: if (dependent ∈ nonHumanActorList) then # nonHumanActorList is obtained from

Algorithm 7 #

9: indirectActorList = indirectActorList \ indirectActor
10: EndLoop

11: else

12: enqueue dependency
13: end if

14: end if

15: end for

16: end while

17: end for

18: directActorList← directActorList ∪ indirectActorList

4.3.3 Classifying Indirect Actors as Humans

Heuristic 12. Indirect actors are non-human if they are directly or indirectly grammatically related

to other non-human actors.

The inclusion of indirect actors engenders an ambiguity about their nature, human or not.

Indirect actors are not included in the input vulnerability description and are therefore indiscernible

in context of the sentence. Consequently, it is hard to determine whether they refer to human nouns.

Heuristic 13 is designed to resolve this issue. Algorithm 8 is used to formally realize the concept

established in heuristic 13. It is to be noted that in absence of an actual mention of the indirect actor

in the vulnerability description, we consider dependents of nsubjpass relations as provisional

indirect actors.

57

Table 4.2: Types of Attributes Assigned to Each Actor

Indirect

Actors

Verbs governing verb in nsubjpass, open clausal complements of gov-

erning verb (xcomp)

Modifiers adjective modifiers for direct object of governing verb (amod)

Direct Actors
Verbs governing verb in nsubj or agent, reduced non-finite verbal

modifiers of the dependent (vmod), open clausal complements

of the governing verb (xcomp)

Modifiers adjective modifiers for direct objects of the governing verb (or

of xcomp of the governing verb, if actor was an object) (amod),

adjective modifiers of the dependent (amod)

In Algorithm 8 we traverse the list of indirect actors and for each indirect actor, we add indi-

rectActorDependency-s (dependencies from which indirect actors were obtained) to a queue. At

every iteration we dequeue elements from the queue and perform the following tasks:

1. If the verb component (check Algorithm 8 for reference) of the dequeued dependency matches

to the verb component of any dependency from Table 4.1, we buffer the dequeued depen-

dency.

2. The dependent component of the buffered dependency is then checked against the nonHu-

manActorList. If a match is found, we assume the indirect actor to be non-human and remove

it from the list of indirect actors (indirectActorList). Otherwise, we add the buffered depen-

dency to the queue and continue until the queue is empty.

Eventually, the list of indirect actors (holding only those actors which are assumed to be human)

is appended to the list of human actors.

For the example used in this section, indirect actors “key" and “Explorer" (refer to Fig. 4.12)

do not have any direct or indirect grammatical links to non-human actors (also shown in Fig. 4.12).

As a result, the indirect actors, not mentioned in the text, are considered to be human nouns.

58

4.3.4 Assigning Attributes to Actors

Heuristic 13. Human actors can be classified as attackers, users and others based on their actions

(verbs) and features (adjective modifiers or simply modifiers). The types of verbs and modifiers

used in the characterization process are tabulated in Table 4.2.

After the list of human actors is identified, each actor is associated with a set of attributes. These

attributes are directly or indirectly related to the actor. Attributes are assigned in accordance with

heuristic 13. For the sake of simplicity, we assume the attributes to be stored in the data-structure

attributeList.

Fig. 4.13 is an example of how attributes are assigned to each actor. The dependencies from

which these attributes are extracted are shown on the left-hand side of Fig. 4.13. Some attribute

linkages are presented directly. For example, the linkages between “server" and “leading" (vmod),

“key" and “pressed" (governing verb of nsubjpass) and “attackers" and“user-assisted" (amod) are

direct. However, some linkages are indirect and cannot be directly observed in Fig. 4.13. For

example, the linkage between “attackers" and “execute" shown under the Verb Attributes

table cannot be observed in the list of dependencies shown on the left. However “execute" is the

“xcomp" modifier of “allows" which objectifies the term “attacker". Hence its inclusion.

4.3.5 Determining the Polarity of an Actor

Heuristic 14. Human actors can be classified as attackers, users and others using the following

observations:

• Human actors referred to as “attackers" in the input vulnerability description or having at

least one negatively polarized attribute are attackers.

• Human actors are users if they have they exhibit the following features

– They are referred to as “victim[s]" in the input vulnerability description.

– They have no negatively polarized attribute and are referred to as “user[s]" in the input

vulnerability description.

59

Verb Attributes

Direct Actors Indirect Actors

attackers server Explorer key

execute leading used pressed

Modifier Attribute

Direct Actors Indirect Actors

attackers server Explorer key

user-
assisted

WebDAV

remote

arbitrary

relation governor dependent

amod server WebDAV

nsubjpass used Explorer

vmod server leading

amod attackers user-
assisted

amod attackers remote

xcomp allows execute

amod code arbitrary

nsubjpass pressed key

Figure 4.13: Attributes Assigned to each Actor

– They have no negatively polarized attribute and are indirect actors.

• Human actors with no negatively polarized attribute are others if they are direct actors

and are referred by anything other than“victim[s]" and “user[s]" in the input vulnerability

description.

The word "attacker" is often used to refer to a malicious individual whose goal is to compromise

a system. But this can be deceptive. On certain occasions, malicious adversaries can be "user"s or

even "server"s. As an instance, in the following vulnerability description [source : NVD (CVE-

2010-0237)] the word “user" is used to depict the malicious adversary.

“The kernel in Microsoft Windows 2000 SP4 and XP SP2 and SP3 allows local users

to gain privileges by creating a symbolic link from an untrusted registry hive to a

trusted registry hive, aka "Windows Kernel Symbolic Link Creation Vulnerability.""

60

It is thus not correct to assign a positive polarity to all instance of the word “user". In other

words, dictionary meanings are not enough to classify actors as malicious or benign. We need to

assess the context in which they appear in the vulnerability descriptions. In this thesis, the context

is represented in terms of the attributes assigned to each actor in the previous (4.3.4) section.

According to heuristic 14 determining the polarity of the attributes, and text-form representations

of human actors can aid us in classifying actors as attackers or users. Algorithm 9 is used formally

realize heuristic 14.

In Algorithm 9 we first check the textual representation of the entity in the input description. If

the entity is referred to as “attacker" or "victim" in the original description, our algorithm ends by

assigning this entity as an attacker or user respectively. Otherwise, we obtain polarity values from

SentiWordNet 3.0 (refer to section 3.4) and if any of attributes return a negative polarity, we refer

to the actor as "attacker". Conversely, if the actor is indirect we refer to it as “user" or “other" if it

is direct.

Fig. 4.14 shows an example implementation of Algorithm 9. Out of the four actors identified in

the previous stages, the actor “attacker" is easily classified as an attacker due to its textual depiction.

The actors “server", “keyword" are indirect and have all positively polarized attributes (“used" and

“pressed"). Hence the indirect actors they represent are classified into the user category. Finally,

the actor “server" is categorized into other human actors as it is neither indirect nor has a negatively

polarized attribute assigned to it.

4.3.6 Sectioning Into Attacker Actions, User Actions and Post-Conditions

In this step we extract instances of Attacker Actions, User Actions and Post-Conditions from

the input vulnerability descriptions. To completely comprehend the extraction process the reader

needs to be familiarized first with the concept of a minimal phrase or a minimal clause.

Definition (Minimal Phrase/Clause). The minimal phrase or clause, for a given word and a given

tag, is a phrase/clause which cannot be subdivided into a phrase/clause of similar tag containing

the same word.

61

Algorithm 9 determineActorType()

Require: directActorList, indirectActorList

1: for all (directActor ∈ directActorList) do

2: if (directActor = caseInsensitve(“attacker[s]′′)) then

3: directActor is attacker
4: else if (directActor = caseInsensitve(“victim[s]′′)) then

5: directActor is user
6: else

7: isAttacker ← false
8: for (attribute ∈ directActor.attributeList) do

9: sentimentScore← getSentimentScorefromSentiWordNet(attribute)
10: if (sentimentScore < 0) then

11: directActor is attacker
12: isAttacker ← true
13: end loop

14: end if

15: end for

16: if (isAttacker is false) then

17: if ((directActor ∈ indirectActorList) ∧ (directActor =
caseInsensitve(“user[s]′′))) then

18: directActor is user
19: else

20: directActor is other
21: end if

22: end if

23: end if

24: end for

• Example : The parse tree of the sentence “The attacker broke into the machine to steal data."

is shown below.

(ROOT

(S((NP(DT The)(NN attacker))

(VP

(VBD broke)(PP(IN into)(NP(DT the)(NN machine)))

(S(VP(TO to)(VP(VB steal)(NP(NNS data)))))

)

(..)))

62

Verb Attributes

Direct Actors Indirect Actors

attackers server Explorer key

execute(exec
ute)

leading(lead) used(use) pressed(pres
s)

0.0241 0.03027 0.05442 0.0069

Modifier Attribute

Direct Actors Indirect Actors

attackers server Explorer key

user-assisted WebDAV

N/A N/A

remote(remote)

0.02463

arbitrary(arbitrary)

0

Actor Type

attackers attacker

server Other

Explorer user

key user

Is depicted as
“attacker” ?

attackers Yes

server no

Explorer no

key no

Figure 4.14: Determining the Type of Human Actor

The minimal verb phrase containing the word “broke" is the following phrase:

(VP(VBD broke)(PP(IN into)(NP(DT the)(NN machine)))

(S(VP(TO to)(VP(VB steal)(NP(NNS data))))))

because if it is sub-divided into further verb phrases, they will not enclose the word “broke".

Heuristic 15. Textual representations of Attacker Action have the following characteristics:

• They are verb phrases which are nested within minimal declarative clauses or verb phrases

and begin with the gerund keywords: “using".

63

• They are preposition phrases which are nested within minimal declarative clauses or verb

phrases and begin with the keywords: “by", “through", “with" and “via".

Textual representations of User Action have the following characteristics:

• They are minimal declarative clauses which enclose action verbs (governing verbs of nsubj,

agent and nsubjpass relations).

• They are minimal verb phrases which enclose all verbs other than action verbs.

• They are verb phrases which are nested within minimal declarative clauses or verb phrases

and begin with the gerund keywords: “using", “resulting", “causing" and “leading".

• They are preposition phrases which are nested within minimal declarative clauses or verb

phrases and begin with the keywords: “by", “through", “with" and “via".

Textual representations of Post-Conditions have the following characteristics:

• They are minimal declarative clauses which enclose action verbs (governing verbs of nsubj,

agent and nsubjpass relations).

• They are minimal verb phrases which enclose all verbs other than action verbs.

• They are verb phrases which are nested within minimal declarative clauses or verb phrases

and begin with the gerund keywords: “resulting", “causing" and “leading".

All minimal phrases and clauses used in the above characteristics enclose verb attributes as-

signed to the respective actors.

Algorithm 10 is used to execute heuristic 15. Firstly, for each actor, minimal declarative clauses

and verb phrases are identified. Following this, all verb and preposition phrases nested within the

previously extracted minimal clauses and phrases are extracted. The algorithm now divides into

two sections. The first section deals with the nested verb phrases, which are then tested for the

starting words “using" and “resulting". If the concerned actor is an “attacker", then for the first

64

Algorithm 10 determineActionsPostConditionsforEachActor()

Require: directActorList

1: for all (directActor ∈ directActorList) do

2: for all (verb ∈ directActor.V erbList) do

3: if (verb ∈ governing verb for {nsubj, agent, nsubjpass}) then

4: V P ← minimal declarative clause to which this verb belongs
5: else

6: V P ← minimal verb phrase to which this verb belongs
7: end if

8: nestedV PList← {nested verb phrases within V P}
9: nestedPPList← {nested preposition phrases within V P}

10: for all (V Pn ∈ nestedV PList) do

11: if (V Pn startsWith “using“) then

12: if (directActor isAttacker) then

13: V Pn.toString is attacker action
14: else if (directActor isUser) then

15: V Pn.toString is action
16: end if

17: else if (V Pn startsWith “resulting“ or “causing” or “leading”) then

18: if (directActor isAttacker) then

19: V Pn.toString is post condition
20: else if (directActor isUser) then

21: V Pn.toString is action
22: end if

23: end if

24: end for

25: for all (PPn ∈ nestedPPList) do

26: if (PPn startsWith “via“ or “by‘ or “through“ or “with“) then

27: PPn.toString ← beginning of PPn.toString to end of V P.toString
28: PPn.toString is attacker action
29: end if

30: end for

31: if (directActor isAttacker) then

32: V P.toString is post condition
33: else if (directActor isUser) then

34: V P.toString is action
35: end if

36: end for

37: end for

word “using", the nested phrase is considered to be an Attacker Action, or else it is considered to

be a Post-Condition. For both starting verbs if the actor is a “user", then the nested verb phrase is

65

considered to be a User Action. Similarly, if the nested preposition phrases start with “via", “by",

“with" and “through" they are considered to be Attacker Actions. However, before being added to

the list of attackers actions, each preposition phrase is extended until the end of the verb phrase

they belong in. This decision is purely empirical and has no grammatical motivation credited to

it. It allows us to include certain additional information which could be left out due to inaccurate

generation of the syntax tree. Finally, the outer phrase is added to the Attacker Actions, if the actor

concerned is an attacker or added to User Actions, otherwise.

In Fig. 4.15 we first identify the minimal verb phrases and declarative clauses for action verbs

each direct/human actor is attributed to. Since actors “key" and “Explorer" were retrieved from an

nsubjpass relation they are attributed to minimal declarative clauses. On the other hand, the actor

“attacker" was retrieved as the dependent of a dobj relation. As a result, a minimal verb phrase is

attributed to this actor. The nested preposition phrases are added as Attacker Actions. The minimal

declarative clauses, however, do not nest other phrases. As a result, they are added as User Actions.

Finally, the minimal verb phrase is added as the sole instance of Post-Condition.

4.3.7 Cleaning up

Heuristic 16. Instances of one concept should be devoid of instances of another concept. This

heuristic excludes the instances of Attacker Actions including other instances of Attacker Actions

performed by the same actor. In this exceptional case, the smaller instances of Attacker Actions

are considered irrelevant.

• Eg. Refer to Fig. 4.16.

The clean-up procedure essentially removes concept instances which are sub-strings of larger

concept instances. In other words, for all actors, and for all concepts we verify whether any of

the instances are complete sub-strings of another. If so, we completely remove the smaller string

from the larger string. Going by heuristic 16, we do not remove an attacker action from a different

attacker action if both of them are performed by the same actor. Instead, we remove the smaller

attacker action string from the final results. A different set of removed sections include the noun

66

Verb Attributes

Direct Actors Indirect Actors

attackers Explorer key

execute used pressed

Minimal Verb Phrase

VP(execute arbitrary code PP(by referencing a -LRB- 1 -RRB- local
pathname , -LRB- 2 -RRB- UNC share pathname , or -LRB- 3 -RRB-
WebDAV server PP(with a crafted hlp file in the fourth argument -LRB- aka
helpfile argument -RRB-) to the MsgBox function , leading to code execution
involving winhlp32exe when the F1 key is pressed)))

S(Internet Explorer
is used)

S(the F1 key is
pressed)

Attackers Users

Post-Condition Action Action

execute arbitrary
code by referencing
a -LRB- 1 -RRB-
local pathname ,
-LRB- 2 -RRB- UNC
share pathname , or
-LRB- 3 -RRB-
WebDAV server with
a crafted hlp file in
the fourth argument
-LRB- aka helpfile
argument -RRB- to
the MsgBox function
, leading to code
execution involving
winhlp32exe when
the F1 key is
pressed

by referencing a
-LRB- 1 -RRB- local
pathname , -LRB- 2
-RRB- UNC share
pathname , or -LRB-
3 -RRB- WebDAV
server with a crafted
hlp file in the fourth
argument -LRB- aka
helpfile argument
-RRB- to the
MsgBox function ,
leading to code
execution involving
winhlp32exe when
the F1 key is
pressed

with a crafted hlp file
in the fourth
argument -LRB- aka
helpfile argument
-RRB- to the
MsgBox function ,
leading to code
execution involving
winhlp32exe when
the F1 key is
pressed

Internet
Explorer is
used

the F1 key is
pressed

Figure 4.15: Segregating Actions and Post-Conditions

phrase that encloses words which refer to human actors. This is because, often times verb phrases

might enclose a noun phrase enclosing the word which refers to the actor itself. The presence

of this phrase does not provide any additional information apart and hence is removed. Finally,

if extracted textual concepts start or end with common stop-words like “that", "and", "or" etc.,

white-space or punctuations, we remove them from the final result.

An example, of the clean-up procedure is shown in fig. 4.16. Textual concepts which are sub-

strings of another concept are shown using arrows. The arrows are also labelled stating reason for

clean-up. Since the same actor “attackers" is attributed to two actions and one is a substring of

another, the smaller string is removed, leaving the larger string as the only attacker action.

67

Attackers Users

Post-Condition Action Action

execute arbitrary code by
referencing a -LRB- 1 -RRB-
local pathname , -LRB- 2 -RRB-
UNC share pathname , or
-LRB- 3 -RRB- WebDAV server
with a crafted hlp file in the
fourth argument -LRB- aka
helpfile argument -RRB- to the
MsgBox function , leading to
code execution involving
winhlp32exe when the F1 key is
pressed

by referencing a -LRB-
1 -RRB- local pathname
, -LRB- 2 -RRB- UNC
share pathname , or
-LRB- 3 -RRB-
WebDAV server with a
crafted hlp file in the
fourth argument -LRB-
aka helpfile argument
-RRB- to the MsgBox
function , leading to
code execution
involving winhlp32exe
when the F1 key is
pressed

with a crafted hlp file in the
fourth argument -LRB- aka
helpfile argument -RRB- to
the MsgBox function ,
leading to code execution
involving winhlp32exe
when the F1 key is
pressed

Internet
Explorer is
used

the F1
key is
presse
d

Attackers Users

Post-Condition Action Action

execute arbitrary code by referencing a -LRB- 1 -RRB- local
pathname , -LRB- 2 -RRB- UNC share
pathname , or -LRB- 3 -RRB- WebDAV
server with a crafted hlp file in the fourth
argument -LRB- aka helpfile argument
-RRB- to the MsgBox function , leading to
code execution involving winhlp32exe when
the F1 key is pressed

Internet
Explorer
is used

the F1
key is
presse
d

Is substring
Not allowed No substring

Figure 4.16: Clean up

68

Chapter 5

Evaluation and Discussion

The Personalized Attack Graph can be constructed by logically linking instances of the con-

stituent concepts, otherwise referred to as the PAG concepts. Chapter 4 of this thesis describes

an approach to automatically extract textual instances of the PAG concepts from vulnerability de-

scriptions. The extraction process consists of two phases: extracting Software Names, Versions and

Modifiers and extracting Attacker Actions, User Actions and Post-Conditions. Both these phases

make use of the semantic consistencies observed in vulnerability descriptions written in natural

language. However, owing to the fact that vulnerability descriptions are most often written and

updated by humans, they are most often unstructured in nature and lack any form of consistency.

Consequently, instances of PAG concepts extracted by the automated process might not always be

correct and hence to evaluate the accuracy of the extraction process we need to compare automat-

ically extracted concepts with their manually identified counterparts. In this chapter, we measure

the performance of our approach by comparing the extracted concepts with those identified by

human beings (having adequate knowledge of cyber security). We also compare the observed ac-

curacy level with that obtained by Joshi et al. [13]. This allows us to perform a fair evaluation of

our extraction techniques.

5.1 Evaluation Preliminaries

5.1.1 DataSets

Owing to the difference in judgement and bias introduced by divergent amount of knowledge

on the topic, instances of the same concept identified by two different human subjects might not

match. Consequently, the evaluation procedure needs to be performed on a corpus which satisfies

the following criteria: it is not biased i.e. it is not generated by the author of this thesis and it is

consistent i.e. generated by the collaborative effort of multiple subjects having adequate knowl-

69

Table 5.1: Joshi Corpus Classes vs PAG Concepts

PAG Concepts Joshi Corpus Classes Joshi Corpus Class Instances

Software Names and Versions

Software Microsoft .Net Framework 3.5

Operating Systems Linux Ubuntu 10.4

Hardware IBM Mainframe B152

Network_Terms HTTP

Attacker Actions Means a crafted spreadsheet

Post-Conditions Consequences bypass intended access restrictions

User Actions

File_Name index.php

Other_Technical_Terms HTML

Modifiers NER_Modifier through 7.5

edge of cyber-security. Two such labelled corpora of security related descriptions are available

publicly [4, 13]. Of these, the Bridges Corpus [4] supports labels/classes which have very

little resemblance with the PAG concepts. As a result we do not use this corpus to evaluate our

approach. Instead we opt to use the Joshi Corpus [13].

Joshi Corpus

Table 5.1 compares the labelled classes/concepts in the Joshi corpus 11 to those in our corpus.

From Table 5.1 it can be observed that:

1. Semantically similar classes are placed in adjacent columns. As an example, the class

“Means" exudes an almost similar sense as the concept “Attacker Action". The same logic

can be applied to the “Software Names and Versions" concept and “Software", “Operating

System" classes. For simplicity we treat the “Hardware" class and the “Software Names

and Versions" concept equivalently. The “NER_Modifier" class in the Joshi corpus provides

version related information for software products.

2. It can be noticed that the Joshi Corpus does not include a class similar to the “User Actions"

PAG concept. Similarly, the PAG does not make use of a “Network Terms" concept.

11http://ebiquity.umbc.edu/resource/html/id/355

70

Table 5.2: Joshi Corpus Concept Instance Distribution

NVD Adobe Security Bulletins MS Security Bulletins Security Blogs

Software Names and Versions 97 145 90 44

Modifiers 94 0 0 2

Attacker Actions 49 1 9 10

Post-Conditions 45 11 18 3

Table 5.3: Our Corpus Concept Instance Distribution

Student1-Student2 Student1-Student3

NVD ISS-Xforce SecurityFocus NVD ISS-Xforce SecurityFocus

Software 7 5 7 8 5 7

Version 6 0 2 5 0 2

Modifier 3 0 1 2 0 1

User Action 0 4 0 0 2 0

Attacker Action 4 4 2 4 3 0

Post-Condition 6 9 18 5 11 14

In-spite of subtle differences between the Joshi Corpus classes and the PAG concepts, the Joshi

Corpus is the only publicly available corpus which is closest to our requirements. The archived ver-

sion of the Joshi Corpus 12 contains a total of 395 vulnerability descriptions accumulated from the

National Vulnerability Database (275), Adobe Security Bulletins (50), Microsoft Security Bulletins

(50) and various security blogs (20). However, in their work [13], Joshi et al. use the following

distribution to describe their corpus: 240 descriptions from the National Vulnerability Database, 30

security blogs and 80 security bulletins from Microsoft and Adobe. For the purpose of brevity and

simplicity, we chose to perform our experiments on a modified dataset consisting of 105 vulnera-

bility descriptions taken from the archived Joshi corpus. The modified dataset (will also be referred

to as the Joshi Corpus/Dataset from here on) bears the following distribution of source counts: 72

from the National Vulnerability Database, 9 blog entries and 24 security bulletins from Microsoft

(MS) and Adobe. This distribution (relative) is similar to the one documented in [13] and hence

allows us to compare the accuracy levels obtained in this thesis with those obtained by Joshi et

al. [13]. The Joshi Corpus consists of a total of 618 tagged concept instances, the distribution of

which is shown in Table 5.2.

12http://ebiquity.umbc.edu/resource/html/id/355

71

Our Corpus

Because the Joshi Corpus does not completely encompass all the PAG concepts, we generated a

separate corpus with labelled PAG concepts. Unfortunately we could not accumulate a large group

of cyber-security proficient students to annotate this corpus. Three students from the Computer

Science Department at Colorado State University were asked to manually annotate 5 vulnerability

description from each of the three vulnerability databases: National Vulnerability Database, ISS-

Xforce and Securityfocus. A total of 15 vulnerability descriptions were annotated. At first, each

of the three students tagged the dataset manually. The three generated datasets were referred to as

Student1, Student2 and Student3. In order to gain increased assurance about the correctness of the

tags, we systematically combined selected pairs of datasets to generate two new datasets namely,

Student1-Student2 and Student1-Student3. Datasets Student1-Student2 and Student1-Student3 con-

sisted of a total of 78 and 69 tokens respectively and their individual distributions are shown in

Table 5.3.

5.1.2 Evaluation Metrics

In order to compare the accuracy levels of our work with that obtained by Joshi et al., we

decided to model the evaluation procedure on the one used in [13]. This meant that the accuracy

of the extraction process was to be expressed in terms of the gold standard evaluations metrics:

Precision and Recall [15]. The metrics can be calculated using the following formulas:

• precision = TruePositives/(TruePositives+ FalsePositives)

• recall = TruePositives/(TruePositives+ FalseNegative)

In the above mentioned formulas True Positives (TP) are the instances of PAG concepts which

were correctly extracted, False Positives (FP) are the instances of PAG concepts which were in-

correctly extracted and False Negatives (FN) are the instances of PAG concepts which were in-

correctly rejected i.e were not extracted in spite of being present in the textual vulnerability de-

scription. Precision thus quantifies the ability of our approach to extract correct instances of PAG

72

concepts, whereas Recall quantifies the ability of our approach to extract all instances of PAG

concepts present in the vulnerability description.

In course of the evaluation process, we compare various instances of obtained values for these

metrics using the Wilcoxon Signed Rank Test. This is a nonparametric test used to compare paired

data from a pair of samples without the assumption of observed normality in the two samples.

Paired data refers to pairs of observations of the same variable recorded under different experi-

mental conditions. For the purpose of this thesis we compare precision and recall values obtained

from different experiments at a confidence level of α. In all of the tests conducted we use the

following three p-value statistics:

• p=: Denotes the p-value obtained after performing a two-tailed Wilcoxon Signed Rank Test.

A p= value of < α denotes rejection of the null hypothesis that the median difference be-

tween the pair of observations is 0. In other words, we reject the null hypothesis in favor of

the alternative hypothesis: "there is significant difference between the two samples".

• p<: Denotes the p-value obtained after performing a one-tailed Wilcoxon Signed Rank Test.

A p< value of < α denotes rejection of the null hypothesis that the median difference be-

tween the pair of observations is >= 0. In other words, we reject the null hypothesis in favor

of the alternative hypothesis: "the first sample is less significant".

• p>: Denotes the p-value obtained after performing a one-tailed Wilcoxon Signed Rank Test.

A p> value of < α denotes rejection of the null hypothesis that the median difference be-

tween the pair of observations is =< 0. In other words, we reject the null hypothesis in favor

of the alternative hypothesis: "the first sample is significant".

Here α = (1 − chosen confidence interval) and due to lack of adequate sample points we

choose a confidence interval of 90%.

73

Table 5.4: Results for Experiments Run on the Joshi Corpus

Sources PAG Concepts TP FP FN Precision% Recall%

NVD

Software Names and Versions 79 21 18 79 81.44

Modifiers 66 12 28 84.62 70.21

Attacker Actions 27 19 22 58.70 55.10

Post-Conditions 37 16 8 69.81 82.22

Adobe Security Bulletins

Software Names and Versions 95 11 50 89.62 65.52

Modifiers 0 0 0 N/A N/A

Attacker Actions 1 1 0 50 100

Post-Conditions 11 0 0 100 100

MS Security Bulletins

Software Names and Versions 79 38 11 67.52 87.78

Modifiers 0 0 0 N/A N/A

Attacker Actions 7 23 2 23.33 77.79

Post-Conditions 1 30 17 3.23 5.56

Security Blogs

Software Names and Versions 28 18 16 60.87 63.64

Modifiers 0 0 2 N/A 0

Attacker Actions 6 12 4 33.33 60

Post-Conditions 2 10 1 16.67 66.67

Cumulative

Software Names and Versions 281 88 95 76.15 74.73

Modifiers 66 12 30 84.62 68.75

Attacker Actions 41 55 28 42.71 59.42

Post-Conditions 51 56 26 47.66 66.23

Joshi [13]

Software Names and Versions 2372 258 306 90.19 88.57

Modifiers 320 79 147 80.20 68.52

Attacker Actions 185 94 177 66.31 51.10

Post-Conditions 299 123 135 70.85 68.89

5.2 Evaluating on the Joshi Corpus

Table 5.4 shows the results obtained after our approach was employed to extract PAG concepts

from the vulnerability descriptions in the Joshi Corpus. Figure 5.1 provides a pictorial overview

of Table 5.4. Different colors (shown in the legends) have been used in Figure 5.1 to differenti-

ate between the obtained concepts. Dashed lines are used to show the precision and recall values

obtained by Joshi et al. [13]. The same values are shown in the last four rows of Table 5.4 under

the Sources label “Joshi [13]". The “Cumulative" results obtained from the experiments are shown

using solid lines in Fig. 5.1. It can be seen that, cumulatively, our approach performed better than

Joshi’s in identifying Modifiers. Although most of the other precision and recall values were com-

parable, precision scores for identifying Attacker Actions and Post-Conditions were significantly

low. This is because, the number of false positives (as seen in the “FP" column from Table 5.4)

74

Figure 5.1: Comparative Evaluation of Precision and Recall Scores [Joshi Corpus]

were significantly high. The most obvious reason for this is that our approach identified potential

“User Actions" as “Attacker Actions". The root cause for this issue can be traced back to non-

fulfillment of heuristics 13 and 14 where either exact actor attributes could not be determined or

SentiWordnet (refer to section 3.4) misclassified benign attributes as malicious. Another cause for

the low precision scores was incorrect classification of Post-Conditions as Attacker Actions and

vice-versa. This issue was also observed by Joshi et al. [13] in their analysis.

The experiments were carried out individually on each source of vulnerability description, as

shown in the Sources column of Table 5.4. The results show that our approach to extract Soft-

ware Names and Versions exhibited similar performance across all the vulnerability databases in

the Joshi Corpus. This can also be seen in Figure 5.1. As seen in Table 5.2, tagged instances

of Modifiers were missing in the vulnerability descriptions obtained from Adobe and Microsoft

Security Bulletins, thus leading corresponding “N/A" values in the Table 5.4. In general, it was

observed that the extraction process performed better on vulnerability descriptions obtained from

75

Table 5.5: Results for Experiments Run on Our Corpus

Student1-Student2 Student1-Student2 Average

Sources Concept TP FP FN Precision% Recall% TP FP FN Precision% Recall% Precision% Recall%

NVD

Software 7 2 0 77.78 100 9 0 0 100 100 88.89 100

Version 5 3 1 62.5 83.33 4 3 1 57.14 80 59.82 81.67

Modifier 2 2 1 50 66.67 1 1 1 50 50 50 58.33

User Action 0 2 0 0 N/A 0 2 0 0 N/A 0 N/A

Attacker Action 3 1 1 75 75 3 1 1 75 75 75 75

Post-Condition 4 0 2 100 66.67 4 0 1 100 80 100 73.33

Iss-Xforce

Software 3 1 2 75 60 3 1 2 75 60 75 60

Version 0 0 0 N/A N/A 0 0 0 N/A N/A N/A N/A

Modifier 0 0 0 N/A N/A 0 0 0 N/A N/A N/A N/A

User Action 2 0 2 100 50 2 0 0 100 100 100 75

Attacker Action 3 10 1 23.08 75 3 10 0 23.08 100 23.08 87.5

Post-Condition 9 10 0 47.37 100 11 7 0 61.11 100 54.24 100

SecurityFocus

Software 7 0 0 100 100 7 0 0 100 100 100 100

Version 2 0 0 100 100 2 0 0 100 100 100 100

Modifier 1 0 0 100 100 1 0 0 100 100 100 100

User Action 0 1 0 0 N/A 0 1 0 0 N/A 0 N/A

Attacker Action 2 3 0 40 100 0 5 0 0 N/A 20 49.5

Post-Condition 17 1 1 94.44 94.44 14 4 0 77.78 100 86.11 97.22

Cumulative

Software 17 3 2 85 89.47 19 1 2 95 90.48 90 89.97

Version 7 3 1 70 87.5 6 3 1 66.67 85.71 68.33 86.61

Modifier 3 2 1 60 75 2 1 1 66.67 66.67 63.33 70.83

User Action 2 3 2 40 50 2 3 0 40 100 40 75

Attacker Action 8 14 2 36.36 80 6 16 1 27.27 85.71 31.82 82.86

Post-Condition 30 11 3 73.17 90.91 29 11 1 72.5 96.67 72.84 93.79

NVD. This was again understandable since most of the heuristics were composed by observing

semantic patterns in vulnerability descriptions published by NVD.

5.3 Evaluating on Our Corpus

The results shown in Table 5.5 are similar to those obtained in Table 5.4. The recall values

obtained from the experiments performed on Our Corpus were in general better than those obtained

from the experiments performed on the Joshi Corpus. This showed that our approach could extract

a larger chunk of PAG concepts embedded in the vulnerability descriptions obtained from Our

Corpus. However, precision values were still visibly low (refer to Figure 5.2). Figure 5.2 also

includes the Joshi Metrics (Table 5.4). This acts as a reference for comparing the results obtained

from the two corpora. The primary intention behind introducing Our Corpus was to evaluate the

performance of our approach in identifying User Actions. However, only a few instances on User

Actions were observed in the tagged dataset. The “Average" column in Table 5.5 shows the mean

User Action precision and recall scores as obtained from the “Student1-Student2" and “Student1-

Student3" datasets. Although the recall value for this concept identification was 75%, the precision

76

Figure 5.2: Comparative Evaluation of Precision and Recall Scores [Our Corpus]

was observed at 40%. The cause for this phenomenon can be attributed to the exactly same issue

as identified while evaluating on the Joshi Corpus. In most cases, heuristic 13 was not successful

in assigning correct attributes to identified actors. In other case, SentiWordnet (refer to section 3.4)

misclassified benign attributes as malicious. Versions and modifiers also exhibited considerably

less precision scores. This is because, heuristics 7 and 8 generated false Software-Version links

thereby increasing the number of false positive Version, and consequently Modifier, assignments.

5.4 Effectiveness of the Heuristics

In this section we make an attempt to evaluate the effectiveness of our heuristics across dif-

ferent vulnerability databases. However, before beginning the evaluation process we must note

that thorough analysis of vulnerability descriptions obtained from NVD, Securityfocus, and ISS-

XForce reveal that they follow general semantic patterns. This does not imply that the patterns are

consistent across the three domains, but within these domains these patterns are actively found.

However, security bulletins published by Adobe and Microsoft and security blogs exhibit a more

77

free flowing style of writing 13 and hence do not exhibit commonly occurring semantics. It can thus

be observed that the Joshi Corpus consists of a more diverse set of sources in the form of NVD, se-

curity bulletins and blogs, while Our Corpus consists of sources which publish more semantically

coherent information. Consequently, there is a greater chance that heuristics created from observ-

ing NVD information are effective for extracting security related concepts from ISS-Xforce and

Securityfocus, but not across security bulletins and blogs. To verify this we perform the following

three steps:

5.4.1 Step 1

We need to first ascertain that no bias was introduced in the two results owing to conceptual

differences in the datasets. If bias is found, no further comparisons would be possible within results

obtained from these two datasets. To verify the absence of any bias, we first define the following

hypothesis:

• Ho: Our approach performs significantly better on one Corpora. Rejected if p_Ho = (p= >

.1, p< > .1, p> > .1)

• Ha: Our approach performs equitably on the two corpora.

NVD was the common source used in both test datasets. As a result, to evaluate our hypoth-

esis, we perform the Wilcoxon signed rank test on precision and recall scores obtained from the

experiments on the NVD vulnerability descriptions in both corpora as shown in Tables 5.4 and 5.5.

If the obtained p-values (both two-tailed and one-tailed) are > .1, we reject the null hypothesis Ho.

The results are tabulated in Table 5.6.

Table 5.6: NVD Precision and Recall P-Values [Joshi and Our Corpus]

Precision Recall α
p= 0.875 0.625 .1

p< 0.6875 0.8125 .1

p> 0.4375 0.3125 .1

13security blogs are most often updated by regular users

78

Table 5.7: NVD vs Bulletins and Blogs Precision and Recall Samples for Wilcoxon Test [Joshi Corpus]

Precision Scores Recall Scores

NVD Bulletins and Blogs NVD Bulletins and Blogs

79 89.622641509434 81.4432989690722 65.5172413793104

79 67.5213675213675 81.4432989690722 87.7777777777778

79 60.8695652173913 81.4432989690722 63.6363636363636

58.695652173913 50 55.1020408163265 100

58.695652173913 23.3333333333333 55.1020408163265 77.7777777777778

58.695652173913 33.3333333333333 55.1020408163265 60

69.811320754717 100 82.2222222222222 100

The results in Table 5.6 show there is not enough evidence to conclude there was any bias

introduced by conceptual differences between the two datasets. Interestingly, this also shows that

our approach can be used in other cyber-security related concept extraction frameworks.

5.4.2 Step 2

With the above observation, we define the next pair of hypothesis as follows:

• Ho: Heuristics generated by observing semantic patterns in vulnerability descriptions pub-

lished by NVD were effective in extracting PAG concepts from other sources like security

bulletins and blogs.

Rejected if p_Ho = (p= < .1, p< > .1, p> < .1)

• Ha: Heuristics generated by observing semantic patterns in vulnerability descriptions pub-

lished by NVD cannot be used to extract PAG concepts from other sources like security

bulletins and blogs.

We then perform another signed rank sum test on precision and recall scores obtained from

experiments performed on the Joshi Corpus. The sample points are obtained from Table 5.4 (except

the “N/A" labeled concepts/rows) and are shown in Table 5.7. It can be noted that each NVD

precision/recall score is paired with a corresponding precision/recall score for bulletins and blogs

from Table 5.4. The obtained p-values are tabulated below in Table 5.8.

79

Table 5.8: NVD vs Bulletins and Blogs Precision and Recall P-Values [Joshi Corpus]

Precision Recall α
p= 0.0977 1.00 .1

p< 0.96 0.5 .1

p> 0.0488 0.54 .1

Table 5.9: NVD vs Other Semi-Structured Precision and Recall Samples for Wilcoxon Test [Our Corpus]

Precision Recall

NVD Other Semi Structured NVD Other Semi Structured

88.8888888888889 75 100 60

88.8888888888889 100 100 100

59.8214285714286 100 81.6666666666667 100

50 100 58.3333333333333 100

0 100 75 87.5

0 0 75 49.5

75 23.0769230769231 73.3333333333333 100

75 20 73.3333333333333 97.2222222222222

100 54.2397660818714

100 86.1111111111111

From Table 5.8 it can be observed that at 90% confidence interval there is enough evidence

that the NVD precision scores are better than those of “Bulletins and Blogs", but the same cannot

be said about the recall scores. This means that, at least precision wise, we can reject the null

hypothesis Ho in favor of the alternative hypothesis that heuristics generated from NVD published

vulnerability descriptions did not perform as well on sources like security bulletins, blogs.

5.4.3 Step 3

Table 5.10: NVD vs Bulletins and Blogs Precision and Recall P-Values [Joshi Corpus]

Precision Recall α
p= 0.7668 0.499 .1

p< 0.3834 0.2495 .1

p> 0.6166 0.7505 .1

We now attempt to perform a similar Wilcoxon test on Our Corpora. For this purpose, we

define the following hypothesis:

80

• Ho: Heuristics generated by observing semantic patterns in vulnerability descriptions pub-

lished by NVD were not effective in extracting PAG concepts from sources like ISS-XForce

and Securityfocus. Rejected if p_Ho = (p= > .1, p< > .1, p> > .1)

• Ha: Heuristics generated by observing semantic patterns in vulnerability descriptions pub-

lished by NVD were effective in extracting PAG concepts from sources like ISS-XForce and

Securityfocus.

Table 5.9 shows the sample points used for the Wilcoxon signed rank test. The sample gen-

eration strategy is similar to the one described in the previous step. These samples are generated

from Table 5.5. In Table 5.10 it can be seen that p= > .1, p< > .1, p> > .1. Under these obser-

vations we can reject the null hypothesis Ho and thus conclude that the heuristics extracted from

vulnerability descriptions published by NVD were effective in extracting information from other

databases which publish information with some semantic coherence.

In general, it can thus be concluded, with some level of confidence, that heuristics extracted

from vulnerability descriptions published by NVD were effective in extracting information from

only those vulnerability databases which publish semantically coherent information.

81

Chapter 6

Conclusion and Future work

A Personalized Attack Graph (PAG) [24,25,32] is a graphical representation of the interaction

between vulnerabilities existing on a system and actions performed by users and attacker which

lead to a successful compromise of the system. In order to realize this representation, one needs

to encode propositions in the form of node labels. Textual representations of such propositions,

embedded in vulnerability descriptions, can be found in online vulnerability databases like the Na-

tional Vulnerability Database (NVD) and ISS-XForce and various security bulletins and blogs. In

order to realize the PAG, downloaded vulnerability descriptions need to be parsed into four distinct

classes namely, Attacker Actions, User Actions, Software and Versions and Post-Conditions. These

classes are cumulatively referred to as the PAG concepts. However, vulnerability descriptions are

most often written and updated by human beings and are hence mostly unstructured in nature.

Extracting PAG concepts from unstructured vulnerability descriptions is a non-trivial task and to

perform it in an automated fashion is even more challenging.

In this thesis, we have shown two separate approaches: an approach to extract Software and

Versions and a second approach to extract Attacker Actions, User Actions and Post-Condition. The

core elements of our approaches are heuristics developed by thoroughly observing semantic pat-

terns in vulnerability descriptions obtained from the National Vulnerability Database. In general,

to the best of our knowledge, ours is the first approach which does not rely on supervised machine

learning techniques to extract cyber security related concepts.

We evaluated our approaches using gold standard metrics (Precision and Recall) and compared

the results with those obtained in one of the most prominent works [13] in the field on cyber se-

curity related concept extraction. Our results were comparable with those obtained in [13] which

is a machine learning based solution and requires explicit training data to function. Finally, we

performed non-parametric significance tests to demonstrate the viability of our rules for PAG re-

lated concept extraction from across various types of databases, including security bulletins and

82

blogs. In the same context, we also showed that our approach can be suitable to be used across

other concept extraction frameworks. Moreover, since this is an unsupervised approach, it could

easily be tested on any concept tagged dataset.

Extracting PAG concepts maybe the most important task, but it is certainly not the only task in

building the PAG. In this thesis, we proposed an approach to parsing textual information from pop-

ular vulnerability databases. However, there are a plethora of such vulnerability databases and till

date, there is no clear consensus as to which sources provide the best quality and most timely infor-

mation. Furthermore, the underlying HTML tree structure of vulnerability database websites can

be diverse and complex. Thus, extracting vulnerability descriptions from vulnerability database

websites is another aspect we plan to look into, in the future. Finally, once the PAG concepts are

extracted from vulnerability descriptions, they need to be interlinked to form the Personalized At-

tack Graph. This requires finding semantic linkages between various concepts and can be a highly

challenging task.

83

Bibliography

[1] C. L. Anderson and R. Agarwal. Practicing safe computing: A multimedia empirical exam-

ination of home computer user security behavioral intentions. MIS Q., 34(3):613–643, Sept.

2010.

[2] S. Baccianella, A. Esuli, and F. Sebastiani. Sentiwordnet 3.0: An enhanced lexical resource

for sentiment analysis and opinion mining. In N. C. C. Chair), K. Choukri, B. Maegaard,

J. Mariani, J. Odijk, S. Piperidis, M. Rosner, and D. Tapias, editors, Proceedings of the Sev-

enth International Conference on Language Resources and Evaluation (LREC’10), Valletta,

Malta, may 2010. European Language Resources Association (ELRA).

[3] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hellmann.

Dbpedia-a crystallization point for the web of data. Web Semantics: science, services and

agents on the world wide web, 7(3):154–165, 2009.

[4] R. A. Bridges, C. L. Jones, M. D. Iannacone, K. M. Testa, and J. R. Goodall. Automatic

labeling for entity extraction in cyber security. arXiv preprint arXiv:1308.4941, 2013.

[5] M.-C. de Marneffe, B. MacCartney, and C. D. Manning. Generating typed dependency parses

from phrase structure parses. In Proceedings of the International Conference on Language

Resources and Evaluation, pages 449–454, 2006.

[6] M.-C. de Marneffe and C. D. Manning. Stanford typed dependencies manual, September

2008.

[7] M.-C. de Marneffe and C. D. Manning. The stanford typed dependencies representation. In

Coling 2008: Proceedings of the Workshop on Cross-Framework and Cross-Domain Parser

Evaluation, CrossParser ’08, pages 1–8, Stroudsburg, PA, USA, 2008. Association for Com-

putational Linguistics.

[8] R. Dewri, N. Poolsappasit, I. Ray, and D. Whitley. Optimal security hardening using multi-

objective optimization on attack tree models of networks. In Proceedings of the 14th ACM

conference on Computer and communications security, pages 204–213. ACM, 2007.

84

[9] A. Esuli and F. Sebastiani. Sentiwordnet: A publicly available lexical resource for opinion

mining. In In Proceedings of the 5th Conference on Language Resources and Evaluation,

pages 417–422, 2006.

[10] C. Fellbaum. WordNet: An Electronic Lexical Database. Bradford Books, 1998.

[11] T. Finin and Z. Syed. Creating and exploiting a web of semantic data. In ICAART (1), pages

7–18, 2010.

[12] S. Jha, O. Sheyner, and J. Wing. Two formal analyses of attack graphs. In Computer Security

Foundations Workshop, 2002. Proceedings. 15th IEEE, pages 49–63. IEEE, 2002.

[13] A. Joshi, L. Ravendar, T. Finin, and A. Joshi. Extracting cyberscurity related linked data

from text. In Proceedings of the 7th IEEE International Conference on Semantic Computing,

pages 252–259, 2013.

[14] D. Klein and C. D. Manning. Accurate unlexicalized parsing. In Proceedings of the 41st

Annual Meeting on Association for Computational Linguistics, pages 423–430, Stroudsburg,

PA, USA, 2003.

[15] J. Makhoul, F. Kubala, R. Schwartz, R. Weischedel, et al. Performance measures for in-

formation extraction. In Proceedings of DARPA broadcast news workshop, pages 249–252,

1999.

[16] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated corpus of

english: The penn treebank. Comput. Linguist., 19(2):313–330, June 1993.

[17] N. McNeil, R. A. Bridges, M. D. Iannacone, B. Czejdo, N. Perez, and J. R. Goodall.

Pace: Pattern accurate computationally efficient bootstrapping for timely discovery of cyber-

security concepts. In Machine Learning and Applications (ICMLA), 2013 12th International

Conference on, volume 2, pages 60–65. IEEE, 2013.

[18] G. A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):39–41, Nov.

1995.

85

[19] V. Mulwad, W. Li, A. Joshi, T. Finin, and K. Viswanathan. Extracting information about

security vulnerabilities from web text. In Web Intelligence and Intelligent Agent Technology

(WI-IAT), 2011 IEEE/WIC/ACM International Conference on, volume 3, pages 257–260.

IEEE, 2011.

[20] D. Nadeau and S. Sekine. A survey of named entity recognition and classification. Lingvis-

ticae Investigationes, 30(1):3–26, 2007.

[21] N. Poolsapassit and I. Ray. Investigating computer attacks using attack trees. In Advances in

digital forensics III, pages 331–343. Springer, 2007.

[22] N. Poolsappasit, R. Dewri, and I. Ray. Dynamic security risk management using bayesian

attack graphs. Dependable and Secure Computing, IEEE Transactions on, 9(1):61–74, 2012.

[23] I. Ray and N. Poolsapassit. Using attack trees to identify malicious attacks from authorized

insiders. In Computer Security–ESORICS 2005, pages 231–246. Springer, 2005.

[24] M. Roberts, A. Howe, I. Ray, M. Urbanska, Z. S. Byrne, and J. M. Weidert. Personalized vul-

nerability analysis through automated planning. In Working Notes of IJCAI 2011, Workshop

Security and Artificial Intelligence (SecArt-11),, 04 2011.

[25] M. Roberts, A. E. Howe, I. Ray, and M. Urbanska. Using planning for a personalized security

agent. In Workshop on Problem Solving using Classical Planners in Working Notes of the

26th AAAI Conference on Artificial Intelligence, Toronto, Ontario, Canada, July 2012.

[26] S. Roschke, F. Cheng, and C. Meinel. Using vulnerability information and attack graphs for

intrusion detection. In Information Assurance and Security (IAS), 2010 Sixth International

Conference on, pages 68–73. IEEE, 2010.

[27] S. Roschke, F. Cheng, R. Schuppenies, and C. Meinel. Towards unifying vulnerability in-

formation for attack graph construction. In Information security, pages 218–233. Springer,

2009.

[28] B. Santorini. Part-of-speech tagging guidelines for the penn treebank project (3rd revision).

1990.

86

[29] Secunia. The secunia vulnerability review 2014. http://secunia.com/resources/

reports/vr2015/, 2014.

[30] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated generation and

analysis of attack graphs. In Security and privacy, 2002. Proceedings. 2002 IEEE Symposium

on, pages 273–284. IEEE, 2002.

[31] M. Urbanska et al. Structuring a vulnerability description for comprehensive single system

security analysis. In Rocky Mountain Celebration of Women in Computing, Fort Collins, CO,

USA, 2012.

[32] M. Urbanska et al. Accepting the inevitable: Factoring the user into home computer security.

In Proceedings of the Third ACM Conference on Data and Application Security and Privacy,

San Antonio, TX, USA, February 2013.

[33] H. M. Wallach. Conditional random fields: An introduction. Technical Reports (CIS),

page 22, 2004.

[34] L. Wang, M. Albanese, and S. Jajodia. Attack graph and network hardening. In Network

Hardening, SpringerBriefs in Computer Science, pages 15–22. Springer International Pub-

lishing, 2014.

87

