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ABSTRACT

SPIN WAVE CHARACTERIZATION IN A 1D YIG MAGNONIC CRYSTAL

In this thesis, I will analyze and discuss features of spin wave propagation characteristics mea-

sured in a one-dimensional (1D) yttrium iron garnet (YIG) magnonic crystal using time-resolved

Brillouin light scattering (TR-BLS) measurements. Magnonic crystals are a promising candidate

to aid in developing spin-based devices that exploit the spin of the electron since magnonic crystals

can be used to control the information transmitted by spin waves. In magnonic crystals, periodic

modulation of the material properties is used to create a band structure and hence allow or suppress

the propagation of spin waves with specific frequencies. To better understand spin wave propaga-

tion in a 1D YIG magnonic crystal, (TR-BLS) measurements were used to map out the temporal

and spatial evolution of spin wave pulses at different frequencies. By analyzing the TR-BLS data

with a cross-correlation method, the group velocities were determined at different frequencies and

a better understanding of the changes in the pulse shape is gained. The TR-BLS data show that

multiple width-quantized spin wave modes are present and highlights the importance of consider-

ing the two-dimensional nature of spin wave propagation, even in a one-dimensional system.
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Chapter 1

Overview

1.1 Motivation

Research focused on working towards better and more efficient spin-based electronics has

grown in importance. Traditional electronic devices use the movement of electrons to process

information and are reaching their fundamental threshold. Therefore, new ideas are needed to ex-

ploit additional degrees of freedom. Research in magnetism focuses on the spin of electrons, and

their interactions, as a method to process, transmit, and store information. Spin polarized elec-

trons can carry information from one location to another and in magnetic materials, spin waves

can propagate and carry information [1]. Using spin waves opens new possibilities for information

transmitting without needing to move electrons.

Magnonic crystals, a magnetic material with periodic modulation of the material properties, are

a promising candidate for spin-based electronics due to their tunability and size. The periodicity

of material properties in a magnonic crystal affects spin waves with wavelengths on the order of

the periodicity. This leads to a band structure that dictates the specific frequencies at which a spin

wave can or cannot propagate. Therefore, through the magnonic crystal’s material and geometry,

spin wave propagation can be controlled. Similar approaches are used with light (photonics) and

phonons (phononics). Spin waves can also be controlled through the system’s applied magnetic

field and driving frequency. Magnonic crystal’s unique properties allow them to potentially be

used as microwave filters, in telecommunication systems, and radar [2].

However, before magnonic crystals can be used on a larger scale, it is crucial to further un-

derstand how spin waves propagate in magnonic crystals. Previous work uses microwave mea-

surements to gain the width-averaged information at specific location and the transmission profile

of spin waves in magnonic crystals [3]. While the transmission profile is helpful to identify the

band structure, it does not provide the full picture of how spin waves propagate. Imaging the
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time-resolved response of a magnonic crystal is needed for a more detailed understanding. Time-

resolved Brillouin light scattering (TR-BLS) is a good solution because it can be used to char-

acterize information about spin waves like their time, phase, and wave number [4–7]. TR-BLS

measurements give a better picture of where the spin wave is and how it is travelling in a magnonic

crystal.

This thesis focuses on further understanding the effects of the periodic modulations in a magnonic

crystal on spin wave propagation. The TR-BLS data was used to map out the propagation of a spin

wave pulse in a one-dimensional (1D) magnonic crystal in space and time. The sample is catego-

rized as a 1D magnonic crystal because the periodic modulations are in one direction. The sample

is a yttrium iron garnet (YIG) film on a gallium gadolinium garnet (GGG) substrate. A YIG sam-

ple was chosen due to its low damping properties [7, 8]. The periodic modulations consist of 20

grooves chemically etched into the film using hot orthophosphoric acid. From the TR-BLS data,

information like the average group velocity of the pulse and the characteristics of the pulse shape

were determined.

1.2 Outline of Thesis

The focus of this thesis is on using TR-BLS data to further understand the group velocity and

pulse shape of a spin wave in magnonic crystals. It is broken up into the following chapters:

Chapter 2 focuses on background information of magnonic crystals and spin waves. The char-

acteristics of magnonic crystals and the details of the sample used are discussed. It also covers

relevant information about spin waves and their properties in magnonic crystals.

Chapter 3 describes the experimental techniques used to obtain data and presents an explanation

of the data analysis procedure. Microwave measurements are used to get the transmission profile

and to determine the frequencies at which spin waves can or cannot propagate. Brillouin light

scattering (BLS) is the main method used to observe and characterize spin wave propagation in

magnonic crystals.
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Chapter 4 contains a detailed analysis of the TR-BLS data. First, an overview of the analysis

methods, like cross-correlation, is described. Then the results of the analysis of the average group

velocities and characteristics of the pulses shape at key frequencies are presented.

The final chapter is a summary of the results and a discussion of future work.
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Chapter 2

Background Information

2.1 Spin Waves

Magnetic properties of a material are due to the orbital and spin angular momentum of elec-

trons. The magnetic moment will precess around the applied magnetic field in a cone shape, as

illustrated in Fig. 2.1. The shape is similar to the precession of a spinning top. If there is a chain

of electrons with spin, each spin will interact with their nearest neighbor based on dipolar and

exchange interactions. Exciting one of the spins in the chain will create a cascading effect where

each subsequent spin precesses but offset by a phase shift. This chain of precessing electrons is a

spin wave. Spin waves are often treated as quasiparticles known as magnons.

Figure 2.1: Diagram of a spin wave. (a) A top view of the spins. (b) A side view of the spins.

Spin waves are useful to transfer, store, and process information. Since they are waves, they

behave similarly to that of light and sound waves. They can reflect and interfere with each other [9].
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Two spin waves with the same phase will interfere constructively when they interact. Therefore,

the wave and information are preserved (Fig 2.2 a). When two spin waves offset by a phase

of π interact, destructive interference occurs (Fig. 2.2 b). The wave and the information are

suppressed [10]. By exploiting wave interference behavior, it is possible to control the conditions

for when information is preserved and when it is suppressed.

Figure 2.2: Diagram of wave interference showing (a) constructive and (b) destructive interference.

Three types of spin wave configuration can be identified based on the direction of the magnetic

field with respect to the direction of spin wave propagation: forward volume spin waves (FVSWs),

backward volume spin waves (BVSWs), and magnetostatic surface waves (MSSWs) (Fig 2.3).

(The MSSW configuration is also commonly referred to as Damon-Eshbach modes, based on the

people who discovered them [11]) The spin waves will predominantly radiate perpendicular to the

antenna. The configuration of the system will greatly affect the dispersion relation and the spin

wave behavior [12]. For example, features such as the group velocity and lifetime will vary. The

experiment done in this thesis focuses on the MSSW (surface wave) configuration.
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Figure 2.3: Diagram of the three different configurations for spin waves. The direction of the magnetization

is indicated by the red arrow and the direction of propagation of the spin waves is indicated by the black

arrow, where k is the wave vector. a) is the magnetostatic surface wave configuration (MSSW), the config-

uration used for this work. b) is the backward volume spin wave configuration (BVSW). c) is the forward

volume configuration (FVSW).

While MSSWs in magnonic crystals have been studied less, there are many advantages to us-

ing the surface wave configuration compared to the backward or forward volume configuration to

excite spin waves. In the surface wave configuration (Fig 2.3 a), spin waves propagate in-plane

and with the magnetic field perpendicular to the direction of propagation. The components of the

dynamic field from the stripline antenna are perpendicular to the static magnetization and leads

to spin waves from the torque on the magnetic moment. The excitation efficiency from the an-

tenna is greater for MSSWs as compared to BVSMs because two components of the dynamic

field contribute to the excitation, whereas for BVSWs only one component contributes to the ex-

citation. Also, the group velocity for MSSWs is generally faster than BVSWs and MSSWs also

exhibit a non-reciprocal propagation in the magnetostatic (low wavevector) regime, which can be

useful for applications. The slope for the dispersion relation for MSSWs is positive for positive

frequencies (Fig 2.4). Therefore, the group velocity and the phase velocity are in the same direc-

tion. Whereas in the backward volume configuration, spin waves have a symmetrical excitation

in their propagation. The forward volume configuration, in contrast, features isotropic spin wave

propagation [3, 5, 6, 8, 11, 13–15].

Characteristics of a spin wave such as the energy, frequency, and wave vector are described

through its dispersion relation [1, 12]. The dispersion relation relates the oscillatory frequency

of the spin wave (ω) to its wave vector (k). It is used to understand how any type of wave will
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Figure 2.4: Representative dispersion relation and corresponding group velocity, calculated using the ma-

terial parameters and thickness of the yttrium iron garnet (YIG) thin film used for the 1D magnonic crystal

discussed in this thesis. (Applied magnetic field is 855 Oe)

behave. In a typical spin wave experiment, spin wave pulses are excited at GHz frequencies using

an antenna. The dispersion relation gives the wavevector and phase velocity (vp =
ω
k

) for a specific

frequency. The phase velocity is the rate at which the wave with a specific phase propagates

through a medium [16]. The group velocity (vg = dω
dk

) is the velocity of a wave packet as it

propagates through the medium. This is also the velocity at which energy propagates, and vg can

be obtained from the slope of the dispersion relation.

Depending on the orientation of the sample and the direction of the magnetic field, the dis-

persion relation can vary. The thickness and material of the sample can also affect the dispersion

relation [2]. For the surface wave configuration, the dispersion relation generally shows that with

increasing k there is an increase in frequency due to dipolar interactions. Then the dispersion rela-

tion levels off at intermediate k and goes as k2 for high k due to exchange interactions (Fig. 2.5).

Our experiment focuses on the magnetostatic (dipole-dominated, low wavevector) range, and the

group velocity tends to reach a maximum at small wavenumbers in this regime [1].
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Figure 2.5: The dispersion relation for MSSWs for dipolar and exchange interactions. (Modified from

Ref [1])

2.2 Magnonic Crystals

The theory behind the dynamics in photonic crystals gave rise to magnonic crystals. Pho-

tonic crystals are used to direct light into certain zones or to disrupt the propagation of light [17].

They have been used for technology like logic functions, polarizers, and filters by controlling in-

formation through constructive and destructive interference of light. When there is destructive

interference, a band gap is created, and the transmission of information is suppressed. Photonic

crystals control the propagation of electromagnetic waves, while magnonic crystals provide a sim-

ilar function to control spin waves [18].

Both photonic and magnonic crystals use periodic modulation of the material properties to

control the propagation of spin waves. The periodic modulations in magnonic crystals create band

gaps that disrupt the propagation of spin waves at specific frequencies [19]. The disruption of the

spin waves is due to the Bragg reflection of the spin waves off of physical barriers and the reflected

waves destructively interfere with the incoming spin waves. Therefore, based on the design of the

magnonic crystal, particular wavevectors can pass, and some cannot. The frequency ranges of the
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band pass and band gaps can be tuned by selectively choosing the magnonic crystal’s geometry,

magnetic field, and materials.

Figure 2.6: Diagram of spin waves reflecting off of the grooves in the crystal. The colored solid lines show

the magnetic oscillations of the transmitted waves at an instant in time, and the colored dashed lines show

the reflected waves. The grooves of the 1D magnonic crystal that serve as reflectors are represented with the

black dashed lines, separated by distance d. The transmission and reflection amplitude are not to scale.

The interest in magnonic crystals grew due to their size and potential for more efficient spin-

based devices. Spin waves have a short wavelength, on the nanometer scale. For example, a 4 GHz

wave in vacuum has a wavelength of 75 mm, whereas a spin wave in a YIG film at the same

frequency has a wavelength of around 10 µm and can extend into the nanometer scale [2]. Devices

based on spin waves also do not rely on the movement of electrons and reduce the risk of heating

up and provide a means to transmit information through electrically insulating materials.

The magnonic crystal used in this experiment is a one-dimensional (1D) YIG magnonic crystal.

It is defined as a 1D magnonic crystal because the pattern is repeating in only one direction. YIG

is a common choice for magnonic crystals because of its low damping and strong tunability for

the group velocity [14]. Low damping means the lifetime of a spin wave is longer compared to
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other materials [2,3,8]. For example, a surface spin wave with a wavelength of λ = 1 µm in a YIG

micrometer-thick film can last upwards of microseconds. Compared to other materials, spin waves

can only last tens of nanoseconds. Spin waves can also travel farther, e.g. centimeters, which is

longer comparatively to metals whereas the distances are tens or hundreds of microns [1].

The sample is 6.4 µm thick and 2.25 mm wide yttrium iron garnet (YIG) film on a gallium

gadolinium garnet (GGG) substrate. The film was patterned with 20 grooves with width of a =

25 µm and depths of 3.5 µm by chemical etching using hot orthophosphoric acid. The grooves

were separated by a flat region with an overall center to enter spacing of 275 µm. The first groove

is 750 µm from the first measurement, which is 1 mm from the antenna. (Fig. 2.7). The groove

profile was measured by Mitchell Swyt, another group member, using profilometry (Fig. 2.8).

The work presented in this thesis is collaborative. The sample was fabricated by Cesar Romero

at the Universidad Nacional Autonoma de Mexico and Jason Liu at Georgia Southern University

assisted in setting up the time-resolved equipment. Initially M. Swyt, another group member, and

I made network analyzer measurements to identify the pass band and the band gap frequencies. M.

Swyt then ran the TR-BLS measurements at the selected frequencies, measured the groove profile

using profilometry (Fig. 2.8), and mapped out the spin wave propagation through the crystal. I ran

some of the initial TR-BLS measurements and conducted the analysis of the time-resolved dataset

presented in this thesis.
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Figure 2.7: Schematic of the experimental set up. The applied magnetic field, red arrow, is 850 Oe. The

sample is 6.4 µm thick, 2.25 mm wide, yttrium iron garnet (YIG) on a gallium gadolinium garnet (GGG)

substrate. On each end of the crystal a stripline antenna is attached. The period pattern was chemically

etched into the film using hot orthophosphoric acid. There are 20 grooves with widths of a = 25 µm and

depths of 3.5 µm. Each groove is separated by a w = 250 µm flat region.

Figure 2.8: The profile of magnonic crystal grooves measured by Mitchell Swyt via profilometry.

11



Chapter 3

Experimental Techniques

3.1 Introduction

In this section, a description of the experimental techniques used and an explanation of the

TR-BLS data will be discussed. The microwave measurements using the vector network analyzer

(VNA) provided the transmission profile. From the transmission profile, four driving frequencies,

the band pass and band gaps, were selected for TR-BLS measurements. The next section is a

detailed explanation and schematic of the TR-BLS system. The last section steps through the

analysis procedure to interpret the TR-BLS data.

3.2 Microwave Measurements

A vector network analyzer (VNA) was used to measure the transmission loss as a function of

frequency of the 1D magnonic crystal. The S-parameter from the VNA shows the transmission

loss, in dB, measured at specific frequencies [20]. A microwave signal is sent from the VNA to

the antenna attached to the magnonic crystal to excite spin waves, as shown in Fig. 3.1. The S-

parameter, S12, compares the signal from the output antenna with the signal launched at the input

antenna. Stripline antennas with widths of approximately 50 µm were used to launch and receive

the spin waves. The transmission loss was measured for frequencies between 4.0 – 5.0 GHz with

an applied magnetic field of H = 855 Oe.
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Figure 3.1: Diagram of the sample connected to vector network analyzer (VNA) to obtain transmission

profile. The spin waves are launched from the left antenna (gray bar attached to port 1), and received by the

right antenna (gray bar connected to port 2).

Figure 3.2: The 1D magnonic crystal transmission profile (solid line) with the four frequencies selected for

TR-BLS measurements, shown as red circles and labeled as band pass (BP) and band gaps (BG1-BG3).
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Fig. 3.2 shows the measured transmission profile of the 1D magnonic crystal. The attenuation

from the input to the output antenna is indicative of how well the spin wave signal can propagate

from one end of the magnonic crystal to the other. If spin waves propagate efficiently through the

magnonic crystal, then the attenuation value will be larger. For example, driving the system at

4.25 GHz results in the largest value of attenuation. Therefore, spin waves can propagate easily

at this frequency. This frequency is known as the band pass (BP). When there is a sharp drop

in attenuation, that frequency is called the band gap (BG). At BG frequencies the spin waves

cannot propagate as easily because the periodic pattern in the magnonic crystal leads to destructive

interference of the spin waves.

Microwave measurements have been used before with other magnonic crystal experiments [3].

While these measurements are helpful to identify the band structure, they do not give any spatial

or temporal information about spin wave propagation in magnonic crystals. To obtain additional

details, imaging techniques can be used, like time-resolved Brillouin light scattering.

Based on the transmission profile (Fig. 3.2), the following frequencies were chosen to observe

spin waves in more detail using TR-BLS.

Table 3.1: Table of the band gap and band pass frequencies identified in Fig. 3.2.

Name Frequency (GHz)

Band Pass (BP) 4.25

Band Gap 1 (BG1) 4.305

Band Gap 2 (BG2) 4.38

Band Gap 3 (BG3) 4.455

3.3 Brillouin Light Scattering (BLS)

Time-resolved Brillouin light scattering (TR-BLS) measurements can be used to obtain both

spatial and temporal information on spin waves. Brillouin light scattering (BLS) is a measurement
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technique used to study magnons by utilizing the information from inelastically scattered photons

from a laser probe with magnons in the sample. When the photons are inelastically scattered,

energy is conserved, and the scattered photons are frequency-shifted. This frequency shift is due

to the energy released or absorbed by the magnon; known as the Stokes and anti-Stokes processes,

respectively. The Stokes process leads to a negative frequency shift and occurs when a photon

gives up energy to create a magnon. The anti-Stokes process leads to a positive frequency shift and

a magnon in annihilated in the scattering process. The frequency shift of the inelastically scattered

photon is equal to the frequency of the magnon. For thin films, the in-plane momentum is also

conserved in the scattering process, so the angle dependence of the scattering process can be used

to obtain information on the magnon wavenumber. The intensity of the scattered photons is also

proportional to the intensity of the magnons [3, 21].

Figure 3.3: A schematic of the optics and instruments used for the forward scattering BLS measurements.

The green lines represent the laser path, the grey shapes represent the mirrors, and the light blue shapes

represent the lenses. The TFP is used to detect the frequency shifted photons.

Fig. 3.3 shows a schematic of the optical beam path guiding the laser to the sample and the

inelastically scattered photons to the interferometer. A 532 nm single mode, linearly polarized,
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laser is sent through a series of mirrors and polarizers to the sample. The mirrors guide the laser to

the sample and the inelastically scattered photons are rotated by 90 degrees with respect to the input

polarization. A polarizer is used to exclude elastically scattered light and ensures the polarization

of the inelastically scattered light matches the polarization needed by the interferometer. A forward

scattering configuration, where the light is transmitted through the sample, is used because the

magnonic crystal is transparent. Another advantage of using the forward scattering configuration

is that more scattered light can be collected as compared to a backscattering configuration where

part of the beam is lost. Once the laser hits the sample, a cone of the inelastically scattered light

is directed into the interferometer via a focusing lens that takes all the scattered light and focuses

it into the interferometer input pinhole. A separate set of mirrors guides a reference beam into the

side of the interferometer. The reference beam is used to monitor the laser stability and help with

alignment [22, 23].

Figure 3.4: Schematic of the tandem Fabry-Perot interferometer. The single sided arrows show the direction

of the beam as it passes through the etalons. The double sided arrow indicate the direction the scanning stage,

the dark grey shaded area, can move to change the spacing between the mirrors, and θ is the angle between

the two interferometers
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A TableStable/JRS six pass tandem Fabry-Perot interferometer upgraded with the TFP-2 HC

optics and a Hamamatsu C11202-50 detector was used for data collection in this thesis. A key

element in the BLS system is the tandem Fabry-Perot interferometer, where two Fabry-Perot in-

terferometers are arranged in tandem. Fig. 3.4 shows a full schematic of the interferometer. A

Fabry-Perot interferometer is an optical arrangement consisting of two parallel mirrors, etalons,

slightly offset with highly reflective coating [23, 24]. There are many advantages to using the tan-

dem Fabry-Perot interferometer instead of the single Fabry-Perot interferometer. The light passes

through the etalons a total of six times in the tandem version, which increases the contrast of the

signal to noise ratio by filtering out weaker signals. The tandem setup also allows for unambigu-

ous identification of the transmitted light. When using one Fabry-Perot the given frequency is

transmitted strongly at regular intervals for each of the mirror sets and frequencies can be identi-

fied precisely but cannot be identified unambiguously. The slight offset of the mirror spacing for

the tandem setup allows the unambiguous identification of the frequency shift. More information

about the tandem Fabry-Perot set up can be found in reference [23].

ThaTEC’s TFPDAS5 software is used for the data collection and piezoelectrically controlling

the tandem Fabry-Perot interferometer etalon mirrors. The z control changes the distance between

the mirrors by moving the scanning stage. The x and y controls are used to adjust the mirrors

to make them parallel to each other. The TFPDAS5 software can manually control the mirror

position and is also used to automatically stabilize the mirror position and keep them parallel

during measurements.

The position of the scanning stage in Fig. 3.4 is scanned to allow different frequencies to pass

through to the detector, and the number of counts is recorded as a function of the stage position.

The light will pass three times through the first Fabry-Perot interferometer (FP1), with a mirror

spacing L1. Then it passes another three times through the second Fabry-Perot interferometer

(FP2), with a mirror spacing L2. L1 andL2 change simultaneously and since the spacing between

the mirrors are slightly offset, FP1 and FP2 allow slightly different wavelengths of light to transmit.

An example of the combined intensity profiles from FP1 and FP2 are shown in Fig. 3.5. There are
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also “ghost” peaks after the two intensity profiles are combined. When the elastic signal is strong,

the ghost peaks are stronger.

Figure 3.5: An example of the tandem Fabry-Perot interferometer transmission spectra. This figure was

reproduced from Ref [24].

The value of L1 determines the free spectral range (FSR). The FSR is the frequency range

scanned by the mirrors when they move λ/2, where λ is the wavelength of the reference beam.

∆λ =
λ2

2L1

(3.1)

The FSR range is centered around the frequency of the laser. During a measurement, the mirror

spacing moves through the FSR and the inelastically scattered photon signal within the frequency

range is recorded by the TFPDAS5 software when it arrives at the detector. A timed shutter system

allows the inelastically scattered photons outside of the laser frequency to enter the interferometer,

while the input beam is blocked when the mirrors scan through a region near the laser frequency.

This is to protect the detector from the strong elastically scattered signal [23].
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Figure 3.6: A simplified diagram of how the time-resolved setup works for the BLS system. The microwave

source puts out a continuous microwave excitation at the selected frequency. The microwave pulse duration

and repetition rate are set using a pulse generator connected to a microwave switch. An oscilloscope is used

to check the input and output signal from the sample. The pulse generator also sends a timing trigger to a

fast time of flight measurement card (250 ps temporal resolution).

ThaTEC’s P7887 software is used to control the time-resolved aspect of the BLS measurement

by tracking the time-of-flight of photons. A pulse generator is used to trigger the microwave switch

to generate a pulsed microwave current, which is sent to the input antenna connected to the sample

and generates spin waves. The sample output antenna and the microwave switch are connected to

an oscilloscope to check the output and input signals. The pulse generator also sends a pulse to the

time-of-flight card, which serves as a trigger for the time-of-flight counter. The pulse duration was

set to 200 ns with a 1250 ns repetition rate. 1

The P7887 takes the reference counter information from the time-of-flight card and BLS de-

tector to plot the counts versus frequency and time. Fig. 3.9, in section 3.4, shows a representative

raw dataset. Now the timing of when a photon interacted with a magnon at a specific spot is

1Our collaborators Cesar Romero at the Universidad Nacional Autonoma de Mexico and Jason Liu at Georgia Southern

University assisted with setting up the microwave switch.
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known. The spatial resolution for the system is 50 µm, limited by the laser spot, and the temporal

resolution is 250 ps, limited by the temporal resolution of the time-of-flight card. Measurements

started 1 mm from the input antenna. By repeating this measurement process for multiple locations

along the crystal, the spin wave propagation can be mapped spatially and temporally (Fig. 3.7).

Therefore, the spin wave pulse can be tracked as it travels down the length of the crystal and the

changes in the pulse shape over time can be characterized.

Figure 3.7: To obtain spatial maps of the spin wave propagation pattern, the laser spot is moved to different

points along the sample. The length scan range (x direction) is between 2.25 mm-9.5 mm with 146 steps

of 0.05 mm. The width scan range (y direction) is 10.55 mm-13.25 mm with 55 steps of 0.05 mm. These

values are based on the micrometer positions, not the dimensions of the sample.

20



3.4 Data

Figure 3.8: An example of raw BLS data taken at one position and one point in time. The center peak is the

reference peak centered on the frequency of the laser. The left peak is the frequency shift from the Stokes

process, magnon creation, and the right peak is the frequency shift from the anti-Stokes process, magnon

annihilation. On the far left there is part of the ghost peak.

Fig. 3.8 shows a raw BLS spectrum obtained at one position on the sample at a specific time.

The magnetic field is 855 Oe and the driving frequency is at BP (4.25 GHz). The spectrum shows

the number of counts that reach the detector at different frequencies. The frequency shifts are

centered around the frequency of the laser. The center peak (at f = 0) are counts from the reference

beam, and the peaks to the left and right are the frequency shifts of the photon interacting with a

magnon, the Stokes and anti-Stokes, respectively. The frequency shifts associated with these peaks

coincide with the pumping frequency.
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Figure 3.9: The intensity of the inelastically scattered photon frequency shift over time for one position on

the sample. The bright spots indicate the BLS signal intensity. The bright line in the center (at f=0) is the

reference beam, and the red arrow points to the signal from the spin wave pulse.

Fig. 3.9 shows the full raw time-resolved data set for the same location as Fig. 3.8, and Fig.

3.10 is a demonstration of how figures like 3.8 are combined to make a time-resolved dataset shown

in Fig. 3.9. In Fig. 3.9 the brightness scale indicates the intensity of photon counts. Figs. 3.8 and

3.9 and were measured at the same position under the same conditions, but Fig. 3.9 shows the

intensity of the frequency shift over time instead of the frequency shift at one specific time (Fig.

3.8). The bright beam in the middle is due to the reference beam. The bright patches below and

above the reference beams, at -4.25 GHz and 4.25 GHz, are the counts from the spin wave pulse

detected at the Stokes and anti-Stokes frequency shifts.
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Figure 3.10: A visual representation of how the counts versus frequency time graphs are combined to create

the frequency versus time graphs. The red dashed lines correspond with the selected times for the counts

versus frequency graphs above.

The spin wave pulse is obtained at each position by taking the integral of the Stokes or anti-

Stokes regions, as shown in Fig. 3.11. Choosing to integrate the Stoke or anti-Stokes region does

not matter, but choosing whichever has the highest counts is better for data analysis. Repeating

this integration process for an intensity versus frequency and time graph at every position results

in multiple counts versus time, or pulse, graphs. Then combining all the pulses will result in a Fig.

3.12 for tracking the intensity of the spin wave pulse as it travels in the magnonic crystal. Fig. 3.13

demonstrates in more detail how combining the pulse graphs creates an intensity versus position

and time graph, like Fig. 3.12.
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Figure 3.11: Integrating the signal over the frequency range indicated by the red box leads to a plot of the

integrated BLS counts versus time, spin wave pulse, at one position.

Figure 3.12: Tracking the intensity of the spin wave, at the BP frequency, as it travels down the sample

length (along x) over time. When there are brighter spots, there are more counts and the spin wave has a

higher intensity. Here the spin wave pulse is shown at the center of the sample width-wise (y = 11.92 mm).
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Fig. 3.12 shows the intensity of the spin wave pulse as it travels down the center of the

magnonic crystal over time. The bright spots indicate there is a spin wave present, while at the

less bright spots there might be a less intense spin wave. Fig. 3.12 shows a faint triangle pattern

for the spin wave that travels down and is then reflected back along the length of magnonic crystal

over time. The bright left side of the triangle shows the main spin wave pulse traveling from the

antenna in the positive x direction down the length of the sample. The faint right side of the triangle

is due to the spin waves that have reflected off the end of the crystal and they are traveling in the

negative x direction back to the front. These types of intensity versus position and time plots are

made to observe spin waves traveling down the length or the width of the magnonic crystal.

Figure 3.13: A visual representation of how the counts versus time graphs are combined to create the plot

of intensity versus position and time graphs.
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Figure 3.14: TR-BLS measurements made on a 1D magnonic crystal. a), b), and c) were obtained at a

driving frequency of 4.41 GHz and H = 900 Oe and d), e) and f) at 4.25 GHz and H = 855 Oe. There were

software interruptions and resulted in no counts for x > 7.5 mm for b).

Fig. 3.14 shows the preliminary TR-BLS dataset taken by me. The overall measurement time

took a couple of hours and resulted in data with fewer counts. The measurements were made in a

forward scattering surface wave configuration. The applied magnetic field was H = 900 Oe with

a 4.41 GHz driving frequency. The data processing procedure described above was applied and

resulted in Figs. 3.14 a), b), and c). While taking measurements, there was a software interruption,

which is why no counts were recorded for x > 7.5 mm in Fig. 3.14 b).

Even though the counts are low, the spin wave pulse is visible and the group velocity of the

pulse can still be determined. The group velocity can be calculated by taking a rough estimate of

the slope in the intensity versus position and time graph (Fig. 3.14 b).
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Figure 3.15: Illustration of the manual calculation of the group velocity using the preliminary intensity

versus position and time data. This is done by finding the general slope of the brighter region (red lines).

The group velocities are given in the legend.

The group velocity found falls in the estimated range for a spin wave in a 1D YIG magnonic

crystal (40 km/s) [2]. The estimated group velocity is around 39000 m/s and the experimental

group velocity for a similar driving frequency (BG2), calculated in section 4.5.3, is 38000 m/s.

To get a more exact group velocity and details about the pulse shape, measurements need to

run longer to collect more photon counts. A fellow group member, M. Swyt, ran measurements

with a longer dwell time per point at the identified frequencies from the transmission profile (table

3.1) to collect more counts. The set up was also in a forward scattering surface wave configuration

with an applied magnetic field of 855 Oe. This dataset has a better signal to noise ratio and the

pulse shape is easier to identify as seen in the bottom row of Fig. 3.14.

With the higher count dataset, the pulse shape is easier to identify, and the group velocity can be

determined by tracking the pulse as it travels down the sample using more sophisticated techniques

instead of by estimating the slope in the position versus time graph. The dataset with higher counts

was used in the beginning of this section to demonstrate the data processing procedure. All further

analysis done in this thesis also focuses on the higher count dataset.
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Chapter 4

Analysis

4.1 Introduction

This section discusses the different methods used to analyze the pulse shape and the group

velocity, as well as the result of the analysis. The stripline antenna attached to the sample excites

a spin wave down the length of the sample (Fig. 3.1). By using cross-correlation, a method

commonly used for signal processing, the spin wave pulse speed and shape can be tracked as it

travels down the sample.

First, how the pulse propagates in the sample will be explained. Then a detailed review of the

cross-correlation method and how it is used will be described. Lastly, the average group velocity

of the pulse and changes to the pulse characteristics will be discussed. Most of the analysis on the

pulse shape will focus on data obtained at the frequencies corresponding the band pass (BP) and

the first two band gaps (BG1, BG2) (Fig. 3.2). Measurements were also made at BG3, however,

the counts were low and it was difficult to identify features in the pulse.

4.2 Pulse Selection

To analyze the group velocity and the shape of the spin wave pulses measured by the TR-BLS,

a single reference pulse and a width-averaged reference pulse were chosen and compared to pulses

in the 1D magnonic crystal at different locations. Fig. 4.1 shows a diagram of the 1D magnonic

crystal with key measurement positions identified and the exact locations are listed in table 4.1.
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Figure 4.1: A schematic of various key locations along the 1D magnonic crystal referenced in the analysis

and a list of the exact positions can be found in table 4.1. The TR-BLS scan range extends from xstart to

xend and across the full width (y-direction) of the crystal. The yellow star indicates the position for the

single reference pulse. The width-average reference pulse was taken by averaging all the pulses along the

red bar region. The grey bars are the grooves. This diagram is not to scale.
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Table 4.1: A list of key positions for the BP, with an uncertainty of 0.01 mm, corresponding to Fig. 4.1.

The measurements start 1 mm from the antenna.

Name Position

xstart 2.25 mm

xstop 9.5 mm

xa 2.65 mm

xb 2.8 mm

xc 3.64 mm

xd 4.43 mm

xe 4.48 mm

xf 2.95 mm

xg 3.24 mm

xh 3.54 mm

y1 11.24 mm

y2 11.92 mm

d− 250 µm

d 275 µm

d+ 300 µm

The pulse at the center, width-wise, of the sample with the maximum number of counts was

used as the single reference pulse (x = xa, y = y2). The width-averaged reference pulse is con-

structed by taking all the pulses along the width of the crystal and averaging the pulse counts.

For the BP, the width-averaged pulse was constructed by averaging the pulses along at the same

x position, xa, as the single reference pulse. For all frequencies (BP, BG1, BG2, and BG3), the

width-averaged reference pulse counts were scaled up to match the number of counts of the single

reference pulse. This step is important for later analysis using cross-correlation. Fig. 4.1 shows

the location of the single reference pulse, the star, and the width-averaged reference pulse, the red
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stripe. For BG1, BG2, and BG3 the highest number of counts for the single reference pulse and

the width-averaged reference pulse are located at different x positions than BP, (Fig. 4.1).

Figure 4.2: Diagram of the single reference pulse and the width-averaged reference pulse at BP. The pulses

were truncated to include only the main pulse and eliminate the pulse reflected back from the end of the

crystal.

A comparison of the two reference pulses can be seen in Fig. 4.2. The pulses were trimmed to

exclude the counts from the reflection of the pulse off the end of the sample. The group velocity

analysis was done using both the single reference pulse and the width-averaged reference pulse

and the results were compared. Throughout this thesis the singe reference pulse will be referred

to as the “single pulse” and the width-averaged reference pulse will be referred to as the “average

pulse.”
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4.3 Cross-Correlation

Cross-correlation is a common method used in signal processing because it can be used to

determine how similar two signals are to each other. A cross-correlation of two functions is done

by sliding one of the functions over time, and then calculating the integral of the product of the two

functions for each lag time. The cross-correlation of two functions, f(t) and g(t), is given by [25].

(f ∗ g)(τ) =

∫
∞

−∞

f(t)g(t+ τ)dt (4.1)

(f ∗ g)(τ) =

∫
∞

−∞

f(t− τ)g(t)dt (4.2)

The * denotes convolution. f(t) denotes the complex conjugate of f(t), and τ is the displace-

ment, or the lag time, between the functions. The integral for cross-correlation can be taken over

an infinite time range or over a finite time range. The cross-correlation range for the TR-BLS

signals data was taken over the signal time. The range for the normalized cross-correlation am-

plitude is from -1 to 1. Where 1 indicates perfect cross-correlation and –1 indicates perfect anti

cross-correlation. When there is no correlation, the value is 0 [26].
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Figure 4.3: Diagram of the cross-correlation process. The first panel shows the original pulse, black line,

and the compared pulse, blue line, compared, for a case where the correlation is zero. The next three panels

show the corresponding cross-correlation values as the original pulse is shifted. The last panel are the results

of the cross-correlation for the two pulses. The green, red, and orange dotted lines in the cross-correlation

value correspond with the shifted pulses colors.
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An example of a cross-correlation is shown in Fig. 4.3. When the original function, the black

function, and the second function, the blue function, do not overlap at all, the cross-correlation

value is 0 (top panel of Fig. 4.3). As the original function is shifted to the right and begins to

overlap with the second function, the cross-correlation value increases. When the two functions

are slightly overlapped, as seen with the green and orange dotted lines, the cross-correlation value

is greater than 0, but not 1. When the two functions overlap perfectly, the cross-correlation value

is 1. The time at the maximum cross-correlation value is called the lag time, τmax. The maximum

amplitude, in Fig. 4.3 is found to be at a lag time of around –600 s. Visually, this can be double

checked by shifting one pulse with respect to the other by τmax and the pulses should then overlap.

The sign of τmax for this case is not important. It can be positive or negative depending on which

function is being displaced. If the second function, the blue function, was the function being

shifted, then the lag time would be +600 s, instead of -600 s.
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Figure 4.4: An example of the cross-correlation for the pulses. The top row are the pulses compared to each

other and the bottom row is the corresponding cross-correlation of the pulses. d) is the autocorrelation of the

single pulse in a). e) and f) are the cross-correlation of the single pulse with spin waves pulses at different

locations, b) and c). The amplitude of the cross-correlation, e) and f), has been scaled to show how the

amplitude changes when the pulse counts or shape changes, as compared to the autocorrelation amplitdue

in d). However, the cross-correlation amplitude scale is not normalized to 1. The red circle indicates the

maximum cross-correlation amplitude (τmax) and the grey line dashed line is centered at lag time 0 ns. The

red dashed line is the full width half max (FWHM) of the cross-correlation.

The cross-correlation method is applied to the reference pulse and pulses at different locations

on the magnonic crystal. Fig. 4.4 d), e) and f) are examples of how the lag time and the full

width half max (FWHM) can be obtained from the cross-correlation of the TR-BLS data. Fig. 4.4

d) is the autocorrelation of the single pulse, where an autocorrelation is the cross-correlation of

a function with itself. An autocorrelation will have the maximum cross-correlation amplitude as

compared to the cross-correlation of the reference pulse with a pulse at any other location. If the

pulse does not have the same shape or has fewer counts than the reference pulse, then the amplitude

of the cross-correlation will be smaller. For example, the autocorrelation amplitude shown in Fig.

4.4 d) is larger than the cross-correlation amplitudes from Figs. 4.4 e) and f). The cross-correlation

amplitude in Figs. 4.4 e) and f) are shown on a different scale than the autocorrelation amplitude,
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Fig. 4.4 d). The peak of the cross-correlation amplitudes in Figs. 4.4 d), e), and f), indicated by

the red point, are greater than 1 because the amplitude is not normalized.

Figure 4.5: A zoomed in version of the cross-correlation of pulses at xa and xd from the cross-correlation

in figure 4.4 f) to show the lag time.

The lag time associated with the maximum value of the cross-correlation (τmax) gives the pulse

time shift for a given position, which can be used to determine the group velocity of the spin wave

pulse. Fig. 4.5 is a zoomed in version for Fig. 4.4 f). The lag time of the autocorrelation is

0 ns. The time between 0 ns, shown by the grey dashed line, and the peak of the cross-correlation

amplitude, the red point, is the lag time between the pulse and the reference pulse. To find the

group velocity down the center of the sample, the single pulse, denoted by the star in Fig. 4.1 was

used as the reference pulse and then cross-correlated with pulses at position xa,b,c,d,etc. Then the

lag time for each cross-correlation is plotted as a function of position, and the group velocity down

the length of the sample (x direction) at width position y2 is obtained from the slope (vg = 1/slope).

This will be discussed in more detail in section 4.5.1.
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Figure 4.6: Example of the width of the cross-correlation amplitude changing based on pulse width. c) is

the cross-correlation amplitude of pulses in the first column and f) is the cross-correlation amplitude of the

pulses in the second column. Pulse a) duration (550 ns) is less than the duration for pulse d) (275 ns). The

resulting cross-correlation FWHM, marked in red for c) is 530 ns and the FWHM for f) is 450 ns.

Fig. 4.6 illustrates how changes in the cross-correlation FWHM indicates pulse shape changes.

The pulse duration of Fig. 4.6 a) is 550 ns and is the same duration as the second pulse, the blue

function (Fig. 4.6 b). Fig. 4.6 c) shows the resulting cross-correlation with a FWHM of 530 ns.

The resulting FWHM of the cross-correlation for pulse in Fig. 4.6 d) and Fig. 4.6 e), where Fig.

4.6 e) is the same duration as the pulse in Fig. 4.6 b), is 450 ns. When the pulse duration for

the reference pulse decreases, the cross-correlation FWHM also decreases. By looking at how the

FWHM of the cross-correlation changes from the autocorrelation FWHM, the changes in pulse

shape in the magnonic crystal can be quantified. The FWHM for the magnonic crystal pulses are

shown by the red dashed line in Figs. 4.6 c) and f).
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4.4 Pulse Propagation

4.4.1 Pulse Along the Width

In this experiment the antenna is positioned such that the spin waves should travel along length

(x direction), and the arrival times should be constant along the width (y direction) for a given x

(Fig. 3.1). The average of the pulse speed should be nonzero only along x. This can be verified

in a few ways. First, Fig. 4.7 shows the pulse intensity across the width. Unlike Fig. 3.12 where

the pulse position changes over time, in Fig. 4.7 the pulse is concentrated at one time range for all

widths where the pulse is visible.

Figure 4.7: Tracking the pulse intensity across the width of the sample at xb with a driving frequency BP.

Fig. 4.8 shows the lag times versus y obtained from the cross-correlation of the pulses along

the width at the position xc with the single pulse. As shown in Fig. 4.8, the lag times between

the single pulse and the pulses compared at different y positions were close to 0 ns, as expected.

Along the edges of the sample the lag time increases. This could be due to the lower counts, so the

lag times from the cross-correlations are less reliable.
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Figure 4.8: The lag time for the cross-Correlation for every position along the width at driving frequency

BP.

The FWHMs from the cross-correlations of the pulses across the width were also examined

(Fig. 4.9). It is expected as the pulses travels there will be some pulse spreading. Along the width

the pulses do not spread or change shape. Fig. 4.9 shows that at the BP frequency the FWHM

is relatively constant across the sample width with the average FWHM value of 150 ns. The blue

points in Fig. 4.9 are data points with high counts, that correspond to values within 10 % of the

peak autocorrelation amplitude. The orange points have a lower cross-correlation amplitude. The

pulses along the edges of the crystal have lower counts and this affects the cross-correlation shape

and leads to less consistent FWHMs values. The pulse intensity plot (Fig. 4.7) and lag times plot

(Fig. 4.8) shows that the pulse does not travel along the width, and Fig. 4.9 verifies that there is

minimal spreading, as expected.
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Figure 4.9: a) is the FWHM of the cross correlation amplitude across the width of the sample for a driving

frequency of BP. b) is the zoomed in version of a). The blue and orange points are data points with higher

and lower counts respectively.

4.4.2 Diamond Pattern

Next the pulse propagation along the length of the sample will be analyzed, however, before this

is done it is important to note that the TR-BLS data shows that the pulse propagation is complicated

in a YIG strip. When using the TR-BLS data to track the pulse traveling down the sample, a

diamond pattern emerges as seen in Fig. 4.10.
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Figure 4.10: TR-BLS data for the pulse traveling down the sample, at time = A (200 ns), where a diamond

shape appears. This is due to different modes simultaneously excited by the antenna.

One might think the diamond pattern is due to the pulse moving in a diagonal direction and

reflecting off of the sides of the sample. However, in the previous section it was established that

the pulse does not propagate along the width. Therefore, the diamond pattern must be caused by

something else. It turns out the diamond pattern is a result of width-quantized spin wave modes

excited by the antenna. The interference of these width-quantized spin wave modes leads to a

spatial pattern and a periodic self-focusing effect of the propagation of spin waves. The diamond

pattern will form even in unpatterned YIG films and it is not due to the periodic modulation in the

magnonic crystal [27, 28].
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Figure 4.11: Calculations to illustrate the formation of the diamond pattern from lower modes due to

the interference of the different width-quantized modes simultaneously excited by the antenna. The first

column shows the standing wave pattern of the out-of-plane magnetization Mz . The second column shows

the cumulative sum of the magnetization for each mode and each mode with a phase shift of π/2. The third

column is intensity, proportional to the BLS signal, and is the total magnetization integrated over one full

period. Each panel is a snapshot at an instant in time.
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Figure 4.12: Calculation to simulate the diamond pattern formation only using higher modes due to the

interference of the different width-quantized modes simultaneously excited by the antenna. The first column

shows the standing wave pattern of the out-of-plane magnetization Mz . The second column shows the

cumulative sum of the magnetization for each mode and each mode with a phase shift of π/2. The third

column is intensity, proportional to the BLS signal, and is the total magnetization integrated over one full

period. Each panel is a snapshot at an instant in time.

The wavevectors that are allowed along the length of the sample (x direction) are continuous.

However, since the width of the sample is small, the wavevectors in the y direction are quantized.

Across the width, the magnetization goes to 0. This leads to the out-of-plane magnetization (Mz)

across the width to act like standing waves, as shown in the first column of Fig. 4.11, starting with

the n = 1 mode. Figs. 4.11 and 4.12 are calculations of the low and high mode interference that

results in a diamond pattern.

Since a stripline antenna is used to excite the spin waves, multiple surface spin waves modes

are excited simultaneously, and it is not possible to select a specific wavevector to propagate. Only

the modes with odd n (n = 1,3,5. . . ) are allowed. The modes with even n (n = 2,4,6. . . ) have odd

symmetry. So, when the magnetization for the modes with even n are summed, the magnetization

will cancel out and the even modes are not excited by the antenna. Each mode is excited with a

relative magnetization amplitude of 1/n [27]. So, the n = 1 mode is responsible for the majority of
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the pulse dynamics like the average speed and shape. Interference of the n = 1 mode with the n =

3, 5, 7. . . modes leads to the observed diamond pattern. The width quantized modes, kn

kn =
nπ

w
(4.3)

are calculated using equation 4.3 where w is the width of the sample, 2.25 mm, and n is the mode

number. Each mode has a different kn. The standing wave pattern for the odd modes are shown

in the first column of Fig. 4.11 and 4.12. Red is the maximum intensity of Mz and blue is the

minimum. The magnetization for each n mode, mn,

mn(x, y) ∝
1

n
sin(

nπ

l
y)ei(kxx+φ) (4.4)

where l is the width of the sample, kx is the wavevector in the x direction, and φ is the phase.

The third column in Fig. 4.11 and 4.12 is the amplitude of the spin wave, or intensity (I),

I ∝ (
∑

mn)
2 (4.5)

which is measured by the BLS. The intensity is obtained by integrating the total magnetization

over one period. The total magnetization is the cumulative sum of Mz for different wavevectors of

each mode. Another element of the Mz with a phase shift of π/2 for each mode is included in the

sum to simulate the dynamics of the plane wave moving. The resulting sum of each mode is shown

in the second column of Fig. 4.11 and 4.12 starting at n = 1 for the first row and each subsequent

row adds an additional mode.

The filled in diamond pattern appears with contribution to the intensity calculations from the

lower modes. As shown in Fig. 4.12, when only the intensity for the higher modes is calculated,

the diamond pattern still exists, but it is only the outline and not filled in. In section 4.6.2 the

diamond patterns from the calculations will be compared to the images obtained from the data set.

For now, the important takeaway is that the amplitude variation as a function of x is not expected

to follow a simple exponential decay pattern.
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4.5 Group Velocity

4.5.1 Group Velocity using Cross-Correlation

The group velocity down the center of the sample is found by taking the slope of the lag time

from the cross-correlation plotted for every position. Fig. 4.13 uses the single pulse, star on Fig.

4.1, as the reference pulse for the cross-correlation.

Figure 4.13: Lag time as a function of x for the BP driving frequency. The blue points have a higher cross-

correlation amplitude and the orange points have a lower cross-correlation amplitude. The group velocity

and the associated uncertainty are obtained from linear least squares fits. Only the blue points were used

for fitting, because they have higher counts. a) is the the group velocity down the length at y2 and b) is the

group velocity at y1

Fig. 4.13 shows the extracted lag times as a function of the position along the sample length

(x direction) for two different y positions (y1 and y2). The points in Fig. 4.13 are categorized as

high counts data (blue points) and low counts data (orange points) based on their cross-correlation

amplitudes. If the cross-correlation amplitude fell within 10% of the autocorrelation amplitude,

then the pulse was labeled as a high counts data. If it fell out of this range, then it was considered

low counts data.
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Figure 4.14: a) is a zoomed in version of figure 4.13 a). b) are the two pulses highlighted by the green box

in a). The reference pulse (black pulse) has been scaled and shifted by the lag time to match the green pulse.

The positions with low counts could be caused by destructive interference off the grooves or be

at particular positions in the diamond pattern that has low intensity counts. Fig. 4.14, a zoomed-in

version of Fig. 4.13, demonstrates why the two points are categorized into high counts data or low

counts data. Fig. 4.14 b) are the pulses compared to the reference pulse in the green box for Fig.

4.14 a). The reference pulse has been scaled and shifted by the lag time to compare with the green

pulses at positions xd and xe. When compared to the reference pulse, the green pulses’ counts are

lower and the shape is less defined. These pulses have more inconsistent cross-correlation value.

So, when the group velocity is calculated by the curve fitting, pink line in Fig. 4.13, only the high

counts data are used. Fig. 4.13 a) show the group velocity at position y2, 53800 ± 300 m/s, down

the center of the crystal. Fig. 4.13 b) is the group velocity at position y1, 52400 ± 2200 m/s. The

group velocities are the same within the uncertainty, which is expected.

To examine the group velocity in the entire sample, the method described above is repeated

for every position along the width. Both the single pulse and the average pulse are used as the

reference pulses in the cross-correlation to verify the group velocity is consistent. Fig. 4.15 shows
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the group velocity for every width position. Fig. 4.15 a) show the group velocities using the single

pulse as the reference pulse, and Fig. 4.15 b) are the group velocities using the average pulse as the

reference pulse. The red dashed line is the average group velocity. Only points with a sufficiently

large cross-correlation amplitude (high count data) are used to calculate the group velocity. As a

result, some regions are omitted from the analysis.

Figure 4.15: The group velocities at the BP for every width position where in a) the single pulse was used

as the reference pulse to calculate the velocities, and in b) the average pulse was used as the reference pulse

to calculate the group velocities.

The average group velocities in the magnonic crystal obtained using the single pulse and the

average pulse as the reference pulse are within the same uncertainty. At the BP frequency, using

the single reference pulse results in an average group velocity of 53500 ± 200 m/s. The average

pulse results in an average group velocity of 53200 ± 200 m/s.

The cross-correlation method is repeated to obtain the group velocities for BG1, BG2, and BG3

frequencies. The results are summarized in table 4.2.
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4.5.2 Group Velocity using Dispersion Relation

The expected group velocities can be obtained from the dispersion relations calculated for a

YIG film using the material parameters for YIG, sample thickness, and width. Fig. 4.16 shows the

width-quantized dispersion relations calculated for modes n = 1 to n = 45, where the n = 1 mode

has the highest amplitude for the intensity for a given wavevector, hence the n = 1 group velocity

will be the dominant velocity of the spin wave pulse. These dispersion relations were calculated

by M. Swyt using the theory in Kalinikos 1986 [29].

Figure 4.16: The dispersion relation for modes n = 1 to n = 45, where n is the index for the width quantized

modes. Only the modes with odd n are shown. The red points mark the wavevectors corresponding with

n = 1 for each frequency. (BP wavevector = 19 rad/cm, BG1 wavevector = 79 rad/cm, BG2 wavevector =

176 rad/cm.

To find the group velocity, first the corresponding wavevector from the intersection of the

driving frequency with the n = 1 line on the dispersion relation is identified. In Fig. 4.16 this is

shown with a red dot. For BP the wave vector is 19 rad/cm, the wavevector for BG1 is 79 rad/cm,

and the wavevector for BG2 is 176 rad/cm.
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Next, the slope of the dispersion relation, also the group velocity vg = dω
dk

, for each mode is

plotted (Fig. 4.17). In Fig. 4.17, the lowest mode (n = 1) starts on the far left. The group velocity

for a particular mode is determined by finding the intersection of the identified wavevectors from

Fig. 4.16 with the group velocity line. This is shown in Fig. 4.17 with the red line at the wavevec-

tors and a red dot at the intersection. For BP the group velocity is 64800 ± 1000 m/s. BG1 group

velocity is 52200 ± 1000 m/s and BG2 group velocity is 44000 ± 1000 m/s.

Figure 4.17: The group velocity for modes n = 1 to n = 45, where n is the index for the width quantized

modes. Only the modes with odd n are shown. Using the wavevectors identified in Fig. 4.16 the corre-

sponding group velocities, marked by red points, are extracted. (BP group velocity = 64800 m/s, BG1 group

velocity = 52200 m/s, BG2 group velocity = 44000 m/s).

As discussed in the explanation of the diamond pattern, multiple modes are excited with the

stripline antenna. Each mode has a different wavevector and therefore a different group velocity.

The effects of the different mode group velocities will be further discussed in the pulse shape

analysis section.
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4.5.3 Group Velocity for All Frequencies

Overall, three calculations were done to find the average group velocity of the spin wave pulse

traveling down the length of the sample for different driving frequencies. The values are listed

in table 4.2 and compared in Fig. 4.18. The predicted group velocities found using the cross-

correlation method for both the single pulse and the average pulse are within the same uncertainty.

The predicted group velocities found using the dispersion relation are outside the uncertainties of

the predicted group velocities using the cross-correlation method. The percent difference between

the predicted group velocity using the single pulse and average pulse from cross-correlation and

the dispersion relation is 19% and 20% respectively. A potential reason for the discrepancy is the

simple model used does not include all the potential complex dynamics of the spin wave pulse

traveling. For example, the reflections off the grooves are not taken into consideration. Also, the

contribution of the higher mode group velocities is not accounted for.

Figure 4.18: The average group velocity at each frequency. The cross-correlation method is used to calcu-

late the group velocity using the single pulse and the average pulse as the reference pulse. The dispersion

relation in Fig. 4.16 is used to obtain the calculated group velocities at each frequency. The group velocities

obtained using the single pulse are blue, the orange points used the average pulse, and the group velocities

calculated from the dispersion relation are the pink points.
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Table 4.2: Table of the group velocities obtained using the single pulse and average pulse cross-correlation

time lags, and calculated using the dispersion relation for all frequencies.

Single Pulse

Frequency Group Velocity (m/s)

BP 53500 ± 200

BG1 46800 ± 500

BG2 38300 ± 300

BG3 33400 ± 80

Average Pulse

Frequency Group Velocity (m/s)

BP 53200 ± 200

BG1 46700 ± 400

BG2 37700 ± 200

BG3 33300 ± 100

Calculated

Frequency Group Velocity (m/s)

BP 64800 ± 1000

BG1 52200 ± 1000

BG2 44000 ± 1000

BG3 37100 ± 1000
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4.6 Pulse Shape

Figure 4.19: Plots showing the raw pulse data for different x positions, at y = y2, before the first groove.

The green pulses are from the BP. The purple pulses are from the BG1, and the blue pulses are from BG2.

The red boxes (i,ii,iii) highlight the specific pulses used in the pulse shape analysis. i) is used to analyze the

effect the different spin wave modes group velocities on the pulse shape. ii) is the single pulse used in the

cross-correlation method in section 4.5.1. iii) is the pulses right before the first groove at x = 3.0 mm.
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Next, the evolution of the pulse shape will be discussed. Fig. 4.19 shows all the pulses obtained

at locations leading up to the first groove at x = 3.0 mm, down the center width of the sample where

y = y2. The green pulses are from the BP, purple pulses from BG1, and blue pulses from BG2.

The labeled red boxes (i, ii, iii) highlight specific positions of interest that will be discussed. The

BG3 pulse at position xa in Fig. 4.20 has a maximum count of 20. While the pulses in Fig. 4.19 at

position xa have maximum counts ranging from 110-140. So, the pulses from BG3 are omitted in

this portion of the analysis due to the difficulty in identifying pulse features. First the FWHM from

the cross-correlation amplitudes will be examined to look at the pulse spreading. Then features of

the pulse shape, like tails at the end of the pulse and jumps in the pulse counts, will be discussed.

Figure 4.20: Raw data for BG3 at x = xa and y = y2.

4.6.1 Pulse Spreading

The FWHM from the cross-correlation is obtained to determine if there is significant pulse

spreading down the length or not. Pulse spreading could occur for the band pass dataset, in par-

ticular, if there are sizeable lingering reflections from the patterning. Fig. 4.21 shows the FWHM

values extracted from the cross-correlation results for each position along the length for all fre-
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quencies. The red dashed line is the FWHM from the autocorrelation. The FWHM values vary

more along the length for the driving frequencies BP, BG1, BG2, and BG3 (Fig. 4.21) as compared

to the minimal variation found across the width (Fig. 4.9). The FWHM down the length, for all

frequencies, shows dramatic increases in several locations for x > 6.5 mm. This could be due to

the reflections off the end of the sample that cause the pulse shape and counts to change.

The orange points are associated with regions where the counts are low, and the blue points are

associated with regions with higher counts and the FWHM values range from 145 ns to 155 ns.

At the BG3 frequency there is minimal change in the FWHM, but these measurements are less

reliable because the counts are lower than at other frequencies, so the cross-correlation is more

difficult. The FWHM of the cross-correlation does not deviate significantly from the FWHM

of the autocorrelation, so the pulse shape is mostly consistent as it travels down the sample. A

potential reason why the pulse shape does not change is because the reflections are weak and with

the multimode response the cross-correlation does not pick up on these changes near the beginning

of the crystal (x < 6.4 mm).

Figure 4.21: A comparison of the FWHM of the cross-correlation amplitude down the length of the sample

for every frequency. The blue points are data points with higher counts and the orange points are data points

with lower counts. The red dashed line is the average FWHM of the blue points.

4.6.2 Pulse Shape Changes

This section focuses on analyzing the TR-BLS data to look for more subtle changes to the

pulse shape changing. Figs. 4.22 a), b), and c) show the pulse intensity traveling down the center
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of the crystal (y2) for the BP, BG1, and BG2. The intensity scales have been adjusted to account

for the efficiency of the antenna, which is diminished with increasing wavevector and hence also

with increasing frequency. At each position, the pulse was shifted by the group velocity to choose

specific times to focus on the pulse shape more carefully. Specifically, the pulses at x = xa (red

box i), for different times, will be analyzed to show the effects of the spin wave modes’ different

group velocities have on the pulse shape. Shifting the pulse by the group velocity helps to identify

changes in the pulse shape and, as will be shown, to identify changes in the pulse propagation

pattern. The reflected pulse, which is the pulse that has reflected from the end of the sample, is

identified in Fig. 4.22 and in subsequent figures.

Figure 4.22: The top row are the plots tracking the position of the spin wave pulse over time. The intensity

scale has been adjusted to account for the antenna excitation efficieny. The bottom row are the same graphs

tracking the position of the spin wave pulse over time, but shifted by the average group velocity. Three

times are identified to futher explore the pulse shape changing (time A = 200 ns, time B = 265 ns, time C =

347.5 ns).

After shifting the pulse by the average group velocity, images of the pulse propagation pattern

were constructed at selected times marked as A, B, and C in Fig. 4.22. The pulse at a fourth time

(80 ns, before the arrival of the pulse) was also used to verify no counts were present. Time A
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(200 ns), was selected because it is near the mid-point of the pulse. At time B (265 ns) the main

pulse starts to leave. Lastly, at time C (347.5 ns) the main pulse has left, but the reflected pulse has

not returned to the front of the crystal yet. In Fig. 4.22 d) and f), there is some energy left before

the first groove (x = 3.0 mm) at time C. This could be caused by modes that have later arrival times,

or by constructive interference from the reflections off the grooves, or both. To better understand

the cause of the trapped energy before the first groove, the plots of the pulse shape spatially and

temporally were constructed at specific times. Fig. 4.23 compares the pulses spatially for time A,

B, and C.

Figure 4.23: Spin wave propagation patterns for each frequency (BP, BG1, BG2 from left to right) at times

A, B, and C. The intensity scales for time C have been adjusted by a factor of 12 to better highlight features.

The range has been adjusted, from x = 2.25 mm to 6.0 mm, and is an abbreviated version of data as compared

to Fig. 4.22 where the range is from x = 2.25 mm to 9.5 mm, chosen to better show features at the beginning

of the crystal. On the bottom row, counts to the right of the arrow are from the reflected pulse and should be

disregarded.

The main pulse starts around 125 ns and has a pulse duration of 200 ns and is expected to end

around 325 ns. However, at time C, for the BP (Fig. 4.23 a) there is an outline of the diamond

pattern that lingers beyond the duration of the excitation applied at the antenna. This diamond
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outline looks like the modeled example in Fig. 4.12. This change in the diamond pattern from a

filled diamond at time A to an outlined diamond at time C is, at least in part, due to a change in

the width-quantized modes that are present. At the BP frequency, the higher mode wavevectors

have slower group velocities as compared to the lower width-quantized modes (see Fig. 4.17 for

the group velocity from the dispersion relation) and arrive later and are still present after the main

mode group velocity (n = 1) has passed.

The dispersion relations for the YIG microstrip can be used to understand the frequencies of

the band gaps in the 1D magnonic crystal, and to determine the cause of the change in the observed

spin wave propagation pattern from time A to C.

ka,b,c,d =
nπ

d
(4.6)

First, to understand the reason for the formation of the observed band gaps, the wavevectors

(ka,b,c,d) that correspond to destructive interference when reflected off the grooves are calculated

(equation 4.6). Where d is the distance between the grooves and the condition for destructive

interference of the reflected waves with the incident wave. These key wavevectors are shown

in Fig. 4.24 superimposed on the width-quantized surface wave dispersion relations, where d =

275 µm, the repetition rate for the grooves, was used to calculate ka,b,c,d. The uncertainty can be

estimated by considering the groove widths as the uncertainty in d ± 25 µm. The d value ranges

are shown in Fig. 4.1

The wavevectors ka,b,c,d that are associated with destructive interference are plotted on the

dispersion relation (the highlighted regions in Fig. 4.24). The specific modes that fall within each

of these wavevector ranges at a particular frequency can be found by looking for the intersection

of the ka,b,c,d shaded regions and the dashed lines for the frequencies on Fig. 4.24. For example,

as shown in table 4.3 at the BP frequency, the modes that overlap with wavevector ka are modes 9

and 11. The width-quantized wavevectors for the corresponding modes using equation 4.3 are also

included table 4.3. This process is repeated to calculate ka,b,c,d for the BP, BG1, and BG2. The

results are summarized in tables 4.3, 4.4, and 4.5.
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Figure 4.24: The width-quantized surface wave dispersion relations for the YIG film with the wavevectors

that corresponds to destructive interference ka,b,c,d (lines). The shaded regions show the uncertainties. The

black dashed lines show the intersection of BP, BG1, and BG2 with the wavevectors.

Table 4.3: Table of the calculated ka,b,c,d values, and the mode numbers that intersect each wavevector the

BP. kn is the calculated width-quantized wavevector. The highlighted sections are the potential higher order

modes and their corresponding width wavevector contributing to the open diamond pattern in Fig. 4.25

BP ka,b,c,d Range (rad/cm) modes (n) kn calculated (rad/cm)

ka 104, 114, 125 9, 11 70, 84

kb 209, 228, 251 19, 21, 23 140, 154, 168

kc 314, 343, 377 29, 31, 33, 35 209, 229, 237, 251

kd 419, 457, 502 41, 43, 45 293, 307, 321
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Table 4.4: Table of the calculated ka,b,c,d values, and the mode numbers that intersect each wavevector the

BG1. kn is the calculated width-quantized wavevector.

BG1 ka,b,c,d Range (rad/cm) modes (n) kn calculated (rad/cm)

ka 104, 114, 125 5 42

kb 209, 228, 251 15, 17 112, 126

kc 314, 343, 377 23, 25, 27 168, 182, 195

kd 419, 457, 502 31, 33, 35, 37 223, 237, 251, 265

Table 4.5: Table of the calculated ka,b,c,d values, and the mode numbers that intersect each wavevector the

BG2. kn is the calculated width-quantized wavevector.

BG2 ka,b,c,d Range (rad/cm) modes (n) kn calculated (rad/cm)

ka 104, 114, 125 n/a n/a

kb 209, 228, 251 7, 9 56, 70

kc 314, 343, 377 15, 17, 19 112, 126, 140

kd 419, 457, 502 23, 25, 27, 29 168, 182, 195, 209

For BP1, ka overlaps with mode n = 5 and for BP2, ka overlaps with the low modes n = 7 and

9. Since lower modes are the dominant modes for pulse propagation, the destructive interference

from these modes leads to the observed band gaps in the transmission profile from the microwave

measurements (Fig. 3.2).

The dispersion relation also provides more insight to the evolution of the diamond pattern at the

BP frequency in Fig. 4.23 To understand this, the dominant wavevector in Fig. 4.23 a) is estimated

by determining the size along y of the dominant feature, as illustrated in Fig. 4.25. The length α

can be converted to a dominant wavevector using:

kα =
π

α
= 149

rad

cm
(4.7)
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The width wavevector (kα) from the diamond pattern is compared to the calculated kn values

to determine what modes contribute to creating the diamond outline. The wavevector (kα) for the

width of the diamond pattern is 149 rad/cm. For the BP, kα falls between wavevectors 140 and 154

(mode n = 19 and 21) Therefore, the dominant modes that exist at time C and cause the diamond

outline are modes 19 and 21 and higher.

Figure 4.25: The figure highlighted in the red box from Fig. 4.23. The width of the diamond pattern is

indicated by α. (kα = 149 rad/cm.)

Based on Fig. 4.25, it appears that the modes with n < 19 have passed but some modes with

n > 19 remain at time C. To determine whether this is an effect that stems from the mode group

velocities or from reflections, the group velocities for each mode were used to predict the potential

contribution of each of the modes to pulse shape, and hence to determine which modes should exist

as direct arrivals at time C. Fig. 4.26 a), b), and c) show the predicted pulse arrival time ranges

for each mode, calculated using their group velocity, at position xa. The pulse duration is 200 ns.

The first mode arrival time is set to 125 ns to match the TR-BLS data. The amplitude for each

pulse is 1/n, where n is the mode number. As shown in Fig. 4.26 a), the higher modes for the BP
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create a tail at the end of the pulse. This tail is also seen in the raw pulse data (Fig. 4.26 d) and lies

within the same time range as the higher modes plotted based on arrival time, which is highlighted

by the red dashed lines. This matches the assertion that the counts detected at later times are due

to the higher modes that arrive and pass by later than the dominant n = 1 mode. This is a simple

model and does not include any other factors that may affect the pulse amplitude, like reflections

and constructive and destructive interference.

Figure 4.26: Fig. a), b), and c) are the pulses for each mode plotted based on arrival time at position xa.

Fig. d), e), and f) are the raw pulses for the BP (green pulse), BG1 (purple pulse), and BG2 (blue pulse).

The red dashed lines show the time range for the higher modes plotted based on arrival time and raw pulse

for the BP lie within the same time range.

The modes that can exist after time C for the BP frequency are plotted more explicitly in Fig.

4.27 a). The purple dashed line is where the n = 1 group velocity would be for reference. The red

dashed line is to show time C for the modes. Fig. 4.27 b) is a zoomed in version of Fig. 4.27 a).

As seen in Fig. 4.27 b) the lowest mode that can exist at time C is mode n = 21. This matches the

expected modes (n = 19 and n = 21) from the kα calculation. The higher modes create a tail at the
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end of the pulse for the calculations and raw TR-BLS data in Figs. 4.26 a) and d) and can also be

seen in Fig. 4.22 d) as a bright horizontal line before the first groove (x = 3.0 mm).

Figure 4.27: The higher mode group velocities at the BP frequency that can exist at time = C. The purple

dotted line shows the time range for the n=1 mode. The red dotted line shows the location of time = C. b) is

the zoomed in version of Fig. a) and The dashed black line indicates a change in scale between a) and b).

At first glance, the pulse features for the BP and BG2 frequencies look very similar. In Fig.

4.22 f) for the BG2 frequency, there are counts lingering before the first groove (x = 3.0 mm) and

the pulse in Fig. 4.22 f) has a tail, both of which are features seen with the BP. However, when

looking at Fig. 4.23 b) the lingering counts do not form a diamond outline. Also, in Fig. 4.26 c),

the higher modes do not arrive as long after the main pulse as they do for the BP. Therefore, the

counts detected at time C for BG1 and BG2 are not caused by higher modes that arrive and depart

later, and are more likely caused by residual multiple reflections from the grooves that are at least

in part constructive.
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4.7 Potential Future Analysis

Future analysis of the 1D magnonic crystal includes working towards a better understanding of

the causes for the pulse shapes. For example, Fig. 4.28 shows the pulses right before the grooves

for the BP, BG1, and BG2, but when the pulse shapes in Fig. 4.28 are compared to pulses in Fig.

4.19 at position xb, one can see that the pulses in Fig. 4.28 do not have the same shelf feature on the

falling edge of the pulse. This pulse shelf deformation happens consistently for pulses right before

the groove at x positions xf , xg, and xh. The reason for these differences in the pulse shapes is

not fully understood. A potential method to further analyze the data would be to update the simple

model used for calculating the group velocity modes to include reflections.

Figure 4.28: A comparison of all the pulses at the positions near the grooves at x positions xf , xg, and xh.

The pulses measured at the BP, BG1, and BG2 are shown in green, purple, and blue, respectively.
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Chapter 5

Conclusion

In summary, time-resolved-BLS (TR-BLS) measurements were used to investigate spin wave

propagation in a one-dimensional magnonic crystal for a magnetostatic surface wave configuration

where the magnetization is in-plane and perpendicular to the direction of the spin wave propaga-

tion. A cross-correlation analysis technique was used to obtain the average group velocity and

to assess changes in the spin wave pulse shape. Microwave and TR-BLS measurements confirm

that the structure of the 1D magnonic crystal leads to the formation of band gaps in the transmis-

sion profile where the spin wave transmission is suppressed, which is expected for a 1D magnonic

crystal. The TR-BLS measurements show differences in the pulse propagation characteristics for

frequencies at the band pass and band gaps. The measured average group velocities obtained from

the cross-correlation showed a trend of decreasing velocity with increasing frequency that is con-

sistent with values calculated from the dispersion relation. However, the measured values were

consistently approximately 20% lower than the predicted values.

Two dimensional scans of the spin wave propagation patterns were obtained using the TR-

BLS, and one of the most striking features of the spin wave images is the propagation pattern,

which show two-dimensional patterns that look nothing like what one would be expected for a

plane wave in a structure with one-dimensional patterns. This is important because models devel-

oped to describe the performance of a 1D magnonic crystal typically start by assuming that the

spin waves, like the crystal, are also purely one-dimensional. The TR-BLS measurements show

a diamond-shaped pattern, which forms because multiple width-quantized spin wave modes are

excited simultaneously by the stripline antenna. The presence of multiple modes leads to more

complex behavior not just spatially but also in the time domain. At the BP frequency, lingering

higher modes are observed, as evidenced by the evolution of the spin wave pattern from a filled

diamond during the pulse to an outline of a diamond on the back end of the pulse and a visible

tail on the pulse in the time domain. This is due to the later arrival time of higher-order width-

64



quantized modes that have slower group velocities. The pulse shape at BG2 also has a trailing tail.

However, there is no diamond pattern outline in the spatial graphs. Therefore, the trailing tail for

the BG2 pulses are most likely the result of interference of the multiple reflected pulses that is at

least partially constructive.

TR-BLS measurements are rich with information on spin wave propagation. The model used

to examine the roles of the different modes in this thesis was simplified. Future work to update

the model to include more complex dynamics like constructive and destructive wave interference

behavior from reflections is needed in order to better understand the roles the different modes have

on the overall pulse shape and average group velocity of spin waves in 1D magnonic crystals.
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