
A Global Motion Planner for Curve-Tracing Robots *

Yang K. Hwang, Pang C. Chen, Anthony A. Maciejewski t and David D. Neidigk
Sandia National Laboratories tPurdue University

Albuquerque, New Mexico 87185 West Lafayette, Indiana 47907

Abstract
We present a global motion planner for tracing curves

in three dimensions with robot manipulator tool frames.
This planner generates an efficient motion satisfying
three types of constraints: constraints on the tool tip for
curve tracing, robot kinematic constraints and robot­
link collision constraints. Motions are planned using a
global search algorithm and a local planner based on a
potential-field approach. This planner can be used with
any robots including redundant manipulators, and can
control the trade-offs between its algorithmic complete­
ness and computation time. It can be applied in many
robotic tasks such as seam welding, caulking, edge de­
burring and chamfering, and is expected to reduce mo­
tion programming times from days to minutes.

1 Introduction
A significant number of tasks in manufacturing re­

quires robots to trace a curve with their tool tips.
These tasks include seam welding, caulking, edge de­
burring and chamfering. Motions of these robots are
currently programmed with either teach pendants or
graphical simulation software, and require long pro­
gramming time. The teach pendant method involves
moving the actual robot with the teach pendant and
recording robot joint angles. This method takes days of
programming time and the programmed motion cannot
be modified easily when there is a design change. Sim­
ulation software [18, 19] provides a means of program­
ming and reviewing robot motions on a graphics work­
station. Although this method significantly reduces pro­
gramming time, planning 3-dimensional motions from a
2-dimensional computer screen is difficult and thus re­
quires a long training period.

Motion planning for curve tracing is complicated due
to three types of constraints: task constraints, robot
kinematic constraints and collision constraints. Task
constraints are typically constraints on the position and
orientation of the robot tool tip needed to perform the
task assigned to the robot. Robot kinematic constraints
are the physical relationships among robot links and
the limits on the ranges of robot joint angles. Collision
constraints arise from the need to avoid collisions be­
tween robot links and objects during motion. All three
types of constraints are nonlinear for robots with rotary
joints, and there is no compact way to represent the set

"This work has been performed at Sandia National Labora­
tories and supported by the U.S. Department of Energy under
Contract DE-AC04-76DP00789.

of robot configurations, i.e., the set of joint angles, satis­
fying these constraints. The high dimensionality of the
robot configuration space (usually 6 or more) also makes
it impractical to use any brute-force type of search on
a grid representation.

A key observation on manipulator motion planning
is that there are numerous near-optimal solutions for
most realistic problems. It is the small set of patho­
logical problems that have impractical worst-case time
complexity. Based on this observation, we have devel­
oped an efficient motion planning algorithm that solves
mos~ realistic problems in a short time (minutes), and
requires gradually more computation time as the prob­
lem difficulty increases.

2 Previous Work
Most work in manipulator motion planning has been

done f~r the point-~o-point problem, i.e., the problem
of moving the manipulator from one configuration to
another while avoiding obstacles [6, 10]. In these plan­
ners, there are no constraints placed on the robot tool
tip, and the robot motion is computed to minimize the
path length or traveling time [15]. Another body of
work involves tracing a curve with a redundant robot.
The redundancy is used to optimize secondary objec­
t~ves su~h as li~k collision avoidance [3, 11, 12, 14, 16],
s~ngulanty a~OIdance [8, 12], cyclic (drift-free) joint mo­
nons for cyclic tool paths [3,14], or manipulability mea­
sures [1, 17]. Most of the work concentrates on the
method of solving the inverse kinematics for numeri­
cal stability, computational efficiency, and handling of
kinematic and algorithmic singularities. The task pri­
oritization approach is used in [11] to get a path that
best satisfies the path-tracking and collision-avoidance
~equire~ents, whereas compact quadratic programming
IS u.sed III [3]. Singular value decomposition is used in [7]
to Improve computational efficiency, and the extended
~ ,:co~ian method is used to map algorithmic singular­
ities m [8]. All of the above algorithms are, however,
local methods; they use Cl: greedy (hill-climb) approach
to avOl~ collisions a~d singularities while tracing the
curve With the tool tip. These algorithms do not back­
~rack during search, and cannot solve problems requir­
mg global-space knowledge such as that in Figure 1.
The only global algorithm for curve tracing that we are
?-~are of is presented in [16]. This algorithm finds all
joint motlO~s.that ~ake the robot tool tip trace a given
curve, and If impossible computes portions of the curve
that cannot be traced. It computes all inverse kine­
matic solutions at each point on the curve by discretiz-
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ing the redundant degrees of freedom, and representing
the solutions using a quadtree (octree). Because of the
computational burden due to discretization, this algo­
rithm is implemented for at most 2 redundant degrees
of freedom. .

This paper concentrates on the development of an
off-line, global planner for curve-tracing robots in man­
ufacturing environments, rather than a real-time, local
planner. Our motion planner computes several near­
optimal joint motions that trace a given curve with the
robot tool tip, instead of giving all solutions as done in
[16]. Moreover, our algorithm can be applied to robots
with higher degrees of redundancy, and generate better
solutions as the computation resource increases. When
solving a problem known to be computationally diffi­
cult, it is important for algorithms to have the capability
of generating solutions with quality commensurate with
the available resource. Additionally, our algorithm can
handle the case where reconfigurations of the manipula­
tor are necessary to trace a curve (Figure 1). Our plan­
ner can also incorporate singularity avoidance, which is
explained in Section 3.2.

In this paper, we use the terms robot and manipulator
interchangeably. We define robot configuration to be the
set of robot joint angles, and tool tip configuration to be
the position and orientation of the robot tool tip. We
define do! to be the number of degrees of freedom of the
robot.

3 Curve Tracing Algorithm
Our curve-tracing algorithm is basically a structured

search algorithm that examines the solution space with­
out building an explicit representation of the feasible
motion set. Note that building an explicit representa­
tion is computationally expensive for robots with high
degrees of freedom. Our planner works roughly as fol­
lows. Given a curve to be traced by the robot tool tip,
we first identify points on the curve that are in clut­
tered space. These points are called critical locations,
and include both the starting point and ending point of
the curve by definition. We then find at each critical
location a set of inverse kinematic solutions that do not
cause collisions between robot links and objects. We
call these inverse kinematic solutions subgoals. Next,
a sequence of subgoals, one for each critical location,
from the starting to the ending point is selected as a
candidate path. Finally, a local planner is used to ver­
ify the existence of a collision-free joint motion from
one subgoal to the next in the sequence, until a satis­
factory sequence is found. Because inverse kinematic
solutions are computed only for critical points, we gain
efficiency and thus can handle more redundancies. The
way our algorithm handles the case requiring reconfig­
uration of the manipulator in the midst of tracing the
curve is explained in Section 3.1. We divide our plan­
ner into a global planner and a local planner; the global
planner keeps generating a candidate sequence of sub­
goals, while the local planner finds actual joint motions
connecting subgoals. The global and local planners are
completely separate of each other, and can be modified
independently. For example, one of the local planners
cited in Section 2 can be used in our planner. We now
describe the global and the local planner in detail.

3.1 Global Planner
Given a curve, the global planner is responsible for

generating a set of critical locations, finding su bgoals
for each critical location, and generating candidate se­
quences of subgoals that will be examined by the local
planner.

Setting up critical locations on the curve
We model our objects using the ACIS solid modeler

due to its open architecture and our need to compute
intersections between solids. In the current implementa­
tion, our algorithm works only for tracing a continuous,
piecewise linear curve among polyhedral objects. Given
one piece c of the curve C, and the length r of robot
tool tip, we first build a cylinder of radius r whose axis
coincides with c. We then compute the intersection 1
of the cylinder with each object 0 in the workspace us­
ing ACIS routines. Next, we project I back onto the
curve c to obtain line segments Li' which denote the
portions of c on which the robot needs to cleverly ma­
neuver itself to avoid object O. Finally, we construct
the set of critical locations from the endpoints of the
Li's using the following filter. When two critical loca­
tions are closer than a preset threshold, we delete the
one that is farther from the starting point of curve c.
(This step reduces computational complexity without
degrading solution quality.) Figure 2 shows an example
of critical locations.

Computing subgoals
At each critical location I·, we solve for inverse kine­

matic solutions that are collision free. For redundant
robots, there are usually an infinite number of solutions
and computing all of them is itself a research problem.
A brute-force method is used in [16] to compute all in­
verse kinematic solutions for each critical location. This
method discretizes the redundant degrees of freedom
with a grid and solves ~x = J~q for ~q with addi­
tional equations setting the redundant degrees of free­
dom equal to the joint values at each grid point. This
method is, however, exponential in the number of re­
dundant degrees of freedom, and gives us unnecessar­
ily and many solutions. Ideally for our algorithm, we
would like to get one solution from each aspect [16].
An aspect of a manipulator is a connected region of
the joint space in which the manipulator Jacobian re­
mains full rank. (This means, roughly, that we want
a small number of samples uniformly distributed over
the set of inverse kinematic solu tions.) When obstacles
are present, one aspect .might be divided into several
regions by the configuration space obstacles, requiring
us to find a solution for each connected region of each
aspect. Since computing aspects is not the main focus
of this paper, we leave this for future work and use the
following heuristic approach.

Given the position of the tool tip, we first find a
set of collision-free orientations of the tool tip. This
specifies a set of tool tip configurations. We then find
a set of joint angles that achieve each of the tool tip
configurations as follows. We define a set of initial ma­
nipulator configurations uniformly distributed over the
joint space. From these initial configurations we make
the robot converge to a configuration that achieves a
given tool tip configuration. We use the local planner
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in Section 3.2 for the converging movement except we
do not include the collision avoidance. If we incorporate
the collision avoidance in this step, the robot tends to
stay away from the objects, and we may not compute a
collision-free robot configuration that places the robot
in a tight space. Such a configuration may be essential
in generating a global collision-free motion tracing the
curve.

The resulting manipulator configuration, therefore,
may involve collisions with objects. If so, we move
the manipulator to a nearby collision-free configura­
tion using a greedy search algorithm that minimizes the
amount of overlap between the manipulator and the ob­
jects. We restrict the movement in the null space with
respect to the position of the tool tip so that the tool tip
stays at the corresponding critical location. The amount
of overlap between two objects is measured by the mini­
mum distance one of the objects has to translate in order
to separate them. This measure has also been called the
negative distance [21. From the current configuration,
the greedy search algorithm moves the robot to one of
the adjacent configurations with a smaller overlap. The
search is continued until the current configuration has
the minimum overlap, or the robot is in a collision-free
configuration. We then select only those configurations
that are collision-free as subgoals.

We use the following scheme to define a set of initial
robot configurations. We divide the range of each joint
into two equal intervals, and use the center value of each
of the intervals as a possible joint value. The scheme is
equivalent to representing the joint space with a one­
level deep 2doj -tree and defining the center of each cell
as one of the initial configurations. The selection pro­
cess is roughly equal to getting one initial configuration
from each of the aspects defined in [16], and results in
an approximately uniform sampling III the joint space.

Finding the shortest sequence
Once we have computed the subgoals, i.e., inverse

kinematic solutions, qj k for each critical location Ij , we
construct a graph G whose nodes are qjk. The edges
of G are between two subgoals qjk and qU+l)k' in the
adjacent critical locations whose distance in the joint
space is less than a preset number A times the distance
between the adjacent critical locations Ij and IHl in
the operational (world) space. The heuristic is that the
joint angle should not change much when the tool tip
is tracing a small segment of the curve. The edge cost
is set to the Euclidean distance between the subgoals in
the joint space. We then use dynamic programming to
find the shortest sequence from any of the subgoals at
the starting location to any of the subgoals at the ending
location of the curve. The sequence with the smallest
total edge cost is selected as the candidate sequence,
and the existence of a collision-free path via the sub­
goals in this sequence is verified by the local planner. As
the local planner finds a collision-free motion between
two subgoals, the corresponding edge cost is replaced
by the actual length of the collision-free motion in the
joint space. If the local planner cannot find a collision­
free path between two subgoals, the edge connecting
them is deleted from the graph. Since the length of
the collision-free motion is always greater than or equal

to the straight line distance between two subgoals, our
graph search will examine all sequences that can poten­
tially result in a shorter path than the current solution
path. This process of selecting and verifying sequences
is repeated until there is no sequence with a smaller es­
timated cost than the actual cost of the shortest path
found so far. Figure 3 shows a graph and a candidate
sequence of subgoals.

Reconfiguration of manipulator
Let sand t be the starting and ending location of the

curve. Given a graph G of subgoals, define s-reachable
(s-unreachable) subgoals to be those that can (cannot)
be reached along G using the local planner from any of
the subgoals at the first critical location. Define a crit­
ical location to be s-reachable if one of its subgoals is
s-reachable; otherwise, s-unreachable. Similarly, define
the corresponding terms for final location t. It may be
the case that at a particular critical location, some sub­
goals are s-reachable, some t-reachable, but none are
both s-reachable and t-reachable. In such a case, the
curve cannot be traced completely without taking the
tool tip off the curve, i.e., the manipulator has to be
reconfigured in the midst of tracing. Our algorithm re­
configures the manipulator as follows.

First, start from the subgoals at s, and trace the
curve as far as we can (called forward planning), by
continually generating a candidate sequence and veri­
fying it with the local planner. If we can reach any of
the subgoals at t, then we have succeeded in tracing the
whole curve. Otherwise, there exists a critical location
v that is not s-reachable, but its predecessor u is. In
this case, insert a new critical location w halfway be­
tween u and v, by computing the subgoals at wand
updating G accordingly. We repeat the process of for­
ward planning and inserting a new critical location until
the distance between u and v is smaller than a preset
distance Dmin' At this time, we reconfigure the ma­
nipulator at u. We use a point-to-point motion planner
to move the manipulator from an s-reachable subgoal
Uo to an s-unreachable subgoal Ul. The point-to-point
motion planner almost always moves the tool tip off the
curve, and the generated motion corresponds to a recon­
figuration motion. We use the Sandros motion planner
in [4] for the point-to-point motion planner. If it suc­
ceeds, then we add the edge (uo, ud into G and continue
with forward planning. Otherwise, the planner fails as
v is declared s-unreachable via G with reconfiguration.

Notice that our algorithm always reconfigures at the
last s-reachable critical location u, even though other
critical locations may be possible. Let Tab (T~b) be a
curve-tracing motion from critical location a to b (b to
a). Let R a be a reconfiguration motion between two
sub goals in critical location a. We now show that if
there is a curve-tracing motion that includes a recon­
figuration, then there is a curve-tracing motion with
a reconfiguration motion at the last s-reachable crit­
ical location, given that the following two conditions
are satisfied. First, the point-to-point motion planner
is complete, i.e., guarantees a solution if there is one.
Second, for a collision-free, curve-tracing motion Ta,b
between subgoal a, at critical location a and subgoal
bj at critical location b, there must be a collision-free
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motion T;,bj between a; and bj along which the tool tip
does not touch the curve. The T;b. is easily obtained
by perturbing Taibj by a small amount to move the tool
tip away from the curve.

Suppose that there is a curve-tracing motion, Ts w +
Rw + Tw t , which includes a reconfiguration motion Rw
(Figure 4). Suppose that u is the last s-reachable critical
location that is farther from s than w. Then there exists
a reconfiguration motion at u, namely, T~'u + Rw +T;';;u'
which will be found by the complete point-to-point mo­
tion planner. Thus, the choice of the critical location
for reconfiguration does not affect the completeness of
our algorithm.

3.2 Local Planner
The local planner moves the robot from one subgoal

to the next while tracing the curve and keeping an op­
timal orientation of the tool tip. Optimal orientations
are specified by the robotic task at hand. For example,
a caulking operation might require the tip of the caulk
to maintain 45 degrees from the edge. The tool tip ori­
entation is compromised only to avoid collision between
the robot and the objects in the workspace. We can also
compromise the tool tip orientation to avoid kinematic
singularities, but this is currently not implemented. The
local planner never moves the tool tip off the curve in
any case, since it severely degrades the quality of robot
performance in most tasks.

Our local planner is a modified version of the algo­
rithm in [11]. We first solve ~x = J(q)~q to move the
tip along the curve using singular value decomposition.
We then use the null space movement to change the
tool tip orientation as close to the optimal value as pos­
sible as long as the distance between the robot links and
the objects are greater than a preset threshold Ddanger.

If the distance is smaller than Ddanger, we use the null
space movement to increase the distance. The null space
movement is achieved by moving the robot joint angles
along the basis vectors of the null space of J(q), which
are computed from the singular value decomposition.
We also limit the number of the null space movement
so as not to exceed joint velocity limits. If the robot col­
lides with an object or the tool tip orientation goes out
of the acceptable range, the local planner declares that
there is no feasible motion between the two subgoals.
Figure 5 illustrates the local planner.

3.3 Completeness and Efficiency
Our algorithm gains computational efficiency by

computing inverse kinematic solutions at several crit­
ical locations rather than at all points on the curve.
We also compute only a small number of inverse kine­
matic solutions at each critical location to gain further
efficiency. If we had computed the set of all inverse
kinematic solu tions at every point along the curve and
searched for an optimal motion in that set, our algo­
rithm would be complete. The resulting computation
time, however, would be too long for practical applica­
tions. Instead, our algorithm relies on the local planner
to find motions between subgoals at the adjacent criti­
cal locations. It is difficult to analyze the complexity of
our overall planner precisely, but it does have following
characteristics. If the local planner is a sophistical ed
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algorithm, the critical locations can be far apart and
the global planner does less work. If the local plan­
ner is a simple algorithm such as moving straight in the
joint space, the global planner has to do more work by
computing more subgoals at more critical locations. In
the global planner, the initial path lengths of the edges
between sub goals are the straight-line distances in the
joint space, and thus are under-estimates. This satisfies
the admissibility condition of A* search, and the global
planner is guaranteed to find the shortest path in the
graph G of the subgoals. The optimal path in G is close
to the optimal solution to the problem as demonstrated
in the next section. Moreover, we can always further op­
timize the optimal path in G around its neighborhood
using a numerical technique [13].

4 Examples
Our curve-tracing algorithm has been implemented

with as much generality as possible. We use the
Denavit-Hartenberg parameters to compute forward
and inverse kinematics for manipulators, and objects
are modeled in the ACIS solid modeler. We have tested
our algorithm with a 3 and 4-dof planar manipulators,
and the planned motions are shown in Figure 1 and 6,
respectively. We have chosen the examples so that a
reconfiguration motion is needed in tracing a curve. It
took less than 5 minutes to compute the motions in the
examples on a 100MIPS workstation. We attempted
using robot models in the commercial simulation pack­
ages IG RIP and CimStation, but the overhead of calling
the distance computation routines was excessive. Our
algorithm computes the distance between robot links
and objects on the order of 104 - 5 times, and this has
necessitated the use of the fast distance routine in [5].

5 Conclusions
We have developed a global motion planner for curve­

tracing robots engaged in operations such as welding,
cutting, caulking, deburring and chamfering. This plan­
ner is capable of computing near-optimal, collision-free
robot motions by taking into account of the global geo­
metric information of objects. This planner can be used
with any type of robot including non-redundant and
highly redundant robots. The optimality of a computed
motion by our planner is commensurate with the avail­
able computing resource. Our planner is currently im­
plemented for polyhedral objects. Extending our plan­
ner to curved objects will require distance computation
between curved objects. Our planner also does not take
into account velocity constraints, which are crucial in
tasks such as welding and caulking. We plan to extend
our planner to eliminate these limitations and integrate
it with the commercial simulation software, enabling di­
rect use of models of robots and workcells in the simu­
lation software.
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Figure 1. The robot has to reconfigure itself in the middle of tracing the bold edge.
The traces of the tool tip are shown.
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Figure 2. Critical locations shown in black circles are
the beginning and end of the intervals in the curve
where objects are close by. The fourth critical location
will be deleted as it is close to the third critical location.

joint;
spact

Figure 3. Subgoals shown with white circles at the
critical locations represent inverse kinematic solutions.
A graph is constructed by connecting close subgoals
at the adjacent critical locations. The thick line shows
the shortest sequence of subgoals from the start to
the end of the curve.
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Figure 4. If there is a curve-tracing motion which
includes a reconfiguration motion, the
reconfiguration motion can always be done at the
last critical location u reachable from the start of
the curve.

joint space
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Figure 5. Each curve in the joint space denotes all
inverse kinematic solutions that place the tool tip at
the corresponding point on the curve. The local
planner first moves the tool tip along the curve
(arrows), and then uses the null space movement to
avoid collisions and optimize the tool tip orientation
(dotted lines).

Figure 6. A planar 4-link robot needs a reconfiguration to trace the bold edge. The
tool tip orientation deviates from the edge normal only if necessary to avoid collisions.
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