
W. Grass et al. (Eds.): ARCS 2006, LNCS 3894, pp. 17 – 30, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The Robustness of Resource Allocations in Parallel and
Distributed Computing Systems

Vladimir Shestak1, Howard Jay Siegel1,2,
Anthony A. Maciejewski1, and Shoukat Ali3

1 Department of Electrical & Computer Engineering
2 Department of Computer Science,

Colorado State University, Fort Collins, CO 80523-1373, USA
{Shestak, HJ, AAM}@colostate.edu

3 Department of Electrical & Computer Engineering,
University of Missouri-Rolla, Rolla, MO 65409-0040, USA

shoukat@umr.edu

Abstract. This corresponds to the material in the invited keynote presentation
by H. J. Siegel, summarizing the research in [2, 23].

Resource allocation decisions in heterogeneous parallel and distributed
computer systems and associated performance prediction are often based on
estimated values of application and system parameters, whose actual values are
uncertain and may be differ from the estimates. We have designed a model for
deriving the degree of robustness of a resource allocation—the maximum
amount of collective uncertainty in parameters within which a user-specified
level of system performance can be guaranteed. The model will be presented,
and we will demonstrate its ability to select the most robust resource allocation
from among those that otherwise perform similarly (based on the primary
performance criterion). We will show how the model can be used in off-line
allocation heuristics to maximize the robustness of makespan against
inaccuracies in estimates of application execution times in a cluster.

1 Introduction

This is an overview of the material to be discussed in the invited keynote presentation
by H. J. Siegel; it summarizes our research in [2, 23].

This research focuses on the robustness of a resource allocation in parallel and
distributed computing systems. What does robustness mean? Some dictionary
definitions of robustness are: (a) strong and healthy, as in “a robust person” or “a
robust mind,” (b) sturdy or strongly formed, as in “a robust plastic,” (c) suited to or
requiring strength as in “a robust exercise” or “robust work,” (d) firm in purpose or
outlook as in “robust faith,” (e) full-bodied as in “robust coffee,” and (f) rough or rude
as in “stories laden with robust humor.” In the context of resource allocation in
parallel and distributed computing systems, how is the concept of robustness defined?

The allocation of resources to computational applications in heterogeneous parallel
and distributed computer systems should maximize some system performance
measure. Allocation decisions and associated performance prediction are often based

18 V. Shestak et al.

on estimated values of application parameters, whose actual values may differ; for
example, the estimates may represent only average values, or the models used to
generate the estimates may have limited accuracy. Furthermore, parallel and
distributed systems may operate in an environment where certain system performance
features degrade due to unpredictable circumstances, such as sudden machine failures,
higher than expected system load, or inaccuracies in the estimation of system
parameters (e.g., [1, 3, 4, 5, 8, 11, 13, 14, 16, 17, 22]). Thus, an important research
problem is the development of resource management strategies that can guarantee a
particular system performance given bounds on such uncertainties. A resource
allocation is defined to be robust with respect to specified system performance
features against perturbations (uncertainties) in specified system parameters if
degradation in these features is constrained when limited perturbations occur. An
important question then arises: given a resource allocation, what extent of departure
from the assumed circumstances will cause a performance feature to be unacceptably
degraded? That is, how robust is the system?

Any claim of robustness for a given system must answer these three questions: (a)
what behavior of the system makes it robust? (b) what uncertainties is the system
robust against? (c) quantitatively, exactly how robust is the system? To address these
questions, we have designed a model for deriving the degree of robustness of a
resource allocation—the maximum amount of collective uncertainty in system
parameters within which a user-specified level of system performance can be
guaranteed. The model will be presented and we will demonstrate its ability to select
the most robust resource allocation from among those that otherwise perform
similarly (based on the primary performance criterion). The model’s use in static (off-
line) allocation heuristics also will be demonstrated. In particular, we will show how
to maximize the robustness of makespan against inaccuracies in estimates of
application execution times in a heterogeneous cluster. In general, this work is
applicable to different types of computing and communication environments,
including parallel, distributed, cluster, grid, Internet, embedded, and wireless.

Section 2 describes the FePIA procedure for deriving a robustness metric for an
arbitrary system. Derivation of this metric for a given allocation of independent
applications in a heterogeneous distributed system is presented in Section 3, with an
experiment that highlights the usefulness of the robustness metric. Section 4 discusses
heuristics developed to generate static resource allocations of independent
applications in distributed systems such that the robustness of the produced resource
allocations is maximized. Section 5 extends the work presented in Section 4 for
distributed systems where the dollar cost for processors is a constraint. Some future
work is described briefly in Section 6.

2 Generalized Robustness Metric

This section presents a general procedure, called FePIA, for deriving a general
robustness metric for any desired computing environment [2]. The name for the above
procedure stands for identifying the performance features, the perturbation
parameters, the impact of perturbation parameters on performance features, and the
analysis to determine the robustness. A specific example illustrating the application of

The Robustness of Resource Allocations in Parallel and Distributed Computing Systems 19

the FePIA procedure to a sample system is given in the next section. Each step of the
FePIA procedure is now described, summarized from [2].

1) Describe quantitatively the requirement that makes the system robust (question
(a) in Section 1). Based on this robustness requirement, determine the QoS
performance features that should be limited in variation to ensure that the robustness
requirement is met. Identify the acceptable variation for these feature values as a
result of uncertainties in system parameters. Consider an example where (a) the QoS
performance feature is makespan (the total time it takes to complete the execution of a
set of applications) for a given resource allocation, (b) the acceptable variation is up
to a 20% increase of the makespan that was predicted for the given resource
allocation using estimated execution times of applications on the machines they are
assigned, and (c) the uncertainties in system parameters are inaccuracies in the
estimates of these execution times.

2) Identify the uncertainties to be considered whose values may impact the QoS
performance features selected in step 1 (question (b) in Section 1). These are called
the perturbation parameters, and the performance features are required to be robust
with respect to these perturbation parameters. For the makespan example above,
the resource allocation (and its associated predicted makespan) was based on the
estimated application execution times. It is desired that the makespan be robust (stay
within 120% of its estimated value) with respect to uncertainties in these estimated
execution times.

3) Identify the impact of the perturbation parameters in step 2 on the system
performance features in step 1. For the makespan example, the sum of the actual
execution times for all of the applications assigned to a given machine is the time
when that machine completes its applications. Note that 1(b) states that the actual
time each machine finishes its applications must be within the acceptable variation.

4) The last step is to determine the smallest collective variation in the values of
perturbation parameters identified in step 2 that will cause any of the performance
features identified in step 1 to violate its acceptable variation. Step 4 is done for a
given, specific resource allocation. This will be the degree of robustness of the given
resource allocation (question (c) in Section 1). For the makespan example, this will be
some quantification of the total amount of inaccuracy in the execution times estimates
allowable before the actual makespan exceeds 120% of its estimated value.

3 Robustness Metric Example

3.1 Derivation of Robustness

In this section summarized from [2], the robustness metric is derived for a system that
assigns a set of independent applications to a distributed set of machines. In this
system, it is required that the makespan be robust against errors in application
execution time estimates. Specifically, the actual makespan under the perturbed
execution times must be no more than a certain factor (> 1) times the predicted
makespan calculated using the estimated execution times.

A brief description of the system model is now given. The applications
are assumed to be independent, i.e., no communications between the applications are

20 V. Shestak et al.

needed. The set A of applications is to be assigned to the set Ω of machines so as to

minimize the makespan. Each machine executes a single application at a time (i.e., no
multi-tasking). Let ijC be the estimated time to compute (ETC) for application ia on

machine .jm It is assumed that ijC values are known a priori for all i, j. This

assumption is commonly made (e.g., [15]). Approaches for doing this estimation are
discussed in [10]. In addition, let jF be the time at which jm finishes executing all

of the applications assigned to it.
It is assumed that unknown inaccuracies in the ETC values are expected (e.g., a

task’s actual exact execution time may be data dependent). Hence, it is required that
the mapping, denoted by ,µ and based on the ETC values, be robust against them.

More specifically, it is required that, for a given resource allocation, its actual
makespan value M (calculated using the actual application computation times (not

the ETC values)) may be no more than τ (> 1) times its predicted value, denoted by
predM . The predicted value of the makespan is the value calculated assuming

the estimated ETC values. Following step 1 of the FePIA procedure in Section 2,
the system performance features that should be limited in variation to ensure the
makespan robustness are the finish times of the machines. That is,

{ for 1 }pred
jF M jτ≤ ≤ ≤ Ω .

According to step 2 of the FePIA procedure, the perturbation parameter needs to be

defined. Let est
iC be the ETC value for application ia on the machine where it is

assigned. Let iC be the actual computation time value. Let C be the vector of the iC

values, and estC be the vector of the est
iC values. The vector C is the perturbation

parameter for this analysis.
In accordance with step 3 of the FePIA procedure, jF has to be expressed as a

function of C. To that end,

: is assigned to

() .
i j

j i
i a m

F C= ∑C
(1)

Following step 4 of the FePIA procedure, the set of boundary relationships
corresponding to the set of performance features is given by

{ () for 1 }.pred
jF M jτ= ≤ ≤ ΩC

The robustness radius, denoted by (,),jr Fµ C for machine j provides the largest

Euclidian distance, i.e., l2-norm, at which variable C can change in any direction from

the assumed point estC without the finish time ()jF C exceeding the tolerable

variation:

2: ()

(,) min .
pred

j

j
F M

r Fµ
τ==

= − est

C C
C C C (2)

The Robustness of Resource Allocations in Parallel and Distributed Computing Systems 21

p() red
jF MC

estC

1C

2C
(,)jr F C

Fig. 1. Some possible directions of increase of the perturbation parameter .C The set of

boundary points is given by () .est pred
jF C Mτ= The robustness radius (,)jr F Cµ corres-

onds to the smallest increase that can reach the boundary. The shaded region represents the area
of robust operation.

That is, if the Euclidean distance between any vector of the actual execution times
and the vector of the estimated execution times is no larger than (,),jr Fµ C then the

finish time of machine jm will be at most τ times the estimated makespan value.

For example, assume only applications 1a and 2a have been assigned to machine j

(depicted in Fig. 1), and C has two components 1C and 2C that correspond to

execution times of 1a and 2a on machine j, respectively. The term ()jF estC is a

finish time for machine j computed based on the ETC values of applications 1a and

2.a The boundary line is determined by () .pred
jF Mτ=C Note that the right hand

side in Equation 2 can be interpreted as the perpendicular distance from the point
estC to the hyperplane described by the equation () .pred

jF Mτ=C Using the point-

to-plane distance formula [21], Equation 2 reduces to

()

(,) .
number of applications assigned to

pred
j

j
j

M F
r F

m
µ

τ −
=

estC
C

(3)

The robustness metric, denoted by ,µρ is given as

 1

min { (,)}.j
j

r Fµ µρ
≤ ≤ Ω

= C (4)

22 V. Shestak et al.

That is, if the Euclidean distance between any vector of the actual execution times and
the vector of the estimated execution times is no larger than ,µρ then the actual

makespan will be at most τ times the predicted makespan value.

3.2 Utility of Robustness

The experiments in this subsection seek to establish the utility of the robustness
metric. The experiments were performed for a system with five machines and 20
applications. A total of 1000 resource allocations were generated by assigning a
randomly chosen machine to each application (see [2] for details).

The resource allocations were evaluated for robustness, makespan, and load
balance index (defined as the ratio of the finish time of the machine that finishes first
to the makespan). The larger the value of the load balance index, the more balanced
the load (the largest value being 1). The tolerance, ,τ was set to 120%. In this
context, a robustness metric value of x for a given resource allocation means that the
resource allocation can endure any combination of ETC errors without the makespan
increasing beyond 1.2 times its estimated value as long as the Euclidean distance of
the errors is no larger than x seconds.

Fig. 2(a) shows the “normalized robustness” of a resource allocation against its
makespan. The normalized robustness equals the robustness metric value divided by
the predicted makespan. A graph for the normalized robustness against the load
balance index is shown in Fig. 2(b).

There are large differences in the robustness of some resource allocations that have
very similar values of makespan. Thus, when selecting a resource allocation with low
makespan, the robustness calculation allows one to select an allocation that also
provides high robustness. Fig. 2(b) shows that load balancing does not provide an
accurate measure of robustness. These observations highlight the fact that the
information given by the robustness metric could not be obtained from the makespan
and load balance performance measures.

(a) (b)

Fig. 2. Normalized robustness against (a) makespan and (b) load balance index for 1000
randomly generated resource allocations

The Robustness of Resource Allocations in Parallel and Distributed Computing Systems 23

4 Robust Resource Allocation Under a Makespan Constraint

4.1 Problem Statement

This section summarizes a part of the research described in [23]. An important
research problem is how to determine a mapping (resource allocation) so as to
maximize the robustness of desired system features against perturbations in system
parameters. The general problem of optimally mapping applications to machines has
been shown to be NP-complete [7, 9, 12]. Thus, the development of heuristic
techniques to find near-optimal solutions for the mapping problem is an active area of
research (e.g., [6, 18, 19, 20]). Static mapping is performed when the applications are
mapped in an off-line planning phase such as in a production environment. Static
mapping techniques take a set of applications, a set of machines, and generate a
mapping. These heuristics determine a mapping off-line, and must use estimated
values of application computation times.

As described in the previous section, the allocation of independent applications in
parallel systems is considered robust if the actual makespan under the perturbed
conditions does not exceed the required time constraint. The goal of this study was to
find a static mapping of all applications to machines so that the robustness of the
mapping is maximized; i.e., to maximize the collective allowable error in execution
time estimation for the applications that can occur without the actual makespan
exceeding the constraint. Mathematically, this problem can be stated as finding a
mapping of A applications to Ω machines such that the actual makespan is within

the absolute time constraint α while maximizing ,µρ given by (4). Equation (3) is

restated in this study as

()

(,) .
number of applications asiigned to

j
j

j

F
r F

m
µ

α −
=

estC
C (5)

A distributed system with eight machines and 1024 independent applications was
simulated in this study. Two different cases of ETC heterogeneities were used in this
research, the high application and high machine heterogeneity (high-high) case and
the low application and low machine heterogeneity (low-low) case (see [23] for
details about the simulation setup). The value of the time constraint α of 5000
seconds was chosen so that it presents a feasible mapping problem for the heuristics
to solve. A total of 100 trials (50 trails for each of the cases) were performed, where
each trial corresponded to a different ETC of ijC values matrix. The wall clock time

for each of the heuristics to determine a mapping was arbitrarily required to be less
than or equal to 60 minutes to establish a basis for comparison.

Six static mapping schemes were developed in this study: Max-Max, Greedy
Iterative Maximization (GIM), Sum Iterative Maximization (SIM), Genitor, Memetic
Algorithm (MA), and Hereboy Evolutionary Algorithm (Hereboy). Two are described
here.

24 V. Shestak et al.

4.2 Max-Max

The Max-Max heuristic is based on the Min-Min (greedy) concept in [12]. In step 2 of
the Max-Max heuristic, to find the fitness function for assigning a given application i
to a given machine j, the robustness radius of machine j given by equation (5) is
evaluated based on the applications already assigned to machine j and the possible
assignment of application i to machine j.

The Max-Max heuristic can be summarized by the following procedure:

1) An application list is generated that includes all the unmapped applications.
2) For each application in the application list, the machine that gives the

application its maximum fitness value (first “Max”) is determined (ignoring
other unmapped applications).

3) Among all the application/machine pairs found in the above step, the pair that
gives the maximum fitness value (second “Max”) is chosen.

4) The application found in step 3 is then removed from the application list and
is mapped to its paired machine.

5) Repeat steps 2 to 4 until all the applications are mapped.

4.3 Genitor

This heuristic is a general optimization technique that is a variation of the genetic
algorithm approach. It manipulates a set of possible solutions. The framework used
here is based on the Genitor approach used in [24]. In our study, each chromosome
represents a possible complete mapping of applications to machines. Specifically, the
chromosome is a vector of length A . The ith element of the vector is the number of

the machine to which application i is assigned. A fixed population of 200
chromosomes is used. The population includes one chromosome (seed) that is
the Max-Max solution based on robustness (described above) and the rest of the
chromosomes are generated by randomly assigning applications to machines. The
entire population is sorted (ranked) based on their robustness metric values given by
(4). Chromosomes that do not meet the makespan constraint are allowed to be
included in the population. The ranking is constructed so that all chromosomes that
meet the constraint are listed first, ordered by their robustness metric value (highest
first). The chromosomes that do not meet the makespan constraint are then listed,
again ordered by their robustness metric value (which will be negative).

Next, a special linear bias function [24] is used to select two chromosomes to act as
parents. These two parents perform a crossover operation, and two new offspring are
generated. For the pair of the selected parent chromosomes a random cut-off point is
generated that divides the chromosomes into top and bottom parts. For the parts of
both chromosomes from that point to the end of each chromosome, crossover
exchanges machine assignments between corresponding applications producing two
new offspring. The offspring are then inserted in the population in ranked order, and
the two lowest ranked chromosomes are dropped.

After each crossover, the linear bias function is applied again to select a
chromosome for mutation. A mutation operator generates a single offspring by
perturbing the original chromosome. A random application is chosen from the

The Robustness of Resource Allocations in Parallel and Distributed Computing Systems 25

chromosome and the mutation operator randomly reassigns it to a new machine. The
resultant offspring is considered for inclusion in the population in the same fashion as
for an offspring generated by crossover.
 This completes one iteration of the Genitor. The heuristic stops after 250,000 total
iterations.

4.4 Experimental Results

The simulation results are shown in Fig. 3. All the heuristics run for 50 different high-
high and 50 different low-low scenarios, and the average values and 95% confidence
intervals are plotted. The Genitor performed among the best, comparable to GIM,
SIM, and MA (i.e., overlapping confidence intervals). A discussion of all the results is
in [23].

120

140

160

180

200

M
ax

-M
ax

G
IM

S
IM

G
en

it
o

r

M
A

H
er

eB
o

y

ro
b

u
st

n
es

s

high-high low -low

Fig. 3. Simulation results for robustness for a given fixed set of machines

5 Mapping Under Makespan and Dollar Cost Constraints

5.1 Problem Statement

This section summarizes another part of [23], which extends the idea in Section 4.
The research environment here differs from Section 4 with the addition of a cost
constraint for the machines and choosing a subset of all the available machines to be
used. Thus, problem addressed here is how to select (purchase) a fixed set of
machines, within a given dollar cost constraint to comprise a cluster system. It is
assumed that this fixed system will be used in a production environment to regularly

26 V. Shestak et al.

execute the set A of applications with known estimated computational character-
stics. The machines to be purchased for the set are to be selected from five different
classes of machines, where each class consists of homogeneous machines. The
machines of different classes differ in dollar costs depending upon their application
execution speed. The dollar cost of machines within a class is the same. Machines in
class i are assumed to be faster than machines of class i+1 for all applications, for
1 4.≤ ≤i Correspondingly, class i machines cost more that class i+1 machines.
 In this study, one must: (1) select a subset of machines so that the cost constraint
for the machines is satisfied, and (2) find a static mapping of all applications to the
subset. Sub-problems 1 and 2 must be done in a way so that the robustness of the
mapping is maximized. For sub-problem 2, the machine assignment heuristics
described in the previous section are used as components of the heuristics developed
in this research.

A method used to generate 100 high application and low machine heterogeneity
(high-low) ETC matrices for 1024 independent applications was identical to that used
in the previous work (see the details of the simulation setup in [23]). Experiments
with simple greedy heuristics were used to decide the value of the cost constraint to
be 34,800 dollars and the time constraint α to be 12,000 seconds. Choosing different
values for any of the above parameters will not affect the general approach of the
heuristics used in this research. The wall clock time for the mapper itself was set as in
Section 4.

Six static mapping schemes were developed in this research: Negative Impact
Greedy Iterative Maximization (NI-GIM), Parition/Merge Greedy Iterative
Maximization (P/M-GIM), Cost and Robustness Sum Iterative Maximization (CR-
SIM), Selection Genitor (S-Genitor), Max-Max Memetic Algorithm (MMMA), and
Max-Max Hereboy Evolutionary Algorithm (MM-Hereboy). The S-Genitor heuristic
is described next.

5.2 Selection Genitor

The S-Genitor heuristic developed in this work consists of two phases. For phase 1, a
chromosome is a vector of length five, where the ith element is the number
of machines used in ith class. The phase 1 of S-Genitor operates on a fixed population
of 100 chromosomes. The entire population is generated randomly such that the cost
constraint is met. To evaluate each chromosome, a mapping was produced using the
Max-Max heuristic based on robustness (described in Subsection 4.2). The entire
population is sorted in descending order based on the robustness metric.

In the crossover step, for the pair of the parent chromosomes selected by applying
the linear bias function, a random cut-off point is generated that divides the
chromosomes into top and bottom parts. A new chromosome is formed using the top
of one and bottom of another. An offspring is inserted in the population after
evaluation only if the cost constraint is satisfied (the worst chromosomes of the
population are discarded to maintain a population of only 100).

After each crossover, the linear bias function is applied again to select a
chromosome for mutation. A mutation operator generates a single offspring by
perturbing the original chromosome. Two random classes are chosen for
the chromosome and the mutation operator increments the number of machines of the

The Robustness of Resource Allocations in Parallel and Distributed Computing Systems 27

first chosen class by one and decrements the number of machines of the other by one.
If the chromosome violates the cost constraint it is discarded. Otherwise, the resultant
offspring is considered for inclusion in the population in the same fashion as for an
offspring generated by crossover.

This completes one iteration of phase 1 of S-Genitor. The heuristic stops when the
criterion of 500 total iterations is met. The best machine combination found from
phase 1 is used in phase 2, which derives a mapping using this combination of
machines to maximize robustness based on the Genitor implementation described in
Section 4 (a total of 100,000 iterations is used here to stop phase 2 of S-Genitor).

5.3 Experimental Results

The simulation results are shown in Fig. 4. All the heuristics run for 100 different
scenarios and the average values and 95% confidence intervals are plotted. The
S-Genitor is among and the best heuristics, comparable in performance with the
P/M-GIM heuristic. Both of these heuristics, on average, had all of the available
machines from Class 4 and Class 5. A discussion of all the results is in [23].

480.0

N
I-

G
IM

P
/M

-G
IM

C
R

-S
IM

S
-G

en
it

o
r

M
M

M
A

M
M

-H
er

eB
o

y

500.0

520.0

540.0

560.0

580.0

600.0

ro
b

u
st

n
es

s

Fig. 4. Simulation results for robustness. Machine sets were determined heuristically.

6 Future Work

There are many directions in which the robustness research presented in the paper can
be extended. Examples include the following.

28 V. Shestak et al.

1) Deriving the boundary surfaces for different problem domains.
2) Incorporating multiple types of perturbation parameters (e.g., uncertainties in

input sensor loads and uncertainties in estimated execution times). Challenges
here are how to define the collective impact to find each robust radius and how
to state the combined bound on multiple perturbation parameters to maintain
the promised performance.

3) Incorporating probabilistic information about uncertainties. In this case, a
perturbation parameter can be represented as a vector of random variables.
Then, one might have probabilistic information about random variables in the
vector (e.g., probability density functions) or probabilistic information
describing the relationship between different random variables in the vector or
between different vectors (e.g., a set of correlation coefficients).

4) Determining when to use Euclidean distance versus other distance measures
when calculating the collective impact of changes in the perturbation
parameter elements.

7 Summary

Any claim of robustness for a given system must answer three questions: (a) what
behavior of the system makes it robust? (b) what uncertainties is the system robust
against? (c) quantitatively, exactly how robust is the system? This paper, which
corresponds to H. J. Siegel’s keynote presentation, summarizes the material from two
papers related to robustness. A metric for the robustness of a resource allocation with
respect to desired system performance features against perturbations in system and
environmental conditions, and the experiments conducted to illustrate the utility of the
robustness metric, are summarized from [2]. Heuristics developed to generate
mappings of independent applications in distributed systems such that the robustness
of the produced mappings is maximized are summarized from [23]. Finally, heuristics
for (1) selecting a set of machines and (2) mapping applications to the set of
machines, both to maximize robustness, also are summarized from [23].

Acknowledgment

An earlier version of portions of this manuscript appeared as an invited keynote paper
in 8th International Symposium on Parallel Architectures, Algorithms, and Networks
(I-SPAN 2005).

References

1. S. Ali, J.K. Kim, Y. Yu, S. B. Gundala, S. Gertphol, H. J. Siegel, A. A. Maciejewski, and
V. Prasanna, “Utilization-based techniques for statically mapping heterogeneous
applications onto the HiPer-D heterogeneous computing system,” Parallel and Distributed
Computing Practices, Vol. 5, No. 4, Dec. 2002.

The Robustness of Resource Allocations in Parallel and Distributed Computing Systems 29

2. S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim, “Measuring the robustness of a
resource allocation,” IEEE Transactions on Parallel Systems, Vol. 15, No. 7, July 2004,
pp. 630–641.

3. S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim, “Robust resource allocation for
distributed computing systems,” 2004 International Conference on Parallel Processing
(ICPP’04), Aug. 2004, pp. 178–185.

4. P. M. Berry, “Uncertainty in scheduling: probability, problem reduction, abstractions and
the user,” IEE Computing and Control Division Colloquium Advanced Software
Technologies for Scheduling, Digest No. 1993/163, Apr. 1993.

5. L. Boloni and D. C. Marinescu, “Robust scheduling of metaprograms,” Journal of
Scheduling, Vol. 5, No. 5, Sept. 2002, pp. 395–412,

6. T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M. Maheswaran, A. I. Reuther, J. P.
Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F. Freund, “A comparison of eleven
static heuristics for mapping a class of independent applications onto heterogeneous
distributed computing systems,” Journal of Parallel and Distributed Computing, Vol. 61,
No. 6, June 2001, pp. 810–837.

7. E. G. Coffman, Jr. ed., Computer and Job-Shop Scheduling Theory, John Wiley & Sons,
New York, NY, 1976.

8. R. L. Daniels and J. E. Carrillo, “β-Robust scheduling for single-machine systems with
uncertain processing times,” IIE Transactions, Vol. 29, No. 11, Nov. 1997, pp. 977–985.

9. D. Fernandez-Baca, “Allocating modules to processors in a distributed system,” IEEE
Transactions on Software Engineering, Vol. SE-15, No. 11, Nov. 1989, pp. 1427–1436.

10. A. Ghafoor and J. Yang, “A distributed heterogeneous supercomputing management
system,” IEEE Computer, Vol. 26, No. 6, June 1993, pp. 78–86.

11. S. D. Gribble, “Robustness in complex systems,” 8th Workshop on Hot Topics in
Operating Systems (HotOS-VIII), May 2001, pp. 21–26.

12. O. H. Ibarra and C. E. Kim, “Heuristic algorithms for scheduling independent applications
on non-identical processors,” Journal of ACM, Vol. 24, No. 2, Apr. 1977, pp. 280–289.

13. M. Jensen, “Improving robustness and flexibility of tardiness and total flowtime job shops
using robustness measures,” Journal of Applied Soft Computing, Vol. 1, No. 1, June 2001,
pp. 35–52.

14. E. Jen, “Stable or robust? What is the difference?” Complexity, Vol. 8, No. 3, June 2003.
15. M. Kafil and I. Ahmad, “Optimal task assignment in heterogeneous distributed computing

systems,” IEEE Concurrency, Vol. 6, No. 3, July. 1998, pp. 42–51.
16. V. J. Leon, S. D. Wu, and R. H. Storer, “Robustness measures and robust scheduling for

job shops,” IEE Tranactions, Vol. 26, No. 5, Sept. 1994, pp. 32–43.
17. M. Sevaux and K. Sorensen, “Genetic algorithm for robust schedules,” 8th International

Workshop on Project Management and Scheduling (PMS 2002), Apr. 2002, pp. 330–333.
18. V. Shestak, E. K. P. Chong, A. A. Maciejewski, H. J. Siegel, L. Benmohamed, I. J. Wang,

and R. Daley, “Resource allocation for periodic applications in a shipboard environment,”
14th Heterogeneous Computing Workshop (HCW 2005) in proceedings of 19th
International Parallel and Distributed Processing Symposium (IPDPS 2005), Apr. 2005,
pp. 122–127.

19. S. Shivle, P. Sugavanam, H. J. Siegel, A. A. Maciejewski, T. Banka, K. Chindam, S.
Dussinger, A. Kutruff, P. Penumarthy, P. Pichumani, P. Satyasekaran, D. Sendek, J.
Sousa, J. Sridharan, and J. Velazco, “Mapping of subtasks with multiple versions on an ad
hoc grid environment,” Parallel Computing, Special Issue on Heterogeneous Computing,
Vol. 31, No. 7, July 2005, pp. 671–690.

30 V. Shestak et al.

20. S. Shivle, H. J. Siegel, A. A. Maciejewski, P. Sugavanam,T. Banka, R. Castain, K.
Chindam, S. Dussinger, P. Pichumani, P. Satyasekaran, W. Saylor, D. Sendek, J. Sousa, J.
Sridharan, and J. Velazco, “Static allocation of resources to communicating subtasks in a
heterogeneous ad hoc grid environment,” Journal of Parallel and Distributed Computing,
accepted, to appear.

21. G. F. Simmons, Calculus with Analytic Geometry, Second Edition, McGraw-Hill, New
York, NY, 1995.

22. Y. N. Sotskov, V. S. Tanaev, and F. Werner, “Stability radius of an optimal schedule: A
survey and recent developments,” Industrial Applications of Combinatorial Optimization,
Vol. 16, 1998, pp. 72–108.

23. P. Sugavanam, H. J. Siegel, A. A. Maciejewski, M. Oltikar, A. Mehta, R. Pichel, A.
Horiuchi, V. Shestak, M. Al-Otaibi, Y. Krishnamurthy, S. Ali, J. Zhang, M. Aydin, P. Lee,
K. Guru, M. Raskey, and A. Pippin, “Robust static allocation of resources for independent
tasks under makespan and dollar cost constraints,” Journal of Parallel and Distributed
Computing, accepted, to appear in 2006.

24. D. Whitley, “The GENITOR algorithm and selective pressure: Why rank based allocation
of reproductive trials is best,” 3rd International Conference on Genetic Algorithms, June
1989, pp. 116–121.

	Introduction
	Generalized Robustness Metric
	Robustness Metric Example
	Derivation of Robustness
	Utility of Robustness

	Robust Resource Allocation Under a Makespan Constraint
	Problem Statement
	Max-Max
	Genitor
	Experimental Results

	Mapping Under Makespan and Dollar Cost Constraints
	Problem Statement
	Selection Genitor
	Experimental Results

	Future Work
	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

