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Abstract—in this paper, new pre- and post-processing schemes used preprocessing methodnmatched filtering4], [5] which
are developed to process shallow-water sonar data to improve the gives the maximum likelihood (ML) [4] estimate of the signal
accuracy of target detection. A multichannel subband adaptive amplitude and the arrival time. However, in sonar applications
filtering is applied to preprocess the data in order to isolate the h . fad Y li | lid. D '
potential target returns from the acoustic backscattered signals the assumption of a et_ermlnlstlc signal Is rarely va '_ " ue
and improve the signal-to-reverberation ratio. This is done by tO the strong reverberation effects and the characteristics of
estimating the time delays associated with the reflections in dif- the medium, the received signal generally contains distorted,
ferent subbands. The preprocessed results are then beamformed delayed, amplitude weighted, and overlapped replicas of the
to generate an image for each ping of the sonar. The testing results transmitted or incident signal. In [4], in order to overcome

on both the simulated and real data revealed the efficiency of this the d dati f the classical tched filter in th
scheme in time-delay estimation and its capability in removing € aegradation of the classical matched filter in the presence

most of the competing reverberations and noise. To improve Of overlapped signals, an inverse filter is used to improve the
detection rate while significantly minimizing the incident of false resolution of the time-delay estimation. The price paid for

detections, a high-order correlation (HOC) method for postpro-  this high resolution is a reduction of SNR. Moreover, careful
cessing the beamformed images is then developed. This methodyegign is needed to avoid the instability of the inverse filter. In

determines the consistency in occurrence of the target returns in 6 d 71 algorith d | dt f ltipath
several consecutive pings. The application of the HOC process to [6] and [7], algorithms were developed to perform multipa

the real beamformed sonar data showed the ability of this method time-delay estimation. In [6], to deal with a long received
for removing the clutter and at the same time boosting the target signal and a short transmitted signal, the long data record was

returns in several consecutive pings. The algorithm is simple, fast, proken into overlapped short segments and each segment was
and easy to implement. modeled individually without misfitting or truncating any path
Index Terms—Adaptive filtering, high-order correlation, sonar, at the end of each segment. The estimates in each segment

target detection, wavelet transform. were then combined to model the entire data record. In [7], a
least-square (LS)-based algorithm was developed to estimate
I. INTRODUCTION the arrival time of the overlapping acoustic signals that consist

) ) _ ) of attenuated and delayed replicas of a known transmitted
EA mine hunting and detection pose notoriously chakjgnal. To avoid minimization of a highly oscillatory error

enging problems due to the vastness of the ocean, smgfction, complex amplitude was allowed which resulted in
sizes of the mines, the acoustically reverberant environmegtuch smoother error function that was easier to minimize
and the frequent occurrence of biologics or magnetic cluttcg,rsing the gradient-based schemes. In [8]-[12], various kinds
It is easy to lay a minefield but very dangerous, costly, angt adaptive filtering approaches were developed to jointly
time consuming to localize and clear it. Considerable attentiggtimate the time delays and filter weights. Instead of modeling
has recently been focused on this area and various Sigfid received acoustic signal as the sum of delayed and atten-
processing schemes have been developed to aid in the detegligd incident signals as in [6] and [7], a more general model
of underwater mines [1]-[3]. The research efforts have pPHjiowing frequency attenuation in the delay path was used.
marily been concentrated on three major topics: preprocessifigrious higher order statistics-based algorithms [13]-[16] were
beamforming and postprocessing. also developed for time-delay estimation and signal detection.
Preprocessingg applied to the acoustic backscattered signajg [5] and [13], different schemes combining matched filter
to getrid of most of the clutter and reverberation effects and thygq higher order statistics were proposed in order to come up
improve the signal-to-noise ratio (SNR). The most commonyith 5 detection scheme that is tolerant to signal shift and deals

with the additive noise with unknown spectral characteristics.
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detection. PSD is essentially a sum of the estimates of ttee water column present dominant reverberation effects. Thus,
second-order moments for each frequency component in the primary challenge is to process the data and detect targets
frequency domain. Higher order spectra contain information such a highly reverberant environment. This may be done
not present in the PSD, especially in detecting non-Gaussianprocessing each sonar channel separately and estimating the
and nonlinear transient signals. Frequency doni@imtosis time delays associated with the reflections and then isolating
estimation andBispectral analysis were used in [15] andthem from the background noise prior to beamforming. The
[16] as aids in detecting randomly occurring signals. Sevesibband adaptive filtering scheme has been applied [11] to the
wavelet-based algorithms [17]-[21] were also developed pooblem of underwater target detection. Time delays are esti-
perform linear system modeling, adaptive filtering, signahated iteratively in each subband using two different adaptation
detection, and time-delay estimation for underwater targetechanisms that minimize the mean of squared error (MSE) be-
detection. In [18], wavelet transform was used in an adaptit@een the reference and primary signals in the corresponding
filtering structure and the coefficients of the adaptive filtesubband and level. The localization of the minima of the MSE
were updated by the least mean squares (LMS) algorithm.duarves at different levels and subbands are used in order to ar-
[20], a wavelet transform-based cross-correlation method wage at the time-delay estimates. However, as mentioned before,
proposed for time-delay estimation in pulsed wave ultrasourtdrget detection in the shallow-water environment presents spe-
The scheme has a unique feature of using varying time—fi@al problems due to the dominant reverberation effects in which
guency windows in processing compared with the conventiorthk target returns may be buried. It is difficult to accurately es-
windowed cross-correlation method where a fixed size winddimate time delays using only one sonar channel. Therefore, a
is used. The wavelet shrinkage method [21] was also usedntaltichannel method is introduced which exploits the interde-
denoisethe noisy acoustic backscattered signal and greapgndency of adjacent sonar stave data.
improve the SNR. The underlying assumption is that the noise
contributes to most of the wavelet coefficients while the signdt Modeling of the Backscattered Signal in the Shallow-Water
contributes to only a few coefficients. Therefore, by setting tHgnvironment
smaller coefficients to zero, in a statistically guided manner, In active sonar sensing systems [26], a known waveform of fi-
noise can be optimally eliminated while preserving the signahite duration is generated which propagates through the medium
In postprocessingthe beamformed output is further pro-and is reflected by some objects back to the point of origin.
cessed to find additional clues for distinguishing targets frofhe transmitted signal is usually modified both in amplitude
the background noise/clutter. It will alleviate the burden aind phase depending on the target characteristics, which by
sonar operator, help to provide a high target detection rateemselves might be changing with time and position in space.
and reduce the incident of false reports. In [22], statisticThese disturbances give rise to a random return or backscat-
measures, i.e.mean, standard deviation, skewnesand tered signal. In addition to these target-generated direct signals,
kurtosis were calculated from the digitized beamformeghere may also be spurious returns such as clutter from bio-
sonar data. The combination of these statistical measuregics and reverberation from the ocean surface or bottom, es-
provides an additional clue about the presence of a targeicially in the shallow-water environment. One of the charac-
versus background. In [23], several methods including energtistics of the shallow-water medium is the presence of strong
detector, sliding matched filter, skewness matched filter, ansultipatheffects. Signals from a target can undergo reflections,
dispersion-based reconditioning were applied to the Toriodakating multipath returns that are delayed, distorted, ampli-
Volume Search Sonar (TVSS) beamformer output in ordeide-weighted replicas of the direct signal to the sensor array.
to increase the signal-to-reverberation ratio (SRR). It wadhese signals can generatherent interferencehich greatly
reported that, while the skewness matched filter offers somrease the difficulty for accurate target detection.
improvements, the dispersion-based reconditioning providesFor accurate time-delay estimation, the choice of a practical
considerable improvement. However, the common drawbackarid reasonable model is critical. Usually, the backscattered
the abovepostprocessingchemes is that the spatial-temporadignal is modeled as a sum of delayed and attenuated versions
correlational information of the target in several consecutivf the incident signal [26]. In this paper, however, we use a
pings of the sonar is neglected. more generalized model which allows time-varying attenuation
In this paper, a preprocessing scheme basedwltichannel in the delay path. Let us consider the following model for
subband adaptive filteringnd a postprocessing scheme baseghch backscattered signal (or stave) which consists of the
on thehigh-order correlation(HOC) method [24], [25] was pro- target returns, surface and volume reverberations, and additive
posed to improve the SRR before and after the beamformipgckground noise, i.e.,
process. Both schemes were designed to overcome the short-
comings of the existing methods while combining their advan-
tages.

y(n) = Z zi(n) +e(n) (1a)

where
Il. TIME-DELAY ESTIMATION USING MULTICHANNEL

SUBBAND ADAPTIVE FILTERING zi(n) = hi(n)*x(n — A;) (1b)

In the shallow-water environment, strong reflections causedd y(n) represents the backscattered sigrigkn) repre-
by the bottom and surface of the sea and those of biologicssients the unknown linear operation for thith reflection
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Fig. 1. (a) Effects of media and the target on the incident signal. (b) Unknown system represented by an unknown titneateddgnpulse responge (-).

corresponding to the effects of media and the scatterin /

properties of the target on the incident signdlp) represents

the incident signale(n) is the additive ambient noise, and the BW LS-based

symbol * denotes the convolution operation. The unknowr Y™ Adaptfre Filter

system consists of a pure time delAy followed by a filtering V Error
operation with the impulse responkgn) [see Fig. 1(a)]. The * |
reflection signals are modeled as the distorted or modifie Incident ) (k-3)

version of the incident signal and they may or may not be — = DWT |— De\fiys

overlapping in time. Note that, in the above model, we don'

distinguish the target returns from those of other reflections \
By doing this, we assume that the target returns have similar

characteristics as those of multipath and reverberations. Hdvig- 2. Subband adaptive filtering.

ever, one should bear in mind that the target mine is stationary

and thus appears more consistently in the sensor data while §ignajly, as a result of the filtering and the decimation pro-
reverberation does not have this characteristic. Fig. 1 portrgy§sqes at each level, the signals are less correlated than those
the effects of the media and the scattering properties of theyhe original signal domain. Consequently, this method gener-
target on the incident signal. _ _ ates multiple “looks” of the signals at different subbands/levels
Having modeled the process using (1), now in order t0 SeRgyq at the same time provides signal decorrelation and noise re-
rate the specular returns from the backscattered signal, the fﬁ”ﬁ}val for better time-delay estimation [11].
step is to accurately estimate the time delaysssociated with - once the incident and backscattered signals are decomposed
each return. This can be done byritioing the effects of the ging the DWT, an adaptive filtering scheme is used in each sub-
media by approximating the inverse response of the unknowlnq (o yield estimates of the time delays. This is done in each
linear system. The inverse filtered backscattered signal can thefpnand by applying the decomposed backscattered signal to
be compared with the delayed incident signal,and the time gz reference input of the adaptive filter while using a delayed
lays associated with the returns can be found by examining {i&jon of the decomposed incident as a desired signal. Fig. 2
local minima of the MSE curve. The adaptive filter in this casgemonstrates the entire process in one subband. The éelay
performs the inverse modeling of the unknown functiov). i each subband is incremented to provide an estimatg; of

However, since the backscattered signal is quite noisy, acgy: the time delay associated with titie specular return, where
rate time-elay estimation based on simple adaptive filtering b& — 2§, andL is the number of DWT levels. For every new
comes very difficult. In order to overcome this problem, diSs. 1he function of the adaptive filter is to modify its weights in
crete wavelet transform (DWT) is employed in conjunction Wity jer 1o generate an output signal which minimizes the MSE at
adaptive filters to perform time-elay estimation in subbands. 1, output. In this way, the weights of the adaptive filter tend to
) ) ) . . . capturethe inverse response of the prodess,), in the relevant
B. Time-Delay Estimation Using Subband Adaptive Filteringg,,hhand. At the right delay, the output of the adaptive filter pro-
The structure of the subband adaptive system designed ¥ates the best match, hence leading to a minimum in the MSE
time-delay estimation is shown in Fig. 2. The process involvesirve. Thus, the analysis of the minima of the MSE curve pro-
two steps. The first step is to apply signal decomposition usirgles the locations of all the possible time delé&js This can
DWT to both the backscattered and incident signals. The reasgmndone by using a simple thresholding operation of the MSE
for using the DWT decomposition is that the information abowturve after the complete curve is generated. To account for the
the time delays is common to all the levels and subbands. Adwne lag introduced by the finie impulse response (FIR) adaptive
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filter [27]at these positions, the lag associated with the largest Multichannel Subband Adaptive Filtering
weight is subtracted from the delay estimation in each level. ta Toroidal Volume Search Sonar (TVSS) uses a circular

The final delay value is then calculated using = 27(6; — q),

transducer array geometry to form a number of narrow beams

wheres; is the estimated delay in the subband ané the 1ag  rom the 120 nearly omnidirectional elements where the center

associated with the weight having the largest magnitude.
Letz,, (k) andy,,(k), m € [1, L]k € |

of each element is separated By[B]-[3]. The incident was a

1, N, be subband de- 1 i jinear frequency modulated (LFM) signal. Each ping of

compositions of the incident and backscattered signals, respegsg gata representing one second in time, encompa&ses 3
tively, whereL is the total number of subbands at the lowesfjong track out to a range of 675 m to port and starboard sides

level of decomposition and/ is the size of the signal in each

and to the ocean surface and bottom. The beams emanating from

subband. To estimate the time delays, the following cost fungye ransducer array are vertically narrow. Since the sensors in

tion is minimized over all subbands:

2

e(6) = Z Z Tk —6) — Zwmjym(k -Jj+1

k=1 j=1

®3)

the array are interdependent, the targets appear consistently at
about the same range cell in several adjacent staves with perhaps
a minor shift which can be estimated using the geometry of the
sensor array. Consequently, it is more appropriate to model the
system as a multichannel process. In this case, in contrast to
processing each sensor data independently, the interdependency
among staves is fully exploited, hence accentuating the target
returns while suppressing the effects of reverberations.

where the first term in the bracket is the delayed incident signal,It has been shown [28] that simple phase-compensating and
the second term is the output of the adaptive filter, @&hé adding operations among the sensor array outputs result in sig-
the filter order. Minimizinge(-) with respect tow;, yields the nificantimprovementin the SNR by a factor equal to the number
solution [27] shown in (4), at the bottom of the page, wheraf sensors used. This is achieved by combining the desired sig-
R, .. (j) is the autocorrelation of the backscattered signal imals coherently and the noise incoherently. The first step in our
subbandn andR,,__.._ (j) is the cross correlation between thenultichannel scheme is the phase compensation among adjacent
backscattered and incident signals. Substituting this LS solutisensors. The goal is to steer the sensor array toward a direction
into the cost function (3) gives the expression for the overaf interest. By summing these aligned signals, one achieves an
minimum estimation error for each block of data as (5), showenhancement of the desired signal while suppressing reverbera-
at the bottom of the page, whefe, . (-) is the autocorre- tions.

lation of the incident signal ang,,(6) is the MSE in themth When the source is far away from the sensor array, the re-
subband. The overall estimation error is the sum of all MSECgived signals can be considered to arrive at the sensors as plane
in each subband. Since the time-delay information is commurmaves. As depicted in Fig. 3, in the direction of interest, the
to all subbands/levels, after the summation, the local mininpéane wave arrives earlier at sengothan sensok. The dis-

in £(6) corresponding to the possible targets will be emphgance between sensafsandi with respect to the direction of
sized while all the others will be deemphasized. The resultimgterest isd = r(siné; — sin 6;), wherer is the radius of the
curvee(é) is then thresholded and the local minima below tharray of sensors. Then, the phase differep@mong the adja-
threshold are picked as possible time-delay estimates. cent staves i®$ = (2nd)/A, whereX is the wavelength. With

Wm1 Rymym(o) Rymym (1) e Rymym (P _ 1) —1 RRymw(%(f)l)
wr'nQ — Rymym(l) Rymym (0) ... Rymym (P - 2) Yo P, Cme [17 L] (4)
W p Rymym(P - 1) Rym,ym(P - 2) T Rymym (0) Rymmm((S'— P+ 1)
Rymmm (6) i
- L | Ry,e, (6—1)
Yo T,
e6) = Ropz,(0)= > |
m=1 m=1 .
Ry, 2, (6 —P+1)
Ry, 4. (0) Ry, 4. (1) e Ry, (P-1) —1 RRym”’(%(f)l)
o | Bunvn (D) R, ... (0) Ry, (P—2) S
Rymym(P o 1) Rymym(P - 2) Rymym (0) Rymwm(é— P+ 1)

= e1(6) +ea(8) + - +1(6) ®)
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Plane Waves the beamforming process is applied to the output data to
generate the final image to identify the possible targets.

A. Parameter Selection

For processing the TVSS data, the backscattered signal is
divided into overlapping blocks with the overlap equal to the
length of the incident signal. DWT is then applied to both
the backscattered and incident signals. After the signals are
decomposed, the time delays are estimated in each subband
using the LS-based subband adaptive filter described before.

—> Once the time delays are estimated in each block, the associated
returns are separated from the backscattered signal by simply
extracting the corresponding block of the same length as the

incident signal.

There are several parameters in the adaptive filtering process,
such as block size, number of levels of DWT decomposition,
and adaptive filter order that need to be optimized in order to
achieve the best performance.

the knowledge of the geometry of the sensor array, one can ex1) Block Size: The proposed scheme is applied to blocks of
actly decided between adjacent sensors and the correspondifi§ backscattered data to increase the processing speed. The
phase difference using the above two equations_ By Comperb|OCk-based method also allows detection of low amplitude or
sating for the phase difference, it is possible to combine the d#tgak returns which will be quite insignificant in a long data

of several sensors together along a direction of interest. In ord@gord. Due to the nonstationarity of the backscattered signal,
to do this, the data in each stave are first preprocessed to fdhfi block size cannot be too large in comparison with the length
the corresponding analytic signal pre-enveloper baseband Of the incident signal (which is less than 50 samples inthe TVSS
reduced complex envelapgt) = s,(t) + 55,(t), wheres,(t) ~case). Thus, the block-based approach not only increases the
is the backscattered signal afdt) is the Hilbert transform of processing speed but also takes into account the nonstationarity
sr(t). The phase-compensated signakis®P(t) = s(t)e/®. of the backscattered signal, leading to a more accurate time
As the real part of the pre-envelope corresponds to the time-@§lay estimation. The block size of 1024 was empirically de-
main signal, the stave after the phase correction/compensaf@finined to be the optimal choice and was used throughout the
is sComP(#) = Re{s®™P(t)}. testing process.

After the phase compensation among the adjacent stavegd) DWT Decomposition LevelsAs mentioned earlier, the
with respect to the direction of interest, the related stavB§nefit in using DWT decomposition is that it provides mul-
are weighted and summed up to form a combined stave f#poks of the same signal at different levels. It is well under-
more accurate time-delay estimation using subband adap#eod that increasing the number of decomposition levels not
filtering. For the TVSS, since the beams are relatively narro@nly makes the signals more decorrelated but also suppresses
it was found that only three or four sensors may contain tfiée noise at a greater extent. Nonetheless, as the number of
same target returns. Consequenﬂy, 0n|y four channel outplﬂgels increases, the time resolution is halved at each level.
are used. This can result in deterioration of the accuracy of time-delay
estimation. This is especially true for the TVSS data because
the incident signal is only 47 samples long. It was empiri-
cally determined thaf. = 2 is the optimal number of levels
for the 1-ms LFM incident chosen in these cases. In addi-

Both simulated and real TVSS data were used in this testirtpn, downsampling is not used in our decomposition to avoid
The TVSS data were collected in the Gulf of Mexico irinaccuracies in estimating delays that are not multiples of
November 1994 [1]-[3]. The testing on the simulated dath Daubechies wavelet [29] of order 6 was used to perform
demonstrates the accuracy of the proposed schemes and WS operation. Daubechies wavelets are orthogonal, com-
also used to fine tune the algorithm for the testing on the rgadctly supported with frequency response which is maximally
data. The testing on real data sets represents the real-life flseat 2=0 and Q=tt.
of the method for operation in conjunction with TVSS in the 3) Adaptive Filter Order: The adaptive filter order is the
shallow-water environment. The testing results are achievetbst important parameter in the whole process as it deter-
in three steps. First, the multichannel phase compensatioines the target detectability and the accuracy of time delay
is applied to get a combined signal with enhanced targestimation. Several experiments were conducted in order to
returns and reduced clutter. Note that this step only appliesfitad the optimal filter order. It was found that, by increasing
multichannel processing. For single-channel processing, W order of the FIR filter, the detectability of the target peak
skip this step. Second, we apply the subband adaptive filterimgproved significantly. However, increasing the order6)
scheme to the combined signal to obtain accurate time-delaigens the regions in which the minima occur, hence reducing
estimation and generate the output with target returns. Finalllge detectability of these minima, which in turn reduces the

Fig. 3. Phase correction between adjacent sensors.

Ill. TESTRESULTS OFMULTICHANNEL SUBBAND ADAPTIVE
FILTERING
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Fig. 4. (a) Clean simulated backscattered signal. (b) Noisy simulated backscattered signal. (c¢) Combined MSE curve and picked local minima.

accuracy of delay estimation. Additionally, large-order filterB. Simulations on Synthesized Backscattered Data
require more computational efforts. In processing the TVSS
data, a filter of order 6 was used. To show the accuracy of this scheme in time-delay esti-
4) Adaptive Threshold:The choice of the MSE threshold ismation, the subband adaptive filtering method was applied
also crucial in this algorithm. If the threshold is too high, a large® a simulated backscattered signal. For simplicity, a signal
number of local minima are picked which results in less revenf length 1024 (one block) was generated with delayed and
beration removal and clutter rejection in the processed resulittenuated versions of the incident signal [Fig. 4(a)] to simulate
while, for very low threshold, the local minima corresponding tdifferent returns. The actual values of the time delays are shown
the target might be missed altogether. In our proposed scheineTable |. As can be seen, the third and fourth returns, fifth
the threshold is calculated adaptively using Thresheldl — and sixth returns are overlapping in time. White Gaussian noise
«)max(e) + amin(e) wheree is the combined MSEq is a was added to simulate the effects of the channel noise. Fig. 4(b)
ping-dependent constant, and its optimal value can be detgnows the noisy simulated backscattered signal. The first two
mined empirically. returns can barely be seen after adding the noise. The SNR
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TABLE |
SNR VALUES OF DIFFERENTRETURNS AND THEIR LOCATIONS IN THE SIMULATED DATA.
Targets 1 2 3 4 5 6 7
SNR (dB) 3.2637 | -2.7569 | 5.2019 | 0.7649 | 8.1244 | 3.2637 | 6.7855
True Locations 100 187 485 500 680 700 900
Estimated Locations 100 187 485 500 680 700 900
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Fig. 5. Beamforming results for ping 0631. (a) Original data. (b) Single-channel processed data. (c) Multichannel processed data.

values associated with the returns are also shown in Tablalble to correctly estimate its location. This is true even when
Fig. 4(c) shows the combined MSE resulting from the subbattie returns are overlapping in time. One may also notice that
adaptive filtering scheme. Those local minima marked withthe values of the local minima depend on the amplitudes of
“0" show the exact locations of the returns. Table | shows thike bakcscattered signal. The higher the amplitude, the more
estimated locations. From the results, we can see that, eedwious the local minima in the overall combined MSE curve.
though the SNR for some returns were very low, e.g., the SNIRe threshold needs to be chosen properly so that all the local
for the second return was2.7569 dB, the scheme was stillminima corresponding to returns can be picked up.
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Fig. 6. Beamforming results for ping 0625. (a) Original data. (b) Single-channel processed data. (c) Multichannel processed data.

C. Processed versus Unprocessed TVSS Beamformed Respltscessing, and they are generally the brightest returns in the
images. Nonetheless, in the unprocessed beamformed results of
The 18 pings of TVSS data are divided into three groups assme pings, the targets are only prominent in one beam while
cording to the significance of the reverberation effects. In addir the processed beamformed result the target peaks are quite
tion, biologics, bottom features like coral or rock outcroppingybvious in several adjacent beams. Fig. 5(a), (b) and (c) show
and man-made litter of all descriptions can cause difficultieke original, single-channel, and multi-channel processed beam-
in analyzing the backscattered signals. Some typical imagedafmed images for one ping, respectively. For this ping, the true
the processed versus the unprocessed beamformed resultdaaget appears on the starboard side at range cell 380, beams
shown in Figs. 5-7 for different levels of reverberation. Part (82—95. Note that, if the circular array with 120 elements is tra-
in each figure shows the beamformed image of original or uaersed counterclockwise, the sensor at the 12 o'clock position
processed data; part (b) shows the image of single-channel silileking up) is labeled as the first element while the ones at the
band adaptive filtering results, while part (c) shows the mult® o'clock (Port Side) and 3 o'clock (Starboard Side) positions,
channel processed result. Only those peaks that appear congs-the 31st and 91st, are looking into the water volume. As
tently in several consecutive pings are considered as potentiah be seen, for this case, the single-channel processed result
target candidates. is comparable to that of the original beamformed result while
1) Low Reverberation Casedn these cases, the targets cathe target peak is more prominent in the multichannel processed
be clearly seen in the beamformed images even without the presults. From these images, one can see that both the single
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Fig. 7. Beamforming results for ping 0627. (a) Original data. (b) Single-channel processed data. (c) Multichannel processed data.

and multichannel processed results have enhanced the tahgehe single-channel result, one can see from the image that
returns while greatly reducing the clutter and reverberation eéhe target return has been enhanced. This is more obvious
fects at a farther range. Thus, in these cases, single-channel prieen comparing with the original beamformed results, but
cessing provides comparable or better results than the ungieere is still substantial clutter which makes the correct target
cessed beamformed results while the multichannel processidwgection difficult. In Fig. 6(c), the beamformed result of the
provides the best results. multichannel subband adaptive filtering exhibits significantly
2) Moderate Reverberation Case3he reverberation less reverberation effects and the target peak can easily be
effects are much higher in these cases than in the previodentified. Again, both the single-channel and multichannel
cases and the targets can barely be observed in the origim@cessed results show significant improvements in the target
beamformed results. Fig. 6(a), (b) and (c) show the originaletectability while the multichannel processing is more effec-
single-channel, and multichannel processed beamformtaa than the single- channel processing.
results of ping 0625, respectively. This ping has the same targe8) High Reverberation Casedn these cases, the reverber-
as shown previously in Fig. 5. However, due to the motion @ftion effects are very high and the beamformed results of the
the vehicle, the target position is slightly shifted in the beammprocessed data are extremely noisy. Fig. 7(a), (b), and (c)
while the range is approximately the same. The target pestkow the original, single-channel, and multi-channel processed
cannot easily be detected in the original beamformed imagesults, respectively. From Fig. 7(a), it is virtually impossible to
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Fig. 8. Computing HOC results of different orders.

determine where the target location might be from the origingpatial-temporal correlations between consecutive target obser-
beamformed image. The single-channel resultin Fig. 7(b) shouation points. This method does not make anyriori assump-
no visible improvement. The multi-channel processing, hovion about the number of targets, the dynamical information of
ever, made the target return observable. Though image battle target, initial conditions, or background clutter. It allows
ground is still noisy, the target detectability is greatly improvedecursive computation of thepatio-temporatross correlation
Thus, in the high reverberation cases, the multichannel p@mong consecutive data sets.
cessing demonstrates much better performance than the singl&he use of HOC as a postprocessor for beamformed TVSS
channel processing. data was initiated by the following facts. First, the along-track
In summary, the test results of the subband adaptive filteriogverage of the TVSS widens with distance, hence causing a
scheme on the real TVSS data show improvements in the ovetatyet to appear in multiple consecutive pings. HOC is capable
target detectability. Single-channel processing performs well@fidetermining the temporal and spatial dependencies of consec-
the low and moderate reverberation cases but fails to enhantige pings of data. Second, mgoriori information is available
the target returns in the high reverberation cases. Multichanadlout the targets and clutter/noise in the TVSS data. The goal
processing, on the other hand, performs well in all the scenario§the HOC approach in postprocessing the TVSS beamformed
data is to determine theonsistencyn the target locations in
several consecutive pings of the beamformed results. The basic
IV. HIGH-ORDER CORRELATION FORPOSTPROCESSING assumptions behind this approach are: 1) targets should consis-

) ) o ) tently appear in a limited arebb¢amx rangé in several con-
Clearance and avoidance of mines and mine-like objects relycysive pings and 2) there might be more than one target in the

on accurate target detection. Generally, to cover a large argay ching region. In addition, the targets may be barely observ-

TVSS needs to collect 800900 pings of data per run [22]. Thigje or even missed in certain pings due to the movement of the
workload is beyond the capabilities of human operators. In ordgthicle on which the TVSS is deployed.

to postprocess the TVSS beamformed results automatically and
detect all the possible targets while maintaining a false alar . L

rate as low as possible, a method based on high-order correlati nHOC Algorithm for TVSS Shallow-Water Application

(HOC) is developed. The original HOC method was proposedIn order to apply the HOC method, the beamformed results
[24], [25] to detect multiple dim target tracks in heavily clutin the information bearing portion were first convertedioary
tered background from infrared (IR) satellite data. This metha@lues. The information bearing portion corresponding to beams
exploits the fact that a moving target builds a spatial-tempor26—37 and 86—97 is also called the along-track diregtiort
track in the three-dimensional (3-D) space and that there existdeandstarboard siderespectively.



202 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 25, NO. 1, JANUARY 2000

26 27 28 29 30 31 32 33 34 35
Beam

() (d)

Fig. 9. HOC results—port side. (a) Target consistency count. (b) First-order correlation. (c) Second-order correlation. (d) Third-ordencorrelat

1) Target Consistency CounfThe target consistency countrelations among several consecutive pings recursively [24] as
(TCC) is a measure of consistency in the occurrence of a poagposed to only two pings.
in the beamformed image. It indicates how frequently a certainThe first-order correlations can be calculated using
point might be detected as a possible target location in several
consecutive pings. TCC can be obtained by simply stacking an M
summing up the corresponding points of the beamformed 8- (%,1,7) = g Z Z B(k,l,n) B (k+i,14j,n+1)
sults in several consecutive pings in the region of interest. TCC i=—Mj=—N
can be viewed as the zeroth-order HOC. TCC can provide some _ - . (8a)_
information about the consistency in the occurrence of target%"'l'f‘ereg(') is the standard hard limiter thresholding function,
the movement of the vehicle is stable. However, the target lod
tion on the beamformed image changes from ping to ping, espe- (@) {

g\xr) =

N

1, z>0

0, 2<0 (8b)

cially when the vehicle yaws and rolls. When this happens, TCC
provides less reliable information about the true target location.
Thus, we need to calculate HOC of higher orders to overcori¥k, [, n) is the beamformed result of pingat position(k, 1),
this problem. i.e., beank and rangé. Thus,R*(k, [, n), which represents the

2) HOC of Different Orders:Since the target is stationary inresult of the first-order correlation, provides information on how
the water column and the vehicle moves toward certain direbe points ofB(%,1,») at pingn are correlated to their neigh-
tions, there is spatial-tempo@@pendencletween the adjacentboring pointsB(k +i, I+, n+1) at pingn+1. The correlation
pings of data. To find such dependencies, cross correlations Iseevaluated in a window of siz@€M + 1) x (2N + 1). This
tween adjacent pings can be calculated. However, this computgsdow size is chosen under the assumption that the target loca-
only the spatio-temporakorrelation betweetwo consecutive tion changes (due to the vehicle's movement) from one ping to
pings and, hence, no memory is built into the process. The H@@ next do not exceed certain limits. ClearlyAt(k,1,n) =
method solves this problem by allowing one to calculate the cdr-then there is a two-point spatio-temporal sequence initiated
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Fig. 10. HOC results—starboard side. (a) TCC. (b) First-order correlation. (c) Second-order correlation. (d) Third-order correlation.

at location(k, ) of ping » to location(k + ¢,1 4+ j) of ping consistently in(p + 1) consecutive pings [24]. The process of
n+ 1. Although this process can be repeated to identify all sucialculating different orders of HOC results is shown in Fig. 8.
two-point sequences, it cannot provide correlational informa- The choice op is critical in the HOC process since it presents
tion of more than two pings of data. However, in order to declaeetradeoff between clutter removal capability of the HOC and its
a detection, we need to verify if the target shows consistently sensitivity to missing target points at certain pings. More specif-
several consecutive pings of data. To calculate the correlatioally, largep gives better clutter rejection but at the same time
in more than two consecutive pings, the HOC approach builaereases the likelihood of losing the target point in the final
memory into the process and computes correlatiorf? fcur- HOC result when there are several missing target points in some
sively using of the pings. The effect gf can be seen clearly in the following
test results.

RP(k,ln)
M N B. Results of Applying HOC to TVSS Beamformed Data
=g| Y. > Rk Ln)RPTN ki, l+j,n+1) To test the performance of the HOC method, several se-
i=—M j=—N guences of pings of the TVSS beamformed data were studied

(9) (see Figs. 9 and 10). The processed results of the HOC process

are images in which the points satisfy the recursive correlation
wherep is the order of the correlation andis the index of criterion and the background clutter and reverberation are
pings which varies from 1 ta,,... When the ordep increases, substantially removed. The horizontal axis represents the
Nnmax Should decrease such that- n.,,.. = ng for computing beams in the region of interest (26—-37 for the port side and
correlations among, consecutive pings. The initial condition86—97 for the starboard side), while the vertical axis shows
for the above recursive equation&(k,1,n) = B(k,l,n). If the range cell (after 1 out of 47 peak-picking process) from
Rr(k,l,n) = 1, that means a possible target location appeatsto 475 for both sides. Generally, the targets appear in the
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center of the along-track direction, i.e., beams 28-32 for tHaking advantage of this improved SNR, subband adaptive fil-
port side and beams 88-92 for the starboard side. A detecttering achieves very accurate time-delay estimation. The per-
is generally declared if a point appears consistently in three datmance of this scheme was demonstrated on simulated data
of four consecutive pings. as well as real TVSS shallow-water data containing several tar-

The results for one sequence of pings for both the port sigets at moderate to far range with moderate to extremely high
and starboard side are presented here. For this group of degdgerberation. The HOC-based postprocessing method was also
there is no target on the port side. On the starboard side, thdexeloped to find the consistency of the target appearance in the
is a target located at range 380, beams 91-93. Fig. 9(a) shda@amformed output. This process greatly enhances the target
the result of TCC on the port side. Figs. 9(b)—(d) show the HO@turns, removes the competing clutter and reverberation, and
results forp = 1,2, and3, respectively. Close examination ofprovides the exact locations (range and beam) of the targets. It
these results indicates that there is nothing prominent (showimgvides an efficient and simple way to detect low observable
consistently in the beam and range) for any orget(1, 2, and targets in extremely high clutter.
3) of HOC results. This implies that there is no target present on
the port side. Although there is a peak at about range cell 420 and REFERENCES
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