WIND TUNNEL SIMULATION OF THE JOHNSON MATTHEY INC. PLACERITA SPARGER SYSTEM

Final Report

by destroit mondo aso

Dr. Jane H. Davidson Dr. Robert N. Meroney

FLUID MECHANICS AND WIND ENGINEEDING PROGRAM

COLLEGE OF ENGINEERING

COLORADO STATE MMIWERSITY FORT COLLINS, COLORADO

WIND TUNNEL SIMULATION OF THE JOHNSON MATTHEY INC. PLACERITA SPARGER SYSTEM

Final Report

2.4.2 Flow Visualization. . . .

by desgonation and 1.4.5

Dr. Jane H. Davidson Dr. Robert N. Meroney

Fluid Mechanics and Wind Engineering Program Civil Engineering Department Colorado State University Fort Collins, Colorado 80523 Telephone: (303) 491-8330/8574

submitted to

Mr. Mike Wittig Manager of Engineering Johnson Matthey Inc. Catalytic Systems Division 436 Devon Park Drive Wayne, Pennsylvania 19087-1816

May 31, 1987

FMWER86-87 JHD-RNM-2

TABLE OF CONTENTS

Sect	ion							Page
List	of Tables						•	iii
List	of Figures							iv
1.0	Introduction						•	1
2.0	Experimental Facility and Technical Ap	pproach						2
	2.1 The Model Sparger System							2
	2.2 Nozzle Configurations							6
	2.3 Industrial Wind Tunnel							6
	2.4 Instrumentation							9
	2.4.1 Gas Chromatograph							9
	2.4.2 Flow Visualization							12
	2.5 Operating Conditions							14
	2.5.1 Actual Conditions							14
	2.5.2 Wind Tunnel Simulation							15
	2.6 Data Analysis		•	• •		•	•	16
3.0	Experimental Results			• •			•	19
	3.1 Initial Tests							22
	3.2 Final Tests		•	• •	• •	•	•	26
4.0	Conclusions and Recommendations			• •			•	34
	Appendix - Complete Set of Test Result	ts						A-1

LIST OF TABLES

Page Nozzle Configurations Tested Table 1. . . 6 Table 2. Test Conditions 22 Initial Comparative Rankings of Nozzles. . . . 23 Table 3. iii Deviation/Mean for Figure 17. Contours of Constant Deviation/Mean for Slotted Nozzle at 0° Orientation with Fins.

Page

Figure	1.	Model Placerita Sparger System Installed in Industrial Wind Tunnel	3
Figure	2.	a) Jet Injection Angle to a Moving Mainstream	5
Figure	3.	Fluid Dynamics and Diffusion Laboratory, Colorado State University.	7
Figure	4.	Industrial Aerodynamics Wind Tunnel	8
Figure	5.	Photographs of (a) the Gas Sampling System, and (b) the HP Integrator and Gas Chromatograph	11
Figure	6.	Gas Chromatograph Sampling Port Location on Face of Downstream Catalyst Panel	13
Figure	7.	Gas Chromatograph data obtained for Hollow Cone 180° nozzle at 0° orientation	18
Figure	8.	Grid Plot of Deviation/Mean Concentration for Hollow Cone 180 [°] Nozzle at 0 [°] Orientation	20
Figure	9.	Contours of Constant Deviation/Mean Concentration for Hollow Cone 180° Nozzle at 0° Orientation	21
Figure	10.	Grid Plot of Deviation/Mean Concentration for Slotted Nozzle at 0° Orientation.	24
Figure	11.	Contours of Constant Deviation/Mean Concentration for Slotted Nozzle at 0 ⁰ Orientation	25
Figure	12.	Photographs of Triangular Fins on Sparger Pipes	28
Figure	13.	Triangular Fin	29
Figure	14.	Grid Plot of Deviation/Mean Concentration for Hollow Cone 180° Nozzle at 0° Orientation with Fins	30
Figure	15.	Contours of Constant Deviation/Mean Concentration for Hollow Cone 180° Nozzle at 0° Orientation with Fins	31
Figure	16.	Grid Plot of Deviation/Mean Concentration for Slotted Nozzle at 0° Orientation with Fins	32
Figure	17.	Contours of Constant Deviation/Mean for Slotted Nozzle at 0 [°] Orientation with Fins	33

1.0 Introduction

The Catalytic Systems Division of Johnson Matthey Inc. designs and manufactures catalytic reduction systems to remove environmental pollutants from the exhaust gases of large gas turbines. Exhaust gases pass through a large duct in which catalytic panels are strategically located to selectively remove pollutants. At one location along the duct, just upstream of a series of catalyst panels, chemical sprays are mixed with the exhaust gas stream via the Johnson Matthey Placerita Sparger System. Efficient reduction of pollutants requires homogeneous mixing of the exhaust gases and chemical sprays before the exhaust stream passes over the catalyst. The degree of mixing is dependent upon a number of design variables including duct design, placement of the sparger system in relation to the location of the catalytic panels, and sparger spray nozzle design and configuration.

Johnson Matthey designs each catalytic system to fit the specific requirements of the gas turbine manufacturer's particular application. Space constraints in a current application require placement of the sparger system in close proximity to the downstream catalytic panels. Because the duct length in which the chemical spray and exhaust gases can mix is relatively short, the design of the Placerita Sparger System is critical. The spray nozzles must be configured to produce optimum mixing.

This report presents the results of an experimental study of the efficacy of the Johnson Matthey SE Placerita Sparger System to produce a homogeneous mixture of spraying fluid and exhaust gas. The goal of the study was to determine the nozzle type and configuration which provides the best mixture of exhaust gas and spray fluid at a point 2 feet downstream of the spargers. To accomplish this goal, a full scale model of a 6 ft. by 6 ft. segment of the sparger system was constructed and tested in the Industrial Wind Tunnel (IWT) located in the Fluid Dynamics and Diffusion Laboratory (FDDL) at Colorado State University (CSU). The mixing characteristics of a variety of nozzle types, spray angles and orientations were evaluated by introducing hydrocarbon tracers to the nozzle spray and then measuring tracer dilution using gas chromatography.

A full description of the testing program including the model, the instrumentation, and data analysis is given in Section 2.0. A summary of the results is presented in Section 3.0. The complete set of results is included in the Appendix to this report. The implications of the testing program to the Johnson Matthey SE Placerita Sparger Design are discussed in Section 4.0.

2.0 Experimental Facility and Technical Approach

2.1 The Model Sparger System

A full scale model of the Johnson Matthey Placerita Sparger System was constructed at CSU and installed in the IWT. The model tested was a 6 ft. by 6 ft. quarter section of one panel of the Brown Boyeri Corporation Ammonia Injection Grid as shown in the Johnson Matthey drawing number 02-0D0605, revision A, dated 3-2-87. Figure 1 is a sketch of the model injection grid as it was installed in the wind tunnel. The model consisted of three sparger pipes connected to a manifold riser pipe. The piping was supported in the wind tunnel by

ω

a 1 inch by 8 inch wood panel bolted to the floor and ceiling of the tunnel. The compressed air inlet was located at the base of the manifold. The tracer gas was introduced along with the compressed air at this point. The turbulent entrance conditions and length of the riser manifold assured adequate mixing of the tracer gas with the compressed air. A pressure gage in the gas inlet line was used to monitor the sparger inlet pressure. Two Fischer and Porter flowrators, one located in the compressed air line and one in the high pressure tracer gas line, were used to measure total nozzle flow rate and tracer gas flow rate respectively.

The model had a total of 9 nozzles located three per sparger as shown in Figure 1. The nozzle orientation angles tested were 0, 60, 90, and 180 degrees. The nozzle orientation angle is shown with respect to the wind tunnel flow in Figure 2. The orientation was changed during testing by rotating the sparger pipes in the manifold flanges. Each sparger was fitted with 4 possible nozzle locations to accomodate the change in location required for a 90 degree orientation.

The model included two 6 ft. by 6 ft. catalyst panels. One of these panels was installed 4 inches upstream from the sparger pipes and the other was installed 2 feet downstream from the sparger pipes. Each panel was made up of 9 untreated 100 cells/sq. inch catalyst blocks provided by Johnson Matthey. The blocks were supported in a wood frame and bolted in place to the floor and ceiling of the wind tunnel.

gure 2. (a) Jet Injection Angle to a Moving Mainstream (b) Nozzle Location for 0,180,60 and 90⁰ Orientation 2.2 Nozzle Configurations

Table 1 is a listing of the nozzle configurations examined in the study.

Nozzle Type	Manufacturer & Model No.	Spray Angle (Degree)	Orientation Angle (Degree)
	0.0.00 (1/0.0000	100	
Hollow Cone	37-180)	180	180
Hollow Cone	S.S.CO (1/8-8666 37-150)	150	0
Hollow Cone	S.S.CO (1/8-8666	120	0
	37-120)		180
Slotted	S.S.CO (1/8-8666 37-120)	120	0
Knife	BETE (SL012)	N/A	60
	preper was fifted with 4 poss	ible nozzle loc.	90
			180
Full Cone	BETE (AD-CUSTOM)	35	90
			180
Full Cone	BETE (AD-CUSTOM)	70	0
			60
			180

Table 1. Nozzle Configurations Tested

The hollow cone 180 and the slotted nozzles were evaluated with flow altering devices installed in the wind tunnel. These tests are discussed in detail in Sections 3.2 and 4.0.

2.3 Industrial Wind Tunnel

Location of the IWT in the FDDL is shown in Figure 3. Figure 4

FLUID DYNAMICS & DIFFUSION LABORATORY

FIG. 3. FLUID DYNAMICS AND DIFFUSION LABORATORY ENGINEERING RESEARCH CENTER COLORADO STATE UNIVERSITY

Figure 3. Fluid Dynamics and Diffusion Laboratory, Colorado State University

Figure 3. Fluid Dynamics and Diffusion Laboratory, Colorado State University

is a schematic drawing of the recirculating tunnel. The wind tunnel test section is 6 ft. wide, 60 ft. long and has an adjustible ceiling height from 5 ft. to 7 ft. Air flow is generated by a 16-blade axial fan driven by a single-speed 75 hp induction motor. Mean air speed is controlled by varying the pitch of the fan blades and can be continuously adjusted from 0 to 80 ft/s. The flow enters the test section through a 4:1 contraction which produces a uniform low turbulence level flow.

For the present study, the nominal mean wind speed was held constant. The speed was determined by matching the actual operational ratio of nozzle exit to exhaust gas velocities. The adjustible test section roof was set at a constant height of 6 ft. Location of the sparger system and catalyst panels within the test section is indicated in Figure 4. Access to the sparger system was possible through three doors located both upstream and downstream of the sparger system as well as in the space between the two catalyst panels.

2.4 Instrumentation

2.4.1 Gas Chromatograph

A Flame Ionization Detector (FID) was used to measure hydrocarbon gas concentrations levels 2 ft downstream of the sparger piples. The hydrocarbon gas used in this project was 100% ethane (C_2H_6) supplied and certified by Scientific Gas Products. The FID operates on the principle that the electrical conductivity of a gas is directly proportional to the concentration of charged particles within the gas.

Ions are formed by the hydrocarbon tracer in a gas sample being combusted in an hydrogen-air flame within the FID. The ions and electrons formed enter an electrode gap and decrease the gap resistance. The resulting voltage drop is amplified by an electrometer and fed to an Hewlett packard 3380 (HP 3380) integrator. The output of the integrator is connected to an IBM-AT microcomputer. When no sample is flowing, a carrier gas (nitrogen) flows through the FID. Due to certain impurities in the carrier, some ions and electrons are formed creating a background voltage. When the sample of interest enters the FID, the voltage increase above this background level is proportional to the degree of ionization and correspondingly the amount of tracer gas present. The lower limit of measurement is imposed by the instrument sensitivity and the background concentration of tracer gas in the wind tunnel. Background concentrations were measured and subtracted from all the reported data.

The tracer gas sampling system consists of a series of fifty 30 cc syringes mounted between two circular aluminum plates. A variable speed motor controlled by the microcomputer raises a third plate which lifts the plunger on all 50 syringes simultaneously. When the syringe plunger is raised, a sample from the tunnel is drawn into the syringe container. The sampling procedure consists of flushing the syringe three times and then drawing the actual test sample. Photographs of the sampling system and the FID are shown in Figure 5. The 28 cc samples were drawn into each syringe over a l minute time period and consecutively injected into the FID. The output signal from the HP 3380 is input to the computer and displayed on the computer output as measured concentration minus background concentration in parts per million (ppm). Background measurements were obtained approximately 10

Figure 5. Photographs of (a) the Gas Sampling System, and (b) the HP Integrator and Gas Chromatograph

feet upstream of the model sparger. The maximum error in concentration measurements is estimated at $\pm 10\%$.

Instrumentation ports for the gas chromatograph are located on the upstream face of the downstream catalyst panel. The location on the catalyst panel of the 47 sampling ports is shown in Figure 6. The sampling ports are short lengths of 1/8 inch OD brass tubing that are mounted flush with the upstream face of the catalyst block to flexible tubing that attach to the syringes of the tracer gas sampling system.

2.4.2 Flow Visualization

The nozzle jet flows were made visible by introducing titanium tetrachloride into the wind tunnel. A reaction of the titanium tetrachloride with moisture in the air produces a fine white suspension of titanium oxide, which is clearly visible. Visualization studies of two nozzle configurations were recorded on 1/2 inch VHS color videotapes which were provided separately to the sponsor.

Two visualization techniques were used. First, a cotton ball was saturated with a small quantity of titanium tetrachloride and then manually held in the flow stream at the end of a wand. This relatively simple method was used to avoid clogging of the sparger system by the titanium oxide suspension. The nozzle jet deflection experienced under the influence of the duct flow was difficult to clearly distinguish using this technique. The nozzle flow patterns were easier to see when the titanium tetrachloride was introduced directly into the sparger gas flow. Unfortunately, the nozzles were quickly clogged and the flow was completely plugged within a couple of

Figure 6. Gas Chromatograph Sampling Port Location on Face of Downstream Catalyst Panel minutes.

2.5 Operating Conditions

The wind tunnel tests were designed to produce nozzle spray and exhaust gas mixing equivalent to that expected during actual operation of the Placerita Sparger System. Parameters matched during the study include the velocity ration V_0/V_1 where V_0 is the nozzle exit velocity and V_1 is the duct flow velocity, and the total nozzle flow rate.

2.5.1 Actual Conditions

Molecular Weight

	Actual	ope	rating	conditions	wit	thin	the	gas	turbine	exhaust	duct
as	specified	l by	Johnso	n Matthey	are	as	follo	ows:			

Duct	cross	sectional	area	(sq.	ft.)		774
Exhai	ist Ga	g •					

Total flow rate (#/hr.) 1,58	8,000
Total flow rate (ASCFM) 79	9,385
Pressure (in WC)	-9.00
Temperature (DEG-F)	662
Analysis (vol %):	
Nitrogen	69.50
Argon	0.90
Oxygen	12.90
Carbon-Dioxide	2.90
Water	13.80

The resulting nominal exhaust gas velocity V_1 is 17.2 ft/sec.

27.22

Actual nozzle operating conditions as stated by Johnson Matthey are: Total flow (SCFM) 1.6/nozzle Temperature (DEG-F) 400 Pressure (psia) 28

The inlet sparger pressure is maintained at just above the critical choking pressure of 27.2 psia (based on a duct pressure of 14.38 psia). Therefore, the nozzle exit velocity is sonic and equal to 1345 ft/sec. The actual operational velocity ratio is 78.2.

2.5.2 Wind Tunnel Simulation

entsigul avioni of lapavgari oper ation-vasidentrethetobe caomavitem abtal

Wind Tunnel Operation

The IWT test section acts as a model of the gas turbine exhaust duct. The mean air speed in the wind tunnel was set so that the simulated tests were conducted at the same velocity ratio as that in effect during actual operation. The nozzle exit velocity is that of the local sonic velocity of air (c) calculated as

 $c = (kg_RT)^{1/2} = 1030 \text{ ft/sec}$

where k is the specific weight equal to 1.4, g_c is the appropriate conversion of 32.2 lbm-ft/lbf-sec², R is the gas constant of air equal to 53.3 ft-lbf/lbm -^oR, and T is the absolute air temperature at the nozzle exit equal to 716^oR. Thus, in order to maintain a constant velocity ratio of 79.2, the wind tunnel mean gas speed was held constant at 13 ft/sec. Wind tunnel speed was monitored with a pitot tube mounted in the tunnel. The tube was connected to an electric manometer, and the tranducer output voltage was monitored on a digital

voltmeter.

Sparger Operation

The sparger nozzle flow was controlled by regulating the inlet sparger pressure. Once the critical pressure is reached in the sparger, the nozzles are choked and the mass flow rate (m) through the nozzles increases with increasing inlet pressure (p) as

m = 0.63 pAc/RT

where A is the nozzle exit area, R is the gas constant, and T is the sparger absolute gas temperature. The critical pressure in the IWT is 23.1 psia. This value is calculated based on a local atmospheric pressure equal to 12.2 psia.

Simulation of sparger operation was determined by a maximum total nozzle flow rate of 14.4 SCFM (1.6 SCFM per nozzle). Preliminary tests, in which the nozzle flow rate was allowed to exceed this value, indicate that mixing improves with higher mass flow rates. Based on these results, the final tests were controlled by setting the sparger pressure as high as possible above the critical pressure without exceeding the stated maximum permissible flow rate. The operating pressure and resulting total nozzle flow rate were recorded for each test. If the measured flow rate at critical pressure exceeded or equalled the 14.4 SCFM, the test was conducted at the critical pressure.

aug is Vednissiadani its annosos ani si i ana 's - mai/dul-li c.cc o

2.6 Data Analysis

The tracer gas concentration measurements were designed to provide a basis for evaluating and differentiating the mixing performance of the various nozzle types and orientations tested. Gas

concentration measurements were obtained for each test at the 47 points described in Section 2.4.1 and shown in Figure 6. An example of the data obtained during a test of the hollow cone 180 nozzle at an orientation of zero degrees to the flow is shown in Figure 7. The tube number, located in the far left column, corresponds to the physical location of the sampling location as indicated in Figure 6. The X and Y locations indicate the horizontal and vertical distances of the probe from the tunnel center. Point tracer gas concentrations in ppm shown in column 4 are obtained by subtracting the background tracer concentration from the measured concentration:

Conc. (ppm) - Meas. value - background value.

In order to quantify the difference in mixing efficiency of the various nozzle options, statistical properties of each test were computed. The mean value is the arthmetic average of the 47 point values:

Sample Mean (ppm) = ξ Conc./47 The deviation (Dev) of each sample is simply the difference between the sample concentration and the mean concentration.

Dev (ppm) = Conc - Mean.

The standard deviation (Std) gives a global description of how the concentrations are distributed about the mean and is determined as

Std (ppm) = $[\xi (Conc. - Mean)^2/47]^{1/2}$.

The standard deviation divided by the mean (Std/Mean) is an average measure of how well the tracer gas is mixed with the duct air flow. A complete homogeneous mixing would result in a Std/Mean equal to zero. In comparing the various tested options, the best mixing is indicated by the lowest value of this ratio.

The mixing distribution among the 47 locations is easier to see

RUN NUMBER 30NOZZLE TYPEHOLLOW CDNE 180 AT 0WIND SPEED 396.00 CM/S AT 100.0 CMAIR TEMP. 22.0 C AT 100.0 CMTRACER TYPEC2H6SAMPLE MEAN (PPM)31.52SAMPLE STD. (PPM)24.29STD/MEAN.770

TUBE	NO.	X	Y	CONCENTRATION	DEV/MEAN	DEV/STD
		(LA)	(LA)	(PPn)	1 404	7 101
2		.00	5.00	09.0 71 5	1.004	2.100
4		.00	20.00	18 7	- 409	- 530
A		.00	40.00	22.7	- 280	- 350
5		.00	-5.00	91 7	1 909	2 479
4		.00	-20.00	18.6	- 409	- 531
7		.00	-40.00	16.6	- 474	615
8		5.00	.00	58.5	.856	1,110
9		5.00	5.00	51.2	. 625	.811
10		5.00	-5.00	64.9	1.059	1.375
11		10.00	.00	35.7	.133	.172
12		10.00	10.00	25.7	185	240
13		10.00	20.00	15.1	521	677
14		10.00	-10.00	35.1	.114	.148
15		10.00	-20.00	17.0	461	598
16		20.00	.00	20.8	340	442
17		20.00	10.00	15.8	500	649
18		20.00	20.00	15.0	524	680
19		20.00	40.00	14./	552	671
20		20.00	-10.00	10.0	4/0	018
21		20.00	-20.00	14.0	-, 330	070
27		40.00	-40.00	21.0	- 300	- 401
24		40.00	20.00	14 2	- 551	- 715
25		40.00	40.00	14.2	- 549	712
26		40.00	-20.00	15.3	515	669
27		40.00	-40.00	15.2	518	672
28		-5.00	.00	86.2	1.733	2.249
29		-5.00	5.00	73.1	1.318	1.711
30		-5.00	-5.00	91.4	1.900	2.466
31		-10.00	.00	63.4	1.012	1.314
32		-10.00	10.00	48.2	.528	. 686
22	•	-10.00	20.00	18.9	400	520
34	her i	-10.00	-10.00	56.9	.804	1.044
35	•	-10.00	-20.00	22.5	286	3/2
50		-20.00	.00	25.5	191	248
3/		-20.00	10.00	22.0	282	380
20		-20.00	20.00	14.0	- 541	772
40	hillo	-20.00	-10.00	23.4	- 250	/32
41		-20.00	-20.00	15 5	- 507	- 458
42		-20.00	-40.00	14.0	555	720
43		-40.00	.00	18.3	-, 418	543
44		-40.00	20.00	12.9	592	768
45		-40.00	40.00	12.8	593	769
46		-40.00	-20.00	13.5	571	741
47		-40.00	-40.00	13.8	562	729

.

Figure 7. Gas Chromatograph data obtained for Hollow Cone 180° nozzle at 0° orientation

18

in the plots shown in Figures 8 and 9. Figure 8 is a grid plot of the deviation of each point divided by the mean concentration value. (The actual data is listed in Figure 7 in column 5.) The plot indicates that tracer concentrations are significantly higher just downstream of the nozzle than in the areas between nozzles. Negative values indicate concentration levels lower than the mean. Correspondingly, positive values reflect higher readings than the mean. The same data is plotted in Figure 9 in the form of contours of constant values. The contour map again shows high concentration levels in the immediate area of the nozzle and lower levels throughout the remaining space. The map is approximated in areas between sampling ports by linear interpolation.

3.0 Experimental Results

Table 2 indicates the test conditions and the standard deviation to mean ratios for the 18 wind tunnel simulations completed. The Appendix to this report gives a complete data listing of these test runs. The decision as to which combinations of nozzle type and orientation to simulate initially was made on the basis of the suggestions of Johnson Matthey (reference is made to the specifications in the March 24 document no. 040-6-0082). Based on the results of these first nine simulations, the nine additional wind tunnel tests indicated in Table 2 were completed.

RUN NO. =	e plot indicates					
	just downstream of					
593	564	lo aruojno	280		532	549
592	-,541	400	408	521	524	551
	282	.528		185	500	
	282	.528	.318 1.269	185	500	
418	282	.528 1 1.012 1	.318 1.269 .733 1.684	185 .625 .856 .133	500	309
418	282 191	.528 1 1.012 1 1	.318 1.269 .733 1.684 .900 1.909	185 .625 .856 .133 1.059	500 340	309
418	282 191 258	.528 1 1.012 1 1 .804	.318 1.269 .733 1.684 .900 1.909	185 .625 .856 .133 1.059 .114	500 340 476	309
418	282 191 258	.528 1 1.012 1 1 .804	.318 1.269 .733 1.684 .900 1.909	185 .625 .856 .133 1.059 .114	500 340 476	309
418	282 191 258 507	.528 1 1.012 1 1 .804 286	.318 1.269 .733 1.684 .900 1.909 409	185 .625 .856 .133 1.059 .114 461	340 476 536	309
418	282 191 258 507	.528 1 1.012 1 1 .804 286	.318 1.269 .733 1.684 .900 1.909 409	185 .625 .856 .133 1.059 .114 461	340 476 536	309
418	282 191 258 507	.528 1 1.012 1 1 .804 286	.318 1.269 .733 1.684 .900 1.909 409	185 .625 .856 .133 1.059 .114 461	500 340 476 536	309
418 571	282 191 258 507 555	.528 1 1.012 1 1 .804 286	.318 1.269 .733 1.684 .900 1.909 409	185 .625 .856 .133 1.059 .114 461	500 340 476 536	309

6

C

Figure 8. Grid Plot of Deviation/Mean Concentration for Hollow Cone 180° Nozzle at 0° Orientation

Figure 9. Contours of Constant Deviation/Mean Concentration for Hollow Cone 180⁰ Nozzle at 0° Orientation.

downstroom catalyst panel. 21

Run #	Nozzle Type	Spray Angle	Orientation Angle	Pressure (psia)	Flow (SCFM)	Comments	Std/Mean
Init	ial Wind Tun	nel Sim	ulations	1	- Ph		
10	Hollow Cone	120	0	26	14.4		0.783
20	Hollow Cone	150	0	26	14.4		0.783
30	Hollow Cone	180	0	27	14.4		0.770
40	Slotted	120	0	26	14.4		0.724
50	Full Cone	70	0	23	17.0	High Flow	0.935
60	Full Cone	70	60	23	17.0	High Flow	0.840
70	Knife	N/A	60	30	14.4	U	1.440
80	Knife	N/A	90	30	14.4		0.930
90	Full Cone	35	90	23	17.7	High Flow	0.853
Fina	al Wind Tunne	l Simula	ations				
100	Hollow Cone	180	180	27	14.4		0.844
110	Hollow Cone	120	180	26	14.4		0.961
120	Full Cone	70	180	23	17.0	High Flow	0.912
130	Knife	N/A	180	30	14.4	Back Flow	
140	Full Cone	35	180	23	17.0	Back Flow	
30F	Hollow Cone	180	0	27	14.4	Triangular Fine Added	0.577
30FN	Hollow Cone	180	0	27	14.4	Fins Added Center Nozz Removed	**** 21e
40B	Slotted	N/A	0	26	14.4	Slats Added	1 0.963
40F	Slotted	N/A	0	26	14.4	Fins Added	0.545

Table 2. Test Conditions

3.1 Initial Tests

The results of the initial nine test runs are reported in the first section of Table 2. The operating pressure indicated in the table is that required to maintain the desired flow rate. The measured total flow rate for all nine nozzles is reported in column six of the table. It is not possible to operate either of the full cone nozzles choked without exceeding the maximum permissable flow rate of 1.6 SCFM per nozzle. Based on a comparison of the ratios of Std/Mean, a ranking of the nozzle-orientation combinations is given in Table 3. The full-cone nozzles are eliminated from the ranking since they do not meet the flow rate restriction.

Table 3. Initial Comparative Rankings of Nozzles

Ranking (Best to Worst)	Nozzle-Orientation	Std/Mean	Range of Dev/Mean	
			High	Low
1 893	Slotted - 0	0.724	1.86	55
2	Hollow Cone 180 - 0	0.770	1.91	59
3	Hollow Cone 150 -0	0.783	1.61	63
	Hollow Cone 120 - 0	0.783	1.74	60
4	Knife - 90	0.930	3.40	50
5	Knife - 60	1.440	8.91	47

Based on the rankings shown in Table 3, the focus of final testing was the slotted and hollow cone 180 nozzles. It should be noted however, that the variation between the results of the nozzle-orientations ranked 1 through 4 is statistically small and mixing characteristics may not vary significantly. The high and low values of Dev/Mean, shown in columns 4 and 5 of the table, are the extreme values and indicate the spread of the sampled concentrations about the mean. The grid plots and contour maps for the hollow cone 180 and slotted nozzles at 0 degrees orientation to the duct flow, shown in Figures 8 - 11, indicate that neither nozzle results in a completely homogeneous mixture of spray fluid and duct flow. In both cases, the concentrations of tracer gas are higher immediately downstream of the center nozzle than they are in the space between nozzles. Most importantly however, the results show that some spraying fluid reaches every sampling location on the face of the downstream catalyst panel.

Std/Mean, a ranking of the norsle-orientation combinations is given in

Table 3. The full-cone uszales are eliminated from the ranking since

they do not meet the flow rate restriction.

1

-.504

-,505

.080

Table 3. Initial Comparative Rankings of Nozzles

RUN ND. = 40

						Ranking (Jest 1
551 88 08 08 08	528		419 180 - 0 150 -0 120 - 0		495	
539	487	443	481	487	480	
	100 13300	.767	1.412 .897	304	-,452	
303	.215	1.78B 1	1.859 1.138 1.857 1.181	.337161 .400	276	

edd ers ,eldet .252 to 2 1.319 a sameles at mo.198 meet vo.421 sector.

-.519 -.466 -.377 -.445 -.463 -.494 -.402

180 and slotted nozzles at 0 degrees prientation to the duct flow, shown in Figures 8 - 11, indicate that neither nozzle results in a

517	506	464	484	465

Figure 10. Grid Plot of Deviation/Mean Concentration for Slotted Nozzle at 0⁰ Orientation

3.2 Final Tests

During the nine final tests of the project, a nozzle orientation of 180 degrees was tested as well as the addition of flow altering devices to the sparger pipes. Flow visualization carried out during the initial set of runs indicated that the nozzle spray flow was dominated by the duct flow. Even though the exit velocity of each nozzle is sonic, the velocity of the nozzle flow is rapidly reduced as the spray area expands within the duct. Thus, the duct flow dominates the total flow pattern. Testing of the nozzles in the 180 degree orientation was carried out to determine if any improvement in mixing would result from the combination of two factors: the turn of the nozzle flow over the sparger piping, and an increase in distance of approximately 4 inches over which mixing can occur. The results of these tests do not indicate an improvement in mixing.

Flow visualization proved that with an 180 degree orientation both the knife and full cone 35 nozzles cause spray to flow upstream through the catalyst plate. Johnson Matthey specified that no spray fluid reach the upstream plates and thus no concentration measurements at 180 degrees were taken with these nozzles. As shown in Table 2, the Std/Mean values obtained with the hollow cone 180 and 120 indicate a degradation in mixing with this orientation. This seemingly contradictory result is explained by the visualization TV tape of the hollow cone 180 flow pattern. The TV tape indicates that the hollow cone nozzle actually sprays fluid backwards (ie. the flow stream moves back over the body of the nozzle). Thus the zero degree orientation.

The runs presented in Table 2 designated by a number followed by the letter F are simulations in which triangular fins were added to the sparger pipes. Photographs of the fins on the pipes are shown in Figure 12. The fins are aluminum and were connected to the top and bottom of each sparger pipe. The fins were designed to increase mixing by introducing large scale vorticity and turbulence into the duct flow immediately upstream of the nozzles. Similar fin designs are often used to increase heat transfer rates in gas flows. A sketch of the fin is shown in Figure 13. The performance of both the slotted and hollow cone 180 nozzles was improved by the fins. The concentration measurement std/mean was reduced 25% in both cases. The grid and contour plots of these two runs, shown in Figures 14 - 17, indicate a more uniform mixture of tracer gas. The addition of the fins reduces the concentrations immediately downstream of the center nozzle and increases the concentrations between nozzles' relative to the concentrations measured without fins. Flow visualization confirms the measured mixing improvement. The hollow cone nozzle flow quickly became plugged by the titanium oxide; nonetheless, in that section of the video tape the positive effect of the fins can be seen. The slotted nozzle visualization was more successful in the sense that it is easier to see. The fins clearly increase the spray flow in the area between nozzles.

The addition of vertical wooden slats to the duct flow did not improve mixing. Eight 2 inch wide by 6 feet long slats were attached to the sparger pipes in the vertical direction during testing of the slotted nozzle. The results of this test are listed as run #40B in Table 2.

As a worst case test of the sparger system, one simulation was

Figure 12. Photographs of Triangula 72 has on Sparger Pipes

Figure 12. Photographs of Triangular Fins on Sparger Pipes 28

Figure 14. Grid Flot of Deviation/Mean Concentration for Hollow Con-

RUN ND. = 30F

598		-,594		.016		518	528
518		531	395	469	535	561	560
	×		547				
		.16/	.503	.457	114	366	
.086		.516	.803 .773 1.285	.614 1.082	.413 .165 .834	-,185	049
		.555	1.653		.579	217	
507		486	083	.231	347	540	536
533		549		222		520	518

5

C

Figure 14. Grid Plot of Deviation/Mean Concentration for Hollow Cone 180° Nozzle at 0° Orientation with Fins

Figure 15. Contours of Constant Deviation/Mean Concentration for Hollow Cone 180° Nozzle at 0° Orientation with Fins

Figure 16. Grid Plot of Deviation/Mean Concentration for Slotted Nozzle at 0⁰ Orientation with Fins carriadonyteda mhichtika sectroparaterien enguedo dhirofest thitten todisation of the objectes charres at is a of the arrive to the operator of a costle failure. The statistic charres are bible is a sector failure of and obvective to a statistic charres are bible is a sector failer of and obvective to a statistic charres are bible is a sector of the statistic charres are and obvective to a statistic charres are sector and the state of the statistic charres are and obvective to a statistic charres are stated are stated as a statistic charres are to accord to an array of the statistic charres are shown and the state of the the state of the states are stated of the states are stated and the states are states and the the state of the states are stated of the states are states are states and the states are states and states are stated of the states are states are states and the states are states and the states are stated of the states are states and the states are states are states and the states are states and the states are states are states and the states are states are states and the states are states are

Figure 17. Contours of Constant Deviation/Mean for Slotted Nozzle at 0⁰ Orientation with Fins

carried out in which the center nozzle was removed. This test is an indication of the mixing characteristics of the system in the event of a nozzle failure. The statistical analysis of this test is misleading and thus the actual numerical results are not reported in Table 2. The loss of a nozzle resulted in virtually no spraying fluid downstream of that nozzle.

4.0 Conclusions and Recommendations

The performance of a variety of nozzle types and nozzle orientations was experimentally evaluated in a wind-tunnel model of the Johnson Matthey SE Placerita Sparger System. A series of tests were performed to determine the combination of nozzle design and nozzle orientation which results in the most homogeneous mixture of spray fluid and duct gas at the face of the downstream catalyst panel. A quantitative measure of mixing performance was obtained by introducing a tracer gas into the nozzle flow and then measuring tracer gas concentrations 2 feet downstream of the sparger pipes. Flow visualization of the nozzle spray patterns aided in the final selection of nozzle types and orientations to be tested.

The test results indicate that, of the combinations tested, optimum mixing is obtained with the slotted nozzle oriented at 0 degrees to the duct flow. However, the differences in mixing efficiencies of the slotted nozzle and the hollow cone nozzles oriented at 0 degrees to the main flow is within the experimental margin of error. It is recommended that one of these nozzles oriented at 0 degrees be selected for the final sparger design. All other nozzle types and orientations should be excluded from consideration.

The final selection criteria should be based on cost and operational reliability rather than on the small numerical differences of tracer gas concentration measured in the model tests.

The knife and full cone nozzles exhibited substantial degradation in mixing performance in comparison to the slotted and hollow cone nozzles. In addition, at pressures sufficiently high to choke the nozzle, the flow rate of the full cone nozzle is higher than the maximum permissable spray flow rate of 1.6 SCFM. It is important to note that the conclusions drawn in this report apply only to operational situations in which the nozzle mass flow rate is restricted to 1.6 SCFM per nozzle. During preliminary tests in which the mass flow rates of the knife nozzles were allowed to exceed this value, the performance of this nozzle surpassed that of the slotted nozzle.

The mixing characteristics of the "best" nozzles (ie. the slotted and hollow cone 180 oriented at 0 degrees) can be improved by altering the flow pattern within the duct itself. The addition of six rows (one along the top and bottom of each sparger pipe) of triangular fins or spikes to the flow improved the mixing 25 percent. The effect of the fins on the flow pattern within the duct is shown in the video taped flow visualizations. The fins appear to bend and spread the nozzle spray away from the immediate area of the nozzle itself and also to create circulatory motions in the flow. It is difficult to predict if the inclusion of similar fins in an actual sparger system would result in the same magnitude of improvement. The wind tunnel flow has a low turbulence level uniform flow. The addition of the fins to this flow increases turbulence diffusivities and thus mixing rates. The exhaust duct flow of a gas turbine is likely to be highly

turbulent and contain large nonuniformities in the flow pattern. Thus the mixing characteristics of such a flow may not be changed as substantially by the addition of vortex generating devices such as the triangular fins. Additional testing with the wind tunnel flow altered by turbulence generating devices could be performed to determine the benefits of the fins under more realistic conditions.

The tests performed during this project were designed to help select the "best" nozzle type and orientation. Colorado State University can not assure Johnson Matthey that the performance of the recommended combination will provide sufficient mixing for the catalytic process. However, the test data do provide some information in this regard. First, during testing, nozzle spray fluid was detected at every sampling port on the face of the downstream catalyst panel. The lowest measured concentration for both the slotted and hollow cone 180 nozzles is approximately 60% less than the mean concentration. Second, the tests indicate where the problem areas are located along the catalyst face. The highest concentration levels are immediately downstream of each nozzle in an area approximately 10 inches in diameter. The spraying fluid concentration decreases with increasing radial distance from the nozzle until the spraying pattern of the adjacent nozzles is seen. The nozzles are located nominally every 2 feet. Thus high concentration levels account for nearly 55% of the total catalyst cross sectional area. These high concentrations are approximately 2 times that of the mean concentration. The failure of a nozzle creates large areas of low concentration.

The tests performed were designed to predict actual sparger operation. The low turbulence level and uniformity of the wind tunnel flow should result in a conservative estimate of mixing in an actual exhaust duct.

Appendix

The appendix to this report contains the data of the test tune listed in Table 2. The results of each test run are presented in three parts. The first data sheet lists the run number and test description, the standard deviation/mean, and the weasured concentrations, the deviation/mean, and the deviation/standard deviation at each sampling port. The second and third data sheets are a grid map of the deviation/mean and a plot of contours of constant

APPENDIX

Complete Set of Test Results

Appendix

The appendix to this report contains the data of the test runs listed in Table 2. The results of each test run are presented in three parts. The first data sheet lists the run number and test description, the standard deviation/mean, and the measured concentrations, the deviation/mean, and the deviation/standard deviation at each sampling port. The second and third data sheets are a grid map of the deviation/mean and a plot of contours of constant values of deviation/mean, respectively.

in this report. Firstiluine input the the destained aprop fluid was detected at every compling port on the face of the downstream details panel. The lowest measured concentration for both the elotted and hollow come 100 nonzeles is approximately 602 less than the mean concentration. Second, the tests indicate where the problem steam are located along the detailyst face. The highest concentration levels are immediately downstream of each nonzele in an area epoteminstely 10 inches in dimeter. The spraying fluid concentration decreases with intreasing redial distance from the nonzele until the spraying pattern of the adjacent membres is seen. The membres are located cominally every 2 feet. Thus high concentration levels eccumt for nearly 352 of the total detailyst cross sectional area. These high concentrations are approximately 2 times that of the membres in the high concentrations are approximately 2 times that of the membres. These high concentrations are approximately 2 times that of the membres concentration. The failure of a number cross sectional area.

The tests performed were designed to predict setuel sparger operation. The low turbulence lavel and uniformity of the wind tunnel flow should result is a conservative estimate of wining in an actual

RUN 10 - HOLLOW CONE 120° AT 0°

The appendix to this report contains the data of the test runs listed in Table 2. The results of each last run are presented in three parts. The first data sheet lists the run number and test description, the standard deviation/mean, and the messured concentrations, the deviation/mean, and the deviation/standard deviation at each sempling port. The second and third data sheets are

RUN NUMBE NOZZLE TY WIND SPEE AIR TEMP. TRACER TY SAMPLE ME SAMPLE ST STD/MEAN	ER 10 (PE ED 396.00 (PE EAN (PPM) (D. (PPM)	HOLLOW CO CM/S AT C AT	DNE 120 AT 100.0 CM 100.0 CM C2H6 31.31 24.52 .783	0		
SAMPLE ST STD/NEAN TUBE NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 12 21 22 23 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 23 24 22 24 22 23 24 22 23 24 22 23 24 22 23 24 22 23 24 22 23 22 24 22 23 22 24 22 23 22 24 22 23 22 24 22 23 22 24 22 23 22 24 22 23 22 24 22 22 23 22 23 22 24 22 22 23 22 24 22 22 24 22 22 24 22 22 22 24 22 22	T. (PPM) X (CN) .00 .00	Y (CM) .000 5.000 -20.000 -40.000 -5.000 -5.000 -5.000 -0.000 -20.000 -10.000 -20.000 40.000 -20.000 40.000 -20.000 -20.000 -20.000 -20.000 -20.000 -20.000 -20.000 -0.000 -20.000 -20.000 -0.000 -20.000 -0.000 -0.000 -0.000 -20.000 -0.0000 -0.00000 -0.0000 -0.0000 -0.000000 -0.0000 -0.0000 -0.0000 -0.00000 -0.00000 -0.0000 -0.0000	24.52 .783 CONC	ENTRATION (PPM) 85.7 74.4 14.3 15.4 84.2 16.8 14.1 70.9 64.0 70.7 49.0 315.4 84.2 25.5 15.7 14.3 37.6 81.4 4 14.3 13.8 18.4 14.1 14.2 30.3 113.7 14.3 13.8 18.4 14.1 14.2 30.3 9 113.7 0.1 83.2 59.1 42.6	DEV/MEAN 1.737 1.375 545 507 1.689 465 548 1.264 1.264 1.259 .545 541 .202 529 185 498 542 550 544 550 544 550 544 556 5	DEV/STD 2.217 1.756 695 647 2.157 593 700 1.614 1.333 1.607 .722 .737 691 .258 635 635 636 692 714 527 700 710 717 684 2.041 1.582 2.115 1.132 .662
523 334 355 37 38 37 40 41 423 44 45 44 45 44 47	-10.00 -10.00 -10.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00 -40.00 -40.00 -40.00	20.00 -10.00 -20.00 10.00 20.00 40.00 -20.00 -00 20.00 40.00 -20.00 -20.00 -40.00		12.5 15.1 52.6 16.9 219.3 13.5 12.9 13.5 12.5 13.9 13.5 12.5 13.5 12.5 13.2 13.2 13.2 13.2 13.2	- 3517 - 680 - 459 - 288 - 384 - 570 - 587 - 587 - 587 - 556 - 559 - 519 - 602 - 602 - 580 - 578	- 660 - 660 - 586 - 358 - 490 - 728 - 749 - 749 - 749 - 710 - 713 - 663 - 769 - 775 - 740 - 737

-.578 -.559 -.548 -.546 -.536

Vertical Y (cm)

RUN 20 - HOLLOW CONE 150° AT 0°

. .

 BE NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	X (CM) .00 .00 .00 .00 5.00 5.00 5.00 5.00 10.00 10.00 10.00 10.00	Y (CM) 20.00 40.00 -5.00 -20.00 -40.00 5.00 -5.00 -5.00 10.00 20.00 -10.00	CONCENTRATION (PPH) 83.6 84.3 19.5 15.5 77.2 21.2 14.4 62.8 64.1 57.8 46.7 35.2 15.3	DEV/MEAN 1.588 1.610 396 521 1.391 343 556 .944 .983 .790 .506 .091 521	DEV/STD 2.028 2.057 506 666 1.777 438 710 1.207 1.255 1.010 .647
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18	(CM) .00 .00 .00 .00 .00 5.00 5.00 5.00 10.00 10.00 10.00 10.00	(CM) 5.00 20.00 40.00 -5.00 -20.00 -40.00 5.00 -5.00 -5.00 10.00 20.00 -10.00 -20.00	(PPH) 83.6 84.3 19.5 15.5 77.2 21.2 14.4 62.8 64.1 57.8 48.7 35.2 15.3	1.588 1.610 396 521 1.391 343 556 .944 .983 .790 .506 .091	2.028 2.057 504 666 1.777 438 710 1.207 1.256 1.010 647
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	.00 .00 .00 .00 5.00 5.00 5.00 10.00 10.00 10.00	.00 5.00 20.00 -5.00 -20.00 -20.00 -00 5.00 -5.00 -5.00 -5.00 -00 10.00 20.00 -10.00	83.6 84.3 19.5 15.5 21.2 14.4 62.8 64.1 57.8 46.7 35.2 15.3	1.588 1.610 396 521 1.391 343 556 .944 .983 .790 .506 .091 521	2.028 2.057 506 666 1.777 438 710 1.207 1.207 1.255 1.010 647
⁵ 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	.00 .00 .00 5.00 5.00 5.00 10.00 10.00 10.00 10.00	20.00 40.00 -5.00 -20.00 -20.00 -5.00 -5.00 -5.00 -0.00 20.00 -10.00 -20.00	84.5 19.5 17.2 21.2 14.4 62.8 64.1 57.8 48.7 35.2 15.3	396 521 1.391 343 556 .944 .983 .790 .506 .091	2.037 506 666 1.777 438 710 1.207 1.207 1.256 1.010 .647
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	.00 .00 .00 5.00 5.00 5.00 10.00 10.00 10.00 10.00	40.00 -5.00 -20.00 -40.00 5.00 -5.00 -5.00 -5.00 -00 10.00 20.00 -10.00	15.5 77.2 21.2 14.4 62.8 64.1 57.8 48.7 35.2 15.3	521 1.391 343 556 .944 .983 .790 .506 .091	666 1.777 438 710 1.207 1.255 1.010 .647
5 6 7 8 9 10 11 11 11 11 11 11 11 11 11 11 11 11	.00 .00 5.00 5.00 5.00 10.00 10.00 10.00 10.00	-5.00 -20.00 -40.00 5.00 -5.00 -5.00 10.00 20.00 -10.00	77.2 21.2 14.4 62.8 64.1 57.8 48.7 35.2 15.3	1.391 343 556 .944 .983 .790 .506 .091	1.777 438 710 1.207 1.256 1.010 647
6789. 99. 10111213314 115166 11718	.00 5.00 5.00 5.00 10.00 10.00 10.00 10.00 10.00	-20.00 -40.00 5.00 -5.00 10.00 20.00 -10.00	21.2 14.4 62.8 64.1 57.8 49.7 35.2 15.3	343 556 .944 .983 .790 .506 .091	438 710 1.207 1.256 1.010 .647
7 8 9 10 11 12 13 14 15 16 17 18	.00 5.00 5.00 10.00 10.00 10.00 10.00	-40.00 .00 5.00 -5.00 .00 10.00 20.00 -10.00	14.4 62.8 64.1 57.8 48.7 35.2 15.3	556 .944 .983 .790 .506 .091	710 1.207 1.256 1.010 .647
8 9 10 11 12 13 14 15 16 17 18	5.00 5.00 10.00 10.00 10.00 10.00 10.00	.00 5.00 -5.00 10.00 20.00 -10.00	62.8 64.1 57.8 48.7 35.2 15.3	.944 .983 .790 .506 .091	1.207 1.256 1.010 .647
9 . 10 11 12 13 14 15 16 17 18	5.00 5.00 10.00 10.00 10.00 10.00 10.00	5.00 -5.00 10.00 20.00 -10.00	64.1 57.8 48.7 35.2 15.3	.983 .790 .506 .091	1.256 1.010 .647
10 11 12 13 14 15 16 17 18	5.00 10.00 10.00 10.00 10.00 10.00	-5.00 .00 10.00 20.00 -10.00	57.8 48.7 35.2 15.3	.790 .506 .091	1.010
11 12 13 14 15 16 17 18	10.00 10.00 10.00 10.00 10.00	10.00 20.00 -10.00	48.7 35.2 15.3	.506	. 647
12 13 14 15 16 17 18	10.00	20.00	35.2 15.3	.091	
13 14 15 16 17 18	10.00	-10.00	12.3		.116
15 16 17 18	10.00	-20.00	171	- 005	6/2
16 17 18	20 00	-/0.00	15.2	- 528	- 675
17 18	40,00	.00	28.6	- 114	- 146
18	20.00	10.00	16.8	-, 481	-,614
1 M M	20.00	20.00	14.7	545	696
19	20.00	40.00	14.5	550	703
20	20.00	-10.00	17.8	450	575
21	20.00	-20.00	14.3	559	714
22	20.00	-40.00	14.4	554	707
23	40.00	20.00	28.3	125	160
25	40.00	40.00	14.0	363	- 712
26	40.00	-20.00	15.4	- 523	669
27	40.00	-40.00	14.7	545	-, 697
28	-5.00	.00	88.7	1.746	2.231
29	-5.00	5.00	88.7	1.747	2.233
30	-5.00	-5.00	83.6	1.587	2.028
31 -	10.00	.00	66.1	1.047	1.337
32 -	10.00	10.00	56.8	.759	.969
55 -	10.00	20.00	17.4	462	590
39 -	10.00	-10.00	5/.5	.715	. 78/
35 -	20 00	-20.00	20.0	- 303	404
37 -	20.00	10.00	21 0	- 751	- 449
38 -	20.00	20.00	13.4	- 586	-,749
39 -	20.00	40.00	13.2	-, 591	755
40 -	20.00	-10.00	21.9	321	-, 410
41 -	20.00	-20.00	13.8	-, 573	732
42 -	20.00	-40.00	13.2	592	756
43 -	40.00	.00	15.3	526	672
44 -	40.00	20.00	12.1	626	799
45 -	40.00	40.00	12.2	623	796
46 -	40.00	-20.00	12.6	609	778

antour Map of Dev/) HOLLOW CONE 120 AT

RUN ND.= 20						
623	591		521		550	
				1		
626	586	462	396	526	545	
	351	.759		.091	481	
-,526	297	1.747	1.510	.983 .944 .506	114	
	321	.773	1.391	-, 005	450	

AGTEIGOL Y (CM)

-.600 -.592 -.556 -.554 -.545

A-9

Vertical Y (cm)

RUM MUMRER 30 MOIZLE TYPE MOLLOW COME 180 AT 0 WINS BREED 396.00 CAVS AI 100.0 CM AIR TEMP. 22.0 C AI 100.0 CM TRACER TYPE C216 SAMPLE MEAM (FPM) 31.52 SAMPLE STD. (FPM) 24.29 TTO 370 370

No. 117, 1 50

	126.*	0		
RUN	30 - HOLLOW	CONE 180°	AT 0	

Figure 7. Gas Chromatograph dats obtained for Hollow Come 180° nozzle at 0° orientation

Tigure 8. Grid Plot of Deviation/Mean Concentration for Hollow Come 180° Nozzle at 0° Orientation

RUN NUMBER 30					
NOZZLE TYPE	HOLLOW CI	DNE 180	AT	Û	
WIND SPEED 396.00	CM/S AT	100.0	CM		
AIR TEMP. 22.0	C AT	100.0	CM		
TRACER TYPE		C2H6			
SAMPLE MEAN (PPM)		31.52			
SAMPLE STD. (PPM)		24.29			
STD/MEAN		.770			

TUBE	NO.	X	Y	CONCENT	RATION	DE	V/MEAN	1	DEV/STD
1		.00	.00	84	1.6		1.684		2.186
2		.00	5.00	71	1.5		1.267		1.647
3		.00	20.00	18	3.7		408		530
4		.00	40.00	22	2.7		280		364
5		.00	-5.00	91	.7		1.709		2.478
6		.00	-20.00	16	1.6		409		551
0		5.00	-40.00	10	0.0		051		1 110
9		5.00	5.00	51	2		.625		.811
10		5.00	-5.00	64	1.9		1.059		1.375
11		10.00	.00	35	5.7		.133		.172
12		10.00	10.00	25	5.7		-,185		240
13		10.00	20.00	15	.1		521		677
14		10.00	-10.00	32	0.1		.114		.148
10		20.00	-20.00	17	.0		- 3401		- 447
17		20.00	10.00	15	5.8		500		649
18		20.00	20.00	15	5.0		524		680
19		20.00	40.00	14	1.7	LIDE	532		691
20		20.00	-10.00	16	5.5		476		618
21		20.00	-20.00	14	1.6		536		696
22		20.00	-40.00	14		1	535		675
23		40.00	20.00	21	1.0		- 551		- 715
25		40.00	40.00	14	1.2		- 549		712
26		40.00	20.00	15	5.3		515		669
27		40.00	-40.00	15	5.2		518		672
28		-5.00	.00	86	5.2		1.733		2.249
29		-5.00	5.00	73	.1		1.318		1.711
30		-5.00	-5.00	91	1.4		1,900		2.466
31		-10.00	10 00	00	1 7		579		1.314
33		-10.00	20.00	18	1.9		400		520
34		-10.00	-10.00	56	.9		.804		1.044
35		-10.00	-20.00	22	2.5		286		372
36		-20.00	.00	25	5.5		191		248
37		-20.00	10.00	22	2.6		282		366
58		-20.00	20.00	14	1.0		341		/02
40		-20.00	-10.00	23	С. Л Т. Л		- 258		- 375
41		-20.00	-20.00	15	5.5	and.	507		658
42		-20.00	-40.00	14	4.0	1	555		720
43		-40.00	.00	18	3.3		418		543
44		-40.00	20.00	12	2.9		592		768
45		-40.00	40.00	12	2.8		593		769
40		-40.00	-20.00	13			- 5/1		- 779
4/		-40.00	-40.00	1.	0.0		302		147

Figure 7. Gas Chromatograph data obtained for Hollow Cone 180° nozzle at 0° orientation

RUN ND. = 30

Figure 8. Grid Plot of Deviation/Mean Concentration for Hollow Cone 180° Nozzle at 0° Orientation

102 = . UR HOR

HOLLOW CONE 180 AT O

Figure 9.

Vertical Y (cm)

O. Contours of Constant Deviation/Mean Concentration for Hollow Cone 180⁰ Nozzle at 0[°] Orientation.

RUN 40 - SLOTTED AT 0°

figure 10. Grid Plot of Deviation/Nean Concentration for Slotted Nozzle at 0

	TUBE NO.	X	Y	CONCENTRATION	DEV/MEAN	DEV/STD	
Varticol Y	2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 223 24 5 26 27 8 29 30	$\begin{array}{c} .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00$	3.00 20.00 40.00 -20.00 -20.00 -40.00 5.00 -5.00	54.9 15.0 16.8 63.2 16.1 15.5 38.7 35.8 40.5 24.3 20.2 14.9 23.2 21.0 15.6 21.0 15.9 15.1 14.6 16.8 14.6 15.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 15.5 82.8 89.8 82.7	.897 481 419 1.181 445 464 .335 .400 161 304 487 487 487 487 487 495 495 495 495 495 494 .080 505 504 505 504 402 465 1.857 1.412 1.857	1.239 664 579 1.630 641 .466 .324 .552 222 420 672 273 639 639 684 684 688 688 688 688 688 688 688 688 688 688 688 688 698 698 695 642 642 642 642 642 642 642 644 556 642 644 556 644 556 644 555 645 555 645 555 645 555 645 555 645 555 644 556 644 556 644 556 644 556 644 556 644 556 644 556 644 556 644 556 644 556 644 556 644 556 644 556 644 556 644 556 644 5564 56664 56664 5664 5664 5664 566	
	52 334 356 359 412 43 445 445 445 445 447	-10.00 -10.00 -10.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00 -40.00 -40.00 -40.00	$\begin{array}{c} 10.00\\ 20.00\\ -10.00\\ -20.00\\ 0\\ 0\\ 0\\ 10.00\\ 20.00\\ 40.00\\ -10.00\\ -20.00\\ -40.00\\ -20.00\\ -20.00\\ -40.00\\ -20.00\\ -40.00\\ \end{array}$	51.2 16.1 67.2 18.1 35.2 26.1 14.9 13.7 36.3 15.5 14.3 20.2 13.3 13.0 13.9 14.0	- 767 - 443 1.319 - 377 - 215 - 100 - 487 - 528 - 252 - 466 - 506 - 303 - 539 - 551 - 519 - 517	1.059 611 1.822 520 .297 138 672 730 .348 644 644 644 419 744 761 714	

RUN ND. = 40

-,01/ -,00 -,00 -,707 -,707 -,707	517		506	464	484	4
-----------------------------------	-----	--	-----	-----	-----	---

Figure 10. Grid Plot of Deviation/Mean Concentration for Slotted Nozzle at 0⁰ Orientation

Vertical Y (cm)

Contour Map of Dev/Mean SLOTTED AT D

RUN 50 - FULL CONE 70° AT 0°

	TRACER TY SAMPLE ME SAMPLE ST STD/MEAN	PE AN (PPM) D. (PPM)		00.0 CH 2H6 4.52 2.29 .935		
	TUBE NO.	X	Y	CONCENTRATION	DEV/MEAN	DEV/STI
	1	.00	.00	122.5	2.549	2.725
	2	.00	5.00	84.3	1.441	1.540
	3	.00	20.00	13.8	600	641
	4	.00	40.00	14.1	590	631
	5	.00	-20.00	103.4	2.032	2.194
	7	.00	-40.00	14.1	- 591	- 632
	8	5.00	.00	95.2	1.757	1.878
	9	5.00	5.00	69.1	1.003	1.072
	10	5.00	-5.00	80.2	1.325	1.416
	11	10.00	.00	61.2	.772	.826
	17	10.00	20.00	15.4	13/	14/
ì	14	10.00	-10.00	31.6	084	090
	15	10.00	-20.00	16.0	537	574
	16	20.00	.00	19.4	438	468
	1/	20.00	10.00	18.0	479	512
	19	20.00	40.00	14.3	- 587	- 678
	20	20.00	-10.00	18.4	466	499
	21	20.00	-20.00	14.6	576	616
	22	20.00	-40.00	14.5	579	619
	25	40.00	20.00	22.5	354	3/8
	25	40.00	40.00	15.7	559	- 598
	26	40.00	-20.00	15.6	549	587
	27	40.00	-40.00	14.5	579	619
	28	-5.00	.00	115.1	2.334	2.496
	29	-5.00	5.00	19.1	1.293	1.382
	31	-10.00	-3.00	80.6	1.334	1.426
	32	-10.00	10.00	28.8	167	178
	33	-10.00	20.00	13.9	597	639
	34	-10.00	-10.00	33.6	027	029
	33	-10.00	-20.00	14.4	582	622
	37	-20.00	10.00	27.6	- 344	- 368
	38	-20.00	20.00	14.6	577	617
	39	-20.00	40.00	13.6	607	649
	40	-20.00	-10.00	21.9	367	392
	41	-20.00	-20.00	14.0	581	621
	43	-40.00	.00	14.2	590	631
	44	-40.00	20.00	12.6	636	-,680
	45	-40.00	40.00	12.2	646	691
	46	-40.00	-20.00	13.2	618	661
	9/	-40.00	-40.00	15.2	619	002

 RUN NUMBER 50
 FULL CONE 70 AT 0

 NOZZLE TYPE
 FULL CONE 70 AT 0

 WIND SPEED 376.00 CH/S AT 100.0 CH
 AIR TEMP. 22.0 C AT 100.0 CH

 AIR TEMP. 22.0 C AT 100.0 CH
 SAMPLE MEAN (PPM)

 SAMPLE MEAN (PPM)
 34.52

17 · · · ·

theat Y (ca)

A-20

A-21

(mo) Y [poitrey

RUN 60 - FULL CONE 70° AT 60°

RUN NUMBE NOZZLE TY WIND SPEE AIR TEMP. TRACER TY SAMPLE ME SAMPLE ST STD/MEAN	ER RUN60 (PE ED 396.00 (PE EAN (PPM) TD. (PPM)	FULL CONE CM/S AT C AT	70 AT 60 100.0 CM 100.0 CM 22H6 30.97 26.03 .840			
TUBE NO.	X	Y	CONCENTRA	ATION	DEV/MEAN	DEV/STD
	(CM)	(CM)	(PPM))	1 / 27	1 071
2	.00	5.00	81	5	1.623	2 415
3 .	.00	20.00	18.1	7	- 398	473
4	.00	40.00	14.5	5	532	633
5	.00	-5.00	55.9	9	.805	.958
6	.00	-20.00	15.2	2	509	606
/	.00	-40.00	30.5	5	017	020
9	5.00	5.00	91	2	1.2/3	2 329
10	5.00	-5.00	47.0	0	.518	.616
11	10.00	.00	39.5	5	.274	.326
12	10.00	10.00	40.8	8	.316	.376
13	10.00	20,00	15.4	4	502	597
14	10.00	-10.00	21.	7	294	350
15	20.00	-20.00	15.	2	477	- 548
17	20.00	10.00	15.6	6	497	592
18	20.00	20.00	15.1	1	511	608
19	20.00	40.00	14.7		524	624
20	20.00	-10.00	15.0	6	49/	592
22	20.00	-40.00	14.5	5	530	- 631
23	40.00	.00	16.1	ĩ	479	570
24	40.00	20.00	14.1	i	543	647
25	40.00	40.00	14.2	2	543	646
26	40.00	-20.00	14.8	B	522	621
2/	40.00	-40.00	14.6	5	528	628
28	-5.00	5.00	100	4	2 249	2 675
30	-5.00	-5.00	52.0	õ	. 680	.809
31	-10.00	.00	62.2	Ż	1.007	1.198
32	-10.00	10.00	80.1	1	1.585	1.885
33	-10.00	20.00	18.9	9	389	462
34	-10.00	-10.00	31	3	.012	.014
30	-10.00	-20.00	10.1	2	309	508
37	-20.00	10.00	20 4	4	- 340	- 404
38	-20,00	20.00	14.1	2	-, 542	- 645
39	-20.00	40.00	13.6	5	560	667
40	-20.00	-10.00	18.5	5	402	479
41	-20.00	-20.00	14.2	2	540	643
42	-20.00	-40.00	13.6	6	560	667
45	-40.00	.00	13.5	5	563	669
44	-40.00	20.00	12.9	7	585	674
45	-40.00	-20.00	12.1	7	- 571	/00
70		-/0_00	1.1.			0/7

ontour Hap of Dav/Nea

A-25

Vertical Y (cm)

A-26

RUN 70 - KNIFE AT 60°

. .

AIR TEMP TRACER T SAMPLE M SAMPLE S STD/MEAN	22.0 YPE EAN (PPM) TD. (PPM)	C AT	100.0 CM C2H6 26.89 38.72 1.440		
TUBE NO.	X (M3)	(CN)	CONCENTRATION (PPM)	DEV/MEAN	DEV/STD
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 24 26 27 29 30 31 32 34 35 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 37 37 37 37 37 37 37 37	$\begin{array}{c} .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00$.00 5.00 20.00 -5.00 -20.00 -20.00 -5.00 -20.00 -5.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00 -40.00 -20.00 -40.00 -20.00 -40.00 -20.00 -40.00 -20.00 -40.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00	21.5 32.1 266.4 15.6 18.1 13.5 116.5 19.3 24.4 17.5 17.2 21.9 48.7 17.1 17.1 17.1 17.1 17.1 17.5 17.5 16.6 17.5 16.6 17.1 16.2 16.8 16.2 16.8 16.2 16.8 16.2 16.8 16.2 16.8 16.2 16.5 18.7 17.8 20.7 28.5 18.7 17.8 24.9 49.6 16.6 15.5 15.5 15.1 14.7	200 .192 8.908 419 328 245 3. 334 282 091 348 340 186 186 340 350 353 353 353 353 354 350 384 350 384 377 384 377 384 304 304 382 351 351 351 351 351 352 354 354 304 337 382 354 355 304 382 355 364 382 355 364 382 355 364 382 355 364 382 355 364 382 355 364 382 355 364 382 355 364 382 355 364 382 355 364 382 355 364 382 355 364 384 384 364 304 304 382 355 364 384 357 364 304 304 382 355 355 355 356 357 357 35	- 139 . 133 . 133 . 136 - 291 - 227 . 170 2.315 - 196 - 063 - 242 - 250 - 244 - 252 - 236 - 244 - 252 - 236 - 244 - 252 - 255 - 258 - 258 - 258 - 258 - 258 - 258 - 258 - 257 - 258 - 258 - 258 - 257 - 258 - 258 - 258 - 257 - 257 -
40 41 42 43 45 45 45 45	-20.00 -20.00 -40.00 -40.00 -40.00 -40.00 -40.00	-10.00 -20.00 -40.00 20.00 40.00 -20.00 -40.00	15.6 15.3 15.4 14.6 14.1 14.1 14.8 14.9	419 430 428 458 474 477 448 445	291 299 298 318 329 332 311 309

ontour Hap of Dev/Ner

A-28

A-29

Vertical Y (cm)

RUN 80 - KNIFE AT 90⁰
RUN NUMBE NOZZLE TY HIND SPEE AIR TEMP. TRACER TY SAMPLE ME SAMPLE ST STD/MEAN	R 80 PE D 396.00 22.0 PE AN (PPM) D. (PPM)	KNIFE AT CM/S AT C AT	90 100.0 CM 100.0 CM C2H6 29.34 27.30 .930		
TUBE ND. 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	X (CM) .00 .00 .00 .00 5.00 5.00 5.00 10.00 10.00 10.00 10.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -20.00 -5.00 -5.00 -10.00 -5.00 -5.00 -10.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -20.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -20.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -20.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -20.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -20.00 -5.00 -5.00 -5.00 -5.00 -5.00 -20.00 -5.00 -10.00 -5.00 -10.00 -5.00 -10.00 -5.00 -10.00 -5.00 -10.00 -20.00 -20.00 -20.00 -5.00 -10.00 -20.00 -20.00 -20.00 -5.00 -10.00 -20.00 -20.00 -20.00 -10.00 -10.00 -20.0	Y (CH) 5.00 20.00 -5.00 -5.00 -5.00 -5.00 -5.00 -0.00 20.00 -10.00 20.00 -10.00 20.00 -10.00 -20.00 -0.00 -20.00 -20.00 -20.00 -0.00 -20.00 -20.00 -10.00 -20.00 -10.00 -20.00 -10.00 -20.00 -10.00 -20.00 -20.00 -10.00 -2	CONCENTRAT (PPM) 19:5 35:8 103.1 18:00 17:6 52:4 123:0 17:6 17:6 17:6 17:7 24:4 17:7 29:5 92:1 17:8 36:88 17:6 17:6 17:6 17:6 17:6 17:6 17:6 17:6	IDN DEV/MEAN337319 2.513384401784417005 2.140417 .005 2.1403752552552552552552553803152223853803152553803152553803152512504024213014037138031525125040242130140351250402422351301403512504024223513014554424035130145230135235135135235135135235135235135235135235135235135235135135235135135235335335235335235335235335235335235335235335235335235335235335235335235335235334235235335235335235334234234434234434	DEV/STD 362 .2755 2.701 415 .433 .430 428 483 443 448 .006 2.301 424 .274 437 437 437 454 454 454 454 454 339 .2379 414 339 .2379 414 359 451 451 451 459 451 451 359 414 359 451 497

1

-.118 3.192 -.420

-.387

A-33

-. 462

(mo) Y [boitrev

RUN 90 - FULL CONE 35⁰ AT 90⁰

RUN NUMBE NOZZLE TY WIND SPEE AIR TEMP. TRACER TY SAMPLE ME SAMPLE ST STD/MEAN	R 90 PE D 396.00 22.0 PE AN (PPM) D. (PPM)	FULL CONE CM/S AT C AT	35 AT 90 100.0 CM 100.0 CM 22H6 22.77 19.43 .853		
TUBE NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 24 25 24 25 24 25 24 27 28 27 28 27 28 27 28 27 20 27 27 27 27 27 27 27 27 27 27	x (CM) .00 .00 .00 .00 5.00 5.00 10.00 10.00 10.00 10.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 40.00 40.00 40.00	Y (CM) .00 5.00 40.00 -20.00 -20.00 -20.00 -5.00 .00 10.00 -5.00 -0.00 -10.00 -20.00 -20.00 -20.00 40.00 -20.00 40.00 -20.00 40.00 -20.00 40.00 -20.00 -10.00 -20.00 -10.00 -20.00 -20.00 -20.00 -20.00 -10.00 -20.0	CONCENTRATION (PPM) 15.1 15.0 109.6 49.8 15.3 57.2 60.1 15.1 14.7 15.4 14.7 15.4 14.7 15.3 39.2 16.4 59.2 15.8 15.4 15.7 15.0 15.7 15.0 15.7 15.0 15.7 15.0 15.7 15.0 15.7 15.0 15.7 15.0 15.7 15.0 15.7 15.0 15.7 15.0 15.7 15.0 15.7 15.0 15.7 15.4 15.7 15.4 15.7 15.4 15.7 15.4 15.3 15.3 15.7 15.4 15.3 15.3 15.3 15.4 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3	DEV/MEAN 335 341 3.813 1.189 327 1.511 1.638 355 325 326 344 344 330 308 332 279 1.600 308 322 313 226 348 349 344 349 344 349 351	DEV/STD 393 400 4.469 1.394 383 1.771 1.919 394 384 381 404 384 384 384 385 1.875 366 347 366 347 366 347 366 401 397 366 401 397 366 401 397 366 401 397 366 401 397 366 409 391 391 394 409 391 394 409 391 391 394 409 391 394 409 391 394 409 391 391 396 401 397 366 401 397 366 401 397 366 401 397 366 401 397 366 401 397 366 407 395 408 408 408 408 408 397 366 408 408 408 397 366 401 397 366 408 408 408 408 408 408 408 377 366 408 409 397 398 408 409 399 408 409 399 398 408 409 398 408 409 398 408 408 409 398 408 409 398 408 409 398 408 409 398 408 409 398 408 409 398 412
289 331 333 345 357 89 401 423 444 456 47	$\begin{array}{c} -5.00\\ -5.00\\ -5.00\\ -10.00\\ -10.00\\ -10.00\\ -10.00\\ -10.00\\ -20.00\\ -20.00\\ -20.00\\ -20.00\\ -20.00\\ -20.00\\ -20.00\\ -20.00\\ -20.00\\ -40.00\\ -40.00\\ -40.00\\ -40.00\\ -40.00\end{array}$	$\begin{array}{c} .00\\ 5.00\\ -5.00\\ .00\\ 20.00\\ -10.00\\ .00\\ 10.00\\ 20.00\\ .00\\ 10.00\\ 20.00\\ 40.00\\ -20.00\\ -40.00\\ .00\\ 20.00\\ -40.00\\ -20.00\\ -40.00\\ -40.00\\ \end{array}$	14.8 14.8 15.7 14.2 59.9 15.6 60.0 14.0 13.9 14.3 13.7 14.1 14.1 14.1 13.8 13.0 13.4 13.4	-, 351 -, 352 -, 312 -, 378 -, 350 1, 632 -, 314 1, 634 -, 385 -, 385 -, 385 -, 385 -, 385 -, 388 -, 382 -, 381 -, 382 -, 381 -, 385 -, 431 -, 413 -, 413 -, 411	412 413 411 1.912 366 1.912 451 451 451 454 447 448 448 484 484 484

Kersical Y (cm)

411	382	1.638	339	340

Vertical Y (cm)

A-38

RUN 100 - HOLLOW CONE 180° AT 180°

TUBE NO.	X	Y	CONCENTRATION	DEV/MEAN	DEV/STD
1	(CH)	(CH)	(PPM) 88.1	2,062	2.443
2	.00	5.00	76.1	1.645	1.949
3	.00	20.00	13.1	545	645
4	.00	40.00	13.7	525	622
6	.00	-20.00	13.7	524	621
7	.00	-40.00	13.5	532	630
8	5.00	.00	68.5	1.382	1.638
9	5.00	5.00	61.2	1.129	1.337
10	10.00	-5.00	20.0	.704	1.142
12	10.00	10.00	30.3	.054	.063
13	10.00	20.00	13.6	529	626
14	10.00	-10.00	27.5	043	051
15	10.00	-20.00	14.0	313	510
17	20.00	10.00	15.1	475	563
18	20.00	20.00	13.3	538	637
19	20.00	40.00	12.1	578	685
20	20.00	-10.00	14.0	473	- 714
22	20.00	-40.00	12.7	-,557	660
23	40.00	.00	21.3	261	309
24	40.00	20.00	12.4	569	674
25	40.00	-20.00	12.9	509	-,603
27	40.00	-40.00	13.6	526	624
28	-5.00	.00	86.1	1.995	2.364
29	-5.00	5.00	74.8	1.601	1.897
31	-10.00	-3.00	69.9	1.432	1.697
32	-10.00	10.00	42.8	. 490	.581
33	-10.00	20.00	13.6	527	624
54	-10.00	-10.00	41.1	- 450	. 509
35	-20.00	-20.00	21.5	253	300
37	-20.00	10.00	20.4	-, 291	345
38	-20.00	20.00	12.2	576	683
39	-20.00	40.00	12.6	563	666
40	-20.00	-20.00	12.7	- 557	660
42	-20.00	-40.00	12.1	578	684
43	-40.00	.00	12.9	-,552	654
44	-40.00	20.00	10.3	641	759
40	-40.00	-20.00	10.6	632	- 733
47	-40.00	-40.00	11.0	- 617	- 725

Contour Hop of Dev/Neo FULL CONE 35 AT 90

Vertical Y (cm)

-.612 -.578 -.532 -.557 -.526

(mo) Y [coltrev

RUN 110 - HOLLOW CONE 120° AT 180°

VOZZLE TI VOZZLE TI VIND SPEE VIR TEMP, TRACER TI SAMPLE ME SAMPLE ST STD/MEAN	(PE ED 396.00 22.0 (PE EAN (PPM) TD. (PPM)	HOLLOW CO CM/S AT C AT	DHE 120 AT 100.0 CM 100.0 CM C2H6 33.93 32.60 .961	180		
TUBE NO.	X	Y	CONC	ENTRATION	DEV/MEAN	DEV/STD
1	.00	.00		(PPM) 123.5	2.640	2.748
2	.00	5.00		110.6	2.261	2.353
S A	.00	20.00		15.3	548	570
5	.00	-5.00		100.2	1.953	2.033
6	.00	-20.00		15.5	543	565
7	.00	-40.00		14.9	560	583
8	5.00	.00		69.7	1.054	1.097
10	5.00	-5.00		56.7	.671	. 698
11	10.00	.00		29.6	-,128	134
12	10.00	10.00		27.3	194	202
14	10.00	-10.00		13.8	000	337
15	10.00	-20.00		15.9	531	553
16	20.00	.00		17.0	500	520
19	20.00	10.00		16.2	522	543
19	20.00	40.00		15.2	551	573
20	20.00	-10.00		16.3	520	542
21	20.00	-20.00		15.0	558	581
23	40.00	-40.00		18.1	467	486
24	40.00	20.00		14.4	575	598
25	40.00	40.00		15.0	559	582
26	40.00	-20.00		15.5	542	565
28	-5.00	-40.00		126.1	2.718	2.829
29	-5.00	5.00		60.6	.787	.819
30	-5.00	-5.00		107.4	2.167	2.255
31	-10.00	10.00		42.1	1./15	1.785
33	-10.00	20.00		14.7	566	589
34	-10.00	-10.00		46.9	.381	. 397
35	-10.00	-20.00		15.5	543	565
37	-20.00	10.00		23.1	318	331
38	-20.00	20.00		14.7	566	589
39	-20.00	40.00		14.0	586	610
41	-20.00	-20.00		14.9	291	505
42	-20.00	-40.00		14.5	573	596
43	-40.00	.00		14.2	581	604
44	-40.00	20.00		13.0	616	641
46	-40.00	-20.00		13.8	594	-, 618
47	-40.00	-40.00		13.8	594	618

Contour Map of Dev/Maan HOLLON CONE 180 AT 180

-.594

-.573

-.560

-.556

-.532

Vertical Y (cm)

RUN 120 - FULL CONE 70° AT 180°

	Contraction of the second	

Contour Nep of Dev/Nean HOLLDN CONE 120 AT 180

Herlzentel X (cm)

WIND SPE AIR TEMP TRACER T SAMPLE M SAMPLE S STD/MEAN	ED 396.00 22.0 YPE IEAN (PPM) TD. (PPM)	CM/S AT	100.0 CM 100.0 CM C2H6 27.98 27.36 .912		
TUBE NO.	X	Y	CONCENTRATION	DEV/MEAN	DEV/STD
1	.00	.00	99.2	2.308	2.529
2	.00	5.00	88.0	1.934	2.120
3	.00	20.00	12.3	588	645
4	.00	40.00	12.9	569	624
2	.00	-5.00	66.6	1.221	1.558
7	.00	-20.00	11.9	602	-,639
â	5.00	-40.00	97.6	1.790	1 962
9	5.00	5.00	69.6	1.321	1.448
10	5.00	-5.00	68.1	1.272	1.394
11	10.00	.00	56.4	.880	.965
12	10.00	10.00	31.0	.034	.037
13	10.00	20.00	13.3	558	611
15	10.00	-10.00	34.3	- 541	.165
16	20.00	-20.00	14.9	- 475	- 477
17	20.00	10.00	16.0	465	510
18	20.00	20.00	12.6	579	635
19	20.00	40.00	12.4	588	644
20	20.00	-10.00	16.6	447	490
21	20.00	-20.00	12.3	589	646
22	20.00	-40.00	12.2	592	649
23	40.00	20.00	20.2	527	- 449
25	40.00	40.00	11.9	604	- 663
26	40.00	-20.00	13.2	560	613
27	40.00	-40.00	12.4	585	641
28	-5.00	.00	94.9	2.165	2.373
29	-5.00	5.00	79.8	1.660	1.820
30	-5.00	-5.00	65.7	1.190	1.304
31	-10.00	10.00	70.0	- 120	1./11
33	-10.00	20.00	11.3	- 622	- 682
34	-10.00	-10.00	29.4	019	-,021
35	-10.00	-20.00	11.6	613	672
36	-20.00	.00	27.1	095	104
37	-20.00	10.00	19.4	355	389
38	-20.00	20.00	11.8	606	665
39	-20.00	40.00	11.2	625	685
41	-20.00	-70.00	11.9	- 402	- 640
42	-20.00	-40.00	11.8	-, 507	- 666
43	-40.00	.00	16.3	456	499
44	-40.00	20.00	10.2	650	723
45	-40.00	40.00	10.0	667	731
46	-40.00	-20.00	10.5	650	712
	10 00	10 00	10.5	- 640	744

A-49

A-4,

Contour Map of Dev/Mean FULL CONE 70 AT 180

RUN 30F - HOLLOW CONE 180° AT 0° WITH FINS

RUN NUMBER 30F NOZZLE TYPE HOLLOW C WIND SPEED 396.00 CM/S AT AIR TEMP. 22.0 C AT TRACER TYPE SAMPLE MEAN (PPM) SAMPLE STD. (PPM) STD/MEAN	DNE 180 0 0 W/FIN 100.0 CM 100.0 CM C2H6 36.29 20.94 .577		
TUBE NO. X Y	CONCENTRATION	DEV/MEAN	DEY/STD
1 .00 .00	(PPM) 58.6	.614	1.065
2 .00 5.00	52.9	. 457	.793
3 .00 20.00	19.3	469	813
4 .00 40.00	36.9	.016	.028
5 .00 -5.00	75.5	1.082	1.875
6 .00 -20.00	44.7	.231	. 401
7 .00 -40.00	28.3	222	384
8 5.00 .00	51.3	.413	.715
9 5.00 5.00	45.5	.253	.438
11 10.00 -3.00	00.0	.034	1.990
12 10.00 10.00	72.3	- 114	- 197
13 10.00 20.00	16.9	535	927
14 10.00 -10.00	57.3	.579	1.003
15 10.00 -20.00	23.7	347	601
16 20.00 .00	29.6	185	320
17 20.00 10.00	23.0	366	634
18 20.00 20.00	17.5	361	9/3
20 20.00 -10.00	28.4	- 217	- 376
21 20.00 -20.00	16.7	540	936
22 20.00 -40.00	17.4	520	902
23 40.00 .00	34.5	049	085
24 40.00 20.00	16.0	560	971
25 40.00 40.00	17.1	528	916
26 40.00 -20.00	16.9	536	928
27 40.00 -40.00	1/.0	518	1 770
29 -5.00 5.00	57.8	.594	1.029
30 -5.00 -5.00	82.9	1.285	2.227
31 -10.00 .00	65.4	.803	1.392
32 -10.00 10.00	54.5	.503	.871
33 -10.00 20.00	22.0	395	685
34 -10,00 -10,00 75 10,00 -20,00	96.3	1.655	2.865
35 -10.00 -20.00	33.3	085	143
37 -20.00 10.00	42.3	.167	289
38 -20.00 20.00	17.0	531	921
39 -20.00 40.00	14.7	594	-1.029
40 -20.00 -10.00	56.4	. 555	.963
41 -20.00 -20.00	18.6	486	843
42 -20.00 -40.00	16.4	549	952
43 -40.00 .00	37.4	.086	. 147
45 -40.00 40.00	14.6	- 598	-1.037
46 -40.00 -20.00	17.9	507	879
47 -40.00 -40.00	17.0	533	924

ontour Nop of Dev/Noc

RUN ND. = 30F

533	549	222	520	518

305 - 30k MUS

Vartical Y (cm)

Contour Map of Dev/Mean HOLLOW CONE 180 AT 0 W/FINS

Figure 15. Contours of Constant Deviation/Mean Concentration for Hollow Cone 180° Nozzle at 0° Orientation with Fins

RUN 30FN - HOLLOW CONE 180° AT 0° WITH FINS WITHOUT CENTER NOZZLE

RUN NUMBER 30 NOZILE TYPE WIND SPEED 39 AIR TEMP. 2 TRACER TYPE SAMPLE MEAN (SAMPLE STD. (STD/MEAN	NFN HOLLOW 26.00 CM/S A 22.0 C A (PPN) PPN)	CDNE 180 AT 0 W/F W/ T 100.0 CM T 100.0 CM C2H6 23.95 7.06 .295	O NOZ	
TUBE NO.	X Y	CONCENTRATION	DEV/MEAN	DEV/STD
1	00 00	(PPM) 31.0	797	005
2 .	00 5.00	30.4	.269	.911
3.	00 20.00	16.4	314	-1.065
4 .	00 40.00	43.4	.813	2.758
2.	00 -20.00	29.7	.239	.811
7	00 -40.00	31.7	200	1,102
8 5.	00 .00	30.4	.271	.918
9 5.	00 5.00	29.7	.238	.807
10 5.	00 -5.00	29.8	- 242	.822
12 10.	00 10.00	25.5	.240	.041
13 10.	00 20.00	16.8	301	-1.020
14 10.	00 -10.00	27.1	.133	.450
15 10.	00 -20.00	18.5	238	807
17 20.	00 10.00	23.7	012	040
18 20.	00 20.00	16.5	311	-1.056
19 20.	00 40.00	18.8	215	728
21 20.	00 -20.00	16.8	299	-1.016
22 20.	00 -40.00	18.2	239	812
23 40.	00.00	39.0	. 630	2.138
24 40.	00 20.00	16.9	294	99/
26 40.	00 -20.00	17.5	268	908
27 40.	00 -40.00	18.6	222	752
28 -5.	00 .00	31.2	.304	1.032
29 -5.	00 5.00	30.8	- 284	. 963
31 -10.	00 .00	30.9	.291	.987
32 -10.	00 10.00	27.3	.138	. 469
33 -10.	00 20.00	16.7	305	-1.033
34 -10. 35 -10	00 -10.00	2/.1	- 298	-1.011
36 -20.	00 .00	30.0	.254	.863
37 -20.	00 10.00	25.5	.065	.221
38 -20.	00 20.00	15.6	350	-1.189
40 -20.	00 -10.00	24.8	324	-1.100
41 -20.	00 -20.00	15.2	367	-1.244
42 -20.	00 -40.00	17.2	281	954
43 -40.	00 20 00	32.8	. 370	1.254
45 -40.	00 40.00	16.1	328	-1,114
46 -40.	00 -20.00	17.9	251	853
47 -40.	00 -40.00	17.8	257	870

1.5

001 Y (00)

and the

-.257 -.281 .325 -.239 -.222

Vertical Y (cm)

RUN 40B - SLOTTED AT 0° WITH SLATS

	RUN NUMB	ER 40B	CLOTTED AT	A HIDDADD			
	AIR TEMP TRACER T SAMPLE M SAMPLE S STD/MEAN	ED 396.00 22.0 YPE EAN (PPM) TD. (PPM)	CM/S AT C AT	0 0.0 CM 100.0 CM 22H6 35.80 34.47 .963			
-	TUBE NO.	X	Y	CONCENTRATION	DEV/MEAN	DEV/STD	
	1	.00	.00	124.3	2.473	2.568	
	2	.00	5.00	81.9	1.288	1.337	
	3	.00	20.00	14.6	591	614	
	5	.00	40.00	14.7	2 373	613	
	6	.00	-20.00	15.3	573	595	
1	7	.00	-40.00	14.9	585	607	
	-8	5.00	00	93.4	1.609	1.670	
	10	5.00	-5.00	89.4	1.504	1.562	
	11	10.00	.00	55.7	.555	.576	
	12	10.00	10.00	25.6	284	295	
	13	10.00	20.00	15.7	-,560	582	
	19	10.00	-70.00	31.8 15 0	112	- 576	
	16	20.00	.00	18.5	-, 483	502	
	17	20.00	10.00	17.0	526	546	
	18	20.00	20.00	15.8	-, 558	579	
	20	20.00	-10.00	17.2	521	541	
	21	20.00	-20.00	15.2	577	599	
	22	20.00	-40.00	15.3	571	593	
	23	40.00	.00	24.3	520	332	
	25	40.00	40.00	15.1	578	600	
	26	40.00	-20.00	16.1	551	572	
	27	40.00	-40.00	15.4	569	591	
	28	-5.00	5.00	120.8	1.261	1.309	
	30	-5.00	-5.00	115.8	2,234	2.320	
	31	-10.00	.00	88.4	1.469	1.525	
	32	-10.00	10.00	31.8	112	116	
	33	-10.00	-10.00	14.J 47.3	374	61/	
	35	-10.00	-20.00	15.0	582	604	
	36	-20.00	.00	25.7	281	292	
	37	-20.00	10.00	19.3	460	478	
	38	-20.00	40.00	14.4	378	621	
	40	-20.00	-10.00	20.1	439	456	
	41	-20.00	-20.00	14.2	603	627	
	42	-20.00	-40.00	13.9	611	634	
	43	-40.00	20.00	14.5	575	618	
	45	-40.00	40.00	13.4	-,633	- 651	
	46	-40.00	-20.00	13.5	- 624	- 648	
		10000	AV. VV		11177	4 4 7 11	

RUN NO. = 40B -.627 -. 604 -.590 -.559 -.578 1 -.633 -.594 -.598 -.591 -.560 -.558 -.585 -. 460 -.112 -.284 -.526 1.261 1.288 .813 -.595 -.281 1.469 2.375 2.473 1.609 .555 -.483 -.320 2.234 2.323 1.504 . 322 -. 439 -.112 -.521 -.624 -.603 -.582 -.573 -.555 -.577 -.551 14

-.614 -.611 -.585 -.571 -.569

Vertical Y (cm)

RUN 40F - SLOTTED AT 0° WITH FINS

RUN NUMBER 40F NDZILE TYPE WIND SPEED 396.(AIR TEMP, 22.0 TRACER TYPE SAMPLE MEAN (PPP SAMPLE STD. (PPP STD/MEAN	SLOTTED A DO CH/S AT D C AT 1)	NT 0 W/FINS 100.0 CM 100.0 CM C2H6 36.46 19.86 .545		
TUBE NO. X	Y	CONCENTRATION	DEV/MEAN	DEV/STD
(CM)	(CM)	(PPM)	100	1 3/5
2 .00	5.00	01.0	.007	1.200
3 .00	20.00	18.6	- 499	- 999
4 .00	40.00	24.7	323	593
5 .00	-5.00	67.3	.846	1.553
6 .00	-20.00	28.3	222	408
7 .00	-40.00	23.8	346	635
9 5.00	5.00	04.3 51 A	. 489	.87/
10 5.00	-5.00	62.3	.708	1.299
11 10.00	.00	47.9	.313	.574
12 10.00	10.00	38.0	.041	.076
15 10.00	20.00	17.1	531	974
15 10.00	-20.00	21.7	406	745
16 20.00	.00	36.0	014	025
17 20.00	10.00	27.0	259	476
18 20.00	20.00	15.6	5/1	-1.048
20 20.00	-10.00	33.5	081	149
21 20.00	-20.00	16.9	537	986
22 20.00	-40.00	17.5	520	955
23 40.00	20,00	41.0	- 551	-1 011
25 40.00	40.00	18.8	483	887
26 40.00	-20.00	17.7	514	944
27 40.00	-40.00	17.7	514	943
28 -5.00	.00	66.2	-814	1.495
30 -5.00	-5.00	73.0	1.003	1.841
31 -10.00	.00	69.7	.913	1.676
32 -10.00	10.00	53.5	. 468	.858
35 -10.00	-10.00	20.4	1.037	808
35 -10.00	-20.00	23.3	362	664
36 -20.00	.00	67.7	.856	1.572
37 -20.00	10.00	45.9	.258	. 473
38 -20.00	20.00	1/.1	331	9/5
40 -20.00	-10.00	59.2	.622	1.143
41 -20.00	-20.00	17.7	514	943
42 -20.00	-40.00	16.0	562	-1.032
43 -40.00	20.00	51.6	.417	. 765
45 -40.00	40.00	16.7	- 542	- 994
46 -40.00	-20.00	20.3	-, 443	813
47 -40.00	-40.00	18.8	486	891

. i. . .

Centeur Map of Dev/Me SLOTTED AT D M/80ARD

542	565		323		463	483
400	574	470	100	574	574	
-,428	531	439	489	531	5/1	001
	.258	. 468		.041	259	
		672	570	410		
.417	.856	.913 .814	.689	.489 .313	014	.141
		1.003	.846	.708		
	.622	1.037		. 429	081	*
443	514	362	222	406	537	514
486	562		346		520	514
			1010		1020	1014

Figure 16. Grid Plot of Deviation/Mean Concentration for Slotted Nozzle at 0⁰ Orientation with Fins

Vertical Y (cm)

Contour Map of Dev/Mean SLOTTED AT D W/FINS

Figure 17. Contours of Constant Deviation/Mean for Slotted Nozzle at 0⁰ Orientation with Fins