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Abstract. This corresponds to the material in the invited keynote presentation 
by H. J. Siegel, summarizing the research in [2, 23]. 

Resource allocation decisions in heterogeneous parallel and distributed 
computer systems and associated performance prediction are often based on 
estimated values of application and system parameters, whose actual values are 
uncertain and may be differ from the estimates. We have designed a model for 
deriving the degree of robustness of a resource allocation—the maximum 
amount of collective uncertainty in parameters within which a user-specified 
level of system performance can be guaranteed. The model will be presented, 
and we will demonstrate its ability to select the most robust resource allocation 
from among those that otherwise perform similarly (based on the primary 
performance criterion). We will show how the model can be used in off-line 
allocation heuristics to maximize the robustness of makespan against 
inaccuracies in estimates of application execution times in a cluster.  

1   Introduction 

This is an overview of the material to be discussed in the invited keynote presentation 
by H. J. Siegel; it summarizes our research in [2, 23]. 

This research focuses on the robustness of a resource allocation in parallel and 
distributed computing systems. What does robustness mean? Some dictionary 
definitions of robustness are: (a) strong and healthy, as in “a robust person” or “a 
robust mind,” (b) sturdy or strongly formed, as in “a robust plastic,” (c) suited to or 
requiring strength as in “a robust exercise” or “robust work,” (d) firm in purpose or 
outlook as in “robust faith,” (e) full-bodied as in “robust coffee,” and (f) rough or rude 
as in “stories laden with robust humor.” In the context of resource allocation in 
parallel and distributed computing systems, how is the concept of robustness defined? 

The allocation of resources to computational applications in heterogeneous parallel 
and distributed computer systems should maximize some system performance 
measure. Allocation decisions and associated performance prediction are often based 
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on estimated values of application parameters, whose actual values may differ; for 
example, the estimates may represent only average values, or the models used to 
generate the estimates may have limited accuracy. Furthermore, parallel and 
distributed systems may operate in an environment where certain system performance 
features degrade due to unpredictable circumstances, such as sudden machine failures, 
higher than expected system load, or inaccuracies in the estimation of system 
parameters (e.g., [1, 3, 4, 5, 8, 11, 13, 14, 16, 17, 22]). Thus, an important research 
problem is the development of resource management strategies that can guarantee a 
particular system performance given bounds on such uncertainties. A resource 
allocation is defined to be robust with respect to specified system performance 
features against perturbations (uncertainties) in specified system parameters if 
degradation in these features is constrained when limited perturbations occur. An 
important question then arises: given a resource allocation, what extent of departure 
from the assumed circumstances will cause a performance feature to be unacceptably 
degraded? That is, how robust is the system?  

Any claim of robustness for a given system must answer these three questions: (a) 
what behavior of the system makes it robust? (b) what uncertainties is the system 
robust against? (c) quantitatively, exactly how robust is the system? To address these 
questions, we have designed a model for deriving the degree of robustness of a 
resource allocation—the maximum amount of collective uncertainty in system 
parameters within which a user-specified level of system performance can be 
guaranteed. The model will be presented and we will demonstrate its ability to select 
the most robust resource allocation from among those that otherwise perform 
similarly (based on the primary performance criterion). The model’s use in static (off-
line) allocation heuristics also will be demonstrated. In particular, we will show how 
to maximize the robustness of makespan against inaccuracies in estimates of 
application execution times in a heterogeneous cluster. In general, this work is 
applicable to different types of computing and communication environments, 
including parallel, distributed, cluster, grid, Internet, embedded, and wireless. 

Section 2 describes the FePIA procedure for deriving a robustness metric for an 
arbitrary system. Derivation of this metric for a given allocation of independent 
applications in a heterogeneous distributed system is presented in Section 3, with an 
experiment that highlights the usefulness of the robustness metric. Section 4 discusses 
heuristics developed to generate static resource allocations of independent 
applications in distributed systems such that the robustness of the produced resource 
allocations is maximized. Section 5 extends the work presented in Section 4 for 
distributed systems where the dollar cost for processors is a constraint. Some future 
work is described briefly in Section 6.  

2   Generalized Robustness Metric 

This section presents a general procedure, called FePIA, for deriving a general 
robustness metric for any desired computing environment [2]. The name for the above 
procedure stands for identifying the performance features, the perturbation 
parameters, the impact of perturbation parameters on performance features, and the 
analysis to determine the robustness. A specific example illustrating the application of 
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the FePIA procedure to a sample system is given in the next section. Each step of the 
FePIA procedure is now described, summarized from [2]. 

1) Describe quantitatively the requirement that makes the system robust (question 
(a) in Section 1). Based on this robustness requirement, determine the QoS 
performance features that should be limited in variation to ensure that the robustness 
requirement is met. Identify the acceptable variation for these feature values as a 
result of uncertainties in system parameters. Consider an example where (a) the QoS 
performance feature is makespan (the total time it takes to complete the execution of a 
set of applications) for a given resource allocation, (b) the acceptable variation is up 
to a 20% increase of the makespan that was predicted for the given resource 
allocation using estimated execution times of applications on the machines they are 
assigned, and (c) the uncertainties in system parameters are inaccuracies in the 
estimates of these execution times. 

2) Identify the uncertainties to be considered whose values may impact the QoS 
performance features selected in step 1 (question (b) in Section 1). These are called 
the perturbation parameters, and the performance features are required to be robust 
with respect to these perturbation parameters. For the makespan example above,  
the resource allocation (and its associated predicted makespan) was based on the 
estimated application execution times. It is desired that the makespan be robust (stay 
within 120% of its estimated value) with respect to uncertainties in these estimated 
execution times. 

3) Identify the impact of the perturbation parameters in step 2 on the system 
performance features in step 1. For the makespan example, the sum of the actual 
execution times for all of the applications assigned to a given machine is the time 
when that machine completes its applications. Note that 1(b) states that the actual 
time each machine finishes its applications must be within the acceptable variation. 

4) The last step is to determine the smallest collective variation in the values of 
perturbation parameters identified in step 2 that will cause any of the performance 
features identified in step 1 to violate its acceptable variation. Step 4 is done for a 
given, specific resource allocation. This will be the degree of robustness of the given 
resource allocation (question (c) in Section 1). For the makespan example, this will be 
some quantification of the total amount of inaccuracy in the execution times estimates 
allowable before the actual makespan exceeds 120% of its estimated value. 

3   Robustness Metric Example 

3.1   Derivation of Robustness 

In this section summarized from [2], the robustness metric is derived for a system that 
assigns a set of independent applications to a distributed set of machines. In this 
system, it is required that the makespan be robust against errors in application 
execution time estimates. Specifically, the actual makespan under the perturbed 
execution times must be no more than a certain factor (> 1) times the predicted 
makespan calculated using the estimated execution times.  

A brief description of the system model is now given. The applications  
are assumed to be independent, i.e., no communications between the applications are 
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needed. The set A  of applications is to be assigned to the set Ω  of machines so as to 

minimize the makespan. Each machine executes a single application at a time (i.e., no 
multi-tasking). Let ijC  be the estimated time to compute (ETC) for application ia  on 

machine .jm  It is assumed that ijC  values are known a priori for all i, j. This 

assumption is commonly made (e.g., [15]). Approaches for doing this estimation are 
discussed in [10]. In addition, let jF  be the time at which jm  finishes executing all 

of the applications assigned to it.  
It is assumed that unknown inaccuracies in the ETC values are expected (e.g., a 

task’s actual exact execution time may be data dependent). Hence, it is required that 
the mapping, denoted by  ,µ  and based on the ETC values, be robust against them. 

More specifically, it is required that, for a given resource allocation, its actual 
makespan value M  (calculated using the actual application computation times (not 

the ETC values)) may be no more than τ  (> 1) times its predicted value, denoted by 
predM . The predicted value of the makespan is the value calculated assuming  

the estimated ETC values. Following step 1 of the FePIA procedure in Section 2,  
the system performance features that should be limited in variation to ensure the 
makespan robustness are the finish times of the machines. That is, 

{ for 1 }pred
jF M jτ≤ ≤ ≤ Ω . 

According to step 2 of the FePIA procedure, the perturbation parameter needs to be 

defined. Let est
iC  be the ETC value for application ia  on the machine where it is 

assigned. Let iC  be the actual computation time value. Let C  be the vector of the iC  

values, and estC  be the vector of the est
iC  values. The vector C is the perturbation 

parameter for this analysis.  
In accordance with step 3 of the FePIA procedure, jF  has to be expressed as a 

function of C. To that end,  
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Following step 4 of the FePIA procedure, the set of boundary relationships 
corresponding to the set of performance features is given by 
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Fig. 1. Some possible directions of increase of the perturbation parameter .C  The set of 

boundary points is given by ( ) .est pred
jF C Mτ=  The robustness radius ( , )jr F Cµ  corres-

onds to the smallest increase that can reach the boundary. The shaded region represents the area 
of robust operation. 

That is, if the Euclidean distance between any vector of the actual execution times 
and the vector of the estimated execution times is no larger than ( , ),jr Fµ C  then the 

finish time of machine jm  will be at most τ  times the estimated makespan value. 

For example, assume only applications 1a  and 2a  have been assigned to machine j 

(depicted in Fig. 1), and C has two components 1C  and 2C  that correspond to 

execution times of 1a  and 2a  on machine j, respectively. The term ( )jF estC  is a 

finish time for machine j computed based on the ETC values of applications 1a  and 

2.a  The boundary line is determined by ( ) .pred
jF Mτ=C  Note that the right hand 

side in Equation 2 can be interpreted as the perpendicular distance from the point 
estC  to the hyperplane described by the equation ( ) .pred

jF Mτ=C  Using the point-

to-plane distance formula [21], Equation 2 reduces to 
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The robustness metric, denoted by ,µρ  is given as 
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That is, if the Euclidean distance between any vector of the actual execution times and 
the vector of the estimated execution times is no larger than ,µρ  then the actual 

makespan will be at most τ times the predicted makespan value.  

3.2 Utility of Robustness  

The experiments in this subsection seek to establish the utility of the robustness 
metric. The experiments were performed for a system with five machines and 20 
applications. A total of 1000 resource allocations were generated by assigning a 
randomly chosen machine to each application (see [2] for details). 

The resource allocations were evaluated for robustness, makespan, and load 
balance index (defined as the ratio of the finish time of the machine that finishes first 
to the makespan). The larger the value of the load balance index, the more balanced 
the load (the largest value being 1). The tolerance, ,τ  was set to 120%. In this 
context, a robustness metric value of x for a given resource allocation means that the 
resource allocation can endure any combination of ETC errors without the makespan 
increasing beyond 1.2 times its estimated value as long as the Euclidean distance of 
the errors is no larger than x seconds. 

Fig. 2(a) shows the “normalized robustness” of a resource allocation against its 
makespan. The normalized robustness equals the robustness metric value divided by 
the predicted makespan. A graph for the normalized robustness against the load 
balance index is shown in Fig. 2(b).  

There are large differences in the robustness of some resource allocations that have 
very similar values of makespan. Thus, when selecting a resource allocation with low 
makespan, the robustness calculation allows one to select an allocation that also 
provides high robustness. Fig. 2(b) shows that load balancing does not provide an 
accurate measure of robustness. These observations highlight the fact that the 
information given by the robustness metric could not be obtained from the makespan 
and load balance performance measures.  

(a) (b)  

Fig. 2. Normalized robustness against (a) makespan and (b) load balance index for 1000 
randomly generated resource allocations  
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4   Robust Resource Allocation Under a Makespan Constraint 

4.1   Problem Statement 

This section summarizes a part of the research described in [23]. An important 
research problem is how to determine a mapping (resource allocation) so as to 
maximize the robustness of desired system features against perturbations in system 
parameters. The general problem of optimally mapping applications to machines has 
been shown to be NP-complete [7, 9, 12]. Thus, the development of heuristic 
techniques to find near-optimal solutions for the mapping problem is an active area of 
research (e.g., [6, 18, 19, 20]). Static mapping is performed when the applications are 
mapped in an off-line planning phase such as in a production environment. Static 
mapping techniques take a set of applications, a set of machines, and generate a 
mapping. These heuristics determine a mapping off-line, and must use estimated 
values of application computation times. 

As described in the previous section, the allocation of independent applications in 
parallel systems is considered robust if the actual makespan under the perturbed 
conditions does not exceed the required time constraint. The goal of this study was to 
find a static mapping of all applications to machines so that the robustness of the 
mapping is maximized; i.e., to maximize the collective allowable error in execution 
time estimation for the applications that can occur without the actual makespan 
exceeding the constraint. Mathematically, this problem can be stated as finding a 
mapping of A  applications to Ω  machines such that the actual makespan is within 

the absolute time constraint α  while maximizing ,µρ given by (4). Equation (3) is 

restated in this study as 

       
( )

( , ) .
number of applications asiigned to 

j
j

j

F
r F

m
µ

α −
=

estC
C  (5) 

A distributed system with eight machines and 1024 independent applications was 
simulated in this study. Two different cases of ETC heterogeneities were used in this 
research, the high application and high machine heterogeneity (high-high) case and 
the low application and low machine heterogeneity (low-low) case (see [23] for 
details about the simulation setup). The value of the time constraint α  of 5000 
seconds was chosen so that it presents a feasible mapping problem for the heuristics 
to solve. A total of 100 trials (50 trails for each of the cases) were performed, where 
each trial corresponded to a different ETC of ijC  values matrix. The wall clock time 

for each of the heuristics to determine a mapping was arbitrarily required to be less 
than or equal to 60 minutes to establish a basis for comparison. 

Six static mapping schemes were developed in this study: Max-Max, Greedy 
Iterative Maximization (GIM), Sum Iterative Maximization (SIM), Genitor, Memetic 
Algorithm (MA), and Hereboy Evolutionary Algorithm (Hereboy). Two are described 
here. 
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4.2   Max-Max 

The Max-Max heuristic is based on the Min-Min (greedy) concept in [12]. In step 2 of 
the Max-Max heuristic, to find the fitness function for assigning a given application i 
to a given machine j, the robustness radius of machine j given by equation (5) is 
evaluated based on the applications already assigned to machine j and the possible 
assignment of application i to machine j. 

The Max-Max heuristic can be summarized by the following procedure: 

1) An application list is generated that includes all the unmapped applications. 
2) For each application in the application list, the machine that gives the 

application its maximum fitness value (first “Max”) is determined (ignoring 
other unmapped applications). 

3) Among all the application/machine pairs found in the above step, the pair that 
gives the maximum fitness value (second “Max”) is chosen. 

4) The application found in step 3 is then removed from the application list and 
is mapped to its paired machine. 

5) Repeat steps 2 to 4 until all the applications are mapped. 

4.3   Genitor 

This heuristic is a general optimization technique that is a variation of the genetic 
algorithm approach. It manipulates a set of possible solutions. The framework used 
here is based on the Genitor approach used in [24]. In our study, each chromosome 
represents a possible complete mapping of applications to machines. Specifically, the 
chromosome is a vector of length A . The ith element of the vector is the number of 

the machine to which application i is assigned. A fixed population of 200 
chromosomes is used. The population includes one chromosome (seed) that is  
the Max-Max solution based on robustness (described above) and the rest of the 
chromosomes are generated by randomly assigning applications to machines. The 
entire population is sorted (ranked) based on their robustness metric values given by 
(4). Chromosomes that do not meet the makespan constraint are allowed to be 
included in the population. The ranking is constructed so that all chromosomes that 
meet the constraint are listed first, ordered by their robustness metric value (highest 
first). The chromosomes that do not meet the makespan constraint are then listed, 
again ordered by their robustness metric value (which will be negative). 

Next, a special linear bias function [24] is used to select two chromosomes to act as 
parents. These two parents perform a crossover operation, and two new offspring are 
generated. For the pair of the selected parent chromosomes a random cut-off point is 
generated that divides the chromosomes into top and bottom parts. For the parts of 
both chromosomes from that point to the end of each chromosome, crossover 
exchanges machine assignments between corresponding applications producing two 
new offspring. The offspring are then inserted in the population in ranked order, and 
the two lowest ranked chromosomes are dropped.  

After each crossover, the linear bias function is applied again to select a 
chromosome for mutation. A mutation operator generates a single offspring by 
perturbing the original chromosome. A random application is chosen from the 
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chromosome and the mutation operator randomly reassigns it to a new machine. The 
resultant offspring is considered for inclusion in the population in the same fashion as 
for an offspring generated by crossover. 
    This completes one iteration of the Genitor. The heuristic stops after 250,000 total 
iterations.  

4.4   Experimental Results 

The simulation results are shown in Fig. 3. All the heuristics run for 50 different high-
high and 50 different low-low scenarios, and the average values and 95% confidence 
intervals are plotted. The Genitor performed among the best, comparable to GIM, 
SIM, and MA (i.e., overlapping confidence intervals). A discussion of all the results is 
in [23]. 
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Fig. 3. Simulation results for robustness for a given fixed set of machines  

5   Mapping Under Makespan and Dollar Cost Constraints 

5.1   Problem Statement 

This section summarizes another part of [23], which extends the idea in Section 4. 
The research environment here differs from Section 4 with the addition of a cost 
constraint for the machines and choosing a subset of all the available machines to be 
used. Thus, problem addressed here is how to select (purchase) a fixed set of 
machines, within a given dollar cost constraint to comprise a cluster system. It is 
assumed that this fixed system will be used in a production environment to regularly 
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execute the set A  of applications with known estimated computational character-
stics. The machines to be purchased for the set are to be selected from five different 
classes of machines, where each class consists of homogeneous machines. The 
machines of different classes differ in dollar costs depending upon their application 
execution speed. The dollar cost of machines within a class is the same. Machines in 
class i are assumed to be faster than machines of class i+1 for all applications, for 
1 4.≤ ≤i Correspondingly, class i machines cost more that class i+1 machines. 
    In this study, one must: (1) select a subset of machines so that the cost constraint 
for the machines is satisfied, and (2) find a static mapping of all applications to the 
subset. Sub-problems 1 and 2 must be done in a way so that the robustness of the 
mapping is maximized. For sub-problem 2, the machine assignment heuristics 
described in the previous section are used as components of the heuristics developed 
in this research. 

A method used to generate 100 high application and low machine heterogeneity 
(high-low) ETC matrices for 1024 independent applications was identical to that used 
in the previous work (see the details of the simulation setup in [23]). Experiments 
with simple greedy heuristics were used to decide the value of the cost constraint to 
be 34,800 dollars and the time constraint α to be 12,000 seconds. Choosing different 
values for any of the above parameters will not affect the general approach of the 
heuristics used in this research. The wall clock time for the mapper itself was set as in 
Section 4. 

Six static mapping schemes were developed in this research: Negative Impact 
Greedy Iterative Maximization (NI-GIM), Parition/Merge Greedy Iterative 
Maximization (P/M-GIM), Cost and Robustness Sum Iterative Maximization (CR-
SIM), Selection Genitor (S-Genitor), Max-Max Memetic Algorithm (MMMA), and 
Max-Max Hereboy Evolutionary Algorithm (MM-Hereboy). The S-Genitor heuristic 
is described next. 

5.2   Selection Genitor 

The S-Genitor heuristic developed in this work consists of two phases. For phase 1, a 
chromosome is a vector of length five, where the ith element is the number  
of machines used in ith class. The phase 1 of S-Genitor operates on a fixed population 
of 100 chromosomes. The entire population is generated randomly such that the cost 
constraint is met. To evaluate each chromosome, a mapping was produced using the 
Max-Max heuristic based on robustness (described in Subsection 4.2). The entire 
population is sorted in descending order based on the robustness metric.  

In the crossover step, for the pair of the parent chromosomes selected by applying 
the linear bias function, a random cut-off point is generated that divides the 
chromosomes into top and bottom parts. A new chromosome is formed using the top 
of one and bottom of another. An offspring is inserted in the population after 
evaluation only if the cost constraint is satisfied (the worst chromosomes of the 
population are discarded to maintain a population of only 100).  

After each crossover, the linear bias function is applied again to select a 
chromosome for mutation. A mutation operator generates a single offspring by 
perturbing the original chromosome. Two random classes are chosen for  
the chromosome and the mutation operator increments the number of machines of the 
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first chosen class by one and decrements the number of machines of the other by one. 
If the chromosome violates the cost constraint it is discarded. Otherwise, the resultant 
offspring is considered for inclusion in the population in the same fashion as for an 
offspring generated by crossover. 

This completes one iteration of phase 1 of S-Genitor. The heuristic stops when the 
criterion of 500 total iterations is met. The best machine combination found from 
phase 1 is used in phase 2, which derives a mapping using this combination of 
machines to maximize robustness based on the Genitor implementation described in 
Section 4 (a total of 100,000 iterations is used here to stop phase 2 of S-Genitor). 

5.3 Experimental Results 

The simulation results are shown in Fig. 4. All the heuristics run for 100 different 
scenarios and the average values and 95% confidence intervals are plotted. The  
S-Genitor is among and the best heuristics, comparable in performance with the  
P/M-GIM heuristic. Both of these heuristics, on average, had all of the available 
machines from Class 4 and Class 5. A discussion of all the results is in [23].  
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Fig. 4. Simulation results for robustness. Machine sets were determined heuristically. 

6   Future Work 

There are many directions in which the robustness research presented in the paper can 
be extended. Examples include the following. 
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1) Deriving the boundary surfaces for different problem domains. 
2) Incorporating multiple types of perturbation parameters (e.g., uncertainties in 

input sensor loads and uncertainties in estimated execution times). Challenges 
here are how to define the collective impact to find each robust radius and how 
to state the combined bound on multiple perturbation parameters to maintain 
the promised performance. 

3) Incorporating probabilistic information about uncertainties. In this case, a 
perturbation parameter can be represented as a vector of random variables. 
Then, one might have probabilistic information about random variables in the 
vector (e.g., probability density functions) or probabilistic information 
describing the relationship between different random variables in the vector or 
between different vectors (e.g., a set of correlation coefficients).  

4) Determining when to use Euclidean distance versus other distance measures 
when calculating the collective impact of changes in the perturbation 
parameter elements. 

7   Summary 

Any claim of robustness for a given system must answer three questions: (a) what 
behavior of the system makes it robust? (b) what uncertainties is the system robust 
against? (c) quantitatively, exactly how robust is the system? This paper, which 
corresponds to H. J. Siegel’s keynote presentation, summarizes the material from two 
papers related to robustness. A metric for the robustness of a resource allocation with 
respect to desired system performance features against perturbations in system and 
environmental conditions, and the experiments conducted to illustrate the utility of the 
robustness metric, are summarized from [2]. Heuristics developed to generate 
mappings of independent applications in distributed systems such that the robustness 
of the produced mappings is maximized are summarized from [23]. Finally, heuristics 
for (1) selecting a set of machines and (2) mapping applications to the set of 
machines, both to maximize robustness, also are summarized from [23].  
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