
DISSERTATION

ACCURATE PREDICTION OF PROTEIN FUNCTION USING GOSTRUCT

Submitted by

Artem Sokolov

Department of Computer Science

In partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2011

Doctoral Committee:

Advisor: Asa Ben-Hur

Chuck Anderson
Ross M. McConnell
Haonan Wang

ABSTRACT

ACCURATE PREDICTION OF PROTEIN FUNCTION USING GOSTRUCT

With the growing number of sequenced genomes, automatic prediction of protein function

is one of the central problems in computational biology. Traditional methods employ transfer

of functional annotation on the basis of sequence or structural similarity and are unable to

effectively deal with today’s noisy high-throughput biological data. Most of the approaches

based on machine learning, on the other hand, break the problem up into a collection of

binary classification problems, effectively asking the question “does this protein perform this

particular function?”; such methods often produce a set of predictions that are inconsistent

with each other.

In this work, we present GOstruct, a structured-output framework that answers the

question “what function does this protein perform?” in the context of hierarchical multilabel

classification. We show that GOstruct is able to effectively deal with a large number of

disparate data sources from multiple species. Our empirical results demonstrate that the

framework achieves state-of-the-art accuracy in two of the recent challenges in automatic

function prediction: Mousefunc and CAFA.

ii

TABLE OF CONTENTS

1 Introduction 1

1.1 Transfer of annotation . 2

1.2 Function as a collection of binary variables . 3

1.3 Function as a structured label . 5

1.4 Data . 6

1.5 Data heterogeneity and multi-view learning . 8

1.6 Critical assessment . 10

1.6.1 Mousefunc . 10

1.6.2 CAFA . 11

1.7 Publications associated with the presented work 12

1.8 Overview of chapters . 12

2 Previous Work 14

2.1 Binary prediction methods . 15

2.2 Data Integration . 18

2.3 Prediction Reconciliation . 19

2.4 Case study: Funckenstein . 20

3 The GOstruct Method 22

3.0.1 Structured Perceptron . 24

3.0.2 Structured Support Vector Machines . 26

4 Multi-view Learning 47

4.1 Unlabeled Examples . 49

4.2 Training and Inference . 50

iii

4.3 Experimental Setup . 53

4.3.1 Cross-species Data . 53

4.3.2 Species-specific Data . 55

4.3.3 Data Statistics . 55

4.3.4 GOstruct Parameters . 56

4.4 Experiment 1: Impact of Cross-Species Information 57

4.4.1 Performance comparison on individual GO terms 61

4.5 Experiment 2: Impact of Unlabeled Data . 64

4.6 Experiment 3: CAFA challenge . 64

5 Conclusion 69

5.1 Open problems . 69

References 72

iv

LIST OF FIGURES

1.1 Example hierarchy of GO keywords. Nodes deeper in the hierarchy provide more de-

tail. A protein may perform multiple functions, which would then be captured by

nodes in two distinct subtrees. Association of a protein with GO keywords can be

expressed as a vector of binary variables. 2

1.2 A figure taken from the paper describing the algorithm by Obozinski, et. al [62]. The

algorithm trains a collection of SVMs to make predictions for individual GO terms.

The prediction scores correspond to the background shading, while the outline

represents the true label: “protein-tyrosine kinase activity” and its ancestors. Note

that many of the intermediate nodes were predicted to be associated with the query

protein, but not their ancestors “transferase activity” and “catalytic activity” —

an inconsistency. 4

1.3 Examples of common data representations for (a) protein-protein interactions (b)

gene expression and (c) phylogenetic profiles. 7

2.1 An example of a functional association network. The nodes correspond to proteins

and edge denote evidence of co-functionality. Proteins annotated with a particular

GO term are shaded dark, while the proteins not associated with the GO term are

shaded light. The query proteins are presented with question marks. While the

labels for some of the query proteins are obvious, such as the one on the right,

the situation is usually more complicated as both positive and negative training

proteins will be neighboring the query. The latter is demonstrated by the query in

the middle of the example graph. 16

v

3.1 Graphical depiction of the constraints in Equation (3.3). Training examples are dis-

played along the horizontal axis. For demonstration purposes, we assume that the

highest compatibility values for the three presented examples are all equal to each

other. For every example, the aim is to have the compatibility values between the

true label and all other labels separated by a margin, depicted with the two dashed

lines. Example x1 satisfies this. Example x2, while correctly classified, has a margin

violation. Example x3 is misclassified. 23

3.2 (Left) An example of a small GO graph and the corresponding set of weights defined

by h(x). (Right) A node traversal that results in exact inference; unfortunately,

determining how to split the weight of node e among its ancestors is a non-trivial

problem. 45

4.1 The multi-view approach. Data is separated into two views: a cross-species view that

contains features computed from sequence, and a species-specific view that contains

features computed from PPI data in the target species (S. cerevisiae or M. muscu-

lus). The objective is to maximize the accuracy on the labeled data and minimize

the disagreement on the unlabeled data. 49

4.2 A figure presented at the Automatic Function Prediction special interest group meeting

at ISMB2011 detailing the performance of classifiers used in the CAFA challenge.

The precision and recall values were computed for the molecular function namespace

using the top n GO terms retrieved for each test protein. GOstruct is identified

with the label “29”. 65

vi

LIST OF TABLES

3.1 Classification results on predicting GO molecular function terms (361 terms that

have more than 10 annotations). We compare BLAST-NN with two vari-

ants of the perceptron (GOstructp and GOstructp∆) and two SVM variants

(GOstructsvmm and GOstructsvms). Reported is mean kernel loss per protein

for each algorithm. The number of proteins used in each organism is dis-

played in the second row. For comparison, we also include the performance

of a random classifier that transfers annotation from a training example cho-

sen uniformly at random. The standard deviations of these results are in the

range 0.003-0.01 . 35

3.2 Statistics of the Mousefunc dataset across namespaces: molecular function (MF),

biological process (BP), and cellular component (CC). We provide the number

of terms in each namespace for which annotations were provided, the number

of examples in the test set and the average number of annotations per protein

in the training and test sets. 38

vii

3.3 Prediction results on the Mousefunc dataset for molecular function (MF), biolog-

ical process (BP) and cellular component (CC) namespaces. Reported are the

mean kernel loss per protein, precision/recall and mean AUC per GO term.

Lower values of the loss and higher values of other metrics are better. The

best value for each experiment is highlighted. There are two lines with kernel

loss results. The results labeled as kernel lossr and AUC are obtained using

the raw confidence scores with no thresholding. All the other results in the

table are obtained by thresholding competitor results. GOstruct predictions

require no thresholding, so only one set of kernel loss numbers is reported.

Alg 1 denotes the work by Kim, et al. [47]. Alg 2 is an ensemble of calibrated

SVMs by Obozinski, et. al [62]. Alg 3 is the kernel logistic regression, submit-

ted by Lee, et al. [51]. Alg 4 is geneMANIA [57]. Alg 5 is GeneFAS [17]. Alg

6 is the work by Guan, et al. [32]. Alg 7 is Funckenstein [84]. GOstructp∆ uses

the perceptron algorithm (Algorithm 1), and GOstructsvm denotes the n-slack

formulation of the structured SVMs with margin re-scaling. The last column

presents the results of running binary SVMs on each node individually. The

variability in our results was computed as in the previous experiment and

yielded a standard deviation of 0.008 for the perceptron, and 0.02 for the SVMs. 40

3.4 Prediction across GO namespaces. We compare our original results for classifying each

namespace independently (the first row for each namespace in the table, labeled

as “independent”) with simultaneous prediction across all namespaces (the second

row for each namespace in the table, labeled as “combined”). Presented are kernel

loss, precision and recall values for two of the GOstruct classifiers. 42

viii

3.5 Performance of different inference algorithms, expressed as mean loss per exam-

ple on the molecular function namespace. The oracle refers to the algorithm

that finds the most violated constraint using the penalty function in Equa-

tion (3.22). The test inference refers to performing the argmax operation in

Equation (3.1). When inference is restricted to the labels occurring in the

training set only, we refer to the algorithm as “Limited”. Inference that uses

the dynamic programming algorithm described in the text is referred to as

“Dynamic”. 46

4.1 The number of proteins in the target and external species, as well as the number of

GO terms considered in each dataset. Namespace designations are as follows:

MF - molecular function; BP - biological process; CC - cellular component. . 55

4.2 Classifier performance in predicting GO terms, quantified by mean loss per ex-

ample (top) and mean AUC per GO term (bottom) when no unlabeled data

is used. Lower loss values and higher AUC values are better. The results were

obtained via five-fold cross-validation on all proteins from the target species.

Multi-view and cross-species SVMs were also provided with the training ex-

amples from external species. 58

4.3 Classifier performance in predicting molecular function GO terms, quantified by

mean loss per example (top) and mean AUC per GO term (bottom) when no

unlabeled data is used. Lower loss values and higher AUC values are better.

The number of training examples refers to S. cerevisiae proteins that are

represented in both views. Multi-view and Cross-Species SVMs were provided

the additional 3917 proteins that only have BLAST features. 60

4.4 A comparison of the cross-species and species-specific SVMs across general GO

terms. For each classifier, we present eight GO terms for which that classifier

outperformed the other by the largest margin. The second column displays

the number of proteins in the dataset annotated with each GO term. The

third and fourth columns display the corresponding AUC scores. 61

ix

4.5 A comparison of the cross-species and species-specific SVMs across specific GO

terms. The columns present the same type of information as those in Table 4.4. 62

4.6 A comparison of the multi-view and chain classifiers across specific GO terms.

For each classifier, we present eight GO terms for which that classifier out-

performed the other by the largest margin. The second column displays the

number of proteins in the dataset annotated with each GO term. The third

and fourth columns display the corresponding AUC scores. 63

4.7 Mean loss per example for co-training and transductive SVMs computed for var-

ious numbers of labeled and unlabeled S. cerevisiae training examples. The

number of non cerevisiae proteins was the same in all cases. The test data

used in these experiments was identical to that used in Table 4.2. 66

4.8 The breakdown of information employed by each model to make predictions for

CAFA targets. The cross-species view used all of the sequence-based features

described in the text. 67

4.9 Cross-validation results on the training data for five of the CAFA target species,

for which species-specific features were available. Presented are mean loss per

example and mean AUC per GO term. 67

x

Chapter 1

Introduction

The need for automatic function prediction has been a growing concern in the field of ge-

nomics. The number of sequenced genomes has been growing rapidly and the recent advent

of high-throughput sequencing technology is bound to accelerate it further. Experimental

annotation of protein function, on the other hand, remains expensive and time consuming.

This calls for computational methods capable of accurately predicting protein function from

the protein’s sequence and other genomic data.

The Gene Ontology (GO) [31] is the current standard for annotating proteins. GO is

comprised of a set of keywords that specify three namespaces: the gene product’s molecular

function, the biological processes in which it participates, and its localization to a cellular

component. Each of the three namespaces imposes a hierarchy over its set of keywords,

as depicted in Figure 1.1; the keywords deeper in each hierarchy provide more detail. An

annotation can be represented by a vector of binary variables that denote association with

the corresponding GO keywords. Since a protein may have multiple functions in each GO

namespace, the problem of protein function prediction can be formulated as hierarchical

multi-label classification [6]. Hierarchical multi-label classification problems often occur in

text categorization, where a document needs to be assigned to one or more topics, and the

topics themselves belong to a hierarchy [68]. In a way, a protein can be thought of as a

document and the corresponding GO terms a set of topics associated with it.

1

Nucleic acid binding

DNA binding

(0, 0, 1, 1, 1, 0, 1, 1)

Figure 1.1: Example hierarchy of GO keywords. Nodes deeper in the hierarchy provide more
detail. A protein may perform multiple functions, which would then be captured by nodes in two
distinct subtrees. Association of a protein with GO keywords can be expressed as a vector of binary
variables.

1.1 Transfer of annotation

Proteins are sequences over the amino acid alphabet that get folded into a 3D structure;

the sequence and structure, therefore, define a protein and its function. For a long time,

the predominant approach to inferring GO function for newly sequenced proteins has been

transfer of annotation [52], where the keywords are transferred from proteins with known

function on the basis of sequence or structural similarity, usually with the help of sequence

alignment tools, such as Basic Local Alignment Search Tool (BLAST) [1]. The intuition

behind transfer-of-annotation methods is based on the assumption that similar proteins that

arise from a common ancestor, known as homologs, often share similar function. Many stud-

ies have shown that this assumption is limited in validity [23, 12, 29, 67]. Specifically, single

point mutations and gene duplications can lead to different protein function while maintain-

ing high sequence similarity [12, 29]. Other problems arise from erroneous annotations in

databases [23] as well as from the fact that proteins tend to perform multiple functions, only

a portion of which may be conserved across homologs [67], yielding predictions that are only

partially correct.

Nevertheless, a number of methods employ sequence and structural similarity to make

2

functional annotation predictions with varying degrees of accuracy [94, 37, 54, 34]. Meth-

ods that use sequence similarly do so by aligning the query sequence against a database

of annotated protein sequences with the help of alignment tools, such as BLAST. BLAST,

specifically, produces a set of similarity scores between the query and significant matches in

the database. These scores, known as “e-values”, can be thought of as a reflection of the

expectation that the corresponding alignment was produced by chance. The e-values can

then be thresholded, as done by GOblet [37], to identify the closest homologous sequences

from which the GO keywords are then transferred to the query. In the most extreme case,

the single closest match is used, which provides a baseline method termed TOPBLAST by

Martin, et al. [54]; we refer to it as “BLAST nearest neighbor”, or BLAST-NN, in this

work. Alternatively, the e-values themselves can be used as weights for the associated GO

terms retrieved from the annotated database matches. This is the approach taken by Onto-

Blast [94] and GOtcha [54]. GOtcha further converts these weights to p-values by computing

a background distribution from a set of 518,226 annotated sequences in SwissProt [11]. New

score recombination schemes are still being proposed today, an example being the algorithm

by Hamp, et al. that was used in the 2011 Critical Assessment of Function Annotations

(CAFA) challenge [34].

In addition to sequence similarity, structure-based features, such as a protein’s 3D fold,

its structural motifs and domains, can be used to further establish protein homology. A

web-based service ProKnow combines structured-based and sequence-based features to score

a protein against a database of annotated proteins [63]. Rather than using e-values, the

query protein is scored by ProKnow using a Bayesian framework that combines a number of

factors including the quality of annotations in the database.

1.2 Function as a collection of binary variables

The nearest-neighbor behavior of the transfer-of-annotation approach is unable to effectively

deal with today’s noisy high-throughput biological data. This has led to the recent develop-

ment of machine learning approaches that typically address the problem as a set of binary

3

Figure 1.2: A figure taken from the paper describing the algorithm by Obozinski, et. al [62].
The algorithm trains a collection of SVMs to make predictions for individual GO terms. The
prediction scores correspond to the background shading, while the outline represents the true label:
“protein-tyrosine kinase activity” and its ancestors. Note that many of the intermediate nodes were
predicted to be associated with the query protein, but not their ancestors “transferase activity”
and “catalytic activity” — an inconsistency.

classification problems: whether a protein should be associated with a given GO term (see

e.g., [57]). The methods used to solve each of the binary classification problems generally

fall into two categories: those that use the Support Vector Machine (SVM) classifier, and

those that employ guilt-by-association techniques by embedding the data in a graph with

nodes corresponding to proteins and edges representing some evidence of functional similar-

ity. Many of the methods outlined here were used in the Mousefunc competition, which we

detail below.

The problem with breaking the problem up into a collection of binary classification prob-

lems is that the predictions made for individual GO terms will not necessarily be consistent

with the hierarchical constraints: a method may assign a positive prediction score to a GO

keyword and a negative prediction score to its ancestor. An example of this is presented in

Figure 1.2. As such, some methods choose to reconcile the predictions with the hierarchy

using Bayesian networks or logistic regression [62, 6, 32], to produce full annotations. Other

methods employ inference algorithms on graphs to directly produce a hierarchical label, such

as the method by Mostafavi and Morris [56]. Yet other methods choose to forgo the recon-

4

ciliation step entirely, because the predominant approach to measuring prediction accuracy

for this problem is to use precision/recall and area-under-ROC metrics on a “per GO term”

basis [64]. In this case, the interpretation of potentially conflicting binary predictions is left

up to the user.

1.3 Function as a structured label

This project explores a different approach. Rather than treating the task as a collection

of binary classification problems (“is a particular GO keyword associated with a particular

protein?”), we train a predictor to infer the full annotations directly (“what GO keywords

are associated with a particular protein?”). We accomplish this by learning a compatibility

function f(x,y) that accepts a protein x and a full annotation label y as its arguments and

returns a compatibility score associated with the two. Inference of annotations for novel

proteins is then accomplished by finding the most compatible label:

ŷ = arg max
y

f(x,y).

A good compatibility function will always score the correct label for a particular protein as

being more compatible than all other labels, and the learning objective is to achieve this

condition on the training data.

An algorithm aimed at directly inferring a complex label, such as a GO annotation,

is called a structured-output method. Structured-output methods have been introduced

to the field of machine learning fairly recently and span a number of discriminative and

probabilistic approaches [5]. The most popular of these is the structured SVM [85], which

shares many of the advantages of its binary counterpart [88], such as robustness to noisy

data. Structured SVMs have been successfully applied to a variety of problems, including

text categorization [85, 68], prediction of disulfide-bond connectivity [82], and prediction of

enzyme function [2], but are still not as widely used as binary SVMs due to their higher level

of conceptual complexity and the required understanding of the implementation details that

prevent the user from treating the training algorithm as a black box.

5

We propose GOstruct — a framework for applying structured SVMs to the task of GO

term prediction for proteins and gene products. In chapter 3, we describe the basic GOstruct

method in detail and demonstrate that it achieves state-of-the-art performance. We do so

by first demonstrating that GOstruct outperforms the traditional method of annotation

transfer on the basis of sequence or structural similarity. We then show that GOstruct also

achieves highly competitive performance on the Mousefunc dataset [64] compared to other

state-of-the-art methods.

1.4 Data

The sequence and structure of a protein are not the only sources of data relevant to the

problem of function prediction. A number of studies demonstrated that high-throughput

biological data such as gene expression and protein-protein interactions (PPI) can be pre-

dictive of protein function [64, 93, 26, 52]. In this section, we give an overview of several

types of data and present an intuition behind how they relate to protein function. We leave

the details of feature representation for later, when we use the data to make predictions.

The interaction of two or more proteins provides “guilt by association” evidence that the

proteins share similar function; particularly, it is an indication that the proteins participate

in the same biological process and are localized to the same part of the cell [52, 93]. Today,

high-throughput interaction data is widely available through databases such as the General

Repository for Interaction Datasets (BioGRID) [80] and the Search Tool for the Retrieval

of Interacting Genes/Proteins (STRING) [43]. Information about protein interactions is

often represented as a graph with nodes corresponding to proteins and edges representing

some evidence that two proteins interact [56]. An example of such representation is given in

Figure 1.3(a).

Another source of evidence that two proteins may be participating in the same biological

process is the extent to which two genes are co-expressed [93]. Gene expression measures the

level of RNA that codes for a specific protein being present under certain conditions. One

of the most common ways to represent gene expression data is with a heat map, where the

6

(a) Example of a protein-protein interac-
tion subgraph, constructed by STRING [43]
for the human tumor-suppressing gene
’p53’. Nodes in the graph correspond to
proteins and edges denote some evidence
that two proteins interact.

(b) Example of a microarray heat map
taken from a paper by Baechler, et al. [3].

(c) Example of a phylogenetic tree taken
from the SIFTER paper [26].

Figure 1.3: Examples of common data representations for (a) protein-protein interactions
(b) gene expression and (c) phylogenetic profiles.

7

rows correspond to individual genes and columns represent specific conditions under which

the expression level was measured; the rows and columns are generally clustered according

to some criterion. The underlying data that heat maps represent is often referred to as

“microarray data” because the associated expression levels are measured through the use

of DNA microarray chips [70]—a set of complementary DNA (cDNA) strands, specifically

designed to bind to the target genes, attached to glass using robotic printing; the use of

fluorescent labels and a laser allows the user to measure the number of bindings for all genes

in parallel. An example of microarray data is given in Figure 1.3(b). Gene expression data

tends to be noisy [42, 91], and we chose to forgo collecting these features in all experiments

except Mousefunc where it was provided by the competition organizers.

As mentioned earlier, the intuition behind transfer of annotation comes from the assump-

tion that proteins that evolved from a common ancestor will perform similar function. The

related field of phylogeny studies the relatedness of organisms in the evolutionary tree in the

context of function prediction [25]. Phylogenetic information is usually represented as an

evolutionary tree, as depicted in Figure 1.3(c), with proteins residing at the leafs, internal

nodes corresponding to speciation and duplication events and edge lengths being represen-

tative of the amount of time between the events. Algorithms, such as SIFTER [26], can use

the phylogenetic trees directly as part of the inference; specifically, SIFTER treats internal

nodes as hidden variables in a Bayesian framework [26]. Alternatively, the relatedness of

proteins can be represented with a phylogenetic profile — a binary vector, where each vari-

able to corresponds to a fully-sequenced species. The value of each binary variable is set to

1 if the species contains a homolog of the protein in question.

1.5 Data heterogeneity and multi-view learning

The availability of a large variety of genomic data relevant to the task of protein function

prediction has led to the development of a variety of methods for integrating those disparate

data sources. Approaches include kernel methods [51, 62] and label propagation on a network

whose nodes are proteins and edges indicate similarity according to some data source [22,

8

57, 86]. However, all these methods perform data integration in a given species, and are not

able to take into account the labels of annotated proteins in other species. The challenge in

doing this integration is that examples are heterogeneous — examples representing proteins

in the given species have features that capture diverse data: gene expression, protein-protein

interactions, and sequence similarity. Most of this data, except for sequence, is species-

specific: protein interactions are probed experimentally in a given species, and the expression

of a given gene measured in one set of experiments is difficult to compare meaningfully to

expression measured in another species, under possibly different conditions.

In Chapter 4 we extend GOstruct to combine heterogeneous data sources across several

species. We do so by employing multi-view learning, which is an approach for dealing with

multiple independent feature sets and unlabeled data. In multi-view learning, the input-

space features are separated into two or more groups (“views”) and a separate model is

trained for each view with the goal of maximizing the accuracy on the labeled data and

minimizing view disagreement on the unlabeled data [10]. The application of this technique

to structured output spaces is fairly recent and several algorithms exist that either minimize

the disagreement explicitly [30, 53] or use a more heuristic co-training approach where each

view suggests labels for its peers [13].

Multi-view learning has been applied to natural-language processing [13], document cat-

egorization [30, 53] and signal processing [18]. However, all these applications make an

emphasis on using unlabeled data and maintain an implicit assumption that every example

can be represented in every view. GOstruct breaks away from this assumption by treating

all cross-species features, such as sequence similarity, as one view and all species-specific

features, such as protein-protein interactions, as another. We explore co-training [10, 13]

and transductive learning [98] as the two approaches to assigning labels to unlabeled data.

Empirical results demonstrate that the multi-view framework, that combines all available

sources of data, outperforms all single-view formulations. In other words, combining all

available features from all available species leads to the highest level of accuracy in predicted

functional annotations.

9

1.6 Critical assessment

Automatic function prediction is widely recognized as an important problem in bioinfor-

matics, and several experiments have been set up to perform critical assessment of the

algorithms developed to solve the problem. The two prominent experiments that we de-

scribe in this section are Mousefunc [64] and Critical Assessment of Function Annota-

tions (http://biofunctionprediction.org/). We used the GOstruct framework to make

predictions for both experiments and outperformed all other algorithms in both cases.

1.6.1 Mousefunc

The goal in the Mousefunc challenge was to generate GO term predictions for a set of genes

in the M. musculus species [64]. The training and test data was provided by the organizers

and consisted of two sources of gene expression data [95, 81], two sources of protein domain

data (Pfam and InterPro), protein-protein interactions, phylogenetic profiles and functional

annotations for the training data. The gene IDs were masked to prevent the participants

from augmenting the training set with additional sources of data. We describe the details of

data representation in the next chapter, where we apply GOstruct to it.

The assessment of the algorithms has since been published [64] and the test labels made

available for public use. The performance evaluation was performed by the organizers on

a per-GO-term basis, where the GO terms were split into four categories based on their

representation in the training data; the most specific category consisted of GO terms that

occurred in fewer than 10 training examples. We now review several of the algorithms that

were entered into the Mousefunc challenge.

The algorithm by Obozinski, et al. [62] trained a separate binary SVM for each GO

term / data source pair; the data sources were processed to generate appropriate kernels

for each. The outputs of individual SVMs were then combined using logistic regression

to produce a single numerical score for each GO term. Recognizing that the scores may

be in disagreement with the GO topology, the final step of the algorithm reconciled the

predictions made for individual GO terms such that the scores assigned to ancestors of a GO

10

term were always higher than the score of the GO term itself. Obozinski, et al. considered

11 different methods to perform the reconciliation ranging anywhere from simple heuristics

to more complex Bayesian methods.

GeneMANIA [57] is a “guilt-by-association” algorithm that treated each source of data

as a network with proteins comprising the set of nodes and evidence of co-functionality

being captured by the edges. For each GO term, the networks were combined using a set

of learned weights; a different set of weights was used for each GO term. For every training

protein in the combined network, the algorithm then assigned a “discriminant value” that

measured the amount of association between the protein and the GO term in question. The

discriminant values were then propagated to the test proteins using the Gaussian field label

propagation algorithm [97]. While the version of GeneMANIA entered into the Mousefunc

challenge made predictions for individual GO terms, the algorithm has since been extended

to utilize the GO topology and make predictions for multiple GO terms simultaneously [56].

These two algorithm make up a representative set of methods applied to Mousefunc. All

other algorithms were variations on these two approaches: sometimes decision trees were

applied in place of SVMs [84], while other times a different label propagation algorithm was

used on the association networks [47, 17]. Multiple models were generally combined using

logistic regression [32, 84].

1.6.2 CAFA

Critical Assessment of Function Annotations (CAFA) is the most recent challenge in auto-

matic function prediction. Unlike the case with Mousefunc, CAFA organizers released test

sequences only, without masking protein IDs. Each participant was free to build their own

training set.

CAFA borrows much of its motivation from Critical Assessment of Structure Prediction

(CASP) [59]. CASP has been one of the main driving forces behind the advancement of

algorithms aimed at prediction of protein structure; the goals of the challenge are both to

determine the progress being made and to identify specific bottlenecks in the current state-

11

of-the-art methodology [58]. While CASP has gone through eight iterations already, CAFA

is still in its infant stages with the first assessment presented at the Automatic Function

Prediction special interest group meeting of Intelligent Systems in Molecular Biology 2011.

The goals in the CAFA challenge of 2011 were to make functional predictions for a set

of genes from seven eukaryote species. More than 30 algorithms have been entered into the

challenge, including our multi-view GOstruct framework. Among the baseline algorithms

was FANN-GO [19], which uses GOtcha scores described above to train an ensemble of

multioutput neural networks to predict the association of proteins with every GO term. The

authors present two variants of FANN-GO: one trained on proteins from multiple species,

similar to our cross-species view, and another limited to sequences in the target species

only [19]. Other algorithms included SIFTER [26], transfer-of-annotation methods [34] as

well as approaches that utilized Bayesian networks and binary SVMs, similar to methods

used for Mousefunc [92].

1.7 Publications associated with the presented work

The GOstruct framework was first introduced at the 8th Annual International Conference

on Computational System Bioinformatics [76], where we demonstrated that it outperformed

other competitors on the Mousefunc challenge dataset. The extended version of the paper

with additional experiments was then published in the Journal of Bioinformatics and Compu-

ational Biology [77]. We introduced the extension of the framework to multi-view learning

at the ACM Conference on Bioinformatics, Computational Biology and Biomedicine [78].

Finally, application of our multi-view framework to the CAFA challenge was presented at

the Automatic Function Prediction special group meeting of ISMB2011 [79].

1.8 Overview of chapters

We start off by describing previous approaches to GO term prediction in Chapter 2. In

Chapter 3, we review structured SVMs and present the basic GOstruct method that utilizes

structured SVMs to make GO term predictions. We compare the performance of GOstruct

12

to a BLAST-based nearest-neighbor classifier as well as algorithms entered in the Mousefunc

challenge. We extend GOstruct to the multi-view learning paradigm in Chapter 4; multi-

view learning allows us to combine heterogeneous data sources from multiple species. Our

empirical results demonstrate that this combination yields more accurate predictions than

classifiers trained on a single species or a single source of data only. In Chapter 5, we present

a summary of our contribution and note a set of open questions.

13

Chapter 2

Previous Work

In this chapter we review previous machine learning approaches to GO term prediction. We

focus on methods that specifically predict GO terms, noting that some algorithms in the

literature use other protein function vocabularies [89, 61, 71]. Several of the algorithms

reviewed here were entered in Mousefunc challenge [64], which provided a critical assessment

of their performance.

All of the methods discussed here approach the problem of GO term prediction as a

collection of binary classification problems, where predictions are made on individual GO

terms. This often leads to predictions that are inconsistent among themselves (c.f. Fig-

ure 1.2); a classifier may predict that a protein is a p53 binder (GO:0002039) but not a

binder in general (GO:0005488). Therefore, when discussing machine learning algorithms

for GO term predictions, we consider three aspects:

• how the algorithm makes predictions for individual GO terms;

• how the algorithm combines multiple sources of heterogeneous data;

• how the algorithm addresses the hierarchical constraints of GO namespaces.

While every algorithm reviewed here will have a way to make binary predictions, some

algorithms do not combine multiple sources of data, focusing on a single set of features

(usually protein-protein interactions [55]). Likewise, some algorithms (e.g., work by Kim, et

al. [47]) give no consideration to the hierarchical inconsistencies.

14

2.1 Binary prediction methods

The two common ways of assigning single GO terms to proteins are discriminative algorithms

such as SVMs [62, 32] and random forests [84, 36], as well as label propagation on graphs [57,

17, 55]. The SVM [88] is a classifier that is widely accepted as a state-of-the-art tool for

binary classification. Given a feature map φ, the SVM learns a maximum-margin separating

hyperplane between the positive and negative examples in the corresponding feature space.

The hyperplane is chosen such that it has the largest distance (margin) to examples from

both classes. SVMs are used in conjunction with kernels, which are binary functions that

can be thought of as similarity measures between proteins [9]. A kernel has the property

that it represents a dot product in some feature space. Whenever an algorithm depends on

the data through dot products only, as is the case with SVMs, the dot product computations

can be replaced with calls to the kernel, which effectively allows one to apply the algorithm

in the corresponding feature space without explicitly mapping the data to it first. The use

of kernels is particularly appealing in bioinformatics where the datasets are often comprised

of non-numerical objects, such as protein sequences. Obozinski, et al. [62] and Guan, et

al. [32] used SVMs with linear kernels (dot products in the raw feature space) as well the

more sophisticated diffusion kernel [49] for the protein-protein interaction data.

Random forest methods employ an ensemble of decision trees to make predictions about

whether a protein is associated with a particular GO term [84]. Decision trees recursively

partition the data according to the value of one or more features; the value thresholds at each

step are chosen such that they maximize the separation between the classes [35, 84]. Inference

in random forests is based on the fraction of decision trees that classify the query protein

as positive (i.e., having a particular GO term). Hayete, et al. [36] used the OC1 decision

tree system [60] to make split decisions at each node according to linear combinations of

real-valued features. They used the resulting trees to make inference about individual GO

terms from protein domain composition data [36].

Label propagation methods make use of functional association networks to predict the

association of GO terms for query proteins [57, 17, 55, 45]. A functional association network

15

? ?

Figure 2.1: An example of a functional association network. The nodes correspond to proteins and
edge denote evidence of co-functionality. Proteins annotated with a particular GO term are shaded
dark, while the proteins not associated with the GO term are shaded light. The query proteins are
presented with question marks. While the labels for some of the query proteins are obvious, such
as the one on the right, the situation is usually more complicated as both positive and negative
training proteins will be neighboring the query. The latter is demonstrated by the query in the
middle of the example graph.

is defined as a graph G = (V,E), where the vertices V correspond to proteins and the edges

E represent some evidence that two proteins perform the same function. The networks

can be readily constructed from any protein similarity metric; some examples include binary

interaction data [55] and Pearson correlation values between gene expression profiles [57, 17].

Given a functional association network, the set of training labels can be propagated to the

test nodes according to the weight of the co-functionality links (Figure 2.1); the intuition is

that two nodes that have high evidence of co-functionality are more likely to share the same

binary label. Label propagation algorithms can be roughly separated into two categories:

those that consider only the immediate neighborhood of a test node [47, 17, 84] and those that

optimize some global criterion over the entire network [57, 17, 45]. If wi is the edge weight

between a query protein and its ith neighbor, some local label propagation algorithms [47, 17]

16

compute the prediction scores according to

S = 1−
∏
i∈N+

(1− wi), (2.1)

where N+ denotes the set of positively annotated nodes in the neighborhood of the query

protein [47, 17]. In this case, the weights are treated as probabilities that two proteins

perform the same function and the measure in Equation (2.1) is the probability that the

query protein shares the function with at least one of its neighbors, where each neighbor is

treated independently of all others.

The criterion optimized by global label propagation varies from method to method. Zhou,

et al. [96] proposed to assign prediction scores such that the scores are consistent with known

node labels and the score similarity for neighboring nodes is proportional to the edge weight

between them:

arg min
f

∑
i

(fi − yi)2 +
∑
i

∑
j

wij(fi − fj)2, (2.2)

where fi are prediction scores for individual nodes, wij is the weight between nodes i and j,

and yi are the labels specified as 1 for positive nodes, -1 for negative nodes, and 0 for unlabeled

query nodes. From the machine learning point of view, the optimization criterion can be seen

as error minimization (first term) and model regularization (second term). GeneMANIA [57]

applied this method to GO term prediction, using (n+ − n−)/n (the difference between the

fractions of data being positive and negative) as the label bias for unlabeled nodes to account

for the fact that only a small portion of all genes are labeled with a particular GO term.

Karaoz, et al. [45] minimize the “energy” function given by

−1

2

∑
i

∑
j

wijsisj, (2.3)

where wij is again the weight between nodes i and j, and si, sj are the labels (in this case,

-1 and 1) associated with nodes i and j. The labels are given by the training data from

annotated nodes and inferred by the algorithm for unannotated nodes. Because the labels

are set to 1 or -1, an inconsistent assignment of labels to two nodes that share a strong

link will make a positive contribution to the objective function in Equation (2.3) and the

17

problem can be viewed as minimizing the effect of such inconsistent assignments based on

the functional links wij.

Several of the methods combine several of the models discussed above. For example,

Kim, et al. combine a naive Bayes classifier with local label propagation [47]. Funckenstein

combines random forest classifiers with local label propagation [84]. Given a model θ, pre-

diction scores obtained using the model are often represented as log-odd ratios log P (C=1|θ)
P (C=0|θ)

(where again C = 1 implies association with a particular GO term, and C = 0 denotes the

opposite), and multiple models are combined using logistic regression [84, 62]:

log
Pjoint(C = 1)

Pjoint(C = 0)
= w log

P (C = 1|θ1)

P (C = 0|θ1)
+ (1− w) log

P (C = 1|θ2)

P (C = 0|θ2)
, (2.4)

where w is learned from the training data.

2.2 Data Integration

As discussed in the previous chapter, a number of different data sources are relevant to the

prediction of protein function and most methods reviewed here make use of two or more of

these data sources. The simplest way in which these data sources are combined is via simple

concatenation of features from all datasets. When working with kernels, concatenation of

feature vectors is equivalent to the summation of the corresponding kernels [32].

In functional association networks, data sources are generally combined at the edge

level [47, 57]. For example, GeneMANIA constructs a separate network for each source

of data and then combines them via a weighted summation, where the weights are learned

through ridge regression [57].

Another way of using multiple sources of data is to train a separate model for each

source and then combine individual model predictions, using, e.g., logistic regression in

Equation (2.4), as done by Obozinski, et al. [62]. Alternatively, predictions can be combined

using Naive Bayes [32], or a simple combination of posterior probabilities [17]:

P (C = 1|θ1, θ2, ..., θp) = 1−(1−P (C = 1|θ1))·(1−P (C = 1|θ2))·...·(1−P (C = 1|θp)), (2.5)

where θi refers to the model trained on the ith of p datasets.

18

2.3 Prediction Reconciliation

As discussed earlier, treating prediction of protein function as a collection of binary classifi-

cation problems can lead to inconsistent predictions where a query protein is annotated with

a particular GO term but not its ancestor. In this section, we discuss some of the ways in

which methods reconcile predictions made for individual GO terms.

While the original GeneMANIA algorithm [57] performed no reconciliation across GO

terms, an extension of the framework by the authors solves the optimization problem in

Equation (2.2) for all GO terms simultaneously, while introducing an additional term to

account for parent-child relationships between the GO terms [56]:

arg min
f

∑
k

∑
i

(fik − yik)2 +
∑
k

∑
i

∑
j

wij(fik − fjk)2 +
∑
k,l

∑
i

hkl(fik − fil)2, (2.6)

where hkl are indicator variables denoting parent-child relationships between GO terms k

and l. The prediction scores f in the optimization problem in Equation (2.6) are now dual-

indexed, with the first index iterating over the proteins and the second index iterating over

the GO terms. The three terms in the optimization problem correspond to a) the deviation

of the prediction scores from the bias labels (as defined above), b) the difference in prediction

scores between neighboring proteins in a functional association network for a particular GO

term, and c) the difference in prediction scores across all proteins for any two GO terms that

have a parent-child relationship. While the solution to the new optimization problem does

not necessarily produce a set of consistent predictions, the prediction scores tend to be more

consistent with the hierarchical constraints [56].

The method developed by Guan, et al. [32], that uses SVMs to make predictions for

individual GO terms, reconciles predictions with the hierarchical constraints by using the

Bayesian networks approach: each node in the GO hierarchy is treated as a hidden vari-

able, and is associated with a single observed node corresponding to the output from the

corresponding SVM. The hierarchical constraints can then be enforced through conditional

probabilities on the hidden nodes [6].

Perhaps the most extensive analysis of binary prediction reconciliation has been per-

19

formed by Obozinski, et al. [62], who compared 11 different algorithms. Three of these

algorithms were simple heuristics where the models trained on individual GO terms were

combined through logistic regression according to “max”, “and” and “or” operators. An-

other four of the algorithms utilized Bayesian inference (similar to what was used by Guan,

et al. [32]) with individual algorithms being distinguished by whether the Bayesian network

edges were directed from parents to children or the opposite, as well as whether Bayesian

log posteriors or logistic regression log posteriors were used during inference. Another al-

gorithm, which the authors call cascaded logistic regression, fit a logistic regression model

at every GO node using only proteins that were annotated with all the ancestor terms.

The remaining three algorithms project the set of posterior probabilities obtained at every

GO node to the closest set of probabilities that satisfy hierarchical constraints, where the

“closeness” was measured either through squared Euclidean distance or Kullback-Leibler di-

vergence. Obozinski, et al. concluded that the latter set of projection methods yielded the

most accurate predictions, as measure by precision and recall [62]. The authors also note

that reconciliation can yield a decrease in performance compared to when no reconciliation

is performed [62].

2.4 Case study: Funckenstein

We now focus on one particular algorithm, Funckenstein [84], which achieved the best per-

formance in the Mousefunc challenge, compared to all other competitors [64].

Funckenstein trained two separate models for each GO term, and combined those models

using logistic regression as in Equation (2.4). The first model, which the authors refer to as

guilt-by-profiling [84], used a random forest classifier [14] on all available features. Given a

random forest produced in training, predictions were made by a simple majority vote across

all trees. The second model, which is referred to as guilt-by-association [84], was given

by a functional association network. The edges in the network were obtained by training a

decision tree to answer the question “do these two proteins perform the same function?” and

using the prediction confidence as the edge weights. Given a network, the prediction score of

20

a particular GO term being associated with a query protein was obtained by averaging the

highest three edge weights between the query protein and proteins with known annotations.

Although Funckenstein yielded the best performance in the Mousefunc challenge, it did

not account for predictions that were inconsistent with the hierarchical constraints.

21

Chapter 3

The GOstruct Method

In this chapter we present the GOstruct method and compare its performance to the current

state-of-the-art algorithms for GO term prediction. We assume the training data is provided

as {(xi,yi)}ni=1 ∈ (X × Y)n, where X and Y are the input space and the output space,

respectively. Given this training data, the goal of a structured-output method is to construct

an accurate mapping h : X → Y . The standard approach to finding such a mapping is to

minimize the empirical loss, while maintaining low model complexity [35]. The empirical

loss is given by
∑n

i=1 ∆(yi, h(xi)), where ∆ is a loss function that returns a non-negative

measure of disagreement between a pair of labels. Maintaining low model complexity is

aimed at preventing overfitting of the model to the training data, with the specifics being

dependent on the model itself.

Structured-output methods are centered around the compatibility function f : X ×Y →

R that scores pairs of input-space examples and labels [5]. The desired mapping h is obtained

from f via the arg max operator:

h(x) = arg max
y∈Y

f(x,y), (3.1)

which selects the label y most compatible with the input x. The learning objective is then

to ensure that the correct label yi yields the highest compatibility score with xi for every

training example.

While the output space Y is domain-dependent, its size is usually exponential in the num-

ber of output variables. This makes the explicit computation of Equation (3.1) intractable

22

x1 x2 x3 xn...

f x , y

y i

y≠ y i

Figure 3.1: Graphical depiction of the constraints in Equation (3.3). Training examples are
displayed along the horizontal axis. For demonstration purposes, we assume that the highest
compatibility values for the three presented examples are all equal to each other. For every example,
the aim is to have the compatibility values between the true label and all other labels separated
by a margin, depicted with the two dashed lines. Example x1 satisfies this. Example x2, while
correctly classified, has a margin violation. Example x3 is misclassified.

and requires an inference algorithm tailored to the structure of the output space. Some

examples include dynamic programming [85] and graph inference algorithms [83]. The in-

ference algorithm for the problem in Equation (3.1) is treated as a black box, often referred

to as the separation oracle, by the training algorithm.

Structured-output methods differ in their definition of f , and in this project we focus on

those that are linear in some joint input-output feature space: f(x,y) = wTψ(x,y). The

feature map ψ : X ×Y → Rd is user-specified, and the training objective is to find a weight

vector w that yields the highest compatibility score for the correct label for all training

examples, i.e.,

arg max
y∈Y

wTψ(xi,y) = yi for i = 1, . . . , n. (3.2)

To ensure robustness, we further require that the compatibility values for all other labels are

separated by a margin γ:

wTψ(xi,yi)− max
y∈Y\yi

wTψ(xi,y) ≥ γ for i = 1, . . . , n. (3.3)

Examples that fail to satisfy these contraints are said to be violating the margin, which

may or may not result in misclassification of those examples. The geometric intuition of

the constraints is presented in Figure 3.1. The two algorithms we consider for this problem

23

are the structured perceptron [21], where the margin γ is specified by the user, and the

structured SVM [85], which aims to maximize γ.

We consider both algorithms in the context of kernel methods. A kernel can be thought

of as a measure of similarity between pairs of objects and formally requires an associated

feature space where the kernel acts as the inner product [73]. Whenever an algorithm depends

on the data through dot products only, each dot product can be replaced by a call to the

kernel function K; this is known as the kernel trick [73] and has the effect of applying the

algorithm in the feature space associated with the kernel. In the case of binary classification,

the dot products are in the feature space defined by some input-space map φ : X → R. The

corresponding kernel is then a function between the two data points in the input space:

K(x1,x2) = φ(x1)Tφ(x2). When dealing with structured-output problems, however, the dot

products are in the joint input-output feature space, and the kernels are functions of both

inputs and outputs: K ((x1,y1), (x2,y2)) = ψ(x1,y1)Tψ(x2,y2).

Kernel methods possess many desirable properties that make their application to non-

numeric data, such as biological sequences, natural [9]. One important property is that

kernels don’t require explicit access to the underlying feature maps, and in many cases com-

puting the dot products can be done more efficiently without first mapping the data. For

example, the local alignment kernel considers all possible local alignments of two strings x1

and x2 and computes the sum of scores associated with those alignments [69]; the value of

the kernel can be efficiently computed using a modified Smith-Waterman dynamic program-

ming algorithm [75]. Another appealing property arises from kernel arithmetic: the sum

and product of two kernels is also a kernel [73]. This allows for a natural aggregation of

heterogeneous data sources and feature maps. This is particularly appealing in biological

applications, because the data sources are often disparate: a protein is described by its se-

quence, as well as its interactions with other proteins and the level of gene expression under

various conditions.

3.0.1 Structured Perceptron

24

Algorithm 1 Structured-output Perceptron: GOstructp∆
Input: training data {(xi,yi)}ni=1, parameter γ.
Output: parameters αi,y for i = 1, . . . , n and y ∈ Y .
Initialize: αi,y = 0 ∀i,y. //only non-zero values of α are stored explicitly
repeat

for i = 1 to n do
//Compute the top scoring label that differs from yi:
ȳ← arg maxy∈Y\yi

f(xi,y|α)
//Compute the margin for xi:
δ ← f(xi,yi)− f(xi, ȳ)
if δ < γ then
αi,yi

← αi,yi
+ 1

αi,ȳ ← αi,ȳ −∆(yi, ȳ)
end if

end for
until a termination criterion is met

The perceptron algorithm is a simple linear classifier and its extension to the structured-

output setting maintains this simplicity [21]. To make use of kernels in the case of perceptron

we make an assumption that the weight vector w is a linear combination of training examples

and labels:

w =
n∑
i=1

∑
y∈Y

αiyψ(xi,y). (3.4)

We can now rewrite the difference in compatibility values from Equation (3.3) as

wTψ(xi,yi)−maxy∈Y\yi
wTψ(xi,y) =

=
∑n

j=1

∑
z∈Y αjzψ(xj, z)Tψ(xi,yi)−maxy∈Y\yi

∑n
j=1

∑
z∈Y αjzψ(xj, z)Tψ(xi,y) =

=
∑n

j=1

∑
z∈Y αjzK ((xj, z), (xi,yi))−maxy∈Y\yi

∑n
j=1

∑
z∈Y αjzK ((xj, z), (xi,y)) .

The problem can now be reformulated as finding the coefficients α, such that
n∑
j=1

∑
z∈Y

αjzK ((xj, z), (xi,yi))− max
y∈Y\yi

n∑
j=1

∑
z∈Y

αjzK ((xj, z), (xi,y)) ≥ γ for i = 1, . . . , n.

(3.5)

We present the structured-output perceptron variant considered in this work as Algo-

rithm 1. This variant is characterized by the use of a margin, as per Equation (3.5). The

desired value of the margin, γ, is a hyperparameter specified by the user. In our implemen-

tation, the termination criterion is taken to be a limit on the number of iterations.

25

Note that the standard version of the algorithm updates margin violations according to

αi,ȳ ← αi,ȳ − 1 [21]. This assigns the same penalty for slight and gross misclassifications,

which intuitively is not desired. We propose to scale the penalty by the loss instead, as

presented in Algorithm 1; the results presented later indicate that this scaling yields better

predictions than the standard update rules.

3.0.2 Structured Support Vector Machines

The structured SVM further aims to maximize the margin γ in Equation (3.3). Equiva-

lently, this goal can be expressed as minimizing the norm of w while keeping the value of

γ fixed [16]. The non-linear constraints in Equation (3.3) present an optimization challenge

and the standard approach is to expand them into the corresponding set of linear constraints.

The difference in compatibility values between the true label and another candidate is an

integral part of this expansion and, for notational convenience, we define

δψi(y) = ψ(xi,yi)− ψ(xi,y) (3.6)

to represent this difference. Following the formulation where γ is fixed, we decompose the

non-linear constraints in Equation 3.3 into the following set of linear constraints considered

by the structured SVM:

wT δψi(y) ≥ 1 for i = 1, . . . , n; y ∈ Y \ {yi}. (3.7)

If there exists w that satisfies all these constraints, then we say that the data is separable.

Unfortunately, most real-world datasets are not separable and we have to allow for margin

violations:

wT δψi(y) ≥ 1− ξi for i = 1, . . . , n; y ∈ Y \ {yi}, (3.8)

where ξi ≥ 0 are called slack variables and measure the amount of violation. For a given

solution ŵ, we can compute the amount of margin violation for any particular training

example directly from the corresponding set of constraints:

ξi =
[
1− ŵT δψi(y)

]
+
, (3.9)

26

where we use [·]+ to denote a function that returns its argument if the argument is non-

negative and zero otherwise.

The structured SVM objective has two goals. One goal is to minimize the amount of

margin violation, measured by
∑n

i=1 ξi. The other goal is to maximize the margin, which

is equivalent to minimizing the norm of w. Minimizing the norm of w plays the role of

maintaining low model complexity in the context of linear models [35]. By maximizing

the separation margin, we increase model robustness to noise and reduce overfitting to the

training data. The two goals are generally competing with each other: larger margins are

prone to introduce more margin violations. We use a user-specified parameter C to place

more emphasis on either part, leading to the following structured SVM formulation [85]:

minw,ξi
1
2
‖w‖2

2 + C
n

∑n
i=1 ξi (3.10)

s.t. wT δψi(y) ≥ 1− ξi for i = 1, . . . , n; y ∈ Y \ {yi} (3.11)

ξi ≥ 0 for i = 1, . . . , n, (3.12)

where ‖ · ‖2 is the L2 norm.

Equation (3.11) requires that all incorrect labels are separated from the true label by the

same margin value. Intuitively, labels that are closer to the truth should be allowed to have

higher compatibility values (and therefore, require less separation) than grossly incorrect

labels. Two implementations of this intuition are margin re-scaling and slack re-scaling,

which incorporate the loss function ∆ into the constraints [85]. Margin re-scaling replaces

the constraint in Equation (3.11) with

wT δψi(y) ≥ ∆(yi,y)− ξi for i = 1, . . . , n; y ∈ Y \ {yi}. (3.13)

Similarly, slack re-scaling replaces it with

wT δψi(y) ≥ 1− ξi/∆(yi,y) for i = 1, . . . , n; y ∈ Y \ {yi}. (3.14)

The optimization problem in Equations (3.10)-(3.12) is known as the primal formulation

of the structured SVM [85]. Similar to the structured perceptron, we would like to make use

27

of kernels, which leads us to consider the dual formulation instead. The Wolfe dual [28] to

the problem is given by the following [85]:

maxα−1
2

∑
i,j,y,ȳ αiyαjȳ [δψi(y)]T δψj(ȳ) +

∑
i

∑
y αiy (3.15)

s.t.
∑

y αiy ≤ C/n for i = 1, . . . , n, (3.16)

αiy ≥ 0 for i = 1, . . . , n; y ∈ Y , (3.17)

where the only unknowns are the Lagrange multipliers αiy. Note that since the constraints in

Equation (3.11) involve both the training examples and the labels, the Lagrange multipliers,

α, are dual-indexed. We can expand the dot product of the compatibility differences given

by the δψ(·) notation and replace the corresponding terms in the expansion with kernels.

Similar dual formulations exist for margin and slack re-scaling [85]. In all formulations, the

weight vector can be obtained from the Lagrange multipliers using

w =
∑
i

∑
ȳ 6=yi

αiȳδψi(ȳ), (3.18)

which is slightly different than the perceptron case (Equation (3.4)) in that the difference

vectors defined in Equation (3.6) are used instead. The compatibility can then be computed

according to

f(x,y) = wTψ(x,y) =
∑
i

∑
ȳ 6=yi

αiȳδψi(ȳ)Tψ(x,y) = (3.19)

=
∑
i

∑
ȳ 6=yi

αiȳ [ψ(xi,yi)− ψ(xi, ȳ)]T ψ(x,y) = (3.20)

=
∑
i

∑
ȳ 6=yi

αiȳ [K((xi,yi), (x,y))−K((xi, ȳ), (x,y))] . (3.21)

There are n|Y| variables in the dual optimization problem in Equation (3.15). For most

applications, this is too many for solving the problem directly. Every dual variable is a

Lagrange multiplier for a constraint in Equation (3.11), and by focusing our attention on the

most violated constraints only, we can construct an approximate solution by working with

a smaller subset of variables. This subset of variables is known as the working set and gets

constructed incrementally by the training algorithm. At every iteration, the algorithm loops

28

Algorithm 2 Working-set-based approach to training a structured SVM

Input: training data {(xi,yi)}ni=1

Output: parameters αi,y for i = 1, . . . , n and y ∈ Y .
Initialize: αi,y ← 0 for i = 1, . . . , n, y ∈ Y , and Wi ← ∅ for i = 1, . . . , n.
repeat

for i = 1 to n do
Find the most violated constraint ȳ = arg maxy∈Y\yi

Hi(y). (See text for the defini-
tion of Hi.)
Compute the current slack ξi = [maxy∈Wi

H(y)]+.
if H(ȳ) > ξi + ε then

Add the new constraint to the working set: Wi ←Wi ∪ {ȳ}.
Optimize the dual objective in Equation (3.15) over αi,y for y ∈ Wi.

end if
end for

until No new constraints are added after a full pass through the data

over the training examples, and for every example it identifies the most violated constraint.

The corresponding Lagrange multiplier is then added to the working set and the optimiza-

tion problem in Equations (3.15)-(3.17) is solved with respect to those variables only. The

algorithm terminates when any constraint not in the working set is violated by no more than

ε when compared to the most violated constraint in the working set. It has been shown

that even if |Y| is exponential in the number of variables that make up the output space,

the training algorithm will still converge in a polynomial number of steps for any arbitrarily

small ε [85].

We present the working set approach as Algorithm 2. We measure the amount of margin

violation by

Hi(y) = 1−wT δψi(y) (3.22)

for a particular training example (xi,yi) when no rescaling is employed. Similarly, in the

presence of margin or slack rescaling, the margin violations are measured by

Hi(y) = ∆(yi,y)−wT δψi(y) (3.23)

and

Hi(y) = (1−wT δψi(y))∆(yi,y), (3.24)

29

respectively. These three definitions of function Hi can be derived directly from the con-

straints in Equations (3.11), (3.13), and (3.14), respectively.

The optimization step in Algorithm 2 is usually performed using a variant of Sequential

Minimal Optimization (SMO) [65]. SMO-like algorithms alternate between selecting a subset

of variables αiy and maximizing the dual objective (Equation (3.15)) with respect to that

subset, while keeping all other variables fixed. The original SMO algorithm focused on

optimizing two variables at a time, using a set of heuristics for choosing those variables [65].

The idea has since been extended to optimization of multiple variables [44] and the use of first

and second derivative information in selecting which variables to optimize [46, 27]. The main

advantage of all SMO-like algorithms is their scalability to large datasets. By considering a

small number of dual variables at a time, the kernel matrix is never required in its entirety,

making solution of large optimization problems tractable. In our case, the working set

technique already limits the number of dual variables we consider during optimization. This

allows us to precompute the entire kernel matrix involved in the optimization subproblem,

and this allows us to employ a different optimization algorithm. In this work, we explore an

alternative to SMO to solve the problem in Equations (3.15)-(3.17) over the dual variables αiy

that correspond to the constraints in the working set Wi. The details are in the Appendix.

Basic GOstruct

The GOstruct method requires the user to choose a joint kernel, an inference oracle, and a

loss function. Once these three elements have been identified, the hyper-parameter C or γ

can be selected via cross-validation on the training data.

The joint kernel used in our experiments is a product of the input space and the output

space kernels:

K((x,y), (x′,y′)) = KX (x,x′)KY(y,y′). (3.25)

Our intuition for using a product kernel is that two examples are similar in the input-output

feature space if they are similar in both their input and the output space representations. In

preliminary experiments, we also considered a second-degree polynomial kernel of the form

30

K((x,y), (x′,y′)) = (KX (x,x′) +KY(y,y′))2, which provided lower accuracy.

In most of our experiments, we limited the output space Y to the labels that occur in the

training set only, arguing that this allows the classifier to focus on combinations of GO terms

that are biologically relevant. We experimented with other inference oracles that considered

a larger portion of the output space (defined as the set of all labels that satisfy hierarchical

constraints), and the empirical results of those experiments further motivate our choice to

limit the inference to the labels that occur in the training set; we present these results later

in this chapter.

The loss function plays two roles. First, it is used in margin and slack rescaling formu-

lations (Equations (3.13) and (3.14)) to require less separation for labels that are close to

the truth. The second role of a loss function is to measure algorithm performance. When

working with binary classification problems, the accuracy of a prediction can be measured

in several ways, one of which is with an indicator function that compares the predicted la-

bel to the true label. This is known as the 0-1 loss. Because we are dealing with complex

labels in a structured-output problem, the 0-1 loss is no longer appropriate, as it makes

no distinction between slight and gross misclassifications. A number of loss functions that

incorporate taxonomic information have been proposed in the context of hierarchical clas-

sification [38, 68, 48]. These either measure the distance between labels by finding their

least common ancestor in the taxonomy tree [38] or penalize the first inconsistency between

the labels in a top-down traversal of the taxonomy [68]. Kiritchenko et al. proposed a loss

function that is related to the F1 measure which is used in information retrieval [87] and was

used by Tsochantaridis et al. in the context of parse tree inference [85].

In what follows we present the F1 loss function and show how it can be expressed in terms

of kernel functions, thereby generalizing it to arbitrary output spaces. The F1 measure is a

combination of precision and recall, which for binary classification problems are defined as

F1 =
2 · P ·R
P +R

, P =
tp

tp + fn
, R =

tp

tp + fp
,

where tp is the number of true positives, fn is the number of false negatives and fp is the

31

number of false positives. Rather than expressing precision and recall over the whole set of

examples, we express it relative to a single example (known as micro-averaging in information

retrieval), computing the precision and recall with respect to the set of GO terms. Given a

vector of true labels (y) and predicted labels (ŷ) the number of true positives is the number

of micro-labels common to both labels which is given by yT ŷ. It is easy to verify that

P (y, ŷ) =
yT ŷ

ŷT ŷ
, R(y, ŷ) =

yT ŷ

yTy
. (3.26)

We can now express F1(y, ŷ) as

F1(y, ŷ) =
2 yT ŷ

yTy + ŷT ŷ
,

and define the F1-loss as ∆F1(y, ŷ) = (1 − F1(y, ŷ)) [85]. This loss can be generalized to

arbitrary output spaces by replacing dot products with kernels:

P (y, ŷ) =
K(y, ŷ)

K(ŷ, ŷ)
R(y, ŷ) =

K(y, ŷ)

K(y,y)
.

Substituting these expressions for precision and recall leads to the following generalization

of the F1-loss, which we call the kernel loss :

∆ker(y, ŷ) = 1− 2K(y, ŷ)

K(y,y) +K(ŷ, ŷ)
, (3.27)

which reduces to the F1-loss when using a linear kernel.

Another common way to assess predictor performance is to build a Receiver Operating

Characteristic (ROC) curve, which plots the true positive rate as a function of the false

positive rate. Many binary predictors output a score, which can then be thresholded by

the user to produce either a positive or a negative prediction. The choice of the threshold

corresponds to a point on the ROC curve. At the one extreme, a threshold of −∞ will cause

all predictions to be positive and yield 100% false positive and true positive rates. Similarly,

a threshold of ∞ will cause all predictions to be negative and yield 0% false positive and

true positive rates. Other threshold values will map to different points on the ROC curve.

It is common to report the area under the ROC curve (AUC) as a performance metric,

and in the case of protein function prediction the metric is often averaged across individual

32

GO terms [64]. To meaningfully compare GOstruct to other algorithms, we compute the

prediction confidence for each output-space variable yi using

ci(x) = max
y∈Y+

i

f(x,y)− max
y∈Y−i

f(x,y), (3.28)

where Y+
i = {y ∈ Y|yi = 1} is a subset of all labels that satisfy the hierarchical constraints

and have the ith variable set to 1. The subset Y−i is defined in a similar fashion, except with

the ith variable being set to 0. Given this measure, we generate an ROC curve for the variable

yi using the standard approach of computing ci(x) for all x in the test set. Note that, while

we’re able to measure the confidence associated with individual binary output variables,

constructing an ROC curve for structured labels is less straightforward, because the notion

of a “false positive” is not well defined: a p53 binder may be misclassified as an enzyme

binder (slight error) or as a toxin transporter (gross error). An ROC curve that treats all

misclassifications equally, no matter how slight or gross, will suffer the same drawbacks as

the 0-1 loss.

Experiment 1: GOstruct vs. BLAST NN

To compare the GOstruct algorithms to the transfer-of-annotation method, we computed

sequence similarity using BLAST for the following four species: C. elegans, D. melanogaster,

S. cerevisiae, and S. pombe. Sequence data was obtained from the genome database of

each organism (http://www.wormbase.org/, http://flybase.bio.indiana.edu/, http:

//www.yeastgenome.org/) and annotations were obtained from the Gene Ontology web-

site at http://www.geneontology.org. Our experiments follow the leave-one-species-out

paradigm [90], where we withhold one species for testing and train the GOstruct method on

the remaining data, rotating the withheld species. This variant of cross-validation simulates

the situation of annotating a newly-sequenced genome.

To prepare the data we removed all annotations that were discovered through computa-

tional means as these are generally inferred from sequence or structural similarity and would

introduce bias into any classifier that used sequence similarity to make a prediction [66].

This was done by removing all annotations with the evidence codes: IEA, ISS, ND, RCA,

33

and NR. After filtering for evidence codes we considered all GO molecular function terms

that appear as annotations in at least 10 proteins, resulting in a total of 361 terms.

The input-space features were obtained using the Basic Local Alignment Search Tool

(BLAST) [1]. BLAST is a dynamic-programming-based method that can be used to align

a query protein sequences to a database. The tool produces a set of e-values between the

query and significant matches in the database, which we use as features.

We ran BLAST for each of the proteins in our dataset against all four species, removing

the hits where a protein was aligned to other proteins from the same species. We employed

the nearest-neighbor BLAST methodology as our baseline. For every test protein, we trans-

ferred the annotations from the most significant BLAST hit against a protein from another

species. Proteins which didn’t have a hit with an e-value below 10−6 were not considered in

our experiments.

The GOstruct methods are provided exactly the same data as the BLAST method: each

protein was represented by its BLAST scores against the database proteins; this is known

as the BLAST empirical kernel map [72]; more specifically, features were the negative-log of

the BLAST e-values below 50, and features were then normalized to have values less than

1.0. An empirical kernel map arises from the intuition that two similar proteins will have

similar patterns of similarity to proteins in the database, i.e. their vectors of e-values will

be similar. For the output-space kernel, KY , we used a homogeneous linear kernel

KY(y,y′) = yTy′ − 1, (3.29)

which accounts for the fact that all labels share the root node.

We ran five fold cross-validation on the training data to select a suitable value of the

margin parameters γ (for perceptron) and C (for structured SVM) for each left-out species.

In our experiments, we noticed that finding the right value of γ for the perceptron algorithm

was not as essential as using the loss update proposed above.

The results for the leave-one-species-out experiments are presented in Table 3.1. We

present loss values only, since the BLAST-NN algorithm does not have confidence scores

associated with its predictions, preventing us from building ROC curves for it. We compare

34

Test on C. elegans D. melanogaster S. cerevisiae S. pombe
proteins 926 1893 1907 939
BLAST-NN 0.61 0.46 0.39 0.37
GOstructp 0.61 0.43 0.40 0.41
GOstructp∆ 0.58 0.39 0.42 0.36
GOstructsvmm 0.60 0.43 0.39 0.36
GOstructsvms 0.59 0.42 0.39 0.36
Random 0.78 0.86 0.88 0.84

Table 3.1: Classification results on predicting GO molecular function terms (361 terms that
have more than 10 annotations). We compare BLAST-NN with two variants of the percep-
tron (GOstructp and GOstructp∆) and two SVM variants (GOstructsvmm and GOstructsvms).
Reported is mean kernel loss per protein for each algorithm. The number of proteins used
in each organism is displayed in the second row. For comparison, we also include the per-
formance of a random classifier that transfers annotation from a training example chosen
uniformly at random. The standard deviations of these results are in the range 0.003-0.01

two perceptron variants: one using the standard penalty update, and another using the

proposed loss penalty update. We refer to these as GOstructp and GOstructp∆, respectively.

Additionally, we consider two SVM variants — GOstructsvmm and GOstructsvms — which use

margin re-scaling and slack re-scaling, respectively. The results show that the various flavors

of the GOstruct method performing on-par or better than the BLAST nearest-neighbor

classifier (BLAST-NN). The only exception to this is the standard implementation of the

perceptron method (GOstructp). Before looking at the differences between the GOstruct

methods, we note that all the classifiers performed poorly on C. elegans. This is due to

the fact that a vast majority of proteins in this species are annotated as protein binders

(GOID:0005515). Such annotations contain little information from a biological standpoint

and result in a skewed set of labels.

Our first observation is that the GOstructp∆ method, which uses the loss function in

the update rule of the perceptron, outperformed GOstructp in all folds except S. cerevisiae.

Furthermore, the SVM-based algorithm outperforms BLAST-NN and GOstructp, but not

GOstructp∆, which is a significantly simpler algorithm. The difference in margin re-scaling

versus slack re-scaling is negligible, and since the former requires slightly faster computations,

we drop slack re-scaling from consideration in the experiments below.

We assessed the robustness and variability of the results by randomly sampling the data

35

for training and testing: 20% of the training data was chosen at random and withheld from

training. The classifier was then trained on the remaining 80% of the training data and tested

as before. This provided us with a standard deviation measure that indicated how consistent

the classifiers were at obtaining the performance presented in Table 3.1. We computed the

standard deviations across 30 trials for every classifier. The values for the different classifiers

were between 0.003 and 0.01. The differences in performance between BLAST-NN and the

GOstruct methods (except for the naive perceptron method) are all greater than the observed

variability, implying that the diferences are statistically significant.

In summary, the results in Table 3.1 support our hypothesis that learning the structure

of the output space is superior to performing transfer of annotation. The GOstruct methods

have the added advantage that other sources of relevant genomic data can be modeled in

this framework as shown in the next set of experiments.

Experiment 2: GOstruct on Mousefunc data

As a further comparison of the GOstruct method we ran it on the Mousefunc dataset [64].

Mousefunc was a competition held in 2006 aimed at predicting GO terms for a collection of

mouse proteins. The protein IDs were masked by the organizers and the data released to the

competitors did not include protein sequences to prevent the inference of protein identity.

The released data included two different sources of gene expression data, protein-protein

interaction adjacency matrix, protein pattern annotation data from Pfam and InterPro, and

phylogenetic profiles. The associated GO terms were also provided for the training proteins

and the goal of each competitor was to produce predictions for the test set. Below is a

description of features from each data source.

Gene expression Gene expression data came from two sources. The first dataset, by

Zhang, et al. [95] had its values normalized, median-subtracted and transformed by the

arcsinh operator. Any negative values were set to 0. The second dataset, by Su, et al. [81],

was normalized by simply subtracting the mean and dividing by the standard deviation of

each feature. We used a linear kernel on the processed features.

36

Protein domain The three-dimensional structure of a protein generally consists of several

parts, where each part, referred to as protein domain, can function independently of the

rest. Protein domains can be readily extracted from the sequence and further classified into

families [7, 41]. The features provided for the Mousefunc challenge come from the Pfam [7]

and InterPro [41] databases and consist of indicator variables that signify whether a protein

belongs to a particular family. The linear kernel is then the number of families two proteins

share in common.

Protein-protein interactions The interaction data for the Mousefunc challenge were

obtained from human orthologs (homologs that arise through speciation), which in turn

came from the OPHID database [15]. The fact that two proteins interact is not a kernel by

itself. Rather, the features for a particular protein are binary values indicating the interaction

with another protein. The linear kernel is given by the number of interactions two proteins

have in common.

Phylogenetic profiles Phylogenetic profiles were obtained from BioMart [74] and rep-

resented by binary values that indicated the presence of orthologs in other species. The

corresponding linear kernel was the number of species that were common to two profiles.

Data Integration We treated missing entries in any source of data as zero. The features

within each source of data were normalized to unit vectors to normalize the contribution

of each data source to the overall input space kernel, KX , which was computed as the sum

of linear kernels over the individual datasets. As before, the joint kernel is computed as a

product of a linear output space kernels KY and KX (c.f. Equation 3.25), and the output

space is limited to the labels observed in the training set.

We trained the GOstruct methods to predict annotations for the subset of GO terms

requested by the competition organizers. Any training or test examples that had no annota-

tions in this subset were removed from the analysis. Analysis of molecular function, biological

process and cellular component namespaces were performed separately from each other. The

37

GO number test annotations
namespace of terms examples train test

MF 205 531 3.2 3.3
BP 513 626 7.1 8.0
CC 119 307 3.4 3.7

Table 3.2: Statistics of the Mousefunc dataset across namespaces: molecular function (MF),
biological process (BP), and cellular component (CC). We provide the number of terms in
each namespace for which annotations were provided, the number of examples in the test
set and the average number of annotations per protein in the training and test sets.

values of γ and C were again chosen by performing cross-validation on the training data.

We noticed that the algorithms were quite sensitive to the choice of their parameters on this

dataset.

We applied the SVM and perceptron-based GOstruct methods to the Mousefunc challenge

dataset whose statistics are provided in Table 3.2. The GOstruct method produces a set

of annotations for each protein, from which we directly computed the average kernel loss

per example and precision/recall averaged across GO terms. The results are provided in

Table 3.3. The predictions made by competitors in the Mousefunc challenge consist of

confidence scores for each GO term across all proteins. Computing precision and recall

therefore requires thresholding the predictions at some level. We chose to set the threshold

such that the number of predictions for each term equals the number of proteins annotated

with that term in the test set. In this case, precision is equal to recall; for the GOstruct

method precision and recall are very close, thereby making its results comparable to those

of the Mousefunc competitors. Note that this gives a significant advantage to the methods

we are comparing to, as they have access to information about the test set. But despite this

advantage, the GOstruct method outperforms all the other methods except Funckenstein by

a large margin in all namespaces (Table 3.3). For algorithms that produce confidence scores,

the kernel loss can be computed directly from the confidence scores, without thresholding

the predictions. For all algorithms except GeneMania, thresholding the confidence measures

leads to higher kernel loss.

In addition to the loss values, we computed the confidence of GOstruct predictions using

38

Equation (3.28). These confidence values allowed us to compute area under the curve (AUC)

for each GO term. Comparison of averages across all GO terms is presented in Table 3.3.

Overall, AUC values echo the relative performance assessment measured by the loss: al-

gorithms that yield lower loss values also tend to yield higher AUC scores. The GOstruct

method yielded the highest AUC values in all namespaces except biological process, where

the value was slightly lower than the one obtained from Guan, et al.’s algorithm [32]. How-

ever, four of the algorithms produced AUC values in the range of 0.82-0.84 for the biological

process experiment, suggesting that the algorithms may be hitting the ceiling of what’s

possible with the given training data.

To further illustrate the contribution of using the structured SVM approach, we com-

pare the GOstruct method to a collection of independent binary SVMs. The SVM-based

GOstructsvm method outperforms the collection of binary SVMs under all the performance

measures (Table 3.3). The binary SVM experiment was performed using the SVM implemen-

tation in the PyML machine learning library available at http://pyml.sf.net run with the

default parameters, and the same input-space kernel used to assess the GOstruct methods.

A full run of the GOstructsvm method (including model selection) took 6 hours for the

molecular function namespace, 30 hours for biological process, and 1.5 hours for cellular

component (all numbers are user time, and experiments were performed on a 3.0GHz 8Gb

RAM workstation using a single core). The perceptron-based method took about half the

time. The computation time across namespaces is affected by the number of annotation

terms: the arg max operation in Equation (3.1) requires a traversal over all combinations of

terms seen in the training set. Proteins are also annotated with more terms in the biological

process namespace (see Table 3.2) which increases the computation time of the output-space

kernel.

The perceptron-based GOstructp∆ algorithm is significantly simpler than the majority of

the algorithms employed by the participants in the Mousefunc challenge. It is very easy to

describe and implement, and converged quickly (usually in as few as five passes through the

training data). While being significantly simpler than all other algorithms, it maintained

39

GO Perf. Literature GOstruct SVM
nmspc. measure Alg 1 Alg 2 Alg 3 Alg 4 Alg 5 Alg 6 Alg 7 p∆ svm (binary)

MF kernel lossr 0.63 0.47 0.43 0.67 0.52 0.62 0.33 0.53 0.33 0.42
AUC 0.86 0.87 0.89 0.92 0.86 0.90 0.91 0.87 0.94 0.92
precision 0.45 0.61 0.53 0.56 0.51 0.57 0.66 0.40 0.67 0.59
recall 0.45 0.61 0.53 0.56 0.51 0.57 0.66 0.52 0.65 0.59
kernel loss 0.61 0.42 0.50 0.46 0.52 0.47 0.39 0.42

BP kernel lossr 0.79 0.69 0.63 0.84 0.74 0.72 0.58 0.67 0.60 0.67
AUC 0.76 0.74 0.77 0.83 0.76 0.84 0.82 0.76 0.83 0.79
precision 0.15 0.25 0.23 0.27 0.20 0.29 0.31 0.15 0.28 0.27
recall 0.15 0.25 0.23 0.27 0.20 0.29 0.31 0.24 0.28 0.27
kernel loss 0.86 0.68 0.71 0.71 0.76 0.67 0.65 0.67

CC kernel lossr 0.60 0.60 0.53 0.76 0.67 0.66 0.50 0.62 0.50 0.59
AUC 0.79 0.77 0.78 0.84 0.75 0.83 0.80 0.82 0.88 0.82
precision 0.33 0.36 0.39 0.42 0.35 0.40 0.46 0.23 0.43 0.45
recall 0.33 0.36 0.39 0.42 0.35 0.40 0.46 0.42 0.46 0.45
kernel loss 0.76 0.62 0.63 0.60 0.68 0.62 0.59 0.59

Table 3.3: Prediction results on the Mousefunc dataset for molecular function (MF), biolog-
ical process (BP) and cellular component (CC) namespaces. Reported are the mean kernel
loss per protein, precision/recall and mean AUC per GO term. Lower values of the loss and
higher values of other metrics are better. The best value for each experiment is highlighted.
There are two lines with kernel loss results. The results labeled as kernel lossr and AUC
are obtained using the raw confidence scores with no thresholding. All the other results in
the table are obtained by thresholding competitor results. GOstruct predictions require no
thresholding, so only one set of kernel loss numbers is reported. Alg 1 denotes the work by
Kim, et al. [47]. Alg 2 is an ensemble of calibrated SVMs by Obozinski, et. al [62]. Alg
3 is the kernel logistic regression, submitted by Lee, et al. [51]. Alg 4 is geneMANIA [57].
Alg 5 is GeneFAS [17]. Alg 6 is the work by Guan, et al. [32]. Alg 7 is Funckenstein [84].
GOstructp∆ uses the perceptron algorithm (Algorithm 1), and GOstructsvm denotes the n-
slack formulation of the structured SVMs with margin re-scaling. The last column presents
the results of running binary SVMs on each node individually. The variability in our results
was computed as in the previous experiment and yielded a standard deviation of 0.008 for
the perceptron, and 0.02 for the SVMs.

40

competitive performance with the other entries. Whereas in the four species experiment the

structured perceptron was on par with the structured-SVM, the structured-SVM was much

better on the Mousefunc data. We believe this has to do with the sparsity of the data in the

four-species experiment: each protein has appreciable levels of similarity to only a handful

of other proteins; the Mousefunc data on the other hand is not sparse. In our experience,

simple algorithms (e.g. perceptron or nearest-neighbor) often perform very well when data

is sparse.

All of the algorithms we looked at in this work performed best when tasked with the

prediction of molecular function, followed by cellular component, with worst performance

on prediction of the biological process namespace annotations. There are several factors

that may contribute to this ranking: molecular function is often associated with specific

sequence patterns (part of the input in the Mousefunc data), making it the easiest to predict.

Biological process is the namespace that has the largest number of terms which adds to

the difficulty—the classifier has more ways of making a wrong prediction. In experiments

published elsewhere in predicting individual GO terms from sequence using a BLAST-NN

approach, performance in the cellular component and biological process namespace was

very similar, and as we observe here, accuracy was much higher in the molecular function

namespace [66].

Prediction across GO namespaces

In the results presented thus far predictions were made independently in each namespace.

However, protein annotations are correlated across namespace. For example, proteins that

participate in DNA replication are likely to be localized to the cell’s nucleus. We therefore

performed an additional experiment where we train a classifier to predict GO terms in all

three namespaces simultaneously. This directly implements the above observation, since in

training we consider only combinations of GO terms that occur in the training data.

The results from this experiment are presented in Table 3.4. The results labeled as “in-

dependent” are taken from Table 3.3 and are included for comparison. These correspond

41

GO Inference GOstructp∆ GOstructsvm
namespace method Loss Prc. Rec. Loss Prc. Rec.

MF independent 0.53 0.40 0.52 0.33 0.67 0.65
combined 0.50 0.42 0.52 0.40 0.66 0.61

BP independent 0.67 0.15 0.24 0.60 0.28 0.28
combined 0.70 0.15 0.20 0.66 0.31 0.24

CC independent 0.62 0.23 0.42 0.50 0.43 0.46
combined 0.67 0.35 0.37 0.65 0.51 0.37

Table 3.4: Prediction across GO namespaces. We compare our original results for classifying each
namespace independently (the first row for each namespace in the table, labeled as “independent”)
with simultaneous prediction across all namespaces (the second row for each namespace in the
table, labeled as “combined”). Presented are kernel loss, precision and recall values for two of the
GOstruct classifiers.

to predicting the keywords from each namespace separately. The results labeled as “com-

bined” correspond to the classifier that was trained on all namespaces simultaneously. We

then measured the accuracy of each full prediction with respect to each namespace. We

observe that in all cases simultaneous prediction has higher precision and lower recall, with

the overall kernel loss being higher, except in one case (prediction of biological process using

the perceptron). This can be understood as follows: by only considering combinations of

GO terms that occur across namespaces in the training data our predictions become more

accurate; but this reduced flexibility leads to lower recall since the GO term combinations

present in the training data likely do not fully represent all the relevant combinations of GO

terms.

We considered a second approach for making inference across namespaces which incre-

mentally predicts annotations namespace by namespace, with predicted annotations serving

as input for the next stage in the prediction process. In the first stage we train a classifier to

predict annotations in a given namespace. The annotations predicted by this classifier are

then used as input features for prediction of annotations in another namespace. And finally,

results from two namespaces are used to infer annotations in the remaining namespace. For

prediction of biological process using molecular function predictions the precision and recall

were 0.29 and 0.27, respectively compared to 0.28 and 0.28 for the prediction made using

an independent classifier. For prediction of cellular component using molecular function

42

predictions the precision and recall were 0.44 and 0.47, respectively compared to 0.43 and

0.46 for the prediction made using an independent classifier. All the other results were not

as accurate as using independent classifiers. We believe this is the result of accumulation of

errors—the stagewise classifier is useful only when using molecular function as data, since

this is the namespace where predictions are most accurate. Otherwise, the process adds too

much noise.

Inference

As discussed above, the size of the output space Y is exponential in the number of GO terms,

making inference an expensive operation and the bottleneck of the algorithm. In this sec-

tion, we explore an additional inference algorithm and its impact on predictor performance.

There are two separate but related inference problems. The first is given by Equation (3.1)

and yields the most compatible label for a query protein. The second problem finds the

most violated constraint in a structured SVM using one of the functions Hi defined by

Equations (3.22)-(3.24):

arg max
y∈Y\yi

Hi(y). (3.30)

Note that when no rescaling is employed, the second inference problem reduces to a variant

of the first one:

arg max
y∈Y\yi

Hi(y) = arg max
y∈Y\yi

[
1−wT δψi(y)

]
=

= arg max
y∈Y\yi

[
1−wTψ(xi,yi) + wTψ(xi,y)

]
=

arg max
y∈Y\yi

wTψ(xi,y) = arg max
y∈Y\yi

f(xi,y),

but the additional loss terms in Hi prevents the same from happening in the cases of margin

or slack rescaling.

In all experiments considered so far, we reduced the output space Y to the labels observed

in the training set. Here we also consider an approximate inference algorithms that does not

employ this limitation. The algorithm is based on dynamic programming and assumes that

43

the inference problem has a linear decomposition:

arg max
y

Hi(y) = h(x)Ty, (3.31)

for some function h. The compatibility function f satisfies this requirement under the

product joint kernel and linear output-space kernel. From Equation (3.19), we have

f(x,y) =
∑
i

∑
ȳ 6=yi

αiȳ [K((xi,yi), (x,y))−K((xi, ȳ), (x,y))] =

=
∑
i

∑
ȳ 6=yi

αiȳ [KX (xi,x)KY(yi,y)−KX (xi,x)KY(ȳ,y)] =

=
∑
i

∑
ȳ 6=yi

αiȳKX (xi,x)
[
yTi y − ȳTy

]
= h(x)Ty

Since the two inference problems above are equivalent in the no-rescaling case and both rely

on the compatibility function only, the structured SVM with no rescaling is the only classifier

where this inference algorithm is considered.

The three GO namespaces (molecular function, biological process and cellular compo-

nent) are disjoint, and the inference algorithm handles each one in an independent fashion.

Each GO namespace is a DAG with a single source and multiple sinks. The function h(x)

defines an assignment of weights over the graph nodes, and the inference problem can be

thought of as finding a subset of nodes that yields the highest weighted sum while satisfying

the hierarchical constraints (every annotated node must have all of its ancestors annotated

as well). The algorithm starts by ranking the nodes based on their shortest distance to the

source. It then traverses the nodes from farthest to closest and for each node, the weighted

sum of the node and its descendants is split up among the node’s ancestors. At the end

of the traversal, each node is annotated with some fraction of the weights contributed by

the nodes deeper in the graph; the graph source is annotated with the full sum of weights.

The algorithm then removes the node with the most negative annotation and all its descen-

dants (to enforce hierarchical constraints), and recurses on the resulting subgraph. When

no negative annotations remain, the algorithm terminates and returns the remaining set of

nodes.

44

a
1

b
-12

c
-3

d
11

e
5

f
1

a
3

b
1

1

c
1

1

d
11

11

e
5

2 3

f
1

1

Figure 3.2: (Left) An example of a small GO graph and the corresponding set of weights defined
by h(x). (Right) A node traversal that results in exact inference; unfortunately, determining how
to split the weight of node e among its ancestors is a non-trivial problem.

An important consideration is how the weighted sum of a node gets split up among the

node’s ancestors. Consider the graph in Figure 3.2. The optimal label includes all nodes and

has the weight sum 3. However, deciding how to split the weight contribution of the e node

between its two ancestors b and c is a non-trivial problem and the optimal solution requires

consideration of the sibling nodes d and f, which has prohibitive complexity. Contributing

the entire weight of 5 to either b or c, will yield at least one negative node that is going

to be cut at the end of the traversal. In our implementation, we split the weight of a node

proportionally between its ancestors. While this doesn’t yield the optimal solution for the

graph in Figure 3.2, we noticed that such weight assignments do not happen frequently and

in most cases, this algorithm produces exact inference.

We present the performance of each inference algorithm on the molecular function names-

pace in Table 3.5. The performance was calculated using five-fold cross-validation on 2945

yeast proteins. We used a structured SVM with no margin rescaling for the two inference

algorithm and compare the performance to the margin-rescaling variant used in the previous

experiments.

The results demonstrate that while the inference algorithm based on dynamic program-

45

Rescaling Oracle Test Inference Loss
No Limited Limited 0.535
No Limited Dynamic 0.842
No Dynamic Limited 0.506
No Dynamic Dynamic 0.770
Margin Limited Limited 0.480

Table 3.5: Performance of different inference algorithms, expressed as mean loss per example
on the molecular function namespace. The oracle refers to the algorithm that finds the most
violated constraint using the penalty function in Equation (3.22). The test inference refers to
performing the argmax operation in Equation (3.1). When inference is restricted to the labels
occurring in the training set only, we refer to the algorithm as “Limited”. Inference that
uses the dynamic programming algorithm described in the text is referred to as “Dynamic”.

ming generally leads to better predictions, its restriction to the no-rescaling model limits

the algorithm utility; a structured SVM that limits both inference subproblems to the la-

bels occurring in the training set but using margin re-scaling outperforms all variants of the

no-rescaling algorithm.

We also note that while dynamic inference yields more flexibility during training, limiting

the output space during test inference is still preferred. This is signified by lower loss values

when dynamic programming is used for oracle inference, but high performance degradation

when used to solve the test inference problem.

46

Chapter 4

Multi-view Learning

In this chapter, we extend the GOstruct framework to handle heterogeneous sources of data

using multi-view learning. We first describe the structured-output multi-view framework

as it applies to labeled data only and then show how unlabeled data is incorporated. We

consider two feature maps (“views”), φ(c)(x) and φ(s)(x). The first one is defined for all

proteins and comprises a set of cross-species features that characterize the sequence of a

protein. The second map, φ(s)(x), is defined for proteins from a particular species only

and comprises a set of species-specific features such as protein-protein interactions and gene

expression data. The two maps are defined over the input space; the corresponding joint

feature maps, which we denote with ψ(c)(x,y) and ψ(s)(x,y), are functions of both inputs

and output as was the case in the previous chapter.

Our goal is to leverage information from both feature maps to make predictions about

the function of proteins in the target species. We note that each view will contain a different

number of labeled examples, but in the interest of keeping the notation simple, we use a

single variable, nl, with the understanding that its value will vary from one view to another.

In our multi-view setting we use two compatibility functions: f (c), which handles the

cross-species view, and f (s), which handles the species-specific view. Inference is then per-

formed according to

ŷ = h(x) = arg max
y∈Y

(
f (c)(x,y) + f (s)(x,y)

)
. (4.1)

Each compatibility function, f (c) and f (s), is associated with the corresponding joint feature

47

map, ψ(c) and ψ(s).

When working with labeled data only, each view is trained independently of the other

using the margin-rescaling structured SVM formulation from Equations (3.10)-(3.13):

min
w,ξ

1

2
‖w‖2

2 +
Cl
nl

nl∑
i=1

ξi (4.2)

s.t. ξi ≥ 0, i = 1, . . . , nl,

wTψ(xi,yi)−wTψ(xi,y) ≥ ∆(y,yi)− ξi, i = 1, . . . , nl,y ∈ Y \ yi

where ψ(x,y) is the feature map of the corresponding view. As before, the margin violations

are measured by the slack variables ξi. The parameter Cl controls the trade-off between

margin magnitude and the amount of margin violations for labeled examples.

In addition to the multi-view method outlined above, we investigate an approach we call

the chain classifier. In this approach, the predictions made by the cross-species classifier are

incorporated into the species-specific feature map by adding a feature for each GO term.

In other words, arg maxy f
(c)(xi,y) becomes a set of features in φ(s)(xi). The inference

made by the species-specific classifier is then reported as the overall prediction. This is an

alternative way of learning from the training information available in the two views and one

of its advantages is that the user is not limited to structured SVMs for the cross-species view.

While the multi-view approach requires a compatibility function for the joint inference in

Equation (4.1), the chain classifier has no such requirement and a simple BLAST nearest-

neighbor approach can be used to produce predictions from the cross-species information,

which are then provided as input-space features to the species-specific classifier.

The cross-species view will contain proteins from other species and will generally have

many more training instances than the species-specific view. Since the BLAST nearest-

neighbor classifier scales well with the size of the training data, it provides a natural choice for

the cross-species view. In our experiments below, we investigate the impact on performance

when BLAST nearest-neighbor is used in place of a structured SVM to make cross-species

predictions in a chain classifier.

48

Cross-Species
View

Species-Specific
View

Unlabeled Unlabeled

Labeled Labeled

Labeled

Minimize Disagreement

Maximize
Accuracy

{
{

Target
Species

External
 Species

Figure 4.1: The multi-view approach. Data is separated into two views: a cross-species view
that contains features computed from sequence, and a species-specific view that contains features
computed from PPI data in the target species (S. cerevisiae or M. musculus). The objective is to
maximize the accuracy on the labeled data and minimize the disagreement on the unlabeled data.

4.1 Unlabeled Examples

When producing labels is expensive and time-consuming, as is the case with experimental

functional annotations, it is common to incorporate unlabeled example into the analysis [35];

this is known as semi-supervised learning. In our case, unlabeled data is abundant because

many proteins in the target species are un-annotated and our intuition is that, by including

it in our analysis, we can better learn the input space structure.

In addition to the labeled data {(xi,yi)}nl
i=1, we are also given unlabeled data {(xi)}nl+nu

i=nl+1.

The objective of multi-view learning now becomes two-fold: maximize the accuracy on the

labeled data and minimize the disagreement between views on the unlabeled data [13].

Figure 4.1 presents the graphical overview of the approach. We require that all unlabeled

examples span both views to make disagreement minimization possible in the absence of

labels.

When dealing with labeled data, we aim to maximize the margin between the true label

yi and all other candidates. A similar principle holds for the unlabeled data. Given an

unlabeled example, we would like to maximize the margin in compatibility between some

49

label zi and all other labels. Formally, for each view we would like to optimize

min
w,ξ

1

2
‖w‖2

2 +
Cl
nl

nl∑
i=1

ξi +
Cu
nu

nl+nu∑
i=n1+1

ξi (4.3)

s.t. ξi ≥ 0, i = 1, . . . , nl + nu.

wTψ(xi,yi)−wTψ(xi,y) ≥ ∆(yi,y)− ξi i = 1, . . . , n,y ∈ Y \ yi

∃zi wTψ(xi, zi)−wTψ(xi,y) ≥ ∆(zi,y)− ξi i = nl + 1, . . . , nl + nu,y ∈ Y \ zi.

The label zi in the last constraint in Equation (4.3) represents the unknown label associated

with an unlabeled example xi. We pursue two approaches that approximate a solution to

this problem; the approaches differ in how zi is obtained. The first approach follows the co-

training algorithm, proposed by Brefeld et al. [13]. Each view suggests its most compatible

label to be used as the “true” label zi for the other view. The other view then updates

its model based on the proposed label and makes its own suggestion to the first view. The

process is repeated until consensus or until some number of iterations. The second approach

is a generalization of the transductive structured SVM [98] to multi-view learning. The label

zi is simply inferred using the current model as zi = arg maxy

(
f (c)(xi,y) + f (s)(xi,y)

)
[98].

4.2 Training and Inference

We have to address several issues associated with training of the proposed SVMs. As before,

the size of the output space Y is exponential in the number of GO terms, and in view of the

previous discussion we again focus only on those labels that appear in our training data.

As in the basic GOstruct method, we follow the working set approach [13, 85], where a set

of active constraints is maintained, and is grown incrementally by adding the most violated

constraint at every iteration. The outer loop of the algorithm iterates over the training

examples, both labeled and unlabeled. The inner loop that performs the model update is

presented as Algorithm 3. This algorithm addresses training of all the SVM formulations

considered here. The inner loop signals whether a new constraint has been added to the

working set of a particular training example, and the outer loop terminates when no new

50

Algorithm 3 Model update for a single example xi, for which a separate working set is
maintained. The algorithm finds the most violated constraint using label z, which is taken
to be yi for the labeled examples and inferred otherwise. If the new constraint is violated by
a larger amount than the constraints already in the working set, it is added to the working
set and the dual objective variables are updated using a projection algorithm.

Input: Training example xi, precision ε.
Output: Whether a new constraint has been added.
Define the current working set Wi = {y|αiy 6= 0}.
if xi is labeled then

Define z = yi.
else if using co-training then

repeat
Alternate between each view suggesting z [13]

until Consensus is reached or rmax iterations.
else if using transduction then

Define z = arg maxy

(
f (c)(xi,y) + f (s)(xi,y)

)
end if
If z changed since the last iteration, clear the working set.
for each view v = {c, s} do

Find the largest margin violation and the associated slacks:
ȳ← arg maxy∈Y\z f

(v)(xi,y)

ξi ← max+
y∈Wi

(∆(z,y)− f (v)(xi, z) + f (v)(xi,y)

ξ̄ ← max
{

0, (∆(z, ȳ)− f (v)(xi, z) + f (v)(xi, ȳ))
}

if ξ̄ > ξi + ε then
Add the constraint to the working set: Wi ←Wi ∪ {ȳ}
Optimize the dual objective over the working set Wi keeping αjy fixed for j 6= i.

end if
end for

constraints have been added after a full pass through the training data. Algorithms based

around a working set are guaranteed to converge in a polynomial number of steps [13, 85].

In most of our experiments, the number of iterations did not exceed 50.

Algorithm 3 adds a new constraint to the working set only if it is violated by a larger

amount than the current largest violation. We maintain a separate working set and a separate

set of dual variables αiy for each view. As before, we optimize the dual objective using a

projection method by first finding the optimal solution in an unconstrained space and then

projecting it to satisfy the constraints.

The only place in Algorithm 3 where the two views interact is during the inference of the

51

label z for unlabeled examples. As mentioned above, we explore two ways of inferring the

label z. First is the transductive approach, which simply infers the most compatible label

using the current model [98]. The second approach is the co-training algorithm proposed by

Brefeld et al. [13]. There are several deviations from that algorithm, however. Brefeld et

al.’s algorithm cross-assigns the labels suggested by each view as “truth” for the peer view.

In our experience, after the weights are updated, each view will correctly infer the label

suggested to it by the peer view, but those labels are still in disagreement. So, the labels

get cross-assigned again and the algorithm continues to alternate between the two states of

label assignment, neither of which yields consensus. To get around this problem, we replace

cross-assignment with a one-way assignment where the label suggested by the first view is

given to the second view and, after the second view updates its weights, we verify that the

new inference matches the suggestion. If it doesn’t, then the second view suggests its label

to the first view and the update is performed analogously.

Another deviation from the original algorithm is in the number of constraints added at

every iteration. Brefeld et al. proposed to keep adding constraints for a particular training

example until all constraints outside of the working set are violated by no more than the

constraints in the working set [13]. Instead, we choose to add constraints until a consensus

between the two views is reached. Once the consensus label z is obtained, at most one

additional constraint is added by Algorithm 3. Further constraints are not included until the

example is revisited again. Our intuition is two-fold: focusing entirely on a single unlabeled

example before moving on to the next one is likely to skew the model towards the examples

considered earlier; and adding a single violated constraint per iteration is more consistent

with how we treat labeled examples and inferences from the transductive SVM, which allows

for a cleaner comparison.

The final implementation issue is the order in which the training examples are traversed.

We alternate between a full pass through the labeled data and a full pass through the

unlabeled data. Interspersing unlabeled data in such a way prevents overfitting of the model

to the labeled data and “guides” the model towards a state that better captures the general

52

structure of the data. Note that it’s not viable to completely randomize the order of example

traversal, since there’s a different number of labeled examples in each view.

4.3 Experimental Setup

In the first set of our experiments we make predictions in a target species using data from that

species and data from other species, which we call the external species. As target species we

use S. cerevisiae and M. musculus. As external species for yeast we use D. melanogaster and

S. pombe, and H. sapiens is used as an external species for mouse. We choose external species

that are reasonably close to the target species and have a significant number of experimentally

derived GO annotations. As in the previous chapter, we downloaded annotations from the

Gene Ontology website (http://www.geneontology.org), and all annotations that were

obtained by computational predictions were excluded, limiting the analysis to the following

evidence codes: IDA, TAS, IMP, IGI, IPI, IEP, NAS, TC.

4.3.1 Cross-species Data

We used features based on protein sequence to construct the cross-species view. Protein

sequences for all species were retrieved from the UniProt database (http://uniprot.org).

In the cases where a gene has multiple splice forms, the longest one was used. Sequence

features were extracted as follows.

BLAST hits We represented a protein in terms of its BLAST similarity scores against

a database of annotated proteins [1]. We performed all-vs-all BLAST and the output was

post-processed by excluding all hits with e-values above 50.0. The remaining e-values were

divided by 50.0 to normalize them. Any values below 1e-10 after normalization were brought

up to 1e-10. We then use the negative log of the resulting values as features.

Localization signals Many biological processes are localized to various parts of the cell.

Information about protein localization can, therefore, be indicative of the function those

proteins perform [67]. For example, proteins that participate in translation of messenger

53

RNA to amino acids reside in the cell’s ribosome. A number of computational methods

can extract localization signal from a protein’s sequence [39]. Here, we used the coefficients

computed by the WoLF PSORT algorithm [40]. WoLF PSORT is an extension to PSORTII,

which is a k-nearest neighbor framework for localization signal extraction [39]. The particular

extension of WoLF is a feature selection algorithm that weighs PSORT features using a

greedy neighborhood search.

Transmembrane protein predictions Many proteins are embedded in one of the mem-

branes within the cell and tend to be associated with certain functions, such as cell adhesion

and transport of ions. Transmembrane proteins weave in and out of the membrane, with

some parts of the protein being inside of the cell, other parts being outside and yet a third

set of parts being in the membrane itself. The composition of amino acids differs across

the three parts, which allows one to predict the number of transmembrane domains — i.e.,

the number of times the protein weaves in and out of the membrane — from the protein’s

sequence using computational means, such as Hidden Markov Models [50]. For each protein,

we estimated the number of transmembrane domains using the TMHMM program [50], and

an indicator variable was associated with each number of transmembrane domains.

K-mer composition of N and C termini The two ends of a protein are known as the

N and C termini. These contain signals that are important for protein localization, binding

and other protein functions [4]. We computed features that represent the 3-mer composition

of 10 amino acid segments in the N and C termini of each protein.

Low complexity regions Low-complexity regions in proteins are abundant, have an ef-

fect on protein function and are not typically captured by standard sequence comparison

methods [20]. We scanned each protein with a sliding window of size 20, and a defined the

low-complexity segment as the window that contains the smallest number of distinct amino

acids. We used the amino acid composition of that segment as features.

54

Target Species S. cerevisiae M. musculus
Namespace MF BP CC MF BP CC
Target 3401 4332 4115 3150 2633 2125
External 3917 3000 5000 5000 3000 5000
GO terms 317 946 308 310 1697 240

Table 4.1: The number of proteins in the target and external species, as well as the number
of GO terms considered in each dataset. Namespace designations are as follows: MF -
molecular function; BP - biological process; CC - cellular component.

4.3.2 Species-specific Data

We used S. cerevisiae and M. musculus protein-protein interaction (PPI) data from STRING

8.3 [43] for species-specific information. A protein is represented by a vector of variables,

where component i indicates the STRING evidence score of an interaction between protein

i and the given protein.

In addition to PPI data, we obtained additional features based on natural language

processing (NLP) for the M. musculus species. These were protein-protein and protein-

GO-term co-occurrences that were extracted from PubMed abstracts with the help of an

NLP pipeline developed by our collaborators in Karin Verspoor’s group. Protein-protein

co-occurrence within a given sentence provides loose evidence that two proteins are related.

Similarly, if a protein and a GO term are mentioned in close proximity, this can be evidence

that the corresponding function is associated to the protein. The pipeline consists of: 1)

splitting of the abstracts into sentences. 2) protein name tagging using the LingPipe named

entity recognizer (http://alias-i.com/lingpipe); 3) GO term recognition via dictionary

lookup and 4) Extraction of term occurrence and within-sentence term co-occurrence counts.

The counts are then used as another set of features for our experiments with the M. musculus

species.

4.3.3 Data Statistics

The data pre-processing steps provided a certain number of target proteins that have features

in both views and valid annotations. Five-fold cross-validation is performed on this set of

55

proteins. Additional proteins, with cross-species features only, were obtained from the exter-

nal species D. melanogaster, S. pombe and H. sapiens. Table 4.1 provides several statistics

about each dataset. In the interest of keeping the run times down, we randomly subsam-

pled the external set down to 5000 proteins for molecular function and cellular component

experiments and down to 3000 proteins for biological process experiments.

4.3.4 GOstruct Parameters

Similar to the experiments in the previous chapter, we use linear input- and output-space

kernels:

K
(c)
X (x1,x2) = φ(c)(x1)Tφ(c)(x2)

K
(s)
X (x1,x2) = φ(s)(x1)Tφ(s)(x2)

KY(y1,y2) = yT1 y2 − 1,

and compute the joint kernel values using the product kernel from before:

K(c) ((x1,y1), (x2,y2)) = K
(c)
X (x1,x2)KY(y1,y2) (4.4)

for the cross-species view and, similarly, as

K(s) ((x1,y1), (x2,y2)) = K
(s)
X (x1,x2)KY(y1,y2) (4.5)

for the species-specific view.

All kernels were normalized according to

K(z1, z2) =
K(z1, z2)√

K(z1, z1)K(z2, z2))

to ensure consistent contribution across different feature spaces. Multiple sets of features

were combined via unweighted kernel summation. Kernel loss was used for margin re-scaling

and model assessment.

In each target species, classifier performance was estimated using five-fold cross-validation

on the proteins that have features in both views; folds were randomly selected such that no

56

two proteins from different folds have more than 50% sequence identity. To select appropriate

values for the parameters Cl and Cu, we ran four-fold cross-validation on the training data

in each experiment. The values of Cl

nl
= 1 and Cu

nu
= 0.1 yielded the highest accuracy on the

validation set almost universally.

4.4 Experiment 1: Impact of Cross-Species Informa-

tion

The first experiment is designed to determine the change in prediction accuracy we obtain

by introducing information from other species in the absence of unlabeled data. The multi-

view SVM in this case combines the cross-species and species-specific SVMs that are trained

separately; both models are used together for inference, as per Equation (4.1). The chain

classifier first trains a structured SVM on the cross-species view; it then incorporates the

predictions made by this SVM into the input-space feature map for the species-specific view.

A second SVM, trained on these predictions combined with the PPI data, is then applied to

the test set. As mentioned above, we also consider a variant of the chain classifier that uses a

BLAST-nearest-neighbor (BNN) approach to perform the cross-species prediction instead of

a structured SVM. We refer to this classifier variant as “BNN-Chain”. While our experiments

in the previous chapter showed that the structured SVM provided more accurate predictions

than the BNN approach, the BNN approach is more scalable to the large datasets that can

be used for the cross-species classifier. As a baseline, we trained a single structured-output

SVM, which we call joint-SVM, on target species data only, combining the features from both

views. Additionally, we trained two single-view SVMs: one using exclusively cross-species

information and one using exclusively species-specific features.

The results in Table 4.2 demonstrate the advantage of the multi-view and chain ap-

proaches: these classifiers achieve the lowest loss and highest AUC of all the methods, and

achieve higher performance than either view by itself. The BNN-chain classifier achieves

slightly worse performance than the chain classifier that uses the structured SVM; however,

the ability to use this classifier with much larger external species datasets makes it a highly

57

Kernel Loss
Target species S. cerevisiae M. musculus
Namespace MF BP CC MF BP CC
Cross-Species 0.48 0.55 0.32 0.35 0.60 0.32
Species-Specific 0.44 0.35 0.21 0.38 0.55 0.30
Joint 0.34 0.35 0.20 0.32 0.54 0.28
Multi-view 0.34 0.34 0.22 0.30 0.53 0.27
Chain 0.33 0.34 0.20 0.31 0.55 0.27
BNN-Chain 0.33 0.35 0.20 0.32 0.55 0.28

AUC
Target species S. cerevisiae M. musculus
Namespace MF BP CC MF BP CC
Cross-Species 0.87 0.79 0.78 0.89 0.67 0.80
Species-Specific 0.90 0.94 0.94 0.83 0.81 0.84
Joint 0.94 0.94 0.95 0.88 0.80 0.85
Multi-view 0.95 0.94 0.94 0.90 0.79 0.88
Chain 0.94 0.94 0.95 0.90 0.82 0.87
BNN-Chain 0.94 0.94 0.95 0.89 0.82 0.87

Table 4.2: Classifier performance in predicting GO terms, quantified by mean loss per ex-
ample (top) and mean AUC per GO term (bottom) when no unlabeled data is used. Lower
loss values and higher AUC values are better. The results were obtained via five-fold cross-
validation on all proteins from the target species. Multi-view and cross-species SVMs were
also provided with the training examples from external species.

58

viable approach. The species-specific classifier performs better in yeast than in mouse. For

the cross-species classifier we see the opposite effect, with the mouse classifier exhibiting

better accuracy than the yeast classifier. The accuracy of the cross-species view has to do

with how well-annotated are closely related species (S. pombe in the case of S. cerevisiae,

and H. sapiens in the case of M. musculus). Furthermore, the species-specific SVM out-

performed the cross-species SVM in biological process and cellular component namespaces.

This is expected since protein-protein interactions indicate that the two proteins participate

in the same biological process in the same place in the cell.

We observe that in nearly all of the experiments, the performance values for the biological

process namespace tends to lag behind molecular function and cellular component. We

believe this is because the prediction of biological process is a harder problem, which is in

part due to the larger number of GO terms in the namespace (Table 4.1).

To further investigate the interplay between cross-species and species-specific information,

we ran additional experiments, reducing the number of target-species proteins while keeping

the set of external proteins fixed. We present the results of these experiments on molecular

function in S. cerevisiae in Table 4.3. As expected, the cross-species information becomes

more important as the number of training examples in the target species decreases. In

particular, the cross-species SVM outperforms both the species-specific and the joint SVMs

when the number of S. cerevisiae proteins is 500, a scenario that more closely simulates

annotating a newly-sequenced genome. We note that, in all cases, the multi-view and chain

classifiers outperform all other methods, demonstrating their robustness in combining cross-

species and species-specific information. We further observe that as the cross-species features

become more relevant, proper utilization of those features becomes important; this is signified

by the BNN-based chain classifier degrading in performance faster than the SVM-based chain

classifier.

59

Kernel Loss
Training Samples

Classifier 2720 1500 1000 500
Cross-Species 0.48 0.49 0.51 0.51
Species-Specific 0.44 0.48 0.52 0.56
Joint 0.34 0.40 0.44 0.52
Multi-view 0.34 0.37 0.40 0.43
Chain 0.33 0.36 0.39 0.45
BNN-Chain 0.33 0.38 0.41 0.48

AUC
Training Samples

Classifier 2720 1500 1000 500
Cross-Species 0.87 0.86 0.84 0.84
Species-Specific 0.90 0.87 0.85 0.80
Joint 0.94 0.91 0.89 0.83
Multi-view 0.95 0.94 0.92 0.90
Chain 0.94 0.92 0.91 0.88
BNN-Chain 0.94 0.93 0.91 0.87

Table 4.3: Classifier performance in predicting molecular function GO terms, quantified by
mean loss per example (top) and mean AUC per GO term (bottom) when no unlabeled
data is used. Lower loss values and higher AUC values are better. The number of training
examples refers to S. cerevisiae proteins that are represented in both views. Multi-view
and Cross-Species SVMs were provided the additional 3917 proteins that only have BLAST
features.

60

Cross-species dominant
GO ID n Cross-sp. Sp.-spec. GO term

GO:0016773 140 0.96 0.87 phosphotransferase activity, alcohol group as acceptor
GO:0004672 97 0.99 0.90 protein kinase activity
GO:0016301 167 0.95 0.86 kinase activity
GO:0042578 93 0.93 0.87 phosphoric ester hydrolase activity
GO:0016772 247 0.91 0.87 transferase activity, phosphorus-containing groups
GO:0016787 621 0.86 0.82 hydrolase activity
GO:0016740 576 0.88 0.85 transferase activity
GO:0016462 247 0.87 0.85 pyrophosphatase activity

Species-specific dominant
GO ID n Cross-sp. Sp.-spec. GO term

GO:0003702 121 0.85 0.94 RNA polymerase II transcription factor activity
GO:0016746 93 0.83 0.90 transferase activity, transferring acyl groups
GO:0005515 511 0.75 0.82 protein binding
GO:0005198 321 0.89 0.96 structural molecule activity
GO:0022890 102 0.93 0.98 inorganic cation transmembrane transporter activity
GO:0030528 293 0.88 0.93 transcription regulator activity
GO:0008324 113 0.93 0.97 cation transmembrane transporter activity
GO:0016879 106 0.88 0.92 ligase activity, forming carbon-nitrogen bonds

Table 4.4: A comparison of the cross-species and species-specific SVMs across general GO
terms. For each classifier, we present eight GO terms for which that classifier outperformed
the other by the largest margin. The second column displays the number of proteins in the
dataset annotated with each GO term. The third and fourth columns display the corre-
sponding AUC scores.

4.4.1 Performance comparison on individual GO terms

For further analysis of performance we examined the above classifiers in the context of

individual GO terms. The analysis presented here is on the molecular function namespace

for the S. cerevisiae species; we note that the results are qualitatively similar in M. musculus.

We refer to a GO term as “general” if more than 90 examples in the dataset are annotated

with it; otherwise, we refer to it as “specific”. We picked this threshold by analyzing the

distribution of all 317 GO terms across all 3401 S. cerevisiae examples and identifying a

large break in the distribution.

The comparison of cross-species and species-specific classifiers on general GO terms is

presented in Table 4.4. GO terms for which the cross-species classifier achieved better per-

formance primarily correspond to enzyme activity. This is attributed to the fact that en-

61

Cross-species dominant
GO ID n Cross-sp. Sp.-spec. GO term

GO:0003746 10 0.97 0.60 translation elongation factor activity
GO:0032561 13 0.86 0.63 guanyl ribonucleotide binding
GO:0005525 13 0.86 0.63 GTP binding
GO:0042803 10 0.84 0.62 protein homodimerization activity
GO:0019001 14 0.87 0.65 guanyl nucleotide binding
GO:0003724 31 0.97 0.80 RNA helicase activity
GO:0016651 12 0.95 0.79 oxidoreductase activity, acting on NADH or NADPH
GO:0042802 10 0.78 0.63 identical protein binding

Species-specific dominant
GO ID n Cross-sp. Sp.-spec. GO term

GO:0000384 12 0.51 0.99 first spliceosomal transesterification activity
GO:0000385 18 0.51 0.99 spliceosomal catalysis
GO:0000386 12 0.59 0.99 second spliceosomal transesterification activity
GO:0003684 11 0.59 0.96 damaged DNA binding
GO:0042054 10 0.62 0.99 histone methyltransferase activity
GO:0018024 10 0.63 0.99 histone-lysine N-methyltransferase activity
GO:0030515 16 0.70 0.99 snoRNA binding
GO:0019213 24 0.71 0.99 deacetylase activity

Table 4.5: A comparison of the cross-species and species-specific SVMs across specific GO
terms. The columns present the same type of information as those in Table 4.4.

zymes (proteins that catalyze chemical reactions) can be readily identified from sequence

motifs [24, 8], and the cross-species view works with sequence-based features. The species-

specific SVM, on the other hand, achieves better performance on a wider array of GO

categories ranging from binding and transport to regulation and even some enzyme activity

as well.

The same analysis is presented in Table 4.5 for the specific GO terms. One concern when

working with specific GO terms is their representation across the fold split. In the extreme

case, when all examples with a particular GO term are assigned to a single fold, the classifier

has no training data for that GO term when that fold is chosen as the test fold. After

analyzing the distribution of GO terms across the dataset, we noted that this was not the

case; we observed that the distribution was fairly even and in all cases, the species-specific

classifier had access to at least half of examples annotated with any specific GO term. We

believe this indicates that the performance differences in Table 4.5 have more to do with

each SVM being able to learn better from its features for a particular set of GO terms.

The cross-species classifier achieves better performance on a number of specific GO terms.

62

Multi-view dominant
GO ID n Cross-sp. Sp.-spec. GO term

GO:0042803 10 0.79 0.71 protein homodimerization activity
GO:0019200 14 0.98 0.90 carbohydrate kinase activity
GO:0016780 14 0.98 0.91 phosphotransferase activity, substituted phosphate groups
GO:0016627 19 0.96 0.89 oxidoreductase activity, CH-CH group of donors
GO:0008374 13 0.97 0.91 O-acyltransferase activity
GO:0043169 26 0.87 0.81 cation binding
GO:0031267 10 0.88 0.83 small GTPase binding
GO:0017016 10 0.88 0.83 Ras GTPase binding

Chain dominant
GO ID n Cross-sp. Sp.-spec. GO term

GO:0000166 38 0.66 0.74 nucleotide binding
GO:0051087 12 0.86 0.93 chaperone binding
GO:0043130 25 0.89 0.96 ubiquitin binding
GO:0032182 28 0.89 0.96 small conjugating protein binding
GO:0017076 37 0.77 0.83 purine nucleotide binding
GO:0003684 11 0.91 0.97 damaged DNA binding
GO:0030554 24 0.80 0.86 adenyl nucleotide binding
GO:0001671 11 0.85 0.90 ATPase activator activity

Table 4.6: A comparison of the multi-view and chain classifiers across specific GO terms. For
each classifier, we present eight GO terms for which that classifier outperformed the other
by the largest margin. The second column displays the number of proteins in the dataset
annotated with each GO term. The third and fourth columns display the corresponding
AUC scores.

However, there appears to be no common theme among the terms. The three top GO terms

for which the species-specific classifier does better, on the other hand, are all related to

spliceosomal activity. Spliceosome is a complex of proteins working together to perform

splicing (removal of introns from pre-mRNA) and the corresponding proteins can be easily

identified through protein-protein interaction data used by the species-specific classifier.

Indeed, all 12 proteins annotated with GO:0000384 have very strong evidence of interaction

with each other.

In addition to the two single-view classifiers, we also looked at the performance of the

multi-view framework. The multi-view framework did better than the cross-species SVM

in 286 out of 317 GO terms and outperformed the species-specific SVM in 280 out of 317

GO terms. In both cases, the multi-view framework achieved better performance across all

general GO terms and, in specific GO term cases where it got outpeformed, the difference

in the AUC scores was never above 0.06.

63

We also compared the multi-view and chain classifiers. The difference in performance of

the two frameworks on general GO terms was negligible. Performance comparison on specific

GO terms is presented in Table 4.6. Similar to the cross-species classifier in Table 4.4, we

observe a lot of enzyme activity associated with the multi-view framework. We attribute

this to the fact that multi-view classifier works with the sequence data directly, while the

chain framework effectively converts the sequence data to cross-species view predictions

that are then used as features in the final classifier stage. The chain classifier achieves better

performance on GO terms associated with a number of binding functions, which is something

that can be identified in the protein-protein iteraction data; we conjecture that because the

sequence-based features become abstracted in the chain framework, the classifier places more

emphasis on learning from the PPI data.

4.5 Experiment 2: Impact of Unlabeled Data

The second set of experiments is designed to measure the impact of unlabeled data. We ran

five-fold cross-validation using the same test data in every fold as above. The S. cerevisiae

training data for every experiment was split into labeled and unlabeled examples. Similar

to experiments in the previous section, we include all labeled proteins that only have feature

representation in the cross-species view.

As shown in Table 4.7 the addition of unlabeled data had negative impact on classifier

performance. The co-training approach appears to be affected less severely, but both semi-

supervised algorithms fail to learn from unlabeled data. We conjecture that this is due to the

sparsity with which the joint input-output space is characterized by the labeled examples.

4.6 Experiment 3: CAFA challenge

We entered the multi-view GOstruct framework into the CAFA challenge (http://biofunctionprediction.

org/). The challenge involved making molecular function and biological process predictions

for a number of target proteins in seven eukaryote species: A. thaliana, D. discoideum, H.

sapiens, M. musculus, R. norvegicus, S. cerevisiae and X. laevis. The targets were made

64

19

25
29

15

24
26

16

27

23

Figure 4.2: A figure presented at the Automatic Function Prediction special interest group meeting
at ISMB2011 detailing the performance of classifiers used in the CAFA challenge. The precision
and recall values were computed for the molecular function namespace using the top n GO terms
retrieved for each test protein. GOstruct is identified with the label “29”.

65

examples Loss AUC
Lbld # Ulbld CO-tr. Trans. CO-tr. Trans.

500 0 0.43 0.43 0.90 0.90
500 500 0.50 0.62 0.86 0.77
500 1000 0.65 0.66 0.75 0.74
500 1500 0.67 0.77 0.75 0.66
500 2000 0.71 0.77 0.72 0.63
1000 0 0.40 0.40 0.92 0.92
1000 500 0.42 0.44 0.91 0.89
1000 1000 0.43 0.57 0.91 0.81
1000 1500 0.42 0.62 0.91 0.77

Table 4.7: Mean loss per example for co-training and transductive SVMs computed for
various numbers of labeled and unlabeled S. cerevisiae training examples. The number of
non cerevisiae proteins was the same in all cases. The test data used in these experiments
was identical to that used in Table 4.2.

available to the contestants in September, 2010, at which point they had no experimentally

verified functional annotations. Over the course of the next few months, experimental anno-

tations became available for around 700 of the target proteins (primarily human and mouse),

which allowed the organizers to evaluate submitted predictions.

The assessment results were presented at the Automatic Function Prediction special

interest group meeting of ISMB in July, 2011. One of the figures presented at the meeting is

displayed here as Figure 4.2. For privacy reasons, the identity of all algorithms was masked

through the use of numeric identifiers, with the label “29” corresponding to GOstruct. We

note that because the predictions we submitted were in the form of binary vectors, the

performance of the algorithm is captured by a single point on the precision-vs.-recall plot.

Figure 4.2 demonstrates that GOstruct achieves higher level of precision for a fixed value of

recall than all other participants in the molecular function namespace. The performance of

GOstruct was closer to the median in the biological process namespace. We note that high

precision is desirable for biologists who may want to experimentally verify a small number

of GO terms returned for a query protein.

The CAFA challenge provided the target proteins but the training data was up to each

participant. We retrieved protein sequences from UniProt and trained three cross-species

66

Predictions for Cross-sp. view Sp.-specific view
A. thaliana A. thaliana, S. cerevisiae, D. melanogaster, S. pombe PPI

D. discoideum A. thaliana, S. cerevisiae, D. melanogaster, S. pombe PPI
H. sapiens H. sapiens PPI

M. musculus M. musculus, R. norvegicus PPI, NLP
R. norvegicus M. musculus, R. norvegicus -
S. cerevisiae A. thaliana, S. cerevisiae, D. melanogaster, S. pombe PPI

X. laevis A. thaliana, S. cerevisiae, D. melanogaster, S. pombe -

Table 4.8: The breakdown of information employed by each model to make predictions for
CAFA targets. The cross-species view used all of the sequence-based features described in
the text.

Loss AUC
Species cross-sp. sp.-specific m.-view cross-sp. sp.-specific m.-view
A. thaliana 0.36 0.46 0.34 0.92 0.87 0.94
D. discoideum 0.41 0.48 0.39 0.79 0.77 0.84
H. sapiens 0.37 0.41 0.34 0.83 0.83 0.87
M. musculus 0.34 0.40 0.32 0.84 0.83 0.87
S. cerevisiae 0.46 0.44 0.33 0.85 0.92 0.94

Table 4.9: Cross-validation results on the training data for five of the CAFA target species,
for which species-specific features were available. Presented are mean loss per example and
mean AUC per GO term.

SVMs using the sequence-based features described earlier in this chapter. We present

the overview of which models were applied to make predictions for which species in Ta-

ble 4.8. Note that the multi-view framework allowed us to incorporate information from well-

annotated organisms that were not part of the challenge (D. melanogaster and S. pombe).

In addition to the three cross-species models, we trained species-specific SVMs for five of

the target species using protein-protein interaction data from the STRING database; R.

norvegicus and X. laevis did not have species-specific models due to data availability and

issues with protein ID matching. The M. musculus model also included NLP-based features.

In addition to submitting predictions for the CAFA challenge, we ran cross-validation

on the training data to estimate the impact of combining the information from both views.

The results of this cross-validation are presented in Table 4.9. We focused on the five target

species for which we had species-specific features, limiting the cross-species SVMs to the same

67

set of proteins in each case. As expected, the multi-view framework provided a performance

boost for all species, as signified by lower loss and higher AUC values in Table 4.9. The multi-

view results for S. cerevisiae and M. musculus are on par with our previously obtained values

in Table 4.2.

68

Chapter 5

Conclusion

This work presented GOstruct, a structured-output framework for automatic function pre-

diction. We demonstrated that by predicting the full annotation directly, GOstruct outper-

formed both the traditional transfer-of-annotation methods as well as algorithms that break

the problem up into a collection of binary classification tasks in two critical assessment chal-

lenges: Mousefunc and CAFA. Furthermore, we showed how multiple disparate sources of

data across multiple species can be combined via the use of views. Our analysis showed that

sequence-based features are highly predictive of enzyme function, while protein-protein in-

teraction data is able to identify genes that participate in the same biological process and are

localized to the same cellular component; we demonstrated that the multi-view framework

was able to effectively combine both predictors, achieving better performance than either

classifier.

5.1 Open problems

A number of issues remain to be resolved. In our experience, some data sources, such as

gene expression, were not contributing to increased classifier accuracy and in some cases

were even degrading the performance. However, a more sophisticated kernel could make

better use of such features and further analysis of kernels used by the framework is required.

Similarly, our semi-supervised learning results indicated that unlabeled data led to degraded

performance, an issue that could potentially be resolved through a different choice of kernels.

69

A related issue is model interpretability. The current SVM models produced by the

framework are sparse with respect to example/label pairs, but not features. While this

allows us to identify important proteins and annotations in the dataset, we are currently

unable to specify what features of those protein are responsible for the predictions. One of

the future directions is to incorporate feature selection methods, such as filter and embedded

methods used for binary classification [33], into the framework.

The final issue related to the framework is scalability. The running time of the working

set training algorithm is quadratic in the number of training examples, which presents a

problem for the ever-growing datasets. While we were able to partially address the issue

by replacing the cross-species SVM with the BLAST nearest-neighbor classifier in our chain

algorithm, more efficient training algorithms are required for structured SVMs to be applied

to larger species-specific datasets.

In general, automatic function prediction is still an ongoing area of research. While de-

signing more accurate and efficient algorithms is important, there is an orthogonal issue of

critical assessment. Future iterations of the CAFA challege will help with identifying the

current state-of-the-art as well as the bottlenecks in automatic function predictions. Simi-

larly, The HumanFunc Challenge (http://func.mshri.on.ca/human/challenge) currently

being developed will allow critical assessment of algorithms on the human genome, similar

to what Mousefunc achieved with the mouse.

70

Appendix

In this chapter, we present the projection algorithm used by Algorithm 2 to solve the opimiza-

tion problem in Equations (3.15)-(3.17) over the dual variables αiy that correspond to the

constraints in the working set Wi. For simplicity, we can rewrite the problem in its vector

form

maxα−1
2
αTJα + bTα (5.1)

s.t. 1Tα ≤ C/n, (5.2)

α ≥ 0 (5.3)

where α is the vector of variables in the working set Wi, J is the associated matrix of

[δψ(·)]T δψ(·) values, bTα is the linear term obtained from the product of dual variables in

α with all other fixed variables, and 1 and 0 are vectors of all ones and zeros, respectively.

The projection method first finds the optimal solution in the unconstrained space and then

projects it to the subspace defined by the constraints. The unconstrained maximum α(u)

occurs where the objective derivative is equal to zero:

−Jα(u) + b = 0. (5.4)

To find the direction of projection we use the fact that the derivative will be perpendicular

to the active constraints. Any vector c1, where c is a scalar, will be perpendicular to the

constraint in Equation (5.2). Thus, we would like to offset the unconstrained solution α(u)

along a direction v, such that the derivative maintains orthogonality. If t is the amount of

offset, then the derivative at the resulting point is given by −J(α(u) + tv) + b = (−Jα(u) +

b)− tJv = −tJv. From here, it is easy to see that offsetting along the vector v that satisfies

71

Jv = 1 will always yield a point where the derivative is along the direction 1 (i.e., is of the

form c1). We then determine the amount of offset t by solving 1T (α(u) + tv) = C/n.

Similar computations result in projection directions that yield orthogonality with con-

straints in Equation (5.3). The matrix J is positive semi-definite and all linear systems can

be solved simultaneously by performing Cholesky decomposition on J . In our experience,

the projection method converges faster than the SMO-like algorithms.

72

REFERENCES

[1] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local alignment
search tool. J. Mol. Biol, 215(3):403–410, 1990.

[2] K. Astikainen, L. Holm, E. Pitkanen, S. Szedmak, and J. Rousu. Towards structured
output prediction of enzyme function. In BMC proceedings, volume 2, page S2. BioMed
Central Ltd, 2008.

[3] E.C. Baechler, F.M. Batliwalla, G. Karypis, P.M. Gaffney, W.A. Ortmann, K.J. Espe,
K.B. Shark, W.J. Grande, K.M. Hughes, V. Kapur, et al. Interferon-inducible gene
expression signature in peripheral blood cells of patients with severe lupus. Proceedings
of the National Academy of Sciences of the United States of America, 100(5):2610, 2003.

[4] I. Bahir and M. Linial. Functional grouping based on signatures in protein termini.
Proteins: Structure, Function, and Bioinformatics, 63(4):996–1004, 2006.

[5] G. Bakir, T. Hofmann, and B. Schölkopf. Predicting structured data. The MIT Press,
2007.

[6] Z. Barutcuoglu, R.E. Schapire, and O.G. Troyanskaya. Hierarchical multi-label predic-
tion of gene function. Bioinformatics, 22(7):830, 2006.

[7] A. Bateman, L. Coin, R. Durbin, R.D. Finn, V. Hollich, S. Griffiths-Jones, A. Khanna,
M. Marshall, S. Moxon, E.L.L. Sonnhammer, et al. The pfam protein families database.
Nucleic acids research, 32(suppl 1):D138, 2004.

[8] A. Ben-hur and D. Brutlag. Protein sequence motifs: Highly predictive features of
protein function. In I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors, Feature
extraction, foundations and applications. Springer Verlag, 2006.

[9] A. Ben-Hur, C.S. Ong, S. Sonnenburg, B. Scholkopf, and G. Ratsch. Support vector
machines and kernels for computational biology. PLoS Computational Biology, 4(10),
2008.

[10] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In
Proceedings of the eleventh annual conference on Computational learning theory, page
100. ACM, 1998.

73

[11] B. Boeckmann, A. Bairoch, R. Apweiler, M.C. Blatter, A. Estreicher, E. Gasteiger, M.J.
Martin, K. Michoud, C. O’Donovan, I. Phan, et al. The swiss-prot protein knowledge-
base and its supplement trembl in 2003. Nucleic acids research, 31(1):365, 2003.

[12] P. Bork and E. V. Koonin. Predicting functions from protein sequences - where are the
bottlenecks? Nature Genetics, 18:313–318, 1998.

[13] U. Brefeld and T. Scheffer. Semi-supervised learning for structured output variables. In
Proceedings of the 23rd international conference on Machine learning, pages 145–152.
ACM, 2006.

[14] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and regression
trees. Wadsworth. Belmont, CA; Wadsworth International Group, 1984.

[15] K.R. Brown and I. Jurisica. Online predicted human interaction database. Bioinfor-
matics, 21(9):2076, 2005.

[16] C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data
mining and knowledge discovery, 2(2):121–167, 1998.

[17] Y. Chen and D. Xu. Global protein function annotation through mining genome-scale
data in yeast Saccharomyces cerevisiae. Nucleic acids research, 32(21):6414, 2004.

[18] C.M. Christoudias, R. Urtasun, and T. Darrell. Multi-view learning in the presence of
view disagreement. In UAI, page 5, 2008.

[19] W.T. Clark and P. Radivojac. Analysis of protein function and its prediction from
amino acid sequence. Proteins: Structure, Function, and Bioinformatics, 2011.

[20] A. Coletta, J.W. Pinney, D.Y.W. Soĺıs, J. Marsh, S.R. Pettifer, and T.K. Attwood.
Low-complexity regions within protein sequences have position-dependent roles. BMC
systems biology, 4(1):43, 2010.

[21] M. Collins. Discriminative training methods for hidden Markov models: theory and
experiments with perceptron algorithms. Proceedings of the ACL-02 conference on Em-
pirical methods in natural language processing-Volume 10, pages 1–8, 2002.

[22] M. Deng, T. Chen, and F. Sun. An integrated probabilistic model for functional pre-
diction of proteins. In RECOMB, pages 95–103, 2003.

[23] D. Devos and A. Valencia. Practical limits of function prediction. PROTEINS-NEW
YORK-, 41(1):98–107, 2000.

[24] K. Dhwani et al. Modenza: Accurate identification of metabolic enzymes using function
specific profile hmms with optimised discrimination threshold and modified emission
probabilities. Advances in Bioinformatics, 2011, 2011.

[25] J.A. Eisen. Phylogenomics: improving functional predictions for uncharacterized genes
by evolutionary analysis. Genome research, 8(3):163, 1998.

74

[26] B.E. Engelhardt, M.I. Jordan, K.E. Muratore, and S.E. Brenner. Protein molecular
function prediction by Bayesian phylogenomics. PLoS computational biology, 1(5):e45,
2005.

[27] R.E. Fan, P.H. Chen, and C.J. Lin. Working set selection using second order informa-
tion for training support vector machines. The Journal of Machine Learning Research,
6:1889–1918, 2005.

[28] R. Fletcher. Practical methods of optimization. John Wiley and Sons, Inc., 1987.

[29] M. Y. Galperin and E. V. Koonin. Sources of systematic error in functional annotation
of genomes: domain rearrangement, non-orthologous gene displacement, and operon
disruption. In silico Biology, 1:55–67, 1998.

[30] K. Ganchev, J. Graca, J. Blitzer, and B. Taskar. Multi-view learning over structured
and non-identical outputs. In Proceedings of The 24th Conference on Uncertainty in
Artificial Intelligence. Citeseer, 2008.

[31] Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nat.
Genet., 25(1):25–9, 2000.

[32] Y. Guan, C. Myers, D. Hess, Z. Barutcuoglu, A. Caudy, and O. Troyanskaya. Predicting
gene function in a hierarchical context with an ensemble of classifiers. Genome Biology,
9(Suppl 1):S3, 2008.

[33] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of
Machine Learning Research, 3:1157–1182, March 2003.

[34] T. Hamp, R. Kassner, S. Seemayer, E. Vicedo, et al. Nearest-neighbor approaches to
predict protein function by homology inference alone. In Automatic Function Prediction
special interest group meeting at ISMB, 2011.

[35] T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin. The elements of statistical learn-
ing: data mining, inference and prediction. The Mathematical Intelligencer, 27(2):83–
85, 2005.

[36] B. Hayete and J.R. Bienkowska. Gotrees: predicting go associations from protein do-
main composition using decision trees. In Pac Symp Biocomput, volume 10, pages
127–138, 2005.

[37] S. Hennig, D. Groth, and H. Lehrach. Automated gene ontology annotation for anony-
mous sequence data. Nucleic Acids Research, 31(13):3712, 2003.

[38] T. Hofmann, L. Cai, and M. Ciaramita. Learning with taxonomies: Classifying docu-
ments and words. In NIPS Workshop on Syntax, Semantics, and Statistics, 2003.

[39] P. Horton and K. Nakai. Better prediction of protein cellular localization sites with the
k nearest neighbors classifier. In Proceeding of the Fifth International Conference on
Intelligent Systems for Molecular Biology, pages 147–152, 1997.

75

[40] P. Horton, K.J. Park, T. Obayashi, and K. Nakai. Protein subcellular localization pre-
diction with WoLF PSORT. In Proceedings of the 4th annual Asia Pacific bioinformatics
conference APBC06, Taipei, Taiwan, volume 39, page 48. Citeseer, 2006.

[41] S. Hunter, R. Apweiler, T.K. Attwood, A. Bairoch, A. Bateman, D. Binns, P. Bork,
U. Das, L. Daugherty, L. Duquenne, et al. Interpro: the integrative protein signature
database. Nucleic acids research, 37(suppl 1):D211, 2009.

[42] R. A. Irizarry, B. M. Bolstad, Francois Collin, Leslie M. Cope, Bridget Hobbs, and
Terence P. Speed. Summaries of affymetrix genechip probe level data. Nucleic Acids
Research, 31(4), 2003.

[43] L.J. Jensen, M. Kuhn, M. Stark, S. Chaffron, C. Creevey, J. Muller, T. Doerks, P. Julien,
A. Roth, M. Simonovic, et al. STRING 8.a global view on proteins and their functional
interactions in 630 organisms. Nucleic acids research, 37(suppl 1):D412, 2009.

[44] T. Joachims. Making large-scale svm learning practical. In Advances in kernel methods:
support vector learning, pages 169–184. MIT Press, 1999.

[45] U. Karaoz, TM Murali, S. Letovsky, Y. Zheng, C. Ding, C.R. Cantor, and S. Kasif.
Whole-genome annotation by using evidence integration in functional-linkage networks.
Proceedings of the National Academy of Sciences of the United States of America,
101(9):2888, 2004.

[46] S. Keerthi, S. Shevade, C. Bhattacharyya, and K. Murthy. Improvements to platt’s smo
algorithm for svm classifier design. Neural Computation, 2001.

[47] W. Kim, C. Krumpelman, and E. Marcotte. Inferring mouse gene functions
from genomic-scale data using a combined functional network/classification strategy.
Genome Biology, 9(Suppl 1):S5, 2008.

[48] S. Kiritchenko, S. Matwin, and A. Fazel Famili. Functional annotation of genes using
hierarchical text categorization. In Proc. of the BioLINK SIG: Linking Literature,
Information and Knowledge for Biology, a joint meeting of the ISMB BioLINK Special
Interest Group on Text Data Mining and the ACL Workshop on Linking Biological
Literature, Ontologies and Databases, 2005.

[49] R.I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete input spaces.
In MACHINE LEARNING-INTERNATIONAL WORKSHOP THEN CONFERENCE-
, pages 315–322, 2002.

[50] A. Krogh, B.È. Larsson, G. Von Heijne, and E.L.L. Sonnhammer. Predicting transmem-
brane protein topology with a hidden markov model: application to complete genomes1.
Journal of molecular biology, 305(3):567–580, 2001.

[51] H. Lee, Z. Tu, M. Deng, F. Sun, and T. Chen. Diffusion kernel-based logistic regres-
sion models for protein function prediction. OMICS: A Journal of Integrative Biology,
10(1):40–55, 2006.

76

[52] Y. Loewenstein, D. Raimondo, O. Redfern, J. Watson, D. Frishman, M. Linial,
C. Orengo, J. Thornton, and A. Tramontano. Protein function annotation by homology-
based inference. Genome Biology, 10(2):207, 2009.

[53] B. Long, P.S. Yu, and Z.M. Zhang. A general model for multiple view unsupervised
learning. In Proceedings of the 8th SIAM International Conference on Data Mining
(SDM’08), Atlanta, Georgia, USA. Citeseer, 2008.

[54] D. Martin, M. Berriman, and G. Barton. Gotcha: a new method for prediction of
protein function assessed by the annotation of seven genomes. BMC bioinformatics,
5(1):178, 2004.

[55] J. McDermott, R. Bumgarner, and R. Samudrala. Functional annotation from predicted
protein interaction networks. Bioinformatics, 21(15):3217, 2005.

[56] S. Mostafavi and Q. Morris. Using the Gene Ontology hierarchy when predicting gene
function. In Conference on Uncertainty in Artificial Intelligence, 2009.

[57] S. Mostafavi, D. Ray, D. Warde-Farley, C. Grouios, and Q. Morris. GeneMANIA: a real-
time multiple association network integration algorithm for predicting gene function.
Genome Biology, 9(Suppl 1):S4, 2008.

[58] J. Moult, K. Fidelis, A. Kryshtafovych, B. Rost, and A. Tramontano. Critical assess-
ment of methods of protein structure prediction - Round VIII. Proteins: Structure,
Function, and Bioinformatics, 77(S9):1–4, 2009.

[59] J. Moult, J.T. Pedersen, R. Judson, and K. Fidelis. A large-scale experiment to assess
protein structure prediction methods. Proteins: Structure, Function, and Bioinformat-
ics, 23(3):ii–iv, 1995.

[60] S.K. Murthy, S. Kasif, and S. Salzberg. A system for induction of oblique decision trees.
Journal of Artificial Intelligence Research, 2:1–32, 1994.

[61] E. Nabieva, K. Jim, A. Agarwal, B. Chazelle, and M. Singh. Whole-proteome prediction
of protein function via graph-theoretic analysis of interaction maps. Bioinformatics,
21(suppl 1):i302, 2005.

[62] G. Obozinski, G. Lanckriet, C. Grant, M. Jordan, and W. Noble. Consistent proba-
bilistic outputs for protein function prediction. Genome Biology, 9(Suppl 1):S6, 2008.

[63] D. Pal and D. Eisenberg. Inference of protein function from protein structure. Structure,
13(1):121–130, 2005.

[64] L. Peña-Castillo, M. Tasan, C. Myers, H. Lee, T. Joshi, C. Zhang, Y. Guan, M. Leone,
A. Pagnani, W. Kim, et al. A critical assessment of Mus musculus gene function pre-
diction using integrated genomic evidence. Genome Biology, 9(Suppl 1):S2, 2008.

[65] J. Platt. Sequential minimal optimization: A fast algorithm for training support vector
machines. Advances in Kernel Methods-Support Vector Learning, 208, 1999.

77

[66] M.F. Rogers and A. Ben-Hur. The use of Gene Ontology evidence codes in preventing
classifier assessment bias. Bioinformatics, 25(9):1173, 2009.

[67] B. Rost, J. Liu, R. Nair, K.O. Wrzeszczynski, and Y. Ofran. Automatic prediction of
protein function. Cellular and Molecular Life Sciences, 60(12):2637–2650, 2003.

[68] J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor. Kernel-based learning of hi-
erarchical multilabel classification models. The Journal of Machine Learning Research,
7:1601–1626, 2006.

[69] H. Saigo, J.P. Vert, N. Ueda, and T. Akutsu. Protein homology detection using string
alignment kernels. Bioinformatics, 20(11):1682, 2004.

[70] M. Schena, D. Shalon, R.W. Davis, and P.O. Brown. Quantitative monitoring of gene
expression patterns with a complementary dna microarray. Science, 270(5235):467,
1995.

[71] L. Schietgat, C. Vens, J. Struyf, H. Blockeel, D. Kocev, and S. Džeroski. Predicting gene
function using hierarchical multi-label decision tree ensembles. BMC bioinformatics,
11(1):2, 2010.

[72] B. Schölkopf, J. Weston, E. Eskin, C. Leslie, and W.S. Noble. A kernel approach
for learning from almost orthogonal patterns. In Proceedings of the 13th European
Conference on Machine Learning, pages 511–528. Springer-Verlag London, UK, 2002.

[73] J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis. Cambridge
Univ Pr, 2004.

[74] D. Smedley, S. Haider, B. Ballester, R. Holland, D. London, G. Thorisson, and
A. Kasprzyk. Biomart–biological queries made easy. BMC genomics, 10(1):22, 2009.

[75] T. Smith and M. Waterman. Identification of common molecular subsequences. J.
Molecular Biology, 147:195–7, 1981.

[76] A. Sokolov and A. Ben-Hur. GOstruct: utilizing the structure of the Gene Ontology
for accurate prediction of protein function. In 8th Annual International Conference on
Computational System Bioinformatics, 2009.

[77] A. Sokolov and A. Ben-Hur. Hierarchical classification of Gene Ontology terms using the
GOstruct method. Journal of Bioinformatics and Compuational Biology, 8(2):357–376,
2010.

[78] A. Sokolov and A. Ben-Hur. Multi-view prediction of protein function. In ACM Con-
ference on Bioinformatics, Computational Biology and Biomedicine, 2011.

[79] A. Sokolov, K. Graim, C. Funk, K. Verspoor, and A. Ben-Hur. Combining heterogeneous
data sources for protein function prediction. In Automatic Function Prediction special
interest group meeting at ISMB, 2011.

78

[80] C. Stark, B.J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M. Ty-
ers. BioGRID: a general repository for interaction datasets. Nucleic acids research,
34(Database Issue):D535, 2006.

[81] A.I. Su, T. Wiltshire, S. Batalov, H. Lapp, K.A. Ching, D. Block, J. Zhang, R. Soden,
M. Hayakawa, G. Kreiman, et al. A gene atlas of the mouse and human protein-encoding
transcriptomes. Proceedings of the National Academy of Sciences of the United States
of America, 101(16):6062, 2004.

[82] B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin. Learning structured prediction
models: A large margin approach. In Twenty Second International Conference on
Machine Learning (ICML05), 2005.

[83] B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In NIPS, 2003.

[84] W. Tian, L. Zhang, M. Taşan, F. Gibbons, O. King, J. Park, Z. Wunderlich, J.M.
Cherry, and F. Roth. Combining guilt-by-association and guilt-by-profiling to predict
Saccharomyces cerevisiae gene function. Genome Biology, 9(Suppl 1):S7, 2008.

[85] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for
structured and interdependent output variables. Journal of Machine Learning Research,
6(2):1453, 2006.

[86] K. Tsuda, H.J. Shin, and B. Schölkopf. Fast protein classification with multiple net-
works. In ECCB, 2005.

[87] CJ Van Rijsbergen. Information Retrieval. Butterworth-Heinemann Newton, MA,
USA, 1979.

[88] V.N. Vapnik. The nature of statistical learning theory. Springer Verlag, 2000.

[89] A. Vazquez, A. Flammini, A. Maritan, and A. Vespignani. Global protein function
prediction in protein-protein interaction networks. Nature Biotechnology, 21(6):697–
700, 2003.

[90] A. Vinayagam, R. König, J. Moormann, F. Schubert, R. Eils, K.-H. Glatting, and
S. Suhai. Applying support vector machines for gene ontology based gene function
prediction. BMC Bioinformatics, 5:178, 2004.

[91] Claire L. Wilson and Crispin J. Miller. Simpleaffy: a bioconductor package for
affymetrix quality control and data analysis. Bioinformatics, 21:3683–3685, 2005.

[92] Aaron K. Wong, Christopher Y. Park, Casey S. Greene, Yuanfang Guan, and Olga G.
Troyanskaya. Predicting gene function through homology-driven functional genomics.
In Automatic Function Prediction special interest group meeting at ISMB, 2011.

[93] G. Xiao and W. Pan. Gene function prediction by a combined analysis of gene expression
data and protein-protein interaction data. Journal of bioinformatics and computational
biology, 3(6):1371, 2005.

79

[94] G. Zehetner. Ontoblast function: From sequence similarities directly to potential func-
tional annotations by ontology terms. Nucleic acids research, 31(13):3799, 2003.

[95] W. Zhang, Q. Morris, R. Chang, O. Shai, M. Bakowski, N. Mitsakakis, N. Mohammad,
M. Robinson, R. Zirngibl, E. Somogyi, et al. The functional landscape of mouse gene
expression. Journal of biology, 3(5):21, 2004.

[96] D. Zhou, Bousuet O., Lal T., Weston J., and Schoelkopf B. Learning with local and
global consistency. In Neural Information Processing Systems, 2003.

[97] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields
and harmonic functions. In ICML, pages 912–919, 2003.

[98] A. Zien, U. Brefeld, and T. Scheffer. Transductive support vector machines for struc-
tured variables. In Proceedings of the 24th international conference on Machine learning,
page 1190. ACM, 2007.

80

