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FOREWORD 

This report is No. 4 of a series \vritten for the Diffusion 

Project presently being conducted by the Colorado Agricultural 

and Mechanical College for the Office of Naval Research,. The 

experimenta~ phase of this project is being carried out in a wind-

turulel at the Fluid Mechanics Laboratory of the College. The 

project is under the general supervision of Dr. M. L. Albertson, 

Head of Fluid Mechanics Research of the Civil Engineering Depar tment. 

To Dr. M. L. Albertson, and to Dr~ D. F. Peterson, Head of 

the Civil Engineering Department and Chief of the Civil Engineering 

Section of the Experiment Station, as well as to Professor T. H. 

Evans, Dean of the Engineering School and Chairman of the Engineering 

Division of the Experiment Station, the rlriter wants to express 

his appreciation for their kind interest in the present work. 

The writer also wishes to thank the Multigraph Office of the 

College for the able service it has rendered" 
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ATMOSPHERIC DIFFUSION FROM A POINT SOURCE 

.Abstract 

The differentilll. equation of diffusion when the wind 

velocity and the vertical and lateral diffusi vi ties are 

power funct i ons of height is f _ 0 z.. c_ 
u ~. 1_':._ - 1) .Q_ ( \/ ~' .E_c._ ) + l) u r.t -I 
.J () j_ - I 0") J 0 ~ 2. J 0 l 

where x, YJ and z are measured respectively in the down 

wind, vertical and cross-wind directtons and D1 and D2 
are physical consta!lts to be defined in the text. Exact 

solution of this equation for the case of a point source 

is presented in this paper. In the systematic search 

for this solution, dimensional analysis has been utilized 

to the optimum advantage. 

1~ Introduction 

Two-dimensional diffu sion, '.'rhen the wi nd- veloci ty and the 

1 

verti cal diffu sivities are power functions of height,. has been exten-

sively treat ed by 0" G. Sutton (5 ,1934), W. G. L. Sutton (7 ~1934) Frost 

{4, 1946),Calder {1, 1949), and Yih (8, 1951). Three-dimensional 

diffusion where lateral diffusivity must be considered has been treat-

ed by Davis (2, 1947; 3, 1950), and by 0. G. Sutton (6, 1947) in the 

case of a point source, on the assumpti on that the variation of the 

wind-velocity with height may be neglected. Thus in comparison with 

the two-dimensional phenomenon, the three-dimensional one has 

apparently received only insufficient attention. 

This paper is concerned with the atmospheric diffusion from a 

point source when the wind-velocity and the vertical and lateral 

diffusivities are power functions of height, the exponents of which 

(m, n, k in the following) being at fi rst l eft completely free. 
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A mathematical solut ion i s found possible for t he special case 

m = k 

2. The Differential System 

With the origin at the po1nt source, and the directions of 

x, YJ and ~ defined as in the abstract, H the variat i on of wind-

velocity u wi t h 
u 
0=-

1 

y is expressed by 
\! vv·· ( -t) 

i.s the wind-velocity at yl 

lateral diffusi vities are respectively 

Av A t ~ )''' 
I 'j, 

AL = A2 C.~)~ 
• ..J I 

and if the vertical and 

(1) 

(2) 

(3) 

where again A
1 

and A z correspond to the height y1, the equation 

of diffusion 

. 'de. _ ~ ( A ~ ( ) o ( ()c ) LA >r;; - -- , , ,:;;:- i- .- ~~ 1 ---
cJ;><.. ()'j · valj O{ ~o ·i 

(4) 

can be written as 
WI () (. _ 1) ~ ( :f\}.~ \ + }) \A ~ d z C =j ~- - I 1 'Olj ""t y ) 2 J ~ 2 :z. (5) 

where c is the concentration of the quantity under diffusion 

and 'n - ~' 

T' ::: A,::J, v, ---
(), u.. "Dz = (6) 

The differential equation (5) is to be solved with the following 

boundary conditions: 

(a) ~c. 

~j = o a-.:\ y;: 0 

(b) ~s.. '-=0 o.-1- l= o ol 
(c) <. ----"' ( () o.s y -7 QQ 

(d) c ~Co OS I~\ --7DQ 

(e) C 7 C 0 
0 ') ). --'? 0 feY ~ 7() 

(f) c -7Cu as j -;;o ioY \ ~~ ) () 
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and the integral continuity equation 

{ ~ ) J_: ~~ t)( c-C c } d ~) cL~ ::= Q ~ Ct·\As+a~,-\-
where q, is the ambient concentration, and A is the strength 

of the point source, (a) stipulates that the ground is impervious 

t o t he quantity under diffusion , and (b) . .follow from symmetry and ( · 

can be r E::placed by the mor e general condition t hat c should be an 

e··o::1 fur..cti on · rit h r espect t o z • 

.J • The Solution 

To facilitate the systematic searc~ for a similarity solution 

(Ahnlichkeitsl()sung), a dimensional analysis will be performed first , 

which, in conjunct ion with considerations of the powers of 'i.. . A, , 
A1.. , u 1 , Q "' cl 'j 

1 1 
will aff ord the most adequate transformation 

to be made in order that the solution will be the si mplest. The 

pertinent variables are 

A dimensi.onal analysis yields the relationship 

c -co Q. u .~ u, ·~ Ljr ' ~ .1,_ = r- ( - --: ) - ·- J ·-- ) (7) C.:,. · /)1 ,Go ). AI 1\2. .I 1. ) :X. ...,. 

To obtain a similari ty - solution, one makes the f ollowing 

substitution: 

(8 ) 

where 

( 9) 

~ ( ~)r- ( lJ_t __? __ 
A2 , X X 

(10) 

and where the exponents eX.._, (3., i ~ \'> . fs , r .- . h~ s are to be 

determined. Before proceeding further with the solution, i t may be 

noticed here that the power of Ojf.\
1
cc X is :1 in circumspection 



of (g), and that a pair of fixed values for ~ and:) defines 

a space curve which is the intersection of two parabolic cylinders • • 
~ := K I i I t l -\=' 

1 t-S - r 
-z :::. K"'" J. 

The set of all the curves defined by (11) and (12) for various 

values of 1-<, o, 1 ... d Kt will be dense ln the three-dimensional 

space under consideration. On any t wo such curves, the values of 

~ will always bear the same ratio for any value of x. Thi s is 

t he reason why the solution having the form of (8) is called a 

similarity-solution. 

One now pr oceeds to determine the exponents in (8), (9) 1 and 

(10). Substi tuting (8) in (5) and demanding equal powers in 

U 1 , y 1 , 0 v1J "f.. and equal j oint powers in A 
1 

Cl~o c\ Az. one has 

so that 

rY'I-n+z 

~- - \"\ + 2 
2 ( ¥'1\ ~ V"l + 2 ) 

Zp - b - 1 = c 

;2.r-s- \=O 

V\ - YY\ 

m-n + '2 

t~ -II\\ 5 ::=. ---'-=--
\Yl - n + 2. 

) The exponents oL , (3 , c.. ~~ cl 1 are left undetermined by this 
I 

procedure, and will be determined by (3) which gives, after (8) 

has been substituted i nto (g): 

d. -+ G +- , - r c IV\ .. l ) - y- = o 
-Yl l ~<f.- ~ rY, -+- 1) - S+ ~ .:= o 

u 
- \ -o. + 1:>:.. w' +I =c 

l 

- () -t- r- = o 
; 

( W1 ~I ) ( - r +~ -1- 1 ) + ( -I t ~ +I ) -t 0/ +~ - j -j ~ 0 
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(11) 

(12) 

(13) 

(14) 

(15) 

(16) 



s 

and 

) QQ ~ ~'0 1) \1') f< ~;; ) J \'1 d -s ; i ( 17) 
-00 0 

The five equations given by (g) involving the unknown exponents 

are not independent, and are satisfied by 

r==r 
d. = \) ( \'\·' + I) -I 
'( = Y\" + s + 1 ( n~ -t- I ) 

I) 

so that 

(18) 

(19) 

(20) 

c~ t~ -i. r _, = - c r( ~ +t > + ~-J c 21> 

With the exponents given in (13), (14), (18), (19), and 

(20) in terms of m, n, and k, substitution of (8) in (5) 

results in t he following equat ion: 

(_:{ t r -~) -\ ) f + ( p - l - I} Yj ·t,.\ "+ ( r - $ - I ) ""5' i $ 

Y\ Y\ -Wl ~ + n 1\ Y~ -n1 -l ..l -+ G 1 - 2. r- n ~ -W\ .£ 
' l 1') I T,') I J~~ ( 22) 

where 

and ·where subscripts denote partial differentiati ons. In virtue 

of (15), (16), and (21), (22) can be written 
. "" - V\1 l'l -M ... I -~ ~ - ~'- ' 

-(p< IH +\\ +r~ t -pl)1;)-rs-~~ ==~ f~Y)-4- '' 1 . -?;li n'\ 1s~(23) 

This i s the di ffe r ent i al equat i on that h·•s to bE. solved in 

gener al . For t he case m = k, make the t r ansfor ma t ion 

(24) 

(23) can now b e writt en . 



(25) being in a form suitable for separation of variables, one 

assumes 

z" ..j.. r~ z '-/- z-::: 0 
where the primes denote ordinary differentation: with respect to 

~ f or Y and with respect to ~ for Z • The boundary 

conditions for (27) are 

(h) "'.,/'fcJ-=o 

(i) 'y'(~ ) =O 

and t hose for (28) are 

(j) ?. '(o>=c 
( k) l ( \:)/)) ::: 0 

One first considers the system ( 28) ' (j) and (k). A first 

integration gives 

2' -t- r ~ z - ( r- + r) ) o'r 2' d. 3 = 0 

the lower l imit being chosen equal to zero since 

::t-o 
since otherwise th6 int'3gr·al in ( 17 ) would ,vanish. On 

the other hand, ~.PZo~ should be finite on account of (17) . 
~ -b 

7.. behaves as 3 for large · ~ ' b Consequently, if 

must be larger than 1 so that ~ Z _.., 0 as 1 -::> ~ . 

6 

(26) 

( 27) 

(28) 

( 28) 

( 29) 
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If 2. vanish exponentially as 3 -7 <.r"a , then also ~ z -") o as ~ .....y V'O . 

These seem t o be the only cas es i n Which Z can vanish at 

infinity, and for each of these cases the first two terms of (28) 

vanish while the third one does not unless )\ ::: _ 1 on account of 

(29). The satisfaction of (28) and (k) therefore requires 

Thus there is only one single eigenvalue for the parameter 'A . 
With (30), integration of (28) gives 

Z= kel(p(-r~z/2. J 
where K is an arbitrary constant to be determined by (17). 

Substituting (30) into ( 27) and multi plying throughout by ~~, 

one has 

(31) 

~I YI~V VI i t 
yV) - \"' ..1.-2 I , h·1 - I-" + "Z 

l'!i 4 I I' ,, 1'1 I I ----r1 y ' -+ ( t l ~; -J. ~~ 'l - y ) = o 
a first integration of which gives 

the constant of integration being zero since "( ' ( o) ~ o 0. vd '{ (a) 

is finite. A second integration gives 
~V\-1' +-2 

'!/ = ex YJ ( -· -'L . ~ ~' 
I (INI-1"\ +2 ) 

(32) 

the constant factor being absorbed in K of (31). 
The cons tant K · can be deterr::ined by (17) ~'.rt"!ich can be written as 

n n'\. ~\ !-'l_ ' ::. 

nrn 4Cl(l?(- I ., _ 2)cl t)c\S ~:1 
. I I ( \1\'\ -vd2 )' '- (33) 

Ev~.lu3.tion of (33 ) gives 

or 



which gives t . y r - ,c,-1 
r- .,. :;L (-·-) :z ( 2 ') ~--~.,IT__ h \ - \'\ + . . 

r co-) 
where 

mt I 

and 
r ( o._ ) = ) QQ W a -I e·W ~ W 

0 
is t he gamma function. 

8 

Equations (31), (3 2), (3h), and (35) give the function f by 
means of ( 2~- ), v:hi ch in conjunction ~-rith ( 24) and ( 8), yields the 

solution. The exponent s r-:1-., ~, "'(, p, - q, r and s being given ih~ 

terms of m, n, and k by (13), (14), (18), (19), and (20), 

and Er having been defined to be P. z. j A 1• As has been stated, the 

exponents n and m : k (and in fact also the paramewr -6' } are 

left fr ee t o be det c;; r mined by measurements . 
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