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ABSTRACT 

 

 

 

ACCURACY OF WALKING METABOLIC PREDICTION EQUATIONS USING A LARGE 

DIVERSE DATA SET 

 

 

Walking metabolic rate prediction equations are commonly used to estimate oxygen 

consumption, exercise intensity and energy expenditure across a wide range of ages and 

anthropometrics.  Despite their widespread use, independent validations of these equations using 

metabolic data from a large number of individuals are uncommon.  PURPOSE: To assess the 

accuracy of the commonly used ACSM and Pandolf walking metabolic rate prediction equations, 

along with two new walking metabolic rate predictions equations developed by Weyand et al. 

and Browning et al., using data from a large number of adults. METHODS: We used 

demographic, anthropometric, walking speed, and oxygen consumption data from several 

laboratories (N = 450 (164 Males, 286 females), 18-85 years old, 16.5-44 kg/m2). We estimated 

oxygen consumption using each prediction equation in 1,078 walking trials ranging from 0.55-

2.18 m/s, and 0.5-12% grade.  Comparisons between predictive methods were made for all 

walking trials, as well as among normal weight participants during level and gradient walking, 

and overweight and obese participants during level and gradient walking.  We computed the 

mean prediction difference (MPD) as the difference between predicted vs. measured rates of 

oxygen consumption (ml/kg/min) for each trial, and examined the relationship between the MPD 

and measured oxygen consumption (ml/kg/min) using modified Bland-Altman plots.  Linear 

regression was used to determine the intercept (fixed bias) and slope (proportional bias) for each 

equation.  The absolute value of the mean prediction difference, and Root Mean Square Error 
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(RMSE) values were also calculated for each equation and population. RESULTS: For level 

walking, all prediction equations had mean prediction differences that were statistically different 

from zero (P ≤ 0.05) except for the Browning et al., equation when applied to normal weight 

individuals and the Pandolf equation when applied to overweight and obese individuals.   Most 

importantly, all prediction equations had significant (P ≤ 0.05) fixed and proportional bias, and 

demonstrated large RMSE (7.8-23.5% of mean measured metabolic rate) that were similar across 

equations and population.  In addition, prediction error increased as measured metabolic rate 

increased for all equations.  CONCLUSION: The metabolic prediction equations evaluated here 

each had considerable error when compared to measured values, regardless of the population in 

which the equation was created and/or validated.  Improvements in prediction equations may 

require using approaches that aim to minimize RMSE and/or developing population/intensity 

specific equations.  
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CHAPTER I 

INTRODUCTION 

 

 

 

Rates of obesity and its comorbid conditions have grown at an alarming rate in recent 

years, and obesity is now considered a leading health concern according to the World Health 

Organization (WHO)(77).  Obesity is defined as having a body mass index (BMI) ≥ 30 kg/m2, 

and obesity increases the risk of mortality, disability, cardiovascular disease, type 2 diabetes, 

pulmonary disease, and certain cancers (31, 50).  A report from the National Health and 

Nutrition Examination Survey (NHANES) showed that in 2010 33.0% of US adults were 

overweight (BMI ≥ 25 kg/m2), 35.7% were obese, and 6.3% were extremely obese (BMI ≥ 40 

kg/m2) (22).   

Obesity results from a chronic positive energy imbalance, where energy intake (EI) 

exceeds energy expenditure (EE). Given the health risks associated with obesity, overweight and 

obese individuals are recommended to lose excess weight through diet and/or exercise.  While 

weight loss is typically achieved through a combination of diet (decreased EI) and physical 

activity/exercise (increased EE), maintenance of reduced body weight is best achieved by 

engaging in substantial amounts of physical activity (61, 66, 67).  The current recommendation 

to promote and maintain good health is for adults to engage in 30-60 minutes of moderate-

vigorous physical activity (MVPA) on most days of the week, achieving an exercise intensity of 

40-60% of maximal oxygen consumption (VO2 max) (29). While the American College of 

Sports Medicine recommends 150-250 minutes of MVPA each week to maintain good health, 
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Saris et al., found that PA levels of 225-300 minutes each week were necessary to prevent the 

transition from normal weight to overweight, or from overweight to obesity (58, 66).    

Physical inactivity is an independent risk factor for chronic disease regardless of weight 

status.  Individuals who fail to meet the above stated physical activity guidelines are considered 

inactive according to the World Health Organization (WHO) (77).  In fact, in 2010 the WHO 

reported physical inactivity as a greater risk for mortality than obesity, as physical inactivity was 

responsible for 6% of global deaths, and is the fourth leading risk factor for mortality worldwide 

(77). This suggests that regular physical activity is an important component of not only long-

term weight management, but is also essential for chronic disease prevention.   

Accurate and easy to use equations that predict metabolic rate and energy expenditure are 

important in exercise settings, where healthcare providers and patients can rely on the these 

equations to ensure appropriate exercise intensity and sufficient energy expenditure (30).  Some 

professionals will prescribe physical activity in terms of energy expenditure (kcals), as it can be 

easily calculated from a predicted metabolic rate.  Inaccurate estimations of EE, particularly 

overestimates, may impede weight loss or weight maintenance, particularly when used over time.  

Patients or clients who are prescribed specific energy expenditure targets (e.g. 1,000 kcals/week) 

may find themselves in a positive energy balance if their energy expenditure is lower than the 

predicted value.  Schutz et al., provides an example of how a positive energy balance of ~18 

kcal/day can lead to five kilograms of weight gain over a five year period assuming that there is 

no compensation (60). It has been reported that a weekly energy expenditure of 1,000 kcals 

through leisure time PA is the minimum energy expenditure to modify risk factors for 

cardiovascular disease (e.g. blood pressure, hypercholesterolemia) and that even higher levels of 

EE are necessary to regress coronary lesions and change body composition (19).  Given the 
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number of obese and physically inactive persons, there is a clear need for accurate, 

independently validated prediction equations for oxygen uptake so that weight loss and weight 

maintenance can be achieved and risks of chronic disease reduced. 

Exercise prescriptions depend on the frequency, intensity, duration, and type of exercise 

which can be manipulated based on the fitness level of a client, or the clinical condition that a 

patient presents (11).  Intensity and duration interact to determine the energy expenditure of an 

exercise bout, where exercise physiologists calculate components of intensity (e.g. speed and 

grade, in the case of walking and running) using metabolic prediction equations.  Prediction 

equations are widely used in many branches of exercise physiology, where exercise sessions are 

tailored to a desired range of a client or patient’s VO2 max. Despite the importance of accurate 

prediction equations, there have been limited attempts to develop and independently validate 

metabolic prediction equations using metabolic data from large, diverse populations.  

It is also important to estimate metabolic rate during non-exercise physical activity, as it 

can be a major determinant of daily energy expenditure. Individuals who are not using structured 

exercise prescriptions from exercise physiologists, but are interested in determining their daily 

energy expenditure for weight loss or weight management often rely on commercially available 

physical activity monitors or pedometers to estimate EE.    Many physical activity monitors 

estimate EE using common prediction equations, which, for many individuals, is the primary 

method of determining daily EE associated with physical activity.   

The ACSM equation is the most commonly used metabolic prediction equation.  Exercise 

performance laboratories and clinical exercise physiology programs create exercise prescriptions 

using the ACSM equation, where walking speed and grade are prescribed based on a range of 

VO2 (e.g. The speeds and grades that elicit 50-85% of measured or predicted VO2 max).   The 
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ACSM equation was developed with a small sample of elite athletes, which may limit its ability 

accurately predict walking metabolic rate across a range of ages, adiposities, and aerobic 

capacities. Given that the ACSM equation is the most common predictive method for creating 

exercise prescriptions in clinical and athletic populations, it is surprising that attempts at 

independently validating the equation have been limited.  Attempts at evaluating the accuracy of 

the ACSM prediction equation have yielded inconsistent results, with some finding that the 

equation provides a reasonably good estimation of walking metabolic rate (12, 28, 42), while 

others have found that the ACSM prediction significantly overestimated VO2 max (54), and 

underestimates submaximal metabolic rate (8, 76).  Given the inconsistencies in the literature 

regarding the ACSM metabolic rate prediction equation, there is a need for an independent 

validation of this equation using a large and diverse participant population.   

The Pandolf equation is another popular predictive method, often used in the military, as 

it includes a variable for external load carriage.  The ability of prediction equations to accurately 

estimate walking metabolic rate in a given population may be dependent on the population in 

which the equation was developed.  Given that this equation was developed in a population 

carrying external load, it is feasible that this predictive method would better estimate walking 

metabolic rate in overweight and obese individuals. Hall et al., found that the Pandolf equation 

closely predicted walking metabolic energy expenditure compared to other metabolic equations 

in a population of young, healthy participants, but there have been no attempts to evaluate the 

Pandolf equation in overweight or obese participants.   

Two new metabolic prediction equations, by Weyand et al., and Browning et al., were 

developed in diverse populations of varying heights and weights, but neither has been 

independently validated.  The equation by Weyand et al., uses a height, weight, speed model, 
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tested on a range of adults and children resulting in a two fold range of statures and a seven fold 

range in body mass.  Compared to the new equation, Weyand found that the ACSM prediction 

equation significantly underpredicted walking metabolic rate, meaning that subjects were 

walking with a greater metabolic rate than the equation predicted.  Browning et al., used a 

hierarchical linear regression in a relatively large sample of normal weight and obese participants 

across 11 speed grade combinations to determine the variables to include in their predictive 

model.  Treadmill speed, grade, body mass, and age were the primary contributors to the model, 

accounting for 77% of variance in metabolic rate, compared with 50% in the ACSM equation.  

To our knowledge, the equation by Browning, et al., used the largest sample of adults to create a 

metabolic prediction equation, and is the only predictive method that included overweight and 

obese participants in their development.  

Because metabolic prediction equations have been developed using relatively small and 

mostly homogeneous subject populations, it is not surprising that evaluation of these equations 

yield inaccurate predictions when compared to measured oxygen uptake. Because of this, there is 

a need to compare commonly used, and recently created metabolic prediction equations using a 

large diverse sample, to determine which predication equations most accurately predict walking 

metabolic rate across the general population. Accurate metabolic rate prediction equations are an 

essential component in developing safe and effective exercise prescriptions and quantifying daily 

PA energy expenditure.  Because exercise prescriptions are used in both athletic and clinical 

populations among participants of varying ages and anthropometrics, prediction equations that 

are developed using large, diverse populations may offer more accurate metabolic predictions 

than those developed using small, homogenous samples.   
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Statement of Problem  

The purpose of this study is to perform an independent validation of a sample of 

prediction equations using walking metabolic data from a large number of adults.  We compared 

the predictive ability of the ACSM (68), Pandolf (52), Weyand et al., (76)  and Browning et al., 

(8) equations using a larger and more diverse set of metabolic data than those used for their 

development. 

Hypotheses 

 We hypothesized the following: 1) The Browning et al., equation would be the most 

accurate predictor of walking metabolic rate across a range of walking speed/grades, ages and 

adiposities.  The best predictor would have the smallest Root Mean Square Error (RMSE) in 

estimating walking metabolic rate.  2) The ACSM prediction equation would be least accurate 

for obese adults.    
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CHAPTER II 

LITERATURE REVIEW 

 

 

 

Physical Activity and the Obesity Pandemic 

The rates of chronic disease have risen rapidly in the United States, with diseases related 

to obesity and lack of physical activity (PA) comprising some of leading causes of death among 

adults in the United States.   Obesity is defined as having a Body Mass Index (BMI) >30 kg/m2, 

and increases the risk for cardiovascular disease, pulmonary disease, acute coronary events (e.g. 

heart attack, stroke), type 2 diabetes, and certain cancers (50).   In 2010, the National Health and 

Nutrition Examination Survey (NHANES) reported an obesity prevalence of 35.5% for men and 

35.8% for women (55), a striking increase from the 1970’s prevalence of 10.4% among men and 

15.1% among women (50).  Of the 15 leading causes of death in 2011, six are related to obesity 

and physical inactivity, including heart disease, the number one cause of adult mortality.  

Obesity is an independent predictor of Coronary Artery Disease (CAD), coronary death, and 

congestive heart failure (CHF) independent of age, cholesterol, blood pressure, smoking status, 

glucose intolerance, and left ventricular hypertrophy (31).   

To combat obesity and its comorbidities, weight loss is prescribed through achievement 

of negative energy balance, in which daily energy expenditure exceeds dietary energy intake.  

Energy expenditure can be achieved through PA, defined as any bodily movement that results in 

an energy expenditure, or by exercise, a type of PA that is structured and repetitive with the 

objective of improving physical fitness (9).  While dietary management is essential for acute 

weight loss, weight management is most successful when individuals engage in substantial 
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amounts of PA combined with reduced energy intake.  The National Weight Control Registry 

(NWCR), one of the largest data sets tracking maintenance of weight loss across a range of 

demographics showed that 90% of their study population gets an average of one hour of exercise 

per day, and that the primary mode of activity among exercisers is walking.  A recently 

published study by the NWCR revealed that physically inactive individuals were more likely to 

experience weight regain compared to active individuals across the decade long observational 

study (67).   Another NWCR study showed that individuals participating in a consistent exercise 

routine were 1.97 times more likely to report maintenance of their weight loss for ≥ 1 year (61).   

While exercise plays an important role in weight management, physical inactivity is an 

independent risk factor for chronic disease regardless of weight status.  The World Health 

Organization (WHO) defines physical inactivity as those failing to meet the current 

recommendations of 150 minutes per week of moderate intensity exercise or 75 minutes 

vigorous intensity (77).  In 2010, WHO reported that physical inactivity is the fourth leading risk 

factor for mortality worldwide, stating that inactivity is responsible for 6% of all deaths (77).  In 

2012, it was reported that physical inactivity was responsible for 6% of the incidence of coronary 

artery disease (CAD), 7% of Type 2 Diabetes, 10% of breast cancer, and 10% of colon cancer 

incidence (38).   If 25% of inactive persons worldwide met the physical activity guidelines, an 

estimated 1.3 million deaths due to chronic, non-communicable diseases worldwide could be 

avoided (38).  In an epidemiological study by Lee et al., the highest prevalence of physical 

inactivity was found among individuals who would eventually suffer from type 2 diabetes, 

followed by those who would die from all cause mortality, and those who developed colon 

cancer, coronary heart disease, and breast cancer (38), meaning that the individuals who could 

benefit the most from increases in physical activity are the ones not getting enough.  The health 
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benefits of physical activity include reduced rates of all cause mortality, heart disease, high blood 

pressure, stroke, metabolic syndrome, type 2 diabetes, breast cancer, colon cancer, depression, 

and falling, while subsequently increasing cardiorespiratory and muscular fitness, promoting a 

healthier body mass, improving bone health, functional health, and cognitive function 

(38)(77)(72).   

 

Clinical Exercise Physiology and PA 

In the clinical environment, structured exercise plays an important role in the recovery 

from acute conditions like surgery and cardiovascular events, and is an important part in reactive 

care for cardiovascular and pulmonary disease.  A study in 2011 reported that the cost of 

cardiovascular disease is expected to triple over the next 20 years, going from $450 billion per 

year in 2010 to more than $1 trillion a year by 2030, supporting the need for effective, low cost 

therapies providing primary and secondary prevention of cardiovascular disease and its acute 

events (19, 73).  Exercise based rehabilitation following a cardiac event aims to assist in the 

physical and psychological recovery of an acute event (1), while reducing the risk of a recurring 

event, and reducing mortality rates by at least 30% (1).  Exercise therapy aims to increase the 

cardiorespiratory fitness of patients, as those with low maximal aerobic capacities are two to five 

times more likely to die following a cardiovascular event (20).  A retrospective analysis of data 

from the Cardiac Wellness Institute of Calgary on 5,641 cardiac rehabilitation patients revealed 

that those at the greatest risk for recurrent event (lowest maximal aerobic capacity) were the 

most likely to benefit from exercise training (43).  Sedentary individuals with a baseline peak 

metabolic equivalent (MET) value of <5 saw a 30% reduction in mortality per MET increase 

form baseline compared to the 22% reduction in mortality across the entire cohort for each MET 



10 

 

increase in aerobic capacity (43).   These results support the importance of physical activity and 

structured exercise for the secondary prevention of cardiovascular events, especially in 

physically inactive populations.   

When working with clinical populations, exercise sessions are often tailored to 

individuals Maximal Oxygen Uptake (measured or predicted) and exercise sessions are 

customized to the needs and abilities of patients and participants.  Here, the calculation of 

exercise intensities (e.g. treadmill speed and grade) based on metabolic rate is important, as this 

prescription is used to promote weight loss while keeping the patient/client at a safe intensity.  

Some professionals will prescribe physical activity in terms of gross weekly energy expenditure 

(EE), as it can be estimated relatively easily and higher energy expenditures are related to risk 

factor modification and the prevention of recurring cardiovascular events.  In a report published 

by the Mayo clinic, a weekly energy expenditure of 1,000 kilocalories (kcals) via leisure time PA 

is necessary to modify risk factors associated with cardiovascular disease and obesity, and 

greater levels of EE are related to reducing the progression of coronary disease, regression of 

coronary lesions, and a decrease in bodyweight/body fat (19).  While calculating predicted 

energy expenditure is an easy to use tool for tracking physical activity and promoting healthy 

behaviors, inaccurate predictions of EE used over time can impede weight loss efforts and inhibit 

changes in risk stratification. As an example, if a normal weight female is prescribed a specific 

energy expenditure to maintain her current weight, and a predicted EE exceeds her physiological 

value, that individual may experience weight gain over time due to the inaccuracy of her 

predicted energy expenditure (28, 30).   This emphasizes the importance of accurate, 

independently validated prediction equations, especially in a clinical exercise environment.   
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Energetics of Level walking 

 Walking is the most common form of physical activity, and the energy consumed during 

walking is a significant portion of daily metabolic energy in humans.  Metabolic rate, or oxygen 

consumption is determined by the rate at which oxygen is transported to the tissues, the oxygen 

carrying capacity of blood, and the amount of oxygen extracted from the blood (4). Oxygen 

consumption is quantified through indirect calorimetry (IC) by measuring the amount of oxygen 

consumption and carbon dioxide production. Energy expenditure is measured in the amount of 

energy consumed given some amount of time (e.g. kcals/min).  The amount of kilocalories 

expended can be calculated from VO2 in absolute terms (l/min) (68), and is often used by 

exercise physiologists working with athletes or with special populations.  

The energy cost of locomotion is a large component of the total energy budget in humans 

(46), as walking typically consumes more metabolic energy per day than any other form of 

physical activity (6).  Passmore and Durnin (1955) determined that walking accounted for 20% 

of weekly energy expenditure in clerk walking nine hours each week, and even greater 

proportions of energy expenditure for more physically active individuals (e.g. coal miner) (53).  

Walking metabolic rate is determined by the velocity of movement and body mass, where as 

velocity increases, the rate of energy expenditure per kilogram of body mass also increases (34).  

The amount of energy consumed per distance traveled, or metabolic cost exhibits a U-shaped 

curve when plotted against walking speed, where metabolic cost is minimized at an individual’s 

optimal walking speed and above and below this speed we see increases in metabolic cost (8, 

80).  Metabolic cost is minimized at an individuals preferred stride length, above which 

individuals have to take more frequent strides, resulting in greater metabolic energy expenditure 

(75).  
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Body mass is also a determinant in the energetics of locomotion, as obese individuals 

expend more absolute energy (kcals) at rest and have a higher metabolic rate than non-obese 

individuals when performing the same activity (3). Mattson, et al., found that obese women 

walked more slowly and at a greater percentage of their VO2max (56% VO2max) than non-obese 

individuals (36% VO2max) and expended more energy due to their excess body mass as well as 

their very low maximal oxygen consumption (45).   An example from Browning and Kram 

describes a 100 kg obese person requiring more than two times the energy to walk a kilometer 

than a 50 kg person (6).  

In normal weight adults, the speed that minimizes metabolic cost across a given distance 

of walking is ~1.4 m/s or ~3 mph, requiring approximately 36% of their relative aerobic capacity 

(8).  Obese individuals expend more gross metabolic energy than normal weight individuals 

given their greater body mass.  Obese individuals have a 35-50% higher absolute metabolic rate 

(VO2 l/min), although a recent study by Browning et al., found that mass specific metabolic rate 

(VO2 ml/kg/min) in obese individuals was less than or equal to their nonobese counterparts (8).  

Some studies show that severely obese individuals tend to walk at a slower preferred speed (45, 

51, 64) which requires a greater percentage of aerobic capacity per kilogram of body mass, given 

their lower aerobic capacity, than their non-obese counterparts (45). The increased energetic cost 

of walking in obese individuals may be due to increased body mass, heavier limbs, decreased 

stability, wider stance, and wider lateral leg swing; while recent results suggest that body mass, 

along with walking speed and grade may be the primary predictors of net metabolic rate (8).  

Given the number of variables that can increase the cost associated with locomotion, and the 

only moderate increase in energy consumption, obese individuals may learn to walk in a way that 

reduces the mechanical work required to move the center of mass (6, 49).  
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Mechanics of Level Walking  

From a mechanical perspective, the determinants of the metabolic cost associated with 

locomotion include the work done on the Center of Mass (COM), the cost of swinging the limbs, 

supporting body weight, and maintaining balance (70, 78).  The work required to change the 

energy of the COM is considered external work (Wext), while internal work (Wint) is the change 

in energy of segments related to the COM.  The sum of these values reveals total mechanical 

work (Wtot= Wext + Wint) (10, 78).    

 

Work Done on the Center of Mass  

An inverted pendulum motion has been used to describe human walking, where the 

body’s COM is raised and lowered cyclically throughout the gait cycle.  On level ground when 

walking at a constant velocity, the COM has no change in energy, meaning that the amount of 

positive work is both equal and opposite to the amount of negative work.  However, as the arc of 

the COM during single limb stance is redirected upward when the contralateral limb contacts the 

ground, work is needed to change the velocity of the COM (15).   During the first half of stance, 

kinetic energy decreases and is converted into gravitational potential energy, with the opposite 

occurring in second half of stance (25).  Because fluctuations in kinetic and potential energy are 

out of phase, the net change in energy (and thus mechanical work done) is relatively small and 

thus walking is metabolically economical (23, 25).  The most economical walking speed occurs 

at the speed where exchanges in kinetic and potential energy are greatest.  At this speed there is 

also an optimal stride rate in which total mechanical power is minimized (57). This walking 

speed and step rate results in the smallest metabolic cost, and as typically occurs at an 

individual’s preferred walking speed (57).  
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Cost of Swinging the Limbs 

 Internal work is calculated by the sum of the absolute changes in the kinetic and potential 

energy of body segments relative to the COM.  Internal work is a linear function of speed and 

stride frequency, where increases in the speed of walking result in a greater stride frequency, and 

thus a greater amount of work needed to accelerate the limbs (48).  

The metabolic cost of level walking vs. stride frequency exhibits a U-shaped curve, with 

the lowest cost per distance occurring at preferred stride rate (69).  This economical movement 

pattern is maximized, as individuals tend to choose walking speeds and stride rates that minimize 

energy required to travel a given distance (80).  Because individuals can walk at different step 

lengths and rates at the same speed, velocity alone is not the only indicator of metabolic cost 

(79).  Walking at the same speed with a forced step rate results in an increased energy 

expenditure (79) when compared to walking at a freely chosen step rate.   

While the inverted pendulum model describes the swing phase in human walking as 

being passive as it acts under the influence of gravity, studies that attach external mass to the 

lower extremity, near the COM, isolate leg swinging, or provide leg swing assistance suggest 

that leg swing may represent 25-33% of the net cost of walking (7, 14, 24, 27, 63).  Umberger, et 

al., found that swinging the limbs accounted for 29% of total metabolic cost during preferred 

stride rates, with much of that cost coming from the active flexor muscles (e.g. iliacus, psoas, 

biceps femoris brevis, and dorsiflexors) in the first half of swing to propel the swing limb 

forward, followed by the active knee and hip extensors in the second half of stance to stop the 

swing limb (69).  
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Supporting Body Mass 

 When metabolic rate is expressed in relative terms (per kilogram of body mass) 

metabolic differences between obese and normal weight individuals are greatly reduced, 

indicating that total body weight is a determinant of the cost of walking.  Net metabolic rate 

(gross-standing) is positively related to percent body fat, where increases in body fat result in as 

much as 50% higher gross metabolic rates than normal weight (3, 5, 17, 21). While the inverted 

pendulum model results in little mechanical work performed during the single stance phase of 

human locomotion, muscular forces must be generated to support the weight of the body as 

lower extremity joints are flexed during stance (26).  These muscle forces incurs a significant 

metabolic cost, ~28% of the net metabolic cost of normal walking (26).   

 At preferred stride rate, 20% below, and 20% above preferred stride rate, single leg 

support represented the greatest proportion of metabolic cost, followed by double limb support 

during fast stride rates, and swing phase during the slowest stride rate.  The costs of double 

support (27%) and swing (29%) are not significantly different when walking at preferred stride 

rate (70).   

 

Maintaining Balance  

 Obese individuals tend to walk with a shorter stride length, and greater step width, a 

strategy that may be necessary in maintaining balance (64).  These gait characteristics result in a 

greater stance time and time in double support, a strategy thought to promote balance and 

minimize metabolic energy, as stance requires less muscular energy than swing (39).   

Spyropoulous et al., found that obese individuals walk with a two-fold larger step width than 

normal weight, which presumably increases the metabolic cost of walking in these individuals 
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(5, 64).  The slower walking speeds and shorter stride lengths associated with obese locomotion 

may also be a factor in balance, and may result in increased metabolic cost (56).  

 

Energetics of Gradient Walking 

 

  Margaria first studied the energetics of uphill walking in 1938, and many studies since 

have investigated the metabolic and mechanical changes associated with gradient walking in 

normal weight individuals.  Margaria found that metabolic cost is minimized at an optimum 

gradient of -10% (negative referring to downhill slopes) with metabolic cost increasing linearly 

with increasing slope (25, 41, 48).   The effects of obesity on the energetics of gradient walking 

are less understood.  In 2008, Lafortuna reported a 6-13% greater relative energy consumption in 

obese individuals walking up moderate inclines (37).  The net metabolic energy (kcal) used by 

obese participants was 2.2-2.3 times greater than in normal weight participants walking at the 

same speed and grade (37).  Variance in body mass explained 82-92% of variance in metabolic 

energy among these subjects, indicating that body mass is a significant predictor of metabolic 

energy used in gradient walking (37).  Among class III obesity (BMI >40 kg/m2) Freyschuss and 

Melcher found a 33% greater mass specific VO2 compared to normal weight adults walking at 

1.0 m/s across inclines of 1-7% (21).  Despite these findings, others have found that mass 

specific net metabolic rate (gross–standing) in obese individuals is equal to, or less than that of 

normal weight individuals (8), suggesting a need for additional studies using large sample sizes, 

a control group, and standardized protocols to further investigate the mass specific metabolic rate 

in obese vs. non obese individuals at a variety of speeds and grades (8).    
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Mechanics of Gradient Walking 

 While much research has been devoted to how animals move across level ground, 

relatively little is known regarding the energetics and mechanics of gradient walking.  As stated 

above, during level walking humans walk using an inverted pendulum or a rolling egg 

mechanism, but an egg does not roll uphill.  In gradient walking, fluctuations in potential energy 

are asymmetrical, while fluctuations in kinetic energy remain similar to level walking (25).  

Potential energy increases during uphill walking as negative work decreases, and positive work 

increases with increasing incline (40).  The opposite occurs in downhill walking, where positive 

work decreases as the energy needed to progress must overcome the forces of gravity and more 

negative work is performed by muscles (40).  As the transient exchange of kinetic and potential 

energy diminishes in gradient walking, there is a concomitant increase in mechanical work, and 

metabolic energy (25).  During hill walking, positive internal work is counterbalanced by an 

equal amount of negative internal work, making Wint an irrelevant component of the mechanical 

determinants of gradient walking (48).  

 

 

Prediction Equations 

 

Designing physical activity interventions for chronic disease and weight management 

often requires accurate determination of metabolic rate or of energy expenditure.   While IC is 

the gold standard for determining both oxygen uptake, the use of IC is expensive and impractical 

across all types of interventions (28, 30, 33).  Because of its impracticality, prediction equations 

have been developed to quickly and easily estimate metabolic rate, and are often used to tailor 

exercise prescriptions to the specific needs of individual clients/patients.  Prediction equations 

are practical and widely used in wellness programming and clinical exercise physiology, 
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although many prediction equations inaccurately predict metabolic rate and energy expenditure.  

The most common prediction equations used include the ACSM equation, and Pandolf 

prediction equations.  

 

ACSM Equation 

 

The ACSM equation is the most commonly used prediction equation for estimating 

metabolic rate during walking, and is used in most cardiovascular centers and sports medicine 

laboratories (33).  Most commercially available exercise treadmills, physical activity monitors, 

and pedometers calculate METS from the ACSM equation, which is often used to estimate daily 

energy expenditure. The 1965 article by Dill is credited for the creation of the ACSM equation 

(13).  In this study, Dill determined the VO2 max of himself and two elite subjects (VO2max of 

46, 76, and 63, respectively) and then calculated their oxygen consumption in terms of body 

weight (kg) and velocity (m/min) (13).  Dill calculated the net oxygen cost of vertical movement 

by subtracting net oxygen consumption for horizontal movement from total oxygen 

consumption, and calculated the rate of vertical movements (m/min) from the product of the 

horizontal speed by grade to the negative second power (13).  The oxygen cost for the vertical 

movement was then determined by dividing the vertical oxygen cost by the rate of the climb.    

Despite analyzing three subjects, Dill used the average vertical cost for a single, elite subject 

(VO2max 76) to estimate vertical cost in other elite athletes (13).  Interestingly, the author 

specifically states that his method of prediction would not be suitable for the normal population, 

as it was created using data from only one, elite subject (13).  Many scientists have compared the 

accuracy of the ACSM prediction equation to measured values, and find it imprecise, especially 

when used in populations other than that in which it was developed. Weyand et al., found that 
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ACSM significantly underpredicted metabolic energy (76), while Browning et al., found that 

ACSM only accounted for 50% of the variance in measured V02/kg (8).  

 

ACSM Walking Metabolic Prediction Equation: 

VO2 (ml/kg/min) = 0.1(S) + 1.8(S)(G%) + 3.5  

S=Speed in m∙min-1, G%=Percent grade as decimal 

 

Pandolf Equation  

The Pandolf equation was created in 1977 in a small cohort of young normal weight men 

(52).   Six fit male subjects walked for 15 minutes for 15 speed and load combinations. Walking 

conditions included an external load of 32, 40, and 50 kilograms for speeds of 0.2, 0.4, 0.6, 0.8, 

and 1.0 m/s (52).  A prediction equation was created by adding the metabolic cost of standing 

without load, to the metabolic cost of standing with load, to the metabolic cost of walking on 

level ground, to the metabolic cost of climbing a grade as related to the type of terrain (52).     

 

Pandolf Walking Metabolic Prediction Equation: 

VO2 (Watts) = 1.5M+2.0(M+L)(L/M)2 + n(M+L) [1.5V2+0.35VG%] 

G%=Percent grade as decimal, V=Velocity in m/s, M=Mass in kg, L= External load 

 

Weyand Equation  

The recently developed equation from Weyand, et al., uses a height-weight-speed model 

for predicting oxygen uptake.  Including children in the data set resulted in a two-fold range in 

statures and the seven-fold range in body mass across all subjects.  Despite this, only four of the 

78 subjects were obese.  This model partitioned gross walking speed into three components: 
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resting metabolism, predicted using the gender, age, and body mass based resting metabolic rate 

(RMR) estimates from Schofield et al., minimum walking metabolism, and speed dependent 

walking metabolism (32).   This three-component model adds VO2 Rest, or RMR, to the bodies’ 

minimum walking metabolic rate, or the oxygen uptake required to support the body and 

maintain posture, to the speed dependent walking metabolic rate.  The authors defined this value 

as an exponential function of velocity, and an inverse function of height given that the speed 

induced increase in walking metabolic rate is greater in shorter vs. taller individuals.  Weyand et 

al., also explains that the total weight supported against gravity (e.g. body weight) has the 

greatest influence of the three basic predictors to create a metabolic prediction equation.  This is 

the only equation analyzed here that did not include a vertical component for gradient walking.   

Weyand Walking Metabolic Prediction Equation: 

VO2 (ml/kg/min) = 2*VO2REST+5.6*V2*Ht-1 

V=Velocity in m/s, Ht=Height in m  

Browning Equation  

The equation by Browning, et al., was recently created using 32 obese and 19 non obese 

participants walking at 11 speed/grade combinations (8).  Speeds ranged from 0.50-1.75 m/s, and 

grades were -3, 0, 3, 6, and 9 degrees (8).  To our knowledge this is the largest and most diverse 

adult population used to create a metabolic prediction equation. To develop a prediction equation 

for mass specific walking metabolic rate, a hierarchical linear regression of treadmill, 

anthropometric, and biomechanical variables were computed. The variables included in the 

prediction equation were, treadmill speed, treadmill grade, subject body mass, and subject age.  

This is the only predictive method analyzed that includes an age component, which was included 

because it was a significant predictor in the hierarchal linear regression model (44).  Browning et 
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al., found that treadmill speed and grade were the primary contributors to the prediction model 

(R2=0.69), and that body mass and age were also significant predictors of oxygen uptake (8).  

Browning Walking Metabolic Prediction Equation: 

VO2 (ml/kg/min)= (1.40 + 0.42(G) + 3.68(V)-0.01(M)-0.03(A))*3 

G=Grade in degrees, V=Velocity in m/s, M=Mass in kg, A=Age in years 
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CHAPTER III 

METHODS AND PROCEDURES 

 

 

  

Participants 

 Four hundred and fifty (N = 450) individuals (286 females) were included in this 

validation and were 18-85 years old (Ave=38 years), with BMI’s ranging from 16.5-44 kg/m2  

(Ave=26.6 kg/m2)(Table 1). Participant demographic, anthropometric, walking speed, grade, and 

oxygen consumption data from laboratories at the University of Colorado Anschutz Medical 

Campus (Dr. Melanson), University of La Réunion (Dr. Peyrot) and Arizona State University 

(Dr. Gaesser) were used in this study. 

 

 

 

 

 

 

 

 

 

 

 

Protocols  

 In each study, steady state oxygen consumption and carbon dioxide production were 

recorded through indirect calorimetry at a range of walking speeds and grades. Walking speeds 

ranged from 0.5-2.0 m/s and percent grade ranged from 0.5-14 (Table 1).  Data from Melanson et 

al., were obtained from 259 subjects of varying ages, and BMI’s, where each subject walked on a 

treadmill for ten minutes at a self-selected “normal” and self-selected “brisk” walking speeds, 

while oxygen consumption was measured via indirect calorimetry (Parvomedics) (47).     

Table 1. Characteristics of data sources 

 Subjects Trials 
BMI* 
≥ 25 

Grade 

Min 

Speed 

(m/s) 

Max  

Speed 

(m/s) 

Median  

Speed 

(m/s) 

Average  

Speed 

(m/s) 

Melanson 
259 

 
518 

140 

(278) 
0% 0.55 2.18 1.41 1.43 

Peyrot 
56 

 
290 

56 

(290) 
0% 0.75 1.5 1.08 1.06 

Gaesser 
135 

 
270 

36 

(72) 
0.5-12% 1.07 1.83 1.38 1.41 

*BMI is listed as number of participants (trials)  
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Data from University of La Réunion (unpublished) in a sample of 56 obese adults 

included five-minute level walking trials at five incremental speeds. Walking speeds included 

0.75 m/s, 1.00 m/s, 1.25 m/s, 1.5 m/s, and preferred speed.  The rates of oxygen consumption 

(VO2, in ml.min-1) and carbon dioxide production (VCO2, in ml.min-1) were measured using a 

breath-by-breath gas exchange analyzer  (Ergostik, Geratherm Medical AG, Geschwenda, 

Germany). For all five-min trials, three minutes were allowed for the subjects to reach steady 

state (no significant increase in VO2 during final two minutes and respiratory exchange ratio 

<1.0) and calculated the average VO2 (milliliters of O2 per second) and VCO2 (milliliters of CO2 

per second) for the final two minutes of each trial.  During each test ventilation and gas exchange 

were measured breath-by-breath with the Oxycon Mobile (Carefusion) for determination of VO2, 

VCO2 and RER.  

Gaesser et al., (unpublished) provided data on 135 women at Arizona State University 

during two 20-min level and gradient treadmill walking trials. VO2 data represents the mean 

oxygen consumption for the last 10 min of the 20-min walks on a motor-driven treadmill 

(Trackmaster) measured breath by breath with the Oxycon Mobile Indirect Calorimeter 

(Carefusion).  The trials took place on the same day, in a climate-controlled lab, with the level 

walk occurring first, and the incline walk approximately 30 minutes later.  For each trial the 

speed was exactly the same, at ~10% below preferred walking speed.  For the incline walk, the 

grade was adjusted to elicit ~60-70% estimated maximal heart rate. 

Prediction Equations 

We used the ACSM, Pandolf, Weyand, and Browning equations (Table 2) to predict 

oxygen consumption in 1,078 walking trials of varying speed and grade (8, 13, 52, 68, 76). 
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The ACSM, Pandolf and Browning equations can be used to predict oxygen consumption 

during uphill walking but the equation developed by Weyand does not include a gradient 

variable. To predict oxygen consumption during gradient walking using the Weyand equation, 

we included a vertical component by assuming that the efficiency of vertical work is 35% (62).  

Mechanical power was estimated as the work done to increase gravitational potential energy 

(W), and was converted to metabolic rate using a conversion of 20.1 Joules per milliliter of 

oxygen. Thus, the vertical metabolic work was estimated using equation 1 and was added to the 

estimated oxygen consumption predicted by the Weyand equation.  

 

VO2 (ml/kg/min) = ([mass (kg)*gravitational acceleration (m/s2)*velocity (m/s)*sin 

G]/0.35)/20.1*60/mass (kg) [1]  

Data Analysis 

 We quantified the difference between measured and predicted oxygen consumption for 

each walking trial and calculated a mean prediction difference (MPD) for all trials. Mean 

prediction differences were also calculated separately for level and uphill treadmill walking in 

normal weight and overweight/obese participants.  To account for both positive and negative 

differences, we also calculated absolute mean prediction difference (|MPD|), as the absolute 

value of the predicted VO2 minus the measured VO2. Root mean square errors (RMSE) were also 

calculated to determine the error associated with each prediction equation. RMSE % Error was 

Table 2. Prediction Equations (ml O2/kg/min): 

ACSM  = 0.1(S) + 1.8(S)(G%) + 3.5 
  Pandolf  = (1.5M+2.0(M+L)(L/M)2 + n(M+L)[1.5V2+0.35VG%])*3/M 

Weyand  = 2*VO2REST+5.6*V2*Ht-1 
Browning  = (1.40 + 0.42(G) + 3.68(V)-0.01(M)-0.03(A))*3 

S=Speed in m∙min-1, G%=Percent grade as decimal, G=Grade in degrees, V=Velocity in m/s, 

M=Mass in kg, A=Age in years, Ht=Height in m L= External load 
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also calculated as the RMSE for a given equation divided by the mean measured VO2 for all 

trials (13.09 ml/kg/min), expressed as a percentage.  

We plotted the prediction error vs. the measured oxygen consumption (modified Bland-

Altman) for all trials as well as for only overweight/obese or non-obese participants and level 

and uphill walking. We used linear regression to determine fixed (y-intercept) and proportional 

bias (slope) for each modified Bland-Altman plot as well as R2 values. Bland Altman plots 

provide an indication of predictive values that over or underestimate when compared to 

measured, with differences below zero indicating an under prediction of oxygen consumption. 

Data analysis was done using Sigma Plot software (Systat Software, San Jose, CA).  P<0.05 

defined statistical significance. 
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CHAPTER IV 

 

RESULTS 

 

 

 

 

 

 

Mean prediction errors and confidence intervals, root mean square errors, fixed bias, 

proportional bias, and R2 for each equation are listed in Table 4-6.  Figures 1-5 illustrate the 

predictive ability of each equation using modified Bland Altman plots for all participants (Figure 

1), as well as for normal weight and overweight/obese participants (Figures 2-5).  For Level 

Walking, all MPD were statistically different from zero (P ≤ 0.05) except for the Browning et al., 

equation for normal weight individuals and the Pandolf equation for overweight and obese 

individuals (Table 5).  In addition, all prediction equations demonstrated significant (P ≤ 0.05) 

fixed and proportional bias (Table 4-6).  All prediction equations demonstrated large absolute 

MPE and RMSE that were generally similar across predictive models.  All prediction equations 

had greater errors as measured walking metabolic rate values increased.  

  

Table 4. Prediction accuracy of metabolic rate predictions during walking using data from all trials 

(all participants and walking speed/grades).  

(Trials = 1,078) 

Mean VO2= 13.09 ml/kg/min 

 

 Mean Prediction 

Difference (MPD) 

|MPD| RMSE RMSE %  Y-Intercept Slope R2 

ACSM -1.46* (0.11) 2.06 2.63 20.1% 3.23* -0.34* 0.46 

Pandolf -0.50* (0.16) 1.44 1.93 14.7% 1.69* -0.16* 0.14 

Weyand -0.50* (0.14) 1.84 2.37 18.1% 0.11* -0.04* 0.01 

Browning -0.16* (0.16) 1.96 2.58 19.7% 2.07* -0.16* 0.08 

 

MPD are shown as mean (confidence interval) 

*P ≤ 0.05 are significantly different than zero 
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Table 5.  

Prediction accuracy of metabolic rate predictions during walking using data from level walking trials. 

 Normal Weight Participants (Trials = 333) 

Mean VO2 = 14.29 ml/kg/min 

 Overweight and Obese Participants (Trials = 604) 

Mean VO2 = 11.81 ml/kg/min 

 Mean 

Prediction 

Error 

|MPE| RMSE % 

RMSE 

Y-

Intercept 

Slope R2  Mean 

Prediction 

Error 

|MPE| RMSE % 

RMSE 

Y-

Intercept 

Slope R2 

ACSM -2.48* (0.21) 1.37 3.12 21.8% 6.38 -0.62 0.76 ACSM -0.86* 

 (0.18) 

1.74 2.37 20.1% 6.03 -0.58 0.82 

Pandolf -0.98* (0.21) 1.58 2.14 14.9% 1.41 -0.17 0.06 Pandolf -0.06  

(0.14) 

1.35 1.82 15.4% 2.16 -0.19 0.13 

Weyand -0.94* (0.22) 1.68 2.23 15.6% 4.88 -0.41 0.29 Weyand -0.82* (0.17) 1.72 2.29 19.4% 4.29 -0.43 0.48 

Browning -0.15  

(0.27) 

1.74 2.50 17.5% 4.49 -0.32 0.12 Browning -0.31*  

(0.22) 

2.18 2.78 23.5% 4.76 -0.43 0.29 

 

 

 

Table 6.  

Prediction accuracy of metabolic rate predictions during walking using data from gradient walking trials. 

 Normal Weight Participants (Trials = 97) 

Mean VO2 = 22.30 ml/kg/min 

 Overweight and Obese Participants (Trials = 36) 

Mean VO2 = 18.34 ml/kg/min 

 Mean 

Prediction 

Error 

|MPE| RMSE % 

RMSE 

Y-

Intercept 

Slope R2  Mean 

Prediction 

Error 

|MPE| RMSE % 

RMSE 

Y-

Intercept 

Slope R2 

ACSM -1.92* (0.23) 2.32 2.52 11.3% 0.43 -0.11 0.05 ACSM -1.67* (0.29) 1.50 1.95 20.7% 0.79 -0.09 0.03 

Pandolf -1.50* (0.31) 1.93 2.15 9.7% -0.81 -0.11 0.06 Pandolf -0.65* (0.49) 1.19 1.56 8.5% -0.26 -0.02 0.01 

Weyand 2.24* (0.30) 2.77 3.09 13.8% -3.04 0.24 0.16 Weyand 2.06* (0.38) 2.25 2.82 15.4% -3.75 0.29 0.14 

Browning 0.45* (0.24) 1.45 1.73 7.8% 4.39 -0.18 0.15 Browning 0.49* (0.29) 1.34 1.70 9.3% 2.63 -0.11 0.04 

 

 

* P ≤ 0.05 are significantly different than zero   

 

* P ≤ 0.05 are significantly different than zero   
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Figure 1. Comparison of mean prediction difference and measured oxygen consumption across all subjects and all walking conditions for the ACSM, Pandolf, Weyand, and Browning Prediction 

equation using the modified Bland Altman Technique.  Open diamonds represent a single walking trial, and the solid line is the linear regression for each equation.  
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Weyand et al.  
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Browning et al. 
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Figure 2. Comparison of mean prediction difference and measured oxygen consumption for normal weight participants walking at 0% grade for the ACSM, Pandolf, Weyand, and Browning 

Prediction equation using the modified Bland Altman Technique.  Open diamonds represent a single walking trial, and the solid line is the linear regression for each equation. 
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Weyand et al.
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Browning et al. 
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Figure 3. Comparison of mean prediction difference and measured oxygen consumption for overweight and obese participants walking at 0% grade for the ACSM, Pandolf, Weyand, and 

Browning Prediction equation using the modified Bland Altman Technique.  Open diamonds represent a single walking trial, and the solid line is the linear regression for each equation. 
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Weyand et al.
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Browning et al. 
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Figure 4. Comparison of mean prediction difference and measured oxygen consumption for normal weight participants walking at uphill for the ACSM, Pandolf, Weyand, and Browning Prediction 

equation using the modified Bland Altman Technique.  Open diamonds represent a single walking trial, and the solid line is the linear regression for each equation. 
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Weyand et al. 
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Browning et al.
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Figure 5. Comparison of mean prediction difference and measured oxygen consumption for overweight and obese participants walking uphill for the ACSM, Pandolf, Weyand, and Browning 

Prediction equation using the modified Bland Altman Technique.  Open diamonds represent a single walking trial, and the solid line is the linear regression for each equation. 
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CHAPTER V 

 

DISCUSSION 

 

 

 

 

The prediction equations evaluated in this study have mean prediction errors that are, 

with only two exceptions, significantly different than zero.  In addition, all root mean square 

errors were relatively large, and homogeneous regardless of the model. Based on our results, we 

reject our hypothesis that the Browning et al., equation would best predict oxygen uptake in a 

large, diverse sample.  Our results suggests that there are other variables/models not accounted 

for in common equations that may better predict oxygen consumption, or that the variability 

between subjects cannot be accounted for using a population based metabolic prediction 

equation.  We also reject our hypothesis that the ACSM equation would be least accurate for 

obese adults.   All metabolic equations predicted oxygen uptake with a RMSE of 7.8-23.5%, 

which is surprising given the vast differences in the populations in which each equation was 

created and validated.   This suggests that the predictive ability of these metabolic equations are 

insensitive to the population in which they were created, and that individual variability makes it 

difficult to accurately predict walking metabolic rate, particularly at faster walking speeds.   

The ACSM equation is the metabolic prediction equation most often used by exercise 

specialists, although the origin of the equation is difficult to determine.  To our knowledge, the 

ACSM equation was developed by Dill in 1965 using a single, elite athlete (13).  Many have 

described the ACSM prediction equation as being inaccurate, raising concern about its accuracy 

given its extensive use by exercise physiologists (28).  Browning et al., found that the ACSM 

equation only accounted for 50% of the variance in mass-specific oxygen consumption in their 

data set, where the Browning equation accounted for 77% of the variance in mass specific 
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walking metabolic rate  (8).  Weyand et al., found that the ACSM walking equation 

underpredicted the metabolic rate of shorter subjects, resulting in predictive errors twice as large 

as those of their equation (76). Others have compared the predictive ability of the ACSM 

equation in a population of athletes and found that it predicts metabolic rate better than others 

(e.g. Pandolf), which is not surprising given that the equation was being implemented in a similar 

population to that in which it was created (28, 34).  When the ACSM equation is extrapolated to 

this data set, RMSE was 20.1% of measured metabolic rate, and the RMSE was consistent with 

the other predictive equations (30, 76). Despite the similarities in RMSE, the ACSM equation 

had the highest R2 value in level walking, indicating that the predicted values were more 

clustered along the regression line.  Despite the high R2 values, the ACSM equation also has the 

highest proportional bias (slope), meaning that the ACSM equation most poorly predicts oxygen 

consumption when measured oxygen consumption is large (e.g. at faster walking speeds).  As 

walking metabolic rate increases, predicted oxygen consumption decreases, meaning that the 

predicted energy expenditure is smaller than actual energy expenditure.  This means that 

individuals seeking weight loss will have physiologically greater energy expenditure than what 

they had predicted, which may unintentionally place them at an even greater negative energy 

balance, thus promoting weight loss.  Given the high R2, and similar RMSE, it is possible that a 

correction factor can be applied to the ACSM metabolic prediction equation to correct for the 

proportional bias, resulting in a more accurate predictive method.  Future studies should attempt 

to find a correction factor for the ACSM equation that would correct the errors in proportional 

bias, creating a smaller slope and reducing RMSE values.   

The Pandolf equation was the best predictor of metabolic rate in obese individuals during 

level walking based on its low mean prediction error, yet the RMSE was similar to the other 
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prediction equations. Because the Pandolf equation was created using external load carriage, this 

suggests that walking with external load may by similar to walking with excess adiposity, as is 

the case with obese individuals. Others have found that load carriage results in decreased step 

length and increased step width, characteristics also associated with obese individuals walking 

(36).  It is possible that the inclusion of external load carriage in the development of the Pandolf 

metabolic prediction equation better allows for the prediction of walking metabolic rate in obese 

individuals.  Despite being a good predictor of metabolic rate of obese individuals during level 

walking, the Pandolf equation significantly underestimated oxygen uptake during in obese 

participants walking uphill, suggesting that an equation developed using load carriage did not 

wholly account for metabolic differences in obese locomotion.   

The recently developed equation by Weyand, et al., utilized a height-weight-speed model 

for predicting oxygen uptake using a group of children and adults to maximize differences in 

height and weight.  Despite the two-fold range in statures and the seven-fold range in body mass, 

only four of the 78 subjects used to develop their equation were obese.  The wide range in 

heights and weights primarily came from the inclusion of children in their subject population.  

To our knowledge, children have not been included in the creation or validation of any other 

metabolic prediction equation.  Because of the vast differences in leg length, the Weyand 

equation claims that height is a crucial part of any metabolic prediction equation.  Of the 

equations tested here, the equation by Weyand et al., is the only predictive method that includes 

height as an independent variable.  The authors incorporated height because the speed induced 

increase in walking metabolic rate is dependent on stature, where an individual with shorter leg 

length would walk with shorter steps than a taller person at a given speed, resulting in a higher 

energy expenditure (75, 76).  Despite being the only method to include stature as a predictive 
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variable, the RMSE associated with the Weyand equation suggests that it is not representative of 

a one size fit all equation for predicting oxygen uptake during walking. In a population of adults 

where there is not as large of a difference in statures, height is likely not a significant predictor of 

walking metabolic rate.  No other prediction equation included height as a variable, and the 

amount of prediction error was similar across equations.  Furthermore, when Browning et al., 

utilized a stepwise linear regression to determine which variables were predictive of walking 

metabolic rate, height was not a significant predictor in the model.  

The Weyand et al., equation did not initially include a gradient component, which 

significantly limits its ability to be used in field or clinical settings.   To compare the Weyand et 

al., equation with others during uphill walking, we added a gradient component to the predictive 

model.  We computed the cost of vertical metabolic work given that mechanical work is the 

work done to increase gravitation potential energy, converting this value from watts to ml/kg/min 

and adding it to the existing height, weight, speed model.  The Weyand equation poorly 

predicted oxygen uptake in gradient walking, not surprising considering no graded trials were 

used in the development of the equation, and the inherent limitations of our gradient variable.  

Future work should be dedicated to creating and testing a vertical component for the Weyand 

equation to better account for gradient walking.    

The equation by Browning, et al., was created using 32 obese and 19 nonobese 

participants walking at 11 speed/grade combinations (8). To our knowledge, this is the largest 

and most diverse adult population used to create a metabolic prediction equation.  Because of 

this, we expected the Browning equation to predict oxygen consumption significantly better than 

other equations across walking speeds, grades, and adiposities. While the Browning equation did 

result in a mean prediction error that was not significantly different than zero (i.e. it was not 
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different from measured metabolic rate) during level walking in normal weight adults, the 

equation had an RMSE that was similar to other equations.  Given that mean VO2 was 13.09 

ml/kg/min for all participants in all walking trials, and the RMSE was 2.50, the Browning et al., 

equation resulted in 17.5% error compared to measured.  

The results from this study indicate that there may be other variables more predictive of 

oxygen consumption that are not captured in these popular predictive methods.  Other predictive 

methods have used mechanical variables to predict oxygen consumption.  In 2011, Kramer et al., 

compared the ACSM walking equation with mechanical equations based on force production, 

ground reaction forces (GRF), segment lengths, the motion of the sacrum, internal work, and 

external work (34).  Kramer found that while all methods were good at predicting within subject 

variation, few methods explained between subject variations.  The addition of a subject specific 

variable (e.g. sex, height, weight, segment length) increased predictive abilities by 52-83% (34).  

The predictive abilities of all equations improved with the addition of either crural index (the 

ratio of the length of the lower leg compared to the thigh) or body mass (34). While body mass is 

a significant predictor of energy expenditure in humans, gait characteristics may explain why 

equations are not universally applicable across populations (76).  Mechanical variables like 

crural index or step length are not quickly and easily assessed, which may prevent exercise 

specialists from using such formulas when creating exercise prescriptions.  Furthermore, these 

variables would not be usable in the epidemiology community should scientists choose to 

compare population based oxygen uptake in large data sets of limited anthropometric 

characteristics.  

There is a need for new metabolic prediction equations developed with easy to measure 

variables that result in the relatively small RMSE values (<10%).  It is possible that certain 
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variables (e.g. sex, weight, segment length), or combinations of those variables would better 

predict oxygen consumption in some populations compared to others, and the possibility of 

population specific metabolic prediction equations should be pursued.  In this case, exercise 

specialists could select the predictive method that is best suited to their patient or client based on 

age, sex, or adiposity, to create the most precise exercise prescriptions.  All predictive methods 

exhibit a negative slope when prediction error is plotted vs. measured oxygen consumption.  The 

negative slope indicates that as measured oxygen consumption increases (i.e. the speed increases 

for level walking) metabolic equations further underestimate walking metabolic rate.  Because 

greater measured VO2 is associated with greater prediction error regardless of the predictive 

method, it is possible that a better approach would be to create equations based on exercise 

intensity (e.g. speed and grade in the case of walking).  It may be that different equations for 

slow walking, vs. fast walking, as well as level vs. gradient walking may result in better 

predictive abilities. During typical walking speeds (e.g. 1.15 m/s), most metabolic prediction 

equations estimate walking metabolic rate with greater accuracy, given that zero MPD occurs at 

approximately 12 ml/kg/min. Walking is an economical mode of transportation below 

approximately 4 mph (1.75 m/s), above this speed running has a smaller metabolic rate than 

walking. This suggests that 1.75 m/s may be the upper limit for estimating walking metabolic 

rate, as evidence by the negative slopes of the Bland Altman plots.   

Metabolic prediction equations that underestimate walking metabolic rate will result in 

estimates of EE that are lower than the actual EE.  If measured oxygen consumption in a 100 kg 

individual is 15 ml/kg/min (1.5 l/min), and the ACSM prediction equation under predicts by 

20%, the predicted walking metabolic rate would be 12 ml/kg/min (1.2 l/min). Given that there 

are approximately five kcals expended per liter of oxygen consumed, the energy expenditure for 



39 

 

a 45-minute bout of steady state exercise would be 338 kcals at 1.5 l/min, and 270 kcals at 1.2 

l/min. This difference in predicted vs. measured energy expenditure may be beneficial for weight 

loss participants closely monitoring their energy expenditure and energy intake.  If physiological 

energy expenditure is greater than predicted, individuals may find themselves in an even greater 

negative energy expenditure, which may promote greater or faster weight loss.   

All prediction equations resulted in 17-20% error compared to measured VO2.  After 

more than a century of work and hundreds of studies investigating the walking energetics of 

humans and other species, one could conclude that the metabolic energy required to walk is too 

complex to be predict using simple and/or easy to measure variables (15, 35, 59, 76).  Metabolic 

prediction equations may be able to account for individual variation (e.g. changes with speed and 

grade), but are unable to account for between-subject variation. This does not mean that 

predictive methods should not be used, but rather that exercise specialists should accept that this 

error exists, and offer more flexibility in their exercise prescriptions.  This may be particularly 

difficult in the clinical environment as prescriptions (e.g. walking speed and grade) are 

specifically tailored to a given percentage of VO2 Max.  Exercise professionals should rely on 

multiple tools in exercise prescription, such as Rating of Perceived Exertion (RPE) and heart rate 

to ensure that patients and clients are exercising at an optimal range while upholding their 

cardiorespiratory safety.  Additionally, exercise specialists could adjust estimated VO2 given the 

errors associated with each equation. Adjusting for the fixed and proportional biases in metabolic 

prediction equations would reduce some of the error associated with prediction equations, 

resulting in a more accurate prediction.  To eliminate the effects of mass, models that predict 

absolute VO2 (l/min) may result in lower errors than those in relative terms (ml/kg/min). Other 

methods for reducing the effects of mass on predictive methods may include allometric scaling, 
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based on Kliebers’s Law, where an animal’s metabolic rate scales to the ¾ power of the animals 

mass (74). By scaling mass to the 0.75 power in metabolic prediction equations we may be able 

to eliminate the effects of mass on prediction error, resulting in walking metabolic predictions 

that are closer to measured values.   

 

Limitations  

This work only discusses metabolic prediction equations for level and gradient walking.  

While walking is the most common form of physical activity, this work does not reflect other 

forms of physical activity or structured exercise.  Future studies are needed to independently 

validate metabolic prediction equations other common activities such as cycling, running, 

stepping, and rowing.  As suggested for walking, all metabolic prediction equations should 

explore the variables and/or conditions that result in the lowest RMSE values, indicating that the 

predicted value is not significantly different than measured oxygen uptake.  

There are limitations associated with the gradient component of the Weyand equation, as 

this uphill walking equation was not experimentally derived or tested on an independent sample.  

Because walking is a common form of physical activity and structured exercise, efforts should be 

made to create a gradient equation based on Weyand’s height weight, speed model.   

A final limitation of this work includes any differences in the equipment used to measure 

walking metabolic rate in the three different data sets.  Others have looked at the validity within 

as well as between indirect calorimeters, and found no statistically significant differences 

between devices (2).  Differences between indirect calorimetry devices were no larger than 

differences within a single device, including handheld calorimeters (2, 65, 71).  However, when 

calorimeters are compared in populations of older adults and obese individuals, there is more 
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error between equipment (16, 18).  Given that this data was developed in three different sites, 

and compared using a diverse data set, it may limit our results.     

 

Conclusion  

All metabolic prediction equations are associated with an inherent amount of error when 

compared to measured values, regardless of the population in which the equation is created 

and/or validated.  Future studies should explore new equations that aim to minimize RMSE, 

which may mean creating multiple equations based on subject population or exercise intensity.  
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