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Fig. 3. Relative error (RE), in decibels. of frequency response D(w) for the
proposed digital differentiators for n = 1. 2, 3, 5, 7, and 10.

frequency bandwidths Wp to 'IT and relative errors less than or
equal to - 40, - 60, - 80, and -100 dB. To be fair, we compare
order NI of the minimax DD's with twice the order Nz of the
proposed differentiators since the proposed design contains twice
as many coefficients as the minimax design of equal order. It may
be seen that the maximally linear DD's have an edge over their
minimax counterparts. If high accuracies are desired the maxi
mally linear DD's are much superior to the minimax ones; for
example, for the frequency coverage of 0.5'IT ~ W ~ 'IT and a
IREI~ 0.1 percent, the proposed DD requires only 16 multiplica
tions per input sample as compared to 64 in the case of minimax
DD. The designed digital differentiators are specially suitable for
high frequencies (upto W = 'IT) and for achieving extremely low
RE's.

The values of the coefficients c; and d., required in the
proposed design, are computed by using the mathematical formu
las (8), as against the lengthy optimization algorithms needed to
realize the minimax differentiators. As in the minimax design, [1),

[5) a half sample delay (Z-I/Z) is imperative for the maximally
linear differentiators; otherwise the proposed design is canonic.
Since in multirate systems half-sample delay can be easily real-

. ized, the suggested design would be particularly suitable for such
systems.

V. CONCLUSION

An efficient FIR digital differentiator structure, especially suit
able for high frequency ranges, has been proposed. Mathematical
relations for calculating the exact values of the weighting coeffi
cients, required in the design, have been derived.
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New Results in Strip Kalman Filtering
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Abstract - The Strip Kalman filtering proposed in [I) for image restora
tion is reconsidered. The procedure given in this reference for parameter
estimation of the image model does not take into account the vector nature
of the image process, and as a result can lead to incorrect identification, It
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Fig. 1. Region of support of the vector AR model.

and hence

j=(i-l)W, i=I,2, .. ·,N/W (7a)

(5)

(6)

(4)

mE[O,W-l];

Z
j+m.k

Z (k)

R

Z(k) = Z(k) +U(k)

p

Z(k) = I: </>:Z(k - i)
;=1

Z (k-P)

Zj+m,k = I:I: a';,qzj+p,k_q + uj+m,k'
p,qES

where

is the mimmum variance estimate of Z(k). The orthogonal
properties of this estimator give

E[Z(k-I)U'(k)] =Qu8(1)

The scalar representation for each pixel Zj+m,k in Z(k) is given
by

that although U(k) is vectorially an uncorrelated process, this
does not imply that the elements within each vector are also
mutually uncorrelated. This fact can be evident when for each
pixel in Z(k) a scalar relationship is derived from (1). This
relationship which represents a particular pixel in Z(k) in terms
of all the pixels in the support region R and the corresponding
scalar error term, is a semicausal representation. The noncausal
ity in this scalar model occurs along the vertical direction. It has
been shown in [4]-[5] that semicausal finite order models are
driven by a noise process which is white along the causal direc
tion and color along the noncausal direction. Thus the elements
of U(k) are mutually correlated as they are along the noncausal
(vertical) direction, whereas the elements of U( k) and U(/),
k -=1= I, are uncorrelated since these are along the causal (horizon
tal) direction. To elaborate on this issue, let us consider the
minimum variance vector representation

(2) whereZ(k) = [Z(i-l)W,kZ(i-l)W+l,k'" z;W-l,k]'

I. INTRODUCTION

In [1] Suresh and Shenoi proposed a strip Kalman filtering
process which makes use of a vector scanning scheme. The image
process is modeled by a finite-order vector autoregressive (AR)
model which relates a column of pixels to the past columns in a
certain region within a strip. It is assumed that the image process
is wide sense stationarity within each strip. Based upon this
assumption and ergodicity property the parameters of the vector
AR model are evaluated using a Yule-Walker system of equa
tions. This model is then arranged into a state-space form. The
effect of a linear shift invariant (LSI) blur is modeled by a 2-D
state-space structure implemented by a 1-D structure with in
trastrip and interstrip recursion characteristics. These two 1-D
models are then combined to yield a composite dynamic struc
ture in which part of the state variables which correspond to the
blur need to be estimated one step ahead of those associated with
the image.

In this paper we have shown that the assumption of wide sense
stationarity within each strip is not valid since the image is
modeled by a vector or multichannel AR process. The assump
tion of column wide sense stationarity within each strip is more
appropriate for these processes [2], [3]. In this connection, new
procedures for estimating the parameters of the vector AR model
are suggested. In addition, new Kalman filtering equations are
derived which account for the combination of filtering for the
image state and one-step prediction for the blur state.

II. A VECTOR AR MODEL FOR THE IMAGE PROCESS

Consider an N X N image which is vector scanned horizontally
in strips of width W. The direction of scanning is assumed to be
from left-to-right to top-to-bottom. Each strip is processed inde
pendently. The image is assumed to be represented by a vector
(or multichannel) Markovian process and modeled within each
strip by a Pth-order vector AR process with a causal quarter
plane region of support, R (see Fig. 1). This AR model is given
by

Z(k) = </il Z(k -1) + qizZ(k -2) + ... + </>~Z(k - P) + U(k)

(1)

and Z( k) represents a W X 1 vector with elements that are the
pixel intensity values in the kth column of a given (say ith) strip
in the image, i.e.,

is also shown that for the composite dynamic model derived in this
reference the standard Kalman filtering equations cannot be applied, as the
blur states in this model should be estimated one step ahead. These issues
are addressed in this paper.

where Qu is the covariance matrix of the error vector U(k); 8(/)
represents the Kronecker delta function and E denotes the
expectation operator. Matrices </>1' ch,.. " </>p are W X W matri
ces that have to be identified in each strip. It is interesting to note

where zm n denotes the intensity of the pixel at location (m, n),
Vector U(k) which is defined similar to Z(k), represents a white
noise vector process which drives the autoregression. The statis
tics of this process are

E[U(k)]=O

E[ U(k)U'(k -l)] = Qu8(l) (3)

S={(p,q),O.-;;p.-;;W-l,l.-;;q.-;;P} (7b)

and

a';,q=qJq(m,p) (7c)

where qJq{i, j) is the (i, j)th entry of matrix </>q and uj+m,k
is the mth element of U(k). To show that Uj+m,k'S for
mE [0, W -1] are correlated, let us form

ru(m - n,O) = E[Uj+m,kUj+n,d

= E[[Zj+m,k - I:I: a';,qZj+P,k_ q] Uj+n,k]' (8)
p,qES
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where P- r = P~ and 1 is an identity matrix of appropriate order.
This equation in compact form is

Now using the orthogonality property of (6) the covariance
function ru(m - n,O) becomes

ru(m - n,O) = E[Zj+m,kUj+n,d *0 (9) (13)

rE[O,P). (14)
1 n-l

Pr(n) = - L Z(k - r)Z'(k),
n-r k-r

where

[

8Po( n) 8p~(n) 8P~(n)]
8T(n) = : . (16b)

8pp(n) 8pp_l(n) 8Po(n)

Similarly d(n+l)=d(n)+8d(n). Now using the matrix inver
sion lemma [1]

T- l(n+l) "",f- l(n)[1-8T(n)T- l(n)]. (17)

The solution of the vector Yule-Walker equation (11) at iteration
(n + 1) can then be written [1] as

~(n+l) =T- l(n+l) d(n+l)

= T-l(n)[1 - 8T(n)f- l(n)] d(n +1)

=~(n) + f-l(n +1)8d(n). (18)

This equation provides a simple recursive scheme for estimating
the vector AR model parameters when the original image is
assumed to be given. The identification of the parameters from
the corrupted image for multivariable stochastic systems is com
plicated due to lack of unique minimal realization for these
systems [6].

where

IV. KALMAN FILTERING EQUATIONS

In [1] the vector AR model for the image is arranged into a
1-D state-space form, namely

xl(k) =Alxl(k-l)+BP(k) (19a)

Then the estimate based upon n +1 vectors is

1 n

Pr(n+l) (n+l-r) k~rZ(k-r)Z'(k)

1
=Pr(n)+ ( ) [Z(n-r)ZI(n)-Pr(n)]

n+l- r

= Pr(n)+ 8Pr(n). (15)

Writing (15) for each constituent block in T yields

T(n+l) =T(n)+8T(n) (16a)

trices can be obtained by ergodicity property and using

1 N-l

Pr=- L Z(k-r)Z'(k).
N-r k-r

The parameter identification algorithm can be implemented on
line to update the model parameters at each stage of the process.
Let us denote the estimate of Pr based upon n vectors in a given
strip by Pr(n). Thus we can write

(12a)

(12b)

(11a)

(11b)TfP=d

rfl
Po

r
:
Pp

From (11a) one gets

Thus we can write

III. PARAMETER IDENTIFICATION FOR THE VECTOR AR MODEL

To estimate the parameter matrices 1/>1' ~, •.• , I/>p of the model,
transpose (1), premultiply both sides by Z(k - r) and then take
the expectation. This yields

Pr = E[ Z(k - r)Z'(k)]

= Pr-ll/>l + Pr-2~ + ... + Pr-pl/>p + E[Z(k - r)U'(k)] (10)

where Pr is the covariance matrix of Z(k). Putting r = 0,1,"', P
in this normal equations gives the following vector Yule-Walker
system of equations which must be solved for I/>l'~'" .,I/>p and
Qu·

since a vector model is used. Thus, in this case Ui,j cannot be
modeled as a white noise process. In other words, for any
multichannel process described by a vector AR model, it is not
generally true to assume that each channel is also individually an
AR process. Furthermore, considering the properties of the vec
tor scan, the assumption of wide sense stationarity cannot be
valid and thus must be changed to column wide sense stationarity
within each strip which is more suitable for multichannel pro
cesses [2], [3]. Consequently, the procedure given in [1] for
obtaining the AR model parameters is not valid since the correla
tion matrices are obtained as if the process is wide sense station
ary and described by a series of decoupled single channel pro
cesses. This inconsistency in modeling and the parameter identifi
cation may result in a vector AR model with instability problems
[2], [3].

or
Xl ( k) = [ZI( k) ZI ( k - 1) ... ZI ( k - P +1)r (19b)

and

Note that the definition of Pr given in [1, eq. (25)] does not apply
here since it relates to the wide sense stationary case. In order to
solve (11) estimates of p/s are required. Invoking column wide
sense stationarity assumption, reasonable estimates of these ma-

and

i=I,2,·· ',Po (12c)
I/>~ qfz I/>~

1 0 0

B, ~ [fJA = 0 (19c)1 0 1

0 10
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The vector of interest, Z(k) can be extracted from xl(k) by projection lemma [7], i.e.,

(21)

The other term in (26) can be expressed as

Since V( k) is uncorrelated with the image and the blur states, the
term E[~(k)1(k)] in (26) can be written as

(29a)

(29b): t::.. ;::x=x-x

_ l>. A

X=X-X

and P(k) is the a priori error covariance matrix before the
updating, i.e.,

where

EI ,(k)4(k)] ~ Ei[c[~:i~] + V(k)]

.[~l(k) ]'C'+ VI(k)])
x2(k)

=CP(k)C'+a;1 (28)

P(k) = E[[~l(k) ][Xf(k) iHk)]]. (29c)
x 2 ( k )

equation (23) becomes

[ ~l ( k ) ] = [~l(k) ] + K(kh(k). (27)
x2( k +1) x 2( k + 1)

Defining the Kalman gain matrix by

K( k) ~ E{ [ ::~:)+1) ] ~' ( k) } [ E [ ~ ( k) ~'( k) ] ] - 1 ( 26)

E{[ ::~:)+1) ] I~(k)} = E{ [ ::~:)+1) ] ~' ( k )}

'[E[~(k)~I(k)]rl~(k). (25)

(20)

[
Xl ( k) ] [AI 0 ] [Xl ( k -1) ] [ BI ] ( )
x2( k +1) = B2CIAl A2 x2( k) + B2CIBI U k

Y(k) = [D2CI ~][::~:~] + V(k) (22)

in which the state vector X 2 for the blur is estimated one-step
ahead. Thus the conditional mean estimate of Xl (k) given obser
vation vectors up to Y(k) gives the "filtered estimate" of the
image while the conditional mean estimate of x2(k + 1) based
upon these observation vectors leads to the "one-step prediction
estimates". Any rearrangement to synchronize (20) and (21)
would lead to estimates for the image that are not the "true
filtered estimates". In what follows the relevant Kalman filtering
equations for the composite dynamic model in (22) are derived.

Let ~(k) = {Y(O) Y(I)··· Y(k)} be the observation set con
taining all the output vectors up to the k th vector. The estimate
of the state vector given the observations up to Y( k) can be
written as

where X2 (k) consists of the horizontal and the vertical states
associated with the blur; Y( k) is a W X 1 vector of the degraded
image; V( k) is a W X 1 vector of the additive WG noise with
zero mean and variance 11; and matrices A2, B2, ~ and D2 are
defined explicitly in [1] in terms of the coefficients of the blur
transfer function. Combining (19a), (20), and (21) gives the
following composite dynamic model:

where CI = [I 0··· 0]. The degradation process for a separable
LSI blur and additive WG noise is modeled by a 1-D state-space
model with interstrip and intrastrip propagation characteristics
[1]. The result of this modeling can be reduced to the following
state-space formulation [1].

x2(k +1) = A2X2(k)+ B2Z(k)

Y(k) = ~x2(k) + D2Z( k) + V(k)

or

and

Thus the expression for the Kalman gain becomes

K(k) = A'P(k)C'[ CP(k)Ct + 11;/] -1. (32)

Now, in order to compute the Kalman gain matrix, P(k) must
be evaluated recursively at every stage. Considering (19) we can

E [[ Xl ( k) ] [ [ xf( k) iHk)] C' + V'( k) ] ]
x2(k +1)

= A'P(k)C' (30)

A'~ [B:CI JJ.
This is obtained using the following orthogonal properties

where

(24)

The second term in (23) can be expressed using the orthogonal

[::~:)+ 1) ] = [::~:)+ 1)] + E{ [::~:)+ 1)] I~(k)} (23)

where "A" and "~,, denote the a priori (before the updating) and
the a posteriori (after the updating) estimates, respectively, and
~(k) is the "innovation sequence" given by

where
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or

where

write
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processes, the blur states are computed one-step ahead of those
of the image. Thus a new set of Kalman filtering equations which
accounts for both one-step prediction for the blur states and
filtering for the image states was required. The derivations of
these equations are presented.
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(35)P(k) = [A'- K(k)C] P(k)A".

[
XI( k) ] [~I(k) J [XI ( k) ] [ XI(k) ]
X2( k + 1) - ~2 ( k + 1) = x2( k + 1) - x2( k + 1)

- K(k).,,(k)

[ ~I ( k ) J= A,[~I(k) ] - K(k).,,(k). (34)
x2(k+l) x2(k)

Now, transposing both sides, postmultiplying by (34) and taking
expectation yields

iHk)]J

and E9 denotes the direct sum operation. P(k -1) is the
a posteriori err<;?r covariance matrix at stage k -1. To find the

expression for P(k), let us subtract (27) from the state vector at
present stage k, i.e.,

As a result, the Kalman filtering equations for computing the
filtered estimate of the image and the one-step prediction esti
mate of the blur, are given in order by

The form of the above equations [7] and the presence of matrix
A' with its special structure clearly reveal the fact that these
equations represent the combination of filtering and one-step
prediction.

V. CONCLUSION

New procedures for parameter identification of the image
model in strip Kalman filtering is suggested. This method which
takes into account the vector nature of the image model, leads to
a vector Yule-Walker system of equations. An algorithm for
on-line adaptation of the image model parameters is also given.
In the composite dynamic model for the image and degradation

I. INTRODUCTION

In sinusoidally forced systems the existence of asynchronous
quenching was detected many years ago. In these systems if the
ratio of the external forcing frequency to the free-oscillation
frequency is min, where m and n are not commensurable
integers (m > 1 and n > 1), then the excitation is nonresonant and
the responses consist of a combination of two different frequency
components; one from the free-oscillations and the other from
the forced oscillation. However, the free oscillations can tend to
zero with increasing t under certain conditions; we call these
phenomena "asynchronous quenching."

Minorsky [3] in 1962 and Nayfah [4] in 1979 did some theoreti
cal analyses about asynchronous quenching, but they could not
find out the relationship between asynchronous quenching and
the harmonic synchronization (that is, when free oscillation of
the system is synchronized to a harmonic of the external force).
In engineering practice sometimes, the phenomenon that the
oscillation in a synchronous system stops suddenly is not able to
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Abstract- Quenching of sinusoidally driven Van der Pol systems is
considered and conditions developed under which harmonic synchronous
quenching occurs.

For this, a multiple time expansion is used to solve the Van der Pol
equation with the sinusoidal forcing term. By controlling the expansion in
terms of a small parameter and equating terms of like order in the
parameter, the solutions of asynchronous and synchronous state are ob
tained. From these solutions the conditions for harmonic synchronous
quenching are developed and a plot given to show the quenching region.

(36f)

(36e)

(36a)

P(k) = [A'- K(k)C]P(k)A"

2(k) = [C1 O][~l(k) J.
x2(k + 1)

P(k)=(AIE9I)P(k-l)(AIE9I)t+[~I]QU[Bf 0] (36b)

K(k) = A'P(k)Ct[ CP(k)Ct + o;Ir I
(36c)

[ ~I ( k ) J= [~l(k) ] + K(k)[Y(k) _ C[~l(k) ]]
x2( k +1) x2( k +1) x2 ( k)

(36d)
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