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Abstract- Reduced rank linear predictive frequency and
direction-of-arrival (DOA) estimation algorithms use the
singular value decomposition (SVD) to produce a noise-cleaned
linear prediction vector. These algorithms then root this vector
to obtain a subset of roots, whose angles contain the desired
frequency or DOA information. The roots closest to the unit
circle are deemed to be the "signal roots." The rest of the
roots are "extraneous." The extraneous roots are expensive to
calculate. Further, a search must be done to discern the signal
roots from the extraneous roots. Here, we present a reduced
polynomial order linear prediction method that simplifies
the rooting computation for applications where high-speed
processing is critical.

I. INTRODUCTION

T HE Prony method roots a linear prediction (LP) polyno­
mial to find the parameters of an exponential data model

[1]. While nonlinear least squares or maximum likelihood are
the off-line exponential model parameter estimators of choice,
Prony's method has found widespread use in signal processing
due to its computational efficiency and its suitability to real­
time implementation. The Prony method has the drawback that
errors in the linear prediction vector can propagate dramati­
cally to errors in the root locations. In the past, reduced rank
Prony estimators have been proposed to increase performance.
These estimators include reduced rank least squares (LS) linear
prediction [2], the minimum norm method [3], the total least
(TLS) squares method [4], some constrained TLS approaches
[5], and others. For LP-based frequency or DOA estimation, it
is generally agreed that reduced rank TLS outperforms reduced
rank LS. Further, the minimum norm method is equivalent to
the reduced rank TLS method [6]. Therefore, this letter focuses
on minimum norm, i.e., reduced rank TLS based estimators.

One drawback to reduced rank linear prediction is the need
to root an oversized polynomial and to then extract the signal
roots from the extraneous roots. For example, suppose r = 2
signal directions are to be estimated from an m = 50 linearly
equally spaced (LES) sensor array. After the prediction-error
vector is computed, an order 50 polynomial must be rooted,
and then, a search must be performed to find the r = 2 roots
closest to the unit circle out of the set of 50 computed roots.
Here, we propose a reduced rank linear prediction method that
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only requires an order r polynomial to be rooted. The r roots
of this polynomial are the desired signal roots.

It is important to note that matrix pencil-oriented DOA
estimators have been designed to eliminate extraneous roots
[7]-[10]. Those schemes perform an SVD, then another SVD,
and produce an unsymmetric eigenproblem whose r eigen­
values are the desired r roots. The proposed method is
similar in that two SVD's are required, followed by an order
r polynomial rooting. Therefore, this note brings about a
polynomial order reduction for the linear prediction techniques
similar to those available in the pencil methods. This is
especially important in reducing the rooting computation in
subspace-based frequency and DOA tracking problems [11].

The rest of this letter is organized as follows. In Section
II, we present the data model used throughout. This data
model will assume spatial sensor data; however, a similar
discussion could be given in terms of an exponential time
series model. In Section III, we introduce the root-basis for
the noise subspace. In Section IV, we derive the reduced
rank and polynomial order linear predictive DOA estimator.
In Section V, we analyze performance, and in Section VI, we
offer conclusions.

II. THE DATA MODEL

Assume that r monochomatic plane waves propagating from
different directions impinge on an LES array of m sensors
located in the same plane as the sources. The array output
snapshot vectors can be modeled as

x(k) = As(k) + n(k) (1)

where A = [a(ed I ... la(er)]rnxr is a matrix of linearly
independent source direction vectors, s(k) = ejwk[sl(k), ... ,
s; (k) jT is the r x 1 signal modulation vector whose elements
may be complex random variables, w is the temporal frequency
of the propagating narrow-band plane waves, and the elements
of the noise vector n(k) = [nl(k), ... ,nm(k)jT consist of
zero mean, white, complex Gaussian noise with variance a 2

•

In addition, assume that the signal and noise are uncorrelated
with each other. The direction vectors are defined by the
array manifold a(e) = [1,ej8,ej 28, ... , ej(rn-l)8]T, where
e = x d sin ¢, and ¢ is the DOA measured. with respect to
broadside. Here, e is the so-called "electrical" angle, and d is
the sensor spacing in units of half wavelengths. With this data
model, the correlation matrix takes the form

R = E[x(k)xH(k)] = APAH + a~I (2)

where P = E[s(k)sH(k)] is the r x r signal correlation
matrix, and E[ . ] is the expectation operator. If we also assume
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where we use the Matlab style colon notation, that is v{l(i :
r + i) is the subvectorof v{l starting at the ith element and
going to the (r + i)th element. Next, form the matrix

and solve the TLS problem

Fig. 1. Estimation mean square error (MSE) of two very closely spaced
signals with 0.481r & 0.51r normalized electrical angles as a function of SNR.
Each point on the plot corresponds to a 500 point Monte Carlo simulation
with 400 points of data per run.

This is an overdetermined system of rm - r 2 equations with r
unknowns. Note that the matrix V, is "noise cleaned" due to
the fact that its columns are orthogonal to the noise subspace.
We can rearrange (8) into the standard TLS form by defining
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where a* is a vector whose elements, after scaling by its first
element a(j are the complex conjugates of the filter coefficients
given in (4). The TLS solution to this problem is the right
singular vector of I' corresponding to the minimum singular
value, normalized by its first component. Note that I' is "tall
and skinny" so that when we reduce I' to triangular form
via Householder transformations, we are left with a simple
(r+1) x (r+1) SVD. In addition, since only the right singular
vectors are needed, the U matrix of the SVD need not be
accumulated. The final step is to compute the r roots of a (z).
The phase angles of these roots are the electrical angles of
the signals. Hence, the O(m2 ) rooting operation is replaced
with an o(mr3 ) Householder triangularization, an O( (r + 1)3)
SVD, and an O(r2 ) reduced order rooting operation. Savings
are significant provided r 3 << m.
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or, in compact matrix notation

A HN = Om-rxm-r'

IV. REDUCED RANK AND POLYNOMIAL

ORDER LINEAR PREDICTION

Start with (7) and note that Vs = AT, where T E pxr is
some nonsingular transformation. Thus, we have V~N = 0,
or

III. THE ROOT-BASIS FOR THE NOISE SUBSPACE

Let a(z) be the transfer function of a complex FIR filter
given by

We can think of this filter as a spatial frequency filter. Here,
the z-l terms represent a spatial shift operator of one sensor.
We construct a(z) so that its roots are the signal frequencies,
that is

that P is full rank, the eigendecomposition of R can be
partitioned as

R = rv, v, [~s (J~I:_r] iv, Vn]H (3)
where V s spans the signal subspace (Range(A)), and V n

spans the noise subspace. In the algorithm we develop, we
will never need to form the correlation matrix.

a(z)lzE{ejOl, ... ,ejOr} = O. (5)

With this construction, the filter produces a zero output when­
ever it is swept across the signal vectors. That is [5], [12]

1

1

Here, N E cmx(m-r) is the Toeplitz matrix of filter coeffi­
cients as given in (6). Note that by construction, the columns
of N are linearly independent since its staggered structure
prevents any linear combination of columns from annihilating
any other. In addition, from (6), we can see that the m - r
columns of N are orthogonal to the Range(A), which is the
signal subspace. Hence, the columns of N form a basis for the
orthogonal complement of the signal subspace, i.e., they form
a basis for the noise subspace. Because this basis is constructed
from shifted polynomials whose roots are the signal roots, we
call this the root-basis for the noise subspace.
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electrical angle of second source

Fig. 2. Estimation mean square error (MSE) of two signals at 20 dB SNR
when one signal has a fixed electrical angle of .511", and the second signal's
electrical angle varies from 0.411" to 0.511" in steps of 0.00511" as a function
of SNR. Each point on the plot corresponds to a 500 point Monte Carlo
simulation with 400 points of data per run.

VI. CONCLUSION

In this letter, a reduced rank and reduced polynomial order
linear predictive DOA estimator is proposed. The method
greatly outperforms full rank (lowest polynomial order) TLS
linear prediction. The proposed method gives up some perc
formance relative to the large polynomial approach but has
comparable accuracy and resolution and can be computed in
O(mr + r3 ) time as opposed to O(m2 ) or greater time for
the full polynomial rooting. Hence, in real-time applications,
where r3m, the reduced rank and polynomial order approach
provides accurate results at greatly reduced computation. The
approach is currently being studied in the context of subspace­
based DOA and frequency tracking.

the more expensive RR-HO-TLS. Again, both reduced rank
methods significantly outperform the FR-LO-TLS. Note that
the source separation in the simulation of Fig. 1 corresponds
to the 0.487f point on the curve of Fig. 2. As we begin to
separate the sources, the RR-RO-TLS and RR-HO-TLS MSE
versus SNR curves merge together.
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