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Abstract—In this paper, new pre- and post-processing schemes
are developed to process shallow-water sonar data to improve the
accuracy of target detection. A multichannel subband adaptive
filtering is applied to preprocess the data in order to isolate the
potential target returns from the acoustic backscattered signals
and improve the signal-to-reverberation ratio. This is done by
estimating the time delays associated with the reflections in dif-
ferent subbands. The preprocessed results are then beamformed
to generate an image for each ping of the sonar. The testing results
on both the simulated and real data revealed the efficiency of this
scheme in time-delay estimation and its capability in removing
most of the competing reverberations and noise. To improve
detection rate while significantly minimizing the incident of false
detections, a high-order correlation (HOC) method for postpro-
cessing the beamformed images is then developed. This method
determines the consistency in occurrence of the target returns in
several consecutive pings. The application of the HOC process to
the real beamformed sonar data showed the ability of this method
for removing the clutter and at the same time boosting the target
returns in several consecutive pings. The algorithm is simple, fast,
and easy to implement.

Index Terms—Adaptive filtering, high-order correlation, sonar,
target detection, wavelet transform.

I. INTRODUCTION

SEA mine hunting and detection pose notoriously chal-
lenging problems due to the vastness of the ocean, small

sizes of the mines, the acoustically reverberant environment,
and the frequent occurrence of biologics or magnetic clutter.
It is easy to lay a minefield but very dangerous, costly, and
time consuming to localize and clear it. Considerable attention
has recently been focused on this area and various signal
processing schemes have been developed to aid in the detection
of underwater mines [1]–[3]. The research efforts have pri-
marily been concentrated on three major topics: preprocessing,
beamforming and postprocessing.

Preprocessingis applied to the acoustic backscattered signals
to get rid of most of the clutter and reverberation effects and thus
improve the signal-to-noise ratio (SNR). The most commonly
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used preprocessing method ismatched filtering[4], [5] which
gives the maximum likelihood (ML) [4] estimate of the signal
amplitude and the arrival time. However, in sonar applications,
the assumption of a deterministic signal is rarely valid. Due
to the strong reverberation effects and the characteristics of
the medium, the received signal generally contains distorted,
delayed, amplitude weighted, and overlapped replicas of the
transmitted or incident signal. In [4], in order to overcome
the degradation of the classical matched filter in the presence
of overlapped signals, an inverse filter is used to improve the
resolution of the time-delay estimation. The price paid for
this high resolution is a reduction of SNR. Moreover, careful
design is needed to avoid the instability of the inverse filter. In
[6] and [7], algorithms were developed to perform multipath
time-delay estimation. In [6], to deal with a long received
signal and a short transmitted signal, the long data record was
broken into overlapped short segments and each segment was
modeled individually without misfitting or truncating any path
at the end of each segment. The estimates in each segment
were then combined to model the entire data record. In [7], a
least-square (LS)-based algorithm was developed to estimate
the arrival time of the overlapping acoustic signals that consist
of attenuated and delayed replicas of a known transmitted
signal. To avoid minimization of a highly oscillatory error
function, complex amplitude was allowed which resulted in
a much smoother error function that was easier to minimize
using the gradient-based schemes. In [8]–[12], various kinds
of adaptive filtering approaches were developed to jointly
estimate the time delays and filter weights. Instead of modeling
the received acoustic signal as the sum of delayed and atten-
uated incident signals as in [6] and [7], a more general model
allowing frequency attenuation in the delay path was used.
Various higher order statistics-based algorithms [13]–[16] were
also developed for time-delay estimation and signal detection.
In [5] and [13], different schemes combining matched filter
and higher order statistics were proposed in order to come up
with a detection scheme that is tolerant to signal shift and deals
with the additive noise with unknown spectral characteristics.
These schemes construct a hypothesis using the zeroth lag of
the higher order correlations of the matched filter output. The
signals can be either deterministic or random non-Gaussian,
and the noise is assumed to be zero-mean Gaussian with an
unknown covariance sequence. In many underwater acoustic
applications, an estimate of the power spectral density (PSD)
of the received backscattered data is often employed for signal
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detection. PSD is essentially a sum of the estimates of the
second-order moments for each frequency component in the
frequency domain. Higher order spectra contain information
not present in the PSD, especially in detecting non-Gaussian
and nonlinear transient signals. Frequency domainKurtosis
estimation andBispectral analysis were used in [15] and
[16] as aids in detecting randomly occurring signals. Several
wavelet-based algorithms [17]–[21] were also developed to
perform linear system modeling, adaptive filtering, signal
detection, and time-delay estimation for underwater target
detection. In [18], wavelet transform was used in an adaptive
filtering structure and the coefficients of the adaptive filter
were updated by the least mean squares (LMS) algorithm. In
[20], a wavelet transform-based cross-correlation method was
proposed for time-delay estimation in pulsed wave ultrasound.
The scheme has a unique feature of using varying time–fre-
quency windows in processing compared with the conventional
windowed cross-correlation method where a fixed size window
is used. The wavelet shrinkage method [21] was also used to
denoisethe noisy acoustic backscattered signal and greatly
improve the SNR. The underlying assumption is that the noise
contributes to most of the wavelet coefficients while the signal
contributes to only a few coefficients. Therefore, by setting the
smaller coefficients to zero, in a statistically guided manner,
noise can be optimally eliminated while preserving the signal.

In postprocessing, the beamformed output is further pro-
cessed to find additional clues for distinguishing targets from
the background noise/clutter. It will alleviate the burden of
sonar operator, help to provide a high target detection rate,
and reduce the incident of false reports. In [22], statistical
measures, i.e.,mean, standard deviation, skewness,and
kurtosis were calculated from the digitized beamformed
sonar data. The combination of these statistical measures
provides an additional clue about the presence of a target
versus background. In [23], several methods including energy
detector, sliding matched filter, skewness matched filter, and
dispersion-based reconditioning were applied to the Toriodal
Volume Search Sonar (TVSS) beamformer output in order
to increase the signal-to-reverberation ratio (SRR). It was
reported that, while the skewness matched filter offers some
improvements, the dispersion-based reconditioning provides
considerable improvement. However, the common drawback of
the abovepostprocessingschemes is that the spatial-temporal
correlational information of the target in several consecutive
pings of the sonar is neglected.

In this paper, a preprocessing scheme based onmultichannel
subband adaptive filteringand a postprocessing scheme based
on thehigh-order correlation(HOC) method [24], [25] was pro-
posed to improve the SRR before and after the beamforming
process. Both schemes were designed to overcome the short-
comings of the existing methods while combining their advan-
tages.

II. TIME-DELAY ESTIMATION USING MULTICHANNEL

SUBBAND ADAPTIVE FILTERING

In the shallow-water environment, strong reflections caused
by the bottom and surface of the sea and those of biologics in

the water column present dominant reverberation effects. Thus,
the primary challenge is to process the data and detect targets
in such a highly reverberant environment. This may be done
by processing each sonar channel separately and estimating the
time delays associated with the reflections and then isolating
them from the background noise prior to beamforming. The
subband adaptive filtering scheme has been applied [11] to the
problem of underwater target detection. Time delays are esti-
mated iteratively in each subband using two different adaptation
mechanisms that minimize the mean of squared error (MSE) be-
tween the reference and primary signals in the corresponding
subband and level. The localization of the minima of the MSE
curves at different levels and subbands are used in order to ar-
rive at the time-delay estimates. However, as mentioned before,
target detection in the shallow-water environment presents spe-
cial problems due to the dominant reverberation effects in which
the target returns may be buried. It is difficult to accurately es-
timate time delays using only one sonar channel. Therefore, a
multichannel method is introduced which exploits the interde-
pendency of adjacent sonar stave data.

A. Modeling of the Backscattered Signal in the Shallow-Water
Environment

In active sonar sensing systems [26], a known waveform of fi-
nite duration is generated which propagates through the medium
and is reflected by some objects back to the point of origin.
The transmitted signal is usually modified both in amplitude
and phase depending on the target characteristics, which by
themselves might be changing with time and position in space.
These disturbances give rise to a random return or backscat-
tered signal. In addition to these target-generated direct signals,
there may also be spurious returns such as clutter from bio-
logics and reverberation from the ocean surface or bottom, es-
pecially in the shallow-water environment. One of the charac-
teristics of the shallow-water medium is the presence of strong
multipatheffects. Signals from a target can undergo reflections,
creating multipath returns that are delayed, distorted, ampli-
tude-weighted replicas of the direct signal to the sensor array.
These signals can generatecoherent interferencewhich greatly
increase the difficulty for accurate target detection.

For accurate time-delay estimation, the choice of a practical
and reasonable model is critical. Usually, the backscattered
signal is modeled as a sum of delayed and attenuated versions
of the incident signal [26]. In this paper, however, we use a
more generalized model which allows time-varying attenuation
in the delay path. Let us consider the following model for
each backscattered signal (or stave) which consists of the
target returns, surface and volume reverberations, and additive
background noise, i.e.,

(1a)

where

(1b)

and represents the backscattered signal, repre-
sents the unknown linear operation for theth reflection
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(a)

(b)

Fig. 1. (a) Effects of media and the target on the incident signal. (b) Unknown system represented by an unknown time delay� and impulse responseh (�).

corresponding to the effects of media and the scattering
properties of the target on the incident signal, represents
the incident signal, is the additive ambient noise, and the
symbol * denotes the convolution operation. The unknown
system consists of a pure time delay followed by a filtering
operation with the impulse response [see Fig. 1(a)]. The
reflection signals are modeled as the distorted or modified
version of the incident signal and they may or may not be
overlapping in time. Note that, in the above model, we don't
distinguish the target returns from those of other reflections.
By doing this, we assume that the target returns have similar
characteristics as those of multipath and reverberations. How-
ever, one should bear in mind that the target mine is stationary
and thus appears more consistently in the sensor data while the
reverberation does not have this characteristic. Fig. 1 portrays
the effects of the media and the scattering properties of the
target on the incident signal.

Having modeled the process using (1), now in order to sepa-
rate the specular returns from the backscattered signal, the first
step is to accurately estimate the time delaysassociated with
each return. This can be done by “undoing” the effects of the
media by approximating the inverse response of the unknown
linear system. The inverse filtered backscattered signal can then
be compared with the delayed incident signal,and the time de-
lays associated with the returns can be found by examining the
local minima of the MSE curve. The adaptive filter in this case
performs the inverse modeling of the unknown function .
However, since the backscattered signal is quite noisy, accu-
rate time-elay estimation based on simple adaptive filtering be-
comes very difficult. In order to overcome this problem, dis-
crete wavelet transform (DWT) is employed in conjunction with
adaptive filters to perform time-elay estimation in subbands.

B. Time-Delay Estimation Using Subband Adaptive Filtering

The structure of the subband adaptive system designed for
time-delay estimation is shown in Fig. 2. The process involves
two steps. The first step is to apply signal decomposition using
DWT to both the backscattered and incident signals. The reason
for using the DWT decomposition is that the information about
the time delays is common to all the levels and subbands. Ad-

Fig. 2. Subband adaptive filtering.

ditionally, as a result of the filtering and the decimation pro-
cesses at each level, the signals are less correlated than those
at the original signal domain. Consequently, this method gener-
ates multiple “looks” of the signals at different subbands/levels
and at the same time provides signal decorrelation and noise re-
moval for better time-delay estimation [11].

Once the incident and backscattered signals are decomposed
using the DWT, an adaptive filtering scheme is used in each sub-
band to yield estimates of the time delays. This is done in each
subband by applying the decomposed backscattered signal to
the reference input of the adaptive filter while using a delayed
version of the decomposed incident as a desired signal. Fig. 2
demonstrates the entire process in one subband. The delay
in each subband is incremented to provide an estimate of,
i.e., the time delay associated with theth specular return, where

and is the number of DWT levels. For every new
, the function of the adaptive filter is to modify its weights in

order to generate an output signal which minimizes the MSE at
the output. In this way, the weights of the adaptive filter tend to
capture the inverse response of the process, , in the relevant
subband. At the right delay, the output of the adaptive filter pro-
vides the best match, hence leading to a minimum in the MSE
curve. Thus, the analysis of the minima of the MSE curve pro-
vides the locations of all the possible time delays. This can
be done by using a simple thresholding operation of the MSE
curve after the complete curve is generated. To account for the
time lag introduced by the finie impulse response (FIR) adaptive
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filter [27]at these positions, the lag associated with the largest
weight is subtracted from the delay estimation in each level.
The final delay value is then calculated using ,
where is the estimated delay in the subband andis the lag
associated with the weight having the largest magnitude.

Let and , be subband de-
compositions of the incident and backscattered signals, respec-
tively, where is the total number of subbands at the lowest
level of decomposition and is the size of the signal in each
subband. To estimate the time delays, the following cost func-
tion is minimized over all subbands:

(3)
where the first term in the bracket is the delayed incident signal,
the second term is the output of the adaptive filter, andis
the filter order. Minimizing with respect to yields the
solution [27] shown in (4), at the bottom of the page, where

is the autocorrelation of the backscattered signal in
subband and is the cross correlation between the
backscattered and incident signals. Substituting this LS solution
into the cost function (3) gives the expression for the overall
minimum estimation error for each block of data as (5), shown
at the bottom of the page, where is the autocorre-
lation of the incident signal and is the MSE in the th
subband. The overall estimation error is the sum of all MSE's
in each subband. Since the time-delay information is common
to all subbands/levels, after the summation, the local minima
in corresponding to the possible targets will be empha-
sized while all the others will be deemphasized. The resulting
curve is then thresholded and the local minima below the
threshold are picked as possible time-delay estimates.

C. Multichannel Subband Adaptive Filtering

The Toroidal Volume Search Sonar (TVSS) uses a circular
transducer array geometry to form a number of narrow beams
from the 120 nearly omnidirectional elements where the center
of each element is separated by 3[1]–[3]. The incident was a
1-ms linear frequency modulated (LFM) signal. Each ping of
TVSS data, representing one second in time, encompasses 3
along track out to a range of 675 m to port and starboard sides
and to the ocean surface and bottom. The beams emanating from
the transducer array are vertically narrow. Since the sensors in
the array are interdependent, the targets appear consistently at
about the same range cell in several adjacent staves with perhaps
a minor shift which can be estimated using the geometry of the
sensor array. Consequently, it is more appropriate to model the
system as a multichannel process. In this case, in contrast to
processing each sensor data independently, the interdependency
among staves is fully exploited, hence accentuating the target
returns while suppressing the effects of reverberations.

It has been shown [28] that simple phase-compensating and
adding operations among the sensor array outputs result in sig-
nificant improvement in the SNR by a factor equal to the number
of sensors used. This is achieved by combining the desired sig-
nals coherently and the noise incoherently. The first step in our
multichannel scheme is the phase compensation among adjacent
sensors. The goal is to steer the sensor array toward a direction
of interest. By summing these aligned signals, one achieves an
enhancement of the desired signal while suppressing reverbera-
tions.

When the source is far away from the sensor array, the re-
ceived signals can be considered to arrive at the sensors as plane
waves. As depicted in Fig. 3, in the direction of interest, the
plane wave arrives earlier at sensorthan sensor. The dis-
tance between sensorsand with respect to the direction of
interest is , where is the radius of the
array of sensors. Then, the phase differenceamong the adja-
cent staves is , where is the wavelength. With

...
...

(4)

...

...

(5)
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Fig. 3. Phase correction between adjacent sensors.

the knowledge of the geometry of the sensor array, one can ex-
actly decide between adjacent sensors and the corresponding
phase difference using the above two equations. By compen-
sating for the phase difference, it is possible to combine the data
of several sensors together along a direction of interest. In order
to do this, the data in each stave are first preprocessed to form
the corresponding analytic signal orpre-envelopeor baseband
reduced complex envelope, , where
is the backscattered signal and is the Hilbert transform of

. The phase-compensated signal is .
As the real part of the pre-envelope corresponds to the time-do-
main signal, the stave after the phase correction/compensation
is .

After the phase compensation among the adjacent staves
with respect to the direction of interest, the related staves
are weighted and summed up to form a combined stave for
more accurate time-delay estimation using subband adaptive
filtering. For the TVSS, since the beams are relatively narrow,
it was found that only three or four sensors may contain the
same target returns. Consequently, only four channel outputs
are used.

III. T EST RESULTS OFMULTICHANNEL SUBBAND ADAPTIVE

FILTERING

Both simulated and real TVSS data were used in this testing.
The TVSS data were collected in the Gulf of Mexico in
November 1994 [1]–[3]. The testing on the simulated data
demonstrates the accuracy of the proposed schemes and was
also used to fine tune the algorithm for the testing on the real
data. The testing on real data sets represents the real-life use
of the method for operation in conjunction with TVSS in the
shallow-water environment. The testing results are achieved
in three steps. First, the multichannel phase compensation
is applied to get a combined signal with enhanced target
returns and reduced clutter. Note that this step only applies to
multichannel processing. For single-channel processing, we
skip this step. Second, we apply the subband adaptive filtering
scheme to the combined signal to obtain accurate time-delay
estimation and generate the output with target returns. Finally,

the beamforming process is applied to the output data to
generate the final image to identify the possible targets.

A. Parameter Selection

For processing the TVSS data, the backscattered signal is
divided into overlapping blocks with the overlap equal to the
length of the incident signal. DWT is then applied to both
the backscattered and incident signals. After the signals are
decomposed, the time delays are estimated in each subband
using the LS-based subband adaptive filter described before.
Once the time delays are estimated in each block, the associated
returns are separated from the backscattered signal by simply
extracting the corresponding block of the same length as the
incident signal.

There are several parameters in the adaptive filtering process,
such as block size, number of levels of DWT decomposition,
and adaptive filter order that need to be optimized in order to
achieve the best performance.

1) Block Size:The proposed scheme is applied to blocks of
the backscattered data to increase the processing speed. The
block-based method also allows detection of low amplitude or
weak returns which will be quite insignificant in a long data
record. Due to the nonstationarity of the backscattered signal,
the block size cannot be too large in comparison with the length
of the incident signal (which is less than 50 samples in the TVSS
case). Thus, the block-based approach not only increases the
processing speed but also takes into account the nonstationarity
of the backscattered signal, leading to a more accurate time
delay estimation. The block size of 1024 was empirically de-
termined to be the optimal choice and was used throughout the
testing process.

2) DWT Decomposition Levels:As mentioned earlier, the
benefit in using DWT decomposition is that it provides mul-
tilooks of the same signal at different levels. It is well under-
stood that increasing the number of decomposition levels not
only makes the signals more decorrelated but also suppresses
the noise at a greater extent. Nonetheless, as the number of
levels increases, the time resolution is halved at each level.
This can result in deterioration of the accuracy of time-delay
estimation. This is especially true for the TVSS data because
the incident signal is only 47 samples long. It was empiri-
cally determined that is the optimal number of levels
for the 1-ms LFM incident chosen in these cases. In addi-
tion, downsampling is not used in our decomposition to avoid
inaccuracies in estimating delays that are not multiples of
2. Daubechies wavelet [29] of order 6 was used to perform
DWT operation. Daubechies wavelets are orthogonal, com-
pactly supported with frequency response which is maximally
flat at =0 and =π.

3) Adaptive Filter Order: The adaptive filter order is the
most important parameter in the whole process as it deter-
mines the target detectability and the accuracy of time delay
estimation. Several experiments were conducted in order to
find the optimal filter order. It was found that, by increasing
the order of the FIR filter, the detectability of the target peak
improved significantly. However, increasing the order
widens the regions in which the minima occur, hence reducing
the detectability of these minima, which in turn reduces the
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(a)

(b)

(c)

Fig. 4. (a) Clean simulated backscattered signal. (b) Noisy simulated backscattered signal. (c) Combined MSE curve and picked local minima.

accuracy of delay estimation. Additionally, large-order filters
require more computational efforts. In processing the TVSS
data, a filter of order 6 was used.

4) Adaptive Threshold:The choice of the MSE threshold is
also crucial in this algorithm. If the threshold is too high, a large
number of local minima are picked which results in less rever-
beration removal and clutter rejection in the processed results;
while, for very low threshold, the local minima corresponding to
the target might be missed altogether. In our proposed scheme,
the threshold is calculated adaptively using Threshold

where is the combined MSE,α is a
ping-dependent constant, and its optimal value can be deter-
mined empirically.

B. Simulations on Synthesized Backscattered Data

To show the accuracy of this scheme in time-delay esti-
mation, the subband adaptive filtering method was applied
to a simulated backscattered signal. For simplicity, a signal
of length 1024 (one block) was generated with delayed and
attenuated versions of the incident signal [Fig. 4(a)] to simulate
different returns. The actual values of the time delays are shown
in Table I. As can be seen, the third and fourth returns, fifth
and sixth returns are overlapping in time. White Gaussian noise
was added to simulate the effects of the channel noise. Fig. 4(b)
shows the noisy simulated backscattered signal. The first two
returns can barely be seen after adding the noise. The SNR
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TABLE I
SNR VALUES OF DIFFERENTRETURNS AND THEIR LOCATIONS IN THE SIMULATED DATA.

(a)

(b)

(c)

Fig. 5. Beamforming results for ping 0631. (a) Original data. (b) Single-channel processed data. (c) Multichannel processed data.

values associated with the returns are also shown in Table I.
Fig. 4(c) shows the combined MSE resulting from the subband
adaptive filtering scheme. Those local minima marked with a
“ ” show the exact locations of the returns. Table I shows the
estimated locations. From the results, we can see that, even
though the SNR for some returns were very low, e.g., the SNR
for the second return was−2.7569 dB, the scheme was still

able to correctly estimate its location. This is true even when
the returns are overlapping in time. One may also notice that
the values of the local minima depend on the amplitudes of
the bakcscattered signal. The higher the amplitude, the more
obvious the local minima in the overall combined MSE curve.
The threshold needs to be chosen properly so that all the local
minima corresponding to returns can be picked up.
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(a)

(b)

(c)

Fig. 6. Beamforming results for ping 0625. (a) Original data. (b) Single-channel processed data. (c) Multichannel processed data.

C. Processed versus Unprocessed TVSS Beamformed Results

The 18 pings of TVSS data are divided into three groups ac-
cording to the significance of the reverberation effects. In addi-
tion, biologics, bottom features like coral or rock outcropping,
and man-made litter of all descriptions can cause difficulties
in analyzing the backscattered signals. Some typical images of
the processed versus the unprocessed beamformed results are
shown in Figs. 5–7 for different levels of reverberation. Part (a)
in each figure shows the beamformed image of original or un-
processed data; part (b) shows the image of single-channel sub-
band adaptive filtering results, while part (c) shows the multi-
channel processed result. Only those peaks that appear consis-
tently in several consecutive pings are considered as potential
target candidates.

1) Low Reverberation Cases:In these cases, the targets can
be clearly seen in the beamformed images even without the pre-

processing, and they are generally the brightest returns in the
images. Nonetheless, in the unprocessed beamformed results of
some pings, the targets are only prominent in one beam while
in the processed beamformed result the target peaks are quite
obvious in several adjacent beams. Fig. 5(a), (b) and (c) show
the original, single-channel, and multi-channel processed beam-
formed images for one ping, respectively. For this ping, the true
target appears on the starboard side at range cell 380, beams
92–95. Note that, if the circular array with 120 elements is tra-
versed counterclockwise, the sensor at the 12 o'clock position
(looking up) is labeled as the first element while the ones at the
9 o'clock (Port Side) and 3 o'clock (Starboard Side) positions,
i.e., the 31st and 91st, are looking into the water volume. As
can be seen, for this case, the single-channel processed result
is comparable to that of the original beamformed result while
the target peak is more prominent in the multichannel processed
results. From these images, one can see that both the single
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(a)

(b)

(c)

Fig. 7. Beamforming results for ping 0627. (a) Original data. (b) Single-channel processed data. (c) Multichannel processed data.

and multichannel processed results have enhanced the target
returns while greatly reducing the clutter and reverberation ef-
fects at a farther range. Thus, in these cases, single-channel pro-
cessing provides comparable or better results than the unpro-
cessed beamformed results while the multichannel processing
provides the best results.

2) Moderate Reverberation Cases:The reverberation
effects are much higher in these cases than in the previous
cases and the targets can barely be observed in the original
beamformed results. Fig. 6(a), (b) and (c) show the original,
single-channel, and multichannel processed beamformed
results of ping 0625, respectively. This ping has the same target
as shown previously in Fig. 5. However, due to the motion of
the vehicle, the target position is slightly shifted in the beam
while the range is approximately the same. The target peak
cannot easily be detected in the original beamformed image.

In the single-channel result, one can see from the image that
the target return has been enhanced. This is more obvious
when comparing with the original beamformed results, but
there is still substantial clutter which makes the correct target
detection difficult. In Fig. 6(c), the beamformed result of the
multichannel subband adaptive filtering exhibits significantly
less reverberation effects and the target peak can easily be
identified. Again, both the single-channel and multichannel
processed results show significant improvements in the target
detectability while the multichannel processing is more effec-
tive than the single- channel processing.

3) High Reverberation Cases:In these cases, the reverber-
ation effects are very high and the beamformed results of the
unprocessed data are extremely noisy. Fig. 7(a), (b), and (c)
show the original, single-channel, and multi-channel processed
results, respectively. From Fig. 7(a), it is virtually impossible to
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Fig. 8. Computing HOC results of different orders.

determine where the target location might be from the original
beamformed image. The single-channel result in Fig. 7(b) shows
no visible improvement. The multi-channel processing, how-
ever, made the target return observable. Though image back-
ground is still noisy, the target detectability is greatly improved.
Thus, in the high reverberation cases, the multichannel pro-
cessing demonstrates much better performance than the single-
channel processing.

In summary, the test results of the subband adaptive filtering
scheme on the real TVSS data show improvements in the overall
target detectability. Single-channel processing performs well in
the low and moderate reverberation cases but fails to enhance
the target returns in the high reverberation cases. Multichannel
processing, on the other hand, performs well in all the scenarios.

IV. HIGH-ORDER CORRELATION FORPOSTPROCESSING

Clearance and avoidance of mines and mine-like objects rely
on accurate target detection. Generally, to cover a large area,
TVSS needs to collect 800–900 pings of data per run [22]. This
workload is beyond the capabilities of human operators. In order
to postprocess the TVSS beamformed results automatically and
detect all the possible targets while maintaining a false alarm
rate as low as possible, a method based on high-order correlation
(HOC) is developed. The original HOC method was proposed
[24], [25] to detect multiple dim target tracks in heavily clut-
tered background from infrared (IR) satellite data. This method
exploits the fact that a moving target builds a spatial-temporal
track in the three-dimensional (3-D) space and that there exists

spatial-temporal correlations between consecutive target obser-
vation points. This method does not make anya priori assump-
tion about the number of targets, the dynamical information of
the target, initial conditions, or background clutter. It allows
recursive computation of thespatio-temporalcross correlation
among consecutive data sets.

The use of HOC as a postprocessor for beamformed TVSS
data was initiated by the following facts. First, the along-track
coverage of the TVSS widens with distance, hence causing a
target to appear in multiple consecutive pings. HOC is capable
of determining the temporal and spatial dependencies of consec-
utive pings of data. Second, noa priori information is available
about the targets and clutter/noise in the TVSS data. The goal
of the HOC approach in postprocessing the TVSS beamformed
data is to determine theconsistencyin the target locations in
several consecutive pings of the beamformed results. The basic
assumptions behind this approach are: 1) targets should consis-
tently appear in a limited area (beam× range) in several con-
secutive pings and 2) there might be more than one target in the
searching region. In addition, the targets may be barely observ-
able or even missed in certain pings due to the movement of the
vehicle on which the TVSS is deployed.

A. HOC Algorithm for TVSS Shallow-Water Application

In order to apply the HOC method, the beamformed results
in the information bearing portion were first converted tobinary
values. The information bearing portion corresponding to beams
26–37 and 86–97 is also called the along-track directionport
sideandstarboard side, respectively.
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(a) (b)

(c) (d)

Fig. 9. HOC results—port side. (a) Target consistency count. (b) First-order correlation. (c) Second-order correlation. (d) Third-order correlation.

1) Target Consistency Count:The target consistency count
(TCC) is a measure of consistency in the occurrence of a point
in the beamformed image. It indicates how frequently a certain
point might be detected as a possible target location in several
consecutive pings. TCC can be obtained by simply stacking and
summing up the corresponding points of the beamformed re-
sults in several consecutive pings in the region of interest. TCC
can be viewed as the zeroth-order HOC. TCC can provide some
information about the consistency in the occurrence of targets if
the movement of the vehicle is stable. However, the target loca-
tion on the beamformed image changes from ping to ping, espe-
cially when the vehicle yaws and rolls. When this happens, TCC
provides less reliable information about the true target location.
Thus, we need to calculate HOC of higher orders to overcome
this problem.

2) HOC of Different Orders:Since the target is stationary in
the water column and the vehicle moves toward certain direc-
tions, there is spatial-temporaldependencybetween the adjacent
pings of data. To find such dependencies, cross correlations be-
tween adjacent pings can be calculated. However, this computes
only thespatio-temporalcorrelation betweentwo consecutive
pings and, hence, no memory is built into the process. The HOC
method solves this problem by allowing one to calculate the cor-

relations among several consecutive pings recursively [24] as
opposed to only two pings.

The first-order correlations can be calculated using

(8a)
where is the standard hard limiter thresholding function,
i.e.,

(8b)

is the beamformed result of pingat position ,
i.e., beam and range. Thus, , which represents the
result of the first-order correlation, provides information on how
the points of at ping are correlated to their neigh-
boring points at ping . The correlation
is evaluated in a window of size . This
window size is chosen under the assumption that the target loca-
tion changes (due to the vehicle's movement) from one ping to
the next do not exceed certain limits. Clearly, if
, then there is a two-point spatio-temporal sequence initiated
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(a) (b)

(c) (d)

Fig. 10. HOC results—starboard side. (a) TCC. (b) First-order correlation. (c) Second-order correlation. (d) Third-order correlation.

at location of ping to location of ping
. Although this process can be repeated to identify all such

two-point sequences, it cannot provide correlational informa-
tion of more than two pings of data. However, in order to declare
a detection, we need to verify if the target shows consistently in
several consecutive pings of data. To calculate the correlation
in more than two consecutive pings, the HOC approach builds
memory into the process and computes correlations ofrecur-
sively using

(9)

where is the order of the correlation and is the index of
pings which varies from 1 to . When the order increases,

should decrease such that for computing
correlations among consecutive pings. The initial condition
for the above recursive equation is . If

, that means a possible target location appears

consistently in consecutive pings [24]. The process of
calculating different orders of HOC results is shown in Fig. 8.

The choice of is critical in the HOC process since it presents
a tradeoff between clutter removal capability of the HOC and its
sensitivity to missing target points at certain pings. More specif-
ically, large gives better clutter rejection but at the same time
increases the likelihood of losing the target point in the final
HOC result when there are several missing target points in some
of the pings. The effect of can be seen clearly in the following
test results.

B. Results of Applying HOC to TVSS Beamformed Data

To test the performance of the HOC method, several se-
quences of pings of the TVSS beamformed data were studied
(see Figs. 9 and 10). The processed results of the HOC process
are images in which the points satisfy the recursive correlation
criterion and the background clutter and reverberation are
substantially removed. The horizontal axis represents the
beams in the region of interest (26–37 for the port side and
86–97 for the starboard side), while the vertical axis shows
the range cell (after 1 out of 47 peak-picking process) from
1 to 475 for both sides. Generally, the targets appear in the
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center of the along-track direction, i.e., beams 28–32 for the
port side and beams 88–92 for the starboard side. A detection
is generally declared if a point appears consistently in three out
of four consecutive pings.

The results for one sequence of pings for both the port side
and starboard side are presented here. For this group of data,
there is no target on the port side. On the starboard side, there
is a target located at range 380, beams 91–93. Fig. 9(a) shows
the result of TCC on the port side. Figs. 9(b)–(d) show the HOC
results for and , respectively. Close examination of
these results indicates that there is nothing prominent (showing
consistently in the beam and range) for any order ( and
) of HOC results. This implies that there is no target present on

the port side. Although there is a peak at about range cell 420 and
beams 36–37, it is not in the along-track direction; hence, it is
not considered to be a target. This result does indeed correspond
to the ground truth information. Consequently, the HOC process
for this sequence of pings does not result in any false detection.

Fig. 10(a) shows the results of TCC for the starboard side.
We can see that there are many peaks indicating possible target
locations. The two most prominent ones are around the range
cells 380 (beams 90–95) and 286 (beams 90–92). According
to the ground truth information, the true target location should
be in the range cell 380 (beams 90–95) while the clutter at
range cell 286 was believed to be associated to a biologic. Fig.
10(b)–(d) show the HOC results for and on the star-
board side, respectively. The result of the first-order HOC in
Fig. 10(b) shows much fewer peaks than that in Fig. 10(a). Note
that, though the competing clutter around range cell 286 was
still there, it became much dimmer than that in the TCC result
and no longer competitive with the peak around range cell 380.
In the second-order HOC result (Figs. 10(c)), more clutter was
removed. In the third-order HOC result (Fig. 10(d)), the com-
peting clutter was totally removed and the only prominent peak
at the range cell 380, which corresponds to the true target po-
sition, was kept. In this set of pings, the HOC process led to
correct detection with no false detection.

In conclusion, the simulation results showed the promise of
the HOC method as a postprocessor for TVSS shallow-water
data for removing the competing clutter and at the same time
boosting the target returns in several consecutive pings. The
algorithm is simple, easy to implement, and fast. For example,
processing all 31 pings took only about 18 s of CPU time on
a HP 700 series workstation. Apart from the window size,
which limits the maximum deviation of the vehicle, no other
constraints pertaining to the dynamical information of the
vehicle, such as velocity, are incorporated into the process.
For the TVSS shallow-water application, if the dynamical
information of the vehicle is available, the HOC results may be
significantly improved by building additional constraints into
the process.

V. CONCLUSION

In this paper, a preprocessing multichannel subband adap-
tive filtering scheme was developed that exploits the interde-
pendency among the signals recorded by adjacent sensors in the
toroidal array and forms a combined signal with improved SNR.

Taking advantage of this improved SNR, subband adaptive fil-
tering achieves very accurate time-delay estimation. The per-
formance of this scheme was demonstrated on simulated data
as well as real TVSS shallow-water data containing several tar-
gets at moderate to far range with moderate to extremely high
reverberation. The HOC-based postprocessing method was also
developed to find the consistency of the target appearance in the
beamformed output. This process greatly enhances the target
returns, removes the competing clutter and reverberation, and
provides the exact locations (range and beam) of the targets. It
provides an efficient and simple way to detect low observable
targets in extremely high clutter.
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