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ABSTRACT

The potential use of differential reflectivity measurements at orthogonal polarizations to determine rain­
fall rate is examined. The method involves measurements of ZH and Zv, the radar reflectivity factors due to
horizontally and vertically polarized incident waves respectively. The differential reflectivity, ZDR= 10 log
(ZH/ZV), which should be precisely determinate, occurs as a result of the distortion of raindrops as they fall
at terminal velocity. The approximate theory of Gans for electromagnetic scattering by spheroids is applied
to the distorted raindrops. Assuming a general exponential form for the raindrop size distribution, equations
are derived relating the distribution parameters to the measurements. The determination of rainfall rate
follows directly. Finally, the sensitivity of the distribution parameters to radar inaccuracies is examined, and
several methods of implementing the measurements are suggested. It is concluded that good estimates of
rainfall rate using a single non-attenuating wavelength radar are possible under ideal conditions.

1. Introduction

We wish to estimate the rainfall rate using a single
non-attenuating wavelength radar without invoking
any empirical relations between the radar reflectivity
factor (Z) and rainfall rate (R). Atlas and Ulbrich
(1974) have shown that such relations do not account
for differing rainfall types; in addition, fluctuations
about these relations are caused by a variety of natu­
ral processes such as drop size sorting, growth and
evaporation. Atlas and Ulbrich have proposed a
method where both 10 ern reflectivity and 3.2 cm
attenuation measurements are used to determine No
and Do [parameters which describe the Marshall­
Palmer type exponential distribution, N (D)=No
Xexp( -3.67 DIDo)]. Others, including Eccles and
Atlas (1973) and Eccles and Mueller (1971) have
proposed dual-wavelength schemes to extract meteoro­
logical information. Goldhirsh and Katz (1974) have
examined the accuracies of such multiple-wavelength
radar measurement schemes. It is evident that two
characteristics of the precipitation structure have to
be measured to determine the two-parameter distribu­
tion from which R may be obtained. We propose to
do this using differential and absolute reflectivity
measurements at orthogonal polarizations and at non­
attenuating wavelengths. The radar cross sections of
raindrops (at orthogonal polarizations) are calculated
using the theory of Gans (1912) for scattering from
oblate spheriods, which are good approximations to
the physical form of falling raindrops at terminal
velocities.

2. Theory

Raindrops falling at terminal velocity are non­
spherical. Pruppacher and Beard (1970) have shown
that drop sizes up to an equivalent diameter of 3.0 mm
may be assumed to be distorted into oblate spheriods.
Larger drops assume a more complex shape. Warner
and Hizal (1975) found that the complex shapes of
actual raindrops as formulated by Pruppacher and
Beard produce cross sections not very different from
their equivalent oblate spheroids. In addition, Hum­
phries (1974) finds that observations of microwave
depolarizations are consistent with the idea that rain­
drops tend to fall as oblate spheriods with a vertical
minor axis. Therefore, in this paper we will assume
that all raindrops are distorted into oblate spheriods
as they fall at their terminal velocity.

Actual and apparent canting of drop orientation
from the vertical due to advection and radar eleva­
tion angle, respectively, are not expected to pose
serious problems in making differential reflectivity
measurements. Actual canting should be small in
agreement with Humphries' conclusions about rain­
drop shape and motion. Measurements of backseat­
tering cross sections for oblate spheroids by Atlas
and Wexler (1963) and subsequent calculations by
Warner and Hizal (1975) indicate that changes in
cross section due to effective canting measured in the
plane of incidence should be small for the range of
drop sizes considered. Canting normal to the plane
of incidence may, in fact, be measured by ZDR, if the
polarizations are jointly scanned in rotation; a mean
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canting angle of the drops in the scattering volume
would be given by the rotation angle where this
maximum ZDR occurs. Although this latter technique
may prove useful for studying storm dynamics, con­
sideration is restricted to determining the raindrop
size distribution and rainfall rate.

A truncated, exponential raindrop size distribution
of the form

N(D.,J=Noexp( -3.67 Deq/Do) [m-3 cm-1] ,

O<Deq~ 1.0 em, (1)

is assumed where No and Do are parameters describing
the magnitude and breadth of the distribution respec­
tively; and Deq is the diameter of a spherical drop
of volume equal to the volume of the actual drop.
Experimental drop size distribution measurements by
Blanchard (1953) and Cataneo (1968) have been found
to be well approximated by this exponential form.
except for very small sizes below about 1 mm diameter,
In the calculations performed below, the difference
between the actual and assumed distribution functions
at these small drop sizes would have negligible effects
on the results. For the Marshall-Palmer (1948) spec­
trum, the parameters have the values N 0= 8X 104

m-3 cm-1 and Do=0.089 RO.22 em where R is in mm h-1•

In the present work Do and RINo are related by the
form Do= (cR/No)d, where c and d are constants.
If the distribution (1) extends to drop diameters of
all sizes, then Dobecomes the median volume diameter
(i.e., drops larger than Do contribute to half the total
liquid water content per unit volume). Because of
truncation in (1), Do loses its physical significance for
Do;(; 2.0 mm. Pruppacher and Pitter (1971) believe
that drops with D eq;(; 1.0 em will be hydrodynamically
unstable and breakup would occur even if they fall
in completely calm air. This provides the basis for
the finite upper limit in (1).

The distortion of raindrops is given by the ratio alb,
where a is the semi-minor axis and b the semi-major
axis of the ellipse that generates the oblate spheroid
(see Fig. 1). The equations for alb are taken from

MINOR AXIS

I
--L,+ --EE3l- MAJOR AXIS

r-bJ
£vo (VERTICAL POLARIZATION)

'sHO(HORIZONTAL POLARIZATION)

INCIDENT FIELDS

FIG. 1. An oblate spheroid is the body of revolution formed when
an eJIipse is rotated about its minor axis.

Pruppacher and Beard (1970):

{

1.0 ' O<Deq~0.028 em

a/b= [1- (9/32)DeqPmV2/ JJ.JO.5, (2)
0.028<Deq~0.1 em

1.0J-0.62 o.; O.l<Deq~ 1.0 em

where pm= 1.1937X 10-3 g cm-3 is the density of water
vapor saturated air, JJ.= 72.75 ergs cm-2 is the surface
tension of water as given by Pruppacher and Beard,
and v (em S-1) is the terminal velocity of the drop.
In both equations, Deq is expressed in centimeters.

The radar cross section (UB) of a spherical drop,
assuming Rayleigh scattering, is given by (Stratton,
1941)

UB= (71'5/>'4)1 (m2-1)/(m2+2)!2D6 [cm2
] , (3)

where >. is the wavelength, m the refractive index of
water, and D the diameter of the drop. The reflec­
tivity factor Z is then expressed as

where N(D) is the drop size distributio~.
For our purposes the radar cross section of an

oblate spheroid must be calculated. This is done fol­
lowing the theory of Gans (1912), whose work is
essentially an extension of the Rayleigh theory for
spheres applied to the case of oblate and prolate
spheroids. Gans' theory has been outlined in Van De
Hulst (1957) and used by Atlas et at. (1953) and
Humphries (1974). We assume that measurements
will be made at a non-attenuating wavelength (say
>.= 10 em). For the largest drop (Deq= 1.0 em), the
factor 271'b/>. equals 0.42., This factor is important
since Mathur and Mueller (1955) have shown that
Gans' theory is a good approximation for the range
of sizes (271'b/>') and distortions (a/b) considered here.
Their comparisons were, however, based upon an exact
theory for perfectly conducting spheroids and may not
apply here. More exact scattering theories such as
those due to Waterman (1969) or Oguchi (1960, 1964)
are preferred, but are not used here because of their
complexity. However, the scattering cross sections of
several sample drop sizes were calculated using Water­
man's method as extended by Barber and Yeh (1974);
these results also support Gans' theory for oblate
spheroids in the size range of interest.

Let au and uv be the horizontal and vertical radar
cross sections of the oblate spheroid (UH refers to the
radar cross section at horizontal polarization, Uv at
vertical polarization). For a horizontally polarized
incident wave, the scattered field is due to the induc­
tion of an electric dipole aligned along the major axis
of the oblate spheroid (see Fig. 1). Similarly, a ver­
tically polarized incident wave induces an electric
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where k is the free-space propagation constant
(k= 211"/'A) and r the distance from the dipole to the
field point. The horizontal and vertical radar cross
sections are defined, respectively, by

where P and P' are geometrical factors defined below
by (9) for oblate spheroids and V is the volume of
the drop:

P=41I"-2P'= (411"/e2){1-[(a/b)/e] sinr'e]. (9)

Here e is the eccentricity of the principal elliptical
cross section [e2= 1- (a/b)2].

The magnitude of the far-zone, backscattered elec­
tric field intensities (ESH and Esv) due to dipole
moments PH and pv are given by

dipole along the minor axis of the oblate spheroid.
We also assume that the raindrops fall with zero
canting angle, i.e., their minor axis remains vertical
(Humphries, 1974).

Let EHOand Evo be the complex, plane wave elec­
tric field intensities incident on the oblate spheroid
due to transmission of horizontal and vertical polarized
waves respectively. The electric dipole moments in­
duced in the oblate spheroid are given by

PH= 411"Eog'EHO [C m], (5)

Pv= 411"EogEvo [C m], (6)

where PH and Pv are the dipole moments due to hori­
zontal and vertical polarized incident waves. The
factors g and g' are given in Van De Hulst (1957):

g= V(m2-1)/[41I"+ (m2-1)P] [m3] , (7)

g'= V(m2-1)/[41I"+ (m2-1)P'] [m3] , (8)

(18)

(19)

(20)

C*= C(16/9) (1I"7/'A4) .

(PH(r)=C*ZH/r2,

(Pv(r)= C*ZV/r2,

Defining SH and Sv as the horizontal and vertical
shape functions,

SH(m, a/b)= I (m2-1)/[411"+ (m2-1)P'] 12, (23)

Sv(m, a/b) = I(m2-1)/[411"+(m2-1)P]12, (24)

and substituting (1) in (21) and (22), we obtain

where ZH and Zv are the horizontal and vertical radar
reflectivity factors given by (21) and (22):

ZH= ['" mal m
2-1

12N(Dea)dDoa
t, 411"+(m2-1)P'

[cm6rn- 3] , (21)

Zv=f'" D~al m
2-1

j2N(Doa)dDe.
o 41I"+(m2-1)P

[cm6rn- a]. (22)

Then

where the angle braces denote a time-average and C
takes into account the radar constants. In order to
express the scattered power in conventional form, we
define C* such that

respectively, by

(PH(r) = (c/r2{!D.
a

CTH(Dea)N(Dea)dDoa] [W], (16)

(Pv(r) = (c/r2{!D.. CTv(Dea)N(D.a)dDea] [W], (17)

(10)

(11)

IEsHI = (t1l"Eo)(k2/ r) IpHI
IEsv 1= (t1l"Eo) W/r)IPvI

CTH= Lim 41J"T2 1ESH12
/ IEHO 12 [m2

] ,
r-'"

CTV= Lim 41J"T2J Esv 12/ JEvo12 [m2].
r-'"

(12)

(13)

r:ZH/No=J0 D~aSH(m,a/b) exp( -3.67Doa/Do)dDoa

[cm6cm-1] , (25)

r:
Zv/No=J0 D~.Sv(m,a/b) exp( -3.67Dea/Do)dDo•

[cm6cm-1] . (26)

r':I, m.SHexp(-3.67De./Do)dDoa

10 log dB.

r':J
o

D~.Sv exp(-3.67Dea/Do)dDoa

Using (5), (8), (9) and (10) in (12) we get

CTH= (16/9) (11"7/'A4) (D~a) I(m2-1)/

[411"+ (m2-1)P']12 [em"], (14)

where P' is defined in (9) and 'A and Doa are in centi­
meters. Similarly, CTV can be expressed as

CTV= (16/9) (11"7/'A4) (D~a) I(m2-1)/

[411"+ (m2-1)P]12 [ems]. (15)

The similarity of (14) and (15) to the Rayleigh cross
section in (3) is evident. Either (14) or (15) reduces
to (3) using P=P'=41I"/3 and Doa=D.

The average backscattered power from a common
pulse volume centered at a range r, due to horizontal
or vertical polarized incident waves, may be expressed,

Differential reflectivity, defined
= 10 log(ZH/Zv), is then given by

as

(27)
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FIG. 2. Variations of ZDR and normalized horizontal reflectivity
10 log (Zu/No) with Do.

It is noted that ZDR depends only on Do and is inde­
pendent of the radar constants for equal system re­
sponse at both polarizations. As shown in Section 5,
ZDR should be precisely determined through relative
power measurements, thereby yielding Do directly.

Finally, the rainfall rate R (mm h-l ) can be ex­
pressed as

Xexp( -3.67Deq/ Do)dDeq , (28)

where v(D eq ) IS the terminal velocity of the drops
(m S-I).

3. Computations and analyses

Each of the integrals in (25), (27) and (28) were
divided into appropriate ranges according to (2) and

the terminal velocity results of Gunn and Kinzer
(1949). The drop distortion results given by Prup­
pacher and Beard (1970) were used. The integrals
were numerically evaluated using a Gauss-Legendre
quadrature method and are plotted as a function of
Do in Figs. 2 and 3. The range for Do corresponds
approximately to rainfall rates of 0.16 to 300 mm h-\
obtained by using the Marshall-Palmer empirical rela­
tion, Do=0.089Ro.22 [em]. It is clear that a deter­
mination of ZDR through relative power measurements
results in the determination of Do using the curve
indicated in Fig. 2. Using this known value of Do
and one of the measured absolute horizontal or ver­
tical reflectivity factors, ZH or Z», No can then be
estimated from the normalized reflectivity curve given
in Fig. 2. Knowing both No and Do, the rainfall rate
(R) is directly obtained from evaluation of (28) which
is given in Fig. 3. As expected this reduces to a Mar­
shall-Palmer type expression

Do= 1.053 (R/No)o.22 [em]. (29)
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FIG. 4. Peak uncertainty in Do(aDo) vs Dofor ±O.2 and ±O.5 dB
measurement errors in ZDR.
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Next, the sensitivity of R due to uncertainties in
estimating No is examined. No is obtained from Fig. 2
and depends on knowing the values of both Do and ZH.
Therefore, the uncertainty in No is due to the un­
certainties in both these factors. Errors in Do produce
corresponding errors in 10 log (ZHINo) as shown in
Fig. 6. Measurement of the absolute horizontal re­
flectivity ZH depends on determining the radar con­
stants which at best can be assumed known to within
about ± 1.0 dB. For example, this might be achieved
with a radar which utilizes around 70 independent
pulses to measure ZH (this gives a statistical error of
about ±0.5 dB with 90% confidence) and which has
±0.5 dB error due to uncertainties in system calibra­
tion. The overall uncertainty in R is compounded by
the uncertainties in Do and No. For example, when
Do=0.15 em, the overall uncertainty in R is esti­
mated to be within ±5.7 dB. However, the uncertainty
decreases as Do increases. For Do~ 0.25 em, the un­
certainty in R is estimated to be within about ±2.9 dB.
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4. Sensitivity of rainfall-rate distribution
parameters to radar measurements

We now wish to establish the uncertainties in Do
and R/No due to assumed errors in the measurement
of ZDR [dBJ and ZH. In Fig. 4 we have plotted the
uncertainty in Do resulting from assumed ±0.2 and
±0.5 dB errors in the measurement of ZDR. We feel
these error estimates are reasonable, since ZDR is a
differential measurement which should be easily and
precisely determined (see Section 5). This occurs
because U"H and u"v are precisely related to each other
for each drop size in the scattering volume through
the Pruppacher and Beard (a/b) relationship [Eq. (2)J.
Therefore, the standard deviation associated with the
measurement of ZDR should be small. This is also
important, since it implies that a single pulse mea­
surement of ZDR is sufficient and that statistical
averaging over a large number of independent radar
returns should not be necessary.

The curves of Fig. 4 were obtained by adding the
assumed errors to a series of ZDR values and establish­
ing the corresponding values of Do. Deviations from
the mean Do values, aDo, produce a corresponding
uncertainty in establishing R/No. The ratios R+/No
+R/No and R-/No+R/No were then calculated and
plotted as a function of Do and are shown in Fig. 5.
The superscripts correspond to the sign of the errors.
Fig. 5 indicates the importance of measuring ZDR

precisely. In the remaining error analysis we assume
that ZDR can be measured to within an error of
±0.2 dB.

Fig. 5 shows that the uncertainty in establishing
R/No decreases as Do increases. For Do=0.1 em,
R+/No+R/No= 1.9, while R-/No+R/No= 0.48. For
larger Do's (Do~0.2 em) the corresponding ratios ap­
proach R/No to within about 20%.

10- 6 O;-----='=-----=.L,-----=-'=----=~---=~---L--------I
0.05 0.10 0.15 0.20 0.25 0.30 0.35

DO (em)

FIG. 3. Variation of R/No as a function of Do.
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in this parameter would produce a maximum overall
uncertainty in R of about ±2.1 dB (Do;(;0.25 cm).
This assumes that the sensitivity of this new parame­
ter (relative to No) as a function of Do is not signifi­
cantly different from that attributed to 10 log(ZH/N 0)'

s. Implementation of the measurement of ZDR

Many schemes to measure ZDR are possible with
the exact choice dependent upon existing radar capa­
bilities and economic factors. Nevertheless, it is ap­
propriate here to suggest two methods which may
prove feasible and easily adaptable to present systems.
These are shown in Fig. 7. The block diagram of
Fig. 7a shows a radar system which uses continuous
sequential time-switching from horizontal to vertical
polarizations. The transmitted radar pulse would al­
ternately switch polarizations while the received signals
would be passed through and detected by the same
receiving system. Timing control would distinguish
between the received horizontal and vertical polarized
returns and select range-gates for continuous passage
of the signal to narrow band-pass filters. Since a loga­
rithmic receiver is used, ZDR would be the average
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It should be noted that the above analysis assumes
that all errors compound and hence represents worst­
case conditions.

If a second differentially measurable parameter
(depending on No) is found, improved estimates of R
may be possible. In such a case, an error of ±0.2 dB

v
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of the difference between the alternate amplitude
(power) returns into the multiplexer and would be
directly proportional to the output from the filters.
The center frequency of the band-pass filters would
be equal to one-half the pulse repetition frequency
(PRF) of the transmitter-the entire system would
operate similar to a system developed for D-region
ionospheric studies using wave-interaction phenomena
(e.g., see Weisbrod et al., 1964a, b).

The block diagram in Fig. 7b illustrates the receiv­
ing section of a radar which simultaneously transmits
equal powers at both horizontal and vertical polariza­
tions. This system requires two receivers from which
the outputs are range-gated and differenced, the out­
put of the narrow-band filter being ZDR(R). In this
system the center frequency of the band-pass filter
would be equal to the PRF. Cross-polarization cou­
pling is not expected to seriously affect this technique,
since the cross-polarized components are usually at
least 20-30 dB below the main component while the
greatest value for ZDR is about 4.5 dB. Advantages
and disadvantages of both these systems are presently
under investigation by the authors.

6. Conclusions

This paper proposes a new method of radar mea­
surement at non-attenuating wavelengths from which
the raindrop size distribution parameters (No,Do) may
be derived. Of particular importance is the use of
differential reflectivity at orthogonal (horizontal and
vertical) polarizations which gives Do directly, inde­
pendent of No. The effect results from the distortion
of raindrops into nearly oblate spheroids, oriented
with their axis of revolution vertical. Model calcula­
tions were performed using the approximate scattering
theory of Gans, the results of which indicate an
ability to measure Do to within about ±0.015 em
throughout the range 0.05~ Do~ 0.3 em for ±0.2 dB
errors in the differential reflectivity ZDR. Combining
ZDR measurements with absolute reflectivity at either
polarization (to within ± 1.0 dB) produced an overall
uncertainty in rain rate of about ±5.7 dB for Do
""0.15 em. The uncertainty was found to decrease
with increasing Do, resulting in a minimum of about
±2.9 dB for Do~0.25 em under worst-case conditions.

Further improvements in using radar to determine
rain rates may result by combining other differential
measurements with ZDR. These might include dif­
ferential phase shifts or attenuation along the propaga­
tion path. These concepts are suggested by the work
of Oguchi and Hosoya (1974) and are presently under
investigation. Other possible applications of the method
may be the use of ZDR to determine accurately Do
which by itself may be a useful parameter for clas­
sifying precipitation, or which with ground truth
measurements may be used to parameterize ZDR-R
relationships, similar to Z-R relationships obtained

by many others (e.g., see Borovikov et al., 1967i
Neiburger and Weickmann, 1974).
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