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ABSTRACT 
 
 
 

VOLATILE ORGANIC COMPOUND CONCENTRATIONS AND THE IMPACTS OF 

FUTURE OIL AND NATURAL GAS DEVELOPMENT IN THE COLORADO NORTHERN 

FRONT RANGE  

 
 

Recent advances in unconventional extraction of oil and natural gas (O&NG) have 

caused an increase in the number of wells in the Colorado Northern Front Range (CNFR) which 

has doubled Colorado’s natural gas production over the last 15 years. Increased O&NG activity 

can lead to increased emissions of Volatile Organic Compounds (VOCs) which may negatively 

impact air quality and human health.   This study looks at five sites (an elementary school, 

residential area, Fossil Creek Natural Area, Soapstone Natural Area, and a gas station) in Fort 

Collins and Timnath with the objectives of determining the gradient of VOC concentrations 

across a subsection of the CNFR, providing a baseline to compare potentially elevated VOC 

concentrations from future O&NG development, and a better understanding of the influence of 

O&NG emissions on air quality in the CNFR.  Whole air samples were collected at all locations 

using an evacuated 6L stainless steel canister equipped with a calibrated flow controller that 

sampled at a constant flow rate for approximately 1 week.  Sampling began at the elementary 

school and gas station in the summer of 2015 and concluded in November of 2016.  Sampling at 

the two natural areas and the residential area took place in the fall of 2015.  VOC concentrations 

were analyzed using an online gas chromatography flame ionization detector (GC-FID) system.  

An in-situ real-time GC was also deployed along with an All-In-One (AIO) weather station at the 
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residential area providing hourly VOC and meteorological measurements for approximately 3 

weeks in the fall of 2015. 

A suite of 48 VOCs were measured in this study.  Ambient concentrations of BTEX 

compounds (Benzene, Toluene, Ethylbenzene, and Xylenes) are often of particular interest due 

to their carcinogenic effects and toxicity; therefore, they were studied in-depth as part of this 

thesis.  Benzene was found to have median ambient concentration at the elementary school, 

residential area, Fossil Creek Natural Area, Soapstone Natural Area, and the gas station of 0.18, 

0.14, 0.32, 0.09, and 0.55ppbv, respectively. 

 Through the use of VOC correlations with propane and acetylene and VOC ratios, it was 

determined that O&NG emissions have a large influence on ambient VOC concentrations in the 

CNFR.  The mean ratio of i-pentane to n-pentane found at the elementary school, residential 

area, Fossil Creek Natural Area, Soapstone Natural Area, and the gas station was 1.07, 1.17, 

1.16, 1.05, and 2.35, respectively.  This indicates that the elementary school and Soapstone 

Natural Area are strongly influence by O&NG emissions while the residential area and Fossil 

Creek Natural Area have a mixed influence from O&NG activity as well as vehicular emissions.  

In contrast the gas station, displayed a clear combustion signature, as expected.  Additional VOC 

ratios were utilized; however, i-pentane to n-pentane ratio was determined to be the most robust 

tool to assess source apportionment in the CNFR.  In addition, through the use of meteorological 

data coupled with the real-time GC VOC measurements, there is strong evidence that local 

O&NG sources can have a large impact on air quality at the residential area. 

The OH reactivity at each location was evaluated in order to compare the ozone 

production potential by the VOCs measured at each site.  Fossil Creek NA showed the largest 

total OH reactivity in the fall while Soapstone NA displayed the lowest.  At Soapstone NA, 
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66.7% of the total OH reactivity resulted from aromatics, which is the highest, and 11.4% 

resulted from alkenes, which is the lowest compared to each group's contribution at other sites.  

At the elementary school, 3.2% of the OH reactivity in the summer was attributed to isoprene, 

whereas in the fall, winter, and spring only 2.0%, 0.41%, and 0.76% of the OH reactivity 

resulted from isoprene, respectively. 

Development of new unconventional O&NG wells is ongoing in the CNFR and there are 

plans to develop wells in close proximity to the elementary school.  The American 

Meteorological Society (AMS)/Environmental Protection Agency (EPA) steady-state dispersion 

model AERMOD was utilized to project the potential increased concentration of benzene as a 

result of this development.  The model was run utilizing the 5th, 25th, median, 75th, and 95th 

percentile emission rates of benzene found by a past study at production sites in the CNFR.  The 

annual average concentration increases above background at the school (0.18 ± 0.08ppbv) for the 

5th, 25th, median, 75th, and 95th percentile emission rates were found to be 0.0067, 0.11, 0.33, 

0.89, and 6.7ppbv, respectively.  The strongest benzene enhancement at the school occurred 0:00 

(midnight) - 08:00 and 17:00 - 23:00 (0.46ppbv); however, during school attendance hours 

(08:35 - 15:13) the concentration increase was 0.024ppbv.   
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Chapter 1

Introduction

1.1 Motivation

The production of oil and natural gas (O&NG) in the United States (U.S.) has increased

by about 75% over the past 30 years, and is projected to continue to grow annually by

nearly 4% over the next several years (Figure 1.1) [EIA, 2017]. Much of the recent and

projected future growth are the result of improved technologies, including horizontal drilling

and hydraulic fracturing [Swarthout et al., 2013].

Figure 1.1: Historical and projected U.S. natural gas production rates under high and
low scenarios of technological growth, oil price, and economic growth [EIA, 2017].

Conventional reservoirs of natural gas are created when the gas is trapped in a large

pocket beneath an impermeable rock layer. Traditional wells are drilled vertically into a

reservoir and the extraction process simply consists of collecting the natural gas that flows out

[King et al., 2017] (Figure 1.2a). More recent well exploration and extraction activities have

used horizontal drilling and artificial stimulation, commonly known as hydraulic fracturing

or “fracking”, in order to access shale natural gas reserves [API, 2017]. Shale natural gas is
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contained within many tiny pores in underground rock formations that necessitates the use

of artificial stimulation to be extracted and trapped [Baird et al., 2012].

In many unconventional wells, well bores are drilled vertically thousands of meters into the

earth and then angled horizontally. Small explosive charges are detonated in the horizontal

portion to initiate fissures, followed by large volumes of water, chemicals, and sand being

pumped down the well and pressurized. This expands fractures in the shale rock to facilitate

recovery of natural gas [Hoffman, 2015]. The pressure from the escaping gas causes some

of the water and chemicals to flow up to the surface while the sand remains in the fissured

rock to hold open the fractures [Harper, 2014]. The natural gas continues to flow to the

surface for the production lifetime of the well (Figure 1.2b). Some wells must be “re-fracked’

periodically to stimulate continued production.

These technological advances in unconventional extraction techniques, have provided

access to previously impractical O&NG reserves contained in numerous shale rock formations

in the U.S. [Swarthout et al., 2013]. Between 2005 and 2013, 82,898 hydraulic fracturing

wells were drilled in the U.S., over 18,000 of which were located in Colorado [Ridlington et

al., 2013]. Unconventional gas production is forecast to comprise 64% of the total U.S. gas

production as soon as 2020 [API, 2017].

Figure 1.2: Diagram of a traditional, vertically drilled gas well (a) and a horizontally
drilled, hydraulic fracturing well (b) [Netto, 2016; King et al., 2017].
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Colorado is rich in energy resources due to its unique geology. There are several shale and

sedimentary rock basins throughout the state and many deposits of coal in the northwest

and southern regions of the state [Weiner, 2014]. Eleven of the 100 largest U.S. natural gas

fields are located completely or partly in Colorado [EIA, 2016] and in 2015, 8.3% of all the

producing O&NG wells in the U.S. were located in Colorado [EIA, 2016]. One of the largest

shale formations in the U.S. is the Denver-Julesburg Basin (D-J Basin) which covers over

180,000km2 in five different states and includes the majority of northeastern Colorado (Figure

1.3). Located in the Colorado Northern Front Range (CNFR) and within the D-J Basin is

the Wattenberg field which is located predominantly under Weld County but extends into

Larimer, Boulder, Broomfield, Denver, and Adams Counties.

Figure 1.3: Map of Colorado, Wyoming, South Dakota, Nebraska, and Kansas with the
Denver-Julesberg Basin (D-J Basin) shaded in light green. The Wattenberg gas field within
the D-J Basin is highlighted in red [Collett et al., 2016].

Following the national trend, the production of O&NG in Colorado more than doubled

between 2001 and 2016 [COGCC, 2016a]. As of 2014, over 90% of the new O&NG wells

drilled in Colorado utilized hydraulic fracturing and between 1990 and 2012 the production

of natural gas in Colorado increased by approximately 8 times, which was a direct result of

the use of hydraulic fracturing technology [Weiner, 2014].
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Growth in O&NG activity may be accompanied by an increase in the emissions of

atmospheric pollutants such as volatile organic compounds (VOCs), which can be important

due to their impacts on air quality and their effects on human health [Gilman et al., 2013].

While it was not quantified in this thesis, methane (CH4) emissions from unconventional

extraction of O&NG have been found to be significant [Collett et al., 2016; Gilman et al.,

2013; Pétron et al., 2012; Swarthout, 2014]. Globally, CH4 emissions are of interest because

it acts as a greenhouse gas (GHG) that is 25 times more potent than carbon dioxide (CO2)

over a 100-year time scale [Jacob, 1999]. This thesis focuses on the regional impacts of

non-methane hydrocarbon (NMHC) emissions from O&NG activity.

Many VOCs can react in the atmosphere to produce ozone (O3) which is of particular

interest in the CNFR since the region has been designated as a federal non-attainment area

for O3 by the U.S. Environmental Protection Agency (EPA) for several years [Thompson

et al., 2014]. Most of the VOCs emitted from O&NG operations have been associated with

elevated O3 levels [Gilman, 2013; Swarthout et al., 2013; Thompson et al., 2014].

Figure 1.4 shows a typical sequence of reactions that yield O3 starting with a VOC. The

sequence is initiated when a VOC molecule reacts with a hydroxy radical (OH) in the presence

of oxygen (O2) producing an organic peroxy radical (RO2) and water vapor (H2O). RO2 then

reacts with nitric oxide (NO) in the presence of O2 to form a secondary VOC, a hydroperoxyl

radical (HO2), and nitrogen dioxide (NO2). HO2 reacts with NO to form NO2 which is then

photolyzed by sunlight (hv) to form atomic oxygen (O). O is highly unstable and quickly

reacts with O2 forming O3.

Figure 1.4: A typical sequence of reactions that yield O3 starting with a VOC. Adapted
from Sillman [2003].
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The direct impact of VOCs emitted from O&NG production on human health are

of particular concern when O&NG operations are close to residential areas, schools, and

businesses. Exposure to some aromatic VOCs has been associated with increased cancer

risk, respiratory distress, and endocrine disruption [Bolden et al, 2015]. Benzene, toluene,

ethylbenzene, and xylenes (BTEX) are a subset of aromatic VOCs that are classified by the

EPA as Hazardous Air Pollutants (HAPs) [EPA, 2015]. In particular, exposure to benzene

has been linked to leukemia, anemia and other blood disorders and cancers, immune system

impairment, decreased respiratory function, and neural tube defects in newborns [Halliday et

al., 2016]. While there is still a lot of uncertainty in specific source apportionment of benzene,

the 2011 EPA National Air Toxic Assessment attributed 32% of all benzene emissions to

a combination of the evaporation of fuels at gas stations, the use of solvents, and O&NG

operations and processing plants [Bolden et al., 2015].

In addition to air toxics being emitted from O&NG wells, concern regarding site dangers

due to infrastructure degradation and blowouts due to gas explosions have prompted state

governments to enact minimum required setback distances for O&NG developments [Hoffman,

2015]. However, the distance that constitutes a safe setback between O&NG activities and

populated areas is not well understood and research is currently lacking regarding distances

that are adequate to protect the health and safety of the public [Haley et al., 2016]. As of

2016 when this study was completed, the Colorado Oil and Gas Conservation Commission

(COGCC) minimum required setback distance for a drilling operation from a high occupancy

building (i.e. schools) was 1,000ft (304.8m), and 500ft (152.4m) from all other building units

[COGCC, 2016b].

The work detailed in this thesis took place in the City of Fort Collins and the Town of

Timnath which are both located in Larimer County which partially overlaps the Wattenberg

field. At any one time there are a few hundred wells in operation in Larimer County; however,

the majority of the Wattenberg field lies within Weld County where there were over 24,000

wells in operation throughout 2016, which is approximately 41% of all the producing wells in
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Colorado [COGCC, 2016a]. Figure 1.5 shows a map of the O&NG wells in the CNFR as of

2016.

Figure 1.5: Map of the active O&NG wells in the CNFR. Individual wells are denoted by
a red dot [COGCC, 2017].

1.2 Recent VOC Studies in the CNFR

Several recent VOC studies have been conducted in the CNFR utilizing whole air canister

sampling and/or in-situ real-time gas chromatography (GC) techniques to estimate the

impact of O&NG development on ambient VOC concentrations [ARS, 2014; Gilman et al.,

2013; Halliday et al., 2016; Swarthout et al., 2013; Thompson et al., 2014]. In addition to

reporting the raw concentrations of VOCs, these studies utilize the correlation and ratio

between particular VOCs to help apportion contributing source types.

In the CNFR propane has been shown to be a strong tracer of O&NG activity while

acetylene has been used as a vehicular emission marker [Gilman et al., 2013]. The primary

source of i-pentane, n-pentane, n-butane and ethane in the CNFR is O&NG production

[Halliday et al., 2014]; therefore, an air mass influenced strongly by O&NG activity would

be expected to display a strong correlation between concentrations of these 4 light alkanes

and propane and a poor correlation with acetylene. Table 1.1 summarizes the coefficients
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of determination of i-pentane, n-pentane, n-butane, ethane, and benzene with propane and

acetylene found in recent studies.

Another way to determine the influence of O&NG vs vehicular emissions on an air mass

is by utilizing ratios of the pentane isomers (i-pentane and n-pentane) [Gilman et al., 2013],

the butane isomers (i-butane and n-butane), and the ratio of toluene to benzene [Halliday

et al., 2014]. Emissions from vehicle combustion are richer in i-pentane thus an elevated

i-pentane to n-pentane ratio indicates a strong vehicle influence [Halliday et al., 2014]. Based

on previous work comparing VOC data from the CNFR and major US cities, an i-pentane to

n-pentane ratio of approximately 1.0 or less indicates a primarily O&NG influence while an

i-pentane to n-pentane ratio of approximately 2.3 or greater indicates a primarily vehicular

influence [Gilman et al., 2013]. Vehicular emissions show elevated n-butane concentrations

and previous studies have reported pure vehicular exhaust to display an i-butane to n-butane

ratio of 0.2 to 0.3 and O&NG emissions to have a ratio of 0.6 to more than 1 [Russo et al.,

2010]. Fresh traffic emissions have displayed a toluene to benzene ratio of over 2 whereas

emissions more influenced by O&NG generally exhibit toluene to benzene ratios less than 2

[Halliday et al., 2014]. The delineation in this ratio is not as clear for source apportionment;

however, as the delineation for i-pentane to n-pentane and i-butane to n-butane ratios. The

toluene to benzene ratio is also influenced by the differing oxidation rates of these two species

in the atmosphere; toluene is more reactive than benzene [Seinfeld et al., 2016]. Table 1.2

summarizes the VOC ratios found in recent studies conducted in the CNFR.

Gilman et al. [2013] quantified a suite of VOCs using an in-situ 2-channel GC mass spec-

trometer (MS) at the Boulder Atmospheric Observatory (BAO) tower in Boulder, CO during

the NACHTT (Nitrogen, Aerosol Composition, and Halogens on a Tall Tower) experiment.

The BAO tower is located approximately 55km south of Fort Collins, approximately 30km

north of the Denver metropolitan area, and is in the southwestern portion of Wattenberg

Field. The measurements in this study took place from February 18, 2011 to March 7, 2011.
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They observed i-pentane, n-pentane, n-butane, and ethane coefficients of determination

(r2) of 0.94, 0.94, 0.98, and 0.96 with propane and 0.30, 0.29, 0.29, and 0.37 with acetylene,

respectively. They also calculated a coefficient of determination of 0.77 between benzene

and propane concentrations and a coefficient of determination of 0.62 between benzene and

acetylene. The average i-pentane to n-pentane ratio, i-butane to n-butane ratio, and toluene

to benzene ratio measured was 0.89, 0.43, and 1.03, respectively. The high correlation of

propane with compounds known to be associated with O&NG along with the reported VOC

ratios led to the conclusion that O&NG production near BAO had a significant impact on

the characteristics of the local air mass [Gilman et al., 2013]. Swarthout et al. [2013] also

analyzed data from the NACHTT experiment and found similar results.

Thompson et al. [2014] collected a total of 30 24-hour time-integrated whole air canisters

outside 7 different residences within and north of the town of Erie, CO. The measurements

in this study were collected between March, 2013 and June, 2013.

They observed i-pentane, n-pentane, and n-butane coefficients of determination (r2) of

0.91, 0.94, and 0.95 with propane and 0.08, 0.12, and 0.15 with acetylene, respectively. They

also saw a coefficient of determination of 0.73 between benzene and propane and a coefficient

of determination of 0.29 between benzene and acetylene. The average i-pentane to n-pentane

ratio, i-butane to n-butane ratio, and toluene to benzene ratio measured was 1.01, 0.43,

and 0.75, respectively. These results, reported by Thompson et al. [2014], led to a similar

conclusion as Gilman et al. [2013]: O&NG emissions have a large-scale regional impact on

ambient air quality.

Halliday et al. [2016] collected whole air canister grab samples at the Platteville Atmo-

spheric Observatory (PAO) tower in Platteville, CO from mid-July to mid-August of 2014.

The area around PAO is primarily rural, and there are areas of dense O&NG activity in the

immediate vicinity. The tower is located approximately 45km southeast of Fort Collins and

approximately 55km northeast of downtown Denver.
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They observed i-pentane, n-pentane, n-butane and ethane coefficients of determination

(r2) of 0.99, 0.97, 0.99, and 0.94 with propane and 0.49, 0.43, 0.50, and 0.42 with acetylene,

respectively. They also saw a coefficient of determination of 0.78 between benzene and

propane and a coefficient of determination of 0.38 between benzene and acetylene. The

average i-pentane to n-pentane ratio was 0.89 and the mean toluene to benzene ratio observed

under calm conditions was 1.32. The results presented by Haliday et al. [2016] further agree

with the conclusions made by Gilman et al. [2013] and Thompson et al. [2014] that there is

a strong O&NG signature in NMHC detected in the CNFR.

Table 1.1: Summary of i-pentane, n-pentane, n-butane, ethane, and benzene coefficients
of determination (r2) with propane and acetylene found in recent studies conducted in the
CNFR. NR indicates the coefficients of determination was not reported in the study.

Table 1.2: Summary of VOC ratios found in recent studies conducted in the CNFR.

Between November 15, 2013 and February 15, 2014, the City of Fort Collins and Memorial

Resource Development, LLC (MRD) jointly funded a short term air quality monitoring

assessment in order to quantify ambient air quality around O&NG development projects.

Air Resource Specialists, Inc. (ARS) was contracted to conduct the study locally and the

laboratory analysis was performed by the Eastern Research Group, Inc. (ERG). In part, the

short term ARS [2014] study quantified 79 ambient VOC concentrations using 24-hour whole

air time-integrated canister sampling in compliance with the EPA TO-12 methods. This

study is the most comparable data to the work presented in this thesis since samples were
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collected relatively close geographically, at a similar time of year, and analyzed using similar

methods.

ARS [2014] measured VOC concentrations at 2 sites in northeast Fort Collins and 2 sites

near Downtown Fort Collins. The 2 northwest Fort Collins sites were co-located with active

O&NG projects. The “Well Pad” site was located near a producing well pad in an open field

and the “Tank Battery” site was located near O&NG infrastructure that included storage

tanks. The “City Park” site was located near a public pool in a park maintained by the

City of Fort Collins and the “Mason Street” site was located on the roof of a Colorado State

University (CSU) maintenance building on the school’s main campus. A total of five canister

samples were collected at each site every 12th day following a recommended schedule from

the EPA.

The mean i-butane to n-butane ratio observed at the “Well Pad” and “Tank Battery”

sites were 0.55 and 0.38, respectively. The mean i-butane to n-butane ratio at the “City

Park” and “Mason Street” sites were both 0.42. The mean toluene to benzene ratio at the

“Well Pad” and “Tank Battery” sites were 1.82 and 1.37, respectively. The mean toluene to

benzene ratio at the “City Park” and “Mason Street” sites were 1.75 and 1.82, respectively.

Although source apportionment conclusions are not explicitly stated in this report, the

VOC ratios indicate that all 4 sites are influenced by a combination of O&NG operation and

vehicular emissions. However, it is difficult to draw substantial conclusions on the influence

of different VOC sources on ambient air quality in Fort Collins, having only sampled for 5

days over a 3 month period. In part, this thesis works to expand the available ambient VOC

concentration data in Fort Collins and Larimer County.

In addition to quantifying VOC concentrations and determining source apportionment,

recent studies in the CNFR have seen a connection between VOC emissions from O&NG and

elevated ground level O3 concentrations [Abeleira et al., 2017; Gilman et al., 2013]. Since

May of 2012 the CNFR has been designated as a marginal non-attainment area for the

2008 8 Hour Ozone National Ambient Air Quality Standard (NAAQS) of 75ppbv [CDPHE
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AQCC, 2016]. The propensity of a VOC to initiate the O3 production cycle (ROH), can be

estimated as simply the product of the VOC mixing ratio in molecules cm−3 and the VOC

rate constant with OH (kOH), which has units of s−1. The sum of the ROH for each VOC is

the total measured OH reactivity [Albeleira et al., 2017]. This calculation only accounts for

the initial step in the O3 production cycle; therefore, it is a very rough estimate of the total

O3 formation resulting from the measured suite of VOCs. Although it is difficult to compare

OH reactivity observed across different studies, as the suite of VOCs measured through

different methods varies, the total observed reactivity, as well as the fraction attributed to

different VOC categories (i.e. alkanes, alkenes, aromatics, etc.), can still provide insight into

the sources of O3 formation in a region [Swarthout et al., 2013].

Abeleira et al. [2017] collected hourly measurements of 46 VOCs at the BAO tower over

16 weeks in the spring and summer of 2015. Their VOC suite included C2-C8 NMHCs, C1-C2

halocarbons, C1-C5 alkyl nitrates, and several oxygenated VOCs (OVOCs). They observed

an average total VOC reactivity of 2.7s−1 in the spring and 4.0s−1 in the summer. In the

summer, VOCs accounted for 50 - 64% of the total OH reactivity whereas in the spring VOCs

accounted for only 35 - 48%. The remaining OH reactivity was attributed to a combination of

NOX , CH4, and carbon monoxide (CO). Among the VOCs, the majority of the OH reactivity

was attributed to a combination of alkanes, alkenes, and aromatics in the spring; however,

these compounds only dominated in the morning during the summer with biogenic emissions

(primarily isoprene) dominating in the afternoon. Although measurements were not recorded

in the fall and winter, it was noted that VOCs would contribute more OH reactivity in the

spring and summer due to the increase of biogenic sources along with increased evaporative

emissions of anthropogenic hydrocarbons [Abeleira et al., 2017].

Gilman et al. [2013] observed a median total VOC reactivity of 2s−1 in wintertime. Their

measured VOC suite contained additional OVOCs and biogenics compared to Abeleira et al.

[2017] and the measurements were collected in a different season. These VOCs are highly

reactive, and many display a strong seasonal variation, making direct comparisons between

11



the magnitude of the measured OH reactivity in these studies difficult. Gilman et al. [2013]

estimated that C2-C6 alkanes accounted for 55 ± 18% of the OH reactivity in the winter and

that on average 72 - 96% of these light alkanes were attributed to O&NG operations. This

led the conclusion that O&NG production in northeastern Colorado is a significant source of

O3 precursors.

1.3 Thesis Overview

The work done in this thesis was initiated, in separate efforts, by the City of Fort Collins

and the Town of Timnath because of concerns over the potential effects of O&NG operations

on ambient air quality. The main goals of the combined studies, as analyzed here, were to

determine the gradient of VOC concentrations across Fort Collins and Timanth, and provide

a baseline to compare with future VOC measurements as O&NG development continues

to increase in the CNFR. This work utilized one week time-integrated whole air canister

sampling and gas chromatography flame ionization detection (GC-FID) to quantify a suite

of VOCs collected at five sampling locations in Fort Collins and Timnath. In addition, a

real-time in-situ GC was utilized at one of the sampling locations to provide higher time

resolution (approximately hourly) VOC measurements.

In-depth analysis using the VOC concentration data was performed in order to compare

the measured concentrations to those found in previous works, estimate source apportionment

using various VOC ratios and meteorological data, and determine O3 production potential

through OH reactivity calculations.

Further motivation for the Timnath measurements was the possibility of the development

of six new unconventional wells near an elementary school in Timnath. While the O&NG

activity will take place outside the legal setback distance, the potential emissions and their

effects concerned the parents of students as well as the staff of the school [Kyle, 2015]. Most

community members who express concern regarding O&NG development near residential

areas, schools, and businesses note that the uncertainty as to what the effects of further

development will be is their biggest worry. Therefore, with the potential of new O&NG
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development in close proximity to the school, a secondary objective of this thesis was to assess

the localized impact of a future O&NG development using the American Meteorological

Society (AMS)/EPA air dispersion model AERMOD.

The following chapter details the methods of field measurements and sample analysis as well

as describing the utilization of AERMOD. Chapter 3 presents the results and analysis of the

VOC data and AERMOD simulations. Chapter 4 provides conclusions and recommendations

for future work.
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Chapter 2

Methods

2.1 Experimental Design

2.1.1 Sampling Locations

Time-integrated whole air canister samples were collected at a constant flow rate over the

course of approximately one week at five locations in Larimer County, CO. The objectives

of this aspect of the thesis were to determine the gradient of VOC concentrations across a

subsection of the CNFR, provide a baseline to compare potentially elevated VOC concen-

trations from future O&NG development, as well as provide a better understanding of the

current influence of O&NG emissions in the CNFR. Whole air samples were collected at an

elementary school, residential area, two natural areas, and a gas station (Figure 2.1) in Fort

Collins and Timnath. The number of samples collected and the range of dates varied among

the five locations. More details regarding the canister sampling and analysis methods are

provided in Section 2.2. In addition, an in-situ gas chromatography (GC) system measured

real-time ambient VOC measurements at the residential area. More details regarding the

in-situ GC sampling method are provided in Section 2.3.

Figure 2.1: Map of the five sampling locations in the CNFR.
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The first site was an elementary school (40.515o, -104.950o) located in the Town of

Timnath, CO in Larimer County. The school campus is within 0.5km of the border of Weld

County, CO where there is extensive O&NG activity. It is surrounded by actively developing

residential neighborhoods and is approximately 3.5km east of the interstate highway (I-25).

The canister was affixed to the roof line of a mobile classroom approximately 3m above the

ground (Figure 2.2). The classroom was located on the northeast side of the campus and was

the closest structure to the location of a potential future O&NG development site.

Figure 2.2: Canister affixed to the roof line of a mobile classroom on the elementary
school campus.

The second site was a residential area (40.619o, -105.033o) located in north Fort Collins,

CO in Larimer County. It is positioned approximately 2.5km west of the interstate highway (I-

25) and 5.5km northeast of downtown Fort Collins. While there is not nearly as much O&NG

development in Larimer County compared to Weld County, there is an area approximately

1.5km northwest of the residential area that contains several producing O&NG wells. The

sampling canister was affixed to a tripod at about 2m above ground in a grassy area in

the backyard of a house. The only building structure near the sampling setup was a one

story residence about 5m to the west. There were undeveloped land parcels and fallow fields

directly east of the site and the Anheuser-Busch Brewery was located further east (about

2km). Although it is not modeled in this thesis, it should be noted that there is a proposed

O&NG development in the fields to the east of this site. Concern regarding the effect of
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O&NG emissions on the nearby residential area was an important factor in motivating the

City of Fort Collins to fund this portion of the study.

The third site was Fossil Creek Natural Area (40.484o, -105.016o) located in southeast Fort

Collins, CO in Larimer County and positioned approximately 2.0km west of the interstate

highway (I-25) and less than 0.5km north of a busy roadway (County Rd. 32). Unlike the

residential area, there is no dense O&NG development in the immediate vicinity and there

are no actively producing wells within a 3km radius. The sampling canister was affixed to a

building adjacent to the parking lot of the Natural Area at about 2m above ground. The

parking lot is only used by the Natural Area staff and visitors and has a maximum capacity

of about 40 vehicles. Visitation to this location peaks in Apr.-Jun. (43%) and is lowest in

Oct.-Dec. (16%) [City of Fort Collins, 2003].

The fourth site was Soapstone Natural Area (40.986o, -105.009o) located in northern

Larimer County, CO about 40km north of Fort Collins and only about 1.5km south of the

Wyoming border. It is positioned approximately 8km west of the interstate highway (I-25) and

there is little traffic or O&NG development in the immediate vicinity. The area surrounding

the sampling location is mostly open and undeveloped prairie lands. The canister was affixed

to a wooden pole outside of a shed at approximately 1m above ground (Figure 2.3). The

building was seldom utilized and vehicular traffic was sparse on the surrounding dirt roads.

This location is used as the park ranger headquarters throughout the year.

Figure 2.3: Canister affixed to post at the Soapstone NA ranger headquarters.
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Sampling was also conducted at a gas station (40.523o, -104.989o) in order to provide data

that was directly influenced by vehicular combustion and gasoline vaporization to compare

to the other four sampling sites where it was anticipated that O&NG emissions would be

the predominant influence. The gas station is located in the Town of Timnath, CO and

is adjacent to a major roadway (Harmony Rd.). It is located 0.25km east of an interstate

highway (I-25). The canister was affixed to the back of a sign approximately 20m north of

the gasoline pumps (Figure 2.4). In addition to the heavy vehicle traffic on the roadways

and in the gas station parking lot, there is a major shopping center and another gas station

located across the street (approximately 100m north).

Figure 2.4: Canister affixed to an exit sign north of the gas station pumps.

2.1.2 Sampling Duration

Due to logistical and funding restrictions, sampling at the residential area and the two

Natural Areas was limited to the Fall of 2015. A real-time in-situ GC sampled for a period

of approximately 3 weeks in the Fall of 2015; however, it sampled at approximately an hourly

interval, providing a comparatively higher resolution data set. Whole air sampling at the

elementary school and the gas station began in the summer of 2015 and spanned 32 weeks

spaced over more than 1 year, providing a much more complete data set than was obtained

at the other canister sampling locations. Figure 2.5 lists the study sampling periods as well

as the total number of whole air week-long time-integrated canisters collected at each site.
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Figure 2.5: Canister and real-time in-situ GC sampling timeline and the number of weekly
integrated canisters collected at each of the five sampling locations.

2.1.3 Meteorological Data

A Climatronics Corporation All-In-One (AIO) Weather Sensor was set up to collect data

for wind speed, wind direction, and temperature at the residential area for the duration of

sample collection. This AIO weather station was attached to the same tripod as the sampling

canister. For the elementary school, wind speed and direction data were obtained from the

Timnath Ranch Weather Station (KCOTIMNA3: 40.505o -104.958o) [The Weather Company]

located approximately 1.2km southwest of the elementary school. For the two Natural Areas,

meteorological data were downloaded from two Colorado Agricultural Meteorological network

(CoAgMet) surface stations. The Fort Collins AERC (FTC01: 40.595o, -105.137o) station

was used to represent conditions at Fossil Creek NA and the Cherokee Park (CKP01: 40.826o,

-105.267o) station was used for Soapstone NA [CoAgMet].
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2.2 Whole Air Time-Integrated Canister Sampling

2.2.1 Whole Air Sampler Description

Entech Instruments 6L Stainless Steel Canisters with an internal Silonite R© coating were

used to collect weekly integrated whole air samples (Figure 2.6). The Silonite R© coating of

the canisters provides an inert internal surface that allows for long term storage of collected

VOCs. These types of canisters have been shown to hold VOC concentrations stable for

more than a month [LeBouf et al., 2012] and samples were stored for shorter durations (no

longer than 30 days) prior to analysis in this work. The canister along with the base, valve,

and handle is approximately 31.5cm in height and the spheroid body of the canister has a

central diameter of approximately 23cm. The canister is equipped with an Entech Toxic

Organics Valve (TOV-2) which ensures a leak resistant seal. All of the components and

specifications of the Entech 6L canisters are certified to meet or exceed the requirements of

the EPA TO-14a and TO-15 methods.

Figure 2.6: Photo of the Entech Instruments 6L Silonite R©-coated canister used for time-
integrated collection of whole air samples.

2.2.2 Flow Controller Calibration

An Entech Instruments CS1200ES Flow Controller (Figure 2.7) was affixed to a 6L canister

in order to perform time-integrated whole air sampling. The CS1200E Flow Controller consists

of three main parts: the vacuum controller body, the flow restrictor, and the inlet. Proper
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calibration prior to field deployment of the flow controller was important to ensure that

ambient sampling flow rates were consistent throughout the study. The flow rates were

checked and corrected as needed prior to each field deployment.

Figure 2.7: Entech Instruments CS1200ES Flow Controller.

The vacuum controller maintains a -0.4 to -1.5 psi pressure differential relative to at-

mospheric pressure, no matter what the vacuum is on the outlet [Entech, 2015]. Prior to

calibration, the correct flow restrictor fitting must be attached. Several sizes are provided

with the flow controller in order to accommodate a wide range of desired flow rates. The flow

restrictor fitting utilized in this thesis can provide between 2 and 7 days of constant flow.

For any given restrictor, the flow rate can be adjusted by a factor of 3 to 4 in order to finely

tune the exact desired flow rate [Entech, 2015] using the flow adjustment screw to control

the pressure on the vacuum controller. The vacuum gage reports a range of 0” Hg to 30”

Hg of vacuum. The flow controller contains a filter at the sample inlet and a brass cap is

attached at the filter cover to prevent contaminants from entering the sample inlet when the

flow controller is not in use.

To calibrate the CS1200ES Flow Controller, it was attached to a cleaned and evacuated

6L Silonite R©-coated stainless steel canister (Figure 2.8). The brass cap was removed from the

flow controller and the canister was opened and then immediately closed. If the canister had

been properly cleaned and evacuated and there were no leaks in the setup, the vacuum gage
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showed a value over 20” Hg of vacuum. The time it took for the vacuum pressure to drop

from 20” Hg to 10” Hg was recorded. According to the Entech CS1200ES Flow Controller

Operation and Care Guide [Entech, 2015] a time of 65.5 seconds equates to a constant flow

rate of 0.52 mL
min

, which would fill a 6L canister in approximately 1 week. If the time recorded

was more or less than 65.5 seconds the flow controller was adjusted by turning the flow

adjustment screw and retested.

Figure 2.8: Photo of the Flow Controller attached to the 6L Silonite R©-coated canister,
prepared for field deployment.

2.2.3 Sampling Canister Cleaning and Evacuation

Proper cleaning and testing of the Silonite R©-coated 6L canisters prior to field deployment

is important to ensure that ambient sampling results are not biased by contamination or

off-gassing occurring in the canister. Prior to each deployment, the canisters were cleaned

and evacuated using an Entech Instruments 3100D Canister Cleaning System (Figure 2.9)

controlled by Entech Instruments 3000/3100 Canister Cleaner v3.6 Software. The procedure

used was based on the recommendations of Entech Instruments and the cleanliness certification

required by EPA Compendium Methods TO-12, TO-14A, and TO-15.
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Figure 2.9: Photo of the Entech Instruments 3100D Canister Cleaning System used to
clean and evacuate the 6L Silonite R©-coated canisters.

The canister cleaning system has the capacity to clean four 6L canisters simultaneously.

Canisters were cleaned by evacuating to approximately 1torr and refilling to ambient pressure

with Ultra High Purity (UHP) Nitrogen. This sequence was repeated 8 times inside an oven

heated to 80oC in order to remove VOCs introduced during the previous sampling. After

cleaning, the canisters were pumped down to 0.01torr using a molecular drag pump to prepare

them for the next sampling deployment. In each cleaning batch, one of the canisters was

selected as a batch blank and filled with UHP Nitrogen. This canister was analyzed along

with the canisters that were utilized in field sampling in order to ensure the performance of

the cleaning system and that no contamination occurred as a result of the cleaning procedure.

2.2.4 Canister Analysis using the 5-channel GC

The concentrations of 48 VOCs in the canister samples were analyzed using a 5 channel

GC coupled with three Flame Ionization Detectors (FID), an Electron Capture Detector

(ECD) and a quadrupole mass spectrometer (MS). The VOC concentrations reported in

this thesis were obtained using the 3 FIDs; however, the GC system has the capability to

report hundreds of VOC concentrations if all 5 channels are utilized. The 5-channel GC
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system was comprised of a 30cm long stainless steel cryogenic pre-concentration loop with

an internal diameter of 0.3175cm packed with 1mm diameter glass beads, a splitter box, an

excess volume canister, and three GC systems (Figure 2.10).

The first GC was a Shimadzu Corporation GC-17A that contained 2 analytical columns:

(1) a 50m long Varian-Chromopack Al2O3/NaSO4 PLOT column with an internal diameter

of 0.53mm and a film thickness of 10µm; (2) a 25m long Varian-Chromopack CP-PoraBond

Q column with an internal diameter of 0.25mm and a film thickness of 3µm coupled with a

30m long Restek XTI-5 column with an internal diameter of 0.25mm and a film thickness of

0.25µm. These columns were connected to a FID and were used to measure C2-C7 NMHCs

and C6-C10 NMHCs, respectively. The second GC was a Shimadzu Corporation GC-17A that

also contained 2 analytical columns: (1) a 60m long Varian-Chromopack VF-1ms column

with an internal diameter of 0.32mm and a film thickness of 1µm; (2) a 60m long Ohio Valley

Specialty Chemical OV-1701 column with an internal diameter of 0.25mm and a film thickness

of 1µm. These columns were connected to a FID used to measure C4-C10 NMHCs and an

ECD used to measure C1-C2 halocarbons, and C1-C5 alkyl nitrates, respectively. The third

GC was a Shimadzu Corporation GCMS-QP5050A and contained one analytical column:

a 60m long Ohio Valley Specialty Chemical OV-624 column with an internal diameter of

0.25mm and a film thickness of 1.4µm. This column was connected to a quadrupole MS

used to measure C6-C10 NMHCs and C1-C2 halocarbons. Additional details regarding the

5 channel GC system are available in Appendix A. The EPA TO-15 method for sample

analysis was followed and this method is further detailed in Sive [1999], Zhou et al. [2010],

Russo et al. [2010], and Swarthout [2014]. The detector data were collected using the Agilent

MSD ChemStation Data Analysis Software. The details of chromatogram data analysis are

discussed in Section 2.2.6.

Prior to entering the analytical columns, the air sample aliquot was cryogenically pre-

concentrated in order to facilitate the trapping of the light VOC molecules. The pre-

concentration procedure was as follows. First, the system, except for the excess volume can,
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was purged with UHP helium for 4 minutes. After the helium flow was shut off, the system

was pumped down to below 0.5torr. The pre-concentration loop was submerged in a small

dewar of liquid nitrogen for 2 minutes. The canister containing the air sample was then

attached and 300torr of air from the canister was allowed to flow into the pre-concentration

loop trapping a 540cm3 (STP) aliquot of the sample. After allowing 1 minute for the pressure

to stabilize, the loop was isolated, the canister was removed, and the system was pumped

down. The pre-concentration loop was submerged in water at approximately 95oC in order

to re-volatilize the trapped analytes. At this point the sample was ready to be injected into

the GC columns.

When the sample was injected, the helium carrier gas directed the contents of the pre-

concentration loop to a 1/16” stainless steel transfer line leading to the splitter box which

evenly divided the homogeneous sample and directed it to each of the 5 analytical columns.

The carrier gas was allowed to flow through the loop for 5 minutes to ensure all trapped

analytes flowed to the columns. Following the sample analysis, the GCs were cooled using

liquid nitrogen using a pre-programmed sequence to ensure reproducibility. A complete cycle

of pre-concentrating a sample, injection, and analysis took approximately 33 minutes.

Figure 2.10: Schematic of the 5-channel GC pre-concentration system and GC instruments
used for canister sample analysis [Hilliard, 2016].
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2.2.5 5-channel GC Quality Control

System baseline and any carryover from previous samples were addressed by trapping

and analyzing 200torr of VOC-free air (zero air). All steps for analysis of the zero air were

identical to those of the ambient samples. Zero air was produced by removing VOCs from

ambient air by pumping it through a 0.5% pb, Al2O3 catalytic converter heated to 425oC.

At the end of each analysis day a Linde Gas North America LLC high-pressure standard

was used in order to track instrumental drift over time. The procedure for running a standard

was also the same as the samples, except the standard was used to fill the excess volume

can which was then used to trap 200torr of the standard gas in the pre-concentration loop.

Through multiple standard analysis, the relative standard deviation (RSD) of the 5 channel

GC system was found to be 1 - 8% for NMHCs, 3 - 15% for halocarbons, and 3 - 8% for alkyl

nitrates [Zhou et al., 2017].

Prior to the analysis of the canister samples presented in this thesis, a nine point calibration

was performed in order to obtain the calibration curve slope for each of the 48 VOCs. Each of

the nine points was analyzed twice to ensure precision. The same Linde Gas North America

LLC high-pressure standard run at the end of each day was used and in order to obtain the

desired concentration, the standard was diluted using the zero air generator.

Zero air blank runs were used to determine the limit of detection (LOD) of the system.

The LOD was calculated using the following equation [Swarthout, 2014]:

LOD = x̄+3σ
slope

(2.1)

where x̄ is the mean area of the integrated analyte peak for each VOC in the blank samples,

σ is the standard deviation of the integrated analyte peak area for each VOC in the blank

samples, and slope is the slope of the calibration curve for each VOC. For measurements

where the values of VOCs were below the LOD, a value of LOD
2

was used for the corresponding

VOC. Appendix B shows the LOD and calibration statistics for the 5 channel GC.
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2.2.6 Chromatogram Post-Processing

Shimadzu CLASS-VP software was used to analyze the chromatogram output from the

5-channel GC. The method used to identify each peak was constructed based on the retention

time of VOCs in previous standard runs. The peak corresponding to each VOC in the

sample chromatograms was analyzed manually to obtain the integrated peak area. Using

the calibration curve slopes for each VOC (Appendix B) and correcting for the difference

in pressure between the sample and the calibration standard run, the concentration of each

VOC was obtained. The system background was very low; therefore, it was not necessary to

correct the VOC concentrations based on blank sample runs. Swarthout [2014] noted that

small but consistent peaks in the blank samples were seen on a very similar GC-FID system

for only four compounds: methanol, ethanol, acetone, and methyl ethyl ketone (MEK), none

of which were quantified in this thesis. The following equation was used to calculate the

concentration of each VOC in a sample:

Sample Conc. = (Cal.CurveSlope)∗(PeakArea)
(Samp.Pressure/Std.Pressure)

(2.2)

where Cal.CurveSlope is the slope of the established calibration curve for a particular VOC,

PeakArea is the area of the sample peak obtained through chromatogram post-processing,

Samp.Pressure is the pressures of the canister sample and Std.Pressure is the pressure of

the standard run on the 5-channel GC system.

2.3 Real-Time In-Situ GC Sampling

2.3.1 Real-Time GC Analysis System

In addition to canister sampling at the residential area, an in-situ 4 channel GC was used

for the near real-time collection and analysis of air samples for 23 VOCs. The in-situ GC

had a total sampling cycle of 1 hour (15 min for ambient sample collection and 45 min for

the cryogen-free pre-concentration process and sample analysis). The in-situ GC system is

comprised of a Chart Inc. Qdrive 2s102K cryocooler, a 4” long stainless steel tube with an
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internal diameter of 3/16” packed with Ohio Valley 1mm diameter glass beads, a splitter

box, and two GC systems.

The first GC was a Shimadzu Corporation GC-17A that contained 2 analytical columns:

(1) a 50m long Varian-Chromopack Al2O3/NaSO4 PLOT column with an internal diameter

of 0.53mm and a film thickness of 10µm; (2) a 60m long Varian-Chromopack VF-1ms column

with an internal diameter of 0.32mm and a film thickness of 1µm. Both of these columns were

connected to a FID and were used to measure C2-C7 NMHCs and C6-C10 NMHCs, respectively.

The second GC was a Shimadzu Corporation GC-17A that contained 2 analytical columns:

(1) a 60m long Varian-Chromopack CP-PoraBond Q column with an internal diameter of

0.25mm and a film thickness of 3µm (2) a 60m long Varian-Chromopack VF-1701 column

with an internal diameter of 0.25mm and a film thickness of 1µm. These columns were

connected to a FID used to measure select OVOCs and an ECD used to measure C1-C2

halocarbons and C1-C5 alkyl nitrates. Additional details of the real-time in-situ GC used

can be found in Appendix A. The in-situ GC system used in this thesis was similar to that

detailed in Sive et al. [2005], Abeleira et al. [2017], and Zhou et al. [2017].

An internal program initiated the process of trapping ambient air in the loop when it was

cooled by the cryocooler to a set point temperature of -180oC by pulling 1000cm3 of ambient

air through the loop at a rate of 200 cm3

min
. After trapping of the sample was complete, 100cm3

of helium at a rate of 100 cm3

min
was passed through the loop. When the ambient sample is

reheated, O3 and alkenes will react [Koppman et al., 1995]; therefore, helium was passed

through the sample loop in order to quench O3-alkene reactions. Since the loop temperature

is maintained at -180oC, passing helium through does not impact the trapped VOCs; however,

it does remove the bulk N2, O2, and O3 from the loop [B. Sive, personal communication,

October 3, 2017]. Many studies have shown this to be a superior method for alleviating

O3-alkene reactions to passing the sample through an O3 scrubber, because the components

of the scrubber can cause artifacts and it requires regular maintenance [Sive et al., 2005].

The loop was then isolated from the system and heated rapidly to 100oC in order to volatilize
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the trapped VOCs. The sample was then carried by a flow of helium to the splitter box via

a Silonite R©-coated transfer line. The splitter evenly divided the homogeneous sample and

directed it to each of the 4 analytical columns.

After 10 ambient air samples had been analyzed, two whole air standards were analyzed

in order to track any instrumental drift over the duration of the system deployment and

determine the measurement precision. The relative standard deviation (RSD) of the in-situ

GC system was found to be 1 - 8% for NMHCs, 3 - 15% for halocarbons, and 3 - 8% for alkyl

nitrates [Zhou et al., 2017].

The in-situ GC system was operated at the residential area for approximately 3 weeks in

the fall of 2015. It was located in the basement of a single family residence and the inlet of

the system (1/8” stainless steel tubing) was positioned outside the building at a height of

approximately 2m above ground. The total length of the inlet was approximately 3m.

2.4 AERMOD Dispersion Modeling

2.4.1 Model Overview

The American Meteorological Society/Environmental Protection Agency air dispersion

and regulatory modeling program (AERMOD) is a steady-state plume model that assumes

Gaussian pollutant distribution in the vertical and horizontal directions in a stable boundary

layer (SBL). In a convective boundary layer (CBL) AERMOD assumes a Gaussian horizontal

pollutant distribution and a bi-Gaussian vertical pollutant distribution. In a CBL, AERMOD

accounts for portions of the plume mass being lofted to the top of the boundary layer before

mixing and plume mass that penetrates beyond the boundary layer and later returns. Other

dispersion models utilize a variety of additional variables which complicate the process and

introduce additional uncertainties whereas the AERMOD approach does not, allowing it

to be physically realistic while also being simpler to implement [Cimorelli et al., 2004].

AERMOD’s performance has been shown to be superior or equivalent to other commonly

applied regulatory air dispersion models [Perry et al., 2005].
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The AERMOD modeling system consists of 3 major components: a terrain data pre-

processor (AERMAP), a meteorological data pre-processor (AERMET), and the main

dispersion model program (AERMOD). AERMET is used to generate the boundary layer

parameters for input into AERMOD, while AERMAP generates the terrain data for the

modeled region for input into AERMOD (Figure 2.11). AERMOD then calculates the

average pollutant concentration increase for a specified time period based on a series of input

parameters (described in Section 2.4.2).

Figure 2.11: Simplified diagram of the major AERMOD model system structure. Adapted
from Cimorelli et al. [2004].

2.4.2 Model Input Parameters

AERMOD simulations for benzene were performed at the potential location of six new

directional wells near the elementary school in order to estimate increased ambient levels when

the wells go into production. Model simulations were conducted using meteorological data

for the year 2009 collected near the western shore of Hamilton Reservoir in Fort Collins, CO

(40.854o, -105.038o) [Malone, 2009]. This meteorological station is approximately 40km north

of the elementary school; however, it was the closest station that could provide the standard

hourly surface and upper air sounding meteorological data and the 1-minute automated

surface observing system (ASOS) wind data needed for an entire year to run the model. This

meteorological data was obtained pre-processed in accordance with USEPA Guideline on Air
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Quality Models directly from the CDPHE. A ground level square receptor grid consisting of 961

points separated horizontally by 100m was centered on the proposed new well site providing

a 3.0km x 3.0km grid that covered the elementary school and the surrounding neighborhoods

(Figure 2.12). This fine resolution receptor grid exceeds the CDPHE recommendation of

250m grid spacing for 1km - 3km grids for permitting purposes [CDPHE, 2011].

Figure 2.12: Map of the 3.0km x 3.0km receptor grid consisting of 961 points separated
by 100m (blue dots). The proposed well site is marked by a red dot inside the yellow circle
and the school campus is denoted by a yellow rectangle.

Regional land cover data was obtained from the United States Geological Service (USGS)

National Land Cover Data 1992 archive (NLCD92). The regional terrain data were obtained

from the USGS in the National Elevation Dataset (NED) format. Both of these data sets are

publicly available from the USGS using the Multi-Resolution Land Characteristics Consortium

(MRLC) viewer [USGS, 2017].
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The future well pad was modeled as a 40.0m2 (8.0m x 5.0m) area source (in accordance

with the CDPHE regulatory guidelines) centered in the middle of the drilling area of the six

proposed directional wells emitting at 3m above the ground. Five separate model runs were

conducted using the 5th, 25th, median, 75th, and 95th percentile emission rates found at ten

production well sites in the CNFR as reported by Collett et al., [2016].

AERMOD can model sites as line, volume, or point sources as well; however, it is believed

that proposed well development sites are best modeled as area sources since a relatively large

emitting area, such as a well pad, can be approximated as a source emitting from a flat

plane with no temperature or velocity associated with the emissions [USEPA, 2004]. This

introduces fewer variables than using multiple point sources for which these variables must

be specified. Previous studies have modeled O&NG well pads as area sources [Collett et al.,

2016; Friesema, 2012]. The average benzene concentration increases for every hour of the

simulated year 2009 were obtained at each of the 961 receptor points. The main objective

for utilizing AERMOD in this work was to estimate the increased benzene concentrations

students and staff could be exposed to if the proposed directional wells were drilled near the

school.
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Chapter 3

Results

3.1 Whole Air Time-Integrated Canister Sampling

The concentrations of 48 VOCs were measured using week-long time-integrated whole

air canister sampling at Fossil Creek NA, Soapstone NA, and a residential area in the City

of Fort Collins and at an elementary school and gas station in the Town of Timnath. The

whole air samples were processed using the methods described in Section 2.2. The chemical

formulae and relevant sources of the VOCs analyzed are listed in Appendix C. The sampling

duration and range of dates varied among the five locations. Sample collection took place

from August, 2015 to November, 2016, with the highest number of samples collected at the

elementary school (32) and the Gas Station (32). Sampling was limited to the fall of 2015

(September, 2015 - November, 2015) and thus fewer samples were collected at the residential

area (4), Fossil Creek NA (9), and Soapstone NA (11). It is important to note potential

limitations due to the smaller sample sizes at some locations, especially the residential area,

while discussing the canister VOC data. Data obtained from the in-situ real-time GC at the

residential area are analyzed in Section 3.2.2 to allow for a more robust statistical analysis of

VOC concentration trends at this site.

3.1.1 VOC Concentrations in Fort Collins and Timanth

Figures 3.1 - 3.5 show plots of select VOC concentrations from weekly time-integrated

whole air canister samples at the elementary school (3.1), residential area (3.2), Fossil Creek

NA (3.3), Soapstone NA (3.4), and the gas station (3.5). While sampling time periods were

different among the sites, all canister samples are shown in these plots since the concentrations

of the presented VOC subset do not vary greatly on a seasonal basis (Appendix Figure D.1) .

In the box and whiskers plots (Figures 3.1 and 3.3 - 3.5) the edges of the box represent the

25th and 75th percentiles while the line inside the box represents the median. The edges of the

whiskers represent the 5th and 95th percentiles. Summary tables of all VOC concentrations

at the five sampling locations can be found in Appendix Tables D.2 - D.6. Light alkanes
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(ethane, propane, i-butane, n-butane, i-pentane, and n-pentane) are shown here because these

compounds are commonly associated with O&NG emissions [Gilman et al., 2013; Halliday et

al., 2014]. BTEX compounds are shown because they are known to be emitted from O&NG

[Bolden et al., 2015] as well as combustion sources [Zhang et al., 2012] and can be harmful to

human health [Bolden et al., 2015; Halliday et al., 2016]. Finally, acetylene data are shown

because its emissions are associated primarily with combustion sources [Gilman et al., 2013],

providing a comparison to the O&NG sources.

Figure 3.1: Select VOC concentrations from weekly time-integrated whole air canister
samples at the elementary school (n=32).
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Figure 3.2: Select VOC concentrations from weekly time-integrated whole air canister
samples at the residential area (n=4). All concentration values are shown.

Figure 3.3: Select VOC concentrations from weekly time-integrated whole air canister
samples at Fossil Creek NA (n=9).

34



Figure 3.4: Select VOC concentrations from weekly time-integrated whole air canister
samples at the Soapstone NA (n=11).

Figure 3.5: Select VOC concentrations from weekly time-integrated whole air canister
samples at the gas station (n=32).

The highest median concentrations of all VOCs shown in Figures 3.1 - 3.5 were seen

at the gas station, with the exception of ethane and propane where the highest median

concentrations were seen at Fossil Creek NA. The gas station samples were expected to show
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the highest concentrations of most VOCs due to the proximity of the sampling location to

sources of gasoline vaporization and heavy vehicle traffic emissions. The objective in sampling

near the gas station was to obtain a strong combustion/urban influenced sample to compare

to the other four sampling locations. The main purpose of this study was to look at the

influence of current O&NG emissions on ambient VOC concentrations; therefore, the analysis

in Section 3.1 will focus mainly on the O&NG influence at the elementary school, residential

area, Fossil Creek NA, and Soapstone NA.

Excluding the gas station site, the highest median concentrations of light alkanes, acetylene,

and BTEX compounds were observed at Fossil Creek NA. The highest median acetylene being

observed at Fossil Creek NA could be attributed to the increased emissions from vehicles

in the natural area parking lot, which was a few meters away from the canister sampling

location, and/or from the close proximity to the interstate highway (approximately 2.0km

to the east). The lowest median concentration and lowest 25th percentile concentration of

light alkanes, acetylene, and BTEX compounds were observed at Soapstone NA, likely due

to its remote location farther than the other sites from O&NG activity and vehicle traffic.

The highest 95th percentile concentration of light alkanes and toluene were found at the

elementary school, the site closest to major O&NG regions to the east, while Fossil Creek

NA showed the highest 95th percentile concentration of the other BTEX compounds and

acetylene.

3.1.2 Comparison with Long-term Regional Data

Between December 2011 and December 2016 the CDPHE collected 3-hour time-integrated

canister samples at a site in Welby, CO (39.838o, -104.950o) and downtown Denver, CO

(39.751o, -104.988o) [CDPHE, 2016]. The Denver site was located in the Five Points neighbor-

hood of downtown Denver while the Welby site was located approximately 10km northeast of

the Denver site. The Welby site was in a suburban setting and was close to a few industrial

businesses with no O&NG developments within a 5km radius. The CDPHE collected canister

samples approximately every 6th day between 06:00 and 09:00. Although this dataset should
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not be considered a direct comparison to the data collected in this study due to a different

sampling length, interval, and time of day; it can still provide some context for the VOC

concentrations in the CNFR. Figure 3.6 shows the same set of select VOCs as Figures 3.1 -

3.5 measured by the CDPHE in Welby and Denver.

Figure 3.6: Select VOC concentrations measured by the CDPHE in Welby, CO (n = 340)
and downtown Denver, CO (n = 392) [CDPHE, 2016].

The CDPHE 3-hour time-integrated canister samples were collected to show data repre-

senting the unreacted morning VOCs. The sampling interval (06:00 - 09:00) spanned hours

in which traffic emissions would be expected to be elevated due to morning commuters, and

the shallow mixed layer in the early morning traps surface emissions and limits their dilution.

For these reasons, the concentrations measured by the CDPHE in Welby and Denver would

be expected to be biased high compared with average VOC conditions at these locations and

furthermore, higher than the data collected in this thesis where samples were averaged over a

week. The CDPHE also collected hundreds of samples (Welby = 340, Denver = 392) over a

much longer sampling time (approximately 5 years) compared with the much smaller sample

sizes and sampling time periods in this study.
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The median light alkane concentrations observed over 5 years of sampling in Welby, CO

were several times higher than those measured in downtown Denver. The median ethane

and propane concentrations measured in Welby were 78.5ppbv and 59.5ppbv, respectively,

which is greater than the 95th percentiles observed in this study at the elementary school of

42.1ppbv and 33.5ppbv. In addition, the median benzene concentration in Welby of 0.60ppbv

was nearly double the median concentration measured in downtown Denver and greater than

the 95th percentile at Fossil Creek NA of 0.45ppbv. The toluene, ethylbenzene, and xylenes

concentrations were comparable between Welby and Denver. The median ethylbenzene and

xylenes concentrations at Welby and Denver were similar to the 95th percentile concentrations

observed at all sites in this study, while the median toluene concentrations in Welby and

Denver were slightly less than the gas station median, but higher than the 95th percentile

concentrations observed at the other locations in this study. Finally, the median acetylene

concentration in downtown Denver was over 60% greater than the median concentration

measured in Welby and exceeded the 95th percentile concentration measured at the gas

station.

Higher BTEX and acetylene concentrations would be expected in the CDPHE samples

compared to the samples in this study due to the sample location, time, and duration. The

samples collected in Welby and Denver were collected from 06:00 to 09:00 which coincides

with elevated combustion emissions and a shallow mixed layer during the morning commute

hours whereas the samples in this study were collected for a longer duration and represent an

average concentration for 7 days. Furthermore, the CDPHE data, particularly the downtown

Denver samples, were collected closer to busy roadways with higher vehicular traffic than the

weekly samples in this study.

Higher ethane and propane concentrations in the Welby samples than those seen at

the elementary school were somewhat surprising since Welby was removed from areas of

dense O&NG development. There are no O&NG developments within a 5km radius of the

Welby sampling location whereas the elementary school is located with 1km of dense O&NG
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development. It is likely that sampling for a shorter duration in the morning resulted in

higher O&NG VOC compound concentrations due to a buildup during stable nighttime

conditions.

3.1.3 Source Apportionment Using VOC Ratios and Correlations

Based on previous VOC studies conducted in the CNFR [Gilman et al., 2013; Halliday

et al., 2014; Thompson et al., 2014; Swarthout et al., 2013] it was anticipated that O&NG

emissions would have the most influence on many ambient VOC concentrations and a smaller

influence would be observed from combustion sources. Natural gas in the CNFR has been

shown to be 62% - 92% methane, 4% - 16% ethane, and 1% - 15% propane [COGCC, 2007]

with heavier VOCs and non-energy components (ie. N2, CO2, H2S, He) making up the rest

[CCEI, 2013]. In the CNFR, propane has been shown to be a strong tracer of O&NG activity

while acetylene has been used previously as a vehicular exhaust marker [Gilman et al., 2013].

The primary source of light alkanes in the CNFR is O&NG production with a lesser influence

from combustion [Gilman et al., 2013; Halliday et al., 2014]. An air mass influenced strongly

by O&NG activity would be expected to display a strong correlation between light alkanes and

BTEX with propane and a poor correlation with acetylene. Conversely, an air mass influenced

strongly by combustion emissions would be expected to display a strong correlation of VOCs

emitted from vehicular exhaust with acetylene and a poor correlation with propane. This

analysis, however, can be influenced by meteorological effects which can dilute or concentrate

all VOC concentrations simultaneously. Table 3.1 shows the coefficient of determination

(r2) of concentrations of ethane, i-butane, n-butane, i-pentane, and n-pentane to propane

and acetylene at the sampling locations. Significance testing utilizing a 95% confidence

interval comparing the correlation coefficients for propane and acetylene at each location

was conducted and the method and results are detailed in Appendix E. Table 3.2 shows if a

significant difference was seen at the 95% confidence level between the propane and acetylene

coefficients of determination at each sampling location.
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Table 3.1: Coefficient of determination (r2) for ethane, i-butane, n-butane, i-pentane, and
n-pentane with propane and acetylene at the five sampling locations.

Table 3.2 Determination of a significant difference between the propane and acetylene
coefficients of determination at a 95% confidence interval at the five sampling locations.

At the elementary school, the correlation with propane is high for ethane (r2 = 0.92),

i-butane (r2 = 0.99), n-butane (r2 = 0.99), i-pentane (r2 = 0.97), and n-pentane (r2 =

0.95), while the correlation with acetylene is low for ethane (r2 = 0.27), n-butane (r2 = 0.23),

i-pentane (r2 = 0.25), and n-pentane (r2 = 0.20). The correlation with acetylene was relatively

high for i-butane (r2 = 0.72) which has been shown to be present in vehicular emissions

[Broderick et al., 2002], but when compared with a near perfect correlation with propane,

it is clear that these emissions are better correlated with propane. For all compounds the

coefficients of determination were significantly different at a 95% confidence interval between

propane and acetylene which implies that the air mass measured at the elementary school

was primarily influenced by O&NG activity.

At the residential area it is difficult to draw strong statistical source apportionment

conclusions from coefficients of determination due to the small sample size (4 weekly samples).

The correlation with propane is high for ethane (r2 = 0.89), i-butane (r2 = 0.99), n-butane

(r2 = 0.99), i-pentane (r2 = 0.99), and n-pentane (r2 = 0.96). Unlike the elementary school,

the residential area also displays stronger correlation with acetylene for ethane (r2 = 0.67),
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i-butane (r2 = 0.58), n-butane (r2 = 0.86), i-pentane (r2 = 0.87), and n-pentane (r2 =

0.79). None of these correlations were found to be significantly different and the presence of

correlations with both propane and acetylene suggests the residential area is influenced by an

air mass that includes a varying mix of O&NG and vehicular emissions.

At Fossil Creek NA, the correlation with propane is relatively high for ethane (r2 = 0.80),

i-butane (r2 = 0.71), n-butane (r2 = 0.76), and n-pentane (r2 = 0.61), but lower for i-pentane

(r2 = 0.32). The correlation with acetylene is low for ethane (r2 = 0.21), i-butane (r2 =

0.19), n-butane (r2 = 0.09), i-pentane (r2 = 0.30), and n-pentane (r2 = 0.04). Four of the

5 compounds displaying a relatively strong correlation with propane and all compounds

showing a low correlation with acetylene suggests that O&NG is a dominant source of these

VOCs at Fossil Creek NA; however, none of the compounds were found to have significantly

different coefficients of determination at a 95% confidence interval, which could also be a

function of a smaller sample size.

At Soapstone NA, the correlation with propane is high for i-butane (r2 = 0.93), n-butane

(r2 = 0.89), and ethane (r2 = 0.94), but lower for i-pentane (r2 = 0.26) and n-pentane (r2

= 0.21). The correlation with acetylene is low for ethane (r2 = 0.38), i-butane (r2 = 0.00),

n-butane (r2 = 0.33), i-pentane (r2 = 0.32), and n-pentane (r2 = 0.34). Ethane, i-butane,

and n-butane display significantly different coefficients of determination at a 95% confidence

interval while i-pentane and n-pentane do not. Three of the 5 compounds displaying very

strong correlations with propane and all compounds showing low correlations with acetylene

would suggest that the influence of O&NG is dominant at Soapstone NA; however, the O&NG

signal is not as significant as the elementary school.

At the gas station, a very low correlation with propane for i-butane, n-butane, i-pentane,

and n-pentane was observed and a low correlation with acetylene for i-pentane and n-pentane

was observed. The coefficient of determination between n-butane and acetylene (r2 = 0.55)

was higher than expected and was significantly different at a 95% confidence interval than

the coefficient of determination with propane; this could be explained by n-butane being a
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common additive to gasoline [Doskey et al., 1992] and vaporization from the pumps influencing

these correlations.

VOC correlations with propane and acetylene can be a guide when determining source

apportionment, but it is qualitative as strong vs weak correlations can be a relative term.

Another way to estimate the influence of O&NG vs vehicular emission on an air mass at

a particular location are the ratios of the two pentane isomers (i-pentane and n-pentane)

[Gilman et al., 2013], the two butane isomers (i-butane and n-butane), and toluene to benzene

[Halliday et al., 2014]. An i-pentane to n-pentane ratio of approximately 1.0 or less indicates

a primarily O&NG influence while an i-pentane to n-pentane ratio of approximately 2.3 or

greater indicates a primarily vehicular influence [Gilman et al., 2013; Swarthout et al., 2015].

Direct vehicular exhaust has been shown to have an i-butane to n-butane ratio of 0.2 to

0.3 while O&NG emissions have a ratio of 0.6 to more than 1 [Russo et al., 2010]. Fresh

traffic emissions have displayed a toluene to benzene ratio of over 2 whereas emissions more

influenced by O&NG are generally less than 2 [Halliday et al., 2014]. Toluene to benzene

ratio changes based on the age of an air mass, making this ratio less reliable for source

apportionment. This is discussed in greater detail later in this section.

In Figures 3.7 - 3.9, the solid lines indicate the VOC ratios measured at the sampling

locations in this study while the dashed lines indicate ratios measured in other relevant

studies in the CNFR. Figure 3.7 shows the i-pentane to n-pentane ratios, Figure 3.8 shows

the i-butane to n-butane ratios and Figure 3.9 shows the toluene to benzene ratios.

42



Figure 3.7: i-pentane to n-pentane ratio at each of the five sampling sites compared
to ratios seen in other studies in the CNFR [aGilman et al., 2013; bHalliday et al., 2016;
cThompson et al., 2014; dCOGCC, 2007; eBroderick et al., 2002; fBaker et al., 2008].

The mean i-pentane to n-pentane ratio at the elementary school (1.07 ± 12.4%) and

Soapstone NA (1.05 ± 3.0%) are just above 1.0, indicating that these two locations are strongly

influenced by O&NG activity. These ratios are slightly above what was observed at the

Boulder Atmospheric Observatory (0.89) by Gilman et al. [2013], the Platteville Atmospheric

Observatory (0.89) by Halliday et al. [2016], in Longmont, CO (0.97) by Thompson et al.

[2014], and for raw natural gas in the Wattenberg Gas Field (0.86) by COGCC [2007]. The

sampling locations in these other studies were deemed to be almost entirely O&NG influenced.

At the elementary school, the low i-pentane to n-pentane ratio further verifies the results

discussed using correlations, that the air mass is heavily influenced by O&NG activity. The

influence of the developing residential neighborhood with new construction surrounding the

elementary school and traffic on the interstate highway approximately 3.5km to the west,

could explain the slightly elevated i-pentane to n-pentane ratio.
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The mean i-pentane to n-pentane ratio at the gas station (2.35 ± 10.0%) is above the

ratio measured in downtown Denver, CO (1.9) [Baker et al., 2008] and below the ratio of

fresh vehicular emissions (3.0) [Broderick et al., 2002]. A ratio in this range was expected at

the gas station, since it is primarily influenced by emissions from vehicles in the gas station

and shopping center parking lots as well as traffic on the busy roads and highway adjacent to

the station. There is also an influece from gasoline vaporization which has been shown to

display an i-pentane to n-pentane ratio of about 4.0 [Broderick et al., 2002].

The mean i-pentane to n-pentane ratios at the residential area (1.17 ± 4.5%) and Fossil

Creek NA (1.16 ± 13.2%) were more elevated than what would be expected from a primarily

O&NG signature, but still far below a strong vehicular signature. This indicates that there is

a mixed influence from O&NG activity as well as vehicular emissions at these locations; with

a stronger O&NG influence.

Figure 3.8: i-butane to n-butane ratio at each of the five sampling sites compared to
ratios seen in other studies in the CNFR [aSwarthout et al., 2013; bThompson et al., 2014;
cRusso et al., 2010].
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The mean i-butane to n-butane ratios at the elementary school (0.34 ± 3.4%), residential

area (0.39 ± 1.8%), Fossil Creek NA (0.38 ± 7.8%), and Soapstone NA (0.36 ± 4.8%) are all

similar and are in between the ranges of 0.2 - 0.3 that indicates vehicular emissions and 0.6

to more than 1 that indicates O&NG. Since these four ratios are higher than the proposed

range for vehicular emissions and below the proposed minimum for O&NG, the i-butane

to n-butane ratio indicates there is a mixture of source influences at these sites. Samples

collected at BAO (0.41) [Swarthout et al., 2013] and in areas of Northeastern Colorado (0.43)

[Thompson et al., 2014] are slightly higher, although still below the O&NG threshold of 0.6

suggested by Russo et al. [2010]. This further indicates that these samples are influenced by

a mixture of vehicular and O&NG emissions. In contrast, the mean gas station ratio (0.25 ±

17.3%) is within the vehicular emission range and is the same as the ratio observed in fresh

vehicular exhaust by Russo et al. [2010].

The i-butane to n-butane ratios found in this study, along with those previously reported,

suggests that this ratio may not provide as clear of a delineation between O&NG and

vehicular influences. Swarthout et al. [2013] and Thompson et al. [2014] both observed VOC

correlations and other VOC ratios that indicated their samples were highly influenced by

O&NG; however, their reported i-butane to n-butane ratios were below the proposed O&NG

influence threshold of 0.6. The results of this study along with previous works seem to imply

that i-pentane to n-pentane ratio is a much stronger and more reliable indicator of source

apportionment in the CNFR than i-butane to n-butane ratio.
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Figure 3.9: Toluene to benzene ratio at each of the five sampling sites compared to ratios
seen in other studies in the CNFR [aSwarthout et al., 2013; bThompson et al., 2014; cHalliday
et al., 2016; dBaker et al., 2008].

The toluene to benzene ratio can be used to assess source apportionment if emissions are

fresh; however, it is not as reliable as the i-pentane to n-pentane ratio because toluene reacts

more quickly than benzene in the atmosphere. Toluene has an atmospheric lifetime of about

2.5 days compared to that of benzene which is about 12 days [Blake et al., 2002; Seinfeld

et al., 2016]. Comparatively, both i-pentane and n-pentane have an atmospheric lifetime

of about 4 days [Blake et al., 2002; Gilman et al., 2013], so the ratio of the isomers does

not change over time. Therefore traffic emissions, which display a toluene to benzene ratio

above 2, can decrease to ratios similar to O&NG emissions if the air mass has been aged

and photochemically processed. This characteristic can be utilized, if the ratio of a source is

known, to assess the photochemical age of an air mass [Halliday et al., 2016, Warneke et al.,

2013], but this can alter source apportionment conclusions. Also, toluene to benzene ratio can

vary diurnally as a result of its atmospheric reactivity. Measurements taken using a real-time
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GC by Halliday et al., [2016] found lower toluene to benzene ratios during day versus night

at the same location with the same meteorological conditions. The weekly sampling interval

in this study averages out these variations and does not provide as accurate of a depiction of

this ratio. As a result of these limitations, toluene to benzene ratio had a larger uncertainty

in this study and was used as more of a guide for distinguishing O&NG and traffic emissions,

not as definitive evidence of source apportionment.

The elementary school (1.25 ± 29.1%), residential area (1.43 ± 12.4%), Fossil Creek NA

(1.72 ± 24.0%), and Soapstone NA (1.04 ± 38.7%) all display toluene to benzene ratios

below 2 which is indicative of the rural and primarily O&NG influenced CNFR. Samples

collected at BAO (1.03) [Swarthout et al., 2013] and in areas of Northeastern Colorado

(0.75) [Thompson et al., 2014] display a lower ratio and were noted, through analysis of

other source apportionment techniques, to be primarily influenced by O&NG emissions. This

follows the conclusion drawn from the i-pentane to n-pentane ratio observations, that the air

masses at the residential area and Fossil Creek NA are influenced by a mixture of O&NG and

vehicular emission sources, whereas the air masses at the elementary school and Soapstone

NA are influenced mainly by O&NG with a smaller contribution from vehicular emissions. In

contrast, the Gas Station ratio (2.49 ± 19.5%) is much higher and was even above the ratio

of 2.1 observed in downtown Denver by Baker et al. [2008].

During the summer of 2014 The Front Range Air Pollution and Photochemistry Experiment

(FRAPPÉ) was conducted with the goal of better understanding the summertime air quality

in the CNFR. As part of the study, ground level canister grab samples were collected by a

research team from the University of California, Irvine (UCI) [Blake, 2014] and a research

team from CSU [Zhou, 2014] and were analyzed using GC-FID. Figures 3.10 - 3.12 show a

map of the CNFR with data collected during FRAPPÉ and during this study. Samples in

Figure 3.10 are color coded by i-pentane to n-pentane ratio, samples in Figure 3.11 are color

coded by i-butane to n-butane ratio, and samples in Figure 3.12 are color coded by toluene

to benzene ratio. These ratios did not vary much seasonally, therefore, the average ratios
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of all samples collected at four of the sampling locations (excluding the gas station) in this

study were used.

Figure 3.10: Map of the i-pentane to n-pentane ratios measured from ground level canister
grab samples in the summer of 2014 as part of FRAPPÉ along with the average ratios seen
in this study. Samples collected and analyzed by UCI [Blake, 2014] are denoted as circles,
samples collected and analyzed by CSU [Zhou, 2014] are denoted by diamonds and samples
collected and analyzed in this study are denoted by squares.

The majority of samples collected east of interstate highway 25 and north of the Denver

metro area display i-pentane to n-pentane ratios of approximately 1.2 or less while samples

collected in downtown Denver show higher ratios. This is expected, since the area northeast

of Denver is rural and contains many O&NG developments whereas a populated urban

environment, such as downtown Denver, has many more combustion sources.

The samples collected in this study in the Fort Collins area along with a few samples

collected during FRAPPÉ, illustrate an interesting east to west gradient in i-pentane to

n-pentane ratio. FRAPPÉ samples collected east of Fort Collins display i-pentane to n-

pentane ratios of approximately 1 or less. At the elementary school, located west of these

FRAPPÉ samples, the ratio increases slightly to an average of 1.07 ± 12.4%. Moving a few
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kilometers farther west, the average ratios at the residential area and Fossil Creek NA were

1.16 ± 4.5% and 1.17 ± 13.2%, respectively. Finally, another group of FRAPPÉ samples

were collected just west of Fort Collins and they displayed a ratio of approximately 1.3 and

above. This gradient would be expected moving west from Weld County, an area with higher

reported O&NG sources, to a more populated environment and therefore, an area with more

combustion sources.

Figure 3.11: Map of the i-butane to n-butane ratios measured from ground level canister
grab samples in the summer of 2014 as part of FRAPPÉ along with the average ratios seen
in this study. Samples collected and analyzed by UCI [Blake, 2014] are denoted as circles,
samples collected and analyzed by CSU [Zhou, 2014] are denoted by diamonds and samples
collected and analyzed in this study are denoted by squares.

There is not a discernible pattern in the i-butane to n-butane ratios measured in the

CNFR during FRAPPÉ. Over 85% of the samples display a ratio between 0.3 and 0.6, which

is in between the range of 0.2 - 0.3 indicating O&NG and the range of 0.6 - >1 indicating

vehicular emissions. This follows what was shown previously in Figure 3.8, that i-butane to

n-butane ratio may not be a particularly useful tool for source apportionment in the CNFR.
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Figure 3.12: Map of the toluene to benzene ratios measured from ground level canister
grab samples in the summer of 2014 as part of FRAPPÉ along with the average ratios seen
in this study. Samples collected and analyzed by UCI [Blake, 2014] are denoted as circles,
samples collected and analyzed by CSU [Zhou, 2014] are denoted by diamonds and samples
collected and analyzed in this study are denoted by squares.

Most of the samples collected east of interstate highway 25 and north of the Denver metro

area display a toluene to benzene ratio of less than 2 while samples collected in Downtown

Denver show ratios greater than 2. It is important to note once again that toluene to benzene

ratio is influenced by differences in atmospheric reactivity of the 2 compounds and is thus

most useful for relatively fresh emissions.

When comparing the i-pentane to n-pentane ratios found during FRAPPÉ and this study

(Figure 3.10) with the i-butane to n-butane (Figure 3.11) and toluene to benzene (Figure

3.12) ratios measured during FRAPPÉ and this study, it appears that i-pentane to n-pentane

ratio is the most robust tool for estimating source apportionment in the CNFR. i-pentane to

n-pentane ratio is not influenced by atmospheric reactivity, as toluene to benzene ratio is,

and it shows a much clearer delineation between O&NG and combustion influences, than the

i-butane to n-butane ratio.
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While using VOC ratios is an improvement over simply looking at correlations with

propane and acetylene and estimating source apportionment, Gilman et al. [2013] utilized a

multivariate regression analysis technique to attempt to quantify the percent contribution

of O&NG sources to ambient VOC concentrations. They calculated propane and acetylene

multivariate regression coefficients utilizing the equation below [Gilman et al., 2013]:

[V OC] = BkgdV OC + ER′
propane × [propaneo] + ER′

acetylene × [acetyleneo] (3.1)

where [V OC] is the measured VOC concentration, BkgdV OC is the assumed background VOC

concentration, ER′
propane and ER′

acetylene are the multivariate regression coefficients that are

calculated, and [propaneo] and [acetyleneo] are the background subtracted observed propane

and acetylene concentrations. In this analysis, the BkgdV OC concentration represents an

air mass that is unaffected by O&NG, combustion, or other local sources at the site of the

measurements. To determine the BkgdV OC concentration, Gilman et al. [2013] utilized the

minimum VOC concentration measured at BAO in their 554 in-situ real-time GC samples.

Since the sample numbers were less and the sample collection length was much longer in this

study, implying that minimum local concentrations were never measured at the populated

sites, the minimum VOC concentration observed in the 11 canister samples collected at

Soapstone NA was used to represent the CNFR background VOC concentration. The remote

Soapstone NA was the farthest sampling location from CNFR traffic and O&NG development;

therefore, for the purposes of this thesis, it was assumed to represent the regional background

VOC concentrations.

Once the ER′ values had been obtained, the O&NG fractions for each VOC were calcu-

lated using the equation below [Gilman et al., 2013]:

[O&NGfraction] =
ER′

propane×[propaneo]

BkgdV OC+ER′

propane×[propaneo]+ER′

acetylene
×[acetyleneo]

(3.2)
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While this method provides a more quantitative result than simply evaluating VOC ratios

and estimating the contribution of O&NG, it has a few limitations. First, there is no term

included for photochemical production and/or loss. This assumption may be appropriate in

the wintertime; however, photochemistry could be a strong influence on the ambient VOC

concentrations during other times of year [Gilman et al., 2013]. Also, if the air mass being

measured is aged, mixing of other VOC sources as well as removal of more reactive VOCs,

due to shorter lifetimes would lead to variability in the propane and acetylene correlations

[Gilman et al., 2013]. Another limitation of this method is that [propaneo] and [acetyleneo]

are not completely independent of one another. Natural gas contains only propane and no

acetylene; however, some combustion emissions contain propane [Gilman et al., 2013]. Fossil

fuel combustion emissions have a propane to acetylene ratio of less than 0.10 [Fraser et al.,

1998] which is far less than the mean propane to acetylene ratios measured at the elementary

school, residential area, and Fossil Creek NA of 32.0, 18.8, and 20.2, respectively. These

relatively large ratios indicate that combustion sources have a small propane contribution and

thus the calculation will not be heavily influenced by [propaneo] and [acetyleneo] being co-

emitted from some combustion sources. Table 3.3 shows the O&NG contribution percentage

of select VOCs at the elementary school, residential area, and Fossil Creek NA compared

with the percentages found by Gilman et al. [2013] at BAO. The mean O&NG contribution

percentage for propane was approximately 90% and the O&NG contribution percentage for

acetylene was 0% in this study and in Gilman et al. [2013].
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Table 3.3: O&NG contribution percentage of select VOCs at the elementary school,
residential area, and Fossil Creek NA compared with the percentages found by Gilman et al.
[2013] at BAO.

The elementary school shows an O&NG contribution percentage over 78% for all listed

alkanes and an O&NG contribution percentage greater than 70% for all BTEX compounds.

The residential area shows an O&NG contribution percentage over 71% for all listed alkanes,

with the exception of n-pentane (57%), and an O&NG contribution percentage greater than

81% for all BTEX compounds, with the exception of benzene (62%). Fossil Creek NA shows

an O&NG contribution percentage over 66% for all listed alkanes and an O&NG contribution

percentage greater than 65% for all BTEX compounds. Gilman et al. [2013] observed an

O&NG contribution percentage over 72% for all listed alkanes, but an O&NG contribution

percentage less than 32% for all BTEX compounds at BAO.

Based on the VOC ratios detailed previously in this section, it was anticipated that the

highest O&NG contribution percentage of compounds mainly associated with O&NG would

be seen by Gilman et al. [2013] in samples collected at BAO. The next highest percentage was

predicted to be the elementary school, followed by the residential area and Fossil Creek NA

having comparable percentages. This pattern is seen in the O&NG contribution percentage

for i-butane, n-butane, and i-pentane; however, it is not seen as clearly in ethane or n-pentane.
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BTEX compounds at BAO were found to have a much lower O&NG contribution per-

centage than this study. It was noted by Gilman et al [2013] that benzene has significant

contributions at BAO from other sources. This agrees with the finding of a previous study

conducted at BAO by Pétron et al. [2012]. Halliday et al. [2016] conducted a study at the

PAO, approximately 55km northeast of Denver, and noted that with westerly and southwest-

erly winds higher benzene concentrations were measured. This was attributed to advection

of the Denver pollution plume which could also be affecting measurements made at BAO.

Farther north in the CNFR, O&NG would be expected to have a higher percent contribution

to the ambient benzene concentration since the area has less combustion and more O&NG

sources than locations closer to the Denver metro area. To put the differences in mobile

combustion emission sources in perspective, there are 1,787,476 daily vehicle miles traveled

(DVMT) in Larimer County (6,822km2), compared to 5,694,188 DVMT in Denver County

(401km2) [CDOT, 2015]. The samples in this study were collected about 40km farther north

than PAO, which would lessen the impact of the Denver pollution plume resulting from the

higher amount of vehicle traffic.

3.1.4 VOC-OH Reactivity

O3 production occurs when VOCs react with OH and other oxidants in the presence of

NOX (NO + NO2), O2, and hv (reaction detailed in Section 1.1). Although it is only the

first step of the cycle, the propensity of a particular VOC to initiate the O3 production

cycle by reacting with OH can be estimated using the following equation [Abeleira et al., 2017]:

ROH,V OC = kOH+V OC × [V OC] (3.3)

where ROH,V OC is the OH reactivity of the VOC, kOH+V OC is the VOC rate constant for

the reaction with OH, and [V OC] is the mixing ratio of the VOC in molecules cm−3. The

kOH+V OC values were obtained from previously published studies and a complete list of the

values used can be found in Appendix F. It should be noted that this method does not
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account for chain propagation or termination steps in the O3 production cycle [Abeleira et

al., 2017]. This approach is also limited in that it only looks at a subset of compounds that

react to form O3 and thus does not provide a comprehensive evaluation of O3 formation.

Differences in the suites of VOCs quantified also makes inter-comparison among studies

difficult. However, despite its limitations this method can provide insight into the relative

contributions of VOCs to O3 formation [Abeleira et al., 2017; Swarthout et al., 2013].

The OH reactivity at each location was evaluated in order to compare the O3 production

potential by the VOCs measured at each site. It is important to note that this data set does

not include secondary VOC species; therefore, a large portion of the overall OH reactivity

is not included. Samples collected at the residential area, Fossil Creek NA, and Soapstone

NA were only obtained during the fall of 2015 whereas samples collected at the elementary

school spanned 1 year. Ambient OH concentration is a function of temperature and sunlight

and thus total OH reactivity varies by season [Abeleira et al., 2017]; therefore, the average

total OH reactivity shown in Figure 3.13 only utilizes samples collected in the fall of 2015 at

the elementary school. The seasonal variability in average total OH reactivity was evaluated

at the elementary school only and is shown later in Figure 3.14. A complete list of the VOCs

in each category can be found in Appendix Table G.1.

Figure 3.13: Average total OH reactivity measured at the elementary school, residential
area, Fossil Creek NA, and Soapstone NA during the fall of 2015.
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Fossil Creek NA had the highest total OH reactivity due to the highest ambient VOC

concentration. The elementary school had a higher total OH reactivity than the residential

area; however, the percent contribution from each VOC category is similar at both locations.

Soapstone NA displays the lowest average total OH reactivity; however, 66.7% of the total

results from aromatics, which is the highest, and 11.4% results from alkenes, which is the

lowest compared to each group’s contribution at other sites. Alkenes have much shorter

tropospheric lifetimes with OH [Blake et al., 2002; Seinfeld et al., 2016]; therefore, this is

likely a result of Soapstone NA being located far from emission sources compared to the other

sampling sites, allowing time for the chemical processing of these more reactive hydrocarbons.

The total VOC concentration, and as a result the total OH reactivity, is lowest at Soapstone

NA due to the absence of local emissions.

Vegetation is a significant source of the highly reactive VOC isoprene which accounts

for over half of the biogenic VOC emissions in North America [Di Carlo et al., 2004]. Fossil

Creek NA and Soapstone NA had the highest percent contribution to the total OH reactivity

from isoprene (2.7% and 3.0%, respectively) due to both areas being in closer proximity to

foliage and grasslands than the others.

Figure 3.14: Average seasonal total OH reactivity measured at the elementary school.
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Since alkenes are highly reactive with OH in the atmosphere, and OH concentration is

positively correlated with sunlight, the ambient alkene concentration would be expected to

decrease with increasing sunlight [Seinfeld et al., 2016]. In Figure 3.14 this trend is clearly

seen at the elementary school as the largest percentage of the measured total reactivity

resulting from alkenes is observed in the winter (22.9%) while the smallest amount is observed

in the summer (17.3%). Alkanes also react with OH, but they are generally less reactive when

compared to alkenes [Seinfeld et al., 2016]. The same trend is present in that the highest

percentage of the total OH reactivity from alkanes is observed in the winter (59.9%) and

the lowest is observed in the summer (36.4%). The opposite trend is present for aromatic

compounds, in that the highest percentage is observed in the summer (37.9%), and the lowest

percentage is observed in the winter (9.7%), which is likely a result of the increased reactivity

of alkanes and alkenes in the summer.

Isoprene emissions are highly correlated with temperature and sunlight [Nolscher et

al., 2012]; therefore, it would be expected that the OH reactivity of isoprene and percent

contribution to the total OH reactivity from isoprene is largest in the summer. This pattern

can be seen in Figure 3.14 where 3.2% of the average total OH reactivity in the summer

at the elementary school results from isoprene, whereas in the fall, winter, and spring only

2.0%, 0.41%, and 0.76% of the average total OH reactivity results from isoprene, respectively.

Figure 3.15 shows a timeline of the OH reactivity resulting from isoprene for each canister

sample at the elementary school. The spikes in ambient isoprene concentration are clear in

the summer months as a result of higher temperatures and increased sunlight. For most

samples collected in the fall, winter, and spring, the isoprene concentration was below the

limit of detection, and thus a concentration of LOD
2

was used (see Section 2.2.5) to calculate

OH reactivity.
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Figure 3.15: Timeline of the OH reactivity resulting from isoprene for the 32 samples
collected at the elementary school.

3.2 Real-Time In-Situ GC Sampling

3.2.1 Comparison of Canister and In-situ Real-Time GC Measurements

Canisters and the in-situ real-time GC were deployed at the same location for approxi-

mately 3 weeks in the fall of 2015 at the residential area. This allows for some inter-comparison

between the data collected in order to assess agreement between the sampling methods. Unfor-

tunately, only 3 of the 4 canister samples collected at the residential area completely overlap

in time with the real-time GC, further restricting the already limited sample availability to

analyze the agreement between the methods. A summary table of all VOC concentrations

found at the residential area using the in-situ real-time GC can be found in Appendix Table

D.7. Figure 3.16 shows linear comparison plots of concentrations determined from canister

sampling vs. the average concentration measured by the GC during the week the respective

canister was deployed and Table 3.4 shows the slope and coefficient of determination (r2) of

the measurements.
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Figure 3.16: Linear comparison plots of concentrations determined from canister sampling
vs. the average concentration measured by the GC during the week the respective canister
was deployed. The solid black line indicates the 1:1 line.

Table 3.4: Slope and coefficient of determination (r2) of concentrations determined from
canister sampling vs. the average concentration measured by the GC during the week the
respective canister was deployed.

It should be reiterated that the use of only 3 data points limits the ability to draw strong

conclusions from this inter-comparison. With this being noted, the light alkanes exhibit good
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agreement between canister samples and the in-situ GC for all compounds except n-pentane,

demonstrated by high correlations (r2 > 0.94) and slopes between 0.93ppbv
ppbv

and 1.00ppbv
ppbv

.

While the agreement for n-pentane was not as strong as the other light alkanes, there is still

a high correlation (r2 = 0.74) and a slightly biased slope of 0.84ppbv
ppbv

. Benzene and toluene

also exhibit a good agreement between the sampling methods exhibiting near perfect linear

correlations and slopes of 1.03 and 1.06, respectively. Ethylbenzene, m+p-xylenes, o-xylene,

and acetylene show relatively poor correlations (r2 < 0.47) and biased slopes ranging from

0.78ppbv
ppbv

to 2.19ppbv
ppbv

.

A few of factors could have contributed to the poor agreement of some compounds in this

simple inter-comparison. The most significant is likely the small number of canister samples

collected. Swarthout [2014] did a similar analysis with hundreds of samples and found strong

agreement for a variety of compounds among whole air canister grab samples and in-situ GC

samples. Having only 3 data points makes it difficult to accurately determine linear regression

statistics and it is anticipated that if more week-long time-integrated canister samples were

collected collocated with the real-time GC, the correlations could improve. Another factor

that could contribute to deviation in slopes suggested by Swarthout [2014] was differences

in the accuracy of standards used for calibration. The standard used in this study for the

in-situ GC was different than the standard used on the 5-channel GC; therefore, some degree

of error may have been introduced in this way.

3.2.2 Local O&NG Sources and Photochemical Age

An AIO weather station was deployed at the residential area to collect meteorological

data at the same time as the real-time GC data were collected. It was anticipated that

wind direction and wind speed could strongly influence the VOC concentrations and ratios

observed at the residential area. In order to assess this impact, wind roses of the 10th and

90th percentile of propane concentration (Figure 3.17) are shown along with a map of O&NG

wells around the residential area (Figure 3.18).
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Figure 3.17: Wind roses of the 10th and 90th percentile of propane concentration.

Figure 3.18: Map of O&NG wells around the residential area.
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In Figures 3.17, the propane concentration is in the 10th percentile for the higher median

wind speed and the propane concentration is in the 90th percentile for the lower median

wind speed. There is a small concentrated development of approximately 50 wells about

1.5km northwest of the residential area whereas the much larger development consisting of

thousands of wells is to the southeast and begins about 20km away (Figure 3.18).

58.9% of the overall wind direction measurements displayed southeasterly winds (90o -

180o) while 13.7% displayed southwesterly winds (180o - 270o), 9.5% displayed northwesterly

winds (270o - 360o), and 17.9% displayed northeasterly winds (0o - 90o). The median

propane concentration with southeasterly winds was 6.15ppbv and the median propane

concentration with northwesterly winds was 1.52ppbv while the median propane concentration

with southwesterly and northeasterly winds were 0.16pbv and 0.13ppbv, respectively. The

enhanced propane concentrations correspond with regions of more O&NG development while

the much lower propane concentrations, correspond with areas of less O&NG development.

Considering both wind speed and direction, slower northwesterly and southeasterly winds

corresponding with higher propane concentrations may imply that local O&NG sources have

a strong impact on ambient air quality at the residential area.

While wind conditions may indicate VOC contributions from local O&NG sources near

the residential area are important, in order to better understand this, a “photochemical clock”

was used. This method utilizes the ratios of 2-pentyl nitrate, 2-butyl nitrate and their parent

alkanes to estimate the age of the air mass [Evanoski-Cole et al., 2017]. The atmospheric

reaction rates of n-pentane and n-butane to their respective alkyl nitrates are well known,

thus allowing the ratio of the parent alkane to its alkyl nitrate to be used to estimate the age

of the air mass [Evanoski-Cole et al., 2017].

Bertman et al. [1995] detailed this equation to model the evolution of alkyl nitrates in an

air mass:

RONO2

RH
= βka

kb−ka
(1− e(ka−kb)t) (3.4)
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where β is a unitless constant that accounts for the branching ratio leading to nitrate for-

mation including the fraction of hydrogen (H) atom abstraction at the particular carbon,

and the fraction of peroxy radicals that react with NO as opposed to other peroxy radicals.

ka and kb are well established reaction rate constants, and t is the air mass age in seconds.

The values of β, ka, and kb presented by Bertman et al. [1995] and used in the following

calculations are listed in Table 3.5.

Table 3.5: Constants used to calculate and model the evolution of alkyl nitrates in an
air mass. Ambient OH concentration is assumed to be 106 molecules cm−3 [Bertman et al.,
1995].

Ambient OH concentration is difficult to quantify and in most cases must be assumed in

order to use this method. The values for β, ka, and kb presented by Bertman et al. [1995]

were determined assuming an ambient OH concentration of 106 molecules cm−3, at 40oN

in July. Spivakovsky et al. [2000] modeled monthly global OH concentrations and at 36oN

found a zonal mean in October at 800hPa of 1.1×106 molecules cm−3. The samples in this

study were collected in the fall at a latitude of 40.60N. In addition, Ebben et al. [2017] and

Kim et al. [2014] derived comparable OH concentrations from measurements conducted in

the CNFR. Therefore the assumptions made by Bertman et al. [1995] to calculate β, ka, and

kb were applicable to the measurements and calculations in this thesis.

The solution to the Bertman et al. [1995] equation can be compared to the in-situ

GC measurements to estimate the air mass age. Figure 3.19 shows the 2-pentyl nitrate to

n-pentane ratio vs the 2-butyl nitrate to n-butane ratio indicating the photochemical age of

VOC emissions measured using the in-situ real-time GC at the residential area. The points
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are colored by i-pentane to n-pentane ratio. Figure 3.20 shows the same measurements with

points colored by propane concentration.

Figure 3.19: Photochemical age of measurements made using the in-situ real-time GC at
the residential area. Points are color coded by the i-pentane to n-pentane ratio.

Figure 3.20: Photochemical age of measurements made using the in-situ real-time GC.
Points are color coded by propane concentration.
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Figures 3.19 and 3.20 show that in a more aged air mass, the i-pentane to n-pentane

ratio is greater and the propane concentration is lower, whereas in a less aged air mass, the

i-pentane to n-pentane ratio is lower and the propane concentration is greater. Evanoski-Cole

et al. [2017] performed a similar analysis on data collected in the Bakken region of North

Dakota and found a similar relationship that lower i-pentane to n-pentane ratios correspond

with a younger air mass. Even though the locations of the studies were different, following

the conclusions of Evanoski-Cole et al. [2017] and by relating both local wind data and

photochemical age to O&NG markers, there is strong evidence that local O&NG operations

have a significant impact on ambient VOC concentrations at the residential area.

3.2.3 VOC-OH Reactivity

OH reactivity calculations for the in-situ GC data were conducted similar to the canister

samples, detailed in Section 3.1.4. The hourly measurements provided by the real-time GC

allow the assessment of the diurnal pattern of total OH reactivity and the percent contribution

from VOC categories. The in-situ GC data included some different VOCs than measured

from the canister samples; therefore, the VOC categories are slightly different. Appendix

Table G.2 lists the VOC categories specific to the in-situ GC. The data was grouped into

four 6-hour time blocks, 00:00 (midnight) - 05:59, 06:00 - 11:59, 12:00 - 17:59, and 18:00 -

23:59. Figure 3.21 shows the average diurnal cycle of OH reactivity at the residential area for

3 weeks in the fall of 2015.
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Figure 3.21: Average diurnal total OH reactivity measured at the residential area using
the in-situ real-time GC (Oct. 26, 2015 - Nov. 20, 2015).

The diurnal pattern of total OH reactivity increasing in the morning, decreasing in the

early afternoon and increasing again in the evening was observed by Abeleira et al. [2017]

and Gilman et al. [2013] at the BAO. Abeleira et al. [2017] collected VOC data using the

same real-time GC in the spring and summer of 2015 and measured a comparable size and

type of VOC suite as this study. The approximate magnitude of the OH reactivity they

measured in the spring was similar to this study; however, they observed a total reactivity

maximum in the mid-morning of about 1.5s−1 whereas this study saw a maximum in the

evening of about 1.35s−1. They observed a greater morning OH reactivity peak in the summer

of approximately 3.0s−1. Gilman et al. [2013] collected VOC data using a real-time GC in

the spring of 2011 and measured a suite that contained additional OVOCs and biogenics,

which are more reactive, leading to a measured total OH reactivity peak in the mid-morning

of about 5s−1. There was not much diurnal variation in the fractional contribution of each

VOC category, consistent with the results of this study.
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3.3 AERMOD Dispersion Modeling

3.3.1 Model Results

AERMOD dispersion modeling was utilized to evaluate the potential increase in ambient

benzene concentrations at the elementary school, assuming the proposed well pad were

constructed approximately 2000ft (609.6m) northeast of the campus. Figure 3.22 shows the

proposed well site marked by a red rectangle and the school campus denoted by a yellow

rectangle.

Figure 3.22: Map of the proposed well site marked by a red rectangle (not to scale) and
the school campus denoted by a yellow rectangle.

Collett et al. [2016] quantified VOC emission rates from O&NG developments in the

NCFR using the tracer ratio method (TRM) in which a tracer gas is released from a well pad

at a known rate and canister samples are collected upwind and downwind. By multiplying the

tracer release rate by the ratio of the background-corrected VOC and tracer concentrations

the VOC emission rate can be determined. Model runs utilizing the 5th, 25th, median, 75th,

and 95th percentile emission rates of benzene found at production well sites in the CNFR

by Collett et al. [2016] were used and the hourly average concentration increases for 1 year

were simulated. Further details on the model input parameters can be found in Section 2.4.2.
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Figure 3.23 shows the median emission rate concentration field at the elementary school (the

5th, 25th, 75th, and 95th percentile emission rate contour plots are shown in Appendix H) and

Figure 3.24 shows the distribution of benzene concentration increase at the elementary school

along with the corresponding emission rates, annual average concentration increases, 99th

percentile concentration increases, and percentage of hourly outputs showing no concentration

increases.

Figure 3.23: Contour plot of benzene concentration increase around the well pad under
the median emission rate scenario (1.5× 10−3 g

s
). The center of the well pad is denoted by a

red dot. The elementary school campus can be seen in the lower left corner and the contours
around the school are labeled with the concentration increase in ppbv.
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Figure 3.24: Distribution of benzene concentration increase at the elementary school along
with the corresponding well pad emission rates, annual average concentration increases, 99th

percentile concentration increases, and percentage of hourly outputs showing no concentration
increase.

The median concentration measured through week-long time-integrated canister sampling

at the elementary school was 0.18 ± 0.08ppbv. Local meteorology, specifically wind conditions,

is the main driver for the increase in benzene concentrations near the school due to emissions

from a new well pad. Under all five emission rate scenarios, 73.4 - 73.7% of the year there is

no benzene enhancement seen from the well site. Therefore, the benzene concentration at the

school would be expected to be approximately 0.18 ± 0.08ppbv at those times, assuming

similar source contributions as seen in sample collection in this study. This would be expected

to be the case under southerly or westerly wind conditions (i.e. winds toward the well and

away from the school campus). Expectedly, with an increase in emission rate, the distribution

shown in Figure 3.24 widens, with fewer hours displaying a concentration increase of less

than 0.1ppbv and the median and 99th percentile increasing.
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Under the 5th percentile emission rate scenario (5.0× 10−5 g
s
) the average benzene con-

centration at the school increases by about 4% (0.0067ppbv) and displays an increase of

0.19ppbv over the ambient concentration at the 99th percentile. Under the 25th percentile

emission rate scenario (5.0× 10−4 g
s
) the average benzene concentration at the school increases

by about 61% (0.11ppbv) and displays an increase of 3.2ppbv over the ambient concentration

at the 99th percentile. Under the median emission rate scenario (1.5× 10−3 g
s
) the average

benzene concentration at the school increases by about 180% (0.33ppbv) and displays an

increase of 9.6ppbv over the ambient concentration at the 99th percentile. Under the 75th

percentile emission rate scenario (4.0 × 10−3 g
s
) the average benzene concentration at the

school increases by nearly 5 times (0.89ppbv) and displays an increase of 25.7ppbv over the

ambient concentration at the 99th percentile. Under the 95th percentile emission rate scenario

(3.0 × 10−2 g
s
) the average benzene concentration at the school increases by over 37 times

(6.7ppbv) and displays an increase of 192.8ppbv over the ambient concentration at the 99th

percentile.

These model simulations assume a constant benzene emission rate throughout the year.

It is unlikely that a well site would exhibit regular emission in this manner; however, for the

purposes of modeling a well that has not yet been constructed, this assumption was made.

Also, these model simulations were done using benzene emission rates from only production

well sites. In the fracking and flowback stages of well development, the benzene emission

rates found by Collett et al. [2016] were significantly higher. However, these emissions would

occur on a much shorter time scale (typically several days) than the production lifetime of

the well (typically decades).

To further investigate the potential hourly benzene enhancement at the elementary school,

the diurnal pattern of its concentration increase was evaluated. Figure 3.25 shows the hourly

benzene concentration increases at the elementary school under the median emissions rate

scenario for each hour of the day from the annual AERMOD simulation results.
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Figure 3.25: Benzene concentration increases at the elementary school under the median
emissions rate scenario (1.5× 10−3 g

s
) for each hour of the day. The vertical red lines indicate

the start and end of school hours for student attendance.

Based on AERMOD simulations, the emissions from the potential well site do not result

in any enhancements at the school for 73.4% of the year. Figure 3.25 only shows the instances

in which there was a positive concentration increase. The strongest benzene enhancement

occurs 00:00 (midnight) - 08:00 and 17:00 - 23:00. Interestingly, the elementary school hours

for student attendance are 08:35 - 15:13 [PSD, 2017], which falls in the period of the day

with the least benzene enhancement resulting from the development of a new well. During

that time frame, the annual average benzene concentration increase is only 0.024ppbv, much

less when compared to the overall annual average increase of 0.33ppbv. Outside of school

hours, the annual average benzene concentration increase is 0.46ppbv. The elementary school

and the Timnath community offer several extracurricular activities that take place on the

school campus, so it is likely that many students would be at the school outside of standard

attendance hours. To reiterate, these concentration increases assume that the potential well
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site is emitting at the median production emission rate constantly throughout the year, and

the benzene enhancements in Figure 3.25 would be expected to increase during the initial

fracking and flowback stages of well development; however, these processes occur over several

days whereas the production lifetime of wells is typically decades.

The lower modeled benzene concentration during school hours can be explained by more

turbulent conditions and wind directions that do not result in influence from the well site.

Figure 3.26 clearly shows that wind speeds are elevated during school hours and the wind

directions are mainly southerly and northwesterly. In contrast, outside of school hours winds

are generally calmer and have more of a northerly component, which result in the greater

benzene enhancement that was modeled. It is also possible that deeper boundary layer

conditions during the day lead to increased mixing and dilution of the well site emissions.

Figure 3.26: Wind roses showing the AERMOD input data outside and during the
elementary school attendance hours.

3.3.2 Comparison With Air Quality Standards

Benzene in a known HAP that has been linked to leukemia, anemia and other blood

disorders and cancers, immune system impairment, decreased respiratory function, and neural

tube defects in newborns [Halliday et al., 2016]. Agencies such as the U.S. Occupational
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Safety and Health Administration (OSHA) and the U.S. National Institute for Occupational

Safety and Health (NIOSH) have set benzene exposure limits for short and long term

exposure. Typically, these standards are applied in an indoor workplace so they are not

directly applicable to the ambient outdoor concentrations measured and modeled at the

elementary school; however, they do provide some context and comparison as to the potential

health effects of the proposed well development. Furthermore, young children attending

elementary school can be considered as part of a “sensitive population” which could lower the

acceptable exposure limit. OSHA has established a permissible exposure value for benzene of

1ppmv (1000ppbv) averaged over 8 hours and a shorter term standard of 5ppmv (5000ppbv)

averaged over 15 minutes [OSHA, 2017]. Under all five emission rate scenarios, the annual

average concentration and the 99th percentile concentration at the school are multiple orders

of magnitude below the standards.

NIOSH recommends an exposure limit for benzene is 0.1ppmv (100ppbv) averaged over 8

hours and a shorter term standard of 1ppmv (1000ppbv) averaged over 15 minutes [NIOSH,

2014]. Under all five emission rate scenarios, the annual average concentration at the school

does not exceed the recommended 8 hour exposure limit. The 99th percentile concentration

under the 95th percentile emission rate scenario exceeds the 8 hour exposure limit, but

once again, these concentrations would likely not be sustained over an 8 hour period and

furthermore the 99th percentile concentration under the 95th percentile emission rate does

not exceed the recommended 15 minute exposure limit.

The Agency for Toxic Substances and Disease Registry (ATSDR) has developed Minimal

Risk Levels (MRLs) for air toxins through discussions with scientists within the Department

of Health and Human Services (HHS) and the EPA. The published MRLs are defined as “an

estimate of the daily human exposure to a hazardous substance that is likely to be without

appreciable risk of adverse non-cancer health effects over a specified duration of exposure”

[ATSDR, 2017]. The ATSDR lists MRLs for acute (1 - 14 days), intermediate (>14 - 364

days), and chronic (365 days and longer) exposure to air toxins. For benzene, the acute
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MRL is 0.009ppm (9ppbv), the intermediate MRL is 0.006ppm (6ppbv), and the chronic

MRL is 0.003ppm (3ppbv). There is a wide range of acute (1 - 9ppbv), intermediate (6 -

25ppbv), and chronic (8 - 52,000ppbv) exposure threshold levels that vary in range depending

on the regulatory agency [TCEQ, 2015]. The ATSDR MRL’s are presented here because

they have been extensively reviewed by a panel of external reviewers and were derived with

participation from several federal agencies [ATSDR, 2017]. The annual average concentration

increase at the school exceeds the intermediate and chronic ATSDR MRLs only under the

95th percentile emission rate scenario. The annual average concentration increase resulting

from the lower emission rates does not exceed any of the 3 listed ATSDR MRLs. The 5th,

25th, and median percentile emission rates never exceed the acute ATSDR MRL for a 24 hour

period. The 75th percentile emission rate exceeds the acute ATSDR MRL for one 24 hour

period while the 95th percentile emission rate exceeds the acute ATSDR MRL for several 24

hour periods. The 99th percentile concentration increases exceed at least one of the ATSDR

MRLs for the 25th, median, 75th, and 95th percentile emission rates. However, this percentile

increase represents a one hour average concentration and would not be seen on the longer

time scales established for the ATSDR MRLs.
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Chapter 4

Conclusions and Future Work

The CNFR is located in the Wattenberg gas field within the Denver-Julesburg Basin

which is one of the largest shale formations in the U.S. Advances in unconventional extraction

of O&NG have allowed a large increase in the number of wells in the CNFR over the past

few decades as this has provided access to natural gas reservoirs that were previously deemed

economically infeasible. This growth in O&NG development may lead to increased emissions

of VOCs which may negatively impact air quality and human health. In order to help assess

this impact, this study utilized time-integrated whole air canister sampling at five locations

in Fort Collins and Timnath and real-time in-situ GC measurements at a residential area in

Fort Collins.

Fossil Creek NA in southeast Fort Collins close to I-25 was found to have the highest

median concentration of ethane and propane while a gas station site at a busy intersection

displayed the highest median concentration of butanes, pentanes, acetylene, and BTEX

compounds. The mean ratio of i-pentane to n-pentane found at the elementary school,

residential area, Fossil Creek NA, Soapstone NA, and the gas station was 1.07, 1.17, 1.16,

1.05, and 2.35, respectively, indicating that the air mass is heavily influenced by O&NG

emissions at all sampling locations, except the gas station. Using a multivariate regression

technique that accounts for the correlations of VOCs to propane and acetylene, the elementary

school, residential area, and Fossil Creek NA were found to have a large percentage of VOCs

attributable to O&NG emissions. In addition, meteorological data coupled with real-time

GC VOC measurements provide strong evidence that local O&NG sources can have a large

impact on air quality at a residential area in northeast Fort Collins.

Fossil Creek NA showed the largest total OH reactivity in the fall while Soapstone NA

displayed the lowest. At Soapstone NA, 66.7% of the total OH reactivity resulted from

aromatics, which is the highest, and 11.4% resulted from alkenes, which is the lowest compared

to each group’s contribution at other sites, likely due to its location far from emission sources
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allowing time for the chemical processing of more reactive hydrocarbons. At the elementary

school the largest OH reactivity was seen in the winter. The lowest OH reactivity was seen in

the summer; however, 3.2% of the OH reactivity in the summer was attributed to isoprene,

whereas in the fall, winter, and spring only 2.0%, 0.41%, and 0.76% of the OH reactivity

resulted from isoprene, respectively. OH reactivity did not vary much diurnally in total or

speciation at the residential area, but displayed a similar pattern and magnitude to previous

studies in the CNFR.

Development of new unconventional O&NG wells is ongoing in the CNFR and there

are plans to develop wells in close proximity to the elementary school sampling location in

Timnath. In order to estimate potential impacts of this project, the AMS/EPA steady-state

air dispersion model AERMOD was utilized to project the potential increased concentration

of benzene at the elementary school as a results of this development. The site was modeled

using the 5th, 25th, median, 75th, and 95th percentile production well site emission rates

of benzene found by Collett et al., [2016] in the CNFR and annual average concentration

increases above current background at the school (0.18 ± 0.08ppbv) were found to be 0.0067,

0.11, 0.33, 0.89, and 6.7ppbv, respectively. None of these annual average concentration

increases exceeded established OSHA or NIOSH benzene exposure limits. The annual average

concentration increase for the 95th percentile emission rate exceeds the intermediate and

chronic MRLs listed by the ATSDR. However, this simulation assumes a constant emission

rate, and it is unlikely that a well would be emitting benzene at the 95th percentile rate for

an entire year. Under the median emission rate scenario, the strongest benzene enhancement

at the school occurred 00:00 (midnight) - 08:00 and 17:00 - 23:00 (0.46ppbv). The elementary

school attendance hours are 08:35 - 15:13 and during that time, the annual average benzene

concentration increase is only 0.024ppbv, much less when compared to the overall annual

average increase of 0.33ppbv. Factoring in all times of day, the 75th percentile emission rate

exceeded the acute ATSDR MRL for one 24 hour period during the year while the 95th

percentile emission rate exceeded the acute ATSDR MRL for several 24 hour periods.
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If O&NG development continues to increase by approximately 4% over the next several

years, as projected, wells will likely continue to be drilled in relatively close proximity to

residential areas, schools, and businesses. Therefore, continued monitoring of ambient VOC

levels in areas such as the CNFR where there is dense O&NG development is needed. Future

sampling at the same or similar locations throughout Fort Collins and Timanth should be

conducted in order to utilize this data set as a baseline to assess potential increases in ambient

VOC concentrations as O&NG development and population grow. Also, with additional data,

including further VOC speciation, the OH reactivity and photochemical age calculations

discussed in this work could be expanded in order to further address the ongoing issue of O3

production in the CNFR.

Sampling should be resumed at the elementary school once the proposed drilling project

has been initiated. Sampling using the same methods detailed in this thesis would provide not

only continued monitoring of the potential increased VOC exposure of the students and staff,

but also could serve as a direct comparison data set for the concentration increases projected

by the presented AERMOD simulations. Also, collecting real-time BTEX concentration

measurements using proton-transfer-reaction mass spectrometry (PTR-MS) coupled with an

AIO weather station would provide detailed concentration ranges and meteorological data on

a s−1 time interval, thus providing a better understanding of the effect of local meteorology

on the concentration increases seen at the school. There is a residential neighborhood that

surrounds the elementary school. Therefore, to better understand specific benzene exposure

for students and other sensitive populations, it may be necessary to evaluate days and hours

in which school is in session combined with benzene enhancement at other receptor points

located within the residential neighborhood. This more in-depth analysis could provide a

better look at student exposure during and outside of school attendance hours.

To further investigate HAP exposure through sampling techniques, the use of personal

VOC monitors that can be worn by students or staff could be implemented to provide a

more accurate assessment of the personal exposure individuals experience on a daily basis.
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These monitors could be worn during and outside of school hours, and combined with a more

in-depth AERMOD analysis, could allow for a targeted assessment as to the percentage of

students and staff exposed to elevated VOC levels. In addition, it may be useful to implement

indoor time-integrated whole air VOC sampling at the school to compare with the outdoor

measurements collected on the campus. These data sets could be compared to establish

exposure limits and MRLs to give additional context to health risks.
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Appendix A

GC Analytical Systems Information

Table A.1: 5 channel GC instrumental parameters for analysis of VOCs from canister
samples.

Table A.2: 5 channel GC method parameters for analysis of VOCs from canister samples.
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Table A.3: In-situ real-time GC instrumental parameters for analysis of VOCs.

Table A.4: In-situ real-time GC method parameters for analysis of VOCs.
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Appendix B

GC Analytical System Calibration Statistics

Table B.1: Calibration statistics for the VOCs measured on the 5 channel GC system
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Appendix C

VOC Information

Table C.1: Chemical formulae and relevant sources for the VOCs measured on the GC
analytical systems.
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Appendix D

Whole Air Sampling Results Summary

Figure D.1: Comparison of seasonal total VOC concentrations at the elementary school
and the gas station.
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Table D.2: Mean, median, standard deviation, minimum, and maximum of VOC mea-
surements from canisters at the elementary school.
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Table D.3: Mean, median, standard deviation, minimum, and maximum of VOC mea-
surements from canisters at the residential area.
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Table D.4: Mean, median, standard deviation, minimum, and maximum of VOC mea-
surements from canisters at Fossil Creek NA.
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Table D.5: Mean, median, standard deviation, minimum, and maximum of VOC mea-
surements from canisters at Soapstone NA.
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Table D.6: Mean, median, standard deviation, minimum, and maximum of VOC mea-
surements from canisters at the gas station.
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Table D.7: Mean, median, standard deviation, minimum, and maximum of VOC mea-
surements from the in-situ real-time GC at the residential area.
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Appendix E

Propane and Acetylene Correlation Coefficient Statistics

Statistical method detailed in Kenny [1994].

Correlation coefficients were transformed into a “z-score” using the Fisher Z-Transformation

(Table E.1):

z = 1
2
[ln(1 + r)− ln(1− r)]

where r is the correlation coefficient between a VOC and propane or acetylene.

The zobserved between the propane and acetylene “z-scores” was calculated by (Table E.2):

zobserved =
zpropane−zacetylene√

2

N−3

where zpropane and zacetylene are the “z-scores” and N is the number of week-long canister

samples collected at the site.

The zobserved values were then compared to the 95% confidence interval critical value of ±

1.96 to determine if the values were significantly different (Table 3.2).

Table E.1: “z scores” calculated from the propane and acetylene correlation coefficients.

Table E.2: zobserved values between the propane and acetylene “z-scores”.
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Appendix F

OH reactivity (kOH) Rate Constants

Table F.1: kOH values for all measured VOCs.
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Appendix G

VOC Categories

Table G.1: VOC categories used in the OH reactivity calculations for whole air canister
samples.

Table G.2: VOC categories used in the OH reactivity calculations for the in-situ real-time
GC at the residential area.
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Appendix H

AERMOD Contour Plots

In Figures H.1 - H.4 the center of the well pad is denoted by a red dot, the elementary

school campus can be seen in the lower left corner, and the contours around the school are

labeled with the concentration increase in ppbv.

Figure H.1: Contour plot of benzene concentration increase around the well pad under
the 5th percentile emission rate scenario (5.0× 10−5 g

s
).
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Figure H.2: Contour plot of benzene concentration increase around the well pad under
the 25th percentile emission rate scenario (5.0× 10−4 g

s
).

Figure H.3: Contour plot of benzene concentration increase around the well pad under
the 75th percentile emission rate scenario (4.0× 10−3 g

s
).
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Figure H.4: Contour plot of benzene concentration increase around the well pad under
the 95th percentile emission rate scenario (3.0× 10−2 g

s
).
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