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ABSTRACT OF DISSERTATION 

AN INTEGRATED METHOD FOR IMPROVING TESTING EFFECTIVENESS AND 

EFFICIENCY 

The aim of testing is to find errors and to find them as early as possible. Specifically, 

system testing should uncover more errors before release to reduce the number of errors 

found in post-release. System testing should also prevent the release of products that 

would result in discovery of many post-release errors. Studies indicate that post-release 

errors cost more to fix than errors found earlier in the life cycle. The effectiveness and 

efficiency of system testing depends on many factors, not only the expertise and quality of 

the testers and the techniques they employ. 

This dissertation develops an integrated method using various techniques that will im­

prove testing effectiveness and efficiency. Some of these techniques already exist, but are 

applied in a new or different way. 

The integrated method enables root cause analysis of post-release problems by tracing 

these problems to one or more factors that influence system testing efficacy. Development 

defect data help to identify which parts of the software should be tested more intensely and 

earlier because they were fault-prone in development. Based on assessment results, testers 

can develop testing guidelines to make system test more effective. A case study applies 

this evaluation instrument to existing project data from a large software product (medical 

record system). Successive releases of the software product validate the method. 

During system testing, testers may need to determine quantitatively whether to continue 

testing or to stop, recommending release. Early stopping could decrease the cost of testing, 

but has the disadvantage of possibly missing problems that would have been detected, had 
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system testing continued. Testers need to evaluate the efficiency of currently used methods 

and to improve the efficiency of future testing efforts. This dissertation develops empirical 

techniques to determine stopping points during testing. It proposes a new selection method 

for software reliability growth model(s) that can be used to make release decisions. The case 

study compares and evaluates these techniques on actual test result data from industry, 

Quality assessment of multiple releases of the same product forms the basis of longi-

tudinal decisions, such as re-engineering. Techniques using data from prior releases help 

to identify parts of the system that are consistently problematic. This information aids in 

developing additional testing guidelines for future releases of the product. This dissertation 

adds to a study that adapted a reverse architecting technique to identify fault relationships 

among system components based on whether they are involved in the same defect fix. The 

case study applies this technique to identify those parts of the software that need to be 

tested more. 

Results of the case study demonstrate that the integrated method can improve the 

effectiveness and efficiency of system test. The method identified problematic software 

components using data from prior releases and development. Results of prioritizing show 

that fault-prone components tested earlier reveal more defects earlier. Development should, 

therefore, have more time to fix these defects before release. The method was also able to es-

timate remaining defect content. The estimates were used to make release decisions. Based 

on data from post-release and interviews with the test manager, the method recommended 

the right release decisions. 
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Chapter 1 

Introduction 

1.1 Problem Statement 

In software testing, a tester is faced with two challenges: limited testing time on the 

one hand and delaying the release of software when it is likely to still contain too many 

or costly errors. The first challenge relates to testing efficiency, while the second relates 

to testing effectiveness. Since testing can only show the presence of errors, and not their 

absence, a low testing yield may be due to the high reliability of the software under test, 

in which case testing should stop sooner. A low testing yield, however, may also be due to 

an ineffective testing technique. This is why testers use an arsenal of techniques to ensure 

software is sufficiently tested. 

To improve testing effectiveness and efficiency, test managers need to 

• determine what parts of software are problematic. 

• create testing guidelines to focus on those problematic parts. 

• make decisions to continue testing or to stop and release the software. 

This dissertation proposes an integrated method that includes a set of techniques to evaluate 

and improve testing effectiveness and efficiency. Figure 1.1 illustrates this methodology. The 

Release Testing Release Multi -Release 
Quality ...... Guidelines & ...... ..... Quality - -- Decisions --

Assessment Strategies Assessment 

Figure 1.1: Methodolody to improve testing effectiveness and efficiency. 
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methodology consists of four parts: quality assessment, testing strategies, release decisions 

and multiple release assessment. 

Quality assessment of the software drives effectiveness and efficiency issues. It focuses 

testing on parts of the software likely to be problematic so that testing is more effective 

in uncovering defects. It also sets priorities, based on identifying the parts of the software 

that should be tested earlier to improve efficiency. Establishing the focus of testing and the 

priorities during testing enables testing guidelines and strategies to be developed. 

Quality assessment also aids in making release decisions. Knowledge of remaining defect 

content or defect rates can be used to make decisions about the quality of the software and 

whether the software quality is acceptable SO that it may be released. Testing strategies 

that improve the efficiency of the testing process can accelerate the gains in software quality 

so that release may occur sooner. 

Most software testing today is developed over a series of releases. In the best of cases, 

it continually improves. In the worst case, it decays. Thus it is important to assess the 

quality of software over several releases. A multiple-release assessment identifies problems 

like code decay and deterioration of key components. This kind of assessment can identify 

long-term priorities and contributes to the development of testing guidelines and strategies. 

It also aids in making longitudinal decisions regarding the software. 

Table 1.1 shows the research questions for each part of the methodology. The type of 

data that is available drives the kinds of quality assessment questions that can be asked. 

For examPJe, if no data is available on severity of errors, then one cannot determine if 

components with severe problems have more problems. 

Answers to quality assessment questions will aid in the development of testing guidelines 

and strategies. They may enable us to propose better guidelines to improve testing effec­

tiveness and efficiency. Guidelines will enable testers to focus on the parts of the software 

that cause the most problems. Problems identified early enough in test have a better chance 

of being fixed before release. 

The decision to stop testing is usually controlled by management based on marketing 

goal. In some organizations, testing stops when testing yield saturates, where yield is defined 
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Quality 
Assesssment 

Testing 
Guidelines 
and 
Strategies 

Release 
Decisions 
Multi-Release 
Quality 
Assessment 

Table 1.1. Research questIOns for each part of methodology. 
Questions 
How good is the software? 
How many parts of the software have problems? 
What parts of the software are the worst? 
What kinds of components are likely to have problems after release? 
Do components with severe problems have more problems? 
What parts of a system were problematic in the previous release? 
What are the relationships between fault-prone components in a system? 
How many defective components remain after testing? 
How many defects remain after testing? 
vVhat part of the software should testing focus on? 

- Should testing focus on parts that had many problems in development? 
- Should testing focus on parts that had severe problems in development? 
- Should testing focus on parts that had many modifications? 
- Should testing focus on parts that were new? 

How can the testing process be ,made more efficient, that is, what changes can 
be made to the testing process that would result in earlier release of software? 

When should problematic parts of the software be tested? 
Will proposed testing guidelines not only improve effectiveness, but also 

improve testing efficiency? 
Can defect estimations made using testing data be used to determine the 

right point at which to stop testing and release software? 
What kinds of problems occur in release after release? 
Do persistent problems indicate code decay? 
Do persistent problems indicate a need for re-architecting? 

in terms of number of faults (or failures) exposed. Unfortunately, it is not always clear 

whether the software is ready for release at that point. It would be helpful if testers could 

use testing data to determine the right point at which to stop testing and release software. If 

defects have their root causes based on problems known earlier in the life cycle, the number 

of problems that are left may be estimated. For example, techniques like capture-recapture 

can be used on earlier data to forecast the number of problems that are likely left in the 

software at the time of release [49, 69, 70]. Depending on the estimates, testers can make 

decisions on whether to recommend release or to test more. Using quantitative techniques 

to estimate remaining defect content will enable testers to assess the quality of the software 

and give management information to make the right release decisions. 

Answers to questions regarding multiple release assessments may also affect testing 

strategies, as well as longitudinal decisions. 
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The integrated method this dissertation proposes may be used to answer these ques­

tions and to provide ways to improve testing effectiveness and efficiency through em­

pirical analysis. Various methods exist that can be applied to assess the software and 

to make release decisions. This dissertation investigates several approaches that can be 

used within this methodology, including GYR analysis [41, 40, 65] to identify fault-prone 

components, fault architecture techniques {40, 65, 66] to identify fault relationships be­

tween components, static defect estimation techniques such as capture-recapture mod­

els [6, 7, 17, 49, 64, 69, 70, 77], curve-fitting methods, such as the Detection Profile 

Method and the Cumulative Method [69, 7], and experience-based methods 15, 78] to esti­

mate number of components with defects, and software reliability growth models (SRGMs) 

[23, 24, 29, 38, 37, 74, 75, 76] to estimate the total number of defects. This dissertation also 

proposes some new techniques to estimate defect content. 

Since no one tool or method works on all data, the integrated method uses a set of 

methods that complement each other with selection criteria for each. Multiple evaluations 

provide more credible information for decision making. 

A case study applies the integrated method to empirically validate it. The case study 

evaluates current testing practices of a group of testers from industry for effectiveness and 

efficiency. This study collected defect data from several development life-cycle phases from 

three releases of a large medical record system. Like all case studies, this one has high 

external validity, because it uses industry data. Internal and external validity are addressed 

in 4.2. 

Given that testing can consume significant effort, especially when high reliability require­

ments must be met, or field failures are very costly, improvements in the testing process 

have potential for a very big pay-off. Even high quality environments can benefit from using 

the integrated method that this dissertation proposes to make improvements in effectiveness 

and efficiency. 
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1.2 Objectives 

Many attributes of a software project influence the software testing effort, both its 

effectiveness and efficiency. Some are complexity of the problem, schedule urgency, and the 

quality of work during design and implementation. The objectives of the integrated method 

are to provide the following: 

1. Evaluation of factors influencing system test deficiencies and their causes. 

2. Estimation of remaining problems to assess software quality. 

3. Evaluation of methods to be used for release decisions. 

4. Evaluation of methods to develop guidelines for testing improvement. 

T bl 1 2 R 1· h" b t h d 1 h a e .. e atlOllS lp e ween met 0 0 ogy p ases, me th d o san d b· t' o .lec Ives. 
1tlethodology Phase Methods Objectives 
Release Quality Fault-prone component analysis 
Assessment Fault Architecture analysis 1, 2 

Defect Estimation 
Testing Guidelines Focus testing 4 
and Strategies Reorder testing activities 
Release Capture-recapture models and curve-fitting 
Decisions Experienced-based defect esimation 3 

SRGM selection method 
Multi-Release Fault-prone component analysis 
Quality Fault Architecture analysis 1 
Assessment 

Table 1.2 shows the relationship between the parts of the methodology, the methods used 
\ 

in each part, and the objectives. To achieve the first objective, defect data from development 

is analyzed to determine whether it can be used to guide testing. Of particular interest is 

whether defects during development are related to the occurrence of defects during testing. 

The rationale for such a relationship is that: 

• Components with severe or systemic problems during development carry a higher risk 

of not being completely fixed at the start of system test. 
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• They are more likely to exhibit long term problems . 

• These problems are more likely to be severe. 

Development defect analysis of software components can guide testing with the goal 

of focusing on parts of the software that were fault-prone during development. A method 

in Ohlsson et al. [41] identifies fault-prone components across releases. This thesis applies 

the method in a novel way to identify fault-prone components not only across releases, but 

within releases. Development defect data identifies the parts of the software that need to be 

tested more because they were fault-prone during development. Development defect data 

identifies components with problems that should be tested more. System test data from 

the same release validates the predictions. Analysis of post-release defects determines what 

components are missed in system test. This thesis replicates a study [40, 65, 66] using our 

data to identify relationships among system components based on whether they are involved 

in the same defect report. The resulting fault architectures for three releases indicate the 

most fault-prone relationships. Our case study uses fault architectures to identify fault­

prone components after release and our predictions are validated using post-release data. 

Another important issue for testers is to determine to what degree they prevent post­

release defects and how many components make it into release with undetected defects that 

show up after release. To achieve the second objective, our case study analyzes defect reports 

from development, system test and post-release for the purposes of estimating remaining 

problems. Several defect content estimation techniques are analyzed and applied in a case 

study. The techniques analyzed include capture/recapture models [17, 64, 70], curve fitting 

models [37, 69], and a simple experience-based model. 

System testing is an important and costly phase of software development. It is not 

always clear whether software has been tested enough, or should continue to be tested. 

Testing too long wastes valuable resources. Testing too little has the disadvantage of pos­

sibly missing problems that would have been detected, had system testing continued. This 

causes costly post-release problems. During system testing it might be desirable to deter­

mine quantitatively whether to stop or continue testing. The same information used in 

determining what to test and how much to test, could also be valuable in guiding when 
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to stop testing. To achieve the third objective, this dissertation investigates methods that 

can aid in making release decisions. Methods to estimate remaining defect content are one 

way to determine whether to stop testing. Static defect estimations include [17, 64, 70, 69]. 

Dynamic methods include [23, 29, 38, 37, 74, 76]. 

To achieve the fourth objective, a set of methods to improve testing effectiveness and 

efficiency are applied and evaluated. Results of assessment methods aid in developing guide­

lines for system test. For example, components that are fault-prone during development 

should be system tested more intensely and at the earliest possible time. This should shift 

higher defect intensities earlier in the test cycle, giving developers more time to fix remaining 

problems. 

To achieve the fourth objective, this dissertation develops methods to aid in making 

release decisions. This dissertation uses capture-recapture and curve-fitting methods in a 

new way to estimate the number of defective components after release that had no defects 

in system test. This dissertation also proposes a new method to select the best software 

reliability growth model(s) to use to estimate the number of remaining defects for the 

purpose of making release decisions. 

1.3 Organization 

Chapter 2 presents techniques that have been used to identify fault prone components 

and relationships with the goal of using that information to make testing more effective. It 

also provides background on defect estimation techniques. 

Chapter 3 describes the approach of the integrated method. Several ways are proposed 

to use defect data from earlier life cycle phases to identify fault-prone components and 

develop fault architectures to determine components that may be tested earlier and more 

intensely. Several ways are also proposed to use this data in estimating defect content to 

make system release decisions. 

Chapter 4 describes the data used in the case study that applies the integrated method. 

It also discusses the issues of internal and external validity. 
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Chapters 5 - 9 describe the methods in the integrated method and applies them to defect 

data of three releases of a large medical record system. Chapter 5 does fault-prone com­

ponent analysis to develop testing guidelines for system test. Testing guidelines developed 

using the first release are applied to the second release to evaluate the effectiveness of those 

guidelines. The effect of the testing guidelines on efficiency improvement are evaluated. 

Chapter 6 applies the fault architecture technique to the defect data to identify prob­

lematic parts of the software that should be tested more. 

Chapter 7 evaluates the effect of a testing guideline based on the fault-prone analysis 

on the defect exposure profile. It looks at the effect this has on the cumulative defect curve 

that may in turn affect release decisions. 

Chapter 8 applies static defect estimation methods to estimate defect content in a new 

way. It estimates the number of components that have defects in release that do not have 

defects in test. Chapter 9 introduces a selection method for software reliability growth 

models to estimate the total number of defects. The purpose of these methods are to make 

release decisions. 

Chapter 10 analyzes how the set of methods work together to make decisions to improve 

testing effectiveness and efficiency. 

Chapter 11 draws conclusions, pointing out advantages and limitations of the integrated 

method. Chapter 12 presents possible further work in this area. 
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Chapter 2 

Background 

The approach for the integrated method presented in Chapter 3 is based on several ex­

isting methods. The integrated method identifies components that are fault-prone or are in 

fault-prone relationships to guide testing and improve effectiveness. It also uses defect con­

tent estimation techniques to help make release decisions. The method uses stopping rules 

to improve efficiency. Section 2.1 presents existing approaches to determine fault-prone 

parts of software. Section 2.2 presents methods that identify components in fault-prone 

relationships. Section 2.3 describes techniques that reorder testing activities to improve 

efficiency and effectiveness. Section 2.4 presents and compares several methods that esti­

mate remaining defect content. Section 2.5 describes several well-known software reliability 

growth models and their underlying assumptions. It also reports on empirical evaluations 

that highlight both the fragility and robustness of using SRGMs when assumptions of these 

models are violated. 

2.1 Fault-Proneness 

Frankl, et a1. [21] see two main goals in testing: to achieve quality, by probing the 

software for defects that can be removed, and to assess quality to gain confidence that 

software is reliable. Depending on the goal, different testing strategies are used: Debug 

testing is used to achieve quality and operational testing is used to assess quality. The 

testing strategy used also determines the kinds of defects found. Debug testing focuses 

on finding defects with a higher probability of being detected, not necessarily those most 

important, while operational testing focuses on finding defects that are most likely to occur 
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in the field, with probabilities in proportion to their severity. Their study found that when 

testing software for the purpose of improving quality (Le., removing defects), it helps if the 

tester has good intuition and insight in devising testing strategies, otherwise operational 

testing is indicated. Aids to improve or validate a tester's intuition would be helpful. 

Knowing which components are fault-prone allows the tester to concentrate on devising 

testing strategies for those components. 

Several static models exist to determine fault-proneness or estimate defect content. 

These models assume the general form [14] of 

y = f(xl, X2,···, xn). 

The dependent variable y is a defect metric, such as the number of defects found in a 

phase of the development life cycle. The independent variables, Xi may be product- or 

process-related. An example of a product-related independent variable is size, which may 

be expressed in terms of lines of code (LOC), number of operands, or McCabes' complexity 

measure [14]. Studies in [2, 42, 43, 8, 57] investigate models based on product metrics. 

Examples of process-related static models include experienced-based models [5, 78}, which 

predict the number of faults in release based on the number of faults in earlier phases of 

development, capture-recapture models [6, 7, 17, 49, 64, 69, 70, 771, the Detection Profile 

Method, and the Cumulative Method [69, 7]. Capture-recapture models, the Detection 

Profile Method and the Cumulative Method predict the number of defects remaining based 

on how many reviewers found each defect during code inspection. These models are static 

because the estimate of the number of defects is based on the current values of the inde­

pendent variables, i~noring the rate of change of any metric over time. If the variables can 

be measured earlier than the dependent variable, these models have the potential to make 

predictions and guide activities in later phases, like system test. 

Much of the research in the area of defect analysis on software components has focused 

on identifying fault-prone components [8, 30, 33, 41, 42, 43, 57] or predicting the number 

of defects remaining in components [5, 17, 69, 70, 78] based on their characteristics. It 

is useful to know which components are fault-prone during prior release or in earlier life 

cycle activities, as these components should be tested more intensely. Data from previous 
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releases can be used, but if this data is not available, data from earlier life cycle phases may 

be helpful. 

There are many methods [2, 8, 42, 43, 57] based on product metrics to identify compo­

nents that are fault-prone. Section 2.1.1 describes some of these methods. Our focus, how­

ever, is on methods that are based on defect data and change data. Section 2.1.2 describes 

methods that are based on defect and change data to identify fault-prone components. 

2.1.1 Methods based on Product Metrics 

Table 2.1 summarizes the studies described in this section. It identifies the dependent 

and some of the independent variables used in the models, as well as the techniques used 

in the studies. 

Table 2.1: Studies on product-based methods. 
Study Dependent Independent Technique Results 

Variable Variables/Metrics 
Ash Software Control and information HPMAS Identifies 
et al. [2} Maintainability structure and typography Weight and components 

Index (LaC, # modules, Trigger Point that need work. 
type of module, V(g» Range 

Software Halstead's volume, extended Polynomial Identifies 
Maintain ability cyclomatic complexity. LaC, Linear modules for 
Index % comments, # modules Regression maintenance. 

N. Ohlsson # Trouble Design metncs Spearman's Best predictors: 
et al. [42] reports # decisions, new and modified rank new & modified 

(fault- signals (SigFF), order signals (SigFF) 
proneness) #comparisons, #paths, correlation and # decisions 

# branches, depth, #loops, etc. in module. 
N. Ohlsson # Failure Alberg diagram Best predictors; 
et al. [43J reports Same as [42J diagram SigFF with 

(correlation) # conditions or 
# decisions 
or McCabe's measure. 

Briand # faults 00 design measures Alberg diagram Best: 7 coupling, 
et al. [8] in test 28 coupling, (correlation) 4 inheritance 

10 cohesion, and strongly related 
11 inheritance (better than size). 

Schneidewind Low or high 13 metrics: LOC, Boolean Comments and 
et al. 157J module # operators and Discrimant statements 

quality operands, #comments Functions identify 
#nodes, edges, paths low quality 
in graph, path length modules best. 

Ash et al. [2] provide a method to track fault-prone components across releases. They 

describe methods that may be used for quantifying software maintainability from software 

metrics. The metrics are used to drive the maintenance process to prevent further code 

degradation. Two methods were applied to industrial software systems, because they were 
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easy to implement and use by software engineers. The results were compared to the subjec-

tive evaluation of software maintainability performed by actual maintainers of the systems. 

The Hierarchical Multidimensional Assessment (HPMAS) method [2] models software 

maintainability as a hierarchical structure of a set of software metrics. The suggested 

hierarchical model divides maintainability into three dimensions (or attributes): 

1. Control structure: Refers to the way in which the software is decomposed into algo­

rithms. 

2. Information structure: Refers to the choice and use of data structure and data flow 

techniques. 

3. Typography, Naming and Commenting: Refers to the layout of the code and the 

naming and commenting of code. 

The dimensions are measured by metrics at a lower level. If a metric lies within an acceptable 

range, no penalty is applied. If, however, it falls out of the range, then a penalty in 

proportion to its deviation is applied. The dimension maintainability, DMdimension, is 

calculated as: 

where 

Di is the proportional deviation of the metric value from the optimum range of values. 

Wi is a weighted value between zero and one, inclusive. 

The overall maintainability index is the product of the maintainability of all three dimen­

sions. The rationale for multiplying the the dimensions' maintainability is that it gives a 

lower overall maintainability. This implies that a low maintainability in one dimension will 

reduce other aspects of maintainability and the maintainability of the entire system. 

Ash et al. [2] applied the HPMAS method to assess overall maintainability of several 

system before and after perfective maintenance modifications. The HPMAS maintainability 

index changed very little, even so the system complexity increased due to additional error 
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checking in the code. The HPMAS method applied on a module-by-module basis demon­

strated that it was able to determine which old and new components are satisfactory and 

which ones need work. 

Ash et al. [2] also applied another method based on polynomial regression models. The 

polynomial regression models use regression analysis on polynomial equations to explore the 

relationships between software maintainability and software metrics. The metrics include 

Halstead's volume, extended cyclomatic complexity, lines of code, and, when available, the 

number of components. All of these are size measures. The authors constructed several 

linear regression models where the measures were used as dependent variables. The mod­

els were ordered based on how well they correlated to the system maintainers' subjective 

evaluation. Models using Halstead's volume and effort metrics were judged to be the best 

predictors of maintainability for their data. Ash et al. [2] used the following model to 

measure overall maintainability, M: 

M = 171 - 5.2ln(aveVol) - O.23aveV(g') - 16.2ln(aveLOG) + 50sin( V2.46perGM) 

where 

aveVol is the average Halstead's volume per module. 

aveV(g') is the average extended cyc10matic complexity per module. 

aveLOG is the average lines of code per module. 

perGM is the average percent of lines of comments per module. 

Ash et al. [2] applied the metric polynomial regression model to several versions of a 

system, two of which had been re-engineered. The metrics show that successive versions 

showed decreased maintainability, until a re-engineering effort occurred. Only the last 

version did not degenerate and this was attributed to a new maintenance process that used 

metrics to guide the process. The metric polynomial regression model was also applied to 

several different software systems for comparison purposes. The metric polynomial model 

matched the expected results of an informal evaluation of software system engineers with 

experience with the systems. A module-by-module analysis performed on the two systems 
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successfully predicted the system that was easier to maintain. It also showed that individual 

modules could be identified for maintenance. 

Using these two models, the authors show that it is possible to quantitatively analyze 

code quality through maintenance changes using the HPMAS model. The polynomial re­

gression model can be used to track code health across versions, to compare whole software 

systems and to keep track of code health. 

Ohlsson, Helander and Wohlin [42] derive a model for identifying fault-prone modules 

based on software design metrics, rather than code metrics. The goal is to identify a small 

portion of modules that contribute to a large number of faults early enough in the software 

life cycle to improve their quality. The authors studied several design metrics to determine 

those that have the ability to indicate the modules that are likely to be fault-prone. 

The data showed that 20 percent of the modules were responsible for approximately 60 

percent of the trouble reports from testing. To identify these modules, modules were ranked 

in decreasing order of the number of trouble reports written against them. Using Spearman's 

rank-order correlation coefficient, this ordering was compared to orders predicted by design 

metrics. Design metrics were considered individually and in combination. 

Evaluation of the prediction model using a threshold of 20 percent resulted in identifi­

cation of modules responsible for approximately 50 percent of the faults. A threshold of 30 

percent found approximately 60 percent of the faults. The best prediction model for this 

data was based on the average combination of two design metrics, new and modified signals 

(used for communications between modules) and number of decisions within a module. 

Ohlsson and Alberg [43] propose a model to predict the number of functional test 

failure reports associated with software modules based on design metrics for the modules. 

The prediction model is based on an earlier model in Alberg et a1. [1] that multiplies the 

factors Sand SigF P, where S is the number of statements in a module and SigF F is the 

number of new or modified signals. Their interest was in discovering design metries that 

can be used instead of S, so that the model can be applied earlier in the software life cycle. 

Twenty-seven design me tries were collected. Using regression analysis and a correlation 

coefficient of 0040 or higher, the number of metries used was reduced to eleven. Examples 
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of these include number of decisions, number of components, number of paths, number 

of loops, number of calls to subroutines, etc. The effects of adding and mUltiplying pairs 

of measures were investigated. Results showed that the original predictive model using 

S . SigF F gave a coefficient of 0.76 for their data, while the new models ranged in values 

from 0.58 to 0.68. The models using SigF F with either the number of conditions, decisions, 

or McCabe's measure were found to be good predictors. The authors also evaluated the two 

best prediction models based on conditions or a modified McCabe's measure. To compare 

the prediction models, the authors used a graphical method that plots cumulative number 

of faults against modules that are ordered by applying different predictors. First, modules 

are ranked in decreasing order with respect to a predictor. Then the cumulative number of 

faults for different percentages of the modules are plotted. Percentages of modules are on 

the x-axis and cumulative number of faults for different percentages of the modules are on 

the y-axis. The prediction models are compared to an Alberg diagram [43]. In an Alberg 

diagram, modules are ranked in decreasing order with respect to the number of faults in 

the module, then the cumulative number of faults for different percentages of the modules 

are plotted. 

The models accurately predicted 25 percent of the modules causing approximately 53% 

of the trouble reports, while using SigF F alone predicted 46%. These new models were not 

only available for use earlier, but were slightly better at identifying the most fault-prone 

modules. 

Briand et al. [8] explore the relationships between object-oriented design measures for 

classes and the probability of detecting fault-prone classes. They investigate 28 coupling 

measures, 10 cohesion measures and 11 inheritance measures. To reduce the number of mea­

sures, the distributions and variance of each measure was examined. Only seven measures 

with a high variance that differentiated classes were selected for possible inclusion in the 

predictive model. These included seven coupling measures and four inheritance measures. 

The cohesion measures collected were found not to be strongly related to fault-proneness. 

Using the data collected, 85 percent of the components were correctly identified as 

faulty and those components contained 95 percent of the faults that occurred in system 
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test. Because the prediction model was applied to the same set of data from which it 

was derived, the model was evaluated and compared to a predictor based on size. Results 

showed that 27% of the predicted classes accounted for 64 percent of the faults found in 

test. This model performed better than a predictor based on size alone. 

Schneidewind [57] developed a model to validate and apply metrics for quality control 

using software from the space shuttle flight system. Metrics are used as early indicators 

of software quality problems and act as predictors for quality factors that are not avail­

able until after coding. Some of the metrics include the number of unique operators and 

operands, total number of operators and operands, number of executable statements, num­

ber of comments, number of nodes, edges and paths in the control graph, maximum and 

average path length. Schneidewind's contribution is in the use of Boolean discriminant 

functions (BDFs). BDFs classify components to be of low or high quality using information 

in the form of critical values. Critical values are threshold values of nletrics that are used 

to reject or accept modules during the quality control process. 

Schneidewind uses a three step process for selecting metrics for quality control, where 

quality is measured as the number of discrepancy reports (drs): 

1. Identify and rank a set of candidate metrics according to their ability to discriminate 

between two sets of modules (for example, those with dr = 0 and those with dr > 0). 

2. Determine critical values for the metrics. The method tests whether the cumulative 

distribution functions (CDFs) for the two sets are from different populations. The 

value corresponding to the maximum vertical difference between the CDFs of the two 

sets is the critical value (if the difference is significant). 

3. Find the optimal combination of metrics and critical values. 

In the experiment, 13 metrics were collected. Results show that two candidate metrics, 

comments and statements (both size measures), had a high degree of association with drs. 

Using contingency table analysis, one set of randomly selected modules validated these 

metrics with respect to the drs. A second set of randomly selected modules applied the 

validated metrics to identify problems early in order to resolve them. 
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Certain metrics are dominant, that is they make fewer mistakes in classifying quality 

than do others, and do not require additional metrics to accurately classify quality. This 

effect is called dominance. Concordance is the degree to which a set of metrics produces the 

same result in classifying software quality. Results show that properties of dominance and 

concordance are evident in the selection and validation process using statistical methods. A 

point is reached when adding additional metrics does not contribute to the improvement of 

quality classification, and the cost of additional metrics increases. A rule for adding metrics 

can be applied based on properties of BDFs. 

Schneidewind compared the BDFs' ability to classify quality with linear discriminant 

functions. Linear discriminant functions use linear vectors of metrics. In this experiment, 

Schneidewind used a set of nine metrics (of the 13 collected). Results show that BDFs 

perform better in identifying low quality modules. 

The research in this subsection focused on identifying fault-prone modules based on 

product metrics. Almost all of them use measures that are equivalent to a size measure. 

If fault-proneness is defined in terms of the number of defects reported for a module, one 

would expect a larger module to contain a larger number of defects. All size metrics should 

perform the same. Since it is possible for two modules to be roughly the same size, with 

one being fault-prone and the other not being fault-prone, a prediction model that is fully 

capable of explaining variation should probably also measure process data. Process data 

can include defect or change data. The inclusion of metrics that measure the development 

process would be useful in a software quality model. 

The case study in this thesis does not consider product metrics, because the product 

data needed were not available. 

2.1.2 Methods based on Defect or Change Data 

The following table summarizes the studies based on defect or change data in this section. 

Table 2.2 describes for each study, the techniques, dependent and independent variables, 

and the results. 

17 



T bl 22 St d' a e : u les on f It au -proneness b ase d on d ti e ect or c h ange d ata. 
Study Purpose Dependent Independent Technique Best Results 

variables variables performers 

Ohlsson (Jlassify U,Y,R SIze metncs, Ranking (ic Structural Large change in 
et 11.1. [41] fault-prone classification structural Principal metrics size or 

modules metrics, Components (state and large # faults and 
fault data Analysis McCabe's small change in size 

measure) meanS fault-prone. 
Khoshgottaar PredIct code churn Software Neural Useful tool 
et al. [30] code churn (GC metric) complexity networks for software 

metrics Neural maintenance. 
vs. networks 

Regression 
model 

Khoshgottaar Predict debug process metncs module- module- More dev. code 
et al. [33] debug code churn (dev.code churn) ordering ordering churn means more 

code churn vs. (ranking) based on debug code churn. 
&.: classify development Larger modules 
fault-prone product metrics code churn have more 
modules code churn. 

Product metrics 
vs. poor for debug 

code churn or 
fault-proneness. 

combined Dev.code churn &.: 
combined models 
good predictors. 
Combined model 
confirms other 
two models. 

Eick PredIct Code decay span; ~catter plots span (ic Large spans mean 
et 11.1. [18J code decay (effort to # lines added Regression size of more effort. 

using implement changed, analysis change Large, recent 
change change) deleted; changes better 
data # developers predictor than 

size. 

Khosgoftaar Evaluate # faults product metrics peA Models with Reuse metrics 
et 11.1. [31, 32] impact of VB. Regression reuse enhance 

reuse on product metrics analysis classification 
software and reuse models. 
quality Informed prior Informed prior 

probabilities probabilities &.: 
&.: mise1ass. misclass. costs 
costs improve models. 

Ohlsson, et al. [41] use defect data to predict fault-prone components. They combine 

prediction of fault-prone components with code decay analysis. Code decay is defined as 

code that is more difficult to change than it should be. Components are identified as 

problematic (or persistently fault-prone) in regards to code decay. A component is ranked 

based on its number of defects. Ranks and changes in ranks classify components as green, 

yellow or red (GYR) over a series of releases. The amount of code decay is interpreted from 

the classification. 

• G indicates normal evolution, component is easily updated. 

• Y indicates code decay, component is a candidate for reengineering. 

• R indicates that the component is difficult and costly to maintain and is in need of 

reengineering. 
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To determine what methods and measures would be suitable to identify components in 

need of additional attention, either through testing or re-engineering, several product and 

process measures were used and evaluated. Examples of these measures include: 

• size measures: lines of code (LOC), number of if statements, etc.; 

• structural measures: cyclomatic complexity and amount of modified code, since it 

measures the amount of structural changes; 

• fault data. 

In total they used ten design and nine code measures. The approach involves three steps: 

1. Rank components based on a product measure or their number of defects. 

2. Identify components above some threshold. 

3. Classify a component as red, if it is fault-prone in two releases. Classify a component 

as yellow, if it is fault-prone in only one release Classify a component as green, if it is 

not fault-prone in either release. 

To validate their approach, Ohlsson, et al. [41] used GYR analysis to determine the number 

of components correctly identified and incorrectly identified as fault-prone. Results showed 

that it is possible to classify components as green, yellow or red using simple methods, such 

as ranking. This kind of method is useful in pin-pointing components that may need special 

attention. 

The case study in this thesis uses methods based on defect and change data. As in 

Ohlsson et al. [41], defect data is used to predict fault-prone components by using GYR 

analysis across releases. In addition to performing across-release analysis, the case study 

in this thesis involves across-phase GYR analysis to determine whether it is possible to 

predict fault-prone components in development and system test, as well as system test and 

post-release. 

Other nlethods that identify fault-prone components using defect data do so by esti­

mating defect content [4, 5~ 78]. Those methods are described in Section 2.4. 
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Methods that predict whether or not a component will be fault-prone based on change 

data include [30, 33, 18, 251. Khoshgoftaar et 301. [30] use neural networks to make predictions 

on code churn, where code churn refers to new and changed code. (The assumption here 

is that modules with higher code churn are more fault-prone.) The authors collected gross 

change metrics (GC) for each module. (GC is the sum of the number of lines added and 

deleted. A modified line is reported as one added line and one deleted line.) The predictive 

quality of a multiple regression model from the principal components of software me tries 

was compared to a neural network trained with a set of principal components. (Principal 

components analysis is a statistical technique to reduce the dimensionality of a multivariate 

data set. This technique identifies and reduces the number of product metrics used to 

construct regression models.) The neural network model provided more accurate predictions 

of GO than did the multiple regression model. This suggests that there is some nonlinearity 

in the relationship between software complexity metrics and GO. Results indicate that the 

neural network model may be useful as a tool for diagnosing software maintenance .. 

Khoshgoftaar et 301. [33] describe the concept of module ordering using data on code 

churn during development to predict rank-order of modules based on code churn due to 

fixes. A module-order model ranks modules according to some relative quantitative quality 

factor, such as development code churn. This module-ordering identifies modul~s that are 

likely to have problems. They recommend these modules should be considered for reliability 

enhancement. If process metrics from development are available early enough in the life 

cycle, this will enable reliability enhancement activities to prevent problems later in the life 

cycle. 

Khoshgoftaar et al. compare the module-order model based on development code churn 

to two others; one based on product metrics alone and one that combined product metrics 

with development code churn. These three models were also evaluated in terms of their 

ability to classify fault-prone modules. The conclusions were: 

1. Based on product metrics, larger modules had higher debug code churn, measured as 

the amount of new or changed lines of code due to bug fixes. 
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2. Based on development code churn, modules with more changes during development 

had higher debug code churn. 

3. The combined model confirmed the conclusions of the other two models. 

4. In looking at the module-ordering, the results showed that: 

(a) Models based on product metrics were poor. 

(b) The development code churn model and the combined model had good perfor .. 

mance and both were robust~ Even though their predictor uses an arbitrary cutoff 

percentile, they found that the performances for different cutoffs were nearly the 

same. 

5. In regards to fault-prone classification, where fault-prone is defined as the top quartile, 

the results showed that: 

(a) Models based on product metrics were worse than the other two models at 

classifying fault-prone modules. 

(b) The development code churn model and the combined model were better, with 

development code churn best. (Product metrics introduced noise in the combined 

model for a range of percentiles). 

The authors determined that module-order nlOdels are appropriate when a threshold to 

define fault-prone modules cannot be determined. 

Eick et a1. [18] look at change management data to assess code decay. They provide ex­

amples of causes, symptoms, risks and indicators of code decay. Examples of causes include: 

inappropriate architecture, violations of original design principles, imprecise requirements, 

tinle pressure, inadequate tools, especially for change process, as well as individual and 

organizational variability. Symptoms of code decay of interest here include a history of 

frequent changes, a history of faults, and widely dispersed changes. Risk factors are not 

causes or indicators of decay, but are of concern. They include: large module sizes, age of 

code, complexity, personnel and organizational change, and requirement changes. 
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Eick et a1. [18] investigated several measures using change data as potential code decay 

indicators. They included number of files touched by a change request (span), number 

of lines added and number of lines deleted for a change request, number of delta changes 

associated with a change request, the date of changes, the time required to implement a 

change request, and the number of developers implementing a change. Results show that 

the span of changes increases over time, providing clear evidence that the span indicates 

code decay. In addition, span accompanied or possibly contributed to a breakdown in the 

modularity of code. Changes with large spans tended to require more effort. Fault analyses 

identified change as a causal element for faults, but did not identify modules with more 

decay. The authors also investigated the weighted time-damp model proposed in [25], and 

discussed in Section 2.4, with respect to their set of data. The results showed that large 

recent changes to a module add to fault potential and are a better predictor than its size. 

The investigation also provided evidence that some modules are more decayed than others, 

as measured by the number of changes to the module in the past, the age of their changes 

and their sizes. 

The authors made four specific conclusions. Over time, span (the number of files 

touched) increases for each change request. Decrease in modularity can be measured by 

increases in number of modules touched by a change request. Frequency and recency of 

change contributes to module fault rate. Span and size of change are predictors for effort 

to implement a change. 

Khoshgoftaar et a1. [31, 32] incorporated module reuse as an additional independent 

variable in a software quality model based on product metrics. Software components may 

have different development histories that affect quality levels. Modules may be reused with 

modification, without modification, or be new. Reused modules have more testing and 

operational use than new modules, so are expected to have better reliability. Based on the 

case study [31), reuse measures were shown to significantly enhance classification models that 

identify fault-prone modules. Reuse measures also predicted the number of faults in each 

module better. In [32], the authors also apply informed prior probabilities of classifications 

to reduce the number of niisclassifications for fault-proneness of modules. Informed prior 
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probabilities are probabilities determined by beliefs or data that is available prior to building 

the model. The misclassifications considered include misclassification of fault-prone modules 

(fault-prone modules classified as not fault-prone) and misclassification of not fault-prone 

modules (modules that are fault-prone, but not classified as such). The study showed that 

classification models can benefit by considering informed prior probabilities and costs of 

misclassifications. Unfortunately, the data in our case study does not identify modules that 

are reused with modification. 

The studies in [30, 33, 411 use product metrics as predictors of fault-proneness or gross 

change. The metrics include number of if statements, number of operands, and McCabe's 

complexity measure. There is a fundamental concern with the use of these measures and 

with what they are supposed to measure. These me tries are all correlated to size. These 

studies also use change metrics as independent variables to predict fault-proneness or gross 

change. It is possible that larger files will have more changes, and size may be correlated 

to change measures. Another problem is the assumption in these three papers that change 

is bad. These models assume change is a potential source of future problems, when it could 

have been a result of a reengineering effort that made the system better than before. 

The studies in [25, 18] consider other change metrics that that include the number of 

changes to a file, the number of files touched by a change, the effort of a change (in terms 

of time required to implement the change), as well as the age of a change. The assumption 

is that the more files involved in a change, the more often a file is changed and the more 

effort it takes to implement the change. All are indications of a break-down in modularity 

or how difficult it is to fix a file correctly the first time. This may in turn indicate how 

fault-prone a module is. 

Why a file is changed should be taken into consideration, because one cannot assume 

that change is bad. Methods for analyzing defect and change data can be used to predict 

components that are fault·prone and in need of more testing. These components may have 

the following characteristics: 

• They have a high number of defects in prior releases. 

• They are new. 
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• They have a large amount of modified code . 

• They have been recently modified. 

The methods presented identify cmponents that may be problematic. Focusing attention 

on these components during testing may improve the effectiveness of testing by uncovering 

more defects in test rather than after release when they are more costly to fix. 

Defect and change databases often do not record detailed change data (number of lines 

added, deleted or changed). Lack of this kind of data rules out using methods described 

in [30, 31, 32, 33, 18, 251- Instead, other approaches must be used. 

2.2 Fault Architecture 

One can build a fault architecture in two ways: 

1. Use an existing architecture and mask the components and relationships that are not 

fault-prone using the same measures of fault-proneness in [41, 65, 66]. 

2. If an existing architecture does not exist, reverse architecting techniques may identify 

it by using fault data extracted from the system. 

2.2.1 Reverse Architecture 

Reverse architecting is a type of reverse engineering. Tilleyet al. [62] describe an ap­

proach to reverse engineering that is used in aiding program understanding for software 

evolution. The process of reverse engineering identifies system components and their de­

pendencies and generates abstractions of them to make them more understandable. This 

involves extracting artifacts from the source code (or in our case, the defect data) and repre­

senting them in a manageable form so the system's structural and functional characteristics 

can be analyzed. 

A reverse engineering approach should consist of the following phases [62]: 

1. Extraction Phase: This phase extracts information from sources such as source code, 

documentation, and documented system history (e.g., defect reports and change man­

agement data). 
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2. Abstraction Phase: The phase abstracts the extracted information based on the ob­

jectives of the reverse engineering activity. The potentially very large amount of 

extracted information is distilled into a manageable amount. 

3. Presentation Phase: This phase presents the abstracted information into a represen­

tation that is understandable to the user. 

The purpose of the reverse architecting activity drives what information is extracted, 

how it is abstracted, and presented. If we are interested in a high level architecture of the 

system, then we would not want to extract too much information during phase 1, otherwise 

there would be too much information to abstract. 

By applying reverse engineering techniques, Krikhaar [34J derives an architectural model 

for several complex systems using metrics that measure import relations (e.g. #include 

statements) and use relations (e.g. call statements, type, constant and variable usage). The 

architecture is a description of the system and its components, as well as their relationships. 

The main goal is to create a representation of the system at a higher level of abstraction to 

provide a better understanding of the architecture to more easily assess and identify parts 

of the system that may require maintenance or enhancement. 

Reverse architecting concerns activities that make software architectures explicit using 

reverse engineering techniques. Reverse architecting follows the reverse engineering phases. 

Depending on the required models, the appropriate steps are executed. The approach 

consists of three steps: 

1. Extract the import relations from files, which are assigned to subsystems by use of a 

directory structure (creating part-of relationships). Import relations are then derived 

at the subsystem level as follows: If two files in different subsystems have an import 

relationship, the two subsystems to which the files belong have one as well. Results 

are then presented. 

2. Analyze the part-of hierarchy for the system (e.g. files, clusters, subsystems) in gen­

eral. The part-of relations are extracted at file level and derived for the various levels. 

The results are presented at various different levels of abstraction. 
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3. Extract and analyze use relations at the code level. Use relationships include not only 

import statements, but call and called-by relationships, and global and shared vari­

ables, constants and structures. These and other use relations are best extracted using 

source code par.sers. Analogous to part-of relations, the use relations are abstracted 

for various levels and the results are presented. 

There are many ways to adapt this framework to a specific reverse engineering ar­

chitecting objective. One way, for example, identifies fault-prone relationships between 

components. 

Feijs et al. [20] describe a relational approach to support the analysis of software ar­

chitectures. The relational approach supports many techniques that apply to analysis and 

structuring tasks, including: 

• Lifting. Import and use relations at a higher level are obtained by union of import 

and use relations at a lower level according to the part-of relation. 

• Checking rules. For example, typically each .c file in a C program must import at 

least one .h file; and it is not allowed that an .h file import other .h files (unless they 

are libraries). 

• Impact analysis that allows one to determine which files require re-test as the conse­

quence of changing a component. 

• Finding unused and unavailable components. 

• Studying alternative structures. 

• Identifying components in top and bottom layers. 

• Checking for cycles in uses relationships. This allows one to check for dependencies 

in software layers. For example, higher levels may use lower layers, but lower layers 

may not use higher levels. 

The extraction-abstraction-presentation model is useful in reverse engineering. It allows 

visualization of the architecture at the highest level, while making sure that the high level 
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views and the real system are related in an accurate way. This makes it easier to perform 

improvement activities. At any point in time, it is possible to see and correct the evolving 

system's structure. 

Gall et al. [221 use a reverse architecting technique to identify the logical coupling of 

modules using change data across releases. Their work differs from other work in that they 

build an architecture based on logical coupling using change data rather than syntactical 

coupling, which is usually based on code or design. Modules are logically coupled if they 

have identical change behavior during software development. Their approach consists of 

two processes: the first identifies change patterns among modules and the second reveals 

dependencies hidden among them. A change pattern is an observed pattern in change 

sequences, where a change sequence is a sequence of releases in which a module has been 

changed. Observed patterns in change sequences define potential logical coupling among 

specific modules. Patterns with long subsequences indicate stronger coupling. The logical 

couplings are verified by further examining change reports of modules with the same change 

sequence for causes of the changes. If the change reports identify the same r,eason for the 

change, then the logical coupling is verified. TIns can be easily described using graphs, 

where nodes represent subsystems and weighted edges represent the amount of coupling. 

Determination of interrelationships among modules aids in identifying modules that should 

undergo restructuring, re-engineering or in our case more testing. The advantage of this 

technique is that it does not require analyzing millions of line of code, but instead analyzes 

change data for the release, which is more manageable and usually available. 

2.2.2 Fault Architecture Technique 

Von Mayrhauser, et al. [40, 65] developed an adaptation of reverse architecting based 

on the need to represent defect relationships between components and the ability to focus 

on the most problematic parts of the architecture by quickly filtering out information. 

Methods in [40, 41, 65] combine prediction of fault-prone components with code decay 

analysis. They look at relationships between components and identify the relationships that 

are fault-prone to indicate underlying systemic architecture problems. 
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In [40], the authors identify software components that are fault-prone across releases 

to analyze code decay. Components are fault-prone based on the number of times they 

have been fixed. The study looked at four releases and included 130 components of a large 

system software product. Some of the 28 measures collected include: 

• number of changed files in each release. 

• number of defect reports in each release. 

• average number of files changed in a component per defect. 

• number of unique files changed for each component. 

• number of defects with more than onecomponent changed. 

• changes in size. 

The approach [65] consists of the following steps: 

1. Identify fault-prone components. Apply GYR [41] to identify fault-prone components 

over successive releases. Components with problems in several releases indicate pos­

sible code decay. The authors consider a component fault-prone, if it is among the 

top quartile in terms of defect reports in a given release. Several factors determine 

the threshold chosen. One of the goals is to provide a manageable amount of data. 

2. Create a fault component directory structure. A component is a collection of files 

within the same subdirectory. The directory structure of the software provides the 

"part-of" relationship. Leaves in this structure are the fault-prone components identi­

fied by GYR in step 1. Internal nodes represent subsystems (subdirectories at higher 

levels in the directory structure) that contain fault-prone components. Since only 

fault-prone components are included, this does not represent the entire directory 

structure. This directory structure is referred to as a Fault Component Directory 

Structure. 

3. Determine fault-prone relationships. How many fault relationships a component has 

with others is based on the number of other components involved in the same defect 
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fix. If the number of fault relationships is quite high, narrow the number of com­

ponents with fault relationships. This study set the threshold to the top 10 percent 

components. Fault relationships among these components that are above a threshold 

set to an order of magnitude (10%) less than the largest number of fault relationships 

are considered fault-prone. 

4. Create a fault architecture diagram for each release. Abstract fault relationships to 

the next higher subsystem level. Subsystem levels are based on the level of depth 

in the Fault Component Directory Structure. Two subsystems are fault related, if 

they contain components that are fault related. (This represents Krikhaar's second 

step [34].) Nodes represent components. Arcs between two nodes show that compo­

nents are fault-prone in their relationship. Weights on the arcs indicate the number 

of defect reports associated with two components or subsystems. 

The resulting fault architectures indicate for each release the components that have 

the most fault relationships. Changes in patterns or persistent fault relationships 

between components across releases indicate systemic problems related to components 

and system architecture. 

5. Aggregate the fault architecture diagrams into a cUlnulative release diagram. Nodes 

in the cumulative release diagram aggregate nodes that occur in at least one fault 

architecture diagram. Two nodes are related, if there is a fault relationship between 

corresponding nodes in at least one fault architecture diagram. Annotations on the 

edges indicate the releases in which the relationships had problems. 

A small number of components were identified as problematic in terms of having a high 

number of fault relationships. Results of the case study showed trends across releases. 

The study identified problematic component relationships. The cumulative release diagram 

identified persistent problems. Fault architecture diagrams and cumulative release diagrams 

draw attention to fault relationships that may need corrective maintenance, re-architecture, 

or more testing. 
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2.2.3 Defect Cohesion and Defect Coupling Measures 

In design, cohesion is a measure of the internal consistency within components. It is 

a single component measure - an attribute of individual modules describing the extent to 

which the individual parts of a component perform the same task. In testing, defect cohesion 

refers to a measure that quantifies the number of individual parts of a component, e.g. files, 

that had to be changed to correct the same defect report. Defect cohesion measures the 

fault-proneness internal to a component. 

In design, coupling measures the degree of interaction between components. Two com­

ponents are coupled when parts of one component use parts of another. In testing, defect 

coupling measures the degree of interaction of components in terms of the work needed to 

repair the same defect. Two components are related or "coupled" if some or all of their 

files are changed to repair a defect. Defect coupling measures the fault-proneness of the 

relationship between components. 

Whereas high cohesion and low coupling desirable in design, low defect cohesion and 

low defect coupling are desirable in testing: They indicate a lower degree of fault-proneness 

internal to and between components. 

Files are changed (or fixed) for components in response to defects reported. A fault 

relationship between two components exists, if they are both involved in defect repair for a 

given defect, that is if files belonging to both components were changed to repair a single 

defect. If two files belonging to the same component were changed, the defect was local to 

the component. Otherwise, it represents a defect that is common to both components and it 

is referred to as a relationship defect. Two measures used to determine the fault-proneness 

of components and component relationships are: 

• A local measure, Oo<c>, used to measure defect cohesion for component, O . 

• A relationship measure) Re<Cj,Ck> , used to measure defect coupling between two 

components, OJ and Ok. 

Von Mayrhauser et al. [66] provide variants of the defect cohesion and defect coupling 

measures to more clearly distinguish defect fixes that involve single versus multiple file 
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changes in a component. These measures are more sensitive to the number of files changed 

in each component to fix a given defect. They also present several options for abstracting 

the extracted fault-coupling relationships between components to the subsystem level. 

2.2.3.1 Defect Cohesion Measures 

The defect cohesion measures are defined as follows: 

• Basic Defect Cohesion Measure: 

The basic defect cohesion measure for component 0 is defined as: 

(2.1) 

where 

d is the number of defect reports written against a component . 

• Multi-file Defect Cohesion Measure: 

Merely counting defects does not differentiate between a defect in a component that 

requires modifying one file or many files. If we assume that a defect is more complex 

when its repair involves more of the component's files, a more detailed defect cohesion 

measure is needed. 

Multi-file defect cohesion counts the pairwise defect relationships between files within 

the same component, 0, where those files were changed as part of a defect repair: 

where 

and 

1, 
idi(Jdj -1) 

2 

n 

00<0> = L Oi<c> 
i=1 

(2.2) 

fdi = 1 and only 1 component is involved in fixing di 

fdi ~ 2 

f di is the number of files in component 0 that had to be changed to fix defect di-

n is the number of defects that necessitated changes in component O. 
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This provides an indication of local fault-proneness. Unless only one file is changed, 

this measure will be much larger than the basic cohesion measure. It penalizes com­

ponents that are only involved in a few defects, but where each defect repair involved 

multiple files. 

2.2.3.2 Defect Coupling Measures 

The defect coupling measures are defined as follows: 

• Multi-file Defect Coupling Measure: Two or more components are fault related, if 

their files had to be changed in the same defect repair (i.e. in order to correct a 

defect, files in all these components needed to be changed). 

For any two components 01 and 02, the relationship measure Re<c}'c2> is defined 

as: 
n 

Re<c}'c2> = "" Old> X 02d>' 01 =1= 02 ~ , , (2.3) 
i=l 

where 

Old> and 02d> are the number of files in components 0 1 and O2 that were changed 
, I 

to fix defect di. 

n is the number of defects that necessitated changes in components 01 and 02. 

• Cumulative Defect Coupling Measure: A component 0 can be fault-prone with respect 

to relationships if none of the individual defect coupling measures are high, but there 

are a large number of them (the sum of the defect coupling measure is large). In this 

case the defect coupling measure for a component 0 is defined as: 

where 

m 

TRc = LRe<c'Ci> 
i=l 

m is the number of components other than O. 

Re<c,c, > is the defect coupling measure between G and Oi. 
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The multi-file defect coupling measure emphasizes pairwise coupling related to code 

changes for defects involving a pair of components. The cumulative defect coupling measure 

is concerned with components in many fault relationships with two or more components. 

The primary use of these measures is to provide an ordinal scale to rank components. 

The exact values of the measures or the range of values is secondary. Ohlsson et al. [40] 

use the values to rank the components and then identify the top 25 percent in this rank 

order as fault-prone. The multiplicative nature of the multi-file defect cohesion and coupling 

measures magnifies individual differences among components. This accentuates differences 

between components that are close in measurement values for the defect cohesion and defect 

coupling measures and reduces ties in ranks. 

2.2.4 Determining Fault-Prone Components and Fault-Prone Relation­
ships 

The basic strategy in [40, 65, 66] uses defect cohesion measures for components and 

defect coupling measures between components to assess how fault-prone components and 

component relationships are. If the objective is to concentrate on the most problematic 

parts of the software architecture, these measures are used with filters to identify 

• the most fault-prone components only (setting a threshold based on the defect cohesion 

measure); 

• the most fault-prone component relationships (setting a threshold based on the defect 

coupling measure). 

Von Mayrhauser et al. [651 consider a component fault-prone in a release if it is among 

the top 25 percent in terms of defect reports written against the couiponent. In general, 

one would set the threshold based on available resources, quality, and objectives of the 

analysis (most problematic versus all components that have problems). The 25 percent 

threshold provided a manageable number of problematic components for further analysis. 

Similarly, a threshold may distinguish between component relationships that are fault-proue 

and those that are not. The threshold was set to an order of magnitude (or ten percent) 

less than the maximum value for the defect coupling measure. Setting the threshold is a 
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subjective decision and depends on the objectives of the investigation and the number of 

fault relationships. 

Von Mayrhauser et a1. [66} determine defect cohesion and defect coupling measures for 

all components. Then they filter based on the defect coupling measure to focus on the most 

problematic relationships. A component G can be fault-prone with respect to relationships 

for two reasons: 

1. The defect coupling measure is high for a particular pair of components < G, Gi >. 

2. None of the individual defect coupling measures are high, but there are a large number 

of them (the cumulative defect coupling measure is large). 

It is this second reason that prompted them to determine a threshold based on the sum of 

the defect coupling measures for a component. In their study, the threshold for including a 

component in the fault architecture is set as 10 percent of the highest T Rc measure. The 

threshold for including a fault relationship in the fault architecture is set at 10 percent of 

the highest Re<c,ci>. 

These two thresholds identify the components and component relationships that provide 

the lowest level of the Fault Architecture. The fault architecture may have components with 

a high T Rc measure, but a low Re<c,ci> measure. In this case, the component has no 

fault-prone relationships, to denote the second situation above. 

The data available in our study enables fault-architecture analysis for several releases. 

This study, therefore, replicates the studies in [41, 65, 661. This study also explores the 

filtering and threshold setting techniques in those studies. In addition, this study performs 

fault-architecture analysis for the development, system test and post-release phases of each 

release, since data collected in this study identifies the phase in which a defect was reported. 

2.3 Methods that Use Prioritization to Improve Efficiency 

Stopping rules may improve testing efficiency by helping software developers determine 

when testing should stop. Potentially, weeks of testing may be saved. Another way to 

improve testing efficiency is to test components in a different order, so that parts of the 
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software that are more likely to have faults are tested earlier. Already, fault-prone compo­

nent analysis and fault architecture models have been described to help in identifying these 

software parts for more intense testing, but often these parts can also be tested earlier. 

Assigning priorities to testing activities based on how fault-prone components are should 

improve the rate of fault detection. If more defects are found earlier, defects not only have 

a better chance of being fixed before release, but fewer defects will be left to uncover late 

in testing, so testing can stop sooner, saving more weeks. 

There are two ways to prioritize test activities. They are: prioritize test cases [48] or 

prioritize testing of components [33]. 

2.3.1 Prioritize Test Cases 

Several techniques are described in [48] for ordering the execution of test cases during 

regression testing to maximize some objective function, such as the fault detection rate. Test 

cases may be scheduled not only to improve the rate of fault detection, but may also be 

scheduled to achieve a faster rate of code coverage, to exercise features in order of expected 

frequency of use, or to exercise components in order of historical failure rate. Rothermel et 

al. [48} are concerned with techniques for prioritizing test cases for the purpose of improving 

the rate of fault detection. Nine test prioritization schemes were investigated: 

1. No prioritization (an untreated test suite used as a control). 

2. Random prioritization. 

3. Optimal prioritization (using program with known faults in experiment as an upper 

bound for comparison purposes ). 

4. Total branch coverage prioritization. 

For any test, the number of decisions(branches) exercised in a program can be 

determined. These tests can be prioritized according to the number of branches they 

cover by sorting them in order of total branch coverage achieved. 

5. Additional branch coverage prioritization. 

Having executed a test and covering certain branches, more branch coverage may 
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be gained in subsequent tests by covering branches that have not yet been covered. 

Additional branch coverage prioritization iteratively selects test cases that yield the 

greatest branch coverage, then adjusts the coverage information on subsequent tests 

to indicate their coverage of branches not yet covered. This process is repeated until 

all branches have been covered by at least one test case. 

6. FEP-total (total fault-exposing potential) prioritization. 

Approximation of the fault-exposing potential (FEP) of a test case is obtained using 

mutation analysis. 

7. FEP-additional prioritization. 

Total FEP prioritization is extended to create additional-FEP prioritization in a 

method analogous to the extensions made to total branch coverage prioritization to 

additional branch coverage prioritization. 

8. In order of total statement coverage. 

9. In order of additional statement coverage. 

Rothermel et al. [48] applied these nine techniques to seven programs. The measurement 

used to assess and compare the techniques was a weighted average of the percentage of 

faults detected over the life of the test suite. 

Results show that optimal prioritization greatly improved the rate of fault detection 

and that all the prioritization techniques showed significant iInproveInent compared to the 

test suite without prioritization. The FEP-based prioritization techniques performed better 

than all others, although not significantly. Considering the expense of the FEP-based assess­

ment technique they are using, the technique may not be cost effective. Other FEP-based 

techniques, however, might be cost effective. Total-branch and total-statement coverage 

performed better than their more expensive additional counterparts. 

Results show that test case prioritization can improve the rate of fault detection. Tech­

niques that incorporate static measures of fault-proness may provide improvements and 

warrant investigation. Little research has been done to prioritize test cases based on pro­

cess data. 

36 



2.3.2 Prioritizing Modules for Testing 

Methods have been described to identify components that are fault-prone which may 

then be tested earlier. In [33], the authors suggest that module-ordering may recommend 

modules that are likely to have problems for reliability enhancement. If defect metrics 

from development are available early enough in the life cycle to can be used by testers 

to uncover more defects, problems in post-release may be reduced. Unfortunately, little 

empirical research has been done in this area. Validated methods that prioritize modules 

in testing are needed. 

2.4 Defect Estimation using Static Models 

Several approaches that use process metrics exist to estimate defect content. First, it 

is possible to build prediction models from historical data. This approach is referred to 

as experience-based, since it is based on building models from data collected previously. 

Studies in [4, 5, 13, 25, 78] predict the number of defects either within one release or 

between releases. Some experience-based approaches that estimate fault content are briefly 

described in Section 2.4.1. 

Second, prediction models can be built using various statistical methods using data 

available only from the current project [6,8,10, 17, 19,59,64,69, 70]. This approach is used 

to estimate the fault content with data from the current project, and hence the methods are 

more direct. Two types of models can be used for this approach, namely capture-recapture 

models [17, 10, 64, 70, 6, 8, 19, 59] or different curve-fitting approaches [69, 8, 59]. These 

models can briefly be described as follows: 

• Capture-recapture models, i.e., models using the overlap and non-overlap between 

reviewers (or test sites in our case) during defect detection to estimate the remaining 

defect content. The models have their origin in biology where they are used for wildlife 

population estimations and management [10,44]. Two or more independent counters 

study a population in a specific area and count the animals they encounter. If the 

number of animals seen by several counters is large, then the counters have probably 

covered most of the population. If the overlap is small, then there are probably many 
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animals remaining that were not counted. The same principle is applied to "bugs" in 

software systems. 

• Curve fitting models, i.e., models that plot test data from the test sites and fit a 

mathematical function. The function is then used to estimate the remaining defect 

content [69]. 

These two types of models are discussed in more detail in Sections 2.4.2 and 2.4.3. Methods 

that integrate experience are described in Section 2.4.5. 

Our main focus is on using the capture-recapture and curve-fitting methods to estimate 

the number of components with defects in post-release that showed no defects in testing. 

This is different from, but complements, the approach taken when identifying fault-prone 

components. The objective is to not only estimate fault-proneness as such, but to also 

estimate the number of components that seem fine during testing but exhibit problems 

during operation. This estimate can be used as an additional criterion to determine when 

it is suitable to stop testing and release software. 

2.4.1 Experience-based Methods 

Methods that use historical data for predicting the number of defects remaining in 

components may be based on defect data [5, 78] or code change data [4, 13, 25]. The 

data may come from either a prior phase within the release or from prior releases. Table 

2.3 summarizes the studies described in this section. It identifies the assumptions, the 

dependent and independent variables used in the models, as well as the techniques used in 

the studies. All these models [4, 5, 13, 25, 78] assume that repair is imperfect. 

Yu et al. [781 explore the relationship between the number of faults per module and 

the prior history of a module. They investigate two software defect models and propose a 

revised model to estimate the number of remaining defects in software. All three models 

use the number of defects detected in earlier phases of the life cycle, such as design reviews, 

code inspection, and unit test, to predict the number of defects found later in system test 

and post-release. 
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Table 2.3: Studies on defect estimation methods based on defect or change data. 
Study Assumptions Dependent Independent Technique Results 

Variable Variables 
Yu et at [78) Repair imperfect; # remaining # defects Model 

Defect removal defects at found Linear building 
(Case study: iterative w/i phase; end of phases Regression worked for 
2 similar Defect detection w/i system # defects study. 
systems) ratio decreases repaired 

each iteration; 
No new functionality 
after unit test. 

Biyani Repair imperfect. # post # development Exploratory: 
et al. [5] release defects per Correlation Showed 
(Case study: faults per module in prior relationships 
4 releases) module releases exist. 
Basili Repair imperfect Error Module size Least Squares Module type 
et al. [41 Proneness New or modified Linear good 
(Case study) (#defects) module Regression predictor. 
Christenson Repair imperfect; # remaining # fixes Simulation: # Fixes-on-fixes 
et al. [13] Bad fixes and defects on fixes seed errors is a good 
(Simulation & fixes-on-fixes can sampling predictor. 
Case study of be measured; 
switch systems) 1st and 2nd order Case study: 

faults have equal correlation 
likelihood of 
being found. 

Graves Repair imperfect; # remaining # file Generalized Weighted 
et al. [25] Error defects changes linear time-damp 
(Case study) distribution in a module in a regression model best. 

Poisson. module models 

The first model described by Yu et al. [78] uses linear regression analysis to determine 

if a relationship exists between earlier defects and later defects. Results of their study 

using two data sets show that a very strong correlation exists between earlier and later 

defects, suggesting that the number of earlier defects is a good predictor of the number 

of later defects. Unfortunately, the authors could not explain the physical meaning of the 

parameters for the regression equation. This would make this model difficult to adapt to 

other environments or projects. The second model described by Yu et al. [78] assumes 

defects introduced in one phase as the result of a defect repair will not be detected until 

a later phase. It uses the number of defects found and the number of defects repaired in 

a phase to estimate the number of defects remaining at the end of the phase. Parameters 

include the defect detection ratio {ratio of the number of detected defects to the number of 

defects during the previous phase} and the defect correction ratio (ratio of the number of 

correctly fixed defects to the number of detected defects). Methods to obtain the number 

of defects during the previous phase are not given. 
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Yu's model [78] is a revision of the second model. Yu's model assumes that the defect 

removal process is iterative, that is, that defects introduced during a correction can be 

detected later in the same phase. This model assumes that the defect detection ratio 

decreases after each iteration, due to a decrease in available test time and successive repair. 

The model performed well on the two data sets used. Including only the first two iterations 

in the model resulted in good accuracy, since defects found and fixed dropped off rapidly. 

Other studies provided data to estimate the model's parameters. These values may only be 

of use if the environments of the other studies are similar. The process used by developers 

and testers in the projects used in this case study are more accurately modeled by the third 

model by Yu et al. [78}. The models described in [78], however, require no new functions 

be added after unit test. The process used in the projects in our case study involved new 

functionality that was added in "drops" during system test; that is, several new components 

were added to the system and delivered to system test during the course of system testing. 

This is probably a fairly common procedure in industry. 

Biyani, et al. [5] explore the relationship of the number of faults per module to the 

prior history of a module. Specifically, they use faults discovered in development to predict 

faults remaining in the field. They also use faults discovered in previous releases to predict 

faults in the current release. Their method attempts to correlate the number of defect-free 

modules in the field to the number of defects found in development, as well as the average 

number of defects found in the field per module to the average number of defects found in 

development per module. In their study of four releases of a commercial software product, 

modules with more development defects tended to have more field defects. In addition, in 

comparing defects in a current release to those in previous releases, they concluded that 

the prior release is sufficient for predicting the number of defects during development or in 

the field. In their study, defect data from development and data. from the prior releases are 

good measures for assessing the relative quality of software. 

Unlike Biyani, et at [5], this thesis is concerned not so much in predicting the number 

of defects between development and post-release and across releases, but in how defect data 

can be used to improve system testing, in both its effectiveness and efficiency. In this, 
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various aspects of assessment and prediction are combined, and the data is used to support 

suggested improvement activities. 

Change data is used as the basis of making predictions about defect content in [4, 13, 25]. 

Basili and Perricone [41 describe a case study that uses four releases of a satellite planning 

project to explore relationships between frequency and distributions of errors versus software 

size, software complexity, and reuse. They discovered that 89 percent of the repairs involved 

changing only one module. In addition, the largest source of errors was attributed to the 

specification/requirements phase with the majority of these errors involved in modified 

modules. This might indicate that specification were not well enough defined for reuse. 

New and modified nlodules differed in the types of defects and the efforts to repair them. 

New and modified modules, however, behaved similarly with respect to the number of 

defects, with modified modules contributing slightly more errors. In their study, a higher 

error rate existed in smaller sized modules. (They also found that cyclomatic complexity 

was correlated with module size.) They interpreted this result to mean that either the 

number of modules examined was too small, hence the study caused a biased result, or 

developers took more care in developing larger modules. 

Christenson and Huang [131 investigated a "fix-on-fixU model to predict the number of 

defects remaining in software. A "fix-on-fix" is a software change to fix a defect introduced 

in an earlier software fix. The model assumes that defect repair is imperfect and may result 

in "bad fixes" (fixes that are not defect free). The authors refer to defects in newly devel­

oped software as "first-order faults" and defects in fixed software as "second-order faults." 

Fixes-on-fixes are software changes needed to repair second-order faults. The number of 

defects remaining in software is a function of the number of "fixes-on-fixes". Assuming 

each fault has an equal probability of being found, the set of faults found and repaired is 

considered as a statistical sample of the total fault population. In this case, the ratio 

# oj fixes - on - Jixes/# all Jixes 

in the sample is used to estimate the ratio 

# 2nd order Jaults/# all Jaults. 
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If the first ratio can be estimated, then one can predict the number of faults remaining. 

In a simulation, Christenson and Huang [13] used error seeding and statistical sampling to 

estimate the first ratio. A case study used several past releases of a large switching system 

to derive the first ratio. The "fix ... on-fix" model performed reasonably well in predicting the 

number of remaining defects. The fewer the number of defects in fixed code, the fewer the 

number of remaining defects in a module. htleasurements for bad fixes and "fix-on-fixes" 

are often not available. 

Graves, et al. (25) developed a model that attempts to predict the number of defects 

found within a module based on the file changes made to the module. They also compared 

their model to several other models models. First, they investigated what they call the 

'~stable modeI." This model assumes that the number of future faults in a module is a 

constant multiplier of the number of faults found in the module in the past. This indicates 

that testing intensity is not an important factor. It turns out that the stable model is a 

good model, with the advantage that it is simple. Two other luodels they investigated did 

not seenl to be successful. The first unsuccessful model used the number of developers who 

worked on or changed a module. The other unsuccessful model was concerned with the 

extent to which a module is connected to other modules as measured by the number of 

other modules changed together with the module. Using these measures did not help in 

predicting the number of faults. In addition, models based on product measures, such as 

size, complexity, etc., did not perform any better at predictillg the number of faults than 

size alone. 

The models Graves et aI. [25] found successful involved measures of changes to code 

within a module. The number of changes to the code in a. module over its entire history, a 

touch count, appeared to be a successful predictor of faults. hl addition, when large, recent 

changes are weighted more heavily than smaller, older changes, the model improveds. Older 

modules with the same number of defects appear to be lower in the number of faults. They 

concluded that delta changes to code are a much better measure of fault likelihood than 

number of lines of code. The consideration of age improves the model. The model assumes 

new faults are continuously being added to the system as changes are made to it. 
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The change data available in the case study in this thesis does not include all changes 

made to the source code. It only includes information on changes made to repair a defect. 

In addition, it does not include data to measure the number of lines added, modified and 

deleted. This means that the experience-based methods based on detailed code change data 

cannot be used. 

2.4.2 Methods based on Capture-Recapture Models 

The major application of capture-recapture models in software engineering has so far 

been during the review or inspection process. Different capture-recapture models use differ­

ent assumptions regarding reviewers and defects. Reviewers may have the same or different 

ability of finding defects. Defects themselves may be equally difficult to find or vary in how 

difficult they are to detect. Thus, capture-recapture models address four different situations: 

1. Reviewers are assumed to have the same ability to find defects, and different defects 

are found with the same probability. This type of model is denoted MO. It neither 

takes variations in the reviewers' ability nor in the detection probabilities into account. 

2. Reviewers are assumed to have the same ability to find defects, though different defects 

are found with different probabilities. This type of model is denoted Mh (variation 

by heterogeneity!). It takes the detection probabilities into account, but not the 

reviewers' ability. 

3. Reviewers are assumed to have different ability to detect defects, and all defects 

are found with the same probability. This type of model is denoted Mt (variation 

by time2). It takes the reviewers' ability into account, but not varying detection 

probabilities. 

4. Reviewers have different profiles for detecting defects, and different defects are found 

with different probabilities. This type of model is denoted Mth (variation by time and 

IThe use of the words heterogeneity and time has its origin in biology. 

2See footnote 1. 
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heterogeneity). It takes both variations in the reviewers' ability and in the detection 

probabilities into account. 

In addition to the assumptions of each model regarding detection probability by defect and 

by reviewer, it is assumed that the reviewers work independently. 

The assumptions- for the four types of models are illustrated in Figure 2.1 for five defects 

and three reviewers. The plot is similar to a figure in [7]. The heights of the columns 

represent detection probability. The probabilities in the figure are for illustration purposes 

IiJ Test GrOlJp I LI oda11. LlO 

GrOlJp I M odtl2. Mh 
DTest GrOlJpl 
cTest Grovp3 OIttcjon problbil.iu 

Figure 2.1: An illustration of the different types of capture-recapture models. 

and not actual values. Clearly, the model of type 4 is the most realistic. It also requires 

more complicated statistical methods and it is more difficult to get stable estimates. 

Eick et al. [171 combine results of two or more independent reviewers of requirements 

documents and design documents with a statistical inference method, capture-recapture, 

to draw conclusions about the remaining number of defects. Two or more independent 

reviewers inspect a document. If many of the defects were found by more than one reviewer, 

then most of the defects have probably been found. If, however, very few defects were found 
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by two or more reviewers, then there are probably many defects that have not yet been 

found. 

The various captme-recapture models used in software engineering estimate the total 

number of defects. The estimated number of remaining defects can be determined by sub­

tracting the number of defects found from the estimated total. One of the major differences 

between captme-recapture models are the assumptions made about the probabilities of 

detecting a defect. In addition, several statistical approaches have been applied to capture­

recapture models for the purpose of estimating the total number of defects. [17, 49, 64, 70] 

apply the maximum-likelihood estimator (mtml). The Chapman estimator for the Mt model 

(mtChpm) is used in the case of two reviewers [19]. The jackknife method (mhjk) has been 

applied and compared to the mtml in [6, 64]. Briand et a!. [6] investigated the Chao 

estimator for the Mth model proposed in [10] using a case study. Table 2.4 shows the 

capture-recapture models suitable for inspections [6] along with their estimators. Table 2.4 

also contains references in which the models are described in more detail. 

Table 2.4: Statistical methods for capture-recapture models. 
Detection probabilities 

Reviewer ability Equal Different 

Equal MO: Mh: 
Maximum-Likelihood (mOml) [44] Jackknife (mhjk)[44J 

Different Mt: Mth: 
Maximum-Likelihood (mtml) [44, 64} Chao {mthChao)[10] 
Chapman (mtChpm) [19] 

2.4.2.1 Notation for Capture-Recapture Methods 

Estimators for the capture-recapture models are discussed in the next section. The 

notation for these estimators are defined below. 

N is the actual number of defects in the inspected object. 

n is the number of observed defects in the inspected object. 

m is the number of inspectors. 

fk is the number of defects found by exactly k inspectors. 
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m 

s= Eli. 
i=l 

ni is the number of defects found by inspector i. 

Pi is the probability of detecting a defect by inspector i. 

2.4.2.2 Estimators for Capture-Recapture Methods 

The maximum-likelihood nlethod [64] is based on the assumption that all defects are 

found by a specific reviewer with equal probability. A simple example for the Mt model 

that uses only two inspectors follows. The equation is: 

(2.5) 

An estimator for the the number of defects can be derived as: 

(2.6) 

This estimator is known as the Lincoln-Peterson Estimator [7]. 

The simplest of all models, M,O, results from the assumption that defect detection prob­

abilities do not vary by reviewer nor by individual defect. The following equation is maxi­

mized for the mOml estimator [44]: 

This function is maximized numerically over N 2:: n to determine N, the estimate for the 

number of faults. Subtracting the number of faults found at the review from the estimate 

of the total number of faults gives the estimate for the number of remaining faults. If most 

faults are found by two or more reviewers, then few faults are undiscovered. Otherwise, 

additional reviews are required to find more faults. 

The Mt model assumes reviewers have different probabilities in finding defects. For the 

more general case of the Mt model where there may be two or more reviewers, the following 

mathematical equation is maximized [44]: 

(2.8) 
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The following equation gives the Chapman estimator for the Mt model [19] (mtCbpm) 

in the case of two reviewers: 

iI = (nl + 1) (n2 + 1) _ 1 
(n+ 1) 

(2.9) 

The jackknife method [64] may also be used to determine the total number of faults. It 

is based on the assumption that each reviewer has the same probability of finding a specific 

defect, while the defects are found with different probabilities. 

Table 2.5: Jackknife estimators Nhk for k = 1, ... ,5. 

s 

s + (m;:l) It 

s + (2m-3) f - (m-2)2 f 
m 1 m(m-I) 2 

s + (3m-H) f (3m
2 -lomtH!) f + (m-3)3 J 

~ 1 - m(m-I) 2 m(m-I)(m-2) 3 

s + (im.:=l!!.) f - (6m2-3Hmt55) ~ + (4m3_42m2~14Rm-175) f - (m-4)4 t 
m 1 m(m-I J2 m(m-l (m-2) 3 m(m-I)(m-2)(m-3) 4 

s + (Sm-Hi) f ,- (lom
2
-370mt125) f + (Iom

3
-120m

2
t4R5m-Rfio) f 

m 1 m(m-I) 2 m(m-l)(m-2) 3 

( 
(m-4)5_(m-S)5 ) t (m-S)5 f 

- m(m-lHm-2)(m-J) 4 + m(m-l)(m-2)(m-J)(m-4) 5 

The jackknife estimator (mhjk) for the Mh model [9] estimates Nj. Nj is chosen as 

some Nji as described below. Table 2.5 shows the formulas from [9] for Njk for order k ~ 5, 

where k ~ m is the jackknife order. 

According to Burnham and Overton [9], in looking at the mean squared error of Njk' 

the unique minimum is usually achieved at k = 1,2, or 3. 

ilj is chosen by testing sequentially the hypotheses 

(2.10) 

versus 

(2.11) 
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Choose Nj = Nji such that HOi is the first null hypothesis not rejected. The test statistic 

is 

11 = m (2.12) 

(~(""a2fo - (No "+1 - Noo)2/S))1/2 8-1 ~ i' ),' )1. 

i=1 

where the coefficients for Ii in the formulas for Nji in Table tab:jke are the constants 

It is expected that the significance levels, Pi, will be increasing. If Pi-1 is small, for 

example ~-1 ~ 0.05, and Pi is much larger than 0.05, then choose Nj = Nji. 

The Mth model assumes that the defect detection probabilities vary by reviewer and by 

individual defect. An estimator used for this model is the MthChao [10]. The mathematical 

formula for the MthChao estimator is: 

(2.13) 

where 

m 

01 = 1 - !1/Lk!k, 61 is an estimator of the expected sample coverage, where sample 
k::::1 

coverage is defined as the total individual detection probabilities of the found defects. 

O2 and 03 are bias-corrected versions of 01 and defined as: 

C" 1 It -2/2/(m-l) 
2= - m 

Lk/J.: 
k=l 

G~ - 1- 1t-2/2/(m-l)+6/a/(m-1)(m-2) 
3- m 

Lk/J.: 
k=l 

7; is the estimate of the square of the coefficient of variation and is defined as: 

m 

7; = max{ ~ Lk(k - 1)!k/(2 L L!j!k) - 1, O}, i = 1,2,3. 
k=l j < k 
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2.4.2.3 Studies on Capture-Recapture 

Table 2.6 summarizes the studies described in this section. It describes the type of stud­

ies and purpose of the study. It also identifies the estimators used and the best performers. 

Table 2.6: Studies on Capture-recapture methods. 
Study Type of Purpose # of Estimators Best Results 

Study reviewers applied performers 

Eick Experiment Evaluate 4·12 mOml - Can apply eRe 
et al. [17] to review eRe models to review data 

13 req. & design (mOml) to estimate 
documents. remaining 

defects. 

Briand Industry Compare models 2-7 mOml mhjk eRe best with 4 
et al. {6] experiment and evaluate mtml or more reviewers. 

Inspection of impact of mhjk Models 
req. documents. # reviewers. mthChao underestimate. 

Vander "Viel Simulation Study effects 5 mtml mtml For 1 fault type 
et al. [64] reviews of broken mhjk or 2 fault types 

with 1 or 2 assumptions. grouped: mtml best. 
types of faults 2 fault types: neither 

Wohhn Student Group 7-8 mtml Best model Groupmg 
et al. [7O} experiment faults to mhjk depends on type faults improves 

to inspect correct of group, estimates. 
technical underestimates. organization, 
documents. and documents. 

Vander Wiel and Votta [64] used Monte Carlo simulations to study the use of the 

maximum-likelihood and jackknife estimators in the capture-recapture model. The simu­

lations included data that did not meet the assumptions for the estimators to study the 

effects of broken assumptions. Results showed that the mtml performs better than the 

mhjk in the case where there is only one fault type. In the study with two fault types, 

where fault types are pooled, neither the mtml nor the mhjk does well. When the fault 

types are grouped, that is, the fault types are estimated separately, the mtml is significantly 

improved, while there is no effect on mhjk. Results showed that the mhjk estimator greatly 

overestimated, when reviewers detection probabilities differ. In addition, both the mhjk and 

mtml estimators produced poor estimates when the detection probabilities of faults differ. 

The mtml estimated too low, but greatly improved, when faults were analyzed by types. 

The authors recommend that when dividing faults into types, the groups should be kept 

to a small number so that within each group it is reasonable that a reviewer has a fixed 

probability of finding a fault. In addition, the groups should be formed so that they have a 

large enough number of faults and so that some of the faults in each group are discovered 

by more than one reviewer. (This avoids infinite ML estimates.) 
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Capture-recapture models have several potential problems. First, the model implies 

that when there are too many reviewers, it is unlikely any faults remain. In practice, this is 

not true, because some faults are harder to find than others. Capture-recapture models also 

imply that the number of faults found during the inspection meeting are part of the estimate 

of remaining faults. (The assumption is that faults are found by independent reviewers, so 

faults found in a meeting are part of the remaining faults.) But if a large number of faults 

are found during the meeting, then there are probably an even larger number remaining, 

since some faults are difficult to find individually. In addition, the model does not work if 

there is no overlap: It gives an infinite estimate. 

To correct underestimates of existing capture-recapture estimation methods, a technique 

that groups faults may be combined with the capture-recapture models [70]. Wohlin et a1. 

[70] separate faults into two (or more) classes based on the number of reviewers who find 

the specific fault. This technique recognizes that certain faults are more or less difficult to 

find. The more reviewers that find a fault, the easier it is to find. The maximum-likelihood 

estimator is then applied to each class. 

Faults found by more than some percentage of reviewers are put in class 1. The others 

are put in class 2. An alternative method is to put all faults found by exactly one reviewer 

in class 1 and the others in class 2. The latter method distinguishes between unique faults 

and faults found more than once, whereas the first method is concerned with how many 

times a fault is found. Applying the mtml on each fault class, the number of the remaining 

faults in each class are estimated and aggregated. 

A problem with grouping faults occurs if all reviewers find different faults. The solution 

to this is to use an experience-based method: Faults found by a single reviewer are multiplied 

by an experience-based constant. Several studies that combine capture-recapture models 

and experience-based approaches are described in Section 2.4.5. Another problem occurs 

when the number of faults found during the review meeting is greater than the estimate of 

the number of remaining faults. This implies the estimate is unreliable. 

Briand et a1. [6] performed an experiment using data from inspections to compare 

capture-recapture models. Specifically, they evaluated the models and their estimators 

50 



by comparing the estimated number of defects to the actual number of defects in the doc­

uments. They also studied the impact of the number of inspectors on the accuracy of the 

models and estimators. Results showed that, generally, the models tended to underestimate. 

Results according to number of inspectors are as follows: 

• When the number of inspectors is less than four, no model is sufficiently accurate in 

terms of its relative error and the variability in relative error . 

• For two inspectors, the estimators for Mh and Mt have low relative error variability, 

but they tend to underestimate. If estimators consistently underestimate, they may 

be adjusted by some factor appropriate for the environment in which they are ap­

plied. This indicates that calibration may make the estimators for Mh and Mt good 

candidates in the case of two inspectors . 

• For three inspectors, the jackknife estimator (mhjk) performs the best in terms of 

the size of relative error, although it tends to overestimate. Calibration of the mhjk 

estimator might make it a candidate in actual practice. 

• For four or more inspectors, the mhjk and mtml perform the best, either providing 

overestimates or underestimates, respectively. Calibration may significantly improve 

them. 

Results also show that the Mth model, which allows two sources of variation (i.e. variations 

across detection probabilities for defects and reviewers) did not seem to perform better 

than the Mt and Mh models, which have only one source of variation. The MthChao 

estimates had low relative errors, but they tended to have high variability and generated 

extreme outliers. The Mt and Mh models had low variability, but they tended to either 

overestimate or underestimate. Calibration of the Mt and Mh models may make them 

useful in actual practice. 

2.4.3 Detection Profile Method and Cumulative Method 

Both the Detection Profile Method and the Cumulative Method [69] use curve fitting 

in order to estimate the remaining defect content. These methods make less restrictive 

51 



assumptions than the capture-recapture models. There are no assumptions about indepen­

dent reviewers. The contributions of individual reviewers in finding defects are expected to 

vary. 

The Detection Profile Method assumes: 

1. More reviewers find more defects. With enough reviewers, all defects will be found. 

2. Some defects are found by only one reviewer. 

3. The curve that models the data is an exponential or linear decreasing function. (A 

linear model is proposed in [8] as a way of coping with data sets where the exponential 

model failed.) 

The Cumulative Method assumes: 

1. More reviewers find more defects. With enough reviewers, all defects will be found. 

2. The curve that models the data is an exponential increasing function. 

3. The number of unique defects can be derived from the cumulative number of defects 

found - all remaining defects are assumed to be unique. 

These two methods are described as follows: 

1. Detection Profile Method: The defects are sorted in decreasing order with respect to 

the number of reviewers that found a defect. The defect number is on the x-axis and 

the number of reviewers who found that defect are on the y-axis. Figure 2.2 a) shows 

an example of a plot of defects using the Detection Profile Method. The plot can be 

approximated with a decreasing function. Both exponentially and linearly decreasing 

functions have been evaluated. The exponential curve [69] has the form: 

f(k) = me-bk 

where 

k is the defect number, 1 ~ k ~ n. 

m is the number of reviewers. 
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Figure 2.2: Plots for the a) Detection Profile Method and b) Cumulative Method. 

f(k) is the number of reviewers finding defect k. 

b describes how the exponential function decreases. 

The fitted curve is an approximation of the bars in the Figure 2.2 a). The bars, 

however, represent integer values. Function values of the fitted curve in the range 

of 0.5 - 1.5, for example, are interpreted as bars of height 1, while values below 0.5 

are interpreted as no bar. In other words, the values of the function are rounded to 

the nearest integer value. The total number of defects is estimated when the fitted 

curve reaches a threshold value of 0.5 defect occurrences. The threshold cannot be 

greater than or equal to 1, because the estimate will be less than or equal to the actual 

number of defects found. The threshold cannot be less than or equal to 0.5, because 

this represents a defect that was found 0 times (or never found). The estimate of the 

total number of defects from the curve is obtained as follows: The estimated defect 

content is equal to the largest integer value on the x-axis for which the curve is greater 

than 0.5. Subtracting the number of defects found from the estimated total number of 

defects gives an estimate of the number of remaining defects. The dpm( exp) estimator 

is based on an exponential curve fit and the dpm(linear) estimator is based on a linear 

curve fit. 

2.. Cumulative Method: The defects are sorted in ascending order with respect to the 

number of reviewers that found a defect. The defect number is on the x-axis and 

the cumulative number of defect occurrences are on the y-axis. For example, if five 
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reviewers detect the first defect and four reviewers detect the second, then the first 

bar is five units high and the second bar is nine units high. The defects are sorted in 

the same order as for the model of type 1. Figure 2.2 b) shows an example of a plot 

for the cumulative method. Here plotting cumulative defects leads to an increasing 

approximation function. The increasing exponential model proposed in [69] has the 

form: 

M(k) = n(l - e-dk ) (2.15) 

where 

k is the defect number, 1 ~ k ~ n. 
k 

M(k) is the cumulative number of reviewers having found k defects or L ii­
i=l 

n is the total number of defects detected. 

d is describes how the exponential function increases. 

The remaining defect content is estimated as the asymptotic value of the increasing 

curve minus the cumulative number of defects found so far. 

One of the advantages of these two curve fitting methods is that they are easy to 

implement using a spreadsheet application. They are also easy to visualize. These methods 

may, therefore, appeal to industry. 

2.4.4 Comparison of Capture-Recapture, Detection Profile and Cumula­
tive Methods 

Table 2.7 summarizes the studies described in this section. It describes the type of stud· 

ies and purpose of the study. It also identifies the estimators used and the best performers. 

Wohlin and Runeson [69] evaluated the Detection Profile Method and the Cumulative 

Method and compared them to the mtml. Their results showed that a rank of the three 

estimators based on their performance (or how close they came to actual values) did not 

come out in the same order all the time. The estimate from the Cumulative Method was 
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Table 2.7: Studies on Capture-recapture, DPM and Cumulative Methdods. 
Study Type of Purpose # of Estimators Best Results 

Study reviewers applied performers 

Wohlin Experiment Evaluate 4-5 mtml No statistical 
et a1. 169] using DPM& 7-8 DPM difference 

review data. Cumulative Cum. among them. 
Methods. Use mean of 

a113. 
Petersson Case study Estimate 3-4 mOml 1st bias 
et al. (46) of review intervals. mtm! correction 

documents. Bias correction mhjk approach: Multiply 
approaches. DPM,Cum. estimate by factor. 

Thelin Simulated Evaluate effects 3,6 mOml 3 insps: CRCs overestimate 
et al. [59] experiment of perspective- mtm! mhjk, dpm but robust in 

of based reading mhjk 6 insps: perspective-
inspections. on estimates. mthChao all but based readings. 

DPM dpm 

often the most conservative estimate. The mean error and the standard deviation of the 

estimates from the Detection Profile Method were often the lowest. Results of their case 

study, however, showed no statistical significance between these three methods. Because 

the three methods produced varying estimates, Wohlin and Runeson concluded that the 

mean value of the estimates from the three approaches was the most sensible approach to' 

obtaining an estimate for the number of remaining defects. 

Petersson et a1. [46] investigated several software defect estimation methods to develop 

a technique that can give an estimation interval. The approach involves looking at existing 

estimation methods to determine whether there are methods that consistently under- or 

over-estimate that can be used to provide a lower and an upper bound for an estimation 

interval. They found that all the estimators (mOml, mtml, mhjk, dpm, and cumulative) 

tended to underestimate, except for the mthChao estimator, which has been shown to have 

large variances for a small number of reviewers. They In an effort to correct for what 

appears like a systematic bias, they applied two approaches for bias correction. The first 

correction mulitiplies the estimate by a factor, x. Both corrections adds the number of faults 

found multiplied by a factor y to the estimate. Both models increase the variance, the first 

slightly more. The bias-corrected estimates are used as the upper limit. (The number of 

defects found can be used as a lower limit.) The first correction produces intervals that 

cover the correct value more often than the second (not surprising since it produces wider 

intervals), approximately 79 percent of the time. The advantage of using interval estimates 
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is that they are more likely to be trusted. The disadvantage is that they require historical 

data to determine the multiplicative factors for the bias correction. 

Thelin and Runeson [59] present a simulated experiment to evaluate capture-recapture 

models when perspective-based reading techniques are used in inspections. In perspective­

based readings[59], inspectors are assigned different perspectives in reading documents in 

order to gain better detection coverage of defects. Less overlap in faults found are expected. 

This contradicts the principles underlying capture-recapture, because the latter are based 

on overlap among faults found by different inspectors. The simulated experiment used two 

sizes of inspection teams. A team size of three inspectors was chosen to represent a more 

typical industry setting, where the inspectors, for example, would take on roles of designer, 

tester or user. A team size of six was also chosen to investigate how more reviewers would 

affect the behavior of the estimators. The number of faults simulated for a document is 30. 

to represent the three perspectives one third of the faults it is assumed to. have a high 

probability of being detected. The other two thirds of the faults have a low probability 

of detection. Results of the simulation show that, as expected, the capture-recapture 

estimators overestimate in most cases when using simulated perspective-based reading data. 

However, the capture-recapture estimators are robust in that differences in means and 

standard deviations of relative errors among different perspectives were not significant. 

Because the capture-recapture estimators are robust, they can be used in perspective-based 

reading inspections. In the case of three inspectors, two estimators, the mhjk and the dpm, 

provide better estimates than the others in terms of mean relative error. In the case of six 

inspectors, all estimators investigated, except for the dpm estimator, estimated well. 

2.4.5 Methods that Integrate Experience 

Defect estimation methods that attempt to incorporate experience include [7, 49, 71]. 

Table 2.8 summarizes the studies described in this section. It describes the type of studies 

and purpose of the study. It also identifies the estimators used and the best performers. 

The estimation of remaining faults after inspection using capture~recapture and meth­

ods based on experience is presented in [49]. Incorporating experience makes the 
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T: bi 2 8 St d' th t . t t a e : u les a In egra e experience. 
Study Type of Purpose #of Estimators Best Results 

Study reviewers applied performers 
Runeson Experiment Classify faults 8 mtml Combined method 
et al. [49] using and apply Exp.base less sensitive 

inspection exp-based factors to team 
data. composition 

Wohlin Experiment Compare CRCI 8 CRCs mhjk EBMs using 
et at I71] using code exp.based DPM and review effectiveness 

inspection methods. Cum. some and individual or 
data. EBMs EBMS average basis with 

MLE & Chao worst. 
Briand Experiment Evaluate 2·6 CRCs - Selection strategy 
et al. [7] using selection DPM (exp) between EDPM 

requirements method for DPM (lin) and eRC better 
inspection CRC/EDPM EDPM than models 
data alone. 

capture-recapture models more stable with respect to variations in inspection teams. This 

model does not make the same assumptions made by the mtml, that is, different defects 

have the same probability of being detected. Nor does it make the assumption that differ­

ent reviewers have the same probability of finding a specific defect, as the jackknife method 

does. Different reviewers do not have similar profiles, some are specialists on certain kinds 

of faults. 

Faults are divided into two classes: 

1. faults found by a single reviewer. 

2. faults found by more than one reviewer. 

Two different methods are applied to the classes. A mUltiplicative factor based on experience 

is applied to faults in class 1. The maximum-likelihood estimator (mtmI) is applied to 

faults in class 2. The multiplicative factor takes into account different reviewer profiles 

based on historical data. Initially the multiplicative factor is set to 2.11 (based on the value 

from a previous experiment [70]). The factor is updated when new data on each reviewer 

becomes available through a moving average. Runeson and Wohlin [49] shows that existing 

capture-recapture models are sensitive with regard to the composition of the inspection 

team. Combining capture-recapture with the fault classification method and applying an 

experience-based multiplicative factor to the first class made them less sensitive to the 

composition of the inspection team. 
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Wohlin et al. [71] describe an empirical study for estimating defect content for only two 

reviewers. Because estimates are unreliable if there are too few reviewers (the estimates 

have high relative errors and/or high relative error variability) several experience-based 

approaches are evaluated using historical data. The experience-based approaches are com-

pared to the capture-recapture, detection profile and Cumulative Methods that only use 

data from the current review in terms of the relative errors of their estimates. Three as-

pects that are considered include: 

• Computation of review effectiveness and efficiency. Review effectiveness measures 

the number of defects found compared to the total number of defects in the review 

object. Review efficiency measures the number of defects per unit of time. The review 

effectiveness and efficiency is derived in three ways: 

1. L ni/L Ni, where ni is the observed number of defects in review i and Ni is 
i i 

the actual number of defects in review i. This is an effectiveness measure denoted 

as PI. 
a 

2. (Lni/Ni)/a, where a is the number of reviewers. This is a mean effectiveness 
i 

measure denoted as P2. 

3. Efficiency, denoted as P3, is derived based on the effectiveness per time unit, it 

includes review time as a parameter. Effectiveness of a specific review is divided 

by the time spent on the review . 

• Use of experience in terms of review effectiveness and efficiency. These measures are 

applied in three ways: 

~ 1. Individual reviewers base, denoted as 1. (Estimation is based on the experience 

of individual reviewers.) 

2. Group~experience base, denoted as G, (Reviewers are grouped according to their 

backgrounds) . 

3. Average reviewer base, denoted as A. (Estimations is based on an average for all 

reviewers) . 
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• Estimation approach. The two estimation approaches considered include: 

1. Mean of individual estimates, MV. 

2. Maximum-likelihood method, MLE. 

Combining the alternatives for the three aspects results in 18 (3*3*2) different experience­

based methods (EBMs). To reduce this number, Wohlin et a!. [71] compared the alternatives 

for each of the three aspects to each other using statistical methods. For derivation of 

review effectiveness and efficiency, [71} evaluated the three alternatives, PI, P2, and P3, in 

all possible pairwise comparisons by applying Fisher's PLSD (Protected Least Significant 

Difference), a parametric test similar to at-test [71]. The alternative that includes review 

time is significantly worse than the other two. Thus, it is better to use review effectiveness 

than review efficiency. 

The three alternatives for use of review effectiveness measure were also evaluated in all 

possible pairwise comparisons. An ANOVA test showed no statistical differences. 

[71] applied a t-test (for the absolute error) to compare the two estimation approaches. 

The test showed there is a significant difference between the two approaches. Looking at 

the estimates from the two approaches, the maximum-likelihood estimator performed better 

than the averaging approach. 

This left six (3*2*1) EBMs to evaluate. The six EBMs include: 

• A. EBM (PI-I-MLE) 

• B. EBM (PI-G-MLE) 

• C. EBM (PI-A-MLE) 

• D. EBM (P2-I-MLE) 

• E. EBM (P2-G-MLE) 

• F. EBM (P2-A-MLE) 
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These six EBMs were compared against the direct estimation methods mOml, mtml, mhjk, 

dpm(exp), mthChao. The methods were evaluated using the mean absolute relative error, 

standard deviation, and maximum error. 

Evaluations show that the mthChao estimator was the only method that showed signif­

icant statistical results. It performed much worse than the others. The authors performed 

a subjective evaluation to identify the models that they considered best and that warranted 

further study. Results of the subjective evaluation identified four experience-based methods 

(A, C, D, F) and the mhjk estimator as candidates for further study. These four EBMs 

use review effectiveness rather than efficiency on an individual or average basis with the 

maximum-likelihood estimation approach. 

One problem with capture-recapture models is that they often provide extreme under­

and over-estimations. That, in turn, provides little confidence in the methods. Briand, 

et a1. [7] address this problem by enhancing the Detection Profile Method and integrating 

it with capture-recapture models. Their technique uses selection criteria to decide which 

model to apply based on the' characteristics of the data. 

The Detection Profile Method (dpm) requires the defects to be exponentially decreasing 

in terms of the number of reviewers that found them, and that some defects are found by 

only one reviewer. These assumptions may not always be met. If the data is not exponential, 

it may result in high estimates, especially if at least one inspector found no defects. Their 

method improves on the dpm by 

1. Taking into account the different shapes a fitted curve might have; and 

2. Providing selection criteria to choose between these curves. 

Two curve shapes are considered: exponential and linear. Use of an exponential fit versus a 

linear fit is determined based on the R2-value (the coefficient of determination that measures 

the goodness of fit of the curve to the data). The fit that gives the largest R2-value is 

selected. If the number of defects found by exactly one inspector is zero, the exponential 

curve may still provide a good fit, or it may not. In this case, an exponential fit is selected 
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only if the following ordering holds: 

(2.16) 

where 

k is the number of inspectors. 

Ii is the number of defects found by i inspectors. 

If the underlying data is indeed exponential, this ordering will hold and an exponential 

curve will fit better than a linear curve. 

The authors evaluated four dpm strategies: 

1. Always fit exponentially (used in [69}). 

2. Always fit linearly. 

3. Select either the exponential fit or the linear fit based on R2. 

4. Select either the exponential fit or the linear fit based on the strict ordering criterion. 

Table 2.9 shows the strategies investigated by Briand et al. [7]. It also shows the results 

of the comparisons among the strategies. 

a e .. rIan s T bl 2 9 B' d' DPM . d strate~ les summarIze . 
Stragegy Description Results 

1 DPM (exponential) 
2 DPM (linear) 
3 Select DPM (exp or linear) 

based on R2 
4 Select DPM (exp or linear) Best of 1-4. 

based on strict ordering (ED PM) 4 comparable to 5 
5 eRe models (mhjk, mhChao, mtml) 
6 Selection between EDPM and 6 better than 4 or 5 alone 

eRC (mhjk) in some cases and never worse. 

Results show that the fourth strategy, the strict criterion ordering, is the best of the 

four strategies. Briand, et al. [7] compared the strict ordering strategy, called the Enhanced 

Detection Profile Method (EDPM) with the capture-recapture models. They applied the 

Mh model, since that model was preferred in their previous study [6], using the jackknife 
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estimator and the Chao estimator. They also used the estimator Mt(mtml), since it was 

used for comparison purposes in [69]. Results show that the EDPM is comparable, but not 

a major improvement over existing capture-recapture models. 

The authors also present a selection strategy between EDPM and capture-recapture 

models. If R2 ~ 0.8 and is statistically significant at the level of 0.01, then EDPM should 

be selected, otherwise a capture-recapture model should be selected, specifically Mh(mhjk). 

(R2 can be high and the confidence level low, if there are few inspectors and few defects 

are found.) Results show that when using the selection strategy between the EDPM and 

the capture-recapture models, in some cases estimates were better than when using either 

EDPM alone or capture-recapture alone. In no case was the selection strategy between 

EDPM and capture-recapture worse. 

The static defect estimation methods investigated in this thesis include Capture­

recapture methods, the Detection Profile Method, the Cumulative Method, as well as a 

simple experienced-based method proposed in Chapter 8.1.1. The case study in this thesis 

applies the defect estimation methods, not to estimate the number of defects remaining 

after inspection, but rather to estimate the number of components that have defects after 

release that were defect-free in system test. In addition, the case study uses defect data 

from different test sites, rather than different reviewers. Chapter 8.1.1 describes the rea­

sons for this novel approach. This thesis also proposes and evaluates a method to use defect 

estimations as one criterion in Inaking decisions regarding continuing and stopping system 

test. 

2.5 Defect Estimation using Dynamic Models 

2.5.1 Software Reliability Models 

Static and dynamic software reliability models exist to assess the quality aspect of 

software. These models aid in software release decisions [14]. While a static model uses 

software metrics, like complexity metrics, results of inspections, etc. to estimate the number 

of defects in the software, a dynamic model uses the past failure discovery rate during 
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software execution or cumulative defect profile over time to estimate the number of failures. 

It includes a time component, typically time between failures. 

Musa et al. [37] make a distinction between failures and faults. A failure is a departure 

from how software should behave during opertion according to the requirements. Failures 

are dynamic: The software must be executing for a failure to occur. A fault is a defect 

in a program, that when executed causes a failure(s). While a fault is a property of the 

program, a failure is the property of the program's execution. 

Dynamic models measure and model the failure process itself. Because of this, they 

include a time component, typically, they are based on recording times ti of successive failure 

i (i ~ 1). Time may be recorded as execution time or calendar time. These models focus on 

the failure history of software. Failure history is influenced by a number of factors, including 

the environment within which the software is executed and how it is executed. A general 

assumption of these models is that software must be executed according to its operational 

profile, that is test inputs are selected according to their probabilities of occurring during 

actual operation of the software in a given environment [36]. Many dynamic !models have 

been developed [23, 29, 38, 37, 74, 76], based on various sets of assumptions about the 

software and its execution environment. 

Many dynamic models try to assess whether a given testing approach is likely to dis­

cover more failures [15, 16, 77}, increase coverage [27, 28, 12], attain a given reliability 

criterion [35, 37, 77], or meet some other software testing objective to determine when to 

stop testing. [37, 38, 63] use SRGMs as stopping rules. 

Many dynamic models have been developed [23, 29, 38, 37, 74, 76], based on various 

sets of assumptions about the software being executed and the execution environment. 

Trachtenberg [63] presents a framework for the dynamic models. The Trachtenberg-General 

model assumes that software failures occur when software faults are encountered during 

software execution. The rate at which failures are experienced is defined as 

df = A = df de dx = s . d . w 
dt de dx dt 
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where 

x is the number of executed instructions. 

e is the number of encountered errors. 

f is the number of failures. 

S, s are the initial and current average size of remaining errors (measured as failures 

per encountered error). The average size of remaining errors is proportional to the 

probability of failure of the remaining software error. 

d is the apparent error density (measured as number of encountered errors per 

executed instruction). 

D = dR/r is the actual error density. 

Rand r are the initial and current renlaining errors, respectively. 

W, w are the initial and current workload (measured as the number of instructions 

per unit time). 

The classical models of software reliability can be derived from Trachtenberg's General 

Model by modifying assumptions for the parameters, s, d, and ttl. Musa's model [37], for 

example, assumes that the average size of remaining errors, s, is constant, that the apparent 

error density, d, is the same as the actual error density, D, and that the workload, w, is 

constant. In this model, the failure intensity decreases a constant amount each time a defect 

is removed. (The general assumption is that all defects are corrected when discovered.) 

The failure rate decreases at the same rate at which remaining errors decrease. The failure 

intensity, A, is given in [37] as 

where 

Ao is the initial failure intensity (or hazard rate). 

Yo is the total number of failures that would occur in infinite time. 

JL is the expected number of failures at a time t. 

The failure intensity function can also be expressed in Trachtenberg's model as 

A = _ dr = SDWeSDWt/R 
dt 
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Musa's basic model [37] uses failure data from execution to characterize the failure 

process. The expected number of failures is expressed as a function of time t. 

(2.17) 

In the absence of failure data, Ao and Vo must be predicted. If failure data exists, both pa-

rameters are estimated using maximum likelihood estimation or some other suitable method. 

Given a target failure intensity, one can derive the number of additional failures or the 

additional amount of execution time needed to reach the desired failure intensity. This 

provides valuable information to system testers in making decisions to release software. 

Musa's basic model [37] makes the following assumptions: 

• Test input is selected randomly from a complete set of inputs anticipated in actual 

operation. (The operational profile specifies the probability that a given input will be 

selected.) 

• All software failures are observed. 

• Failure intervals are independent of each other. 

• The execution time between failures is exponentially distributed and the failure rate 

is constant during the interval between failures. (The failure rate changes at the 

correction of each defect.) 

• The failure rate is proportional to the number of failures remaining. 

• The failure detection rate is proportional to the failure rate. 

There is a whole body of knowledge of software reliability growth models 

[36, 37, 23, 29, 63, 74, 76] with many studies and applications of the models in various 

contexts (38, 72, 73]. Like the Musa model, the Goel-Okumoto (G-O) model, the Goel­

Okumoto S-shaped model [74], the Gompertz model [29], and the Yamada Exponential 

model [76] all assume testing follows an operational profile. They also assume that the 

software does not change, except that defects are fixed when discovered. The models differ 

in their assumptions either in terms of workload, error size, or failure intensity. 

65 



Some models use a non-homogeneous Poisson process (NHPP) to model the failure 

process. The NHPP is characterized by its expected value function, J.L(t). This is the 

cumulative number of failures expected to occur after the software has executed for time t. 

J.L(t) is nondecreasing in time t with a bounded condition, J.L(oo) = a, where a is the expected 

number of failures to be encountered if testing time is infinite. Different nondecreasing 

functions J.L(t) give NHPPP models. Musa's basic model [37], the G-O model, the Goel­

Okumoto S-shaped model [74), the Gompertz model [29], and the Yamada Exponential 

model [76] are all based on an NHPP. 

The expected value function for failure intensity can be put into two shape classes: 

concave and S-shaped [72]. S-shaped models are first convex, then concave. The S-shaped 

growth curves start at some fixed point and increase their growth rate monotonically to reach 

an inflection point. After this point, the growth rate approaches a final value asymptotically. 

The S-shaped models reflect an assumption that early testing is not as efficient as later 

testing, so there is a period during which the failure-detection rate increases. This period 

terminates, resulting in an inflection point in the S-shaped curve, when the failure-detection 

rate starts to decrease. 

Software reliability growth models predict the number of failures, It, at time t, or JL(t). 

The G-O model [23] (similar to the Musa model) is a concave model. It uses the function 

J.L(t) = a(l - e-bt
), a ~ 0, b > 0 (2.18) 

where 

a is the expected total number of failures that would occur if testing was infinite. 

It is the upper limit that the reliability (or number of failures) approaches 

asymptotically as t approaches infinity. (a = Vo in Eq. 2.17.) 

b is the rate at which the failures detection rate decreases. It is a shape factor for the 

curve. (b is Ao/vQ in Eq. 2.17.) 

The assumptions for this model are the same as for the Musa model. 

The delayed S-shaped model [74] is a modification of the G-O model to make it S-shaped. 

An S-shaped reliability growth curve describes a reliability growth trend with a lower rate 
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of failures occuring during the early stages of development and a higher rate later. It is 

given by: 

/L(t) = a(l - (1 + bt)e-bt
) , a ~ 0, b> ° (2.19) 

where 

a is the expected total number of failures that would occur if testing was infinite. 

(a = Vo in Eq. 2.17.) 

b is the failure detection rate during the steady-state, that is the value to which the 

rate converges as t approaches infinity. (The failure intensity rate initially increases 

increases from t = 0 to t = lIb and then gradually decreases, approaching zero.) 

The delayed S-shaped model makes the following four assumptions: 

• The failure detection process is a non-homogeneous process, that is the characteristics 

of the probability distribution vary over time. 

• The time to failure of an individual fault follows a gamma distribution with a shape 

parameter of 2. 

• Each time a failure occurs, the error that caused it is immediately fixed, and no other 

errors are introduced. 

• The initial error content of the system is a random variable. 

The G-O models have two parameters; other models may have more parameters. The 

Yamada exponential model and the Gompertz model are two such examples. 

The Yamada Exponential, a concave model [76], attempts to account for differences in 

testing effort. It does not assume that testing effort is constant over the testing period. It 

is given by the equation: 

{let) = a(l - e-bc(l-e<-dt»)), a ~ 0, be > 0, d > 0 (2.20) 

where 

a is the expected total number of failures that would occur if testing was infinite. 

(a = Vo in Eq. 2.17.) 
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b is the failure detection rate per unit testing-effort. (b is >'o/vo in Eq. 2.17.) 

c and d are parameters in the testing-effort function. To account for a variable amount 

of effort, c and d are based on assuming an exponential form for the testing effort 

function [3]. The parameters are estimated using least-squares. 

The Yamada exponential model makes the following five assumptions: 

• The failure process is a non-homogeneous process, that is the characteristics of the 

pro bability distribution vary over time. 

• Each time a failure occurs, the error that caused it is immediately fixed, and no other 

errors are introduced. 

• Testing-effort is described by an exponential curve. 

• The expected number of failures in a time interval to the current testing-effort expen­

ditures is proportional to the expected number of remaining errors. 

Another popular model to estimate remaining failures is the Gompertz model [29]. it 

has been widely used to estimate software error content [74]. It works by fitting a curve to 

the data using regression analysis. The Gompertz model [29] is an S-shaped model. It is 

given by the following equation: 

(2.21) 

where 

a is the expected total number of failures that would occur if testing was infinite. 

(a = Vo in Eq. 2.17.) 

b is the rate at which the failures detection rate decreases. (b is Ao/'lJo in Eq. 2.17.) 

c models the growth pattern (small values model rapid early reliability growth, and 

large values model slow reliability growth). 

Table 2.10 summarizes the models used in this study. 

Two common ways for estimating the function's parameters from data are the maxi­

mum likelihood and regression methods. The maximum likelihood method estimates the 
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Table 2.10: Software reliability growth models used in this study. 
I Model I Type I Equation (JL(t)) I Reference I 

G-O or Musa Concave a(l - e-bt ), a;:::: 0, b>O [23] 

Delayed S-shaped S-shaped a(l - (1 + bt)e-bt ), a;:::: 0, b > 0 [741 

Gompertz S-shaped a(bct
), a ;:::: 0, 0 ~ b ~ 1, e > 0 [291 

Yamada Concave a(l - e-bc{1-e<-dt)), a ;:::: 0, be> 0, d>O [76] 
Exponential 

parameters by solving a set of simultaneous equations, usually numerically. Methods for 

estimating parameters for the G-O model and the delayed S-shaped mode are provided in 

[23] and [74], respectively. For the Yamada exponential model, the methods to estimate the 

initial values are provided in [76]. [29] provides methods to estimate initial values for the 

Gompertz model. Parameter estimates may also be obtained using nonliriear regressions. 

This approach fits the curve to the data and estimates the parameters from the best fit 

to the data, where fit is defined as the difference between the data and the curve function 

fitting the data. 

2.5.2 Software Reliablity Models in Practice 

Goel discussed the applicability and limitations of software reliability growth models 

during the software development life cycle in [24]. He proposed a step-by-step procedure 

for fitting a model and applied the procedure to a real-time command and control software 

system. His procedure selects an appropriate model based on an analysis of the testing 

process and a model's assumptions. A model whose assumptions are met by the testing 

process is applied to obtain a fitted model. A goodness-of-fit test is performed to check 

the model fit before obtaining estimates of performance measures to make decisions about 

additional testing effort. If the model does not fit, additional data is collected or a better 

model is chosen. He does not describe how to look for a better model. The problem with 

this method is that, in practice, many of the models' assumptions are violated, hence none 
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of the models are appropriate. The method does not allow for the fact that many of the 

models are robust when assumptions are not met. 

SRGMs have many assumptions that must be met regarding testing and defect repair 

that are not valid in actual software development and test environments [731. The realities 

are: 

• It is difficult to define operational profiles and perform operational tests. 

• Defects may not be repaired immediately. 

• Defect repair may introduce new defects. 

• New code is frequently introduced during the test period. 

• Failures are often reported by many groups with different failure-finding efficiency. 

• Some tests are more or less likely to cause failures than others. 

For the software practitioner, the assumptions or conditions for the SRGMs are an open 

problem, because they are often violated in one way or another. Several studies have found 

that even so, SRGMs perform well in practice. Two industrial applications of reliability 

measurement are described in [38]. Despite distributional assumption violations, in both 

cases, reliability measurements performed well in predicting failure rates, demonstrating 

that reliability measurement may be used in industry. 

Wood compared the assumptions of SRGMs to Tandem's defect removal environment 

and points out two key differences [73]. These include the introduction of new code during 

system test and varying defect-finding efficiency of tests. Wood also points out the effects 

of violating the model's assumptions. They are: 

• The number of defects increase during testing rather than remaining constant . 

• The defect-finding efficiency of tests per unit of time varies rather than remaining 

constant. 

Wood [73] proposed three approaches to accommodate model assumption violations with 

advantages and disadvantages discussed for each. The easiest approach is to ignore the 
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violations. This keeps the model simple, but causes some loss of accuracy. Parameter 

estimation, however, may compensate. The second solution proposed involves modifying 

the data. This approach is easy to implement, because the standard models can be used 

with the modified data. Data modification, however, needs to be based on a mathematical 

model. A third approach is to derive new models to fit the test environment. These models 

are more complex. While they are more accurate, they are more difficult to derive and to 

apply. In Wood's experimentation with data from Tandem, the simple models performed 

reasonably well despite assumption violations, although the confidence limits were wide. In 

some cases, the data had to be modified. 

In [72], Wood applied eight reliability models to a subset of software products with four 

releases to determine which model performed the best in predicting the number of residual 

defects. This study shows that software reliability growth models based on cumulative 

defects predict the number of remaining defects that are close to the number of defects 

reported in post-release. The cumulative number of defects by week are fitted with software 

reliability growth models. If the correlation is good, the function can predict the number 

of remaining defects in the system. 

One may use a software reliability growth model in industrial applications in two ways: 

L During system test to predict the additional test effort needed to achieve a desirable 

quality level in terms of number of remaining failures. 

2. At the end of system test to predict the number of remaining failures that could be 

reported in post-release. 

A useful model must become and remain stable. Predictions week by week should not 

vary much. According to Wood [72], the prediction should not vary by more than 10 

percent from week to week. Stability requires a reasonable amount of data that may not be 

available until several weeks have passed. A useful model must also be reasonably accurate 

at predicting the number of faihrres in post release. 

In {72], predictions were attempted using execution time, calendar time and number of 

test cases. In the environment in \Vood's study [72], execution time was a better measure 
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of amount of testing. Using calendar time, curve fits diverged in earlier test weeks, making 

it impossible to obtain predictions. In later weeks, predictions were unstable, especially in 

comparison to execution time. 

2.6 Research Matrix 

An integrated approach to assessing and guiding testing activities needs to combine the 

following: 

1. Assessment (Single and Multiple Releases) 

• Analysis of fault-prone modules or components. 

• Assessment of code decay and architectural decay. 

2. Test Guidance and Release Decisions 

• Prioritizing testing activities. 

• Defect estimation. 

The following tables illustrate existing work in these areas. Existing assessment methods 

are classified by type of data used in the analysis, and whether the analysis applies to indi­

vidual modules, module interactions, single releases, across releases, or across development 

phases. 

Tables 2.11 - 2.13 summarize existing work related to testing effectiveness and 

efficiency. The columns in each table indicate subareas of research, for example, whether 

fault-proneness is based on measures within a module or between modules. Research is 

also classified by analysis across releases, across development phases, or neither. The tables 

also distinguish existing work by the type of data used: product measures, such as code 

complexity, number of lines of code, number of operands, etc.; or defect data, or change 

data. Asterisks (*) in Tables 2.11 - 2.13 show the areas in which the work in this study will 

contribute. 

Table 2.11 classifies research in the area of fault-prone analysis. The columns indicate the 

fault-prone analysis methods that use product metrics, defect data or change data. (Change 
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data may refer to changes made to modules to fix defects or reuse and modification data.) 

The rows identify whether fault-prone components are identified based on module char­

acteristics or characteristics between modules (inter-module). Analysis for fault-proneness 

Table 2 11- Research Matrix for Fault-Prone Classification Methods 
Data Type 

product metrics change data defect data 

MODULE 
Multi releases [41, [41], [31], [32] [4], [40), [31], (32] (41], * 
Across phases [8], [30], [33], [421, [43] [30], [33] * 
Single release [25], (57] [25] 
INTER-MODULE 
Across phases [8], [42], [43] See Table 2.12 

is sparse when it is based on defect data or change data alone. This is especially true in 

across-phase defect data analysis. Components identified as fault-prone in earlier phases 

of development based on defect data should probably be targeted for more intense testing. 

It also might help to track them in later phases and across releases to see whether they 

continue to have problems. Thus, fault-prone components during development might be 

used to guide testing. Yet, so far, methods have not been developed to do this. 

Table 2.12 classifies research related to reverse architecting and code decay. The row 

and column categories for Table 2.12 are similar to the ones in Table 2.11. Two columns 

separate the research in reverse architecting and code decay. This is because the work on 

code decay analyzes the architectures built to identify parts of the software that may be 

problematic and in need of more attention. 

All work on code decay used industry data, except for [62]. Most work concentrated on 

identifying fault-prone modules. Very little work has been performed in identifying fault-

prone relationships, that is, inter-module problems. Table 2.12 also shows that more work 

is needed to analyze fault-prone relationships across development phases using defect data. 

Only one group of researchers [30, 33] has done any work in this area. 

Table 2.13 classifies research in the area of defect estimation that may be used to make 

release decisions. The columns identify several categories of defect estimation methods. 
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T bl 212 R a e : esearc hMt' £ R a rIX or everse A hOt t' rc 1 ec Ingan de d D o e ecay M th d e o s 
Reverse Architecting Code Decay 

product metrics product metrics change data defect data 

MODULE 
Multi releases [62] [2], [40} [18], [22], (40] [40}t * 
Across phases [30}, [331 [301, [33] * 
Single release {25} [25] 
INTER-MODULE 
Multi releases [34], (62], (65), [66] [40] [40], [65], {66] [40], [65], {66J 
Across phases 
Single release [20) 

They include capture-recapture models, curve-fitting methods, experienced-based methods 

and reliability models. Some integrate several methods, Some do not belong to any of the 

categories and are classified as "other," Row categories are similar to the ones in Tables 2.11 

and 2.12, 

Table 2.13: Research Matrix for Defect Estimation Methods. 
CRe Curve-fit Exp.Based SRGMs I Other 
defect defect defect failures I product change 

MODULE 
M ul ti releases [5] 
Across phases [5), [78] 
Single Release [13], (25) [13], [25] 
SYSTEM 
Single [6}, [7], [17], [7], [46], [461, [49] [37], [381, 
release {19} , [46], [59J, [69] [39], [72], 

[49], [59], [73], [77], 
[71J, * * * * 

Table 2.13 shows there has been a great deal of work in estimating the number of defects 

remaining in a system. (All work in Table 2.13 used industry data, except for [59], which 

used simulations.) Not as much research has been done in estimating the number of defects 

remaining in a module. Defect estimation methods for modules are more difficult to develop, 

because there is usually not as much data (per module). An area that has a need for more 

work is in the use of product metric data for defect estimation. So far, product metrics have 

mostly been used to identify fault-prone components, not to estimate remaining defects in 

them or the system. 
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Another area lacking is in the application of defect estimation methods across releases 

or phases. Capture-recapture and curve-fitting methods have been used in inspections. 

They also have potential for other phases of development, such as testing. In addition, 

these techniques have been used to estimate the remaining number of defects, but may 

potentially be used to estimate the number of components with defects, if the system is 

large enough and has many components. 

SRGMS have underlying assumptions that may be violated in practice. Despite this, 

many are quite robust and may be used for defect estimation to make release decisions. The 

problem is that it may not be obvious which model(s) to use as failure data is collected. 

More research is needed in this area. 

In addition, there is very little research in prioritizing testing activities. Rothermel et 

al. citerothermel investigates ways to priotitize test cases using white box techniques. While 

[331 suggests that code churn can predict fault-prone modules and may recommend modules 

for earlier testing, no research has been performed using black box techniques to prioritize 

testing activities to improve efficiency. Our case study investigates this area. 

Tables 2.11 - 2.13 clearly illustrate where research is lacking. In the area of fault-prone 

analysis, little research has been done to identify components that are fault-prone using 

defect data from earlier phases of development. In the area of fault architecture analysis, 

there is no research on using defect data from different phases of development to build fault 

architectures. To address some of the deficiencies in prior research, this thesis will answer 

the following research questions. 

• Can analysis of defect and change data from earlier phases of development be used to 

guide system testing? 

• Can reverse-architecting techniques be used to build fault-architectures? 

There is already a great deal of research in the area of defect estimation. Most defect 

estimation methods attempt to estimate the number of remaining defects in a system. A 

few methods are concerned with estimating the number of remaining defects in modules. 

No method estimates the number of remaining components with defects, which may also 
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be used to make release decisions. Two major areas of defect estimation, capture-recapture 

and curve-fitting, estimate remaining defects after reviews. They do not estimate remaining 

defect content after testing. If there are several testers or testing groups, there is potential 

that these techniques can be applied in the system test or acceptance test phases. This 

thesis will answer the research questions: 

• Can the number of remaining components with defects be estimated? 

• Can defect estimation be used to make release decisions? 

A lot of research has occurred on the subject of SRGMs. Many of the approaches are 

based on models with assumptions about distributions, independence of tests, etc. Most 

existing SRGMs either use data from previous releases, subjective data based on developers' 

experience, or a great deal of data within the testing phase of the current release. This thesis 

proposes a selection method to determine model(s) that are appropriate to use to estimate 

defect content for the purpose of making release decisions. 

This chapter described the research in regards to testing effectiveness and efficiency and 

. pointed out the subareas that could benefit from more research. To address this, this thesis 

presents an integrated approach and applies it in a case study involving a large medical 

record system. Of particular interest is the use of defect and change data from development 

to guide system testing and using defect data from system test to make release decisions. 

The following chapters describe this approach and apply it in a case study. 
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Chapter 3 

Approach 

The approach used to develop an integrated method to improve testing effectiveness and 

efficiency involves several techniques. Release Quality Assessment uses fault-prone compo­

nent and fault architecture analysis techniques. Assessment results aid in developing testing 

guidelines and strategies to focus testing on the problematic parts of the software and priori­

tize testing activities. Corresponding to the Release Decision part of the integrated method, 

static and dynamic defect estimation methods are used to make release decisions. A testing 

strategy that recommends prioritizing testing activities has the potential to enable earlier 

release decisions. Multi-Release Quality Assessment performs fault-prone component anal­

ysis and fault-architecture analysis across several releases. The analysis enables additional 

testing strategies and guidelines to be developed. Figure 3.1 shows the types of analysis for 

each part of the integrated method as described in Section 1.1. 

Fault-prone 
Component Analysis 

Fault Architecture 

Release Quality 
Assessment 

Focus Testing 

--.. 
Prioritizing Testing 

Activities 

Testing Guidelines 

Static and Dynamic 
... 

Defect Estimation --
Methods 

Release Decisions 

--. 
Fault-prone 

Component Analysis 

Fault Architecture 

Multi-Release Quality 
Assessment 

Figure 3.1: Techniques used to improve testing effectiveness and efficiency. 

The type of data available drives the questions that can be asked, as well as the kinds 

of methods that can be used. The approach uses defect data (failure reports) from develop-

ment, testing, and post-release over several releases of a large system based on the idea that 
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past behaviour is often the best predictor of future behavior. Questions that are important 

to testers are: 

• Do components that have errors after release have problems in other phases of the 

software development life cycle? 

• Does product quality during development have any impact on the number of defects 

found in testing or after release? 

• Is it possible to identify parts of the system that are fault-prone during development, 

and because of that cause extra testing work? 

• Is it possible to use defect data from development to identify better testing guidelines 

during system test? 

• Is it possible to identify fault-prone relationships between components early? How 

can this information be used for more effective tests? 

• Should parts of a system that were identified as problematic in the previous release, 

be tested more intensely and earlier in the next release? 

• Is it possible to estimate the number of components that will still have defects after 

release by looking at the number of components that had defects during system test? 

• Can data from system test guide release decisions? 

An integrated method was developed to answer these questions and to improve both 

testing effectiveness and efficiency. Techniques used in each part of the integrated method 

are described below. 

1. Perform Release Quality Assessment. 

Many attributes of a software project influence the software testing effort, both its 

effectiveness and efficiency. Example attributes are complexity of the problem, sched­

ule urgency, and the quality of work during design and implementation. Of particular 

interest is whether defects found during development are related to the occurrence of 

defects during testing. The rationale for such a relationship is that: 

78 



• Components with severe or systemic problems during development carry a higher 

risk of not being completely fixed at the start of system test. 

• They are more likely to exhibit long term problems. 

• These problems are more likely to be severe. 

• If this is the case, defect data from development can guide testing. 

The approach requires the analysis of system defect reports from development and 

system test. The approach uses the following techniques to perform the assessment. 

(a) Use GYR analysis [40] to identify fault-prone components within development 

and system test. 

(b) Create a fault-prone component directory structure [40, 65, 66] to identify fault­

prone components within development and system test. 

(c) Create component level fault architectures for development and system test to 

identify components in fault-prone r~lationships. 

An important issue for testers is to what degree they preve:p.t post-release defects and 

which types of components make it into release with undetected defects that show up 

after release. To address this issue, the approach also applies fault-prone component 

analysis and fault architecture analysis to post-release defect data. 

2. Develop Testing Guidelines and Strategies. 

The approach recommends basing testing guidelines and strategies on quality assess­

ment results. 

(a) Identify components that should be tested more thoroughly. 

Components that are problematic in earlier development life-cycle phases are 

likely to have problems during system test and post-release. Efforts to test these 

components more thoroughly aids in finding the defects in test, rather than in 

post-release. 
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(b) Test problematic components earlier. 

Specifically, components that are fault-prone during development or earlier re­

leases should be system tested at the earliest possible time. This would shift 

higher defect intensities earlier in the test cycle, giving developers more time to 

fix remaining problems. 

3. Make Release Decisions. 

Two factors that influence testing efficiency are cost and yield. Cost can be expressed 

in terms of cost of test generation (e.g. random test generation is cheaper than test 

generation by symbolic execution), cost of test execution (thus one wants to execute 

as few tests as possible and automate execution), and cost of test validation (self 

validating tests are cheaper than tests that require a fair amount of manual tester 

effort). Yield can be expressed either in coverage elements found (for example number 

or proportion of branches covered) or faults exposed (alternatively one could record 

failures). This thesis is concerne~ with yield in terms of defect reports (or failures). 

Given that they also report when they occurred, this case study uses defect reports 

as failures or faults exposed~ depending on the analysis technique applied. 

Software developers are concerned with finding defects as early as possible in the 

development of software. Certainly, they would prefer to find defects in system test 

rather than after release of the software. Methods that estimate defect content after 

release aid software testers in making decisions to stop testing and release software. 

Steps in this approach are: 

(a) Use static defect estimation techniques to estimate the remaining number of 

defective components in the software. 

Traditionally, capture-recapture models and curve-fitting methods are used to 

estimate the remaining number of defects based on inspection reports from sev­

eral reviewers. The approach applies these methods in a novel way to estimate 

the number of components that have defects after release but are defect-free 

in system test. The approach also uses a simple experience-based method that 
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does not require product or process metrics, although it does require data from 

previous releases. 

Estimation is based on data provided by test groups from different test sites. 

Each test site takes the role of the "reviewer" in the models. Test groups should 

test the software in parallel, that is they should "review" the same system. Sim­

ilarly, one could define subgroups within a system test group that test the same 

software. 

Quality of estimation is evaluated by 

• Estimation error . 

• Decision error. 

The decision to stop or continue testing is based on the estimated number of 

components that are not defect-fr~e after release for which no defects were 

reported in system test. 

(b) Apply the SRGM selection method to estimate the number of failures that will 

occur after release. 

Methods that estimate remaining failures in software can help test managers 

make release decisions during testing. Various software reliability growth 

models [23, 24, 29, 38, 37, 74, 75, 76] have been used to estimate remaining 

defect content. The problem with using SRGMs to estimate defect content is 

that they have underlying assumptions that are often violated in practice. De­

spite the fact that empirical evidence has shown that many of the models are 

quite robust in practice, it is often difficult to decide which model to apply in 

light of these assumption violations. The "best model" can vary across systems, 

and even releases. One cannot select one model and apply it in later releases or 

other systems. 

Thus it is important to have an (iterative) selection method for these models 

that is based on the failure data collected. The approach in this thesis applies a 

series of models as soon as testing has progressed to a point in the test plan that 

it makes sense to worry about whether to stop testing. The selection method 
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determines the best model(s) for estimating the total number of failures in the 

software. From this estimate, the expected number of remaining failures is cal­

culated. 

(c) Use the estimates to make release decisions. 

The approach compares the estimates from the static and dynamic estimation 

methods to acceptability thresholds. If the estimates are above the thresholds, 

the approach recommends stopping test and releasing the software. 

4. Perform M ultiple-Release Quality Assessment. 

Identification of fault-prone components and fault-prone component relationships is 

desirable so that steps can be taken to more thoroughly expose the nature of problems. 

This may include more intensive testing of fault-prone components and relationships, 

or performing code decay analysis. Code decay analysis involves identifying code that 

increasingly becomes problematic over time and more difficult to maintain, with the 

objective' of taking steps to prevent further degradation. 

Of particular interest is whether problems identified in earlier releases are indicators 

of problems in future releases. The rationale for such a relationship is that parts of 

the software with severe or systemic problems in earlier releases are more likely to 

exhibit long term problems, and that these problems are more likely to be severe. If 

this is the case, one can use defect reports from earlier releases to guide testing. 

Defect analysis identifies both components and relationships between components that 

are problematic. A defect cohesion measure at the component level is an indicator 

of problems local to the component, while a defect coupling measure between two 

components is an indicator of relationship problems between components [66}. High 

values in either are undesirable, indicating problems. The problems they indicate 

are of different types. High defect cohesion nleasures identify components that have 

problems locally, that is, they have internal problems. High defect coupling measures 

identify relationships between components that are broken. 
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The approach uses the defect coupling measures in a reverse architecting technique 

presented in [40, 65, 66] to derive "fault architectures." One can identify and high­

light problematic components and relationships that occur over multiple releases, and 

ignore components and component relationships that are not problematic. 

The steps in the approach are: 

• Uses two defect cohesion measures to identify fault-prone components. 

• Uses two defect coupling measures to identify components that have many fault 

relationships. 

• If the objective is to focus on the most problematic parts of the software archi­

tecture, use filters. Our approach investigates a method of setting the threshold 

based on order of magnitude, that is to 10% of the largest measure. 

• Perform cross-release and cumulative release analyses using Fault-Prone Com-

ponent Analysis and the Fault Architecture technique. 

Identifying problematic parts of the system will enable system testers to focus testing 

on these parts of the system. Persistent problems involving multiple components over 

several releases may indicate the need for more intense testing or rearchitecting. 

Chapter 4 describes the data used in the case study that applies the integrated method. 

Chapters 5 - 9 describe the techniques in the integrated approach in more detail and applies 

them to the data. 

Chapter 5 describes the approach taken to determine components that are fault-prone. 

It applies the approach to develop testing guidelines for system test to improve testing 

effectiveness. Testing guidelines developed using the first release are applied to the second 

release to evaluate the effectiveness of those guidelines. The effect of the testing guidelines 

on efficiency improvement are evaluated. 

Chapter 6 describes the fault architecture technique and applies it to fault data to 

identify problematic parts of the software that should be tested more. This assessment may 

be used to develop additional testing guidelines and to make longitudinal decisions. 
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Chapter 7 describes the approach of prioritizing testing of fault-prone components. It 

looks at the effect this has on the cumulative defect curve that may in turn affect release 

decisions. 

Chapter 8 describes static defect estimation methods to estimate defect content and 

applies them in a new way. It estimates the number of components that have defects in 

release thaf do not have defects in test. The estimates are then used to make release 

decisions. 

Chapter 9 introduces a selection method for software reliability growth models to esti­

mate the total number of failures. The purpose of this method is to make release decisions. 
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Chapter 4 

Case Study 

4.1 Data 

The defect data come from a large medical record system, consisting of 188 software 

components. Each component contains a number of files that are logically related. The 

components vary in the number of files they contain, ranging from 1 to over 800 files. In 

addition, components may contain lower level components. Initially, the software consisted 

of 173 software components. All three releases added functionality to the product. Between 

three to seven new components were added in each release. Over the three releases, fifteen 

components were added. Many other components were modified in all three releases. Of 

the 188 components, 99 had at least one defect in Releases 1, 2 or 3. 

Table 4.1 shows some of the attributes for defect reports that the tracking database 

records. (The table does not list attributes that were not used in the analysis.) 

Table 4.1: Attributes recorded for defect reports. 
defect number 
release identifier 
phase in which defect was reported (development, test, post-release) 
test site reporting defect 
defective entity (code component(s), type of document by subsystem) 
whether the component was new for a release 
date the defect was reported 
defect classification 
"drop" in which the defect occurred 
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The defect classification indicates whether the defect is valid or not. Only valid defects 

are considered in this study. Software is released to testers in stages or "drops." Developers 

work on drop "i+1" when testers test drop "i." Each successive drop includes more of the 

functionality expected for a given release. Release 1 has three drops. Testing on the first 

drop started during week 54, on the second drop during week 63, and on the third drop 

during week 70. Release 2 has two drops. Testing on the first drop started during week 17, 

and on the second drop during week 22. Release 3 had one drop. 

Table 4.2 shows the attributes for repair reports that the tracking database records. 

T bl 4 2 Att'b t d d £ t a e . . n u es recor e or repaIr rep or s. 
file change number 
release identifier 
defect report identifier for which the repair is being made 
file identifier for the file being changed to repair the defect 
type of change, e.g., delta, create, delete, rename, link 
date of the file change 
component to which the file belongs 

There are approximately 6500 files in the system. The number of file changes related to 

defect repairs in a release was approximately 4200-5000. Of these, approximately 4000-4700 

were delta changes and approximately 90 were new files created for 15-20 components. 

4.2 Validity of the Case Study 

A case study is only as good as the data on which it is based and as such has limitations. 

Questions concerning the validity of the study include: 

1. What is the quality of the data and the process used to report the data? 

2. Are there any other factors that affect which methods may be used? 

3. Are the results of the case study generalizable? 

The kind of data an organization reports drives the type of analysis. Most techniques 

require defect reports to have a unique identifier and information on release, report date, 

and life cycle phase. A fix report requires an identifer, information on release, the defect it 
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is attempting to repair, the file(s) being changed, and the component or module the file(s) 

belong(s). Only an organization with a good defect reporting process can take advantage 

of the techniques in the integrated method. 

Interviews with testers at the beginning of the study allowed us to evaluate the process 

and the quality of the data. Specific interview questions include: 

• What data about the product or test process are collected? 

• Is data collected, analyzed, or processed after testing stops? 

• How is the data recorded? 

• How can one access the data? 

An on-line tracking database records detailed defect reports (see Table 4.1) and repair 

reports (see Table 4.2). Developers, testers, and customers have access to the data through 

the tracking database. The tracking database does some validation of the data recorded for 

each defect report. For example, characters cannot be entered in numeric fields and dates 

must be entered in a specific format. All attributes used in the analysis were filled out for 

every defect report. 

The organization in this case study is very good at documenting problems. The orga­

nization has a high quality development and testing environment. Assessment results show 

the software to be ~f a very high quality and it is reasonable to assume that the defect 

reporting process is likewise of very high quality. 

Interviews with testers aided in understanding the testing process more fully. They 

helped to ascertain which factors other than testing activities could affect the data. These 

interviews also determined whether underlying assumptions of models were met, what the 

quality expectations were (this was important as it drove setting thresholds for the inte­

grated method), what aspects of the testing process could be changed to improve testing 

effectiveness and efficiency, etc. Questions included: 
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• Does each group test the same system? 

• Are system test sites independent? Specifically, do they know what defects the other 

groups reported? If so, how is this information used? 

• Is there information on duplicate defects in the reports? 

• Are all duplicates consistently recorded? 

All test sites test the same system. They all have access to the on-line tracking database 

and know what defects the other groups report. There is information on duplicate defects 

in the reports, but duplicates are not consistently recorded. Test sites are encouraged to 

check the database before recording a defect and to not report duplicates. This has an 

impact 9n the capture-recapture and curve-fitting techniques which led to an adaption of 

these static defect estimation methods. 

Interview questions that concern the assumptions for software reliability growth models 

include: 

• Is testing performed according to specifications? Component by component? 

• Are old components retested after new components are added? 

• Are there failures during testing that require the faults causing the failures to be fixed 

to enable test to exercise all code? 

• When system is in testing, is the system stable? That is, are changes only a result of 

fail ure correction? 

• Do testers test a fully integrated system? If not, do we know the dates when new 

components became available for testing? 

Testing is performed on components. Old components are retested after new components are 

added, although not necessarily in the same drop. Prior to the start of system testing, the 

system test group performs a qualification test to determine if the system is ready for test. 

This reduces the number of severe failures that would prevent testers from exercising all the 

code. During testing, the system changes. Some changes result from added functionality. 

88 



Interview questions concerning clUTently used methods to make release decisions include: 

• Does the testing group currently use any stopping rules? 

• How does the testing group determine when they are done testing and what criteria 

do they use? 

System testers do not currently use stopping rules to make release decisions. Release deci­

sions are schedule driven or based on the number of defects found in the last few weeks. 

Like all case studies, this one has external validity, because it uses data from industry. It 

-is, however, only one case study. The case study involves one environment and three releases 

of the same project. Not all developing and testing environments are of such high quality. 

Each project and environment has characteristics that need to be taken into account when 

determining what techniques to apply. Some of the characteristics that are important in 

using the integrated method include: 

• An environment with a good defect reporting proces. Defects are reported via an 

on-line tracking database that validates data as it is entered and ensures all required 

attributes have values. 

• A configuration management system for reporting changes to files. 

• A tracking database that makes automated extraction easy. 

• A project large enough so that there is enough data describing the results of testing 

(at least ten weeks). 

Future work that applies this method to other projects and in other environments will 

improve its external validity. 
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Chapter 5 

Fault-prone Component Analysis 

5.1 Approach 

Fault prone components are identified and analyzed not only across releases, but also 

within releases comparing across development and test. Within a release, development 

information is used to guide testing, rather than tracking components across releases or 

looking at relationships between components to analyze code decay. Defect data from 

development is used to improve system testing, both its effectiveness and efficiency. Various 

aspects of assessment and prediction are combined, and the data is used to support suggested 

improvement activities. The first release of a software product is used to derive testing 

guidelines. Successive releases validate them. This thesis derives testing guidelines for the 

case study in Sections 5.2.1 - 5.2.4. Section 5.2.5 validates them for our case study. The 

approach consists of the following steps: 

1. Identify whether fault-prone components during development are a good predictor of 

fault-prone components during test and derive a test guideline for this situation. 

2. If prediction has false positives and false negatives, determine whether other attributes 

of components or defects would improve this prediction. Examples of such attributes 

are whether a component is new or how severe a defect is. We restrict ourselves to 

data that is usually available in a defect database. We derive a test guideline for this 

situation. 

90 



3. Evaluate effects of fault-prone components on post-release problems. Derive additional 

test guidelines. 

4. Summarize applicable test guidelines and evaluate how well they work on successive 

releases. 

5. Perform cross release analysis. 

5.1.1 Determination of Fault-prone Components 

Components are ranked by the number of defects written against them during devel­

opment and system test. Ohlsson, et a1. [41] used such a defect ranking on overall defects 

in successives release to identify components that are fault-prone across releases to identify 

possible code decay. By contrast, we use this defect ranking to identify components that 

are fault-prone during development versus those that are fault-prone during system test. 

Similar to [41] we consider a component "red," if it is fault-prone in both development 

and test. It is "green," if it is fault-prone in neither development nor test. Finally, a 

component is "yellow," if it is fault-prone in either development or test, but not both. 

Testing should focus on the "red" components. They should be tested as early and as 

thoroughly as possible. 

Setting the threshold for the number of defects that makes a component fault-prone can 

be done in two ways: 

• as a percentage of the ranked components (e.g., the top 25 percent) 

• as a function of the total number of defects. 

The decision is subjective. In our case, we wanted a fairly low threshold to avoid a large 

number of components that are fault-prone in either development or test, but not both. 

This reduces "false positives" and "false negatives" when using development fault-prone 

classification for prediction. 

The threshold was set at about an order of magnitude less than the largest number of 

defects written against a component. The approach should also attempt to identify about 

the same number of components as fault-prone in development and test. 
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A guideline that de-emphasizes testing of components that are not fault-prone during 

development would generally work well and potentially save a lot of effort, since the vast 

majority of components fall into that category. A testing guideline that emphasizes more 

thorough testing of components that were fault-prone during development would correctly 

test some components more thoroughly and "over-test" others (those that were fault-prone 

during development, but not fault-prone during system test). 

5.1.2 Consideration of Other Indicators 

If the predictions of fault-prone components lead to many false positives or false neg­

atives, consideration is given to other attributes of components and defects in order to 

improve the prediction. Attributes to consider include whether a component is new, the 

number of changes made to its files in development, etc. To reduce false negatives, one 

would want to consider components with these attributes as fault-prone, as they would 

also benefit from more thorough testing. We may still over-test components that are fault­

prone during development, but are not fault-prone during system test. However, we would 

no longer miss components that are not fault-prone during development, but fault-prone 

during system test. 

Another possible consideration is with respect to defect severity level. Severity levels 

range from 1 to 4. Levell is the highest. Analysis may indicate benefits in using severity 

levels for prediction of fault-prone components. 

5.1.3 Comparison to Fault-Prone Components in Post-Release 

Our next question was: Is system test finding all problems and what is the nature of 

the problems that are first detected in the field? To investigate this, we compared fault­

proneness in system test to post-release fault problems. Because the number of post-release 

faults is so much lower than the number of faults found in system test, the fault-prone 

threshold for post-release defects per component is set to a smaller number. 

Components that are both fault-prone in system test and post-release are identified. 

Harder to identify before release are the components that are normal during system test, 

but fault-prone after release. Other indicators of components, e.g. whether they were new 
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for the release, whether they experienced a lot of change due to enhancements, etc. are 

investigated. If these indicators point to a higher likelihood of post-release problems, they 

could be used to identify potentially fault-prone components for more thorough system 

test. If these types of components are easily identified, components of those types are 

grouped with components that are fault-prone during system test. Examples of these types 

of components include new ones or those affected by changes or enhancements. 

5.2 Results 

Setting the threshold to a straight percentage of the number of components may not 

work, especially for high quality code. In this study, a threshold of 25 percent is too much. 

It requires defects to be found in 45 components. In Release 1, development found defects in 

exactly 45 components, and many of these components only had one defect. (See Table A.2.) 

A component having one reported defect arguably is not fault-prone. System test only had 

32 components with a reported defect. The threshold needs to be set to a lower percentage 

of components. This case study explored the threshold set to 10 percent of the components. 

An alternative is to set the threshold to an "order of magnitude" (or 10 percent) less than 

the total number of defects. The advantage is that the number of components considered 

fault-prone can bary without having to consider explicity how high or low the quality of the 

software is. 

5.2.1 Fault-prone Component Analysis Applied to Release 1 

Table 5.1 shows the diffusion matrix for Release 1 using 10 percent of the ranked com­

ponents as a threshold. A diffusion matrix shows the number of components that are 

fault-prone or normal during development and system test. Table 5.1 shows that 10 of the 

18 components identified as fault-prone in development stayed that way in system test (top 

left cell). Of these ten, five were new components. The other eight are normal in system test 

(top right cell). Using development fault-prone components as a predictor of fault-proneness 

during test would classify these eight components incorrectly. If the test guideline stated to 

test development fault-prone components more thoroughly during system test, this would 
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cause system test to overtest these eight components. In addition, Release 1 had eight 

fault-prone components that were normal (not fault-prone) in development. Had the test 

guideline stated to test components less intensively, if they were not fault-prone during 

development, these components would not be tested enough and test could miss defects. 

Table 5 1 D'ff' M . £ R 1 .. I USlOn atrIx or e ease 1 USIng at hr h ld f 10%. es 0 0 

Threshold = 10% Prediction (System Test) 
18 components Fault-prone Normal 

Development Fault-prone 10 (5 new) 8 (1 new) 
Development Normal 8 (2 new) 154 

The threshold may also be set as a function of the number of defects. Table 5.2 shows 

the highest number of defects written against a single component in development and test 

for each release. We set the threshold at about an order of magnitude less than the largest 

number of defects written against a component during development. For Release 1, the 

maximum number of defects in development is 143. The threshold was an order of magni­

tude lower, set at ten defects per component. This threshold applied to both development 

and system test. Table 5.2 shows the number of components that were over this thresh­

old and considered fault-prone and the corresponding percentage of components that were 

fault-prone. 

T bl 5 2 St t' t' a e , : a IS ICS on f It t d f , d hr h ld au -prone componen s USIng or er 0 magnitu e t es 0 . 
Release 1 Release 2 -Release 3 

(180 components) (185 components) (188 components) 
development test development test development test 

Max defects in a compo 143 27 115 32 7 41 
# comps over threshold 
(10 defects for Rel.s 1&2) 10 6 6 5 1 3 
(4 defects for ReI. 3) 
% compo over threshold 5.6% 3.3% 3.2% 2.7% 0.5% 1.6% 
Mean # defects for 
compo over threshold 36.06 19.33 35.17 20 7 19.33 
Std. Dev. 40.57 6.12 39.97 7.38 0 18.82 

In Release 1, ten components were fault-prone in development, six were fault-prone dur­

ing system test. Table 5.3 shows to whl\t degree a component that is fault-prone (or normal) 

during development stays that way during system test. If one were to predict fault-proneness 
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Table 5.3: DOff . . fi R I 1 USlon matnx or e ease 1 d f . t d threshold. uSIng or er 0 magnl u e 
Threshold ~ 10 defects Prediction (System Test) 

Fault-prone Normal 

Development Fault-prone 5 (4 new) 5 (1 new) 
Development Normal 1 (1 new) 169 (1 new) 

during testing based on whether a component was fault-prone during development, the 

diffusion matrix can be used to evaluate the quality of the prediction model. In this case, 

it correctly predicts five components as fault-prone during system test and 169 components 

a.s normal during system test. It shows five false positives (development fault-prone, but 

normal during system test) and one false negative (normal during development, but fault­

prone during system test). If one were to use the classification of fault-prone components 

during development as a guide to increase testing effort for fault-prone components and to 

decrease test effort for normal components, this would lead to "overtesting" five components 

(an inefficiency) and not testing one component enough (a decrease in effectiveness). This 

is not quite the accuracy desired. 

In this case study, using an order of magnitude difference in the number of defects for 

a component also included a component that was consistently fault·prone in later phases 

(system test and post-release) of Release 1 and throughout all phases (development, system 

test, and post-release) in Release 2. Because the quality of a system may not be known 

prior to system test, it would be difficult to set the threshold based on a percentage of 

ranked components. Therefore, setting the threshold as a function of the maximum number 

of defects found in a single component is recommended. 

A testing guideline that emphasizes more thorough testing of components that were 

fault-prone during development would work well, catching components that are fault-prone 

in system test, and overtesting a few. A guideline that de-emphasizes testing of components 

that are not fault-prone during development would generally work well and potentially save 

a lot of effort, since the vast majority of components fall into that category. 
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5.2.2 Evaluation of Other Indicators 

Table 5.3 also showed how many of the components in each category were new for 

Release 1. Interestingly, all but one were fault-prone in either development or test, and 

thus could benefit from more thorough testing. This led to a second testing guideline: Test 

new components more thoroughly. It is based on the assumption that new components will 

be fault-prone during system test and should be tested more thoroughly. This guideline 

removes the false negative in the diffusion matrix of Table 5.3 by grouping it correctly with 

the components that are fault-prone during system test. We still over-test components that 

are fault-prone during development, but are not fault-prone during system test. However, 

this guideline no longer misses the new component that is not fault-prone during devel-

opment, but fault-prone during system test. Table 5.4 shows the results of this analysis. 

Table 5.4: Diffusion Matrix including new components as fault-prone in Release 1. 
Threshold ~ 10 defects Prediction (System Test) 

Fault-prone Normal 
Development Fault-prone 6 (5 new) 6 (2 new) 
Development Normal 0 168 

Another possible refinement of test guideline 1 is to refine it with respect to defect 

severity level. Severity levels range from 1 to 4. Levell is the highest. Table 5.5 shows the 

maximum number of defects found during development and system test for a component 

for each severity level. 

Table 5.5: Maximum d Ii t Ii tb . ty level for Release 1. e ec s or a componen y seven 
Severity Level 

1 2 3 4 
Development 54 47 27 15 
System Test 5 17 21 6 

Because the maximum number of defects in each severity level is lower than the cumu-

lative number of defects, one needs to set a new threshold. An order of magnitude less than 

the number of defects in development is 6, 4, 3 and 2 defects for severity levels 1, 2, 3 and 4, 
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respectively. The threshold is set to 4, the mean average of these, and used for all levels. 

The results of the fault-prone analysis between development and testing for Release 1 are 

presented in Tables 5.6 - 5.9. The analysis does not indicate any benefits in using severity 

levels for prediction of fault-prone components. Analyzing defects by severity level does not 

improve the predictions. Thus testing guidelines based on severity level would not improve 

the process. 

Table 5.6: Diffusion Matrix for Release 1 by severity 1. 
Threshold 2:: 4 defects Prediction (System Test) 

Fault-prone Normal 

Development Fault-prone 1 (1 new) 10 (5 new) 
Development Normal 1 (1 new) 168 

Table 5.7: Diffusion Matrix for Release 1 by severity 2. 
Threshold 2:: 4 defects Prediction (System Test) 

Fault-prone Normal 

Development Fault-prone 1 6 (3 new) 
Development Normal 3 (2 new) 170 (2 new) 

Table 5.8: Diffusion Matrix for Release 1 by severity 3. 
Threshold 2:: 4 defects Prediction (System Test) 

Fault-prone Normal 

Development Fault-prone 4 (4 new) 3 
Development Normal 3 (2 new) 170 (1 new) 

Table 5.9: Diffusion Matrix for Release 1 by severity 4. 
Threshold 2:: 4 defects Prediction (System Test) 

Fault-prone Normal 

Development Fault-prone 0 3 (2 new) 
Development Normal 2 (2 new) 175 (3 new) 
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5.2.3 Comparison to Fault-Prone Components in Post-Release 

Table 5.10 shows the results of comparing components that are fault-prone in system test 

to components that are fault-prone in post-release. Using the order of magnitude threshold 

identified components with two or more post-release defects as fault-prone, seven in all. 

Table 5.10: Diffusion Matrix for System Test versus Post-Release in Release 1. 
Post release threshold 2:: 2 defects Prediction (Post Release) 

System Test threshold 2:: 10 defects Fault-prone Normal 

System Test Fault-prone 1 5 (5 new) 
System Test Normal 6 168 (2 new) 

Only one component was fault-prone both in system test and post-release (it was also 

fault-prone in development). It is not a new component and easily identifiable by the high 

number of defects throughout the life cycle. Obviously, such a brittle component is cause 

for concern. Five components were fault-prone during system test, but were repaired before 

release and problem-free (all of them new components). This indicates thorough testing 

and excellent repair work for new components. 

None of the components that are normal during system test, but fault-prone after release, 

are new. These old componetns may have been affected by changes or enhancements. One 

possible cause for missing these components may be that regression test did not test them 

thoroughly enough. The defect data is not detailed enough to explain this phenomenon. A 

suggestion for improving testing would be to assess (and possibly improve) change impact 

analysis and regression testing. 

Overall, development and system test are doing a very good job of testing and repairing 

new components. The exposure rate of defects for new components is high and these 

components have very few defects after release indicating that the problems were corrected. 

Analysis across phases within the same release, therefore, will not help guide system test in 

preventing post-release defects. 
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5.2.4 Proposed Testing Guidelines 

To fine tune the testing process, one should develop guidelines that are specific to the 

situation in a project group and are based on project data from that environment. Data 

from Release 1 was used to derive the guidelines. Table 5.11 shows these guidelines. There 

Table 5.11: Testing guidelines derived from Release 1 data. 
Testing Guidelines 

1. Test development fault-prone components more thoroughly. 
(Test components not fault·prone in development less.) 

2. Test new components more thoroughly. 

were also several candidate guidelines that did not work well in this environment. They 

related to defect severity levels and the quality of the repair work between development and 

system test, and before release. 

5.2.5 Fault-Prone Component Analysis Applied to Releases 2 and 3 

To evaluate whether the test guidelines are useful, they were applied and evaluated on 

Release 2 and Release 3 of the same system. 

In Release 2, the maximum number of defects per component found in development 

is 115. In system test it is 32. We chose the same threshold (10) as in Release 1. Any 

component with more than ten defects was considered fault-prone. 

In Release 2, six components were identified as fault-prone during development. Only 

two of them were also fault-prone during system test. Applying guideline 1 would have 

over-tested the other four. There were five fault-prone components in system test, three 

of which were not fault-prone during development and would not have been tested enough 

according to guideline 1 (cf. Table 5.12). This latter misclassification is more dangerous. 

Table 5.12: Diffusion matrix for Release 2. 
Threshold ~ 10 Prediction (System Test) 

Fault-prone Normal 
Development Fault-prone 2 (1 new) 4 
Development Normal 3 (2 new) 176 (2 new) 
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Applying the more conservative guideline 2 improves matters. Table 5.13 shows the 

results. While we "over-test" more components than with the first guideline, we only 

undertest one (old) component that is fault-prone during system test. 

Table 5.13: Diffusion Matrix including new components as fault-prone in Release 2. 
Threshold ~ 10 Prediction (System Test) 

Fault-prone Normal 
Development Fault-prone 6 (5 new) 4 
Development Normal 1 174 

As in Release 1, defect data analyzed for severity do not give better results and do not 

warrant additional test guidelines. (See Appendix A.2.2.) 

Next, we evaluated whether system test defects are a good indicator of post-release 

defects. Table 5.14 shows the results. They quite strongly point out that any component 

that was fault-prone during test was not fault-prone after release. This is good news: the 

problems that were identified during testing were corrected before release. Development 

and system testing are doing a very good job of eliminating problems. Improvements in 

testing should focus on the five components that were not fault-prone during development or 

test, but showed post-release problems. These components were not new. One possibility 

is to investigate whether the problems could "have been prevented with more extensive 

change impact analysis and regression testing. This requires more detailed data than we 

had available. 

Table 5.14: F It t . S t '".D t au -prone componen s In ys em es versus P t R 1 os e ease in Release 2. 
Post Release Threshold ~ 2 Prediction (Post Release) 
System Test Threshold ~ 10 Fault-prone Normal 
System Test Fault-prone 0 5 (1 new) 
System Test Normal 5 175 (4 new) 

In Release 3, the maximum number of defects per component found in development is 7. 

In system test it is 41. We set the threshold to 4. Any component with more than four 

defects was considered fault-prone. 
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In Release 3, only one component was identified as fault-prone during development. 

The component was also fault-prone during system test. Applying guideline 1 would not 

have resulted in over-testing any components. There were 3 fault-prone components in 

system test, two of which were not fault-prone during development and would not have 

been tested enough according to guideline 1 (cf. Table 5.15). This latter misclassification 

is more dangerous. 

Table 5.15: Diffusion Matrix for Release 3. 
Threshold ~ 4 Prediction (System Test) 

Fault-prone Normal 

Development Fault-prone 1 0 
Development Normal 2 (1 new) 185 (2 new) 

Table 5.16 shows the results of applying the more conservative guideline 2. While we 

"over-test" two more components than with the first guideline, we only undertest one (old) 

component that is fault-prone during system test. 

Table 5.16: D'ff' M I USlOn I d' f I atnx Inc u lng new components as au t-pron e in Release 3. 
Thresh,old ~ 4 Prediction (System Test) 

Fault-prone Normal 

Development Fault-prone 2 (1 new) 2 (2 new) 
Development Normal 1 183 

Next, we evaluated whether system test defects are a good indicator of post release de-

fects for Release 3. Table 5.17 shows the results. Again, they point out that any component 

that was fault-prone during test was not fault-prone after release: The problems that were 

identified during testing were corrected before release. 

Table 5.17 D'ff' M . fi S : I USlOn atnx or ;ystem '] est versus P t R I . Release 3. as e ease In 
Post Release Threshold ~ 2 Prediction (Post Release) 
System Test Threshold ~ 4 Fault-prone Normal 

System Test Fault-prone 0 3 (2 new) 
System Test N ormaI 2 183 (1 new) 

101 



5.2.6 Cross Release Analysis 

When successive releases are to be tested, it might be useful to have a test guideline on 

how to treat components that have been fault-prone in development, test, or in the field in 

prior releases. 

A test guideline would be to treat a component as fault-prone (and focus attention on 

it) in system test, if it was fault-prone during system test or in the field in the prior release. 

Between releases, pay particular attention to components that had development and post-

release problems in prior releases, but where system testing found few problems. Likewise, 

identify components that had problems in development, test, and after release in the prior 

release. 

Tables 5.18 and 5.19 show the diffusion matrix analyses of this approach for the medical 

record system. The results indicate that a guideline to consider a component fault-prone in 

system test, if it was fault-prone during system test or in the field in the prior release does 

not help in this case study. This is because problems, once identified, are fixed. 

Table 5.18: Diffusion Matrix for fault-prone components across Releases. 
Release 2 

Test Test PostRelease PostRelease 
Release 1 Fault-prone Normal Fault-prone Normal 

Test or PostRelease 
Fault-prone 3 9 3 9 
Test or PostRelease 
Normal 2 (2 new) 171 (3 new) 5 168 (5 new) 

Table 5.19: Diffusion Matrix for fault-prone components across Releases 2 and 3. 

Release 3 
Test Test PostRelease PostRelease 

Release 2 Fault-prone Normal Fault-prone Normal 

Test or PostRelease 
Fault-prone 1 11 2 10 
Test or PostRelease 
Normal 2 (2 new) 174 (1 new) 0 176 (3 new) 
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We also investigated whether there are some components that are not fault-prone dur­

ing system test, but are fault-prone in development and after release. This would be an 

indication of insufficient testing. Only one component was fault-prone in development and 

post-release in all three releases that was not fault-prone in system test in any of the re­

leases. This component needs to be tested more thoroughly. Further, there was only one 

component that was fault-prone in development, system test and post-release for the first 

two releases and for system test in Release 3. This is not so much an indication of insuf­

ficient testing, but of insufficient repair. In both cases, the number of such components is 

very small (one). This speaks for the quality of the development organization. 

5.3 Summary 

We evaluated development, system test and post-release defect data to determine 

whether additional test guidelines based on this data might be helpful. The following 

ideas were helpful. 

1. Use an order of magnitude less than the maximum defects in a component to set 

the threshold for fault-prone components. This is less arbitrary than selecting a 

percentage of components as fault-prone. 

2. Test components that are fault-prone during development more thoroughly. They are 

likely to be fault-prone during system test. De-emphasize testing of components that 

are not fault-prone during development. 

3. Test new components more thoroughly, whether they are fault-prone during develop­

ment or not. 

4. Pay particular attention to components that had development and post-release prob­

lems, but where system testing found few problems (in our case, this was only one 

component). Likewise, evaluate the component that had problems in development, 

test, and after release in the prior release. 
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5. Improve impact analysis of enhancements to existing components and determine 

whether improvements in regression testing could have prevented problems from slip­

ping through. 

The following ideas are not helpful. 

1. Analyze defects found in components by severity level. We surmise that this is because 

severity is not a good indicator of how complete repair will be. 

2. Set the threshold for fault-prone components to percentage values, especially when 

the quality of the system is not known. 

This being a case study, one cannot expect these guidelines to improve every project, 

although they certainly are sensible. The project studied has characteristics that need to 

be taken into account when determining whether applying these guidelines would improve 

system test performance: 

• Few problems remain undetected. 

• The number of post-release problems is very low. 

• Most known problems are fixed before release. 

• In each release, the code is of very high quality. Only two components out of 188 are 

fault-prone in all releases. 

One might say, we are "gilding the lily". Further, even the "almost perfect" project can 

benefit from the guidelines we derived from the defect data. For high quality development 

environments like the one analyzed, the key issue for testers is where to put emphasis, and 

where not to. This has the greatest potential for being more efficient without sacrificing 

effectiveness. 
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Chapter 6 

Fault Architecture Analysis 

6.1 Approach 

In order to validate that an assessment tool is useful, it is important to empirically 

evaluate whether it works on more than one project. We chose a very different project 

(medical record system) from that used in the prior case study (system software) [65, 66]. 

This thesis adds to the study in [65, 66] by applying the approach to a new data set. In 

addition, rather than just applying one defect cohesion measure and one defect coupling 

measure, the approach applies all measures in Section 2.2.3 so as to compare how results 

might differ. Unlike the prior case study, which only used post-release data, this study uses 

defect data from development, system test and post-release. 

6.2 Release Analysis 

The steps in the approach are: 

1. Determine both defect cohesion measures of Section 2.2.3 and identify fault-prone 

components. 

Rather than choose between the two defect cohesion measures described in [40, 66], 

our approach uses both to identify problematic components that should be considered 

for more intense testing or for rearchitecting. 

This study considers a component, 0, fault-prone, if the defect cohesion measure, 
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where 

Oo<C> is defined in 2.1 or 2.2. 

OOmax = max {OO<Ci>' 0 ~ i ~ n}. 

n is the number of system components. 

2. Determine both defect coupling measures and identify fault-prone component rela­

tionships. 

Unlike the prior studies [40, 65, 66], this study sets the threshold to an order of 

magnitude (or 10 percent) less than the highest defect coupling measure. This is an 

alternative to setting the threshold to some percentage of fault-relationships. The pur­

pose is to focus on fault-relationships with the highest ranks. This reduces the number 

of relationships, so that testing or reengineering efforts may focus on components that 

are much worse than others. 

A component is considered fault-prone, if either of the following applies: 

(a) A fault relationship between two components 01, O2 is fault-prone, if 

where 

Remax = max { Re<ci,Cj> ' 0 ~ i, j ~ n, i # j} 

n is the number of system components. 

(b) A component G is fault-prone, if 

where 

TRmax = max {TR<Ci>' 0 ~ i ~ n} 

n is the number of system components. 

106 



3. Create a Fault Component Directory Structure. 

The fault-prone component directory structure shows the components identified as 

fault-prone according to either one of the defect cohesion measures. 

Components carry the prefix d, if they are identified as fault-prone using only the 

basic defect cohesion measure 2.1. They carry the prefix f, if they are identified as 

fault-prone by only the multi-file defect cohesion measure 2.2. If there is no prefix, 

the component is identified as fault-prone using both measures. Components marked 

in bold are fault-prone because of fault relationships. The components not in bold are 

fault-prone components with internal problems instead of fault-prone relationships 

with other components. 

4. Create the Component Level Fault Architecture Diagrams. 

Components are included in the diagrams, if they have been identified as fault-prone 

with respect to at least one of the defect coupling measures. 

In addition, those components that are fault-prolle according to the defect cohesion 

measures are included in an inset to the diagram for comparison purposes. Compo­

nents that are fault-prone according to both a defect cohesion measure and a defect 

coupling measure are indicated in bold. 

Analysis of the component level diagrams can give developers and testers an indication 

of what kind of problems the system has and where they are. For example, one can 

determine if most problems are local or involve relationships between components. 

Comparing across releases makes it possible to identify components that are repeatedly 

fault-prone or in fault-prone relationships. Developers and testers can then focus 

their attention on them in terms of either re-engineering them or testing them more 

intensely. 

5. Lift. 

The lift operation abstracts the fault-prone relationships at the component level to the 

subsystem level. These are presented in Fault Architecture Diagrams for each release 
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and a Cumulative Release Diagram. A subsystem is defined as the level immediately 

below the system level (or root). 

Figure 6.1 shows an example of a fault component directory structure. In this example, 

8 1 and 82 are subsystems. Not all components are at the same level. A component 

belongs to a subsystem, if there is a path from the subsystem to the component. In 

the example, component Ou belongs to 8 1, Components 021, 022, and 0 23 belong to 

subsystem 83. 

System 

/\ 
SI S2 

~st~ 
~ 

Figure 6.1: Example of a Fault Component Directory Structure Diagram. 

The steps the lift operation are: 

(a) Determine defect coupling. measures for the subsystem level. 

For any two subsystems, 81 and 82, the defect coupling measures are defined as 

follows. 

Let Ou, ... , 01n be components in subsystem 81 and 0 21 , ... , 02n be compo­

nents in subsystem 82, then 

n m 

Re<Sl,S2> = L L Re<cH,c2;> 
i=l j=l 

(6.1) 

where Re<cH,c2;> ~ threshold forthe multi-file defect coupling measure for the 

release. 
n 

TRs=LTRci (6.2) 
i=l 

where T RCi ~ threshold for cumulative defect coupling measure for the release. 

(b) Create subsystem level diagrams. 

We construct Fault Architecture Diagrams for the three releases using the de­

fect coupling measures for the subsystem level. Nodes in the diagram represent 
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subsystems that occur in at least one fault architecture diagram. Arcs indicate 

the magnitude of the problem between the subsystems. Nodes in the diagram 

represent subsystems that occur in at least one fault architecture diagram. Arcs 

indicate the magnitude of the problem. 

N ext we aggregate the fault architecture diagrams into a cumulative release di­

agram. The Cumulative Release Diagram illustrates persistent problems within 

and between subsystems. This diagram aggregates subsystem level relationships 

across releases. The arc annotations in the diagram describe fault relationships 

between subsystems that persisted across releases. 

The questions we address are: 

• What are the subsystems with the majority of problems? 

• Are problems between subsystems or are they local within the system? 

• Do problems in one release occur in other releases? 

Analysis of the subsystem level diagrams can give developers and testers an 

indication of whether problems exist between subsystems or are local within 

systems. In addition they indicate problems that occur over several releases. 

6.3 Single Phase Analysis 

Studies in [41, 40, 65, 66] used defect measures from successives release to identify 

components that are fault-prone or are in fault-prone relationships across releases to identify 

possible code decay. By constrast, this study also applies these techniques to identify 

components that are fault-prone or in fault-prone relationships during development, system 

test and post-release to determine those components that should be tested more intensely. 

This study derives and analyzes component level fault architecture diagrams for each of 

the development phases. The questions we address are: 

• Is system test finding all problems? 

• Do problems in development appear in test? 

• What is the nature of the problems that are detected in the field? 
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To investigate this we perform across-phase analysis between earlier phases of development 

and post-release, comparing fault problems in development, system test, and post-release. 

Comparing across development phases within a release makes it possible to see whether some 

components are repeatedly in fault-prone relationships, whether the problems are prevalent 

in particular phases, and whether they are repaired. For example, few fault-prone relation­

ships during development, but many during testing indicate that development is creating 

defects, but either does not find them or does not correct them during development. A 

preponderance of fault-prone relationships during post-release indicates insufficient system 

testing. The objective of this analysis is to assess the quality of the product and identify 

possible architectural problems. By analyzing earlier defect data, the information may be 

used to guide testing, that is to improve its effectiveness. 

We investigate whether development fault architectures can identify the parts of the 

software that need to be tested more intensely. We validate these assessments using sys­

tem test data from the same release. We also use the development and system test fault 

architectures to identify fault-prone components after release and validate our assessments 

using post-release data. 

6.4 Case Study Results 

6.4.1 Release Analysis 

6.4.1.1 Defect Cohesion Measures 

This study identified the most fault-prone components in each release using the two 

ways to measure defect cohesion. Table 6.1 shows how many components were identified 

as fault-prone in each release. The last row shows the number of components that are 

considered fault-prone by at least one of the defect cohesion measures. Order of magnitude 

was used to set the threshold. 

If there is a large overlap in the number of components that are considered fault-prone 

by both rankings, one can assume that the two measures are similar. In this case it means 

that components with a lot of defect reports also require changes in multiple files. If there 

are a lot of components that are fault-prone according to one method and not the other, the 
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Table 6.1: Number of components identified as fault-prone in Releases 1 - 3. 
Release 1 Release 2 Release 3 

Basic defect cohesion measure 17 18 3 
Multi-file defect cohesion measure (Eq. 2.2) 6 10 2 
Both combined 18 24 5 

measures are different. In this case it means a component with few defect reports may not 

require changes in multiple files to repair its defects. Further a component that required 

many multiple file changes may have few defects reported. 

Table 6.1 shows that the basic defect cohesion measure results in identifying 17 fault-

prone components in Release 1, while the multi-file defect cohesion measure identifies six 

fault-prone components. Between the two methods, there is an overlap of five components. 

Thus, the multi-file measure mostly £lags components that have already been identified 

as fault-prone by the basic measure. However, the basic measure includes components not 

£lagged by the other measure. In Release 2, the two defect cohesion measures identify 18 and 

10 fault-prone components with an overlap of four components between the two methods. 

Table 6.1 shows that in Release 3, the defect cohesion measure identifies three components, 

the multi-file defect cohesion measure identifies two components. There is no overlap be­

tween the fault-prone components in Release 3. (The Fault Component Directory Structure 

shown in the next section displays these components.) 

The two methods for computing the defect cohesion measure identify a few of the same 

components as fault-prone. There are sufficient differences between what the two measures 

identify as fault-prone components that it warrants using both methods. This is more 

noticeable when looking at the Fault Component Directory Structure (see Figure 6.2). 

Table 6.2: Number of releases in which components were fault-prone. 
I Number of Times Fault-Prone II 0 I 1 I 2 I 3 I 

Number of Basic defect cohesion measure 161 15 11 1 
Components Multi-file defect cohesion measure (Eq. 2.2) 174 10 4 0 

Both combined 156 21 11 1 
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Table 6.2 shows many of the 188 components were never identified as fault-prone by 

either method for computing defect cohesion. The last row shows that 33 components were 

identified as fault-prone in at least one release using one of the defect cohesion measures. 

At most one or two components were identified as fault-prone in all three releases and these 

were components that had defect cohesion measures much, much higher than any other 

components. 

6.4.1.2 Fault Component Directory Structure 

Figure 6.2 shows the Fault Component Directory Structure. Components in the diagram 

include those identified as fault-prone using either the basic defect cohesion measure (labeled 

with prefix 'd') or the multi-file defect cohesion measure (labeled with prefix 'f') in at least 

one release. Several components are identified as fault-prone using both measures (no label). 
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Figure 6.2: Fault Component Directory Structure. 

Not all the components identified as fault-prone using one method were fault-prone using 

another. The two methods for computing the defect cohesion measure occasionally identify 

different components as fault-prone. There are 32 components that are fault-prone using 

either the basic defect cohesion measure or the multi-file defect cohesion measure in the three 
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releases. Of these 32, 20 are fault-prone according to the basic defect cohesion measure, 

that is they had a lot of defect reports, but not a lot of file changes. Six components are 

fault-prone according to the multi-file defect cohesion measure, indicating they had a lot 

of file changes but not a lot of defect reports. Six components are fault-prone according to 

both measures, that is they had a lot of defect reports and a lot of file changes. Since there 

is not a large overlap of components that are fault-prone by both measure (6 out of 32), 

this indicates that the measures identify different components and both measures should 

be used to determine components that require more intense testing or reengineering, rather 

than choosing one method over another. 

It should be noted that components vary in size and in the number of files they con-

tain. Component 38, for example, which has 230 files, may be considered a subsystem. 

Component 79, which is several levels down in the existing hierarchy, consists of 183 files. 

Component 86, which is at the same level as component 79, consists of 1 file. 

6.4.1.3 Defect Coupling Measures 

Table 6.3 summarizes the results of applying the defect coupling measure. Column 2 

identifies the number of components involved in fault relationships for each release. Col­

umn 3 gives the number of fault relationships (arcs) between components. This shows that 

Table 6.3: Fault relationship information. 
Number of Number of 

Components Relations 

Release 1 65 245 
Release 2 74 61 
Release 3 34 56 

between Release 1 and Release 3, the number of fault relationships decreased to less than 

one quarter of the number of such relationships in Release 1. Similarly, the number of 

components in fault relationships was cut almost in half by Release 3. 

To determine which are the most problematic of these relationships, we apply the or­

der of magnitude threshold. Table 6.4 shows the results. Column 2 identifies the number 

of components involved in fault-prone relationships for each release using the multi-file 
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defect coupling measure. Column 3 identifies the number of fault-prone relationships be­

tween components. Column 4 identifies the number of components involved in fault-prone 

relationships using the cumulataive defect coupling measure. (The number of fault-prone 

relationships is the same for both measures.) Column 5 identifies the number of components 

in fault-prone relationships using either measure. 

Table 6.4: Fault- rone relationshi information usin 

Release 1 15 10 21 21 
Release 2 10 7 10 10 
Release 3 4 2 6 6 

These are much more manageable numbers of components to focus attention. Table 6.4 

also shows that using both defect coupling measures to identify components with a lot of 

fault relationships does not result in more components than using the T Rc measure alone. 

In this study, then, using only the T Rc measure to identify components for more intense 

testing is sufficient. 

Based on these results, we updated the Fault Component Directory Structure in Fig­

ure 6.2, marking components in fault-prone relationships in bold. Bold components are an­

notated with the release identifiers in which they were considered relationship fault-prone. 

The components not in bold are fault-prone components with internal problems. 

6.4.1.4 Component Level Fault Architecture Diagrams 

Figures 6.3 - 6.5 show the Fault Architecture Component Level Diagrams for Releases 1, 

2, and 3. Note that the Fault Architecture Component Level Diagrams include components 

at different levels of the existing logical structure. In addition, the components are of various 

sizes in terms of the number of files they include. The diagrams show the components 

in fault-prone relationships (arcs are annotated with the Rec,ci value). Components are 

also included, if they have high cumulative defect measures (The T Rc measure is shown 

in parenthesis). Components in bold are also fault-prone according to one of the defect 

cohesion measures. 
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Figure 6.3 shows ten fault-prone relationships involving 15 components in Release 1. 

Six components have no fault-prone defect relationships with any other component. These 

components, 10, 46, 51, 65, 79 and 114 are included, because they have high cumulative de­

fect measures. The other 15 components were fault-prone according to both defect coupling 

60 

~ 
34 

Fault-prone components 
according to defect cohesion measures 

4 d48 79 
dll d52 d83 
d13 55 d86 
dlO d56 f96 
d25 d58 
d30 d59 
35 d70 

Figure 6.3: Release 1 Component Level Fault Architecture. 

measures. Several components were involved in more than two fault-prone relationships. 

Components 25 and 35 were involved in two fault-prone relationships. Components 93, 

94 and 96 were in fault-prone relationships together. All other components had only one 

fault-prone relationship. 

In Release 2 there are seven fault-prone relationships involving ten components. Com­

ponent 25 is again in a fault-prone relationship, but this time with a different component. 

All of the components were fault-prone based on either of the two measures. No additional 

components were identified based on the cumulative defect coupling measure. In effect, 

both measures included exactly the same components in Release 2. Figure 6.4 shows fewer 

components and fewer fault-prone relationships, indicating that some prior problems have 
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Figure 6.4: Release 2 Component Level Fault Architecture. 

been successfully fixed. This trend continues into Release 3. There is, however, one compo-

nent (25) that was relationship fault-prone in all three releases. There are two fatilt-prone 

( 79 (22) ] 

( 99 (161) ) 
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Figure 6.5: Release 3 Component Level Fault Architecture. 

relationships involving four components and two other components that have high cumula-

tive defect coupling measures. Component 35 reappears again in fault-prone relationships 

(it had disappeared in Release 2). 
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Using the Re<c,ci> by itself did not include any more fault-prone components than the 

TRc measure. Since all components considered fault-prone by the Re<c,ci> measure are 

also fault-prone by the T Rc measure, the T Rc might be considered a good choice for a 

defect coupling measure all on its own. 

The component level diagrams indicate that the most fault-prone parts of the software 

are not due to relationship problems, but to local problems, that is, problems internal to 

the components. 

Analysis of the fault component directory structure shows that 32 components out of 

188 are locally fault-prone. This is a low number, less than 20 percent of the components 

have problems. Out of these 32 components, almost half are also relationship fault-prone 

in at least one release. The fault-prone components are at various levels in the directory 

structure. 

In looking at the component level fault architecture diagrams, one can see that many 

components that are in fault-prone relationships are also locally fault-prone (8 out of 21 

in Release 1, 5 out of 10 in Release 2, and 2 out of 6 in Release 3). In addition, several 

components are in more than one fault-prone relationship. More attention should be focused 

on these components. 

A cross-release analysis of the component level fault architecture diagrams indicates that 

the number of components in fault-prone relationships and those with a large number of 

fault relationships decreases in successive releases. This indicates that components are being 

repaired. The number of fault-prone components increased in Release 2. Problematic parts 

of the software had less to do with relationships between components and more to do with 

internal problems These problems should be less difficult to fix. In Release 3, both kinds 

of problems continue to decrease. Cross-release analysis also reveals that a few components 

are consistently problematic: Components 25, 35, 38, and 45 are fault-prone in at least 

two releases. Components 25 and 35 are fault-prone both in terms of relationship problems 

and local problems. System developers and testers should focus on these components in 

successive releases. 
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6.4.1.5 Lift the Fault Relationships to the Subsystem Level 

Fault architecture diagrams illustrate subsystems that have a majority of the problems. 

They also indicate whether relationship problems are between subsystems or more within 

subsystems. 

Figures 6.6 - 6.8 show there are only six fault-prone relationships between subsystems 

in the three releases. There are few fault relationships between components, hence there 

are few between subsystems, and the degree of fault-proneness is small. (Table A.14 in 

Appendix AA shows to which subsystem problematic components belong.) 

Figure 6.6 shows that in Release 1, subsystems M, S, 30, 38, U, and L have fault-prone 

relationships with other subsystems. Subsystems S, M, U also have fault-prone relationships 

internal to the subsystem. W has only internal fault-prone relationships. 

Figure 6.7 shows that in Release 2, we have three fault-prone relationships between 

subsystems. The first is between subsystems M and X. The second is between subsystem 101 

and subsystem 107. The third is between the subsystems U and B. 

Figure 6.8 shows that in Release 3, we have only one fault-prone relationship between 

subsystems. It is between subsystems Sand 38. Subsystem M has fault-prone relationships 

that are internal to the subsystem. 
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Figure 6.6: Release 1 Fault Architecture Diagram. 
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Figure 6.8: Release 3 Fault Architecture Diagram. 

So far, we have only analyzed each release individually. When successive releases are 

to be tested, it might be useful to have a test guideline on how to treat components and 

relationships that have been fault-prone in prior releases. The purpose of a test guideline 

would be to focus attention on components in system test that had fault-prone relationships 

in the prior release. Figure 6.9 shows the Cumulative Release Diagram for the system in 

this study. 

The subsystem level diagrams reveal that the most problematic relationships between 

subsystems were different for each release, save for one or two relationships. Only six fault-

prone relationships exist between subsystems in the three releases. Three subsystems, 38, 

U and M are in fault-prone relationships with two other subsystems. In this system, the 
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Figure 6.9: Cumulative Release Diagram. 

most problematic parts of the software are internal to the subsystems, rather than between 

subsystems. 

Results indicate that a test guideline that would focus attention in system test on 

components in a system that had fault-prone relationships in the prior release does not help 

in this case study. Figure 6.9 shows only one fault-prone relationship between subsystems 

occurring more than once. This is the fault relationship between subsystems Sand 38. This 

relationship is fault-prone in Release 1 and Release 2. There are two reasons why such a 

guideline does not help in this study: 

1. There are few fault-prone relationships. 

2. Problems, once identified, are fixed. 

6.4.2 Single Phase Analysis 

6.4.2.1 Fault Architecture Diagrams for Development and Test 

Clearly, the number of reported defects for development phases is much lower than the 

number of reported defects for the entire release. Row 1 in Table 6.5 shows the number of 

fault relationships that exist in development, system test, and post-release in Releases 1- 3. 
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Row 2 shows the number of relationships that are fault-prone according to either defect cou-

piing measure. Row 3 shows the number of components that are in fault-prone relationships 

according to either measure. 

Table 6.5: Fault relationship information for all releases by development phase. 
Release 1 Release 2 Release 3 

dev test post dev test post dev test post 

# fault relationships 211 126 27 20 7 1 12 12 4 
# fault-prone relationships 8 32 9 7 7 1 3 4 1 
# compo in fault-prone reIns. 11 33 14 10 10 2 4 6 1 

Figures 6.10 and 6.11 show the Fault Architecture Component Level Diagrams using 

both defect coupling measures for development and system test for Release 1. Numbers 

annotating the arcs are Re<c,ci> measures. Numbers in parentheses are TRc measures. 

Of the eleven components that are in fault-prone relationships in development, seven are 

also in fault-prone relationships in system test. These components include 25, 30, 35, 38, 

96, 97, and 98. The components with which they are relationship fault-prone, however, are 

not necessarily the same. Only the two relationships between components 35 and 38 and 

components 25 and 30 are fault-prone in both development and system test. Components 

25 and 35 are in fault-prone relationships in multiple releases as well. 

Pault-prone components by 
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Figure 6.10: Fault Architecture Component Level Diagrams for development in Release 1. 
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Figure 6.11: Fault Architecture Component Level Diagrams for system test in Release 1. 

Figures 6.12 - 6.13 show the Fault Architecture Component Level Diagrams using both 

defect coupling measures for development and system test for Release 2. In Release 2, 
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Figure 6.12: Fault Architecture Component Level Diagrams for development in Release 2. 
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none of the fault-prone relationships in development exist in system test. The components 

in fault-prone relationships are also different. A test guideline that recommends testing 

components in fault-prone relationships in development more intensely would not work well 

in Release 2. 
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Figure 6.13: Fault Architecture Component Level Diagrams for system test in Release 2. 

Figures 6.14 and 6.15 show the Fault Architecture Component Level Diagrams using 

both defect coupling measures for development and system test for Release 3. In- Release 3, 

only one component that is in a fault-prone relationship in development is also in a fault­

prone relationship in system test. This is again component 25. The components with which 

it has fault-prone relationships are different in development and system test. Because 

component 25 is in fault-prone relationships in five phases in the three releases with many 

other components, this component may require attention. 

Fault-prone components by 
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Figure 6.14: Fault Architecture Component Level Diagrams for development in Release 3. 
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Figure 6.15: Fault Architecture Component Level Diagrams for system test in Release 3. 

There are only four components that are repeatedly in fault-prone relationships through­

out the development and system test phases of all three release. These are not new com­

ponents and easily identifiable by the high number of defects all the way through the life 

cycle. These components include 25, 35, 38 and 99. Obviously, such brittle components 

are causes for concern. The analysis in this section leads to testing guideline 3 shown in 

Table 6.6. 

Table 6.6: Testing guidelines derived from applying set of methods. 
Testing Guidelines 

3. Test components that are repeatedly fault-prone according 
to defect cohesion and defect coupling measures more 
thoroughly, 

6.4.2.2 Fault Architecture Diagrams for Post-Release 

Figures 6.16 to 6.18 show the Fault Architecture Component Level Diagrams using both 

defect coupling measures for post-release for Releases 1, 2 and 3. The numbers annotating 

the arcs are the Re<c,ci> measure. The numbers in parentheses are the T Rc measure. 

Of the nine fault-prone relationships in post-release in Release 1, five were also fault­

prone in system test. Seven out of 11 components in fault-prone relationships were also 

fault-prone in development or system test. This indicates that system test was identifying 

and testing most of the components that have relationship problems in post-release.. These 

problems, however, did not get fixed before release. 
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Release 2 had only one fault relationship in post-release. Most of the problems in 

Release 2 were internal to the components. Component 26 was, however, in a fault-prone 

relationship in development. 

In Release 3, there were four fault relationships. Only one relationship was fault-prone. 

This relationship was between components 35 and 38, the same relationship that was fault-

prone in system test in Release 1. It was not, however, fault-prone in development or system 

test in Release 3. This indicates that system test did not adequately test this relationship. 

Fault-prone components by 
defect cohesion measures 

Figure 6.16: Fault Architecture Component Level Diagrams for post-release in Release 1. 
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Figure 6.17: Fault Architecture Component Level Diagrams for post-release in Release 2. 
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Figure 6.18: Fault Architecture Component Level Diagrams for post-release in Release 3. 

The most problematic relationships tended to be different for the development and 

system test phases of each release. This indicates problems identified in development are 

usually fixed before system test. The most problematic relationships in post-release tended 

to be different than those in development and system test. This indicates some prO,blems 

are getting through, but because the defect coupling measures are small in post-release, 

there are few problematic relationships. 

Hard to identify before release are the components that are normal during system test, 

but are in fault-prone relationships after release. The analysis quite strongly points out that 

any component that was in a fault-prone relationship during test was not fault-prone after 

release. This is good news: the problems that were identified during testing were corrected 

before release. Development and system testing are doing a very good job eliminating 

problems. None of the components in fault-prone relationships are new, but they may 

have have been affected by changes or enhancements. One possible cause for missing these 

components may be because regression test did not test them thoroughly enough. The 

defect data is not detailed enough to explain this phenomenon. A suggestion for improving 

testing would be to assess and improve impact analysis and regression testing. 

Using these diagrams we performed a within-release analysis to determine whether ad-

ditional test guidelines based on this data might be helpful. The following guidelines were 

helpful. 

1. Test components that are fault-prone during development more thoroughly. They are 

likely to be fault-prone during system test. 
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2. Test components that are fault-prone during development as early in the drop as 

possible. It will give development more flexibility to fix defects and allow greater 

savings in test time when using statistical stopping rules. 

3. Between releases, pay particular attention to components that had development and 

post-release problems, but where system testing found few problems. Likewise, eval­

uate the components that had problems in development, test, and after release in the 

prior release. 

4. Improve impact analysis of enhancements on existing components and determine 

whether improvements in regression testing could have prevented relationship prob­

lems from slipping through. 

5. Specifically test components 25, 35, and 38 more intensely and earlier. They are fault­

prone repeatedly according to the defect cohesion measures and the defect coupling 

measures. 

This being a case study, we do not expect these guidelines to improve every project, 

although they certainly are sensible. The project we studied has certain characteristics that 

need to be taken into account when determining whether applying these guidelines would 

improve system test performance: 

• Few problems remain undetected. The number of post-release problems is very low. 

Using an order of magnitude threshold, less than ten percent of the components are 

fault-prone or are in fault-prone relationships in Release L In Releases 2 and 3, less 

than two percent of the components are fault-prone or are in fault-prone relationships. 

• Most problems that are detected are fixed before release. 

• In each release, the code is of very high quality.. There are only nine fault-prone 

relationships between 26 subsystems in the three releases. 

Overall, development and system test are doing a very good job at testing and repairing 

components. Within release analysis therefore will not help guide system test on prevention 

of post-release defects. 
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6.5 Summary 

This paper replicated a study to evaluate the usefulness of using defect reports to derive 

fault architectures. Unlike the previous study [66], it uses both defect cohesion measures 

to identify fault-prone components and both defect coupling measures to identify compo­

nents in fault relationships. It also different in that it set the threshold to an order of 

magnitude less than the largest measure, rather than to some percentage of components. 

Defect reports are easily available and can be used to identify parts of the software that 

are fault-prone. We applied several measures that identified the most fault-prone parts of 

the system in three releases. We also applied the measures to identify the most fault-prone 

relationships between components in the development, system test and post-release phases 

of each release. The methods for computing the defect cohesion measures and the defect 

coupling measures differed in how they treated defect reports. The basic defect cohesion 

measure is based simply on the number of defect reports for the component. The multi-file 

defect cohesion measure is based on defect fix reports and is sensitive to the number of 

files changed. The defect cohesion measures identified different components as fault-prone, 

hence we recommend using both. 

In terms of the defect coupling measures, we investigated the multi-file defect coupling 

measure and the cumulative defect coupling nleasure. The multi-file defect coupling measure 

identifies components in fault-prone relationships, while the cumulative defect coupling 

measure identifies components that are in many fault relationships. In this study, the 

multi-file defect coupling measure did not identify many more problematic components 

than the cumulative defect coupling measure. The multi-file defect coupling measure does, 

however, identify pairwise coupling problems between components, while the cumulative 

defect coupling measure identified components with defect coupHng problems with many 

other components. 

Based on the measures, we created Fault Architecture Component Level Diagrams and 

Fault Architecture Diagrams for each release. We also created Fault Architecture Component 

Level Diagrams for the development, system test and post-release phases for each release, 

as w~ll. The fault architecture technique visualized problems due to architecture fairly well. 
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It identified the most problematic component relationships in every release and for several 

phases of each release. Using these diagrams we were able to determine guidelines that 

should be helpful to software developers and testers. 

The study in [40, 65, 66] differed from our study in two ways: 

1. The technique was applied for a different purpose. 

2. The quality of the system was different. 

The purpose of the earlier study was to analyze code decay to recommend components for 

reengineering. In the study in [40, 65, 66], the system had more fault-prone components 

and more long term problems. Our study analyzed a very high quality software product, 

thus we were interested in identifying fault-prone components that require more thorough 

testing. The fault architecture method works in both cases. Because the system in the 

earlier study had more problems than the one analyzed in our study, the authors applied 

an additional step to reduce the number of components and fault relationships to a more 

manageable number prior to measuring defect coupling. This step would have eliminated 

too many components in our study. Future work should investigate whether using order of 

magnitude to set the threshold in systems of lower quality (such as the one in {40, 65" 66] 

would make that step unnecessary. 

Even the "almost perfect" project can benefit from the analysis and guidelines derived 

using fault architecture techniques. For high quality development environments like the one 

we are currently analyzing, the key issue for testers is where to put emphasis, and where 

not to. This technique enables developers and testers to determine the most problematic 

parts of the software. They can then focus their attention on these parts. 
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Chapter 7 

Prioritizing Testing Activities 

7.1 Evaluating the Effect of Testing Problem Components 
Early 

Knowing which components are fault-prone is useful in two ways: 

1. It identifies components that should be tested more thoroughly. 

2. It can also be used to identify which components should be tested earlier. The as-

sumption is that fault-prone components are more likely to have more failures during 

testing. Testing them early would shift these defects earlier in the testing cycle and 

thus give development more time to repair them. 

Whether or not it is feasible to prioritize testing activities depends on several factors. 

Components may have to be tested in a specific order, if they depend on other components 

working correctly. In such a situation, prioritizing may not be possible. However, when 

the software development process contains a "qualification" phase, that is, a phase before 

system test that determines test readiness, it may be possible to arrange testing activities. 

In the qualification phase, the system test group runs a subset of the test cases they have 

developed. If during the qualification testing, the software is sent back to development, it 

software has major problems. This means that when system test starts, components do 

not have to be tested in a specific order. In addition, system test identifies and schedules 

features and major components for testing, as well as regression testing. Therefore, it is 

possible to arrange the schedule for testing specific components based on priorities. In 
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addition, if the software is released to system testing in stages or "drops," tests can be 

ordered according to priorities within the same drop. 

Prioritization strategies applied to the data include: 

1. Test new components and components that were fault-prone in development earlier. 

2. Test components that were in fault-prone relationships in development earleir. 

These components are tested as early in a drop' as possible. Earlier identification of defects 

gives development more time and flexibility for correction. Other components should be 

tested late in the test period for a given drop. Table 7.1 shows adds to the guidelines based 

on these two prioritization strategies. 

T bl 7 ':D 'd r a e .1: estlng gUI e lnes d . d fr etlve I . f h d. om app Ylng set 0 met 0 S 

Testing Guidelines 
4. Test new components and components fault-prone during 

development as early as possible. 
5. Test components that are repeatedly fault-prone according 

to defect cohesion and defect coupling measures earlier. 

To evaluate the effect of these two guidelines, this study identified the weeks in system 

test that tested new cOlnponents, components that were fault-prone during development, or 

components that were in fault-prone relationships during development. To simulate testing 

these components earlier, test results for those weeks were switched with those of an earlier 

test week (during the same drop) during which non-fault-prone components were tested. 

The reordered curve should indicate earlier discovery of defects. It should be smoother 

because defect spikes caused by late testing of fault-prone components have disap­

peared. Beyond the benefit of earlier defect identification, applying a statistical stopping 

rule [12, 15, 16, 35, 47, 50, 51, 52, 53, 56] to the cumulative defect curve will allow for 

earlier stopping than in the original curve, reducing the elapsed time needed for testing. 

Therefore, the number of weeks that are expected to be saved by prioritizing testing should 

be a factor in parameterizing the stopping rule. Depending on the stopping rule, several 

weeks may be saved. 
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More work is required to develop an ~pproach for applying stopping rules to reordered 

testing activities. Testing fault-prone components more thoroughly affects testing effective­

ness. Efficiency may be improved by testing fault-prone components earlier. Questions 

concerning prioritizing testing activities that still need to be answered include: 

• Will ordering testing activities by fault-proneness improve efficiency? 

• How much will prioritizing testing activities help? Can this be measured, i.e., in "time 

available to repair"? 

7.2 Results 

7.2.1 Prioritization based on New and Fault-Prone Components 

Release 1 has three drops in system test. Testing on the first drop started during 

week 54, on the second drop during week 63, and on third drop during week 70. (See 

Appendix A.3 for cumulative defect data.) Figure 7.1 shows cumulative defects per week 

for the original test process, and for the one that tests components that were fault-prone 

during development as early in a drop as possible. The reordered curve clearly indicates 

earlier discovery of defects. It also is smoother, especially at the end, because defect spikes 

caused by late testing of fault-prone components have disappeared. Beyond the benefit of 

earlier defect identification, applying a statistical stopping rule [39, 54) to the cumulative 

defect curve will allow for earlier stopping than in the original curve, reducing the elapsed 

time needed for testing. There were no defects in the last six weeks of testing and testing 

could have stopped earlier. Depending on the method used to make release decisions, this 

could save six to eight weeks for Release 1. The approximate cost per week of testing 

is about $100K. Thus this testing guideline could easily have saved $600-800K. This is a 

substantial amount of money. 

As in Release 1, we evaluated the effect of the test guideline 4 by shifting testing of new 

and development fault-prone components to an earlier week in the same drop. Figure 7.2 

shows the results. 
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Figure 7.1: Release 1 cumulative defect curves (Guideline 4). 
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Figure 7.2: Release 2 cumulative defect curves (Guideline 4). 

As in Release 1, defect intensity is higher earlier in testing. Most defects are found 

earlier, as well, giving developers more weeks to fix problems. As before, stopping rules are 

also likely to identify earlier end points for testing, saving effort and calendar time for the 

testers. However, there were fewer defects in Release 2 overall, and thus the benefits of this 

rule were not as spectacular as in Release 1. 
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Figure 7.3 shows the results of shifting testing of development fault-prone components 

to an earlier week in the release. (Release 3 had only one drop.) 
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Figure 7.3: Release 3 cumulative defect curves (Guideline 4). 

In Release 1, defect intensity is slightly higher earlier in testing. There were fewer defects 

in Release 3 overall, and thus the benefits. of this rule were limited. Several defects were 

found earlier, which would 'give developers more time to fix them. System test found one 

defect in week 16, none in week 17, and one in week 18. The guideline to test fault-prone 

components earlier would not have uncovered these two defects. Therefore, reordering would 

not have saved any time in system test. 

7.2.2 Prioritization based on Fault-Prone Relationships 

The second prioritization strategy results in cumulative defect, curves that are similar 

to those in Section 7.2.1 for Release 1 and Release 2. In Release 1, there is no difference 

in the effects of prioritization based on test guideline 5 in the first two drops. In the third 

drop, only one week is affected differently by the two prioritization strategies. One week 

with a lower defect yield is delayed eight weeks in the second strategy. This results in a 

slight improvement over the first strategy. 
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FigUre 7.5: Release 2 cumulative defect curves (Guideline 5). 

In Release 2, the effect of prioritization based on test guideline 5 is similar to Release 1. 

There again was no difference between the two strategies in the first drop. In the second 

drop, only one week was affected. One week is moved up two 'weeks in the second strategy. 

The effect worsens efficiency for one week, but in the following week, it improves. In the 
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next week, the cumulative number of defects using both strategies is the same and remains 

the same for the rest of system test. 

The effect of prioritization based on test guideline 5 is slightly worse in Release 3. It 

is not only worse than the effects of prioritization based on test guideline 4, it is worse 

than using no prioritizaton strategy. Figure 7.6 shows the cumulative defects curves for 

Release 3. 
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Figure 7.6: Release 3 cumulative defect curves (Guideline 5). 

7.3 Summary 

The priorities clearly indicate earlier discovery of defects for the first two releases. The 

curves are smoother, especially at the end, because defect spikes caused by late testing of 

fault-prone components have disappeared. The results in the first release were better than 

the second and third releases, because there were fewer defects in later releases. Beyond the 

benefit of earlier defect identification, applying a method to make release decisions will allow 

for earlier stopping when testing activities are prioritized than when they are not, reducing 

the elapsed time needed for testing. A guideline to test new components, components 

that are fault-prone in development, or components that are in fault-prone relationships 
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in development, as early as possible has the potential of saving weeks of testing time and 

hundreds of thousands of dollars without penalty. 
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Chapter 8 

Analysis of Static Defect 
Estimation 

8.1 Approach 

8.1.1 Estimating Components with Defects in Post-Release and Not.in 
Test 

During maintenance and evolution of systems, testers and developers alike worry about 

negative effects of enhancement and maintenance activities. Of particular concern are old 

components that appear fine during development and test of a release, but have problems 

after the software is released. If testers were able to estimate how many components are 

likely to exhibit such problems, this knowledge could be used to decide whether to release 

the system or test it further. The test manager could set a threshold of how many such 

components are acceptable. If the estimate falls below, software is ready to be released. If 

the estimate is higher, more (thorough) testing is advisable. 

The approach described here applies methods based on capture-recapture models and 

curve-fitting methods in a novel way to estimate the total number of components that have 

defects in system test and post-release. From this estimate, one can derive the expected 

number of components that will have defects after release that were defect-free in system 

test. The approach uses defect data from groups at different test sites. These methods are 

used differently here than they have been in prior studies, in which they were primarily 

used to estimate the number of defects remaining after inspection by several reviewers. 

138 



Data is often available from several test sites, such as a system test group at the devel­

oping organization, an internal customer, an external customer, or an independent quality 

assurance organization. If this is the case, it is possible to use capture-recapture and curve 

fitting models to estimate the number of components that will have problems after relese, 

but were defect-free during testing. Each test site reports the components for which defects 

were found. 

The steps in the approach are: 

1. Collect defect data for components from the different test sites at the end of each 

week. For each test site, a component is given a value of 0, if the test site has never 

reported a defect for it. Otherwise the component is given the value of 1. 

2. Apply capture-recapture and curve-fitting estimation methods to the data. The esti­

mates give the sum of 

• the number of components with defects found in testing plus 

• the number of components that are expected to have defects in operation even 

though they were defect-free in testing. 

Several estimators used in capture-recapture models (mOml, mtml, mhjk, mthChao 

and mtChpm, see Table 2.4) and curve-fitting methods (dpm(exp), dpm(linear), cu­

mulative) are applied to the data. Because the mtChpm estimator is used in the case 

of two reviewers [19], it is also evaluated. 

3. Apply our proposed experience-based estimation method to the data. This method is 

based on simple multiplication factors and is applied to releases for which historical 

data is available. 

The experience-based method uses a multiplicative factor that is calculated by using 

data from previous releases and applied to the current release. This factor is used 

to estimate the number of components that have defects in post-release that were 

defect-free in testing. 
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This estimate refers to the number of "missed" components, those components for 

which system test should have found defects. This estimate can be compared with 

the ones obtained using the capture-recapture and curve-fitting methods. 

The following formula is used to compute the number of "missed" components. 

(8.1) 

where 

i is the current release. 

mfi = I:~:\ Pk/ 2:~:\ tk is the multiplicative factor for release i. 

Pk is the number of components with defects after release that were defect-free in 

test in release k. 

tk is the number of components that were defect-free in testing in release k. 

4. Calculate the number of components that are expected to have defects in the re­

mainder of system test and in post-release that are currently defect-free in testing 

by subtracting the known value of the number of components with defects found in 

testing so far. 

5. Compare the estimated number of components that are not defect-free but for which 

no defects have been reported in system test to a predetermined decision value. Use 

the information as an input to decide whether or not to stop testing and release the 

software. 

In a study in [19], estimates have been used for review decisions. By contrast, the 

estimates in this study are used for release decisions. Estimates of the number of 

components with post-release defects that do not have defects in system test may be 

used as one of several criteria when deciding whether to stop test and release software. 

In this context, it is more important that the correct decision is made than that the 

estimate is completely accurate. 

The estimate must be checked against some threshold to make a decision. For example, 

if defects were found in 50 components and no defects were found in 60 components 
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during system testing and estimation methods predict that 10 components out of 

the 60 would have defects after release, would testing continue or stop? Threshold 

values reflect quality expectations. These can be common for all projects or specific 

to a particular type of project, such as corrective maintenance, enhancement, safety-

critical, etc. 

While the availability of defect data from several test groups or test sites makes it 

possible, in principle, to apply existing capture-recapture and curve-fitting models, it is by 

no means clear whether the estimators work well in practice. Thus we present a case study 

to answer the following questions: 

• Which estimators work best? 

• How robust are these estimators when only two independent test sites are available? 

• Should the focus be on using only one estimate? 

• At what point in the testing process can/should these estimates be applied? 

To answer these questions, the estimators are evaluated using two types of measures: 

• Estimation error (including relative error 1 and mean absolute relative error 2). 

• Decision error (is the decision to release or continue testing made correctly). 

The decisions based on the expected number of components with defects in post-

release, but not in system test, are evaluated and compared to the correct decisions 

using three different threshold values. The number of correct decisions is the number 

of times the decisions based on the estimates predict the correct decisions. 

The estimators are ranked and analyzed to see whether they have similar behavior 

for the data sets. In general, the Mh model using the mhjk estimator has worked best 

lRelative error is defined as (estimate - actual total)/actual total 

2Mean absolute relative error is defined as the absolute value of the mean relative errors for all three 
releases 
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for applications published within the software engineering field so far [61. That does not, 

however, mean that it is necessarily the best for this specific application, since the models 

are used in a new context. 

A related question is at what point in the test cycle one should and could apply these 

estimates for decision making purposes? We attempt to answer this question by using the 

estimators up to five weeks before the scheduled end of testing. As before, we evaluate the 

quality of the estimator and the quality of the decision made. 

8.1.2 Estimating Still Defective Components (Components with Defects 
in Test and Post .. Release) 

Capture-recapture and curve-fitting methods do not estimate the components that are 

found to have defects in system test and are still defective. An assumption for the models is 

that defects are corrected and do not show up in post-release. Components that have defects 

in system test cannot be assumed to be defect-free in post-release, as other defects may be 

reported. Therefore, other ways must be used to estimate the number of components that 

still contain defects as the capture-recapture and curve-fitting models cannot cope with 

them. 

An experience-based estimation method based on a simple multiplication factor is pre­

sented below. It is used to estimate the number of components that have defects in system 

test and post-release. It is applied to releases for which historical data is available. 

The simple estimation-based method is based on using a multiplicative factor that is 

calculated by using data from previous releases and applied to the current release. This 

factor is used to determine the number of "still defective" components, those components 

that had defects in system test and still had defects after system test. 

The following formula is used to compute the number of "still defective" components. 

(8.2) 

where 

i is the current release. 

sfi = 2:~:\ bk/ 2:~:\ dtk is the multiplicative factor for release i. 

142 



bk is the number of components with defects in both test and post-release 

in release k. 

dtk is the number of components that had defects in testing in release k. 

8.2 Case Study Data 

Interviews with testers ascertained that assumptions for the capture-recapture models 

are met: Three system test sites receive the same system for testing at the same time. The 

three sites and their main responsibilities are: 

1. The system test group at the developing organization tests the system against design 

documents. 

2. The internal customer tests the system against the specifications. 

3. The external customer tests the system with respect to their knowledge of operational 

use. 

These different views may have the effect of reducing the overlap of non-defect-free compo­

nents. Perspective-based reading [59] shows that the capture·recapture models are robust 

with respect to different views. This is important, because different test sites focus on 

different testing goals for the software. 

Interviews with the testers uncovered other factors that affect the estimates. First, the 

internal customer test site may have under-reported defects. The primary responsibility of 

this test site is writing specifications. In addition to writing specifications, they test against 

the specifications. Because of this, the number of defective components is estimated with 

and without this site. This way we also evaluate how well the methods perform when data 

exists for only two test sites. 

Second, some scrubbing of the data occurred. Before reporting a defect, the personnel 

at the test sites are encouraged to check a centralized database to avoid reporting duplicate 

defects. Some defects reported are later classified as duplicates, but the partial prescreening 

has the effect of reducing overlap and hence increasing estimates. This prescreening has a 

greater impact on components with few defects. For example, if a component has only one 
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defect and a test site finds and reports the defect, no other test site will report any other 

defects (and are not likely to report the same defect). The component will be categorized 

as defect-free for those other test sites, reducing overlap. One way to compensate for 

this problem is to look at estimators that tend to underestimate. If overlap is reduced 

due to prescreening, estimates will be higher. Estimators that tend to underestimate will 

compensate for defect scrubbing. 

Table 8.1 shows the actual values for components with defects and components without 

defects for test and post-release. Actual values are shown for all three releases using data 

from three test sites, and where different for two test sites, they are shown in parentheses. 

The values in Column 6 (the actual number of components with defects in test and post­

release) are used to evaluate the estimates obtained in the study. The values in Column 5 

(the actual number of components that have defects in post-release that did not have defects 

in system test) are used to evaluate the release decisions. 

Table 8.1: Release data for three test sites (two sites are in parentheses). 
# all # compo # defective # defective total # 
compo defect-free compo compo in post defective 

in test in test release not in test compo 
Release 1 180 128 52 (51) 7 59 (58) 
Release 2 185 125 60 (59) 5 65 (64) 
Release 3 188 154 34 6 40 

Columns 3 and 5 of Table 8.1 also show the data from Release 1 and Release 2 used 

to compute the multiplicative factors and the estimates for Release 2 and Release 3, re-

spectively. Table 8.2 shows the computation for the multiplicative factors using data from 

Release 1 and applied to Release 2, and data from both Releases 1 and 2, applied to Re-

lease 3. Since data from more than one previous release is available, the cumulative data 

over the previous releases is used. It is possible, however, to use only one previous release 

that is similar to the current release. 

Table 8.3 shows the data used in earlier test weeks to make release decisions for Re-

leases 1, 2, and 3. Release decisions are based on the actual number of defective compo­

nents remaining to be found after the test week indicated through post-release shown in 
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Table 8.2: Multiplicative factors for all releases. 

1

M ultiplicative Factor 
3 Sites I 2 sites 

Release 1 - -

Release 2 7/128 7/129 
Release 3 (7+5)/(128+125) (7+5)/(129+126) 

Columns 3,5 and 7. The values in parenthesis are the values for two test sites. (The number 

of defects found for most of the weeks using only two test sites is one less than it was for 

three test sites in Release 1. In Releases 2 and 3, the actual number of defects found for all 

of the weeks using only two test sites is the same as it was for three test sites.) 

Table 8.3: Actual values used to determine correct release decisions. 
Release 1 Release 2 Release 3 

defective defective defective defective defective defective 
components components components components components components 

in test remaining in test remaining in test remaining 

5 weeks earlier 48 (47) 11 (12) 56 9 29 11 
4 weeks earlier 48 (47) 11 (12) 56 9 31 9 
3 weeks earlier 49 (48) 10 (11) 56 9 33 7 
2 weeks earlier 49 (48) 10 (11) 57 8 33 7 
1 week earlier 49 (48) 10 (11) 60 (59) 5 33 7 
End date 52 (51) 7 60 (59) 5 34 6 

In Release 1, four to five weeks earlier than the actual end of system test, the number 

of defective components remaining is 11 (or 12 using two test sites). Because this number 

is larger than all three thresholds, the correct answer at all three thresholds is to continue 

testing. One to three weeks before the end of test, the correct answer at thresholds 2 and 5 

is to continue testing and at the threshold of 10, the correct answer is to stop testing. The 

correct answer at the actual end of system testing indicates that testing should continue 

if the threshold is 2 or 5 and stop if the threshold is 10. One would expect that as more 

weeks of testing occurs, one would see more decisions to stop. The correct release decisions 

are the same for three test sites and two test sites. These decisions are used to evaluate the 

decisions made based on the estimates. 

Table 8.3 shows there were a few weeks that had no change in the number of components 

found to have defects. For example, in Release 3, there was no change one to two weeks prior 
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to the end of system test. All components were available for test during this time. They 

did not come in late, nor were any new components integrated during this time. Defects 

were found in these weeks, but they were found in components that already had reported 

defects. 

Appendix A.5.1 presents the estimates obtained using the static estimation methods 

for three and two test sites. The errors and relative errors for the estimators are shown in 

tables in Appendix A.5.2. 

8.3 Results 

8.3.1 Estimation of Defective Components in Post-Release and Not in 
Test 

8.3.1.1 Evaluation of Estimates using Three Test Sites 

Figure 8.1 shows the evaluation of the estinlates for all three releases for three test sites. 

(N egative values are a result of underestimation.) The results are encouraging. The relative 

errors show that most estimators provide estimates close to the actual values, except for 

mtChao. 

x2 analysis showed only one estimator, the mthChao, was significantly different from the 

actual release values and the other estimators' values at a level of p = 0.001. The mthChao, 

therefore is not recommended for use. The statistical null hypothesis (the estimator's values 

are the same as the actual values) is not rejected for all other estimators at p = 0.001. 

While X2 analyis also showed that the other estimators were not significantly different from 

each other, in practice several estimators perform better (and had lower X2 values). (See 

Table A.23 in the Appendix for the chi2 values). 

In Release 1, the actual value was between the estimates given by the mOml, mtml, dpm 

(linear) and mhjk methods. The mOml, mtml, and dpm (linear) estimators normally have 

a tendency to underestimate. The partial scrubbing of defect data for duplicates may have 

reduced the overlap of the test groups leading to higher estimates for some of the estimators. 

Estimates that usually tend to underestimate (mOml, mtml) worked well for this situation: 

They did not underestimate quite so much. Both dpm estimators basically plot data and 
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Figure 8.1: Relative errors and mean absolute relative error for all releases (three sites). 

do not have the same assumptions normally, involved in capture-recapture models, hence 

they are less sensitive to varying defect detection probabilities or test site abilities. The 

mhjk has shown promising results in software engineering before [6] and is what we would 

have guessed to be the best estimate. It overestimated here, probably because of the partial 

scrubbing of data. Thus, it is good that the actual value turned out to be between the 

estimates provided by these four estimators as it gives us lower and upper limits. 

Figure 8.1 shows that the second and third releases have similar results. In Release 2 and 

Release 3, the same four capture-recapture and curve-fitting estimators (dpm(linear)t mtml, 

mOml and mhjk) perform the best. Actual values were close to their estimates, frequently 

occ~rring between the estimates provided by the mtml or dpm(linear) and mhjk meth­

ods. The mtml and dpm(linear) estimation methods slightly underestimated and the mhjk 

slightly overestimated. The cumulative, dpm( exp) estimators still overestimate greatly. 

The mthChao, the cumulative, and the dpm( exp) estimators did not perform well 

in most of the releases. They tended to overestimate greatly. The mthChao greatly 
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overestimated in the first, but performed well in Release 3. Its inconsistency, however, 

makes it difficult to trust. 

The experienced-based method performed very well in the second and third releases. It 

is interesting to compare these results with the results for the capture-recapture and curve-

fitting estimation methods. The capture-recapture estimates were close to the experience­

based estimates and are quite good. 

Table 8.4 shows the results of evaluating the estimators using the mean of the absolute 

relative error to rank the estimators over all three releases. The experienced-based method 

performs the best overall. The mthChao and cumulative do not perform well. The capture­

recapture and curve-fitting estimators that perform the best are the mtml, dpm(linear), 

mOml, and mhjk. These estimators have relative errors close to the experience-based method 

and show that they are as good as a method that requires history. 

Table 8.4: Ranking of estimators over three releases (three sites). 
I Estimator I Ranking I 

mOml 4 
mtml 2 
mhjk 5 
mthChao 8 
cumulative 7 
dpm (exp curvefit) 6 
dpm (linear curvefit) 3 
experience-based 1 

These results indicate that capture-recapture and curve-fitting methods, in particular 

the mtml, dpm(linear), mOml, and mhjk estimators, are able to estimate quite well the total 

number of components that have defects in test and post-release. The expected number of 

remaining components with defects that were defect-free in testing can then be computed 

from these estimates. 

8.3.1.2 Evaluation of Estimates using Two Test Sites 

Figure 8.2 shows the evaluation of the estimation methods applied to data from two test 

sites for all three releases. The two test sites include the system test group at the developing 
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organization and the external customer, which is probably the more common situation. 

Naturally, one would expect capture-recapture and curve-fitting methods to produce less 

accurate predictions as the number of reviewers (here, test sites) shrinks. However, the 

results are quite reasonable. Several of the estimators have low relative errors. 
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Figure 8.2: Relative er~ors and mean absolute relative error for all releases (2 sites). 

x2 analysis shows that none of the estimators were significantly different from the actual 

values or from each olher at p ~ 0.20. (See Table A.24 in the Appendix for the chi2 values). 

Using data from only two test sites, the mtml, mOml, dpm(linear), mtChpm, and the 

mhjk estimators performed the best in terms of their errors. The mOml, mtml, and mtml 

estimators again tended to underestimate slightly. The mhjk slightly overestimated. The 

MtChpm estimator, which may be used only in the case of two test sites, performed very 

well and is comparable to the mOml and mhjk. The mthChao, cumulative and dpm (exp) 

did not perform well using two test sites. The cumulative and dpm( exp) overestimated too 

much. The mthChao, which usually tends to overestimate, underestimated in Releases 1 

and 3. In fact, it gave the lower bound for estimates, the number of components that are 
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known to have defects in testing. As such, the mthChao method provided an estimate that 

is suspect. This effect may be due to the fact that data from only two test sites was used. 

In any case, the estimates it provided were so low, that its relative error ranks it as one of 

the worst performing estimators. The mthChao estimator is not useful in this situation. 

As in the case of three test sites, the mean of the absolute relative error across the 

three releases is used to evaluate and rank the estimators using two test sites. Table 8.5 

shows the ranking of the estimation methods applied to data from two test sites for all three 

releases. The experience-based method and the dpm (linear) rank the highest overall. The 

mthChao, cumulative, and dpm (exp) rank lowest. The mOml, mtml, mhjk and mtChpm 

have mean absolute relative errors that are less than 0.100. They are almost as good as the 

experience-based method and do not require any history. 

Table 8.5: Ranking of estimators over three releases (three sites). 
I Estimator I Ranking I 

mOml 5 
mtml 3 
mhjk 6 
mthChao 9 
cumulative 8 
dpm (exp curvefit) 7 
dpm (linear curvefit) 1 
mtChpm 4 
exp erience-based 2 

The experience-based method depends on releases being similar. If historical data is 

available and releases are similar, the experience-based method using the multiplicative 

factors should be used. The capture-recapture and curve-fitting methods are independent 

of data from previous releases. Several of the estimates from the capture-recapture and 

curve-fitting methods have relative errors that are almost as low. These include the mtml, 

dpm(linear) and the mjhk. If no historical data is available or releases are dissimilar, thesee 

capture-recapture and curve-fitting methods provide reasonable estimates. 

The results for the estimation methods based on capture-recapture models do not worsen 

for two test sites, in most cases they improve. This is due to the fact that the third test 
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site had less overlap with the first two test sites than the first two test sites had with each 

other. The cumulative and dpm(exp) estimators, which are curve-fitting methods, worsen 

(as expected) with one less test site. Most unexpectedly, the dpm(linear) estimator, which 

is also a curve-fitting method, performs very well and improves with only two test sites. 

The curve· fitting methods are most useful when there are a number of reviewers and several 

reviewers find most of the defects[6]. 

These results demonstrate that capture-recapture and curve-fitting methods are able 

to estimate remaining defective components well when only two test sites are involved in 

system testing. Since this is probably a more common situation, this is good to know. 

8.3.1.3 Evaluation of Estimates Obtained Earlier in System Test 

Estimates obtained in earlier weeks and the decisions based on those estimates were 

evaluated for Releases 1, 2, and 3 using three test sites and two test sites. Given that some 

of the estimators performed rather badly so far, not all estimators were applied in earlier 

test weeks. The mOml, mtml, mhjk, and dpm(linear), the mtChpm estimators and the 

experienced-based Inethod are the only ones applied and evaluated. The -estimates from 

the mthChao, dpm(exp) and cumulative methods were not considered. They-recommended 

testing to continue too long. 

Over the last few weeks of system test, the estimates changed. In all releases, estimates 

tended to approach the actual number of defective components in test and post-release 

as the estimators were applied in later weeks. As more testing oecured, estimation errors 

decreased. For example, in Release 1, all the estimators underestimated until the last week 

of system test. In earlier weeks, all the estimators, except for mhjk, gave estimates that 

were below the actual number of defective components found. The mhjk estimates were 

slightly higher than the others. In Release 3, the mtml started underestimating and then 

by the end of system test overestimated slightly. 

We also applied the experience-based method to Release 2 and Release 3 in a similar 

approach using data available at earlier points in time. The estimates for defective com ... 

ponents relies on the mUltiplicative factor based on data from earlier releases, as well as 
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the number of components that have been found to have defects at various points in time. 

Because the previous release determines the multiplicative factor used in the current release, 

the factor's value does not change when applying it to earlier weeks of data in the release 

for which estimates are derived. 

Applying the experienced-based method at earlier weeks in system test provided esti­

mates that are quite good. Estimates were close to the estimates obtained by other esti­

mation methods applied at earlier weeks. For example, in Release 2, the experience-based 

estimates fell between the lower estimates provided by the mOml, mtml, and mtChpm meth­

ods (which under-estimated), and the higher estimates provided by the mhjk and the dpm 

(linear) methods (which over-estimated). The experience-based tends to underestimate at 

earlier weeks, then slightly overestimates closer to the actual end of system test. 

Results indicated that capture-recapture methods hold up well in earlier weeks for the 

case of two test sites. In Release 1 and Release 2, the mOml and mtml estimates for two test 

sites were approximately the same as for three test sites. The mhjk and the dpm (linear) 

performed better with two test sites. The mhjk overestimated less using two test sites and 

the dpm (linear) underestimated less. Using data from two test sites then did not worsen 

the performance of the estimators and in some cases improved. them. 

In Release 2, the mOml and mtml estimators performed worse in the case of two test 

sites than in the case of three, but still had relative errors less than 0.10. The mtChpm 

estimator was only slightly better than the mOml and mtml estimators. The dpm~ (linear) 

overestimated in earlier weeks, but had smaller errors than when it underestimated using 1 

data from three test sites. 

The estimators in Release 3 performed no worse, and in the case of the mhjk performed 

better using data from two test sites rather than three. The mtml and dpm(linear) esti­

mators provide estimates that are almost the same as those for three test sites. The mhjk 

overestimateed less with two test sites and the estimates were closer to the actual values. 

Overall, the mhjk estimator, which overestimated in the case of three test sites, still 

overestimated, but not quite as much. The mOml and mtml performed about the same 

in both cases. The mtChpm performed as well as the mOml and mtml estimators. The 
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curve fitting method, dpm (linear), was not consistent: In Release 1 it performed better, in 

Release 2 it performed worse, and in Release 3 it performed about the same. 

The decision to stop or continue testing at the end of a particular week, however, is 

based on the actual number of defective components found in system test at that point in 

time and it is the decision made, rather than the estimate, that is of most concern. 

8.3.2 Release Decisions based on Estimates 

Interviews conducted with the developers indicated that it is acceptable to have two 

components with no reported defects in system test, but with post-release defects. More 

than ten such components is unacceptable. Specifically, defects in new components that 

add functionality are more acceptable than defects in old components. It is most important 

that old functionality has not been broken. Most of the new components are found to have 

defects in system test. Only old components had post-release defects, but no defects in 

system test. These are exactly the components the developers worry about. 

Given that some of the estimators performed rather badly, not all estimators are used. 

The mOml, mtml, mhjk, and dpm(linear) estimators are used for the case with three test 

sites. These estimators, as well as the mtChpm estimator, are evaluated for the case with 

two test sites. The estimates from the mthChao, dpm(exp) and cumulative methods are 

not considered as their relative errors are too high and would cause testing to continue too 

long. 

The release decisions based on the estimates are compared to the correct decision based 

on the actual values and evaluated. 

8.3.2.1 Release Decisions using Three Test Sites 

Tables 8.6 - 8.8 show the decisions based on the estimates and the number of correct 

decisions for the four estimators mOml, mtml, mhjk and dpm (linear) usi,ng three test sites 

for Releases 1, 2 and 3. The correct decisions are shown in bold. 
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Table 8.6: Release 1 decisions earlier in test (three sites). 
5 weeks Threshold # correct 
earlier 2 5 10 decisions 

mOml stop stop stop 0 
mtml stop stop stop 0 
mhjk continue continue continue 3 
dpm (linear) continue stop stop 1 

I 4 weeks II 
mOml stop stop stop 0 
mtml stop stop stop 0 
mhjk continue continue stop 2 
dpm (linear) continue stop stop 1 

I 2-3 weeks II 
mOml stop stop stop 1 
mtml stop stop stop ,1 

mhjk continue continue stop 3 
dpm (linear) continue stop stop 2 

11 week II 
mOml stop stop stop 1 
mtml stop stop stop 1 
mhjk continue continue stop 3 
dpm (linear) continue stop stop 2 

I last week II 
mOml continue stop stop 2 
mtml stop stop stop 1 
mhjk continue continue continue 2 
dpm(linear) stop stop stop 1 

8.3.2.2 Evaluation of Decisions in Last Week (Three Sites) 

To illustrate the quality of the estimators in making decisions, thresholds of 2, 5 and 10 

were chosen and evaluated. The estimate of the number of components with defects in post-

release but not in test is compared against these three thresholds to determine whether the 

decision made, using the estimate, is correct. If, for example, the threshold value is 2, then 

testing would stop if the estimated number of components with defects in post-release that 

were defect-free in testing was less than or equal to 2. The correct answer is 7 in Release 1. 

So the correct decision would be to continue testing. If, for example, the threshold value is 

10, the correct decision would be to stop testing, since 7 is less than 10. 
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Table 8.7: Release 2 decisions earlier in test (three sites). 
3-5 weeks Threshold # correct 
earlier 2 5 10 decisions 

mOml continue continue stop 3 
mtml stop stop stop 1 
mhjk continue continue continue 2 
dpm (linear) continue stop stop 2 
experience-based continue continue stop 3 

I 2 weeks II 
mOml continue continue stop 3 
mtml stop stop stop 1 
mhjk continue continue continue 2 
d pm (linear) continue stop stop 2 
experience-based continue continue stop 3 

11 week II 
mOml continue continue stop 2 
mtml continue stop stop 3 
mhjk continue continue continue 1 
dpm (linear) continue stop stop 3 
experience-based continue continue stop 2 

I last week II 
mOml continue continue stop 2 
mtml continue stop stop 3 
mhjk continue continue continue 1 
dpm(linear) continue stop stop 3 
experience-based continue continue stop 2 

Tables 8.6, 8.7 and 8.8 show the results of the decision analysis in the last week of system 

test for all three releases using data from three test sites. In Release 1, the mOml and mhjk 

estimators provide the correct decision most often. The mOml recommends stopping a bit 

too soon. The mhjk recommends continuing testing a little too long. Testing a bit too 

long, in most cases, is probably preferable to stopping too soon. In Release 2, the mtml and 

dpm(linear) perform the best, both providing three correct decisions. The decisions based 

on mOml and mhjk would result in continuing testing a bit longer than the other estimators. 

In Release 3, mtml is the only estimator that leads to three correct decisions. The decisions 

based on the dpm(1inear) estimator result in a recommendation to stop testing, too early. 
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Table 8.8: Release 3 decisions earlier in test (three sites). 
5 weeks Threshold # correct 
earlier 2 5 10 decisions 

mOml continue continue continue 3 
mtml continue continue stop 2 
mhjk continue continue continue 3 
dpm (linear) continue stop stop 1 
experience-based continue continue continue 3 

I 4 weeks II 
mOml continue continue continue 2 
mtml continue stop stop 2 
mhjk continue continue continue 2 
dpm (linear) continue stop stop 2 
experience-based continue continue continue 2 

I 1-3 weeks II 
mOml continue continue continue 2 
mtml continue continue stop 3 
mhjk continue continue continue 2 
dpm (linear) continue stop stop 2 
experience-based continue continue continue 2 

I last week II 
mOml continue continue continue 2 
mtml continue continue stop 3 
mhjk continue continue continue 2 
dpm{linear) continue stop stop 2 
experience-based continue continue stop 3 

The decisions based on mOml and mhjk result in recommendations to continue testing longer 

than the others. 

Not only do these methods provide reasonable estimates of the number of components 

that will have post-release defects, but no defects in system test, the estimates give a good 

basis for a correct release decision for the three threshold values analyzed. The mtml 

estimator makes the largest number of correct decisions for all three threshold values both 

in Release 2 and Release 3. In Release 1, it recommends stopping too soon. The mhjk 

estimator consistently recommends to continue testing, because it typically overestimates. 

In all releases, the mjhk estimator would cause testing to continue until a threshold value 

of about 15-16. 
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It is probably preferable to continue testing too long rather than stopping testing too 

soon and releasing the software. Because of this, the preferred estimator would be one that 

provides a slight overestimate. Analysis of the estimates provided by the methods shows 

that the mhjk estimator tends to slightly overestimate in this situation. (Other estimators 

that overestimate, do so too much.) An estimator that slightly overestimates will best 

support making the correct decision. This analysis is supported by the opinion of one tester 

who believed that too many defects were found after Release 1 and Release 2 and that 

testing should have continued a bit longer. 

Estimations provided by the experience-based method, using multiplicative factors, are 

also analyzed from a decision point of view. Because estimations using such a method 

can only be made for releases with historical data, decisions for stopping test based on 

estimations can only be made for Release 2 and Release 3. Compared to decisions based 

on estimation from the capture-recapture and curve-fitting methods, the experience-based 

method works quite well. In Release 2, the experience-based method gives us decisions on 

a par with mOml. Since testing a bit longer is preferable to stopping testing too soon, this 

method provides us with a conservative, but not too conservative decision. In' Release 3, 

the experience-based method gives us decisions on a par with mtml. A more conservative 

method like the mhjk would recommend testing a little longer than mtml and the experience­

based method. 

8.3.2.3 Evaluation of Earlier Decisions (Three Sites) 

Table 8.6 shows that the mOml, mtml, and dpm (linear) estimators recommend stopping 

testing as early as five weeks before the end of system test in Release 1. These decisions do 

not agree with the correct answer. The mhjk estimator makes the correct decisions at the 

threshold values for 2 and 5 for the last six weeks for system test. At the threshold value 

of 10, it makes the correct decision at every week, but two. These two weeks are the fourth 

week before the actual end of system test and the last week of system test. In these cases, 

the mhjk estimator recommends that testing continue when the correct answer is to stop. 

The mhjk estimator is, therefore, a little conservative. 
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For an example of how this method works, consider the following scenario. Assume 

that the threshold is ten components and the mhjk estimator is used to make decisions to 

continue or stop testing in Release 1. Five weeks before the actual end of system test, the 

recommendation based on the mhjk estimator is to continue testing. This is the correct 

decision at this time. The following week (4 weeks earlier), the recommendation is to stop 

testing. The decision is incorrect: It should recommend testing to continue. It would 

be better if testing continues until a stop decision consistently occurs a certain number of 

weeks in a row. If we assume that testing continues until three stop decisions occur in a row, 

testing would correctly continue, because only one stop decision has occurred at this point. 

The following week (three weeks earlier), the recommended decision is to stop testing. This 

reconlmendation occurs again at two weeks before the actual end of system test. Testing 

would now have had three weeks in a row in which a stop was recommended. If testing 

stopped now, they would be making a correct decision. This decision results in saving two 

weeks of testing. There is a potential that some defects would be nlissed, but it would be 

within the threshold set at 10. 

Tables 8.7 - 8.8 show that most of the estimators, except for mhjk, improve in the 

second and third releases. The mhjk estimator recommends testing continue for all weeks 

at all thresholds. The mhjk decisions agree with the correct answer in the earlier weeks, but 

are perhaps conservative in the last two weeks. The mOml and experienced-based method 

perform better than the mhjk estimator in making decisions in Release 2. 

Mtml and the dpm (linear) recommend stopping testing too soon for at least two of the 

thresholds in Release 2. In Release 3, the dpm (linear) estimator incorrectly recommends 

stopping six weeks before the end of system test at thresholds 5 and 10. Mtml recommends 

stopping two to five weeks before the actual end of system test and then in the last two 

weeks recomnlends testing continue at the threshold of 2. (A threshold of 2 is very sensitive 

to changes in estimates.) In Release 3, the mtml estimator also incorrectly recommends 

stopping too soon in the fourth week week before the actual end of system test at the 

threshold level 5 and then in the last three weeks recommends testing continue, reversing 

its decision. 
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Tables 8.6 - 8.8 show that when mOml, mtml and dpm (linear) provide incorrect deci-

sions, they typically indicate that testing should stop when the correct answer is to continue. 

Whenever the mhjk estimator is incorrect, it most often says to continue when the correct 

answer is to stop. 

Table 8.9 ranks the estimators based on the number of correct decisions over the last 

six weeks (the last week and the previous five weeks) for three test sites. The columns 

indicate the estimators' ranks for all three releases and an overall rank. Table 8.9 shows 

that the experience-based method performed very well in Release 2 and Release 3, in which 

historical data was available. The overall rankings show the mOml and mhjk estimators 

perform the best in making correct decisions. When a conservative decision is desired, the 

mhjk estimator should be used, otherwise the mOml should be appropriate. 

Table 8.9: f anln; for e~timator~ for three test. sites. 
Release 1 Release 2 Release 3 Overall 

Estimator Rank Rank Rank Rank 

mOml 3 1 3 1 
mtml 3 4 1 2 
mhjk 1 4 3 2 
dpm(linear) 2 3 5 4 
exp erience-based - 1 2 -

The mOml and mhjk estimators and the experienced-based estimation method perform 

very well when used to make decisions. The mOml and experience-based estimation methods 

tend to recommend stopping sooner than the mhjk estimation method. If system testers 

want to save testing time, the mOml and experience-based methods should perform well in 

providing information to aid in making the decision to continue or stop test. The mhjk 

estimation method is recommended in situations in which system testers want to be more 

conservative - that is they would prefer to continue testing longer in order to have fewer 

defects reported in post-release. 
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8.3.2.4 Release Decisions using Two Test Sites 

Tables 8.10, 8.11, and 8.12 show the results of the decision analysis for all three releases 

using data from only two test sites. The Chapman estimator is included in the decision 

analysis as it had low relative errors. The correct decisions are shown in bold. 

Table 8.10: Release 1 decisions earlier in test (two sites). 
5 weeks Threshold # correct 
earlier 2 5 10 decisions 

mOml stop stop stop 0 
mtml stop stop stop 0 
mhjk continue stop stop 1 
mtChpm stop stop stop 0 
dpm (linear) continue stop stop 1 

1 4 weeks II 

mOml stop stop stop 0 
mtml stop stop stop 0 
mhjk continue stop stop 1 
mtChpm stop stop stop 0 
dpm (linear) continue stop stop 1 

I 1-3 weeks II 
mOml stop stop stop 0 
rntml stop stop stop 0 
mhjk continue stop stop 1 
mtChpm stop stop stop 0 
dpm (linear) continue continue stop 2 

I last week II 
mOml continue stop stop 2 
mtml stop stop stop 1 
mhjk continue continue stop 3 
dpm(linear) continue continue continue 2 
mtChpm continue stop stop 2 

8.3.2.5 Evaluation of Decisions in Last Week (Two Sites) 

Table 8.10- 8.12 show that based on data from two test sites the mOml, dpm(linear) , 

and mtChpm estimator lead to the correct decision for two threshold values in Release 1. 

The mOml, rntml, dpm(linear) and mtChpm perform well in Release 2; all three lead to 

three correct decisions. All the estimators, except for dpm (linear), perform equally well at 
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Table 8.11: Release 2 decisions earlier in test (two sites). 
3-5 weeks Threshold # correct 
earlier 2 5 10 decisions 

mOml stop stop stop 1 
mtml stop stop stop 1 
mhjk continue continue stop 3 
mtChpm stop stop stop 1 
dpm (linear) continue continue continue 2 

I 2 weeks II 
mOml stop stop stop 1 
mtml stop stop stop 1 
mhjk continue continue stop 3 
mtChpm stop stop stop 1 
dpm (linear) continue continue continue 2 

11 week II 
mOml continue stop stop 3 
mtml continue stop stop 3 
mhjk continue continue stop 2 
mtChpm continue' s~op stop 3 
dpm (linear) continue co:qtinue continue 1 

I last week II 
mOml continue. stop stop 3 
mtml continue st.oP stop 3 
mhjk continue continlle continue 1 
dpm(linear) continue s~~p stop 3 
mtChpm continue stop stop 3 

all thresholds earlier in system test in Release 3. The mhjk estimator leads to three correct 

decisions in Releases 1 and 3, but in Release 2, it results in an incorrect recommendation 

to continue testing. Again, it is probably more desirable to continue testing too long, than 

it is not to test long enough. The mOml, mtChpm and mjhk estimators appear to be the 

type of estimators to best support the correct decision for two test sites. 

Comparing decisions based on estimations using two test sites for Release 2, the 

experience-based method performs better than the capture-recapture and curve-fitting 

methods. It recommends testing a little longer than the correct answer, but not as long as 

mjhk, which was determined to be the preferred estimator in Release 2. In Release 3, the 
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Table 8.12: Release 3 decisions earlier in test (two sites). 
5 weeks Threshold # correct 
earlier 2 5 10 decisions 

mOml continue continue stop 2 
mtml continue continue stop 2 
mhjk continue continue stop 2 
mtChpm continue continue stop 2 
dpm (linear) continue stop stop 1 

1 4 weeks \I 

mOml continue continue stop 3 
mtml continue continue stop 3 
mhjk continue continue stop 3 
mtChpm continue continue stop 3 
d pm (linear) continue stop stop 2 

11-3 weeks \I 

mOml continue continue stop 3 
mtml continue continue stop 3 
mhjk continue continue stop 3 
mtChpm continue continue stop 3 
dpm (linear), continue stop stop 2 

1 last week \I 
mOml continue continue stop 3 
mtml continue continue stop 3 
mhjk continue continue stop 3 
dpm(linear) continue stop stop 2 
mtChpm continue continue stop 3 

experience-based method performs as well as several of the other estimators, including the 

mhjk. 

Overall, the experience-based method performs very well when used to make decisions. 

Decision making based on estimates using some of the capture-recapture and curve-fitting 

estimation methods results in decisions that are as good. If historical data is available and 

releases are similar with regards to defects and their exposure, the experience-based estima-

tion method should be used to complement capture-recapture and curve-fitting estimation 

methods and provide more input into making the decision to stop or continue testing. If no 

historical data is available or releases are not similar, capture-recapture and curve-fitting 

methods may be used to make good decisions based on the estimates they provide. 
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8.3.2.6 Evaluation of Earlier Decisions (Two Sites) 

The same kind of analysis was performed using data from two test sites to evaluate 

the estimators' release earlier in test. Tables 8.10 - 8.12 show the decisions based on the 

estimates and the number of correct decisions for the five estimators mOml, mtml, mhjk, 

mtChpm and dpm (linear) for two test sites for all releases. 

Tables 8.10 and 8.11 show the decisions based on estimates earlier in system test are not 

very good in the first and second releases. Most of the estimators incorrectly recommend 

stopping at the three threshold values. Mhjk and dpm (linear) provide the greatest number 

of correct decisions 2-5 weeks before the actual end of system test. They recommend testing 

continue when other estimators incorrectly recommend testing should stop. It is only in 

the actual last week of testing, that the number of correct decisions improve for the other 

estimators. Table 8.12 .shows that all the estimators, except for dpm (linear), perform 

equally well in Release 3 at all thresholds earlier in system test. Most of the estimators 

correctly recommend testing continue at the thresholds of 2 and 5 for all weeks. The same 

estimators make the correct recommendation at a threshold of 10, recommending testing 

at this threshold stop about five weeks earlier. 

Table 8.13 ranks the estimators based on the number of correct decisions over the last 

six weeks for two test sites. The columns indicate the estimators' ranks for each release 

and an overall rank. The mhjk, the mOml and the mtChpm perform the best overall. The 

mhjk, however, is consistently ranked first or second for all three releases using data from 

two test sites. Based on this analysis, the mhjk is recommended for use in the case of two 

test sites to make decisions in continuing or stopping testing . 

Table 8.1 . R~n k" £01 estimators for two test sites. 
Release 1 Release 2 Release 3 Overall 

Estimator Rank Rank Rank Rank 

mOml 3 3 1 2 
mtml 5 3 1 5 
mhjk 2 1 1 1 
mtChpm 3 3 1 2 
dpm(linear) 1 2 5 4 
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The mOml and the mhjk estimators ranked the highest in making release decisions, 

whether three test sites or two test sites were used. The mhjk estimator tends to be more 

conservative, recommending testing continue, when the correct answer is to stop. If a 

conservative decision is desired, one should use the mhjk estimator. Otherwise the mOml 

would be appropriate. 

In this case study, the best results come from using two test sites rather than three 

test sites. (Because the internal customer test site may have under-reported defects, it may 

have affected the results for three test sites.) For the environment in this study, two test 

sites are recommended. Since the methods do perform well when data exists for only two 

test sites, it is feasible to use our approach with two sites, which may be a more common 

situation. If there are three test sites and all three test sites have good defect data, then 

three test sites may be recommended. 

8.3.3 Estimation of Still Defective Components 

Section 8.1.2 described the approach for a simple estimation-based method to estimate 

the number of "still defective" components, those components that had defects in system 

test and still had defects after system test. 

The multiplicative "still defective" factor was computed using data from Release 1 and 

applied to Release 2. A multiplicative factor was computed using data from both Release 1 

and 2 and applied to Release 3. Since data from more than one previous release is available, 

the cumulative data over the previous releases may be used. It is possible, however, to use 

only one previous release that is similar to the current release. 

Table 8.14 shows the data from Release 1 used to estimate for Release 2, as well as the 

calculations for the estimates for Release 2 and the data from Releases 1 and 2 used to 

estimate for Release 3. 

For the third release, cumulative values are taken from the previous releases and used 

to derive the multiplicative factors. The sum of the number of components that had defects 

in both test and post-release in Releases 1 and 2 is used for the "still defective" factor. Still 

defective components are overestimated by over 50 percent. 
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Table 8.14: Release data and estimates for Releases 2 and 3. 
Previous Release I Current Release 

# comps # with defects Fraction # comps Estimated # Correct # 
wi defects in test & still wi defects comps still comps still 

in test post-release defective in test defective defective 
Release 2 52 28 28/52 60 f28/52 * 601 = 33 16 
Release 3 60 16 16/60 34 r~*341-14 52+60 - 6 

Using data only from only Release 2 to estimate for Release 3 improves the estimates 

slightly. The still defective components are estimated as 10. In terms of new functionality, 

Release 3 had fewer new components than Release 2 and Release 2 had fewer new compo­

nents than Release 1. In this respect, Release 3 is more similar to Release 2 than it is to 

Release 1. 

This method does not estimate still defective components very well, but on the other 

hand capture-recapture and curve-fitting methods can not estimate for this type of compo­

nent at all. 

8.4 Summary 

This study evaluated the use of several existing methods to estimate total and remaining 

defects in code in a new context. Several test groups or sites concurrently test a software 

product. Developers want to know whether their software is ready for release, and how many 

components will exhibit defects after release that had not shown defects during system test. 

This gives an indication of how many components were "missed" (tested inadequately) 

during system test. 

Results show that capture-recapture and curve-fitting methods may be used to estimate 

the number of components that have defects after release, but no defects in testing. The 

estimates from several capture-recapture and curve-fitting methods have low relative error 

and compare favorably with experience-based estimates used as a point of reference. Errors 

from the best estimators based on capture-recapture and curve-fitting have relative errors 

between 0.05 and 0.2 compared to the experience-based method that has absolute rela­

tive errors between 0.03 to 0.05. The experience-based method, however, depends greatly 
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on previous releases being similar. The capture-recapture and curve-fitting methods are 

independent of data from previous releases. 

Capture-recapture and curve-fitting estimators that perform the best in this study in­

clude the mOml, mtml, dpm(linear) and mhjk. The mOml, mtml and dpm(linear) estimators 

usually have a tendency to underestimate slightly. Due to the partial prescreening of the 

data to reduce duplicate reporting, these estimators provide estimations that appear to 

compensate for defect scrubbing. The mhjk tends to overestimate slightly. The mthChao, 

dpm( exp) and cumulative methods overestimate too much. Because testing too long is 

preferable to not testing long enough, the mjhk estimator will probably perform the best, 

especially if there is no prescreening. Estimators for two different capture-recapture models 

provide a "window". The mtml or the dpm(linear) estimators are good choices for the lower 

bound of the range and the mjhk estimator is a good choice for the upper bound. These 

estimates from capture-recapture and curve-fitting estimation methods may be comple­

mented with estimates provided by the experience-based method and the testers' personal 

experiences. 

Estimates can be used as an input to making decisions on whether to stop test and release 

software. Results show that estimates from capture-recapture and curve-fitting methods 

using several threshold values provide a good basis for a correct decision for stopping. 

The mhjk estimator appears to perform the best as a basis for decision making. It tends 

to recommend testing a bit longer and is more conservative than the mOml, mtml, and 

dpm(linear) methods. The mthChao, dpm(exp) and cumulative estimators do not perform 

well in making decisions. 

Results show that the same estimators that performed well using data from three test 

sites also performed well when using data from two test sites. In some cases, the estimators 

performed better. The estimators are also shown to be quite robust for two test sites, even 

when the sites test the system differently. 

This approach is a new application of estimation methods based on capture-recapture 

and curve-fitting models. These methods may be used to estimate the number of compo­

nents that have defects in post·release that did not have defects in testing. These are the 
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components that were missed in testing. These estimations in turn may be used to recom­

mend decisions on whether to continue testing or to stop testing and release software. The 

recommendation may then be used as one of several criteria to make a decision. If historical 

data is available and releases are similar, a simple experience-based method using multi­

plicative factors should be used as a complement to the capture-recapture and curve-fitting 

estimation methods. If, however, no historical data is available or releases are dissimilar, 

capture-recapture and curve-fitting methods work quite well to provide estimates and to 

help make decisions for continuing or stopping testing. 
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Chapter 9 

Analysis of SRGM Selection 
Method 

9.1 Approach 

There are three main risks involved in applying the software reliability growth models 

to estimate failures. They are: 

• Not anyone model will match a company's development and test process exactly. 

This will result in a curve fit that may not converge or may have a low correlation 

value. 

• Data is grouped by week resulting in a reduction in the number of data points. This 

means it will take longer for the predicted total number of failures to stabilize. 

• Testing effort may vary week to week. This will be more of problem with a small 

amount of data, that is when few there are few test weeks. 

To handle these risks, mUltiple failure estimation methods and models may be applied. 

The selection method applies software reliability growth models to cumulative failure 

data grouped by weeks to determine how well the method predicts the expected total number 

of failures. More specifically, we consider 

1. Can one use calendar time (in our case weeks) when the original models assume 

execution time? 
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2. How robust are the models used in this case study when assumptions are not met? 

The models are robust when failures occur one at time. In this study, failures are 

grouped in weeks. 

3. How does one decide in the testing process which model to use, when a plethora of 

models exist? Not one model may fit all the data. 

4. Can we put a process framework around the models to make the models useful? 

5. Can the selection method aid in choosing the model and making decisions to stop 

testing? 

Cumulative number of failures by week are fitted with software reliability growth mod­

els. If the correlation is good, the function can predict the number of failures that will 

occur after release. The predicted number of total failures is a model parameter that is 

statistically estimated from test time and failure data. One may use different models, data, 

and statistical techniques. The ones we use include: 

• Test time: We investigate the use of calendar time, since data on test cases run and 

execution time are often not available. 

• Defect data: We collect ,failure data from system test after all functionality has been 

added. The models assume that the code being tested does not change during test, 

except for defect repair, and that the effects of repair are minimal, that is not a lot 

of code is changed. The data is grouped by week. 

• Growth models: We investigate two concave models, the G-O model [23] and the 

Yamada exponential model [76], and two S-shaped models, the delayed S-shaped 

model [74] and the Gompertz model [29]. These models are applied to the data at 

the end of each week. We evaluate the models in terms of: 

- Curve fit. How well a curve fits is given by the r-value (a correlation coefficient). 

The r-value is the normalized difference between the data points and the fitting 

function (or regression model). It has a value between 0 and 1. An r-value 
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of 0 implies there is no correlation between the fitting function and the data. A 

perfect fit has a value of 1. 

Prediction stability. A prediction is stable if the prediction in week i is within 

10 percent of the prediction in week i -1). 

Predictive ability. Error of predictive ability in measured in terms of error (esti­

mate - actual) and relative error (error / actual). 

• Statistical technique: A mathematical function is fit to the data. Parameter estimates 

are obtained using nonlinear regressions. 

Figure 9.1 shows the steps of the approach. The steps are described in more detail as 

follows: 

Make release dnision 

Figure 9.1: Flowchart for SRGM Selection Method. 
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1. Record the cumulative number of failures found in system test at the end of each 

week. 

2. When at least 60 percent of planned testing is complete, apply the software reliability 

growth models at the end of each week using a commercial curve fit program that al­

lows the user to enter the equations for the models. The study applying this method 

uses the G-O, delayed S-shaped, Gompertz, and Yamada Exponential models. (Em­

pirical studies in Musa et al. [37] and Wood [72] indicate that the models typically do 

not become stable until 60 percent of testing is complete.) 

3. The curve fit program estimates a model's parameters by attempting to fit the model 

to the data. 

4. If a fit cannot be performed, a model is said to diverge and the curve fit program 

outputs a message to that effect. This situation occurs if the model is not appropriate 

for the data or not enough data has yet been collected. If this situation occurs 

and more than 60 percent of testing is complete, then the model is probably not 

appropriate for the data and should not be considered in future weeks. 

If a curve can be fit to the data for the model, the results of the fit are computed. 

The program computes how well the curve fits (the correlation or r-value, which has 

a value between 0 and 1), as well as the estimate for the expected number of total 

failures ( a parameter). 

5. The r-values of the various models for the week should be over 0.95, if the fits are 

good. If a correlation value is not over 0.95 and more than 60 percent of testing is 

complete, then the model is not appropriate for the data and is not considered in 

future weeks. 

(We are looking for a few models that fit the best. An r-value that is too low, for 

example may include too many models that must be applied week after week that 

may not perform as well. Alternatively, an r-value set too high may eliminate too 

many models, in fact it may eliminate all of them.) 
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6. The curve fit program provides an estimate for the parameter a, which is an estimate 

for the expected number of total failures. If a model's predictions for expected number 

of total failures are lower than the actual number of failures already found and have 

been consistently so in prior weeks, the model chosen is inappropriate for the data 

and should not be used in future weeks. 

7. If no model has a stable prediction for the current week, that is within 10 percent of 

the prediction of the previous week, additional testing effort is required. System test 

tests and collects failure data for another week. 

8. If there is at least one stable model, the method estimate is taken to be the max­

imum estimate of all stable models. (This is a conservative choice. Alternatively, 

the method estimate could be the minimum or the mean.) System test determines 

whether additional testing effort is required by comparing the method estitnate to 

the actual number of failures found. If the method estimate is much higher than the 

actual number of failures found, additional testing effort may be considered for at 

least another week. If the difference between the prediction and the actual number of 

failures found is below the acceptability threshold, the decision to stop testing may 

be considered. 

9. System test should apply the models that where not eliminated in previous weeks at 

the end of system test to estimate the number of remaining failures that could be 

reported in post-release. The number of failures in post-release may be estimated 

by subtracting the number of known failures in system test from the predicted total 

number of failures. 

9.2 Results 

Our study shows that the method for selecting software reliability growth models based 

on cumulative failures performs very well in predicting the number of failures close to the 

total number of failures reported in test and post-release. 
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Tables 9.1 - 9.5 show the data from three releases using the G-O, delayed 8-shaped, 

Gompertz and Yamada Exponential software reliability growth models to predict the total 

number of failures. The columns show the test week, the cumulative number of failures 

found by test week, the prediction for total number of failures (parameter a), and the 

r-value (goodness of fit). The week a model is rejected is indicated by an 'R'. The week a 

model stabilizes is indicated by an '8' in the estimate column. (If a model destabilizes, it 

is indicated by a 'D'.) 

Table 9.1 shows that according to our process framework, the G-O model and the 

Yamada Exponential model would be rejected as appropriate models at week 11 (60 percent 

of the way through testing). The G-O model is rejected because the r-value is 0.916, less 

than the 0.95 value the approach recommends. The Yamada Exponential model is rejected 

because it does not converge in week 11, indicating that a good curve fit with this model is 

not possible for the data. 

Table 9.1: Release 1 predictions and correlation values. 
Test Failures Delayed 8-shaped G-O Gompertz Yamada 
week found Est. r-value Est. r-value Est. r-value Est. r-value 

11 139 830 0.950 6722 0.916R 2431 0.970 - -R 
12 152 562 0.962 6910 0.934 796 0.975 - -
13 164 451 0.970 6889 0.946 412 0.979 - -
14 164 345 0.972 6054 0.955 276 0.979 - -

15 165 287 0.971 4906 0.960 227 0.979 5625 0.962 
16 168 255 0.972 2574 0.961 2078 0.979 6557 0.961 
17 170 236 8 0.973 1539 0.961 197 0.980 4925 0.961 
18 176 226 0.974 986 0.962 193 0.981 1008 0.961 

Because visual inspection of the cumulative failure curve in Release 1 indicated that it 

was more 8-shaped than concave, we expect the delayed 8-shaped model and the Gompertz 

model to perform better. Figure 9.2 shows the plot of the failure data from Release 1. It 

also shows the curves for the delayed S-shaped model and the Gompertz curve. The figure 

clearly shows that the data has an S-shaped curve. The correlation values in Table 9.1 show 

that the S-shaped models did provide a good fit to the data in Release 1. 
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Figure 9.2: Plot of Release 1 data and SRGM models not rejected. 

The Gompertz model applied to Release 1 is the first model to stabilize. It stabilizes at 

week 16. This is the point at which decisions about continuing or stopping testing can be 

made. The Gompertz model predicts the number of failures at week 16 is 207. Since the 

delayed S-shaped model is the only stabl~ modelat week 16, the method estimate is taken 

to be the estimate of the G-O S-shaped model. The predicted number of failures, 207, is 

compared to the actual number of failures, 168.' The prediction is 23 percent more than 

the actual number and probably not below the acceptability threshold. If this is the case, 

testing continues. 

In weeks 17 and 18, both the delayed S-shaped and Gompertz models are stable. The 

selection method estimate is the maximum estimate of the two models, 23~ in week 17 

and 26 in week 18. Week 17 and week 18 estimates are 39 percent and 28 percent more, 

respectively, than the actual number of failures. If this is below the acceptibility threshold, 

testing should continue. System test actually stopped during week 18. 

Used as a guide for system testing, the selection me~hod suggests that system testing 

should have continued beyond week 18. Considering that in post-release, 55 more failures 

occurred, system testing should probably have continued. This decision is supported by the' 
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opinion of one tester who believed that too many failures occurred after Release 1 and that 

testing should have continued a bit longer. 

Table 9.2: Final estimates and errors by SRGM models not rejected in Release 1. 
estimate r-value error relative error 

Model (compare to 231) 

Delayed S-shaped 226 0.974 -5 -0.022 
Gompertz 193 0.981 -38 -0.165 

Together with the 176 failures found by the end of system test and the 55 failures found 

in post-release, the total number of failures is 231 in Release 1. The estimates given by 

the growth models not rejected should be compared to this value. Table 9.2 shows the 

prediction provided by the delayed S-shaped model underestimated by five failures, with 

a relative prediction error of -0.02. This is a very good performance for the model. The 

Gompertz model underestimated by 38 failures, with a relative error of -0.165. While the 

Gompertz model provided a better curve fit to the data than did the delayed S-shaped model 

according to the correlation r-value, it underestimated more and had a higher relative error 

in its prediction of total number of failures. The selection method correctly chose the best 

stable model, the delayed S-shaped model, to make release decisions in Release 1. 

The method for selecting software reliability growth models based on cumulative failures 

performed very well in Release 1 ·in predicting the number of failures close to the total 

number of failures reported in test and post-release. The approach was applied in Releases 2 

and 3, as well. 

Table 9.3 shows the SRGMs applied to Release 2. All models, except for the Yamada 

Exponential model would be rejected according to the approach. Sixty percent of testing 

is completed by week 11 in Release 2. At that time, the G-O S-shaped model has both a 

correlation value that is too low and an estimate for the total number of failures that is less 

than the actual number of failures found - both reasons to reject the model. The Gompertz 

model has a correlation value that is too low. Table 9.3 shows that there are several weeks 

in which no new failures occurred. These include weeks 9, 10, 12, 13, 14, and 16. This may 
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reflect a decrease in testing effort by system test and it may affect the fit of some of the 

S-shaped models and the prediction values. 

Table 9.3: Release 2 predictions and correlation values. 
Release 2 

Test Failures Delayed 8-shaped G-O Gompertz Yamada 
week found Est. r-value Est. r-value Est. r-value Est. r-value 

11 192 186 0.893R 195 0.964 200 0.986 262 0.967 
12 192 187 0.898 195 0.966 198 0.986 2838 0.970 
13 192 188 0.902 194 0.969 197 0.986 284 0.970 
14 192 188 0.906 194 0.969 196 0.986 320D 0.971 
15 203 190 0.906 195R 0.969 197R 0.986 286 0.972 
16 203 191 0.907 196 0.969 198 0.986 2658 0.973 
17 204 193 0.907 197 0.969 199 0.986 249 0.973 

The 8-shape models, delayed S-shaped and the Gompertz, did not fit the data for 

Release 2 well. Because visual inspection of the cumulative curve indicated that it was 

more concave than S-shaped, we expect the G-O concave model and the Yamada exponential 

concave model to perform better. 

We evaluated the G-O concave model and the Yamada exponential concave model on 

Release 2 on a week by week basis. Table 9.3 shows that the G-O concave model stabilized 

at week 7, well before 60 percent of testing was complete. As a predictor of total number 

of failures, the G-O concave model did not perform well, it predicted fewer total failures 

than the actual number already found after week 14. According to the approach described, 

the G-O model should be applied until week 15, until the estimate becomes less than the 

actual number of failures that occurred. At this point, the G-O model is rejected. 

The Yamada exponential concave model performed very well. At week 11, for example, 

the prediction was 262 failures, while only 192 had been found in system test by that time. 

The Yamada exponential model would suggest that system testing continue, if 70 failures 

were unacceptable. By week 17, the model predicts a total of 249 failures, while only 

204 have been found. Again, system test should have probably continued testing beyond 

week 17, since 41 failures occurred in post-release. The Yamada exponential concave model 

attempts to account for testing effort and this may be the reason it works better on Release 2. 
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Figure 9.3 shows the plot of the failure data from Release 2. It also shows the curve 

for the Yamada exponential model. The figure clearly shows that the data has a concave 

curve. 

220~----------------------------------------~ 

200 ................................................ , ............................ . 
• + 

180 

en 160 .. 
u 140 
~ 

. ................ ~ ............................................................. .. 
~ 120 ............ ~ ............. " ........ ' ........... , ........... ~ ..... "' .... ' .. ~ .... . 
GI 
> 100 

i 
80 

== 

........ ~ .. ~ ................ .. ............. ~ ................ :,. ................................ "' ......................... 'If ................. '" .... of ... . 

E 60 ::J 
U 

40 

20 ............................................ /; ............ , ............ ' ......... . 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 '17 

I Yamada Exponenual Model -- I weeks 

Figure 9.3: Plot of Release 2 data and SRGM models not rejected. 

Table 9.4 shows the final curve correlations, predicted total failures and the relative 

error for Yamada exponential model, the only one not rejected in Release 2. 

Table 9.4: Final estimates and errors by SRGM models not rejected in Release 2. 
estimate r-value error relative error 

Model (compare to 245) 

I Yamada Exponential I 249 0.973 4 0.016 

The Yamada exponential concave model has a fairly good correlation at 0.973. It predicts 

249 total failures. The actual total number of failures in Release 2 was 245. The Yamada 

exponential model over-estimates by four failures and has a relative. error of 0.016. This 

model performed very well for Release 2. Other models also investigated in [72] did not 

fit much better than the ones shown in Table 9.3. The models had correlations between 

0.867 - 0.978 and predicted total failures in the range of 203 - 212, underestimating by 

33 - 42 defects. 
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Table 9.5 shows the 8-shaped models had a good fit to the data in Release 3. The cor-

relation values for the S-shaped models are even better than in Release 1, with correlations 

between 0.974 and 0.979 at week 8, 60 percent of the way through testing. 

Table 9.5: Release 3 predictions and correlation values .. 
Release 3 

Test Failures Delayed 8-shaped G-O Gompertz Yamada 
week found Est. r-value Est. r-value Est. r-value Est. r-value 

8 63 83 0.974 396 0.966 74 0.979 779 0.966 
9 70 848 0.980 293 0.972 778 0.983 297 0.972 
10 75 86 0.984 214 0.977 80 0.986 216 0.977 
11 76 85 0.986 159 0.978 81 0.988 161 0.978 
12 76 84 0.987 129 0.977 80 0.989 130 0.977 
13 77 83 0.988 114 0.976 80 0.990 115 0.976 

The selection method did not reject any of the models investigated in Release 3. Only 

two models, the S-shaped models stabilized, both at week 9. The G-O 8-shaped model is 

very stable for the last six weeks with predicted failures ranging between 83 and 86. The 

Gompertz model is also quite stable with predicted failures ranging between 77 and 80. 

Table 9.5 shows that the concave models had a high enough correlation value at week 8 

and through the remainder of test, but the predictions never stabilized. (The '-' in the 

tables indicate that the models did not converge.) So while all four models must be applied 

according to the approach, the estimates for the concave models should not be used to make 

decisions to stop testing. 

The selection method uses the estimates of the delayed 8-shaped model, because those 

estimates are higher. At week 8, the delayed S-shaped model predicts the total number of 

failures is 83 and the actual number of failures found by that time is 63. This is a 20 percent 

difference between the estimate and the actual number of failures. This might recommend 

a continuation of testing, if it is below the acceptibility threshold. At week 12, the delayed 

S-shaped model predicts eight more failures than the actual number of failures that have 

occurred. This is within 10 percent. If this is above the acceptability threshold, the system 

test manager may consider stopping test. 
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Figure 9.4 shows the plot of the failure data from Release 3. It also shows the curves 

for the delayed S-shaped model and the Gompertz. 
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Figure 9.4: Plot of Release 3 data and SRGM models not rejected. 

Table 9.6: Final estimates and errors by SRGM models not rejected in Release 3. 
estimate r-value error relative error 

Model (compare to 83) 

Delayed S-shaped 83 0'.988 0 0 
Gompertz 80 0.990 -3 -0.036 

In Release 3, post-release reported six failures. Together with the 77 failures found by 

the end of system test, this is 83 failures. Table 9.6 shows that the final prediction value 

using the delayed S-shaped model is exactly 83 failures, giving an error of 0, while the final 

prediction value using the Gompertz model is 80 failures, an underestimate of 3. As in 

Release 1, the Gompertz model has a higher correlation value, and thus a better curve fit to 

the data, but the estimate of the total number of failures has a higher error - the Gompertz 

model underestimates more than the delayed S-shaped model. Based on this observation, 

the estimates based on the delayed S-shaped model are better than the Gompertz, if testers 

want to be more conservative. The selection method correctly chooses the best model, the 

delayed S-shaped model, for Release 2. 
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9.3 Summary 

Results show that the selection method based on empirical data works well in choosing 

a software reliability growth model that predicts number of failures. The selection method 

is robust in the sense that it is is able to adjust to the differences in the data. This enables 

it to differentiate between the models: Different models were selected in the releases. 

At least one model of those investigated is acceptable after at least 60 percent of testing 

is complete. In the first and third release, the S-shaped models performed well in predicting 

the total number of failures. These two releases had data that exhibited an S-shape. The 

data in Release 2 was concave, rather than S-shaped. It is no surprise that the S-shaped 

models did not perform well on this data. The Yamada exponential concave model, however 

performed very well on the data from Release 2. (Other concave models underpredict the 

total number of failures.) 

Software reliability growth models may provide good predictions of the total number of 

failures or the number of remaining failures. Wood's empirical study [72] has shown that 

predictions from simple models of cumulative failures based on execution time correlate 

well with field data. Our study has shown that predictions from simple models based 

on calendar time correlate well with dat~ from our environment. The empirical selection 

method described in this paper aids in choosing the appropriate model, when assumptions 

are not met. 
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Chapter 10 

Integration Analysis 

Since no one tool or method works on all data, the integrated method uses a set of 

methods that complement each other with selection criteria for each. Multiple evaluations 

provide more credible infor~ation for decision making. A question is: How does one make 

decisions in system test to improve effectiveness and efficiency using all the methods that 

have been described? Figur~ ~O.l shows a flowchart for applying the methods. 

This thesis proposed several assessment techniques to improve effectiveness by identify­

ing components on which testing should focus more attention. Using GYR analysis (which 

ranks according to the basic defect cohesion measure), the multi-file defect cohesion mea­

sure and the defect coupling measures, different components are identified as fault-prone. 

These techniques actually complement each other. This is useful in situations where the 

types of system problems are unknown. The types of problems include: 

1. Problems that are mainly internal to components. 

(a) These problems may involve changing only one file per defect repair. 

(b) They may involve changing many files per defect repair. 

2. Problems that are between components. 

In Release 1 of this study, the number of components that had internal problems and the 

number of components that had problems with other components was the same (21). Most 

of the components that had internal problems involved changing only one file per defect. 

If only one measure had been applied, some components would have been overlooked. For 
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Start of System Test 

Perfonn Release Assessment using development data 
using acceptable Assessment Methods 

Based on Assessment results develop testing guidelines 

Prioritize test based on guidelines 
Develop more test cases based on guidelines 

Compare estimates to actual post-release data. 

no 

Perfonn Final Release (fest and Post-release) Assessment 

yes 

no 

Based on Final Release and Multi-Release develop more testing guidelines 

Test next release (project) 

Figure 10.1: Flowchart for applying the integrated method. 

example, if only the multi-file defect coupling measure had been applied in Release 1, 19 

components would have been missed. It is necessary to apply all the methods that identify 

fault-prone components, because they may be fault-prone for different reasons. 

Applying all assessment techniques allows us to develop a more complete set of testing 

guidelines. Table 10.1 shows the complete set of guidelines for this case study and the 

section that they come from. 
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T bl 10 1 '] 'd r a e .. estlng . gUI e lnes d . d fr enve I . om app ylng set 0 f th d me o s. 
Testing Guidelines Section 

1. Test development fault-prone components more thoroughly. 5.2.1 
(Test components not fault-prone in development less.) 

2. Test new components more thoroughly. 5.2.2 
3. Test components that are repeatedly fault-prone according 6.4.2.1 

to defect cohesion and defect coupling measures more 
thoroughly. 

4. Test new components and components that are fault-prone during 7.2.1 
development as early as possible. 

5. Test components that are repeatedly fault-prone according 7.2.2 
to defect cohesion and defect coupling measures earlier. 

6. Assess and improve impact analysis and regression 5.2.3 
testing to catch old components that are not fault-prone 6.4.2.2 
in development or system test, but are fault-prone in 
post-release. 

Improving efficiency happens in two ways: 

1. Catch problems earlier so they can be fixed before release. 

2. Recognize when testing can stop and software can be released. 

Guidelines 4 and 5 are concerned with efficiency. They recommend prioritizing testing 

so that certain components are tested earlier. This study applied prioritization according 

to Guideline 4 in Section 7.2.1. Prioritization according to Guideline 5 was applied in Sec­

tion 7.2.2. This study also analyzed the effects of applying both prioritization strategies. 

The two priorization strategies have a similar effect on the cumulative defect curve, espe-

cially in the first two releases. The improvement in efficiency by applying both guidelines 

is the same as the improvement in efficiency by the individual guideline that performed the 

best. However, since one would normally not know a priori which would be the better one, 

both should be used. In Release 1, the effect of applying both strategies is the same as 

applying only Guideline 5. In Release 2 and Release 3, the effect is the same as applying 

only Guideline 4. The effects of applying both guidelines, for this case study, were not ad-

ditive. Again, since the types of problems present in a system may not be known, it would 

be difficult for a tester to identify the optimal guideline. In this case, both Guidelines 4 

and 5 should be applied. 
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This thesis proposed several estimation methods to make release decisions. The best 

methods for this case study include: 

• Capture-recapture methods: mOml, mtml, and mhjk. 

• Curve-fitting methods: dpm(linear). 

• Experience-based method. 

• SRGM selection method. 

All these methods are applied iteratively (on a weekly basis) to determine whether testing 

should stop. 

Table 10.2 shows the recommended decisions for the various methods in the last week 

of system test for the case study. Because the mOml, mtml and dpm(linear) estimators 

produce similar estimates, they are grouped together. The table also shows the correct 

release decision based on the opinion of system test group. Their opinion is based on 

the number of defects found in post-release. (Thresholds for the capture-recapture, curve­

fitting and experience-based methods were set to five defective components. For the SRGM 

selection method, the threshold was set to ten defects.) 

Table 10.2: Recommended release decisions in the last week of system test. 
I Method I Release 1 I Release 2 I Release 3 I 

mOml stop stop continue 
mtml stop stop continue 
dpm(linear) stop stop stop 
mhjk continue continue continue 
exp-based - continue continue 
SRG M selection continue continue stop 
subjective continue continue stop 
opinion 
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These methods may be combined in several ways: 

1. Logical AND, that is, all methods must say stop (the most conservative). 

2. Sequential (apply one rule after another). 

3. Majority (least conservative). 

The first combination results in decisions to continue testing in all three releases. Based 

on subjective expert opinion, these decisions are correct for the first two releases, but not 

the third. 

A sequential combination may be defined as follows: 

1. If mhjk says stop, stop. (Mjhk is the most conservative estimator.) 

If the mhjk says continue, go to the next rule. 

2. If the SRaM selection method and at least one other estimation method says stop, 

stop. Otherwise go to the next rule. 

3. If at least one of the following methods, mOmt, mtml, dpm(linear) and the experienced­

based method say stop, stop. Otherwise go to the next rule. 

4. Continue test. 

This sequential combination results in the correct decisions for all three releases. 

The third way of combining methods recommends stopping test, if the majority of the 

methods recommend stopping. Because the mOml, mtml and dpm(linear) estimates give 

estimates that are close to each other, they are grouped together. If at least one of them 

recommend stopping, the group recommendation is to stop. For Release 1, this gives one 

recommendation to stop and two to continue, so the decision is to continue. For Release 2, 

this gives one recommendation to stop and three recommendations to continue, so the 

decision is to continue. For Release 3, this gives two recommendations to continue and two 

recommendations to stop, a tie. In the case of a tie, the system test group may decide to 

be conservative and continue testing for one more week. Alternatively, they may check the 

number of defects found in the last week. If the number of defects found in the last week 
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is more than five, then testing should continue. In Release 3, only one defect was found in 

the last week, so testing should stop. Using the majority of methods in this way results in 

the correct decision for all three releases. 

Using only one method to make release decisions will not necessarily work all the time. 

(Although the SRGM selection method works for all releases in this study, more case studies 

are needed to validate tIlls.) Requiring all methods to recommend stopping is probably too 

conservative. A sequential combination or a majority of recommendations made by several 

estimation methods would be more robust. 
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Chapter 11 

Conclusion 

This dissertation proposed an integrated set of methods to improve the effectiveness 

and efficiency of system testing. This includes performing quality assessment on a release 

to develop testing guidelines and strategies and make release decisions. It also involves 

performing quality assessment on multiple releases in order to make longitudinal decisions. 

Quality assessment includes methods that analyze component fault-proneness, estimate 

defect content, and derive fault architectures. Testing guidelines and strategies resulting 

from quality assessment recommend testing fault-prone components more thoroughly and 

earlier, by prioritizing testing activities. Defect estimation methods are used to make release 

decisions. 

Using the techniques proposed in the integrated method, this thesis was able to answer 

the research questions for the integrated method posed in Chapter 1. The following sections 

address these questions. In addition, it summarizes how the answers are dealt with from a 

decision point of view. 

11.1 Quality Assessment 

This thesis investigated a fault-prone component analysis method based on the GYR 

technique and the fault architecture technique by applying them in a new case study. This 

thesis proposed that one should set thresholds using order of magnitude, rather than setting 

thresholds to percentages. This should work well in situations where the quality of the 

system is unknown. 
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Using fault-prone component analysis and the fault architecture technique, the approach 

in this thesis was able to evaluate the quality of the software and answer the research 

questions posed in Chapter 1. Quality assessment results for this project show that: 

• In each release, the code is of very high quality. 

• Only two components out of 188 are fault-prone in all releases. 

• Components that are new or fault-prone in development are fault-prone in system 

test. 

• Components with severe problems do not necessarily have more problems. 

• Most problems are internal to components, rather than between components. 

• Few problems remain undetected. 

• The number of post-release problems is very low. 

• Most known problems are fixed before release. 

The quality of a release may be assessed using defect data with the idea that past 

behavior is often the best predictor of future behavior. GYR analysis identifies components 

that need more attention in system test using defect data from development. The fault 

architectures visualized the kinds of problems the system had, supporting work in a prior 

study. In addition to applying GYR analysis and the fault architecture technique to perform 

release assessment, this thesis proposes using these methods in a new way to perform phase 

assessment within the release. Fault architectures may be derived not only for releases, but 

also for development phases within a release, in particular development, system test, and 

post-release. Setting thresholds to an order of magnitude less than the largest measures 

works very well and should be considered over the use of a percentage. The number of 

defective components after release may be estimated using data from three and two test sites. 

The SRGM selection method also performed well in estimating the number of remaining 

defects. 
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11.2 Test Guidelines and Strategies 

Quality assessment of a release may be used to determine test guidelines that might 

be helpful in improving effectiveness. Assessment methods were able to find several useful 

guidelines, as well as several ideas that were not helpful. These guidelines have the potential 

of saving weeks of testing time and hundreds of thousands of dollars without penalty. 

The key issue for testers is where to put emphasis, and where not to. Assessment 

methods are useful in determining guidelines and strategies for testers. Testing problematic 

components more thoroughly and earlier has the potential to not only improve testing 

effectiveness, but efficiency. Prioritizing testing has the effect of altering the cumulative 

defect curves. These guidelines should result in testers finding more defects earlier. The 

altered curves showed that in the last few weeks before system test actually stopped testing, 

no defects would have been found. System test would have probably stopped earlier, if no 

defects were being in those last few weeks. 

This being a case study, one cannot expect the particular guidelines developed for this 

project to improve every project, although they are very sensible. Each project-has char­

acteristics that need to be taken into account when determining the guidelines that wbuld 

best improve system test performance within their environment. 

11.3 Release Decisions 

To make release decisions, this thesis proposed using existing static methods (capture­

recapture and curve-fitting) in several new ways. 

1. Apply these methods to defect data from system test, rather than review/inspection 

data. 

2. Test sites, rather than individuals, provide the data. 

3. Estimate remaining defective components, rather than remaining defects. 

A simple experienced-based methods was also proposed to estimate defective components 

with the goal of making release decisions. This thesis also defined a selection method 
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to determine the best software reliability growth model(s) to apply to data to estimate 

remaining defects. 

Chapter 1 asked the question: Can defect estimations made using testing data be used 

to determine the right point at which to stop testing and release software? Results from this 

case study show that defect estimation methods can provide system test with the ability to 

make release decisions. 

Static and dynamic defect estimation methods provided good estimates. Actual post­

release defect content was close to the estimates using system test data. This study was 

able to use estimates in both types of methods to make decisions to stop testing and release 

software. Defect estimation methods applied weekly can identify the point at which software 

is ready for release, thereby saving weeks of testing. 

11.3.1 Static Defect Estimation 

Capture-recapture and curve-fitting methods were successful in estimating the number 

of components that have defects after release, but no defects in testing. These are the com­

ponents that were missed in testing. These estimations in turn may be used to recommend 

decisions on whether to continue testing or to stop testing and release software. 

Capture-recapture and curve-fitting estimators that perform the best in this study in­

clude the mOml, mtml, dpm(linear) and mhjk. The mhjk tended to overestimate slightly. 

The mtml or the dpm(linear) estimators are good choices for the lower bound of the range 

and the mjhk estimator is a good choice for the upper bound. These estimators may provide 

a "window". 

Estimates from these methods provide a good basis for a correct decision to stop testing 

and release software. The mhjk estimator appears to perform the best as a basis for decision 

making. It tends to recommend testing a bit longer and is more conservative than the mOml, 

mtml, and dpm(linear) methods. Because testing too long is preferable to not testing, 

long enough, the mjhk estimator will probably perform the best, especially if there is no 

prescreening. Estimators were also shown to be quite robust for two test sites, even when 

the sites test the system differently. 
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The estimates from several capture-recapture and curve-fitting methods compare fa­

vorably with experience-based estimates. If historical data is available and releases are 

similar, a simple experience-based method should be used as a complement to the capture­

recapture and curve-fitting estimation methods. If, however, no historical data is available 

or releases are dissimilar, capture-recapture and curve-fitting methods work quite well to 

provide estimates and to help make decisions for continuing or stopping testing. 

11.3.2 SRGM Selection Method 

The selection method based on empirical data works well in choosing a software relia­

bility growth model that predicts number of defects. The selection method is robust in the 

sense that it is is able to adjust to the differences in the data and to differentiate between 

the models. 

Software reliability growth models may provide good predictions of the total number of 

defects or the number of remaining defects. Wood's empirical study [72] has shown that 

predictions from simple models of cumulative defects based on execution time correlate 

well with field data. Our study has shown that predictions from simple models based 

on calendar time correlate well with data from our environment. The empirical selection 

method described in this paper aids in choosing the appropriate model, when assumptions 

are not met. 

11.4 Multiple Release Assessment 

The study successfully applied defect cohesion and defect coupling measures to identify 

the most fault-prone parts of the system in three releases. The approach recommends using 

both the basic and multi-file defect cohesion measures to identify fault-prone components. 

In our case study defect cohesion measures identified different components as fault-prone. In 

terms of the defect coupling measures, this thesis investigated the multi-file defect coupling 

measure and the cumulative defect coupling measure. All of the components that were 

fault-prone according to the multi-file defect coupling measure were also fault-prone by the 
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cumulative defect coupling measure. The cumulative defect coupling measure does identify 

additional components as fault-prone. 

The case study showed that defect measures were useful in deriving fault architectures. 

The fault architectures visualized problems across releases well. Using the fault architec­

tures, it was possible to perform multiple release assessment. This was helpful in answering 

the research questions in Chapter 1 concerning Multiple Release Assessment. It identified 

the problems that occurred in release after release. It also indicated that the system had 

very few persistent problems. Only two components out of 188 consistently had problems. 

If the data had been different, the answers to the questions from Chapter 1 may have 

been different. If the data had veen different, the tools that would have worked may have 

been different. The fault-prone component analysis method (GYR method) did not work 

well in this case study. This is another argument for using multiple tools in an integrated 

method. 

11.5 Validity of Integrated Method 

Questions concerning how well the integrated method works and the validity of the 

study include: 

1. How good is the integrated method? That is, can it be empirically validated? Is it 

objective, robust, and easy to use (14]? 

2. Can the integrated method be used in other projects or environments? 

This thesis empirically validated the integrated method in a case study. The integrated 

method was appropriate for the project in which it was applied. The study applied the 

method to the first release of a large software product. Successive releases validated the 

method. Techiques in the method give estimates close to actual values. Interviews with 

testers confirmed other results. 

Objectivity was ensured by collecting data by executing SQL commands within the 

database and obtaining measures algorithmically. The integrated method is robust. Small 

changes in the data, resulted in small changes in the methods' results. For example, defect 
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estimation methods applied in successive weeks result in small changes in estimates. The 

capture-recapture, curve-fitting and experienced-based techniques worked as well with two 

test sites as three. The SRGM selection method worked well in selecting a model based on 

the data. Different models were selected in different releases. 

The integrated method is easy to use - most of the techniques are easily implemented 

in a commercial database and spreadsheet package. Other techniques can be implemented 

in tools or downloaded from the web. There is some effort in reporting the data, but it is 

worth the benefits. Any organization that wants to produce high quality software should 

have a good reporting process in place. Many software configuration management tools are 

available to aid in reporting this data. 

Not one method works on all projects or in all environments. Hence, the integrated 

method employs a strategy of applying a set of techniques that complement each other, 

so that it will work in more than one environment. Other studies have used some of the 

techniques successfully in other environments. The integrated method described in this 

dissertation also proposes some of the following ways to overcome some of the problems 

these techniques have shown in practice: 

• Use indicators appropriate to the project to determine fault-prone parts of the soft­

ware. Indicators investigated in this study included defect severity, development fault­

prone components, and components in fault-prone relationships. Alternative indica­

tors might be documentation defects, components with many defects in inspection, 

components with many failures in regression testing, etc. 

• Use several techniques to identify fault-prone parts of the software. 

• Use metrics that more clearly differentiate between fault-proneness and set thresholds 

to focus attention on the most problematic parts of the software. 

• Use the selection method this thesis proposes to determine the software reliability 

growth model(s) that best fits the data in a given project to make release decisions. 

• Use capture-recapture, curve-fitting, and experience-based methods to aid in making 

release decisions. This thesis showed how these techniques could be used in a new 
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way in system test to estimate the number of components with defects in post-release 

that did not have defects in test. 

• Apply a series of techniques in early releases or projects to determine those that work 

best for later projects. 

The process model will work if there is a systematic approach to determine 

• the best methods to assess software for future releases and projects. 

• the best models to make release decisions as testing progresses. 

The integrated method allows developers to assess the quality of software. For devel­

opment environments like the one we analyzed, the key issue for testers is where to put 

emphasis, and where not to. The integrated method enables developers and testers to de­

termine the most problematic parts of the software. They can then focus their attention 

on these parts. Testers also want to know when their software is ready for release. The 

integrated method provides quantitative information to guide testers in making the right 

decision. Knowing what to focus on and when will help improve testing effectiveness and 

efficiency. 

194 



Chapter 12 

Future Work 

More work needs to be done in several areas. These areas include: 

• Fault-prone analysis. 

The study in this thesis investigated only a few indicators for fault-proneness, i.e. 

development fault-prone components and severity of defects. Future work can add 

to this study by identifying and evaluating other indicators of fault-proneness. Ex .. , 

amples include documentation defects (defect reports written against corresponding 

documentation components) and defects found during regression. 

• Fault architecture. 

Several activities remain: 

1. Investigate other ways to measure defect cohesion and coupling. One method 

might be to measure cohesion and coupling using number of reports to repair a 

defect, so that the method is not as sensitive to the number of file changes as in 

the multi-file methods. For example, if a repair involves changing one or more 

files in a component, the measure is set to 1, otherwise it is set to O. 

Future work should apply these alternative measures to each release, as well as 

to the development, system test and post-release phases for each release. The 

different measures should be analyzed and compared. 

2. Fault-prone relationships in this thesis were based on a threshold set to an or­

der of magnitude (ten percent) less than the maximum value for the measures. 
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Alternatively, one can look at the top percentage of relationships ranked accord­

ing to the measures. This should be done for the project in this case study and 

the study in {65]. The effects of using different thresholds should be analyzed 

and evaluated. 

3. Adapt the procedure in two ways: 

- Exclude outliers in threshold calculations. 

- Identify mUltiple data sets by plotting the distribution. 

4. Evaluate the various fault-architecture methods by looking at the stability of the 

components between different releases. 

• Evaluate other methods to make release decisions. 

This thesis investigated methods that estimate defective components and number 

of defects after release to make release deicsions. Another way is to use statistical 

stopping rules [12, 15, 16, 35, 47, 50, 51, 52, 53, 56]. 

1. The key issue is how does one parameterize these functions? This is not easy 

to do. The rules should be based on some other indicator that is available and 

measurable before testing is cornpleted. An indicator available from development 

is preferable. 

We explored a stopping rule similar to the linear one in [12] for the project, but 

had no success at operationalizing the parameters. Data does not always exhibit 

one-to-one linear relationship between weeks and cumulative defects. Future 

work should explore using data from earlier life cycle phases to operationaIize 

the parameters. Methods to derive parameters using data from development may 

include: 

- Using the maximum number of defects found in week during development 

prior to the start of system test to determine parameter values. 

- Using the number of components that contribute to some percentage, say 

98 percent } of the defects found in development prior to the start of system 

test. This idea is based on Albert diagrams {43]. 
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Both these methods provide values that are close to the optimal value. There 

are, however, problems with these two methods. The problem with the first 

method for determining parameter values is that it depends on testing intensity 

during development, which may vary. This is why the maximum value is chosen 

to arrive at the most conservative value possiqle. 

The problem with the second method is that it depends on an estimate for the 

expected number of weeks in system test. This estimate is determined by the 

system test group prior to the start of system test. The better the estimate is, 

the more conservative the stopping rule. More analysis is needed to determine 

how the stopping rule parameter is affected if the estimates are close to the actual 

number of weeks spent in system test. 

The risk here is that a general method for determining the parameters will not 

be found. If this is the case, then earlier releases may be useful in deriving the 

values of parameters to be used in succeeding releases. That means that there 

will not be a stopping rule for the first release of any product based on this 

method. 

2. Evaluate the effect of prioritizing testing activities 011 stopping rules, in particular 

how it impacts the determination of parameters. 

Currently no method exists for determining the parameters for a stopping rule 

for prioritized system test. Analyses of comparisons made between actual devel­

opment data and reorder development data have not yielded a method that will 

work for this case study. 

The risk here is analogous to the risk described in the last section for determining 

parameter values. A general method for determining these values may not be 

found. Again, if this is the case, then Release 1 will be needed to derive the 

values of parameters to be used in succeeding releases. 
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• Calibration and customization method. 

A method for calibrating and customizing the approach for different projects and 

environments is needed. This involves: 

- Determining indicators of fault-proneness for the particular environment. 

- Determining how to set thresholds for the project or environment for fault-prone 

component analysis, fault architecture analysis, and defect estimation methods. 

- Determing the particular capture-recapture and curve-fitting methods that are 

appropriate for the environment. 

- Choosing appropriate stopping rules and operationalizing their paramaters . 

• Evaluate the effects of guidelines and strategies proposed in this case study to future 

releases of the same project to determine if effectiveness and efficiency improve. 

• Validation of method on more case studies. 

The integrated method must be validated on other projects and other environments 

to improve the external validity of the case study. 
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Appendix A 

Case Study Data 

A.l Failure data used for SRGM selection method. 

In system test and post release, a defect report is actually a failure. This study uses 

failure data from the last drop of system test and post-release. Table A.1 shows cumulative 

number of failures by week in the last drop of system test for all three releases. 

Table A.l: Cumulative number of failures for all three re leases. 
Test Cumulative number of failures 
week .Release 1 Release 2 Release 3 

1 28 90 9 
2 29 107 14 
3 29 126 21 
4 29 145 28 
5 29 171 53 
6 37 188 56 
7 63 189 58 
8 92 190 63 
9 116 190 70 
10 125 190 75 
11 139 192 76 
12 152 192 76 
13 164 192 77 
14 164 192 
15 165 203 
16 168 203 
17 170 204 
18 176 

post release 231 245 83 
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A.2 Defect Data for Fault-Prone Analysis 

A.2.1 Defects Found in Development and System Test 

Table A.2 shows the number of defects found in development and system test, as well 

as the number of components with a defect in Releases 1, 2 and 3. This data is used in 

assessing fault-proneness of components. 

T bl A 2 St f . a e .. a IstlCS on dfitfi dbd e ec s oun )y t d t t t eve opmen an sys em es . 
Release 1 Release 2 Release 3 

(180 components) (185 components) (188 components) 
development test development test development test 

Total number of defects 460 177 299 204 19 77 
# compo with a defect 45 32 41 39 11 19 
Mean # defects per compo 2.56 0.98 1.62 1.10 0.10 0.41 
Std. Dev. 12.38 3.74 9.11 3.67 0.59 3.12 

A.2.2 Diffusion Matrices based on Severity for Release 2 and Release 3 

The results of the fault-prone analysis based on severity between development and test-

iug for Release 2 are presented in Tables A.3 - A.6. The results of the fault-prone analysis 

based on severity between development and testing for Release 3 are presented in Tables A.7 

- A.10. Analysis does not indicate any benefits in using severity levels for prediction of fault-

prone components. 

Table A.3: Diffusion Matrix for Release 2 by severity 1. 
Threshold ~ 4 defects Prediction (System Test) 

Fault-prone Normal 

Development Fault-prone 1 4 
Development Normal 3 (1 new) 177 (4 new) 

Table A.4: Diffusion Matrix for Release 2 by severity 2. 
Threshold ~ 4 defects Prediction (System Test) 

Fault-prone Normal 

Development Fault-prone 2 3 
Development Normal 3 (2 new) 177 (3 new) 
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Table A.5: Diffusion Matrix for Release 2 by severity 3. 
Threshold ~ 4 defects Prediction (System Test) 

Fault-prone Normal 

Development Fault-prone 2 3 
Development Normal 3 (2 new) 177 (3 new) 

Table A.6: Diffusion Matrix for Release 2 by severity 4. 
Threshold ~ 4 defects Prediction (System Test) 

Fault-prone Normal 

Development Fault-prone 0 0 
Development Normal 0 185 (5 new) 

Table A.7: Diffusion Matrix for Release 3 by severity 1. 
Threshold ~ 4 defects Prediction (System Test) 

Fault-prone Normal 

Development Fault-prone 0 0 
Development Normal o (1 new) 188 (3 new) 

Table A.8: Diffusion Matrix for Release 3 by severity 2. 
Threshold ~ 4 defects Prediction (System Test) 

Fault-prone Normal 
Development Fault-prone 0 0 
Development Normal 1 (1 new) 187 (2 new) 

Table A.9: Diffusion Matrix for Release 3 by severity 3. 
Threshold ~ 4 defects Prediction (System Test) 

Fault-prone Normal 

Development Fault-prone 0 0 
Development Normal 2 (2 new) 186 (1 new) 

Table A.I0: Diffusion Matrix for Release 3 by severity 4. 
Threshold ~ 4 defects Prediction (System Test) 

Fault-prone Normal 

Development Fault-prone 0 0 
Development Normal 1 (1 new) 187 (2 new) 
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A.3 Cumulative Defects 

Tables A.II - A.13 show the cumulative defects by week for unprioritized testing (orig­

inal data) and prioritized testing by Guideline 3 and Guideline 5. Guideline 3 states that 

Table A.II: Release I cumulative defects by week for unprioritized and prioritized testing. 
Test Prioritized Prioritized Test Prioritized Prioritized 

Week Guideline 3 Guideline 5 Week Guideline 3 Guideline 5 
1 1 1 1 54 11 13 13 
2 1 1 1 55 12 14 14 
3 2 2 2 56 14 15 15 
4 2 2 2 57 14 16 16 
5 2 2 2 58 15 16 16 
6 2 2 2 59 15 16 16 
7 2 2 2 60 16 16 16 
8 2 2 2 61 16 16 16 
9 2 2 2 62 16 16 16 

10 2 2 2 63 16 18 18 
11 2 2 2 64 17 23 23 
12 2 2 2 65 17 25 25 
13 2 2 2 66 22 26 26 
14 2 2 2 67 24 26 26 
15 2 2 2 68 26 26 26 
16 2 2 2 69 26 26 26 
17 2 2 2 70 28 35 26 
18 2 2 2 71 29 64 55 
19 2 2 2 72 29 90 81 
20 2 2 2 73 29 114 105 
21 2 2 2 74 29 126 117 
22 2 2 2 75 37 139 130 
23 2 2 2 76 63 153 144 
24 2 2 2 77 92 161 152 
25 2 2 2 78 116 167 158 
26 2 2 2 79 125 170 170 
27 2 2 2 80 139 172 172 
28 2 2 2 81 152 174 174 
29 2 2 2 82 164 175 175 
30 2 2 2 83 164 175 175 
31 2 2 2 84 165 175 175 
32 2 2 2 85 168 175 175 
33 2 2 2 86 170 175 175 
34 2 2 2 87 176 176 176 
35 2 2 2 88 176 176 176 
36 2 2 2 89 176 176 176 
37 2 2 2 90 176 176 176 
38 2 2 2 Dl 176 176 176 
39 2 2 2 92 176 176 176 
40 2 2 2 93 176 176 176 
41 2 2 2 94 176 176 176 
42 2 2 2 95 176 176 176 
43 3 3 3 96 176 176 176 
44 3 3 3 97 176 176 176 
45 4 4 4 98 176 176 176 
46 4 4 4 99 176 176 176 
47 4 4 4 100 176 176 176 
48 4 4 4 101 176 176 176 
49 11 11 11 102 176 176 176 
50 11 11 11 103 176 176 176 
51 11 11 11 104 176 176 176 
52 11 11 11 105 176 176 176 
53 11 11 11 106 176 176 176 
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system test should test components that are new or fault-prone during development earlier. 

Guideline 5 states that system test should test components that are repeatedly fault-prone 

in several life cycle phases and/or releases based on the defect cohesion and defect coupling 

measures earlier. 

Table A.12: Release 2 cumulative defects by week for unprioritized and prioritized testing. 
Test Prioritized Priori tized 

Week Guideline 3 Guideline 5 
1 0 0 0 
2 0 0 0 
3 0 0 0 
4 0 0 0 
5 0 0 0 
6 0 0 0 
7 0 0 0 
8 0 0 0 
9 1 1 1 

10 1 1 1 
11 2 2 2 
12 2 2 2 
13 3 3 3 
14 3 3 3 
15 4 4 4 
16 4 4 4 
17 28 28 28 
18 37 52 52 
19 61 61 61 
20 73 73 73 
21 76 76 7~ 
22 90 90 90 
23 107 116 116 
24 126 133 133 
25 145 152 152 
26 171 171 169 
27 188 182 188 
28 189 199 199 
29 190 200 200 
30 190 201 201 
31 190 201 201 
32 192 201 201 
33 192 203 203 
34 192 203 203 
35 192 203 203 
36 203 203 203 
37 203 203 203 
38 204 204 204 
39 204 204 204 
40 204 204 204 
41 204 204 204 
42 204 204 204 
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Table A.13: Release 3 cumulative defects by week for unprioritized and prioritized testing. 
Test Prioritized Prioritized 

Week Guideline 3 Guideline 5 
1 0 0 0 
2 0 0 0 
3 0 0 0 
4 0 0 0 
5 0 0 0 
6 9 9 5 
7 14 16 14 
8 21 23 19 
9 28 28 26 

10 53 53 33 
11 56 60 58 
12 58 61 61 
13 63 64 63 
14 70 66 70 
15 75 71 75 
16 76 76 76 
17 76 76 76 
18 77 77 77 

A.4 Subsystems and Problematic Components 

Table A.14 identifies the subsyste~s and the components they contain that are consid­

ered fault-prone in the fault architectur.e analysis. Components 30, 38, 101, and 107 are also 

Table A.14: Subsystem containment of problematic components. 
Subsystem Components 
A 4, 11, 13 
B 43 
L 20,22 
M 25,97,99 
S 35, 37 
W 93, 94, 96, 114 
X 26 
U 44, 45, 46, 48, 50, 51, 52, 55, 56, 58, 59, 

60, 63, 65, 67, 70, 79, 83, 86, 87, 88, 98 

considered subsystems and are problematic. Subsystems 5, 10, 49 and 57 do not contain 

components and are not fault-prone ·nor are they in fauIt~prone relationships. 
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A.5 Data used in Static Defect Estimation Methods 

A.5.1 Resulting Estimates 

Tables A.15 - A.20 show the estimates provided by the Capture-recapture methods, 

the curve-fitting methods and the experienced-based method used in the case study. The 

following tables show the results of applying the estimators in the last six weeks of system 

test for three test sites and for two test sites. 

Table A.15: Release 1 estimates (3 sites). 
II mOml I mtml I mhjk I dpm(lin) I mthChao I cum I dpm (exp) I exp.based I 

5 weeks earlier 47 46 61 44 - - - -
4 weeks earlier 47 46 58 45 - - -
2-3 weeks earlier 48 47 58 46 - - - -
1 week earlier 47 46 59 46 - - - -
Actual end date 55 54 68 53 175 81 72 -

Table A.16: Release 2 estimates (3 sites). 
II mOml I mtml I mhik I dpm(lin) I mthChao I cum I dpm (exp) I exp.based I 

3-5 weeks earlier 59 55 66 57 - - - 64 
2 weeks earlier 64 59 72 62 - - - 64 
1 week earlier 69 63 78 64 - - - 67 
Actual end date 68 63 77 65 79 102 86 67 

Table A.17: Release 3 estimates (3 sites). 
II mOml I mtml I mhjk I dpm(lin) I mthChao I cum I dpm (exp) I exp.based I 

5 weeks earlier 42 36 44 33 - - - 37 
4 weeks earlier 43 36 45 35 - - - 39 
1-3 weeks earlier 47 40 49 37 - - - 41 
Actual end date 49 41 51 38 41 52 47 42 
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Table A.IS: Release 1 estimates (2 sites). 
II mOml I mtml I mhjk I mtChpm I dpm(lin) I mthChao I cum I dpm (exp) exp.based 

5 weeks earlier 47 47 52 48 50 - - - -
4 weeks earlier 46 46 51 47 52 - - - -
1-3 weeks earlier 47 47 52 47 54 - - - -
Actual end date 55 54 61 55 62 51 104 87 -

Table A.19: Release 2 estimates (2 sites). 
II mOml I mtml I mhjk I mtChpm I dpm(lin) I mthChao I cum I dpm (exp) I exp.based I 

3-5 weeks earlier 57 57 64 58 71 - - - 64 
2 weeks earlier 59 58 66 59 71 - - - 64 
1 week earlier 59 58 66 59 71 - - - 66 
Actual end date 62 62 70 63 64 59 136 109 66 

Table A.20: Release 3 estimates (2 sites). 

II mOml I mtml I mhjk I mtChpm I dpm(lin) I mthChao I cum I dpm (exp) 1 exp.based I 
5 weeks earlier 37 36 37 37 33 - - 37 
4 weeks earlier 37 37 39 37 35 - - - 39 
1-3 weeks earlier 41 40 42 41 37 - - - 41 
Actual end date 43 42 44 43 38 34 51 46 42 
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A.5.2 Estimation Errors 

Tables A.21 and A.22 shows the errors, the relative errors and the mean absolute relative 

errors for the estimators for three and two test sites, respectively. It also shows the overall 

ranking based on the mean absolute relative errors. 

Table A.21: Estimation Errors for Static Methods (3 sites). 
Relative Error Overall 

Estimator Release 1 Release 2 Release 3 Mean Abs. Ranking 

mOml -0.068 0.046 0.225 0.1130 4 
mtml -0.085 -0.031 0.025 0.0470 2 
mhjk 0.153 0.185 0.275 0.2043 5 
mthChao 1.966 0.215 0.025 0.7353 8 
cumulative 0.373 0.569 0.300 0.4140 7 
dpm (exp curvefit) 0.220 0.323 0.175 0.2393 6 
dpm (linear curvefit) ~0.102 0.000 -0.050 0.0507 3 
exp erience-based - 0.031 0.050 0.0405 1 

Table A.22: Estimation Errors for Static Methods (2 sites). 
Relative Error Overall 

Estimator Release 1 Release 2 Release 3 Mean Abs. Ranking 
mOml -0.052 -0.031 0.075 0.0527 5 
mtml -0.070 -0.031 0.050 0.0503 3 
mhjk 0.052 0.094 0.100 0.0820 6 
mthChao -.121 0.078 -.150 0.1163 9 
cumulative 0.793 1.125 0.275 0.7310 8 
dpm (exp curvefit) 0.500 1.703 0.150 0.7843 7 
dpm (linear curvefit) -0.069 0.000 -0.050 0.0397 1 
mtChpm -0.052 -0.016 0.075 0.0477 4 
experience-based - 0.031 0.050 0.0405 2 
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A.5.3 X2 analysis 

Tables A.23 and A.24 shows the X2 analysis between each estimator and the actual 

values for three sites and two sites, respectively. For all estimators, except the experience­

based method, the degrees of freedom is 2 and the critical value for Xfi.05 is 5.991. For the 

experience-based method, the degrees of freedom is 1 and the critical value for X5.05 is 3.842. 

Table A.23: X2 for each estimator for three releases (three sites). 
Estimator 

mOml I nltml I mhjk I mthChao I Cum I dpm(exp) I dpm(lin) I exp-based 
0.352 I 0.153 I 0.138 I 23.396 I 0.605 I 0.220 I 0.173 I 0.004 

Table A.24: X2 for each estimator for three releases (two sites). 
Estimator 

mOml I mtml I mhjk I mthChao Cum I dpm( exp) I dpm(lin) I mtChpm I exp-based 
0.207 I 0.173 I 0.033 I 0.081 3.842 I 2.167 I 0.172 I 0.193 I 0.000 
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