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ABSTRACT 

 

EXAMINING TRENDS IN SNOWMELT CONTRIBUTION TO STREAMFLOW IN THE 

SOUTHERN ROCKY MOUNTAINS OF COLORADO 

 

 Snowmelt contribution to streamflow in snow-dominated watersheds has largely 

been limited to using the Center of Volume method, which looks at the day at which a 

certain amount of flow has passed, typically 20%, 50%, and 80%, referred to as tQ20, tQ50, 

and tQ80, respectively. We developed a new method to measure streamflow timing in the 

Southern Rocky Mountains of Colorado for 39 gauging stations from 1976 to 2015. We first 

manually extracted start and end days from the annual hydrograph of a small, medium, and large watershed to use as ǲtruth.ǳ We then looked at the cumulative annual hydrograph and 
then found average spring and late fall baseflow. Using these average baseflows, we plotted 

the cumulative baseflow against the cumulative hydrograph and determined that the start 

and end of snowmelt contribution, tstart and tend, occurred when the cumulative hydrograph 

departed from the cumulative baseflow by a given baseflow factor. Using NSE and RMSE 

values, we determined that 10x and 17.5 baseflow were able to best represent the 

manually extracted values. NSE values ranged from 0.59 to 0.6 and 0.53 to 0.69 for tstart and 

tend, respectively; RMSE values ranged from 5.42 to 7.7 and 6.32 to 8.00, for tstart and tend, 

respectively. In comparison, NSE values ranged from -4.73 to -25.35 and -5.87 to -13.25 for 

tQ20 and tQ80, respectively; RMSE values ranged from 29.33 to 43.19 and 33.01 to 34.94 for 

tQ20 and tQ80, respectively. This new automated method was able to better predict values of 

start and end than what has been commonly used in the literature. 
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 We identified other variables related to snowmelt timing to streamflow, including 

the percent of flow and volume at the estimated tstart and tend, as well as the total duration of 

contribution. We used the correlation coefficient to help explain the variance in the 

observed trends of the different snowmelt timing variables, using different physiographic 

characteristics (mean slope, mean elevation, mean solar radiation, latitude, and longitude) 

as well as trends in winter precipitation and summer NDVI. Most of these trends were not 

statistically significant, but mean slope was best able to explain the variance in trends for 

tend, Q100, Qend, Qduration, %Qtend, and tQ80 (p < 0.05). 
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Chapter 1: Introduction 

 

Semi-arid and arid regions, like Colorado and much of the western United States, 

that receive little precipitation during the summer are particularly depend on snowmelt 

storage and reservoirs to supply water. In Colorado, snowfall comprises more than 60% of 

annual precipitation (Serreze et al., 1999). Snowmelt supplies a majority of water in 

Colorado, and the timing of snowmelt into streams is crucial for estimating water 

availability because snowmelt is an important characteristic for snow-dominated, high 

elevation watersheds (Schlaepfer et al., 2012).  Snowmelt timing also plays an important 

role in other processes; for example, earlier snowmelt contribution has been linked with 

greater wildfire frequency (Westerling et al., 2006). 

While the specifics of how climate change will affect Colorado streams is 

inconclusive (Clow, 2010), due in part to the complexity of snowmelt-dominated 

watersheds (Bales et al., 2006), research has suggested that there will be decrease in 

mountain snowpack (Stewart, 2009), which has implication for spring runoff and 

streamflow (Leung et al., 2005). Changes in snowmelt timing and its contribution to 

streamflow could require changes in reservoir storage capacity to accommodate an earlier 

melt (Barnett et al., 2005).  

Prior to the 1960s, hydrologists characterized streamflow using two different 

methods. The first was using the momentary maximum, or the day of maximum discharge 

in a given year. The second was using the fraction of the total flow in a given month or a 

different length of time over the course of a year. These two methods, however, neglected a 

majority of the streamflow data in a given year (Court, 1962). The proposed alternative 
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was to use the half-flow data (now called the center of volume or COV as well as Center 

Timing or CT). This measure is simply the day at which 50% of the annual flow has passed 

and can be further divided into first and third quartile dates (Court, 1962). 

The COV method has been adopted as a useful tool for streamflow timing metrics 

and been applied in numerous studies (Johnson, 1964; Satterlund and Eschner, 1965; 

Stewart et al., 2004; Stewart et al., 2005; Rauscher et al., 2008; Clow, 2010). The COV 

technique has been used as indicator of temporal trends in snowmelt generated 

streamflow (Stewart et al., 2005; Clow, 2010). However, the COV as an indicator of 

snowmelt timing may not be as useful or representative as originally thought. Based on 

model experiments as well as historical spring snowmelt data, COV may be more strongly 

influenced by total volume of streamflow than the timing of snowmelt (Whitfield, 2013). 

Change in timing of the COV may be indicative of changes in land use, precipitation timing, 

or baseflow (Johnson, 1964; Satterlund and Eschner, 1965; Whitfield, 2013), and therefore 

should be used with caution as an indicator of snowmelt timing. 

Previous streamflow trend analyses 

 Trends in streamflow have been studied using various properties of the flow itself. 

Yue et al. (2002) used minimum and mean daily flows in a comparison of statistical 

methods for trend analysis and determined that the Mann-Kendall test in an appropriate 

metric in datasets without significant serial correlation. Yue and Pilon (2005) examined 

daily annual minimum flows in Canada to investigate the probability of regional low flow 

periods; while climatic and physiographic differences exist across different regions, they 

can be represented by the same distribution type. Ryberg et al. (2016) used peak 

streamflow annually as well as seasonally to identify trends across the Upper Midwest of 
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the United States and found that certain ecological regions are more sensitive to earlier 

snowmelt and spring peaks. 

 Streamflow has also been analyzed for climatic changes using the COV technique. 

The COV has been used in multiple studies that examine snowmelt contribution for 

mountainous regions and Colorado in particular. Across the western United States and 

Canada, there is an earlier onset of COV from 1948 to 2002 (Stewart et al., 2005). Most 

trends were statistically significant and predicted COV occurring anywhere from 5 to 20 

days/decade later at stations in the Pacific Northwest. Few were statistically significant in 

the Southern Rocky Mountains, but observed changes in COV showed earlier onset of fewer 

than five days/decade (Stewart et al., 2005). Additionally, trends in the timing of COV were 

strongly correlated with changes in temperature from monthly gridded data but not 

precipitation (Stewart et al., 2005). 

 In another study conducted across the mountainous regions in the western United 

States, snowmelt-driven runoff (SDR) was estimated using the day at which 25%, 50%, and 

75% of flow had passed for watersheds where at least half the annual runoff occurred from 

April to July (Rauscher et al., 2008); 25% and 75% of flow were used as proxies for the 

early and late season flows of SDR, respectively. Quartiles were used in addition to COV to 

attempt to eliminate sensitivities to false starts (Moore et al., 2007; Rauscher et al., 2008). 

Over their study period (1962-1987), 50% of SDR was occurring 2-10 days/decade earlier 

for regions in Colorado, but areas Idaho and California had smaller observed trends of 2-4 

days/decade earlier (Rauscher et al., 2008). These trends were then applied to climate models with average global warming of Ͷ˚C in the years ʹͲ͹ͳ-2099, which predicted 
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earlier timing for 25%, 50% and 75% SDR by 14-40 days/decade for Colorado (Rauscher et 

al., 2008). 

 Discharge data and snow water equivalent (SWE) data from Snow Telemetry 

(SNOTEL) stations across Colorado were combined for water years 1978 to 2007 to 

estimate streamflow timing (Clow, 2010). This study used the day at which 20%, 50% 

(COV), and 80% of flow had passed, referred to as Q20, Q50, and Q80, respectively; Q20 

and Q80 served as proxies for the start and end of snowmelt, respectively (Clow, 2010). 

Stations were grouped into thirteen different regions throughout Colorado and the 

Regional Kendall test was used to calculated trends. This metric showed an earlier onset 

for all percentages of annual flow. Trends were largest for Q20 and statistically significant 

at all regions, ranging from 4 to 12 days/decade earlier. For the COV, trends were 

statistically significant at all regions, ranging from 2 to 10 days/decade earlier. For Q80, 

trends were statistically significant at all but 2 of the 13 regions, ranging from 2 to 8 

days/decade sooner (Clow, 2010). Results from the SNOTEL data indicate that high 

elevation watersheds are experience earlier snowmelt as well as earlier timing on the day 

at which 50% of snowpack has melted, and snowmelt onset is occurring as much as 8 days 

earlier (Clow, 2010).  

 Snowmelt in particular is occurring more quickly, especially in areas where winter 

precipitation has already decreased (Barnett et al., 2005). Daily SNOTEL data from 1984 to 

2009 were used to examine trends in snowpack for several regions in the western United 

States. The length of snow-covered season is decreasing across study area. For Colorado in 

particular, they observed faster rates of snowmelt as well as decreased maximum SWE 

(Harpold et al., 2012).  
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Questions and Objectives 

 While changes in streamflow in high elevation, snowmelt-dominated watersheds 

have been studied before (Stewart et al., 2004; Stewart et al., 2005; Fassnacht, 2006; 

Rauscher et al., 2008; Clow, 2010; Fritze et al., 2011), the timing of snowmelt contribution 

to streamflow has largely been limited to finding a specific day (typically the COV) or days 

at which a given percentage of flow has passed. Large precipitation events influence the 

days at which COV and percentages of total annual flow occur and therefore may give 

results that are not representative of snowmelt timing (Whitfield, 2013). Additionally, COV 

can be more strongly influenced by inter-annual variability in streamflow volume than 

snowmelt timing (Whitfield, 2013). These examples demonstrate that COV should be 

employed with greater caution and that there is a need for a new method for streamflow 

timing that is more representative of snowmelt timing. Streamflow timing and related 

trends are important to study because of recent warming and subsequent ramifications in 

order to gain a better understanding of when snowmelt will occur for future use (Barnett et 

al., 2005). 

 How do the results from a new, automated methodology of estimating snowmelt 

timing and streamflow compare to results from using the COV technique? In this research, 

we developed a new methodology to automate and approximate when snowmelt was 

contributing to streamflow. By manually extracting the start and end of snowmelt 

contribution from the annual hydrograph at three different-sized basins ȋused as ǲtruthǳȌ, 
we compared the derived values of start and end of snowmelt contribution from the new 

method and the COV technique and evaluate which method is better at predicting these 

dates. Additionally, we identified trends in snowmelt timing variables to compare the 
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results from the two methods. Finally, we explored the causes of the observed variance 

with different physiographic characteristics of the watershed and with observed trends in 

precipitation and land use.  
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Chapter 2: Methods 

 

Data 

 We examined trends in streamflow timing for 40 years (1976 through 2015) in 

headwater streams across the Southern Rocky Mountains of Colorado (Figure 1). 

Streamflow data were collected from 39 gauging stations monitored by the United States 

Geological Survey (USGS) and available through the National Water Information System 

<http://waterdata.usgs.gov/co/nwis/rt>. Stations were selected based on having at least 

30 years of record; for a specific water year to be included in analysis, it could not be 

missing more than 30 days of data. Basins were no larger than 1000 km2 and ranged in size 

from 4 km2 to 878 km2, and station elevations were at least 2000 masl (Table 1). 

Manual Extraction 

 In order to compare the automated values with those from the percent of annual 

flow (tQ20, tQ50, and tQ80), we manually extracted the start and end of snowmelt contribution 

to streamflow for three watersheds with small, medium, and large areas: Michigan River, 

Black Gore Creek, and Crystal River. Because the hydrographs are baseflow-dominated 

until snowmelt begins, we were able to determine the start of contribution by looking at 

the annual hydrographs over the 40-year study period. To determine the start of snowmelt 

contribution, we looked for when the first initial increase in streamflow occurred; end of 

snowmelt was when the hydrograph started to return to baseflow (Figure 2). For each 

station, we conducted the manual extraction three times to ensure consistency in choosing 

values and eliminate any potential bias. 

http://waterdata.usgs.gov/co/nwis/rt
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 We then used the Root-Mean-Square Error (RMSE) (Equation 1) and the Nash-

Sutcliffe Efficiency (NSE) (Equation 2) to assess how well tstart, tend, tQ20, and tQ80 predicted 

the start of snowmelt contribution and return to baseflow. 

 

�ܵܯܴ = √ଵ�∑ ሺܱ� ሻଶ��=ଵ�ܯ−   (Equation 1) 

 ܰܵ� = 1 − ∑ ሺ��−��ሻమ��=భ∑ ሺ��−�̅ሻమ��=భ   (Equation 2) 

 

Existing Methodology 

 We calculated the day of the Water Year at which 20%, 50%, and 80% of flow had 

passed to compare timing with an automated method. Clow (2010) used 20% and 80% of 

flow as proxies for the start and end of snowmelt contribution, respectively, and 50% of 

flow, the COV, has been widely applied in streamflow timing (Stewart et al., 2004; Rauscher 

et al., 2008; Clow, 2010). We first found the total annual flow (Q100) at each station-year 

and then found the days that corresponded with 20%, 50%, and 80% of flow, tQ20, tQ50, and 

tQ80, respectively. 

Automatic Timing Estimation 

 We decided to use the calendar year instead of water year because of precipitation 

events that occur in October (Fassnacht, 2006) (Figure 3). We used the cumulative annual 

hydrograph to estimate when snowmelt was contributing to streamflow. Because of the 

high elevation of these watersheds, streams are baseflow-dominated during the winter. 

During the spring and summer, the hydrograph shifts to snowmelt-dominated; this shift is 
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apparent on the cumulative hydrograph by changes in slope (Figure 4). At each station-

year, we first found the average baseflow at the beginning of the year (January through 

mid-March) and at the end of the year (September through December). We then plotted the 

average cumulative spring and fall baseflow against the cumulative annual streamflow to 

identify when the cumulative streamflow departed from the average baseflow. We 

determined the start of snowmelt contribution (tstart) was when the difference between 

cumulative streamflow and cumulative baseflow was greater than 10 times the average 

baseflow and return to baseflow (tend) was when the difference was 17.5 times the average 

baseflow (Figure 5; Figure 6). We conducted a sensitivity analysis to determine which 

baseflow factor best predicted streamflow timing and maximized NSE and minimized 

RMSE. We calculated the duration of snowmelt contribution to streamflow by subtracting 

the day of tstart from tend. We also looked at the volume as well as percent of annual flow that 

had passed at tstart and tend. 

 In order to compare the results of this developed methodology with the COV 

technique, we looked at the specific date at which our timing variables occurred instead of 

using Julian Day or day of water year. 

Physiographic Characteristics of Watersheds 

 Other studies that have examined trends in snowmelt contribution to streamflow 

primarily relied on climatic indices to explain their observations (Stewart et al., 2004; 

Clow, 2010; Harpold et al., 2012). We chose to include several physical attributes to 

evaluate characteristics that could influence the trends in the hydrograph snowmelt 

characteristics. These included basin elevation, slope, and incoming winter solar radiation 

from October to March (Meromy et al., 2013). First, the 30-m digital elevation model was 
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acquired from the National Elevation Database (<http://nationalmap.gov/elevation.html>). 

Second, each watershed was delineated based on the location of the gauging station using 

the suite of hydrology tools in ArcGIS (<http://www.esri.com>). Third, the slope and aspect 

were computed using the ArcGIS surface tools. Finally, the mean elevation and mean slope 

were computed using the ArcGIS zonal statistics tools. We computed incoming solar 

radiation on the 15th of each month in October, November, December, January, February, 

and March within each watershed using the Area Solar Radiation tool, which calculates the 

insolation at the input landscape (Meromy et al., 2013). Finally, we found the mean of these 

six months to determine total winter incoming solar radiation. 

 To evaluate possible changes in snowmelt contribution to streamflow due to 

climate, monthly spatial precipitation data were acquired from the PRISM dataset 

(<http://www.prism.oregonstate.edu/>) for the winter months (October through March). 

These were available starting in 1982 at a resolution of 4 km. Because of the coarse 

resolution of the dataset, pixel size was greater than the size of 4 of the 39 basins. We used 

the resample tool by the nearest neighbor to change the resolution to that of the 30-m 

digital elevation model in order to include all basins in the precipitation analysis. For a 

given water year, the total precipitation that fell in each basin was computed using the 

ArcGIS zonal statistics tool.  

 In order to address any changes within the watershed from land use, beetle-kill, 

wildfires, or vegetation, we collected Normalized Difference Vegetation Index (NDVI) data 

from the USGS (<http://earthexplorer.usgs.gov/>). However, these data were available 

starting in July 1989 but are still an accurate representation of changes because major fires 

and beetle-kill areas didnǯt occur in the Southern Rocky Mountains until the late 1990s and 

http://nationalmap.gov/elevation.html
http://www.esri.com/
http://www.prism.oregonstate.edu/
http://earthexplorer.usgs.gov/
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early 2000s (Wehner, 2016). We collected NDVI layers for July from 1989 to 2015 and 

found the NDVI for each watershed using the Zonal Statistics tool within ArcGIS.  

Statistical Analyses 

 At each station, we conducted three different statistical analyses: the Mann-Kendall 

Test, Thiel-Senǯs Slope, and Pearsonǯs Correlation Coefficient. The Mann-Kendall Test is 

used to calculate the statistical significance of the trends in the snowmelt timing variables 

(tstart, tend, Q100, Qstart, Qend, Qduration,%Qtstart, %Qtend, tQ20, tQ50, and tQ80), and the Thiel-Senǯs 
Slope to quantify the rate of change (Salmi et al., 2002). For example, each station was 

given a value along with the level of statistical significance (p < 0.05) as well as the change 

in days per decade of the timing variable. 

 The correlation coefficient is used to determine relationship between two different 

sets of variables. We used the correlation coefficient to examine the relationships between 

the trends in the annual calculated variables (tstart, tend, Q100, Qstart, Qend, Qduration,%Qtstart, 

%Qtend, tQ20, tQ50, and tQ80) and winter precipitation, NDVI, winter incoming solar radiation, 

mean elevation, and mean slope. 
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Figure 1. Distribution of USGS gauging stations in the Southern Rocky Mountains. 

 

 
Figure 2. Example of the manually extracted start and end dates from Michigan River in 

1993. 
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Figure 3. Example of late summer, early fall precipitation and why we chose to use calendar 

year instead of water year in our analysis. 

 

 
Figure 4. Sample annual cumulative hydrograph from Michigan River in 1993. 
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Figure 5. Example of the automated and manually extracted start days from Michigan River 

in 1993. 

 
Figure 6. Example of the automated and manually extracted end days from Michigan River 

in 1993. 
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Table 1. USGS gauging stations used in analysis with station and basin information. 

HUC Code Station Name Latitude Longitude Elevation (m) Area (km
2
) 

9066100 Bighorn Creek 39.63999 -106.293 2629 12 

9066000 Black Gore Creek 39.59637 -106.265 2789 32 

9046600 Blue River 39.45582 -106.032 2749 319 

9034900 Bobtail Creek 39.76026 -105.906 3179 15 

9066200 Booth Creek 39.64832 -106.323 2537 16 

9032100 Cabin Creek 39.98582 -105.745 2914 13 

9010500 Colorado River 40.32582 -105.857 2667 165 

8245000 Conejos River 37.30029 -105.747 3007 104 

9081600 Crystal River 39.23264 -107.228 2105 433 

9035800 Darling Creek 39.79719 -106.026 2725 23 

9058610 Dickson Creek 39.70411 -106.457 2818 9 

9063000 Eagle River 39.50832 -106.367 2638 182 

9058800 East Meadow Creek 39.73165 -106.427 2882 9 

9022000 Fraser River 39.84582 -105.752 2902 27 

9058700 Freeman Creek 39.69832 -106.446 2845 8 

9065500 Gore Creek 39.62582 -106.278 2621 38 

7083000 Halfmoon Creek 39.17221 -106.389 2996 61 

9064000 Homestake Creek 39.40554 -106.433 2804 92 

6746095 Joe Wright Creek 40.53998 -105.883 3045 8 

9047700 Keystone Gulch 39.59443 -105.973 2850 24 

9124500 Lake Fork 38.29888 -107.23 2386 878 

6614800 Michigan River 40.49609 -105.865 3167 4 

9066300 Middle Creek 39.64582 -106.382 2499 15 

9063900 Missouri Creek 39.39026 -106.47 3042 17 

9059500 Piney River 39.79572 -106.574 2217 219 

9066150 Pitkin Creek 39.6436 -106.303 2598 14 

9032000 Ranch Creek 39.94999 -105.766 2640 52 

9066400 Red Sandstone Creek 39.68276 -106.401 2808 19 

9073300 Roaring Fork River 39.1411 -106.774 2475 196 

7105945 Rock Creek 38.70749 -104.847 2000 18 

9035900 S Fork of Williams 39.80054 -106.026 2728 71 

9026500 St. Louis Creek 39.90999 -105.878 2737 85 

9050100 Tenmile Creek 39.57526 -106.111 2774 239 

9063400 Turkey Creek 39.5226 -106.337 2718 61 

9146200 Uncompahgre River 38.18388 -107.746 2096 386 

9352900 Vallecito Creek 37.4775 -107.544 2410 188 

9025000 Vasquez Creek 39.92026 -105.785 2673 72 

9063200 Wearyman Creek 39.52221 -106.324 2829 25 

9035500 Williams Fork 39.77888 -105.928 2987 42 
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Table 2. NSE and RMSE values for tQ20 and the baseflow factors for tstart. 
 NSE RMSE 

Baseflow 

Factor 

Black Gore  Michigan 

River 

Crystal 

River 

Black 

Gore  

Michigan 

River 

Crystal 

River 

5 -1.17 -0.40 0.13 13.46 14.47 8.00 

7.5 0.04 0.26 0.49 8.96 10.56 6.14 

10 0.59 0.60 0.60 5.85 7.79 5.42 

12.5 0.55 0.61 0.56 6.11 7.64 5.72 

15 0.41 0.66 0.56 6.11 7.64 0.00 

20 -0.20 0.53 0.32 10.01 8.43 0.00 

25 -0.90 0.20 -0.06 12.59 10.96 8.87 

tQ20 -13.75 -4.73 -25.35 35.07 29.33 43.19 

 

Table 3. NSE and RMSE values for tQ80 and the baseflow factors for tend. 
 NSE RMSE 

Baseflow 

Factor 

Black Gore Michigan 

River 

Crystal Black Gore Michigan 

River 

Crystal 

10 0.23 0.03 0.39 9.90 10.12 10.46 

15 0.66 0.40 0.63 6.57 7.99 8.15 

17.5 0.69 0.53 0.64 6.32 7.04 8.00 

20 0.65 0.51 0.61 6.77 7.20 8.32 

22.5 0.56 0.46 0.54 7.48 7.58 9.05 

25 0.43 0.38 0.44 8.54 8.12 9.96 

30 0.12 0.16 0.21 10.58 9.44 11.85 

tq80 -13.25 -9.31 -5.87 42.54 33.01 34.94 
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Chapter 3: Results 

 

In order to determine the baseflow factor used to identify tstart and tend, we 

compared NSE and RMSE values from several different multiplication factors and 

ultimately chose the factors that were best across the three different sample watersheds 

(Figure 7; Figure 8). The automatic timing estimation method resulted in higher NSE and 

lower RMSE values than using tqʹͲ or tqͺͲ when trying to predict the ǲtruthǳ taken from 
the manually extracted values for snowmelt timing (Table 2; Table 3). 

Trends in Snowmelt Timing Variables 

At the start of snowmelt contribution, tstart trends ranged from occurring 7.3 

days/decade later to 4.2 days/decade earlier, with statistical significance (p < 0.05) at 15 

stations; tQ20 trends had a greater range, from 8.8 days/decade later to 12.3 days/decade 

earlier, with statistical significance at 2 stations (Figure 9). At the end of snowmelt 

contribution, tend trends ranged from occurring 8.7 days/decade later to 6.5 days/decade 

earlier, with statistical significance at 9 stations; tQ80 trends had a smaller range, from 4 

days/decade later to 5 days/decade earlier, with statistical significance at 4 stations 

(Figure 10). For the total duration of snowmelt contribution to streamflow, tQduration trends 

ranged from 2.1 to 37.1 days/decade earlier, with statistical significance at 37 stations 

(Figure 11); tduration trends had a smaller range, from 9.1 days/decade later to 6.6 

days/decade earlier, with statistical significance at 2 stations (Figure 12).  

 For the other timing variables, Qstart ranged from 11.6 mm/decade less water to 19.2 

mm/decade more, with statistical significance at 10 stations (Figure 13), where Qend had a 

larger range, from 95.5 mm/decade less water to 73.5 mm/decade more, with statistical 
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significance at 2 stations (Figure 14). Total annual volume (Q100) ranged from having 80.7 

mm/decade less to 185 mm/decade more water, with statistical significance at 3 stations 

(Figure 15). The percentage of annual flow that occurred at tstart, %Qtstart, ranged from 0.8 

%/decade less to 2.5 %/decade more, with statistical significance at 4 stations; %Qtend 

ranged from 2.8 %/decade less to 4.5 %/decade more, with statistical significance at 3 

stations (Figure 16).  

Physiographic Characteristics 

 Trends in NDVI indicated that there were few disturbances within the watersheds 

with changes in NDVI ranging from 1%/decade to 7%/decade, with statistical significance 

at 4 stations (Figure 17). Winter precipitation trends varied from 53.8 mm/decade less to 

2.3 mm/decade more, with statistical significance at 7 stations (Figure 18). 

 Mean elevation ranged from 2494 to 3644 masl, and 35 of the 39 stations had mean elevations greater than ͵ͲͲͲ masl. Mean slope ranged from ͻ˚ to ʹ͸˚. )ncoming winter solar 
radiation ranged from 1407 to 1760 Watt-Hours/m2 (Table 4). 

Correlation Coefficient 

 There was positive correlation between radiation and tstart, Qstart, , Qend, Qduration, 

%Qtstart, and %Qtend, and negative correlation between radiation and tend, tduration, Q100, tQ20, 

tQ50, tQ80, and tQduration, but none of these relationships were statistically significant. There 

was positive correlation between elevation tstart, Q100, Qstart, %Qtstart, and %Qtend, and 

negative correlation between elvation and tend, tduration, Qend, Qduration, tQ20, tQ50, tQ80, and 

tQduration; only tQ80 had a statistically significant relationship (p < 0.05). There was a negative 

correlation between slope and all snowmelt timing variables, and these relationships were 

statistically significant for at tend, Q100, Qend, Qduration, and tQ20 p < 0.05, and tQ50 at p < 0.10. 
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There was a positive correlation between latitude and tstart, tend, tduration, Q100, Qstart, Qend, 

Qduration, %Qtstart, %Qtend, tQ20, and tQ50, and negative correlation between latitude tQ80 and 

tQduration. These relationships were statistically significant for Q100, Qend, %Qtend, and tQ80. 

There was a positive correlation between longitude and tstart, Qstart, %Qtstart, and tQduration, 

and a negative correlation between longitude and tend, tduration, Q100, Qend, Qduration, %Qtend, 

tQ20, tQ50, and tQ80. These relationships were statistically significant for tQ50 (p < 0.05) and 

tend, tduration, and tQ80 (p < 0.10) (Table 5). 

 
Figure 7. Comparison of NSE values for the baseflow factor for the start of snowmelt 

contribution. 

 

-1.5

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30

N
S

E
 

Baseflow Factor 

Black Gore

Michigan River

Crystal River



 

20 

 

 
Figure 8. Comparison of NSE values for the baseflow factor for the end of snowmelt 

contribution. 
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Figure 9. Comparison of trends for tstart and tQ20; watersheds are organized by mean 

elevation. Borders indicate statistical significance (p < 0.05). 
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Figure 10. Comparison of trends for tend and tQ80; watersheds are organized by mean 

elevation. Borders indicate statistical significance (p < 0.05). 
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Figure 11. Comparison of trends for tduration; watersheds are organized by mean elevation. 

Borders indicate statistical significance (p < 0.05). 
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Figure 12. Comparison of trends for tQduration; watersheds are organized by mean elevation. 

Borders indicate statistical significance (p < 0.05). 
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Figure 13. Comparison of trends for Qstart; watersheds are organized by mean elevation. 

Borders indicate statistical significance (p < 0.05). 
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Figure 14. Comparison of trends for Qend; watersheds are organized by mean elevation. 

Borders indicate statistical significance (p < 0.05). 
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Figure 15. Comparison of trends for Q100; watersheds are organized by mean elevation. 

Borders indicate statistical significance (p < 0.05). 
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Figure 16. Comparison of trends for %Qtstart and %Qtend; watersheds are organized by mean 

elevation. Borders indicate statistical significance (p < 0.05). 
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Figure 17. Comparison of trends for NDVI; watersheds are organized by mean elevation. 

Borders indicate statistical significance (p < 0.05). 
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Figure 18. Comparison of trends for winter precipitation; watersheds are organized by 

mean elevation. Borders indicate statistical significance (p < 0.05). 
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Table 4. Physiographic characteristics of watersheds used in correlation analysis. 

Station Name Solar Radiation (WH/m
2
) Mean Elevation (masl) Mean Slope ;˚Ϳ 

Bighorn Creek 1647 3369 26 

Black Gore Creek 1648 3261 15 

Blue River 1607 3546 18 

Bobtail Creek 1462 3593 22 

Booth Creek 1751 3305 23 

Cabin Creek 1628 3287 18 

Colorado River 1627 3215 17 

Conejos River 1573 2902 9 

Crystal River 1498 3097 22 

Darling Creek 1569 3266 19 

Dickson Creek 1590 3054 13 

Eagle River 1637 3270 14 

East Meadow Creek 1760 3218 13 

Fraser River 1499 3426 19 

Freeman Creek 1510 3001 11 

Gore Creek 1607 3644 22 

Halfmoon Creek 1598 3428 18 

Homestake Creek 1548 3271 14 

Joe Wright Creek 1629 3313 17 

Keystone Gulch 1558 3317 19 

Lake Fork 1407 3425 19 

Michigan River 1714 3192 17 

Middle Creek 1516 3469 22 

Missouri Creek 1566 2978 16 

Piney River 1707 3369 25 

Pitkin Creek 1599 3181 14 

Ranch Creek 1629 3166 14 

Red Sandstone Creek 1592 3514 21 

Roaring Fork River 1491 2494 21 

Rock Creek 1672 3323 18 

S Fork of Williams 1601 3032 11 

St. Louis Creek 1525 3273 17 

Tenmile Creek 1604 3424 16 

Turkey Creek 1661 3243 17 

Uncompahgre River 1444 2938 17 

Vallecito Creek 1587 3437 25 

Vasquez Creek 1531 3327 16 

Wearyman Creek 1539 3297 17 

Williams Fork 1624 3486 20 
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Table 5. Physiographic characteristics of watersheds used in correlation analysis. 

* Indicates statistical significance (p < 0.10) 

** Indicates statistical significance (p < 0.05) 

 

tstart tend tduration Q100 Qstart Qend Qduration %Qtstart %Qtend tQ20 tQ50 tQ80 tQduration 

NDVI 0.05 0.06 -0.05 0.09 0.27* 0.12 0.08 -0.01 0.02 -0.01 0.07 -0.11 -0.16 

Winter 

Precip 0.2 0.3* 0.02 0.28* 0.24 0.48** 0.39** 0.09 0.38** 0.23 0.07 -0.39** -0.13 

Mean 

Radiation 0.03 -0.22 -0.2 -0.08 0 0 0.08 0.26 0.04 -0.09 -0.25 -0.26 -0.11 

Mean 

Elevation 0.13 -0.14 -0.18 0.01 0.15 -0.04 -0.07 0.12 0.16 -0.01 -0.17 -0.46** -0.24 

Mean Slope -0.2 -0.38** -0.17 -0.37** -0.07 -0.38** -0.36** -0.01 -0.23 -0.37** -0.29* -0.16 -0.06 

Latitude 0.04 0.2 0.1 0.39** 0.11 0.35** 0.23 0.04 0.39** 0.26 0.15 -0.51** -0.06 

Longitude 0.1 -0.3* 0.31* -0.12 0.05* -0.11 -0.13** 0.05 -0.14 -0.09 -0.54** -0.28* 0.07 
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Chapter 4: Discussion 

 

The COV technique has become a popular streamflow timing metric and has been 

used in conjunction with the days at which 20% and 80% of flow has passed to examine 

snowmelt timing in streams. These metrics do not always adequately identify when 

processes are occurring. In order to address these shortcomings, we developed a new 

method to better represent snowmelt timing in streamflow and identify any trends related 

to various timing variables. 

Comparison of results from methodologies 

 Based on NSE and RMSE values of the two methods, the automated estimation is an 

improvement over using 20% and 80% of flow as proxies for the start and end of snowmelt 

contribution (Table 2; Table 3; Figure 19; Figure 20). The mean values would be a better 

predictor than using tQ20 or tQ80 whereas the automated estimation reasonably predicts tstart 

and tend. The poor performance for tQ20 and tQ80 may be responding to other variables, or, 

more simply to differences in the total annual discharge volume, and not snowmelt 

(Whitfield, 2013). While this analysis was only conducted for 3 of the 39 watersheds, the 

basins chosen were representative of the small, medium, and large watersheds included 

within this analysis. This method could likely be employed for watersheds with similar 

characteristics but would need to undergo further verification before being applied to 

larger basins. Additionally, adjustments should be made to the technique when trying to 

apply it to watersheds in different climates like the Pacific Northwest, where the transition 

from a baseflow to snowmelt-dominated watershed is not as easily distinguished. 
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 We then compared the specific dates for the start and end of snowmelt contribution. 

Using both tstart and tend are improvements upon using tQ20 and tQ80 based on the NSE and 

RMSE values. These values demonstrate that using the mean of the manually extracted 

values would have been a better predictor than calculating either tQ20 or tQ80, whereas tstart 

and tend are able to predict these days reasonably well. 

 The calculated trends demonstrate the differences in magnitude as well as statistical 

significance from the two methods. For the start of snowmelt (Figure 9), in general, the two 

methods show that snowmelt timing is occurring earlier in the year, but the magnitude for 

tQ20 is larger than what was calculated for tstart. For tQ20, there are 6 stations that show 

snowmelt is occurring later in the year, where tstart is happening earlier. We observed 

greater statistical significance across stations for tstart. For the end of snowmelt (Figure 10), 

trends for both methods show the end of snowmelt contribution is occurring earlier in the 

year, although trends in tend were larger in magnitude than for tQ80, and we observed 

greater statistical significance at stations for tend. The larger number of stations with 

statistically significant trends for the automated methodology also shows that these trends 

are a reflection of changes taking place within these watersheds. 

 The two methodologies also result in drastically different trends for the duration of 

snowmelt contribution (Figure 11; Figure 12). Trends in the automatic estimation ranged 

from 6.6 days/decade earlier and 9.1 days/decade later with statistical significance at only 

2 stations, whereas the COV method had trends that ranged from 2.1 to 37.1 days/decade 

earlier with statistical significance at 37 stations. Based on the performance of the 

automatic estimation, the new method is likely better at representing trends that are 

occurring and the reported trends are more reliable than using the COV method. However, 
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there are still statistically significant changes that are occurring across a majority of the 

study sites for the middle 60% flow (tQ80-tQ20), which should not be ignored, especially if 

there are changes as large as 5 weeks for a given decade (Figure 12). These differences in 

snowmelt may require changes in operation for reservoirs that currently drawdown in the 

fall in preparation for spring snowmelt (Ryberg et al., 2016). 

Other findings from the COV method show different trends than what were 

calculated here. Clow (2010) used the Regional Kendall test for trend analysis of his 

streamflow metrics and found that 43%, 62%, and 36% of stations had trends that were 

occurring significantly earlier for tQ20, tQ50, and tQ80, respectively; there were no observed 

trends that were occurring later in the year for any of his metrics. Additionally, Clow 

(2010) saw trends range in magnitude from 10 days/decade to 8 days/decade for Q20 and 

Q80, respectively. Using tstart and tend produced a range of 11 days/decade and 14 

days/decade, respectively. Our calculations using the COV method produced a range of 20 

days/decade and 9 days/decade for tQ20 and tQ80, respectively. The differences between 

studies can partially be explained by our use of the Mann-Kendall test, instead of the 

Regional Kendall test. A recent study demonstrated that using the Regional Kendall test 

produced trends that were smaller in magnitude than what was observed at individual 

stations (Fassnacht, 2016). We also used different site selection criteria; specifically this 

study used a 40-year period, whereas Clow (2010) used a 29-year-record, ending in 2007. 

 Stewart et al. (2005) examined streamflow trends in the western United States and 

Canada from 1948 to 2002. They used the COV method in combination with an algorithm 

that determined the onset of snowmelt contribution (Cayan et al., 2001) that is similar to 

the method developed here. For Colorado, they observed few statistically significant trends 
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in the COV, corroborating our findings. However, for the onset, they observed statistical 

significance at only 1 station out of 15, whereas we found statistical significance at 15 of 

the 39. Their trends were also larger in magnitude, ranging from 20 days/decade earlier to 

20 days/decade later, but the majority of stations were only 5 days/decade earlier, which is 

similar to our findings. Our shorter length as well as the timing of the study period could 

explain these differences. Additionally, we used stations that were at higher elevations than 

Stewart et al. (2005), so perhaps there is greater statistical significance occurring at these 

higher elevation gauging stations. Using SNOTEL data, Clow (2010) reported that snowmelt 

is occurring earlier at higher elevations in Colorado. 

 Besides having a more accurate prediction of the true timing of snowmelt 

contribution into streamflow, another advantage this new method presents is that we were 

able to estimate any trends in the total volume of water from snowmelt that passes in a 

given season. This information will be helpful for water forecasters and managers making 

decisions about water storage and reservoirs in the future (Gomez-Landesa and Range, 

2002).  

Trend Correlation 

For incoming winter solar radiation, tstart, Qstart, Qend, Qduration, %Qtstart, and %Qtend had 

positive correlations whereas tend, tduration, Q100, tQ20, tQ50, tQ80, and tQduration had negative 

correlations. These were not statistically significant relationships, showing that the solar 

radiation for each watershed cannot explain the variance in trends. Meromy et al. (2013) 

used regression trees to determine factors that influence snow accumulation and ablation 

around SNOTEL sites in Colorado and solar radiation appeared with the greatest frequency, 

indicating its importance for SWE. In the Sierra Nevadas, solar radiation was identified as 
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the primary parameter that influenced snowpack accumulation and ablation (Elder et al., 

1991), but for the watersheds in this study, solar radiation alone is unable to explain the 

trends in snowmelt variables.  

For NDVI, tstart, tend, Q100, Qstart, Qend, Qduration, %Qtend, and tQ50 had positive 

correlations, whereas tduration, %Qtstart, tQ20, tQ80, and tQduration had negative correlations, but 

these were not statistically significant relationships. Changes in land cover and vegetation 

can influence mountain snowmelt timing by as much as 10 days (Ellis et al., 2013). NDVI 

had few changes in the watersheds used in this study; however, based on the correlation 

coefficient, the changes that did occur did not influence the variance on the different 

snowmelt variables used in this study. 

 For elevation, tstart, Q100, Qstart, %Qtstart, and %Qtend had positive correlations, whereas 

tend, tduration, Qend, Qduration, tQ20, tQ50, tQ80, and tQduration had negative correlations, all these 

relationships except for tQ80 were not statistically significant. Contrary to our study, Jepsen 

et al. (2016) found that runoff in the Sierra Nevada of California are likely dependent on 

elevation; a study conducted in western Austria found similar correlation with streamflow 

and elevation (Kormann et al., 2015). However, the mean elevations of watersheds in this 

study ranged from 2494 to 3644 masl, whereas the other studies ranged from 1467 to 

3137 masl (Kormann et al., 2015; Jepsen et al., 2016), so the relationship between these 

variables and elevation may be more pronounced with a larger range. 

For mean slope, all snowmelt variables had negative relationships (Table 5), and tend 

(Figure 21), Q100, Qend, Qduration, and tQ20 had statistically significant relationships (p < 0.05); 

tQ50 had a statistically significant relationship with slope (p < 0.10). Steeper mean slopes 

within these watersheds result in earlier timing in the year for tend, tQ20, and tQ50 and less 
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water for Q100, Qend, and Qduration. Snowmelt in basins with steep slopes enters streams more 

quickly than similar basins with shallower slopes (Sueker et al., 2000), which could account 

for the relationship and subsequent earlier timing for tend, tQ20, and tQ50. Snowpack 

accumulation is less in steeper watersheds (Elder et al., 1991), causing there to be less total 

volume during spring snowmelt, which could help account for the relationship of slope and 

Q100, Qend, and Qduration. 

Many studies have used climatic indices to attempt to explain the variance in their 

findings (Stewart et al., 2005; Clow, 2010; Fritze et al., 2011). Precipitation was positively 

correlated with Vend, Vduration, and %Qtend (p < 0.05) as well as tend and Q100 (p < 0.10), and 

negatively correlated with and tQ80 (p < 0.05); no other variables had a statistically 

significant correlation with precipitation (Table 5). Changes in precipitation may obscuring any warming that has taken place, which could be why there wasnǯt correlation with other 
variables (Stewart et al., 2005). In other systems, social factors like forest disturbance and 

other ecologic changes have hidden the effects of precipitation on streamflow (Jones et al., 

2012), but that is not the case for these watersheds as our NDVI trends indicate few 

changes across the record. Furthermore, because of the complexity of variables in high 

elevation, mountain watersheds, we cannot always expect that trends in precipitation will 

follow observed trends in streamflow (Bard et al., 2015). 

 Streamflow trends have been well correlated with temperature trends (Stewart et 

al., 2005; Rauscher et al., 2008; Clow, 2010). However, there are inhomogeneities in the 

PRISM temperature data at high elevation since these rely on SNOTEL stations that are not 

consistent over the period of record (Oyler et al., 2015). Thus, we have not included spring 

temperature in our analysis. Beyond temperature and precipitation, few studies that have 
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looked at trends in streamflow for snowmelt-dominated watersheds have included 

correlation of physical characteristics of the watersheds, and several studies do not include 

any type of correlation (Luce and Holden, 2009; Sagarika et al., 2014). 

 

Figure 19. Comparison of the manually extracted start and tstart and tQ20 from the 

automated and COV methods. 

 

 

Figure 20. Comparison of the manually extracted start and tend and tQ80 from the automated 

and COV methods. 
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Figure 21. Correlation between slope and trends in tend. 
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Chapter 5: Conclusions 

 

 The goal of this study was to use a new method to estimate start and end of 

snowmelt contribution to streamflow that used features of the cumulative annual 

hydrograph from daily discharge data. Using 39 USGS gauging stations, we identified 

several different variables (tstart, tend, tduration, Q100, Qstart, Qend, Qduration, %Qtstart, and %Qtend) 

related to streamflow over a 40-year period. We also calculated the day at which a given 

amount of flow had passed, tQ20, tQ50, tQ80, and tQduration, in order to compare the findings of 

this new methodology against what has commonly been used in the literature. Based on 

NSE and RMSE values, our new, automated estimation is an improvement over using tQ20 

and tQ80 as predictors for the start and end of snowmelt contribution, respectively. 

 We also calculated trends in the various snowmelt variables. We observed statistical 

significance at 15 stations for tstart and 9 stations for tend; most trends show earlier timing in 

the year, by as much as 7 and 8 days/decade for tstart and tend, respectively. In order to 

explain the variance in these calculated trends, we compared the snowmelt variables with 

different physiographic characteristics (NDVI, winter precipitation, mean radiation, mean 

slope, mean elevation, latitude, and longitude) of the watersheds; most correlations were 

not statistically significant. Mean slope was able to explain the variance in trends better 

than the other characteristics (5 variables where p < 0.05 and 1 variables where p < 0.10), and had negative correlations with all variables but Pearsonǯs r was only as high as 0.38. 

Contrary to other studies, precipitation and elevation did not explain the variance in the 

trends. 
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Chapter 6: Recommendations 

  

This study used daily streamflow data to develop a method to identify trends in 

snowmelt contribution based in the Southern Rocky Mountains. Because of the 

performance of this new model based on NSE and RMSE values compared to using the 

more common COV method in the literature, we recommend that it be employed more 

widely when examining trends in snowmelt contribution to streamflow. However, this 

technique needs to be applied more widely and to different snowmelt-dominated regions 

to ensure that it performs well under different climatic geographic areas.  

 We also recommend that future research continue to investigate the potential 

causes of observed trends. We were unable to consistently explain the variance in the 

trends in our calculated variables. If the study area is expanded and additional 

characteristics are included, a multivariate regression should be performed. 
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Chapter 8: List of Abbreviations 

 

 

 

Q100  Total flow for a given 

tstart  Start of snowmelt contribution to streamflow (introduced methodology) 

tend  End of snowmelt contribution to streamflow (introduced methodology) 

tduration  Duration of snowmelt contribution (introduced methodology) 

%Qtstart Percentage of total annual flow that has passed at tstart 

%Qtend  Percentage of total annual flow that has passed at tend 

Qstart  Volume of water that has passed at tstart 

Qend  Volume of water that has passed at tend 

Qduration Total volume of water that passed between tstart and tend 

tQ20 Day at which 20% of the total annual flow has passed, previously been used 

as a proxy for the start of snowmelt contribution 

tQ50 Day at which 50% of the total annual flow has passed, referred to as Center 

of Volume (COV) or Center Timing (CT) in the literature 

tQ80 Day at which 80% of the total annual flow has passed, previously been used 

as a proxy for the end of snowmelt contribution 

tQduration Duration of snowmelt contribution calculated from subtracting tQ20 from tQ80 

 


