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ABSTRACT

ACOUSTIC TOMOGRAPHY OF THE ATMOSPHERE USING ITERATED

UNSCENTED KALMAN FILTER

Tomography approaches are of great interests because of their non-intrusive

nature and their ability to generate a significantly larger amount of data in comparison

to the in-situ measurement method. Acoustic tomography is an approach which

reconstructs the unknown parameters that affect the propagation of acoustic rays

in a field of interest by studying the temporal characteristics of the propagation.

Acoustic tomography has been used in several different disciplines such as biomedical

imaging, oceanographic studies and atmospheric studies.

The focus of this thesis is to study acoustic tomography of the atmosphere in order

to reconstruct the temperature and wind velocity fields in the atmospheric surface

layer using the travel-times collected from several pairs of transmitter and receiver

sensors distributed in the field. Our work consists of three main parts.

The first part of this thesis is dedicated to reviewing the existing methods for

acoustic tomography of the atmosphere, namely statistical inversion (SI), time de-

pendent statistical inversion (TDSI), simultaneous iterative reconstruction technique

(SIRT), and sparse recovery framework. The properties of these methods are then

explained extensively and their shortcomings are also mentioned.

In the second part of this thesis, a new acoustic tomography method based on

Unscented Kalman Filter (UKF) is introduced in order to address some of the short-

comings of the existing methods. Using the UKF, the problem is cast as a state

estimation problem in which the temperature and wind velocity fields are the desired

states to be reconstructed. The field is discretized into several grids in which the
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temperature and wind velocity fields are assumed to be constant. Different models,

namely random walk, first order 3-D autoregressive (AR) model, and 1-D temporal

AR model are used to capture the state evolution in time-space . Given the time of

arrival (TOA) equation for acoustic propagation as the observation equation, the tem-

perature and wind velocity fields are then reconstructed using a fixed point iterative

UKF.

The focus in the third part of this thesis is on generating a meaningful synthetic

data for the temperature and wind velocity fields to test the proposed algorithms.

A 2-D Fractal Brownian motion (fBm)-based method is used in order to generate

realizations of the temperature and wind velocity fields. The synthetic data is gener-

ated for 500 subsequent snapshots of wind velocity and temperature field realizations

with spatial resolution of one meter and temporal resolution of 12 seconds. Given the

location of acoustic sensors the TOA’s are calculated for all the acoustic paths. In

addition, white Gaussian noise is added to the calculated TOAs in order to simulate

the measurement error. The synthetic data is then used to test the proposed method

and the results are compared to those of the TDSI method. This comparison attests

to the superiority of the proposed method in terms of accuracy of reconstruction,

real-time processing and the ability to track the temporal changes in the data.
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CHAPTER 1

INTRODUCTION

1.1 Background and Problem Statement

Tomography is a method of reconstructing the internal structure of an object by

radiating signals through the object and studying its interactions with the signals. A

wide variety of signal types with different energy levels can be used to study different

mediums, resulting in a vast number of tomography applications. Owing to their

non-intrusive nature, tomography methods have been used excessively in medical,

non-destructive testing and measurement, oceanographic, and atmospheric arenas.

X-ray tomography, positron emission tomography(PET), magnetic resonance imag-

ing(MRI), ultrasound tomography, etc. are just a few examples of different tomog-

raphy disciplines [1–3]. In this thesis we are focusing on the acoustic tomography

of the atmosphere which aims at reconstructing the temperature and wind velocity

fields in the atmospheric surface layer, using the travel-times collected from several

pairs of transmitter and receiver sensors distributed in the field. The idea of acoustic

travel-time tomography of the atmosphere has emerged from the oceanic acoustic

tomography [3], which is a method to measure temperature and current over large

regions of the ocean.

Monitoring temperature and wind velocity fields in the atmospheric surface layer

has always been of great importance in different disciplines, such as boundary layer

meteorology [4, 5], and studies of wave propagation through a turbulent atmosphere

[6]. The conventional approach to measure these fields is to use in-situ thermo-

anemometers. However, employing these sensors within the investigation area has two

major drawbacks. First, this is not an economically viable solution as a large number
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of such rather expensive sensors is needed to achieve an acceptable spatial resolution.

Moreover, deploying these sensors in an investigation area may distort the measured

fields and hence leading to inaccurate measurements. Acoustic tomography technique

is a popular method [7–12] that has been used in order to measure temperature and

wind velocity fields with minimal interference in the investigation area as well as lesser

cost.

The speed of a sound ray propagating in the atmosphere is influenced by several

parameters like temperature,wind velocity (air flow) and humidity along the propa-

gation path [7–12]. This implies that the measured TOA is directly related to the

temperature, wind velocity, and humidity. To be more precise, the TOA for a sound

ray is the line integral of the slowness ( 1
speed

) of the sound ray over its propagation

path. Acoustic tomography methods use this dependency to reconstruct the tem-

perature and wind velocity in an investigation area based on several acoustic travel

time measurements between different sources and receivers deployed in an investi-

gation area. Wilson and Thomson [7] showed that for a source and receiver with

100m separation, a path-averaged fluctuation as small as 1 m
sec

in the wind velocity

causes approximately a 0.9msec fluctuation in the TOA, a path-averaged fluctuation

as small as 1K in the temperature causes approximately a 0.6msec fluctuation in the

time of arrival and a humidity change of 1gkg−1 (which is an extremely large change in

outdoor conditions) would change the sound velocity by only 0.2 m
sec

. Thus, the effect

of humidity on the travel time is somehow negligible and hence can be ignored [13].

1.2 Survey of Previous Work

Acoustic tomography problems are divided into forward and inverse problems [14].

Forward or direct acoustic tomography [15,16] aims to estimate a detailed structure of

the signal at the receivers including the time of arrival and the transmission loss, given

the temperature field, wind velocity field, ground condition, and the characteristics
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of the sound sources and their location with respect to the sensors. On the other

hand, inverse acoustic tomography’s goal [7–12] is to estimate temperature and wind

velocity fields given the characteristics of the sound sources, the coordinates of sensors

and the travel time for acoustic propagation paths.

The first experiments in inverse acoustic tomography were carried out in the early

1900’s in Europe. Large explosions were used as the sound sources , where travel

times and angle of arrivals were recorded for sensors located at different distances

from the explosions. However, theoretical approaches to inverse acoustic tomography

were studied later by Spiesberger and Fristrup [5] for the problem of locating bird’s

calls based upon the received signatures. They demonstrated that consideration of

temperature and wind flow along the sound propagation paths can significantly im-

prove the accuracy of localization. Later, Wilson and Thomson [7] carried out the

first acoustic tomography experiment with actual sound sources and microphones to

measure the atmospheric surface layer temperature and wind velocity fields. They

showed that using acoustic tomography is highly beneficial, as it uses a small number

of acoustic sensors to reconstruct the temperature and wind velocity fields with high

spatial resolution.

Solving an inverse acoustic tomography problem is in general difficult, owing to

its highly nonlinear nature. Several tomographic algorithms have been introduced in

different fields to solve the inverse acoustic problem [7, 9, 11]. These tomographic

algorithms are commonly categorized as statistical-based algorithms [7, 8, 11, 12],

algebraic-based algorithms [9, 10, 17, 18] and those which use sparse reconstruction

framework [19].

Wilson and Thomson [7] introduced the first statistical-based algorithm referred

to as Stochastic Inversion (SI), to reconstruct the temperature and wind velocity

fields. This method is based on using Wiener filter [20] which is inherently linear

and assumes that the signal and noise are stationary stochastic processes with known
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spectral characteristics or known auto-correlation and cross-correlation. This assump-

tion doesn’t hold for an inverse acoustic tomography problem, due to the fact that

the process is not only nonlinear but also non-stationary with unknown correlations.

However, linearizing the problem and separating it into mean fields and fluctuations,

assuming stationarity and using Gaussian functions for the spatial correlations en-

ables the application of the Wiener filtering to reconstruct temperature and wind

velocity fields. Vecherin et. al [11, 12] proposed a modified version of SI algorithm

referred as time dependent stochastic inversion (TDSI) which uses an augmented vec-

tor of several snapshots in time as the observation vector. Similar to SI it employs

Wiener filter to reconstruct the fields. The frozen turbulence assumption is also used

in TDSI in order to deal with the time extension.

Among the algebraic-based algorithms are the algebraic reconstruction techniques

including multiplicative algebraic reconstruction technique (MART) [21] and simul-

taneous iterative reconstruction technique (SIRT) [9,13] which solve inverse acoustic

problems. These methods use reciprocal sensors and collect two arrival times for

each sound ray path, and reformulate the problem linearly. The linear system is then

solved by an iterative L2 norm minimization using gradient-based methods. They

start with some arbitrary initial values for the fields and calculate the travel-time

along known sound ray paths based on the initial fields. Then, the deviations be-

tween the calculated travel-time values and actual measured values are calculated,

and adjustments are made to the initial fields until the deviations between forward

modeled travel-time values and measured values are small.

Jovanovic et. al. [18] suggested a new approach based on sparse reconstruction

framework. This approach studies two different kinds of sparsity, namely sparsity in

signal domain which assumes that the fields are made out of the combination of a few

2D-kernel functions on the specified grid in the investigation area, and the sparsity

in Fourier domain for smooth temperature fields. Numerical results showed that [18]
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the method works under perfect experimental condition, though there is no result on

actual measured data to evaluate the real performance of this method.

1.2.1 Proposed Method

In this thesis, a new statistical-based approach toward solving the inverse acous-

tic tomography problem is presented which casts the problem as a nonlinear state-

estimation problem. The investigation field is discretized into several grids where the

temperature and wind velocity fields are assumed to be constant in each grid. The

states are the temperature and wind velocity fields in each grid over the monitored

area. The TOA measurements are used as the observations, and the state evolu-

tion and observation equations are formed based on the underlying physics of the

problem. The mean temperature and wind velocity fields are calculated from the

measured TOAs and are fed to the Kalman filter as the initial states to start the

state estimation process.

Due to the nonlinearity of the observation equation (i.e. observation vector is

a nonlinear function of the states), Unscented Kalman Filter (UKF) [22–24] had

to be employed to estimate and track the changes in the states at every snapshot.

UKF is based on Unscented Transform method [25] which represents a derivative-free

alternative to the extended Kalman filter (EKF) [26]. The latter uses linearization

of the state and observation equations which leads to the first order approximation

of the nonlinear system. UKF’s performance has been shown [24] to surpass that of

EKF at an equivalent or even lesser computational complexity.

Different models, namely a random walk, a first order 3-D spatial autoregressive

(AR), and a third order 1-D temporal AR models are used and benchmarked to

capture spatial-temporal dynamics of the temperature and wind velocity fields. The

state evolution equation is formed based on each model, and the results are compared

in terms of reconstruction accuracy and computational complexity. It was shown that
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the first order 3-D AR model provides the best overall results and hence was used in

subsequent experiments.

To test the UKF-based acoustic tomography, a synthetic data set was generated

based on fractal Brownian motion (fBm). Then, the TOAs were calculated for the

data set. In order to make the synthetic data more realistic, a white Gaussian noise

was added to the calculated TOAs to account for the measurement errors. The tem-

perature and wind velocity fields are then reconstructed using a fixed point iterative

UKF, using three iterations on each snapshot.

The results indicate that the proposed method offers a robust and accurate solu-

tion to the inverse acoustic tomography problem when compared to the existing TDSI

method. Due to the nature of the UKF the proposed method can be applied to many

applications where near real-time monitoring of the investigation area is needed. In

addition, unlike the SI, TDSI, and SIRT methods there is no need for linearization of

the observation equation [7,11] or using reciprocal sensors [9]. Moreover, the Wiener

filter used in [7, 11, 12] for the temperature and wind velocity field reconstruction

assumes stationarity of the data which is not realistic. This assumption is lifted in

the proposed UKF-based acoustic tomography method.

1.3 Organization of the Thesis

This thesis is organized as follows. Chapter 2 reviews the acoustic tomography inverse

problem formulation and reviews several existing acoustic tomography approaches

such as statistical inversion (SI), time dependent statistical inversion (TDSI), simulta-

neous iterative reconstruction technique (SIRT), and an acoustic tomography method

based on the compressed sensing framework. Chapter 3 reviews formulations of the

UKF for state estimation, parameter estimation, and dual state-parameter estimation.

The acoustic tomography is cast into a state estimation problem and the proposed

UKF-based acoustic tomography method is described in detail in Chapter 4. Chapter
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5 describes the fundamentals of the fractal Brownian motion(fBm) and explains the

synthetic data generation process using this method. The proposed method is tested

both on the synthetic and real data sets acquired from the University of Leipzig,

collected at the Meteorological Observatory, Lindenberg, Germany, as part of the

STINHO project [27], and compared to the well-known TDSI method in Chapter 6.

Finally, Chapter 6 gives conclusion and ideas for future work.
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CHAPTER 2

REVIEW OF DIFFERENT TOMOGRAPHY

METHODS

2.1 Introduction

The problem of reconstructing the continuous temperature and wind velocity fields

from finite TOA measurements is inherently an underdetermined problem. Solving

such a problem usually requires several simplifying assumptions about the tempera-

ture and wind velocity fields, i.e. assuming that the fields are spatially and temporally

stationary.

Algorithms dealing with acoustic tomography of the atmosphere, namely stochas-

tic inversion (SI) [7], time dependent stochastic inversion (TDSI) [11], simultaneously

iterative recursive technique (SIRT) [9], and acoustic tomography based on sparse

reconstruction [18] use several simplifying assumptions in order to reconstruct the

temperature and wind velocity fields. One common step among all these algorithms

is discretization of the investigation field. In order to be able to solve the acoustic

tomography problem numerically, the investigation area is discretized into grid cells,

and the fields are reconstructed at the chosen grid points. Using the griding system

requires that the temperature and wind velocity fields be constant in every cell. This

implies that the fields are perfectly correlated between every pair of points in a cell

while they are less correlated or uncorrelated with the points in other cells. The step

behavior of the correlation function, introduced by the griding process, is unrealistic

in fluid mechanics because it forces a discontinuous solution on a continuous field.

The forward formulation of the TOA for an acoustic ray is nonlinear and generally
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speaking working with nonlinear models is onerous. Hence, most inverse algorithms

use simplified linear models and solve the inverse problem based on these models.

SI and TDSI algorithms [7, 11] assume that the wind velocity is much less than the

Laplace sound speed and also the temperature fluctuations are much less than the

mean temperature throughout the field and employ the first order linear approxima-

tion of the forward model to reconstruct the temperature and wind velocity fields.

SIRT method [9], on the other hand, uses reciprocal sensors and reformulate the

nonlinear problem into two linear problems using the reciprocal measurements.

SI and TDSI algorithms use Wiener filter [20] in order to reconstruct the tem-

perature and wind velocity fields. Solving the problem using Wiener filter, requires

temperature and wind velocity temporal and spatial covariance functions. The main

difficulty in setting up SI and TDSI is that the correlation functions for atmospheric

temperature and wind velocity fields are unknown, therefore the optimal stochastic

inverse is not feasible in real-world scenarios. However, SI and TDSI assume the

fields are stationary, and use realistic models for the correlation functions in order to

reconstruct the fields. SIRT method [9], reconstructs temperature and wind velocity

fields separately using a gradient based iterative ℓ2 minimization algorithm. Com-

pared to SI and TDSI, SIRT uses less additional assumptions about the structure of

the temperature and wind velocity fields which makes it more suitable for real-world

problems.

SI reconstructs the fields at each snapshot using the measured TOAs for the same

snapshot while TDSI uses previous measurements as well as the current measurements

to reconstruct the fields. Employing several snapshots requires using the spatial-

temporal temperature and wind velocity correlation functions. TDSI uses the locally

frozen turbulence assumption, to deal with the spatial-temporal correlation functions

and represents them just based on spatial correlation functions. The locally frozen

turbulence hypothesis includes two assumptions about the temporal evolution of the
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atmosphere. First, the layers of the temperature (in our case Laplace sound speed)

and wind velocity fields are spatially stable through time. Second, these layers are

moving with the spatial mean wind velocity.

This chapter explains the formulation of the problem and studies different acoustic

tomography methods, namely those in [7,9,11,18] and their inherent assumptions in

detail.

2.2 Acoustic Propagation Formulation

The travel time for an acoustic wave to propagate from a source to a receiver is a

function of temperature,wind velocity (air flow) and humidity along the path [7–12].

Acoustic tomography methods use this relation to reconstruct the temperature and

wind velocity in an investigation area based on several travel time measurements

between different sources and receivers deployed in an investigation area.

In the absence of wind an acoustic wavefront propagates with the well-known

Laplace sound speed [7], given by

c2L = γRaTav, (2.1)

where γ ≈ 1.41 denotes the ratio of specific heat capacities (or adiabatic index) at

constant pressure and volume, Ra is the universal gas constant for dry air and Tav is

the acoustic virtual temperature which is related to the thermodynamic temperature

Tth, as Tav = Tth(1 + 0.511q) , with q being the specific humidity defined as the ratio

of water vapor to moist air [28]. But since the effect of q is negligible one can write

Tav ≈ Tth

In the field experiments though, wind velocity significantly impacts the speed of

sound propagation along a specific path. Wind velocity can be formulated as:

v(r, t) = α(r, t)cos(θ(r, t))ex + α(r, t)sin(θ(r, t))ey, (2.2)

where ex and ey are the unit vectors of a 2D-Cartesian coordinate system and r =
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xex + yey is the position vector of a point on the investigation area and α(r, t) and

θ(r, t) are magnitude and direction of the wind velocity at position r and time t,

respectively. Therefore, the sound speed along the sound ray can be defined as:

cray(r, t) = s.(cL(r, t).n+ v(r, t)), (2.3)

where s and n denote the unit vectors in the direction of sound propagation and nor-

mal to the wavefront, respectively. The acoustic rays propagating in the atmosphere,

are bent or refracted by gradients of sound speed and wind velocity. A positive sound

speed gradient bends the ray downward and a negative sound speed gradient bends

it upward. However, these refractions are negligible for sound propagation distances

of few hundreds of meters and when the speed of wind is much less than the Laplace

sound speed cL. Assuming these refractions are negligible will lead to the simplest

ray model for acoustic propagation, straight-ray model, which is typically used in

most literature and in which s and n are assumed to be in the same direction , hence

s.n ≈ 1. Applying this assumption to (2.3) gives:

cray(r, t) ≈ cL(r, t) + s.v(r, t). (2.4)

Based on (2.4) which is a well-known relation for the effective sound speed [28],

the travel time formula for the n’th path is defined as:

τn(t) =

∫

Ln

dl

cray(r, t)
=

∫

Ln

dl

cL(r, t) + sn.v(r, t)
, (2.5)

where the integration is along the n’th propagation path, Ln is the length of the n’th

propagation path and sn is the unit vector in its direction. In order to be able to

estimate the fields in the investigation area, almost all existing methods [7–13, 17]

discretize the investigation area, into grids and assume that cL(r, t) and v(r, t) are

spatially constant in each grid. Using I × J grids, (A.2) can be discretize as:

τn(t) = ΣI
i=1Σ

J
j=1

dn(i, j)

cL([i, j], t) + sn.v([i, j], t)
. (2.6)
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Here dn(i, j) is the distance n’th propagation path travels in the (i, j)’th cell,

cL([i, j], t) and v([i, j], t) are the Laplace sound speed and the wind velocity vector in

the (i, j)’th grid at time t, respectively. Figure 2.1 shows the griding process and the

parameters used in time of arrival formulation.

Figure 2.1: Griding and parameters used in travel time formulation.

The term sn.v([i, j], t) in (A.3) can be written as:

sn.v([i, j], t) = α([i, j], t)cos(θ([i, j], t))cos(φn) +

α([i, j], t)sin(θ([i, j], t))sin(φn), (2.7)

where α([i, j], t) and θ([i, j], t) are respectively the amplitude and the angle (with

respect to ex) of wind velocity in the (i, j)th grid at time t and φn is the angle of the

n’th propagation path with ex.

The goal of acoustic tomography is then to find cL([i, j], t), α([i, j], t) and θ([i, j], t),

for i = 1, ..., I and j = 1, ..., J , given coordinates of the acoustic transmitters and
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receivers deployed in the field and the travel times between each transmitter and

receiver, τn(t)s, recorded for all propagation paths and at each snapshot t.

The following sections review some of the existing acoustic tomography methods

and explain their methodology as well as pros and cons.

2.3 Stochastic Inversion (SI) Method

As mentioned before, SI [11, 12] is based on linearizing (A.2) and decomposing tem-

perature and wind velocity fields into spatial mean fields and spatial fluctuation fields.

SI uses Cartesian coordinate for wind velocity components and defines

vx(r, t) = α(r, t)cos(θ(r, t)) (2.8)

vy(r, t) = α(r, t)sin(θ(r, t)), (2.9)

where vx(r, t) is the wind component in ex direction and vy(r, t) is the wind direc-

tion in the ey direction. The Laplace sound speed and wind velocity fields are then

decomposed into spatial mean and fluctuation fields.

cL(r, t) = cL(t) + c̃L(r, t)

Tav(r, t) = T av(t) + T̃av(r, t)

vx(r, t) = vx(t) + ṽx(r, t)

vy(r, t) = vy(t) + ṽy(r, t), (2.10)

where cL(t) is the spatial mean Laplace sound speed and c̃L(r, t) is the corresponding

spatial fluctuations at time t [7,11]. Similarly for temperature Tav(r, t), wind velocity

horizontal component, vx(r, t), and wind velocity vertical component, vy(r, t), fields.

The steps used in SI are as follow.
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2.3.1 Linearization Process

Equation (A.2) can be reformulated using (2.10) as follow

τn(t) =

∫

Ln

dl

cL(r, t) + sn.v(r, t)

=

∫

Ln

(cL(t)− (c̃L(r, t) + sn.v(r, t)))dl

c2L(t)− (c̃L(r, t) + sn.v(r, t))2
. (2.11)

For low to mid wind velocity we have cL(t) >> (c̃L(r, t) + sn.v(r, t)), then (2.11)

can be simplified into

τn(t) ≈
∫

Ln

(cL(t)− (c̃L(r, t) + sn.v(r, t)))dl

c2L(t)

=
Ln

cL(t)
− 1

c2L(t)

∫

Ln

(c̃L(r, t) + (ṽx(r, t) + vx(t))cos(φn) + (ṽy(r, t) + vy(t))sin(φn))dl

=
Ln

cL(t)
(1− vx(t)cos(φn) + vy(t)sin(φn)

cL(t)
)−

1

c2L(t)

∫

Ln

(c̃L(r, t) + ṽx(r, t)cos(φn) + ṽy(r, t)sin(φn))dl. (2.12)

Assuming that the temperature fluctuations are small in comparison to the mean

temperature, T av(t) >> T̃av(r, t), and using (2.1) the Laplace sound speed fluctuation

field is approximated by

c̃L(r, t) = c(r, t)− c(r, t) =
√

γRaTav(r, t)−
√

γRaT av(t)

=

√

γRaT av(t)(

√

1 +
T̃av(r, t)

T av(t)
− 1) ≈ c(t)T̃av(r, t)

2T av(t)
, (2.13)

Finally, using (2.13) and (2.12), (A.2) can be linearized as follow

τn(t) ≈ Ln

cL(t)
(1− vx(t)cos(φn) + vy(t)sin(φn)

cL(t)
)−

1

c2L(t)

∫

Ln

(
cL(t)T̃av(r, t)

2T av(t)
+ ṽx(r, t)cos(φn) + ṽy(r, t)sin(φn))dl. (2.14)

Equations (2.14) and (2.12) are the core equations used in the SI method.
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2.3.2 Spatial Mean Field Estimation

The right side of (2.12) consists of two expressions in which the first expression de-

pends only on the spatial mean fields. Having N number of paths for all the trans-

mitters and receivers, we form (2.12) for every path. In order to estimate the spatial

mean-fields, fluctuations in (2.12) are first neglected (set to zero) in which case the

integral vanishes, and the remaining part forms a system of N (number of paths)

linear equations with three unknowns,












1 −cos(φ1) −sin(φ1)

1 −cos(φ2) −sin(φ2)

...
...

...

1 −cos(φN ) −sin(φN)]












︸ ︷︷ ︸

Φ









1
cL(t)

vx(t)

c2
L
(t)

vy(t)

c2
L
(t)









︸ ︷︷ ︸

x

=












τ1(t)
L1

τ2(t)
L2

...

τN (t)
LN












︸ ︷︷ ︸

y

(2.15)

which can easily be solved at time t for N > 3 by using the least squares (LS)

method [20],

x̂ = (ΦTΦ)−1ΦTy. (2.16)

2.3.3 Observation Equation

Employing the mean fields and (2.12), a new observation for the n’th path at snapshot

t, qn(t), is defined as:

qn(t) , Ln(cL(t)− vx(t)cos(φn)− vy(t)sin(φn))

−c2L(t)τn(t). (2.17)

Using this new observation,(2.12) is reformulated as

qn(t) =

∫

Ln

(c̃(r, t) + ṽx(r, t)cos(φn) + ṽy(r, t)sin(φn))dl +

c2L(t)ǫn(t). (2.18)
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where ǫn(t) represents the effects of the linearization and the measurement errors for

the nth path at time t.

Discretizing (2.18) into I × J grids yields the observation equation as follow:

qn(t) = ΣI
i=1Σ

J
j=1dn(i, j)(c̃([i, j], t) + ṽx([i, j], t)cos(φn) + ṽy([i, j], t)sin(φn)) +

c2L(t)ǫn(t). (2.19)

2.3.4 Wiener Filtering

Wiener filter [20, 29] introduced by Norbert Wiener in the 1940’s, is a filter which

solves the signal estimation problem for stationary signals. Wiener filter is optimal

in minimum mean square error (MMSE) sense. Using (2.19) for all the paths one can

write

q(t) = Gm(t) + n(t), (2.20)

where q(t) = [q1(t), q2(t), . . . , qN(t)]
T is the observation vector, the unknown vari-

ables are augmented in vector m(t) = [c̃TL(t), ṽ
T
x (t), ṽ

T
y (t)]

T to form the vector of

Laplace sound speed and wind velocity fields in every grid while c̃L(t) = [c̃L([1, 1], t),

c̃L([1, 2], t), . . . , c̃L([I, J ], t)]
T , ṽT

x (t) and ṽT
y (t) are similarly defined, and n(t) is the

zero-mean observation noise at time t with known covariance matrix Rn, and G is a

known deterministic matrix defined as follow:

G =












d1 cos(φ1)d1 sin(φ1)d1

d2 cos(φ2)d2 sin(φ2)d2

...
...

...

dN cos(φN)dN sin(φN )dN












(2.21)

where dn = [dn(1, 1), dn(1, 2), . . . , dn(I, J)]. The purpose of Wiener filter is then to

construct a linear estimation in the form

m̂(t) = Wq(t), (2.22)
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where m̂(t) is an estimate of m(t) at time t. To find the matrix W the Wiener filter

then uses the MMSE criterion,

〈e(t)2〉 = 〈(m(t)− m̂(t))2〉 = 〈(m(t)−Wq(t))2〉, (2.23)

where e(t) = m(t)−m̂(t) is the estimation error, and 〈.〉 is the time averaging process.

The estimation error can be minimized by differentiating (2.23) with respect to W

and setting the result to zero.

∂〈e(t)2〉
∂W

= 〈2(m(t)−Wq(t))qT (t)〉 = 0, (2.24)

which gives,

W = RmqR
−1
qq , (2.25)

where Rqq = 〈q(t)qT (t)〉 is the observation covariance matrix of size [N,N ] and

Rmq = 〈m(t)qT (t)〉 is the model-observation cross-covariance matrix of size [3IJ,N ].

In addition Rqq and Rmq can be written as follow

Rmq = RmmG
T (2.26)

Rqq = GRmmG
T +Rnn. (2.27)

Here Rmm is the model covariance matrix of size [3IJ, 3IJ ]. SI assumes that Rnn

is known and further

Rmm =









RcLcL 0 0

0 Rvxvx 0

0 0 Rvyvy









(2.28)

where RcLcL is the spatial covariance of size IJ×IJ for the Laplace sound speed, and

Rvxvx and Rvyvy are the spatial covariance matrices of horizontal and vertical elements

of wind velocity field, respectively. For instance, RcLcL is defined as follow
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RcLcL = 〈cL(t)c
T
L (t)〉

=












〈cL([1, 1], t)cL([1, 1], t)〉 〈cL([1, 1], t)cL([1, 2], t)〉 · · · 〈cL([1, 1], t)cL([I, J ], t)〉

〈cL([1, 2], t)cL([1, 1], t)〉 〈cL([1, 2], t)cL([1, 2], t)〉 · · · 〈cL([1, 2], t)cL([I, J ], t)〉

...
...

. . .
...

〈cL([I, J ], t)cL([1, 1], t)〉 〈cL([I, J ], t)cL([1, 2], t)〉 · · · 〈cL([I, J ], t)cL([I, J ], t)〉












(2.29)

where in the SI method it is assumed that the correlation function for cL is Gaussian

function i.e.

〈cL(rk, t)cL(rl, t)〉 = σ2
cL
exp(−||rl − rk||2

l2cL
), (2.30)

where σ2
cL

is the standard deviation, and lcL is the corresponding correlation length of

the Laplace sound speed field. Similar assumption holds for Rvxvx and Rvyvy matrices.

Finally SI reconstructs the Laplace sound speed and wind velocity fields at time

t as follow

m̂(t) = RmmG
T (GRmmG

T +Rnn)
−1q(t). (2.31)

2.4 Time Dependent Stochastic Inversion (TDSI)

Method

The TDSI method is an extension of the SI method introduced by Vecherin et. al.

in [11]. It follows the same steps of linearization, spatial mean field estimation, and

uses the same observation equation as in SI, but it accumulates M past snapshots and

forms the augmented observation vector, qa(t) = [qT (t−M),qT (t−M+1), . . . ,qT (t)]T

to reconstruct vector m(t) using the Wiener filter,

m̂(t) = CmqaC
−1
qaqa

qa(t), (2.32)

where Cmqa = 〈mqT
a 〉 is the cross-covariance matrix of size 3IJ × (M + 1)N between

the fields and the augmented observation vector and Cqaqa = 〈qaq
T
a 〉 is the covariance

matrix of the augmented observation vector which is of size (M + 1)N × (M + 1)N .

Cmqa and Cqaqa are computed as follow
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Cmqa =
[

Bmq(t, t−M), Bmq(t, t −M + 1), · · · ,Bmq(t, t)

]

(2.33)

Cqaqa =












Bqq(t −M, t−M) Bqq(t −M, t −M + 1) · · · Bqq(t −M, t)

Bqq(t−M + 1, t−M) Bqq(t −M + 1, t−M + 1) · · · Bqq(t −M + 1, t)

...
...

. . .
...

Bqq(t, t −M) Bqq(t, t−M + 1) · · · Bqq(t, t)












+Rnn

(2.34)

where Bmq(tl, tk) = 〈m(tl)q
T (tk)〉 is the cross-covariance matrix of size 3IJ × N

between the fields vector m at time tl and the observation vector q at time tk, and

Bqq(tl, tk) = 〈q(tl)qT (tk)〉 is the covariance matrix of size N ×N between the obser-

vations at time tl and tk. The noise in the data is assumed to be white Gaussian

noise (WGN) and independent of the Laplace sound speed and wind velocity fields,

i.e. Rnn = σ2
nI. The elements of Bmq(tl, tk) are defined as follow

[Bmq(tl, tk)]ji = 〈m(rj , tl)qi(tk)〉

=

∫

Li

(〈m(rj , tl)c̃L(r, tk)〉+ 〈m(rj , tl)ṽx(r, tk)〉cos(φn) + 〈m(rj , tl)ṽy(r, tk)〉sin(φn))dl

=







∫

Li
BcLcL (rj , tl; r, tk)dl if 1 ≤ j ≤ IJ ,

∫

Li
(Bvxvx(rj , tl; r, tk)cos(φi) + Bvxvy (rj , tl; r, tk)sin(φi))dl if IJ + 1 ≤ j ≤ 2IJ ,

∫

Li
(Bvyvx(rj , tl; r, tk)cos(φi) + Bvyvy (rj , tl; r, tk)sin(φi))dl if 2IJ + 1 ≤ j ≤ 3IJ ,

(2.35)

where BcLcL,Bvxvx ,Bvxvy ,Bvyvx , and Bvyvy are the spatial-temporal covariance/cross-

covariance functions of the corresponding fields marked by the subscripts. Similarly,

the expression for the covariance matrix Bqq(tl, tk) is defined as

[Bqq(tl, tk)]ip = 〈qi(tl)qp(tk)〉 =
∫

Li

dl

∫

Lp

dl′{BcLcL(r, tl; r
′, tk) +

Bvxvx(r, tl; r
′, tk)cos(φi)cos(φp) + Bvyvy(r, tl; r

′, tk)sin(φi)sin(φp) +

Bvxvy(r, tl; r
′, tk)cos(φi)sin(φp) + Bvyvx(r, tl; r

′, tk)sin(φi)cos(φp)},

(2.36)

Similar to the SI method, TDSI assumes the Laplace sound speed and wind ve-

locity fields are statistically stationary. Therefore, all spatial-temporal covariance
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matrices only depend on the spatial coordinates and lag. For instance, the Laplace

sound speed spatial-temporal covariance BcLcL(r, tl; r
′, tk) can be written as

BcLcL(r, tl; r
′, tk) = BcLcL(r, r

′,∆t) ∆t = tk − tl (2.37)

Similarly for Bvxvx ,Bvxvy ,Bvyvx , and Bvyvy . Based on (2.37) equations (2.33) and

(2.34) can be modified as follows:

Cmqa =
[

Bmq(−M), Bmq(−M + 1), · · · ,Bmq(0)

]

(2.38)

Cqaqa =












Bqq(0) Bqq(1) · · · Bqq(M)

Bqq(−1) Bqq(0) · · · Bqq(M − 1)

...
...

. . .
...

Bqq(−M) Bqq(−M + 1) · · · Bqq(0)












+Rnn (2.39)

where Bqq(∆t) = Bqq(−∆t) for any ∆t.

2.4.1 Frozen Turbulence Assumption

TDSI employs the frozen turbulence assumption to relate the spatial-temporal covari-

ance matrices to the spatial covariance functions. The frozen turbulence assumption

states that

v(rk, tk) = v(rk − v(tl, tk)∆t, tl) (2.40)

cL(rk, tk) = cL(rk − v(tl, tk)∆t, tl) (2.41)

where v(rk, tk) = [vx(rk, tk), vy(rk, tk)]
T is the wind velocity vector at time tk and

position rk, v(tl, tk) = [vx(tl)+vx(tk)
2

, vy(tl)+vy(tk)
2

]T , and ∆t = tk− tl. Taking into acount

the frozen turbulence assumption the spatial-temporal covariance functions are then

modified accordingly. For instance, spatial-temporal covariance of the Laplace sound

speed is given as

BcLcL(rl, rk,∆t) = Bs
cLcL

(rl, rk − v(tl, tk)∆t), (2.42)

where Bs
cLcL

is the spatial covariance matrix of Laplace sound speed field. The other

covariances, namely Bvxvx ,Bvxvy ,Bvyvx , and Bvyvy are modified similarly. Following
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Gaussian models are then used as spatial covariance matrices.

Bs
cLcL

(rl, rk) = σ2
cL
exp(−||rk − rl||2

l2cL
) (2.43)

Bs
vxvx

(rl, rk) = σ2
vx
exp(−||rk − rl||2

l2
) (2.44)

Bs
vyvy

(rl, rk) = σ2
vy
exp(−||rk − rl||2

l2
) (2.45)

Bs
vxvy

(rl, rk) = Bs
vyvx

(rl, rk) = σvyσvxexp(−
||rk − rl||2

l2
) (2.46)

where σcL,σvx , and σvy are the standard deviations of the corresponding fields, and lcL

and l are their correlation lengths. Note that different covariance models can be used

for spatial covariance of the Laplace sound speed and wind velocity fields. Clearly,

more careful choices for these models leads to better reconstruction accuracy of the

TDSI.

2.5 SIMULTANEOUSLY ITERATIVE

RECONSTRUCTION TECHNIQUE (SIRT)

SIRT is one of the well-known algebraic-based methods which is frequently used in

acoustic tomography of the atmosphere [9, 13]. Generally speaking, the algebraic-

based methods [9, 10, 17, 18, 30, 31], including SIRT, are conceptually much sim-

pler than the statistical-based tomography algorithms. However, comparing to the

statistical-based methods, algebraic-based methods are shown to lack accuracy and

reconstruction speed [12].

The major benefit of algebraic-based methods is that, they need no initial knowl-

edge about the statistics of the temperature and wind velocity fields. Requiring the

minimal number of assumptions and prior knowledge about the fields make algebraic-

based solutions, like SIRT, desirable and easy to use.
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2.5.1 SIRT Formulation

SIRT is an iterative method which solves an overdetermined linear system for the case

of noisy observation. A review of the iterative algebraic solutions for a linear system

with noisy observations could help to understand and explain SIRT method. There-

fore, in the first part of this section we describe these iterative methods. Consider a

linear system as

Gm = q (2.47)

where

G =












g1,1 g1,2 · · · g1,J

g2,1 g2,2 · · · g2,J
...

...
. . .

...

gN,1 gN,2 · · · gN,J












(2.48)

where m = [m1; . . . ;mJ ] is the unknown vector to be reconstructed, and q =

[q1, . . . , qN ]
T is the observation vector. A solution for m can be considered as a

single point in a J-dimensional subspace spanned by 〈G〉. The intersection of all hy-

perplanes is a single point when a unique solution exists for this linear system. Figure

2.2 shows the case when J = 2 and N = 2.

Algebraic reconstruction technique (ART) which is the simplest iterative algebraic

reconstruction method starts with an initial estimate m(0) = [m
(0)
1 ; . . . ;m

(0)
J ] as the

solution for the system. Then, at every step it projects the estimated solution to one

of the hyperplanes and uses the projected point as the new estimate. The projection

equation at every step is as follow

m(k) = m(k−1) − (
gT
i m

(k−1) − qi
gT
i gi

)gi (2.49)

where gi = [gi,1, . . . , gi,J ]
T is the ith row of matrix G. It can be shown that if a unique
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Figure 2.2: The simplified problem for J = 2 and N = 2 case using ART.

solution, ms, exists, then ART converges to ms as k increases, i.e.

lim
k→∞

m(kN) = ms. (2.50)

The speed of convergence depends on the angle between the hyperplanes. Figure

2.2 illuastrates the convergence of this method. However, in tomography problems

we always end up having an overdetermined noisy system. In this case there is no

unique solution to the system and therefore the ART method oscillates around the

actual solution. SIRT on the other hand, uses a robust method which can handle the

noisy observation. Figure 2.3 demonstrates how SIRT works for J = 2 and N = 3,

it projects the estimated solution to all hyperplanes (red points) and then takes the

average of all projected values to be the new estimate (green point).

2.5.2 Acoustic Tomography Based on SIRT

For the same experimental setup as in Figure 2.1, the effective sound speed [9, 10]

over the n’th path is defined, based on the TOA of the path, as follow

cneff(t) ,
Ln

τn(t)
, (2.51)
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Figure 2.3: The simplified problem for J = 2, N = 3 and noisy observation using
SIRT.

where cneff(t) is the effective sound speed over the n’th path at snapshot t. The

effective sound speed can be decomposed into the effective Laplace sound speed and

effective wind speed as,

cneff(t) = ceffL,n(t) + veffn (t)

ceffL,n(t) + veffx,n (t)cos(φn) + veffy,n (t)sin(φn). (2.52)

where ceffL,n(t), v
eff
x,n (t), and veffy,n (t) are the effective Laplace sound speed, effective wind

velocity horizontal element, and effective wind velocity vertical element, respectively,

over the n’th path at snapshot t.

SIRT method uses reciprocal sensors, as in Figure 2.4, which consists of a trans-

mitter and a receiver at every sensor node. Reciprocal sensors are used to isolate the

effect of temperature field from the wind velocity fields on the time of arrivals.

An immediate consequence of using reciprocal sensors is having two TOAs for each

path, for instance for the n’th path at time t we have τn,1(t) and τn,2(t). According

to (A.8), the effective sound speed for the two opposite directions of the n’th path,
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Figure 2.4: A reciprocal sensor setup

cneff,1(t) and cneff,2(t) in Figure 2.4, are formulated as follow:

cneff,1(t) = ceffL,n(t) + veffn (t)

cneff,2(t) = ceffL,n(t)− veffn (t). (2.53)

Using (2.53) the temperature and wind velocity fields effects on the TOAs are

isolated as follow:

cneff,1(t) + cneff,2(t)

2
= ceffL,n(t)

cneff,1(t)− cneff,2(t)

2
= veffn (t). (2.54)

Using (A.1), (2.54) can be reformulated as,

ceffL,n(t) =
Ln

2
(

1

τn,1(t)
+

1

τn,2(t)
)

veffn (t) =
Ln

2
(

1

τn,1(t)
− 1

τn,2(t)
). (2.55)

That is, the effective temperature and the wind velocity are calculated separately

from the reciprocal measurements of TOAs. The new observations are calculated

based on (2.55) as follow.

τ cn(t) = Ln

c
eff
L,n

(t)
=

2τn,1(t)τn,2(t)

τn,2(t) + τn,1(t)
(2.56)

τ vn(t) = Ln

v
eff
n (t)

=
2τn,1(t)τn,2(t)

τn,2(t)− τn,1(t)
, (2.57)

where τ cn(t) and τ vn(t) are the portions of the TOA which only depend on the temper-

ature field and the wind velocity fields for the n’th path at snapshot t, respectively.
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These new measurements are then used in (A.2) to relate them to cL(r, t) and v(r, t)

as follow:

τ cn(t) =

∫

Ln

dln
cL(r, t)

(2.58)

τ vn(t) =

∫

Ln

dln
sn.v(r, t)

. (2.59)

Using the gridding process (2.58) and (2.59) are discretized as,

τ cn(t) = ΣI
i=1Σ

J
j=1

dn(i, j)

cL([i, j], t)
+ ǫcn(t) (2.60)

τ vn(t) = ΣI
i=1Σ

J
j=1

dn(i, j)

sn.v([i, j], t)
+ ǫvn(t) (2.61)

where ǫcn(t) and ǫvn(t) represent the observation error as well as the gridding error.

Appendix A gives a more detailed discussion on the SIRT assumptions and deriva-

tions.

2.5.3 Temperature Reconstruction

Slowness is defined as m(r, t) = 1
cL(r,t)

and is substituted in (2.60) to form a linear

system of equations as,

τ cn(t) = ΣI
i=1Σ

J
j=1dn(i, j)m([i, j], t), for n = 1, . . . , N (2.62)

which can be written in Matrix form,

qc(t) = Dm(t) (2.63)

where qc(t) = [τ c1(t), τ
c
2(t), . . . , τ

c
N (t)]

T ,m(t) = [m([1, 1], t), m([1, 2], t), . . . , m([I, J ], t)]T ,

and matrix D is defined as follow

D =












d1(1, 1) d1(1, 2) · · · d1(I, J)

d2(1, 1) d2(1, 2) · · · d2(I, J)

...
...

. . .
...

dN(1, 1) dN(1, 2) · · · dN(I, J)












. (2.64)

Then, the SIRT follows the following steps to estimate the temperature in each cell.
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1. Set an initial distribution for the slowness values within the grids, m0([i, j], t)

for i = 1, . . . , I and j = 1, . . . , J and form the initial point m(0)(t) at time t

(e.g. mean field calculated as it was described before).

2. Estimate the temperature-based TOAs along known sound ray paths using

(2.62) according to slowness field estimated in previous iteration

, m(k−1)(t). (forward modeling)

τ c,k−1
n (t) = dT

nm
(k−1)(t), for n = 1, . . . , N (2.65)

where dn = [dn(1, 1), dn(1, 2), · · · , dn(I, J)]T is the n’th row of matrix D. This

step is the same as calculating gT
i m

(k−1) in (2.49) for all i’s.

3. Calculate the projections of m(k−1)(t) on all hyperplanes formed by the rows of

matrix D.

m(k)
n (t) = m(k−1)(t) +

(τ cn(t)− τ c,k−1
n (t))

dT
ndn

dn for n = 1, . . . , N (2.66)

where m
(k)
n is the projection of m(k−1) on the hyperplane presented by the n’th

row of matrix D, dn. This step is the same as (2.49).

4. As stated before, SIRT takes the average of all the projections and uses it as

the new estimate, m(k).

m(k)
average(t) =

1

N

N∑

n=1

m(k)
n (t) (2.67)

5. In order to make the estimated field spatially consistent, SIRT forces a spatial

dependency on the calculated slowness. To do so, at each iteration, after up-

dating slowness of each grid, the spatial field is low-pass filtered with a first

order 2D-moving average (MA) filter. For instance, at each iteration the field
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is convolved with a filter matrix as follow [9]

H =









0.01 0.01 0.01

0.01 0.92 0.01

0.01 0.01 0.01









(2.68)

m(k)([i, j], t) =

3∑

k1=1

3∑

k2=1

mk
average([i− k1 + 2, j − k2 + 2], t)H(k1, k2)

(2.69)

6. Set k = k + 1 and repeat steps 2-5 until the termination criterion is met. The

termination criterion is as follow,

‖m(k)(t)−m(k−1)(t)‖2 < ǫ (2.70)

where ǫ is a constant which determines the accuracy of the solution.

2.5.4 Wind Velocity Reconstruction

A vector tomographic algorithm has to be used to reconstruct the wind velocity field

within the area of interest. The SIRT method states that the relationship between

the effective wind velocity calculated from the TOAs and the actual wind velocity is

as follow

veffn (t) =
(cos(φn)d

T
n )(cos(φn)vx(t))

cos(φn)Ln

+
(sin(φn)d

T
n )(sin(φn)vy(t))

sin(φn)Ln

=
dT
n (cos(φn)vx(t) + sin(φn)vy(t))

Ln

, for n = 1, . . . , N (2.71)

where vx(t) = [vx([1, 1], t), vx([1, 2], t), . . . , vx([I, J ], t)]
T , vy(t) = [vy([1, 1], t),

vy([1, 2], t), . . . , vy([I, J ], t)]
T , and dn is the n’th row of matrix D, as defined before.

Equation (2.71) can be written in vector form as follow,

veff(t) =

[

(C)(D) (S)(D)

]






vx(t)

vy(t)






= Gm(t). (2.72)
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Note that in (2.72) matrix G and vector m(t) are defined differently from those

in (2.20) and (2.21). Also, veff(t) = [veff1 (t), veff2 (t), . . . , veffN (t)]T , and C and S are

N ×N matrices defined as

C = Diag[cos(φi)]

S = Diag[sin(φi)] (2.73)

So we can write,

veff(t) = Gm. (2.74)

SIRT then follows the following steps to estimate the wind velocity fields.

1. Start with initial estimates for the wind velocity horizontal and vertical fields

,v0x([i, j], t) and v0y([i, j], t), within the grids, e. g. the mean fields. Note that,

the superscript shows the iteration.

2. Estimate the effective wind velocity along known sound ray paths using (2.71),

according to the wind velocity horizontal and vertical fields estimated in previ-

ous iteration, v
(k−1)
x (t) and v

(k−1)
y (t), respectively.

veff,(k)n (t) =
dT
n (cos(φn)v

(k−1)
x (t) + sin(φn)v

(k−1)
y (t))

Ln

, for n = 1, . . . , N

= gT
nm

(k−1) (2.75)

where gT
n is the n’th row of matrix G, defined in (2.72) .

3. Calculate the projections of m(k−1)(t) on all hyperplanes formed by the rows of

matrix G.

m(k)
n (t) = m(k−1)(t) +

(veffn (t)− veff,kn (t))

gT
ngn

gn for n = 1, . . . , N (2.76)

where m
(k)
n is the projection of m(k−1) on the hyperplane presented by the n’th

row of matrix G, gn. This step is the same as (2.49).
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4. As stated before, SIRT takes the average of all the projections and uses it as

the new estimate, m(k).

m(k)
average(t) =

1

N

N∑

n=1

m(k)
n (t) (2.77)

5. A spatial dependency is forced on the grids as described in temperature recon-

struction.

6. Set k = k + 1 and repeat steps 2-5 until the termination criterion is met. The

termination criterion is as follow,

‖m(k)(t)−m(k−1)(t)‖2 < ǫ (2.78)

where ǫ is a constant which determines the accuracy of the solution.

2.6 ACOUSTIC TOMOGRAPHY USING SPARSE

RECONSTRUCTION FRAMEWORK

Algorithms using sparse reconstruction framework [18] assume that the temperature

and wind velocity fields can be represented as a linear combination of some kernel-

functions (e.g., set of different bases) where most of the coefficients are zero. In

other words they assume that the fields have sparse representation with respect to

some known bases. An acoustic tomography algorithm is developed by Jovanovic, et.

al. [18], based on sparse reconstruction framework. This section focuses on describing

this particular algorithm.

The algorithm in [18] is developed for a numerical experiment in which the wind

velocity is set to zero, meaning that it is assumed that the time of arrival measure-

ments are only dependent on the temperature field. Assuming that the wind velocity

is zero (2.14) becomes,

τn(t) ≈ Ln

cL(t)
− 1

c2L(t)

∫

Ln

c̃L(r, t)dr. (2.79)
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Using (2.13) and (2.1), the Laplace sound speed fluctuation, c̃L(r, t), can be writ-

ten as

c̃L(r, t) =
γRaT̃av(r, t)

2cL(t)
(2.80)

substituting (2.80) in we have,

τn(t) ≈ Ln

cL(t)
− 2γRa

c3L(t)

∫

Ln

T̃av(r, t)dr. (2.81)

A new observation equation is then defined based on (2.81),

qn(t) ,
c3L(t)

2γRa

(
Ln

cL(t)
− τn(t)). (2.82)

Using this new observation, qn(t), (2.81) can be reformulated as,

qn(t) =

∫

Ln

T̃av(r, t)dr (2.83)

2.6.1 Sparsity in Signal Domain

Consider the tomographic problem in which the goal is to reconstruct the temperature

field produced by K localized sources inside the region of interest. An I × J grid is

overlaid on the investigation area and the temperature field is presented as a linear

combination of shifted and normalized kernels k(r) placed at the center of the grids.

Figure 2.5 shows an arbitrary setup with three active heat sources.

It is assumed that there are P possible candidates for the kernels, kp(r, t) for

p = 1, . . . , P . Note that, for the time being, we assume that t is not changing and

we are solving the problem at snapshot t without having any knowledge about the

previous or later snapshots. Since the kernel functions k1(r, t), . . . , kP (r, t) could be

at any of IJ grid centers and there are P kernel functions, we can write

T̃av(r, t) =

I∑

i=1

J∑

j=1

P∑

p=1

ai,j,pkp(r− ri,j, t), (2.84)

where ai,j,p is the weight of kernel p at the center of [i, j]’th grid. Assuming that

the problem is K-sparse, there are just K active sources which means that only K of
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Figure 2.5: A sparse distribution of the temperature field in the signal domain, as it
originates from 3 local sources placed on the center of the grids.

these kernel weights are nonzero. The goal of this type of acoustic tomography is to

estimate these K nonzero kernel weights from the TOA measurements. Substituting

(2.84) into (2.83) we can write,

qn(t) =

∫

Ln

T̃av(t)dr

=

I∑

i=1

J∑

j=1

P∑

p=1

ai,j,p

∫

Γn

kp(r− ri,j, t)dr. (2.85)

Using (2.85) for N observations we can write,

q(t) = W(k(t))a+ n(t), (2.86)

where q(t) = [q1(t), . . . , qN(t)]
T is the observation vector, W(k(t)) is the dictionary

matrix representing
∫

Ln
kp(r − ri,j, t)dr for all p = 1, . . . , P and n = 1, . . . , N , a =

[a1,1,1, . . . , aI,J,P ]
T is the weight vector which is assumed to be K-sparse [32, 33], and

n(t) is the measurement noise. In the absence of noise in (2.86), the sparse signal a

can be reconstructed by solving an ℓ1 minimization problem [32, 33] as follow,

â = argmin
a

‖ a ‖1 s.t: q(t) = W(k(t))a (2.87)
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However, for the linear system with noisy observation the sparse reconstruction

solution in (2.87) needs to be modified. A very well-known solution in the case of

noisy observation is by solving the minimization problem below,

â = argmin
a

(‖ q−W(k(t))a ‖22 +λ ‖ a ‖1) (2.88)

where λ is a weighting coefficient which emphasizes on the sparsity aspect of the

estimation of a. (2.88) can be solved using linear programming [34] or other solvers.

However, in order to get a more reliable result, one can employ consequent snapshots

and use more observation.

Using consequent snapshots requires knowledge about heat diffusion in the atmo-

sphere. Given that the change of temperature over time in the atmosphere is governed

by the heat equation [35], a concentrated deposit of heat diffuses away in a Gaussian

manner [35], as described by the 2-D heat kernel,

h(r, t) =
1

4πldt
e
− r

T
r

4ldt , (2.89)

where ld is the diffusion constant. The investigation field is assumed to be source-free

(no heat source), therefore, since there are no active heat sources, the temperature

field at time t can be computed from the convolution of the temperature field at some

arbitrary snapshot, t0 < t, with the heat kernel as follow

T̃av(r, t) = T̃av(r, t0) ∗ h(r, t− t0). (2.90)

Substituting (2.84) in (2.90) we can write,

I∑

i=1

J∑

j=1

P∑

p=1

ai,j,pkp(r− ri,j, t) =

I∑

i=1

J∑

j=1

P∑

p=1

ai,j,pkp(r− ri,j, t0) ∗ h(r, t− t0) (2.91)

It follows immediately from (2.91) that the kernel functions at time t can also be

presented by the kernel functions at time t0 using,

kp(r, t) = kp(r, t0) ∗ h(r, t− t0). (2.92)
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Note that in (2.92), we are assuming that the location of the kernel functions are

not changing in time, which is not a realistic assumption in the presence of wind

velocity and in real-world experiments. However, assuming that for a short period of

time the position of kernels are fixed, which means that a is time independent, one

can employ M past observations and write (2.86) as,









q(t−M + 1)

...

q(t)









=









W(kt−M+1)

...

W(kt)









a+









n(t−M + 1))

...

n(t)









(2.93)

which can be solved using sparse reconstruction similar to (2.88). It is shown in [18]

that using (2.93) instead of (2.86), provides a more accurate temperature reconstruc-

tion.

The algorithm doesn’t put any constraints on choosing the kernel functions. Jo-

vanovic et al. [18] used 2-D cubic B-splines as the kernel functions to reconstruct the

temperature field.

Acoustic tomography of the atmosphere using the sparse reconstruction frame-

work is a new and interesting approach. However, the algorithm still needs further

improvements in order to be applied to realistic situations. More specifically, the

non-moving atmosphere (zero wind velocity) assumption used in [18] is not a realistic

assumption. In addition, since the kernel functions are assumed to be located at the

center of each grid, a very fine griding is needed for this approach, which makes the

solution to (2.88) computationally exhaustive.

The issue of sparsity in frequency domain in not addressed here. Interested readers

are referred to [18].

2.7 Conclusion

In this chapter, the acoustic propagation was formulated. It was shown that the TOA

is a nonlinear function of temperature and wind velocity fields. In addition, several
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atmospheric acoustic tomography methods were reviewed in detail, and their assump-

tions were discussed. Acoustic tomography of the atmosphere is an underdetermined

nonlinear inverse problem, which is in general difficult to solve. Statistical-based

acoustic tomography, such as SI [7] and TDSI [11], use the first order linear approx-

imation of the forward problem and solve the inverse problem applying the Wiener

filter to the linearized forward problem. However, using Wiener filter requires knowl-

edge about the statistical characteristics of the temperature and wind velocity fields.

Since these characteristics are unknown, optimal stochastic inverse is not generally

feasible.

Algebraic-based acoustic tomography methods, such as SIRT [9], are conceptu-

ally simpler than the statistical-based tomography algorithms. The major benefit of

algebraic-based methods is that, they need no initial knowledge about the statistics of

the temperature and wind velocity fields. Requiring minimal number of assumptions

and prior knowledge about the fields make algebraic methods suitable for real-world

experiments. On the other hand, these methods require reciprocal measurements for

every propagation path, which may not be cost-effective and realistic.

Last but not least, are the acoustic tomography algorithms which use the sparse re-

construction framework [18]. These methods are developed recently, and have shown

promising results on synthesized data. However, assumptions like non-moving atmo-

sphere and the sparsity of the fields in the atmosphere are not realistic and need to be

studied in depth. Moreover, the choices and the number of the kernel functions and

the resolution of the griding system will become of crucial importance in this method.

Increasing the number of kernel functions and the resolution of the griding system,

increases the computational cost of these algorithms drastically, hence rendering them

impractical for real-life applications.
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CHAPTER 3

UNSCENTED KALMAN FILTER (UKF)

3.1 Introduction

The classical Kalman filter [36] is an optimal recursive estimator which estimates the

states from noisy observations. The classical Kalman filter is shown to be the best

linear estimator [36] when dealing with linear state space models. However, many

interesting and practical applications are modeled with nonlinear state space models,

which can not be solved by the classical Kalman filter. Therefore, several extensions

of the classical Kalman filter have been developed in order to deal with nonlinear

state space models.

Extended Kalman Filter (EKF) [37] and Unscented Kalman Filter (UKF) [24,38]

are among these extensions and have been widely applied to nonlinear state estimation

problems. EKF uses the first order linear approximation of the state and observation

equations around the operation point ( prior state estimates) and solve the linearized

problem using the classical Kalman filter. The first order linear approximation can

introduce large errors in the estimations of the true posterior mean and covariance of

the transformed random variable, which may in turn lead to divergence of the filter.

Unlike EKF, UKF provides a derivative free approach to nonlinear state estima-

tion. UKF employs unscented transform, proposed by Julier and Uhlman [38], to

estimate the distribution of a posteriori state. Unscented transform (UT) [22] is a

technique which is used to estimate the distribution of a random variable propagating

through a known nonlinear function. The idea behind the UT is simple and intuitive,

as it states that instead of linearizing the nonlinear function and mapping the dis-

tribution using the linear function, one can generate a discrete distribution having
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the same first and second (and possibly higher) moments as the initial distribution

using a set of deterministic points, called sigma points [39], and transform these sigma

points through the nonlinear functions and estimate the distribution based on these

transformed sigma points.

In this chapter, the probabilistic inference problem is formulated and reviewed.

Furthermore, the UT algorithm is explained and different UKFs are studied for state

estimation and dual estimation problems.

3.2 Probabilistic Inference

Probabilistic inference is the problem of estimating the hidden variables (state or

parameter) of a system (linear or nonlinear) using probability theory given the noisy

observations. A probabilistic inference problem can be described by a dynamic state-

space model as shown in Figure 3.1.

Figure 3.1: Graphical model of a probabilistic dynamic state-space model.

The state-space equations for a general system shown in Figure 3.1 are formed as

follows.

xt = f(xt−1;ρt) + ut (3.1)

yt = h(xt;ρt) + vt, (3.2)

Equation (3.1) is the state evolution equation in which f(.) captures the state

evolution dynamics, ut is the driving noise, and ρt is the model parameter vector.
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Equation (3.2) is the observation equation in which yt is the observation at time

(snapshot) t, h(.) is the function which maps the state vector to the observation

vector, and vt is the additive observation noise.

The goal of Kalman filter is to estimate the state vector, xt, given all the observa-

tion vectors up to yt. The optimal estimate in the sense of minimum mean-squared

error (MMSE) is given as follows,

x̂t = E[xt|zt], (3.3)

where zt = {y0,y1, . . . ,yt} represents the set of observation vectors from time 0 to t.

Note that, finding E[xt|zt] requires knowledge of a posteriori density p(xt|zt). Note

that, the hidden state xt with initial probability of p(x0), evolves in time as a first

order Markov process [40] according to the conditional density p(xt|xt−1). In the

state-space model in Figure 3.1 the observations are conditionally independent given

the states, meaning that if states are observable then p(yt|zt;xt) = p(yt|xt).

Using Bayesian approach and the fact that given that the observations are con-

ditionally independent, one can formulate a recursive equation for the a posteriori

density as

p(xt|zt) =
p(xt, zt)

p(zt)

=
p(yt|zt−1,xt)p(zt−1,xt)

p(yt, zt−1)

=
p(yt|xt)p(xt|zt−1)p(zt−1)

p(yt, zt−1)

=
p(xt|zt−1)p(yt|xt)

p(yt|zt−1)
, (3.4)

Due to the first order Markovianity of the states we can write, p(xt|xt−1,xt−2, . . . ,

x0) = p(xt|xt−1) and therefore we have p(xt|xt−1, zt−1) = p(xt|xt−1). Now, p(xt|zt−1)
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in (3.4) can be written as,

p(xt|zt−1) =
p(xt, zt−1)

p(zt−1)

=

∫
p(xt,xt−1, zt−1)

p(zt−1)
dxt−1

=

∫
p(xt|xt−1, zt−1)p(xt−1, zt−1)

p(zt−1)
dxt−1

=

∫

p(xt|xt−1)p(xt−1|zt−1)dxt−1 (3.5)

and the denominator (normalizing constant) in (3.4) is given by

p(yt|zt−1) =
p(yt, zt−1)

p(zt−1)

=

∫
p(yt, zt−1,xt)

p(zt−1)
dxt

=

∫
p(yt|zt−1,xt)p(xt, zt−1)

p(zt−1)
dxt

=

∫

p(yt|xt)p(xt|zt−1)dxt (3.6)

The state transition probability, p(xt|xt−1) is determined by the state evolution

equation, and specifically by the density of the driving noise, p(ut). Similarly, p(yt|xt)

is determined by the observation noise density, p(vt). Generally speaking, the inte-

grations in (3.5) and (3.6) are multidimensional integrations, which make a closed

form solution of (3.4) intractable. The only general approach in this case is to ap-

ply the Monte-Carlo [41] techniques to convert the integrals into finite summations

which converge to real solution in the limit. Monte-Carlo techniques are known to be

computationally exhaustive, hence they can’t be used in the applications where near

real-time estimations are needed. However, the Bayesian recursion can be greatly sim-

plified, using the Gaussian distribution assumption for all densities in which case the

problem can be solved by Kalman filter [37] for linear state and observation equations.
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3.3 Unscented Transform

For the nonlinear case, the unscented transform (UT) [22,25] is a practical estimator

to the probability density function of a random variable which undergoes a nonlinear

transformation. The idea behind the UT is evolved from the traditional Monte Carlo

method. However, in UT instead of drawing a large number of random samples from

the a priori distribution, a small number of deterministic samples which have the

same first and second order characteristic as the a priori distribution, are used to be

transformed through the nonlinear function. In order to clarify the process consider

a random vector x of size L with mean x and covariance Px, which undergoes a

nonlinear function y = f(x). To calculate the statistics of y, UT defines 2L + 1

deterministic samples, in the L dimensional space, known as sigma points [22] which

are defined as

χ0 = x

χi = x+ γ
√

Px[i] i = 1, . . . , L

χL+i = x− γ
√

Px[i] i = 1, . . . , L, (3.7)

where γ = ̺
√
L+ κ is a scaling parameter in which the constant ̺ determines the

spread of the sigma points around x and is set to a small positive value (e.g. , 1e−3),

κ is the secondary scaling parameter which is usually set to zero, and
√
Px[i] is the

i’th column of the Cholesky factor [42] of Px.

These sigma points are then transformed through the nonlinear function f(.),

resulting in new sigma points.

Υi = f(χi), i = 0, . . . , 2L (3.8)

The mean and covariance of y, y and Py, respectively, are estimated from these
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transformed sigma points,Υis as follows,

y =
2L∑

i=0

W
(m)
i Υi, (3.9)

Py =

2L∑

i=0

W
(c)
i [Υi − y][Υi − y] (3.10)

where the weights W
(m)
i s and W

(c)
i s are [24] W

(m)
0 = γ−L

γ
, W

(c)
0 = γ−L

γ
+ (1− ̺2 + β),

and W
(m)
i = W

(c)
i = 1

2γ
for i = 1, . . . , 2L with β being a constant used to incorporate

prior knowledge of the distribution of the state vector and is set to β = 2 for Gaussian

distributions. Figure 3.2 shows how UT estimates the first and second moments of

y.

Figure 3.2: Demonstration of the UT process.
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3.4 State Estimation Using UKF

Consider the state-space model in (3.1) and (3.2), if the model parameter vector, ρt,

is known but the state is unobserved (hidden), then the problem simplifies to finding

the unobserved state xt from the noisy observation yt. Therefore, assuming that the

innovation and observation noise vectors u and v, respectively, are additive in the

state-space model the state estimation problem can be reformulated as,

xt = f(xt−1) + ut (3.11)

yt = h(xt) + vt. (3.12)

Note that it is assumed that ut and vt are zero mean with known covariance

matrices, Ru and Rv, respectively. Given (3.11) and (3.12) the state estimation using

Unscented Kalman filter steps are as follows.

1. Initialization:

UKF starts with an initial estimate of the state x̂0|0 and the corresponding

covariance matrix P0. The expected mean of x is typically used as x̂0|0 and the

identity matrix is usually used for P0.

2. Generating Initial Sigma Points:

As explained in Section 3.3, sigma points are 2L + 1 point masses that ap-

proximate the state distribution. Using the previous estimations of the state,

x̂t−1|t−1, and the error covariance matrix, Pt−1|t−1, at time t−1, the sigma points
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are calculated at time t, as follows




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













χ0,t−1|t−1

...

χi,t−1|t−1

...

χL+i,t−1|t−1

...



















=





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


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








x̂t−1|t−1

...

x̂t−1|t−1 + γ
√

Pt−1|t−1[i]

...

x̂t−1|t−1 − γ
√
Pt−1|t−1[i]

...



















, i = 1, . . . , L, (3.13)

where
√

Pt−1|t−1(t)[i] is the i’th column of the Cholesky factor of Pt−1|t−1 and γ

is defined the same as in the previous section.

3. A Priori State Estimation:

The initial sigma points are transformed through the state evolution equation

(3.11) to yield,

χ∗
i,t|t−1 = f(χi,t−1|t−1), i = 0, . . . , 2L (3.14)

A weighted sum of these transformed sigma points (see Section 3.3) is calculated

to estimate the a priori state, x̂t|t−1, and the a priori covariance matrix, Pt|t−1:

x̂t|t−1 =
2L∑

i=0

W
(m)
i χ∗

i,t|t−1, (3.15)

Pt|t−1 =

2L∑

i=0

W
(c)
i [χ∗

i,t|t−1 − x̂t|t−1][χ
∗
i,t|t−1 − x̂t|t−1]

T + Ru, (3.16)

where the weights W
(m)
i s and W

(c)
i s were defined before in Section 3.3.

4. Covariance Matrices Computation:

New sigma points are calculated based on the a priori state estimates x̂t|t−1 and
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the a priori error covariance matrix Pt|t−1 using

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

x̂t|t−1

...

x̂t|t−1 + γ
√

Pt|t−1[i]

...

x̂t|t−1 − γ
√

Pt|t−1[i]

...



















, i = 1, . . . , L. (3.17)

These new sigma points are transformed through the nonlinear observation

process (3.12) to yield:

Υi,t|t−1 = h(χi,t|t−1) i = 0, . . . , 2L (3.18)

which are then used to find estimated observation ŷt|t−1(t) and the covariance

and cross-covariance matrices Pyy,t and Pxy,t using

ŷt|t−1 =
2L∑

i=0

W
(m)
i Υi,t|t−1 (3.19)

Pyy,t =

2L∑

i=0

W
(c)
i [Υi,t|t−1 − ŷt|t−1][Υi,t|t−1 − ŷt|t−1]

T +Rv (3.20)

Pxy,t =
2L∑

i=0

W
(c)
i [χi,t|t−1 − x̂t|t−1][Υi,t|t−1 − ŷt|t−1]

T (3.21)

5. Kalman Gain Computation and A Posteriori State Estimation:

Equations (3.36)-(3.21) for ŷt|t−1, Pyy,t, and Pxy,t are then used to generate the

Kalman gain Kt, the a posteriori state vector x̂t|t and the a posteriori error

covariance matrix Pt|t using:

Kt = Pxy,tP
−1
yy,t (3.22)

x̂t|t = x̂t|t−1 +Kt[yt − ŷt|t−1] (3.23)

Pt|t = Pt|t−1 −KtPyy,tK
T
t (3.24)

The process is repeated until all data points are recursively processed.
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UKF provides an optimum estimate in the MMSE sense for the state vector at

every snapshot.

3.5 Dual Estimation Problem

In a state-space model if the state and the model parameters are both unknown, then

the problem of estimating the state and the model parameters is known as a dual

estimation problem. There are two extensions of UKF [43–45] which can be used to

solve the dual estimation problem, known as dual UKF [43] and joint UKF [44].

In the dual UKF [43], two decoupled UKFs run simultaneously, one for state

estimation and the other for the parameter estimation. At every time snapshot the

current estimate of the model parameter vector is used in the state estimation whereas

the current estimate of the state vector is used in the parameter estimation. Therefore,

the filters can be formulated as follows,

State filter:







xt = f(xt−1; ρ̂t−1|t−1) + ut

yt = h(xt) + vt

(3.25)

Parameter filter:







ρt = ρt−1 + nt

yt = h(f(x̂t−1|t−1;ρt)) + vt

(3.26)

The schematic of the dual UKF is demonstrated in Figure 3.3.

Note that in the dual UKF the model parameter and the state vectors are assumed

to be uncorrelated, Pρx = Pxρ = 0. The primary benefit of dual estimation is the

ability to temporarily decouple the parameter filter from the state filter as needed.

Decoupling can prevent erratic behavior due to poor measurements or initial estimate

of the parameter estimation from causing the state filter to diverge.

The joint UKF [44], on the other hand, uses just one UKF and estimate state

and model parameter vectors simultaneously. In the joint UKF approach, the state

and the model parameter vectors are concatenated into an augmented state vector,
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Figure 3.3: Schematic of the dual UKF method.

xa
t = [xT

t ρ
T
t ]

T , and hence the state and observation equations are,

xa
t =






xt

ρt




 =






f(xt−1;ρt−1)

ρt−1




+






ut

nt




 (3.27)

yt = h(xt) + vt. (3.28)

Note that in the joint UKF we have

Pxa = E[(xa
t − xa

t )(x
a
t − xa

t )
T ] =






Pxx Pxρ

Pxρ Pxx




 , (3.29)

which shows that, unlike the dual UKF, joint UKF can capture the dynamics between

the state and model parameter vectors. Therefore, from the modeling point of view,

the joint UKF approach is the preferred choice, though the experiments conducted

in [39] showed little difference between two approaches. The reason might be due to

the fact that switching parameter and state vectors between the dual filters, coupled

with using the exact same measurement vector in both filters, acts as a type of

constraint on the filters which implicitly develops the cross covariance terms.

3.6 Fixed-Point Iterative UKF

In the case of large uncertainty in the choice of the initial error covariance matrix P0

and weak observability (low SNR or insufficient measurements) of the system, UKF
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exhibits slow convergence problem and poor state estimation accuracy. Fixed-point

iterative UKF [46] is a more robust version of UKF which not only iterates on every

snapshot t but also performs a fixed-point iteration at each fixed snapshot to get a

more robust and accurate state estimates.

In this section, the fixed point iterative UKF is formulated for the state estimation

problem. However, the same principle can be extended to the dual estimation problem

as well. Defining x̂k|k(t) to be the state estimate at k’th iteration on snapshot t, the

state estimation using fixed-point iterative UKF steps for k ∈ [0, K] iterations on

each snapshot t are:

1. Initialization:

Fixed-point iterative UKF starts by initializing the state vector estimate x̂K|K(0)

(i.e. estimate of state vector, given observation at time t = 0). Additionally, the

corresponding state error covariance matrix PK|K(0) is initialized with an iden-

tity matrix. The initial state vector at t is then set to be x̂0|0(t) = x̂K|K(t− 1)

and the corresponding covariance matrix P0|0(t) = PK|K(t− 1).

2. Generating Initial Sigma Points

Using the initial estimates x̂k−1|k−1(t) and Pk−1|k−1(t) for the k’th iteration at

time t, the sigma points are calculated as follows
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√
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√
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, i = 1, . . . , L,

(3.30)

where γ and
√

Pk−1|k−1(t)[i] were defined as before.
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3. A Priori State Estimation:

The initial sigma points are transformed through the state evolution equation

(3.11).

χ∗
i,k|k−1(t) = f(χi,k−1|k−1(t)), i = 0, . . . , 2L (3.31)

A weighted sum of these transformed sigma points is calculated to estimate the

a priori state, x̂k|k−1(t), and covariance matrix, Pk|k−1(t):

x̂k|k−1(t) =
2L∑

i=0

W
(m)
i χ∗

i,k|k−1(t), (3.32)

Pk|k−1(t) =

2L∑

i=0

W
(c)
i [χ∗

i,k|k−1(t)− x̂k|k−1(t)][χ
∗
i,k|k−1(t)− x̂k|k−1(t)]

T + Ru,

(3.33)

where W
(m)
i and W

(c)
i are defined as before.

4. Covariance Matrices Computation:

New sigma points are calculated based on the a priori state estimates x̂k|k−1(t)

and the a priori error covariance matrix Pk|k−1(t) i.e.
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, i = 1, . . . , L, (3.34)

The new sigma points are transformed through the nonlinear observation pro-

cess (3.12) to yield:

Υi,k|k−1(t) = h(χi,k|k−1(t)) i = 0, . . . , 2L (3.35)
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which are then used to find ŷk|k−1(t) and the covariance and cross-covariance

matrices Pyy,k(t) and Pxy,k(t) using

ŷk|k−1(t) =

2L∑

i=0

W
(m)
i Υi,k|k−1(t) (3.36)

Pyy,k(t) =
2L∑

i=0

W
(c)
i [Υi,k|k−1(t)− ŷk|k−1(t)][Υi,k|k−1(t)− ŷk|k−1(t)]

T +Rv

(3.37)

Pxy,k(t) =
2L∑

i=0

W
(c)
i [χi,k|k−1(t)− x̂k|k−1(t)][Υi,k|k−1(t)− ŷk|k−1(t)]

T (3.38)

5. Kalman Gain Computation and A Posteriori State Estimation:

These are then used to generate the Kalman gainKk(t), a posteriori state vector

x̂k|k(t) and the a posteriori error covariance matrix Pk|k(t) estimations:

Kk(t) = Pxy,k(t)P
−1
yy,k(t) (3.39)

x̂k|k(t) = x̂k|k−1(t) +Kk(t)[yt − ŷk|k−1(t)] (3.40)

Pk|k(t) = Pk|k−1(t)−Kk(t)Pyy,k(t)K
T
k (t) (3.41)

6. Iteration Step:

If k < K then the algorithm proceeds to the next iteration k + 1 on the fixed

snapshot t and redo steps 2 to 5. But if k = K, then proceed in time t+ 1 and

jumps to step 1.

Figure 3.4 demonstrates the schematic diagram of the fixed-point UKF.

3.7 Conclusion

This chapter reviewed the idea behind UKF and its different variations. The Un-

scented Transform (UT) process was described and utilized to derive the UKF. The

original UKF was explained in detail followed by the cases of state estimation and
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Figure 3.4: Fixed point iterative UKF.

dual state-parameter estimation. Finally, the fixed point UKF was introduced to en-

hance the performance of UKF for the problems with large uncertainty in the choice

of the initial error covariance matrix and low SNR or insufficient measurements.

UKF is shown to be an effective method for nonlinear state estimation prob-

lems [39]. One should take into account that the performance of UKF highly depends

on the accuracy of the state evolution and observation models, as well as on accu-

racy of covariance matrices, for the driving and measurement noise. Providing good

models for state evolution and observation is of the foremost importance in the UKF.

However, for some real-world applications, like the temperature and wind velocity evo-

lution in the atmosphere, the state evolution model is unknown or it depends on many

different stochastic parameters. In this case, one should use the dual state-parameter

estimation UKF to estimate the state and model parameters simultaneously from the

observations.

Compared with the standard UKF, the fixed point iterated UKF can adjust the

state estimates to adaptively approach the true values through corrections calculated

based on a single measurement. The fixed point UKF is adopted in the next chapters

for state estimation as well as dual state-parameter estimation.
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CHAPTER 4

UKF-BASED ACOUSTIC TOMOGRAPHY

4.1 Introduction

In this chapter a new statistical-based approach is proposed for the acoustic tomogra-

phy of the atmosphere using the UKF reviewed in Chapter 3 instead of using Wiener

filter traditionally used in the existing methods such as those in [7] and [11]. Similar

to most acoustic tomography algorithms the griding system is employed to discretize

the monitored area into several grids in which the temperature, wind velocity am-

plitude, and wind velocity angle are assumed to be constant. The problem is then

framed as a state estimation problem where state variables are temperature and wind

velocity elements in every grid.

Different linear state evolution models, using random walk, first order 3-D autore-

gressive (AR), and 1-D temporal AR models, are tried to capture the dynamics of

the state evolution. The time of arrival (TOA) measurements from all the sensors in

the field are used as the observations forming collectively the observation equation.

Owing to the nonlinearity of the observation equation UKF is employed for this state

estimation problem.

In this chapter the UKF-based acoustic tomography of the atmosphere is formu-

lated and three different state evolution models are studied. The proposed method is

capable of providing a robust temperature and wind velocity reconstruction and due

to the nature of UKF it is capable of tracking these fields over time.
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4.2 Formulation

As mentioned in Chapter 2 the deployment field is divided into non-overlapping grids

as shown in Figure 2.1. The Laplace sound speed, wind velocity amplitude and wind

velocity angle at all grids are arranged to form the L = 3IJ-dimensional state vector

as

xt = [cTL(t),α
T (t), θT (t)]T , (4.1)

where cL(t) = [cL([1, 1], t), cL([1, 2], t), ..., cL([I, J ], t)]
T is the column vector of the

Laplace sound speed at every grid, and similarly for α(t) and θ(t). The observa-

tion vector, yt, on the other hand, consists of TOA measurements for all acoustic

propagation paths. That is,

yt = [τ1(t), ..., τN(t)]
T , (4.2)

where τi(t) is the travel time for the i’th path at snapshot t.

4.2.1 State Evolution Process

The state evolution equation in this case is assumed to be linear but unknown. Three

different linear models are studied and tested to determine their success in capturing

the state dynamics. These models are explained next.

(a) Random Walk Model

Assuming that the fields don’t follow certain dynamical behavior, snapshot to snap-

shot variations can simply be captured by a random walk model [47]. In this case

state equation can be written as:

xt = xt−1 + ut. (4.3)

One should expect a trade off between simplicity of the model and accuracy of the

reconstruction using UKF. The complexity of the model should match the complexity

of the state evolution. For instance, using an oversimplified model for a complex
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system can lead to poor state estimation, and using an elaborate model to capture

the dynamics of a simple system can cause overfitting problems. Nonetheless, this

random walk model appears to be a good fit to the wind velocity angle component,

due to erratic behavior of this component.

(b) First Order 3-D AR Model

A more representative model to capture the state dynamics of the system is an spatial-

temporal autoregressive (AR) model. The adjacent neighbors at time t− 1 are used

as the support region for each grid at time t. The state evolution equation for the

Laplace sound speed at a specific grid [i, j] is defined as follow

cL([i, j], t) = ρ
cL
0 cL([i, j], t − 1) + ρ

cL
1 (cL([i+ 1, j], t − 1) + cL([i, j + 1], t− 1) +

cL([i− 1, j], t − 1) + cL([i, j − 1], t− 1)) + ρ
cL
2 (cL([i− 1, j − 1], t− 1) +

cL([i− 1, j + 1], t− 1) + cL([i+ 1, j − 1], t− 1) + cL([i+ 1, j + 1], t − 1)) +

uc([i, j], t), (4.4)

where ρcL0 , ρcL1 and ρcL2 are the AR model coefficients and uc([i, j], t) is the deriving

noise which represents the inaccuracies in the modeling of the state evolution in time.

Figure 4.1 shows the support region of the discretized 3-D AR model for the Laplace

sound speed field at time t. Note that around the boundaries the support region of

a cell is reduced to its neighbors in the investigation area. For the cells around the

boundaries, the neighbors that are outside the investigation area are set to zero.

The AR model for the Laplace sound speed can then be written in state equation

vector form as

cL(t) = A(cL)cL(t− 1) + ucL(t) (4.5)

where ucL(t) = [ucL([1, 1], t), . . . , ucL([I, J ], t)]
T is the column vector of the Laplace

sound speed deriving process. Matrix A(cL) is a block Toeplitz matrix with Toeplitz

blocks, and is defined as the right-stochastic (each row is normalized by the sum of
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Figure 4.1: The support region of a 1st spatial-temporal order AR model.

the elements to account for the cells around the boundaries) of the matrix A′(cL) which

for a 4× 8 grid is defined as,

A′(cL) ,


























B C 0 0 0 0 0 0

C B C 0 0 0 0 0

0 C B C 0 0 0 0

0 0 C B C 0 0 0

0 0 0 C B C 0 0

0 0 0 0 C B C 0

0 0 0 0 0 C B C

0 0 0 0 0 0 C B


























, (4.6)
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and B and C block matrices are defined as

B =












ρcL0 ρcL1 0 0

ρcL1 ρcL0 ρcL1 0

0 ρcL1 ρcL0 ρcL1

0 0 ρcL1 ρcL0












, (4.7)

C =












ρcL1 ρcL2 0 0

ρcL2 ρcL1 ρcL2 0

0 ρcL2 ρcL1 ρcL2

0 0 ρcL2 ρcL1












. (4.8)

The AR coefficients ρcL0 ,ρcL1 and ρcL2 can be estimated using different approaches.

The first approach is to use a training data set and estimate the parameters based

on the Yule-Walker method [48] or run a parameter estimation UKF/EKF on the

training data. However, using the training data to estimate the model parameters is

not a feasible solution for realistic cases, due to the need for a large number of in-

situ measurements. In addition, using a limited training data to estimate the model

parameters doesn’t apply to the cases in which the model parameters are changing

in time. The second approach is to use the dual estimation UKF method explained

in Section 3.5. And finally the third approach is to assume known covariance models

and use the associated generic model parameters.

Similar relationship as (4.5) holds for the wind velocity amplitude, α(t), and wind

velocity angle, θ(t). Thus, we have

α(t) = A(α)α(t− 1) + uα(t),

θ(t) = A(θ)θ(t− 1) + uθ(t). (4.9)

Here uα(t) and uθ(t) are, respectively the driving processes for amplitude and

the angle of wind velocity and matrix A(α) and A(θ) are defined in a similar manner

as A(cL). Note that the AR models are assumed to be decoupled from each other
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as the phenomena that generate them are independent. Combining these decoupled

equations yields the following linear state equation,

xt = Axt−1 + ut, (4.10)

where ut = [ucL(t)
T ,uα(t)

T ,uθ(t)
T ]T is the augmented deriving noise vector which

is assumed to be Gaussian with zero mean and known covariance matrix, Ru and

matrix A is

A =









A(cL) 0IJ×IJ 0IJ×IJ

0IJ×IJ A(α) 0IJ×IJ

0IJ×IJ 0IJ×IJ A(θ)









. (4.11)

where 0IJ×IJ is the zero matrix of size IJ × IJ . Note that the model parameter

vector is then defined to be

ρt = [ρcL0 (t), ρcL1 (t), ρcL2 (t), ρα0 (t), ρ
α
1 (t), ρ

α
2 (t), ρ

θ
0(t), ρ

θ
1(t), ρ

θ
2(t)]

T (4.12)

(c) 1-D Temporal AR Model

There is a concern about the feasibility of using a first order 3-D AR model to cap-

ture the dynamic of the state evolution process in field-experiments. More specifically,

there is no guarantee that the spatial dependency be consistent throughout the in-

vestigation field, especially when the turbulence is local and strong. As a result, we

decided to explore a different model to capture the dynamic of the state evolution

process temporally but not spatially in contrast to the previous model.

Since the fields are changing consistently in time it is beneficial to look into the

fields at times t − 2 and t − 3 as well as time t − 1. Therefore, we devised a new

3rd order linear temporal model with a more temporal depth and without any spatial

dependency. In this case, the Laplace sound speed can be modeled as follow

cL([i, j], t) = ρ1cL([i, j], t− 1) + ρ2cL([i, j], t− 2) + ρ3cL([i, j], t− 3) + ucL([i, j], t)

(4.13)
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where ρ1, ρ2, and ρ3 are the coefficients of the temporal model for the Laplace sound

speed field, and ucL([i, j], t) is the deriving noise which represents the inaccuracies in

the modeling of the state evolution in time. Similar equations hold for wind velocity

amplitude and angle fields, α([i, j], t) and θ([i, j], t).

The 1-D temporal AR model for the Laplace sound speed can be written in vector

form as:








cL(t)

cL(t − 1)

cL(t − 2)








︸ ︷︷ ︸

c
(a)
L

(t)

=








ρ1IIJ×IJ ρ2IIJ×IJ ρ3IIJ×IJ

IIJ×IJ 0IJ×IJ 0IJ×IJ

0IJ×IJ IIJ×IJ 0IJ×IJ








︸ ︷︷ ︸

A
(cL)
temp








cL(t− 1)

cL(t− 2)

cL(t− 3)








︸ ︷︷ ︸

c
(a)
L

(t−1)

+








ucL (t)

0

0








︸ ︷︷ ︸

u
(a)
cL

(t)

, (4.14)

where IIJ×IJ is identity matrix of size IJ × IJ , and 0IJ×IJ , cL(t), and ucL(t) are

defined as before. Similar relationship as (4.17) holds for the wind velocity amplitude,

α(t), and wind velocity angle, θ(t). Thus, we have

α(a)(t) = A
(α)
tempα

(a)(t− 1) + u(a)
α (t) (4.15)

θ(a)(t) = A
(θ)
tempθ

(a)(t− 1) + u
(a)
θ (t), (4.16)

where α(a)(t) = [αT (t),αT (t− 1),αT (t− 2)]T , and θ(a)(t) = [θT (t), θT (t− 1), θT (t−

2)]T are the augmented wind velocity amplitude and wind velocity angle vectors,

respectively, αT (t), θT (t) are defined as before, u
(a)
α (t) = [uT

α(t), 0
T , 0T ]T is the aug-

mented wind velocity amplitude driving noise, u
(a)
θ (t) = [uT

θ (t), 0
T , 0T ]T is the aug-

mented wind velocity angle driving noise, and uT
α(t) and uT

α(t) are defined as before.

Note that like the spatial case, the 1-D temporal AR models are assumed to be

decoupled from each other as the phenomena that generate them are independent.

Combining these decoupled equations yields the following linear state equation,








c
(a)
L

(t)

α(a)(t)

θ
(a)(t)








︸ ︷︷ ︸

x
(a)
t

=








A
(cL)
temp 03IJ×3IJ 03IJ×3IJ

03IJ×3IJ A
(α)
temp 03IJ×3IJ

03IJ×3IJ 03IJ×3IJ A
(θ)
temp








︸ ︷︷ ︸

Atemp








c
(a)
L

(t− 1)

α(a)(t− 1)

θ
(a)(t− 1)








︸ ︷︷ ︸

x
(a)
t−1

+








u
(a)
cL (t)

u
(a)
α (t)

u
(a)
θ

(t)








︸ ︷︷ ︸

u
(a)
t

. (4.17)
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4.2.2 Observation Process

For all the three models, the relationship between state xt and observation vector

yt at time t is given by (A.3), and (2.7) which is a nonlinear function of the state

variables expressed as

yt = h(xt) + vt, (4.18)

where vt stands for measurement noise caused by such things as,(i) errors inherent

in the griding process (ii) error in measuring the TOAs, (iii) sensor location error

and (iv) imperfect synchronization across all nodes. This noise is assumed to be a

Gaussian random vector with zero mean and known covariance matrix, Rv. The most

dominant source for this error is (i). The nonlinear function h(xt) is explicitly defined

as

h(xt) =









ΣI
i=1Σ

J
j=1

d1(i,j)
cL([i,j],t)+s1.v([i,j],t)

...

ΣI
i=1Σ

J
j=1

dN (i,j)
cL([i,j],t)+sN .v([i,j],t)









(4.19)

Assuming that the model parameters are changing temporally, matrices A and

Atemp in (4.17) and (4.17) will also change temporally. In what follows, we use the

new notation A(ρt) and Atemp(ρt) to show that A and Atemp are functions of ρt where

ρt is the model parameter vector.

Assuming that ρt is time invariant and can be estimated using either a training

data set or arrived at from a covariance structure, the state vector can be estimated

using the state estimation UKF method in Section 3.4. However, if the parameters

are assumed to be unknown and time varying then the problem becomes a dual state-

parameter estimation problem which can be solved using the dual UKF discussed in

Section 3.5. The dual UKF For the dual UKF using the first order 3-D AR model for
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state evolution we have,

State filter:







xt = A(ρ̂t−1|t−1)xt−1 + ut

yt = h(xt) + vt

(4.20)

Parameter filter:







ρt = ρt−1 + nt

yt = h(A(ρt)x̂t−1|t−1) + vt

, (4.21)

Therefore, having the TOAs as observation and choosing the suitable state evolu-

tion model, one can formulate the problem as a state-space problem and reconstruct

the temperature and wind velocity fields using dual UKF.

4.3 Conclusion

A new statistical-based acoustic tomography algorithm was proposed in this chapter.

The proposed method is based on casting the problem as a state-space problem and

solving the non-linear state estimation using UKF. In order to capture the state

dynamics, three different linear models were suggested and formulated.

The state evolution model plays a critical role in the performance of the proposed

method as it decides the accuracy of the state estimation as well as the convergence

properties [39]. Assuming that the state evolution model is time-varying, one needs to

estimate the model parameters as well as the states at every snapshot and therefore

use either the dual UKF or the joint UKF estimators. On the other hand, if the

model parameters are known or can be estimated by any means, the original UKF

state estimator would be adequate. In the subsequent chapters we used dual UKF

on both synthesized and real data sets.
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CHAPTER 5

DATA GENERATION USING FRACTAL

BROWNIAN MOTION

5.1 Introduction

In order to test our proposed UKF-based algorithm a data set was acquired from

the university of Leipzig, collected at the Meteorological Observatory, Lindenberg,

Germany, within the project STINHO [27]. The data set consists of the TOAs for a

field of size 300m × 440m with 8 transmitters and 12 receivers (96 paths and TOA

measurements). The detailed explanation of these experiments can be found in [27].

However, the lack of sufficient in situ measurements (only 2 temperature sensors) for a

complete evaluation of the developed algorithm motivated us to construct a synthetic

but close to realistic data set, using the same setup as in STINHO.

The synthetic data was generated based on fractal Brownian motion (fBm) model

[49] for wind velocity and temperature fields in the investigation area. There are

several mathematical models which can be employed to describe the wind power

spectrum [50–53]. However, fBm, also known as 1/f noise [54], is one of such models.

In this thesis, we have used an extended 2-D fBm-based method inspired from that

in [49] to generate 2-D wind velocity and temperature fields. The following subsections

describe the process of the synthetic data generation. The 1-D fBm is first reviewed

and its extension to 2-D is presented. The Fourier-based filtering method is utilized

to generate the 2-D extension of fBM, and finally the properties of the generated

synthetic data are explained.

60



5.2 Fractal Brownian Motion

In 1827 R. Brown [55] observed that small particles of a solid matter move in an erratic

and irregular manner in a liquid medium. The modeling of this motion is an important

topic in statistical mechanics [56] which led to the concept of Brownian motion.

Brownian motion itself is a member of a bigger family called fractal Brownian motion.

Fractals are self-similar patterns which are observed in many natural phenomena, such

as clouds, rivers, and atmospheric patterns. Fractal Brownian motion is a branch of

statistics which studies the behavior of the self similar continuous time Gaussian

processes.

A Gaussian process XH = {XH(t), t ≥ 0} is called a fractal Brownian motion

(fBm) of Hurst parameter H ∈ (0, 1) [57, 58] if its mean is zero and its covariance

matrix is defined as,

E[XH(t1)X
H(t2)] =

1

2
(t2H1 + t2H2 − |t1 − t2|2H). (5.1)

The fBm XH has interesting characteristics, such as self similarity [57, 58] which

states that

{XH(t), t ≥ 0} and { 1

aH
XH(at), t ≥ 0}, (5.2)

have the same probability distribution for any a > 0. The self similarity property of

XH , can be considered as a fractal property [59], hence XH is called fractal Brownian

motion.

The second interesting characteristics of XH is having stationary increments,

meaning that the increment of the process from t1 to t2 has a normal distribution

with mean zero and variance,

E[(XH(t1)−XH(t2))
2] = |t1 − t2|2H (5.3)

which follows immediately from (5.1), by expanding (XH(t1)−XH(t2))
2.

The fBm is classified [57, 58] into three classes for different values of the Hurst

parameter.
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1. H = 1
2
: which is called ordinary Brownian motion, in which the covariance can

be written as

E[X0.5(t1)X
0.5(t2)] =

1

2
(t1 + t2 − |t1 − t2|)

= min(t1, t2). (5.4)

Following (5.1) it can be shown that the increments of the process in disjoint

intervals are independent, meaning that for t1 < t2 < t3 we have

E[(X0.5(t2)−X0.5(t1))(X
0.5(t3)−X0.5(t2))] = 0. (5.5)

2. H > 1
2
: indicates that there is a positive correlation between these increments,

i.e.

E[(XH(t2)−XH(t1))(X
H(t3)−XH(t2))] > 0 (5.6)

3. H < 1
2
: indicates that there is a negative correlation between these increments.

E[(XH(t2)−XH(t1))(X
H(t3)−XH(t2))] < 0 (5.7)

It is straightforward to show [60] that the spectral density for such random variable

has the following characteristic

S(f) ∝ 1

fβ
∼ fBm (5.8)

where β = 2H + 1. The spectral density function in (5.8) can be extended to higher

dimensions in order to obtain higher dimensional fBm. The spectral density function

for an n-dimensional fBm is defined as,

S(f1, f2, . . . , fn) ∝
1

(
∑n

i=1 fi)
β+n−1

(5.9)

The spectral density can be used to generate realization of fBm. In order to do

so one can use Fourier-based filtering [59], discussed in the following section.
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5.2.1 Fourier-Based Filtering Method

Given the spectral density of a random process, Fourier-based filtering method enables

one to generate realizations of the random process. In this section, we are going to first

study the method for the simple case of 1-D fBm, and then we extend the definition

to the 2-D case.

To begin the process the Fourier-based filtering method assumes that a sample of

N realizations of a 1-D fBm, {xH(t), t = 0, . . . , N − 1}, is given. Based on these

realizations the periodogram [61] of xH is calculated as,

Per(k) =
1

N
|
N−1∑

t=0

xH(t)e−j 2πkt
N |2 for k = 0, . . . , N − 1

=
1

N
|XH

F (k)|2 (5.10)

where XH
F (k) is the discrete Fourier transform of {xH(t), t = 0, . . . , N − 1} , i.e.,

XH
F (k) =

N−1∑

t=0

xH(t)e−j 2πkt
N for k = 0, . . . , N − 1, (5.11)

Substituting (5.11) in (5.10) and using the fact that periodogram is an estimate of

the spectral density we can write,

1

N
(|XH

F (k)|2) = 1

N
(Re2(XH

F (k)) + Im2(XH
F (k))) = S(k). (5.12)

Note that, the process started with the assumption of having a sample of N point

realizations of XH . The Fourier filtering method then states that, if we randomly

generate an N-point discrete signal in Fourier domain that follows (5.12) , then the

time domain representation of that signal will be an N point realization of XH .

To do so, the Fourier-based filtering method assumes thatRe(XH
F (k)) and Im(XH

F (k))

in (5.12) are independent random variables with the same normal distributions,

N (0, N
2
S(k)). The distributions are chosen in a way that the expected value of (5.12)

follows, i.e. E[ 1
N
(Re2(XH

F (k)) + Im2(XH
F (k)))] = S(k).
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Note that for the realizations, xH(t), to be real, XH
F (k)s must satisfy (XH

F (k))∗ =

XH
F (N−k) for k = 1, . . . , N

2
. The Fourier-based filtering method then draws Re(XH

F (k))

and Im(XH
F (k)) for k = 1, . . . , N

2
randomly from their distribution and forms XH

F (k)s

(If N happens to be an odd number, then the first N+1
2

samples are drawn).

Finally, having the coefficients of the DFT, Fourier-based filtering method gener-

ates xH(t) using the inverse DFT (IDFT) as follow,

xH(t) =
1

N

N−1∑

k=0

XH
F (k)ej

2πtk
N , for t = 0, . . . , N − 1. (5.13)

Therefore, this method enables one to generate realizations of a random variable,

XH(t), given its spectral density, S(f). Figure 5.1 shows the process of generating an

N-point realization of a random variable from its spectral density using the Fourier-

based filtering method.

Figure 5.1: Schematic diagram of the Fourier-based filtering method.

Fourier-based filtering method can be extended to higher dimensions [59]. For

instance for a N × M realization of a 2-D fBm process, {xH(i, j), i = 0, . . . , N −

1 and j = 0, . . . ,M − 1}, we can write the periodogram as,

Per(k, l) =
1

MN
|
N−1∑

i=0

M−1∑

j=0

xH(i, j)e−j2π(ki
N
+ lj

M
)|2

=
1

MN
|XH

F (k, l)|2, (5.14)
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where XH
F (k, l) is the 2-D DFT of xH , i.e.,

XH
F (k, l) =

N−1∑

i=0

M−1∑

j=0

xH(i, j)e−j2π(ki
N
+ lj

M
). (5.15)

Substituting (5.15) in (5.14) and using the fact that the periodogram is an estimate

of the spectral density we can write,

1

NM
(|XH

F (k, l)|2) = 1

NM
(Re2(XH

F (k, l)) + Im2(XH
F (k, l))) = S(k, l). (5.16)

Similar to the 1-D fBm process, the 2-D Fourier-based filtering method assumes

that Re(XH
F (k, l)) and Im(XH

F (k, l)) are independent random variables with normal

distribution, N (0, NM
2
S(k, l)) , and therefore the expected value of (5.16) can be

written as,

E[
1

NM
(Re2(XH

F (k, l)) + Im2(XH
F (k, l)))] = S(k, l). (5.17)

Note that for the realizations, xH(i, j), to be real, XH
F (k, l)s must satisfy the

conditions below,

(XH
F (k, l))∗ = XH

F (N − k,M − l)

(XH
F (0, l))∗ = XH

F (0,M − l)

(XH
F (k, 0))∗ = XH

F (N − k, 0). (5.18)

Finally, the Fourier-based filtering method draws Re(XH
F (k, l)) and Im(XH

F (k, l))

for k = 0, . . . , N
2

and l = 0, . . . , M
2
, randomly from their distributions and forms

XH
F (k, l)s.

Having the coefficients of the 2-D DFT, Fourier-based filtering method then gen-

erates {xH(i, j), i = 0, . . . , N − 1 and j = 0, . . . ,M − 1} using the 2-D inverse DFT

(IDFT) as follow,

xH(i, j) =
1

NM

N−1∑

k=0

M−1∑

l=0

XH
F (k, l)ej2π(

tk
N
+ tl

M
). (5.19)
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5.3 Synthetic Data Generation

Based on the fBm, the method in [49] suggests the wind velocity 2-D power spectral

density function as

S(f1, f2) =
ϑ

(f 2
1 + f 2

2 )
β+1

, (5.20)

where f1 and f2 are the 2-D spatial frequencies in Hz, β = 1.66 for wind field simula-

tions (though it can be changed to obtain wind and temperature fields with different

characteristics), and ϑ is a constant which depends on the height of the simulated

field from the ground and the type of the terrain.

The fields cL(r, t0),α(r, t0) and θ(r, t0) are then generated from (5.20) using the

Fourier-based filtering algorithm reviewed in Section 5.2, for an area 10 times bigger

than the investigation area at initial time t0. The investigation area is chosen to lay

on the center of this larger area.

Figure 5.2 show the virtual layout of investigation field and the locations of the

receivers and transmitters indicated by Ri and Si, respectively.

The synthetic data is generated for 500 subsequent snapshots of wind velocity and

temperature fields with spatial resolution of one meter and temporal resolution of 12

seconds, for both cases. The TOAs for each sound ray path is then calculated using

(3.12) at each snapshot. The measurement noise vector vt is assumed to be a zero

mean white Gaussian process with covariance matrix Rv = σ2
vI and σ2 = 0.01.

Given these fields at initial time t0 the wind velocity and temperature fields are

calculated in the investigation area at time t assuming the frozen turbulence assump-

tion at increments of ∆t = 12sec using

v(r, t) = v(r− v(t− 1)∆t, t− 1) (5.21)

cL(r, t) = cL(r− v(t− 1)∆t, t− 1) (5.22)

where v(t) is the spatial mean wind velocity vector at time t. Figure 5.3 shows the
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Figure 5.2: The out layer of the STINHO field experiment

larger size field and the process of generating the synthetic data in time. Note that the

frozen turbulence hypothesis includes two assumptions about the temporal evolution

of the atmosphere. First, the layers of the fields are spatially stable through time.

Second, these layers are moving with the spatial mean wind velocity.

Figure 5.4 shows the synthetically generated wind velocity and temperature fields

for two sample snapshots (t = 75, t = 100) over the investigation area for the synthetic

data set. It can be seen from Figure 5.4 that fBm model generates near realistic

temperature and wind velocity fields. Having the fields cL(r, t),α(r, t) and θ(r, t)

for t = 1, . . . , 500, the TOAs are calculated using (A.2) for all the paths. A zero

mean white Gaussian noise with variance σ2
v = 0.01 is added to each calculated TOA,

in order to simulate the measurement noise in the synthesized TOA measurements.

This variance is chosen based upon the uncertainty measurements reported in [27]

which is 0.3 milisecond for each measurement. These noisy measurements are then
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Figure 5.3: The oversized cL, α, and θ fields and the process of generating the data
sequence in time

applied to the UKF-based acoustic tomography algorithm, discussed in Chapter 4, to

reconstruct the temperature and wind velocity fields.

5.4 Conclusion

This chapter reviewed the process of generating the synthetic temperature and wind

velocity data sets. The fractal Brownian motion (fBm) was explained and used as

the model to generate random wind velocity and temperature fields. The reason

behind using fBm, is that the atmospheric patterns have identical fractal properties

as fBms [62]. The Fourier-based filtering method was reviewed in depth in order to
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Figure 5.4: (a) The synthetic temperature field at snapshot number t = 75 (b) The
synthetic wind velocity field at snapshot number t = 75 (c) The synthetic temperature
field at snapshot number t = 100 (d) The synthetic wind velocity field at snapshot
number t = 100.

generate realizations of 1-D and 2-D fBm for different sizes.

Utilizing the frozen turbulence assumption, a data set was generated based on fBm

with spatial resolution of 1m and temporal resolution of 12sec for 500 snapshots. The

temperature and wind velocity synthetic fields are then used to calculate the TOAs

for all the paths. Furthermore, an additive zero mean Gaussian process is employed

to simulate the effect of the measurement noise.

In this thesis we focused on the 2-D characteristics of the atmospheric surface

layer, however the same process can be used to generate a 3-D data set in order to

study the performance of the tomography methods for 3-D temperature and wind

velocity reconstruction.
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CHAPTER 6

RESULTS ON SYNTHESIZED AND REAL

DATA SETS

6.1 Introduction

In this chapter, the developed UKF-based acoustic tomography is applied to the syn-

thetic and real data sets to reconstruct the temperature and wind velocity fields. The

synthesized data set was generated using fBm method described in Chapter 5. The

real data set was collected at the Meteorological Observatory, Lindenberg, Germany,

within the project STINHO. The real STINHO data set has TOA measurements for

79 paths (out of total 96 paths, meaning that the measurements for 17 paths are

missing) and for 1038 snapshots (0:00 - 17:17 UTC, every minute). The detailed

description of the real data set can be found in [27].

Two different experiments are conducted to evaluate the performance of the UKF-

based acoustic tomography method. In the first experiment, UKF-based acoustic

tomography was applied to the synthetic data set using three different state evolution

models, namely random walk, first order 3-D AR model, and temporal AR model and

their performance was tested against that of the TDSI method.

The second experiment is conducted on the real data set. Dealing with the real

data set, one doesn’t have the luxury of having a training data set to estimate the

driving noise covariance matrix or the model parameters. Therefore, we have em-

ployed the UKF-based dual estimation method reviewed in Chapter 4 to estimate

the states and the model parameters simultaneously. Having a good estimation of

the model parameters one could expect the covariance matrix, Ru to have a similar
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pattern as in the first experiment, hence, we have used the same estimated Ru in the

first experiment as the driving noise covariance matrix for the second experiment.

This chapter describes the experiments conducted on the synthetic and the real

data sets and compares the reconstruction accuracy and computational complexity of

the proposed method using different state evolution models and the TDSI method.

6.2 Results on Synthesized Data Set

A 4× 8 grid is overlaid on the investigation area of size 300m× 440m to partition it

into 32 grids of dimensions 75m× 55m. The problem was formulated as in Chapter

4, for three different state evolution models and the first 5 snapshots were used to

estimate the covariance matrix of the driving noise, Ru, as well as the state evolution

model parameters (See Section 4.2). One could argue that using the actual fields to

estimate the statistics of the driving noise is not realistic, however, our goal in the

first experiment was to investigate the performance of the UKF state estimator for

different state evolution models given a rough estimate of the driving noise (using

only 1% of the data). The TDSI method was also implemented and applied to the

synthetic data set as part of the first experiment to compare its performance against

that of UKF-based method. Similarly, the first 5 snapshots were used to estimate

the spatial covariance functions for temperature and wind velocity. The results of the

UKF-based method for the three state evolution model are first compared in terms of

reconstruction accuracy, tracking ability, and computational speed. Then, the best

of the three is compared against the TDSI method.

For both algorithms, the mean fields at each snapshot are first calculated using

the method described in Chapter 3. Figure 6.1 shows the plots of the actual and

calculated mean fields at all snapshots for the temperature, wind velocity amplitude,

and wind velocity angle. The red curve is the actual mean field calculated from the

synthetic data over 500 snapshots and the green curve is the reconstructed mean field.
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As can be seen, these results illustrate the accuracy of mean field estimation process

in [7, 11].

The mean fields are used as the initial starting point x̂0|0 in the UKF-based acous-

tic tomography and are also used in TDSI formulation at every snapshot.
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Figure 6.1: Actual and estimated mean fields (a) temperature, (b) wind velocity
amplitude, and (c) wind velocity angle, over all snapshots.

6.2.1 TDSI-Based Acoustic Tomography

TDSI implementation involves finding the parameters of the spatial covariance func-

tions of the Laplace sound speed and wind velocity and estimating the mean fields

at every snapshot as explained before. Additionally, using this method assumes that

(a) the temperature and wind velocity fields are stationary, (b) the fields follow the

frozen turbulence assumption, (c) the projection of the wind velocity on every path is

small in comparison to the Laplace sound speed, and (d) the temperature fluctuations
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are smaller than the mean temperature.

Assuming Gaussian functions for the spatial covariance functions of the Laplace

sound speed and wind velocity fields, the first 5 snapshots of the synthesized data

were used as the training data to estimate the parameters of these functions, namely

σcL, σvx , σvy , lcL, and l in (2.43)-(2.46), using the least square (LS) method.

Our experiments showed that for the synthetic data set using M = 4 previous

snapshots is an optimal choice as far as reconstruction accuracy and speed are con-

cerned. Therefore, we used M = 4 previous snapshots to generate the augmented

observation vector qa(t) = [qT (t− 4),qT (t− 3),qT (t− 2),qT (t− 1),qT (t)]T to recon-

struct the fluctuation fields at time t. The spatial-temporal covariance functions are

then constructed based on the frozen turbulence assumption and the estimated spatial

covariance functions from equation (2.42). Thus, for the spatial-temporal covariance

of the Laplace sound speed we have,

BcLcL(rl, tl, rk, tk) = Bs
cLcL

(rl, rk − v(tl)(tk − tl)), (6.1)

where BcLcL(rl, tl, rk, tk) is the spatial-temporal covariance of the Laplace sound speed

field at location rl and at time tl and the Laplace sound speed at location rk and at

time tk, v(tl) is the spatial mean wind velocity vector at time tl. The spatial-temporal

covariances for wind velocity amplitude Bαα and wind velocity angle Bθθ are obtained

similarly.

Having estimated spatial-temporal covariance matrices, matrices Cmqa and Cqaqa

are reconstructed at each snapshot according to (2.38) and (2.39) in Chapter 3. The

fields are then reconstructed using (2.32).

6.2.2 UKF-Based Acoustic Tomography

(a) Model Evaluation

In this section three different state evolution models are utilized to reconstruct the

temperature and wind velocity fields. The state evolution model parameters are
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assumed to be temporally fixed, and are estimated using the first 5 snapshots of the

synthesized data.

The first model used to capture the state evolution dynamics is the random walk

model, given in (4.3) in Chapter 4. It is assumed that vt and ut are mutually un-

correlated, zero mean Gaussian processes with covariance matrices Rv = σ2
vI and Ru.

The latter can be estimated from the training data as follow,

Ru =
1

Nt

Nt∑

t=2

(xt − xt−1)(xt − xt−1)
T (6.2)

where Nt = 5 is the size of the training set.

Having estimated Ru and Rv, the mean fields calculated for the first snapshot

are used as the initial state, x̂0|0 = [cTL(t0),α
T (t0), θ

T
(t0)]

T , and further P0|0 = I.

Then, the temperature, wind velocity amplitude and angle fields are reconstructed

using steps 1-5 of the fixed-point iterative UKF in Section 3.6 for K = 5 number of

fixed-point iterations.

The next model used to capture the state evolution dynamics was the first order

3-D AR model described in (4.10) in Chapter 4. It is assumed that the parameter

vector ρ is time-invariant and can be estimated based on the training data using Yule-

Walker method [48]. Using Yule-Walker method, the first order 3-D AR coefficients

are estimated to be ρ
(cL)
0 = 0.985, ρ

(cL)
1 = 0.090, ρ

(cL)
2 = −0.046, ρ

(α)
0 = 0.998,

ρ
(α)
1 = −0.0086, ρ

(α)
2 = 0.0091, ρ

(θ)
0 = 0.999, ρ

(θ)
1 = −0.001 and ρ

(θ)
2 = 0.001. From the

estimated parameters it can be seen that in the wind velocity angle the first order

3-D AR is very close to the random walk model. Hence, in the following experiments

we set ρ
(θ)
0 = 1, ρ

(θ)
1 = 0, and ρ

(θ)
2 = 0, which means that we are employing random

walk model for the wind velocity angle instead of the 3-D AR model.

Given the estimate of the parameter vector, Ru is estimated from the training

data using,

Ru =
1

Nt

Nt∑

t=2

(xt − A(ρ)xt−1)(xt − A(ρ)xt−1)
T (6.3)
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As mentioned before the mean fields are used for the initial state,x̂0|0 = [cTL(t0),

αT (t0), θ
T
(t0)]

T , and P0|0 = I. All other conditions are the same as those in the

previous case.

Finally, the last model considered here is the 3rd order temporal AR model de-

scribed in (4.17) in Chapter 4. Using the Yule Walker method the temporal AR

coefficients are estimated to be ρcL0 = 2.890, ρcL1 = −2.810, ρcL2 = 0.920, ρα0 = 2.888,

ρα1 = −2.801, ρα2 = 0.913, ρθ0 = 2.892, ρcL1 = −2.813, and ρcL2 = 0.921.

The sample correlation matrix, Ru is estimated from the training data using

Ru =
1

Nt

Nt∑

t=2

(x
(a)
t − Atemp(ρ)x

(a)
t−1)(x

(a)
t −Atemp(ρ)x

(a)
t−1)

T . (6.4)

The temperature, wind velocity amplitude and angle fields are then reconstructed

using these models.

In order to compare the overall reconstruction accuracy of these models, the re-

construction errors (the difference between actual fields averaged at the grids and the

reconstructions) for each field are computed at every snapshot and presented in the

boxplots shown in Figure 6.2 for temperature, wind velocity amplitude, and wind

velocity angle fields, respectively for all the snapshots. The reconstruction errors for

UKF-based acoustic tomography using the random walk model is plotted in green,

for the first order 3-D AR model is plotted in blue, and for the temporal model is

plotted in red. Each boxplot consists of 500 boxes (1 box per snapshot), and every

box demonstrates the variations of reconstruction errors at a single snapshot. The

central mark is the median, the edges of the box plot are 25’th and 75’th percentiles,

and the whiskers extend to the most extreme points, not considered outliers. The

outliers are plotted individually as small circles. The results in Figure 6.2 show that

UKF-based acoustic tomography using first order 3-D AR model outperforms the

random walk and 3rd order temporal AR models in reconstruction accuracy. How-

ever, the reconstruction accuracy of the temporal AR model and the first order 3-D

spatial-temporal AR model for wind velocity elements are close to each other, while
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the first order 3-D AR model is slightly better.

1 100 200 300 400 500
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Comparison of Temperature Reconstruction Error Boxplots for Three State Evolution Models

(a)

1 100 200 300 400 500
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Comparison of Wind Velocity Amplitude Reconstruction Error Boxplots for Three State Evolution Models

(b)

1 100 200 300 400 500
−20

−15

−10

−5

0

5

10

15

20
Comparison of Wind Velocity Angle Reconstruction Error Boxplots for  Three State Evolution Models

(c)

Figure 6.2: Comparison of field reconstruction errors of UKF-based acoustic tomog-
raphy using random walk, first order 3-D AR model, and temporal AR in (a) Tem-
perature (b) Wind velocity amplitude(c) Wind velocity angle reconstruction over all
snapshots.

The MSE of the field reconstructions for the state evolution models are plotted in

Figure 6.3 for all the snapshots. The MSE plots also confirm our previous statement

about the temporal AR and the first order 3-D AR models reconstruction accuracy.

The computational complexity of the UKF-based acoustic tomography method
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Figure 6.3: Comparison of field reconstruction MSEs of UKF-based acoustic tomog-
raphy using random walk, first order 3-D AR model, and temporal AR in (a) Tem-
perature (b) Wind velocity amplitude(c) Wind velocity angle reconstruction over all
snapshots.

is O(L3) with L being the dimension of the state space. Since the size of the state

space is the same for the UKF-based acoustic tomography using the random walk

and the first order 3-D AR models, therefore, the computational complexity for these

state evolution models are about the same. However, for the UKF-based acoustic

tomography using the 3rd order temporal AR, due to using augmented state space,

the size of the state vector is 3L, and hence the UKF-based acoustic tomography

using this model is slower than the those of the first two.

Comparing the reconstruction accuracy and the computational complexity of every

model, it can be seen that the first order 3-D AR model outperforms the random walk

and the temporal AR models. Hence, the first order 3-D AR model is chosen as the

best of the three models and is subsequently compared against the TDSI method.
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(b) Comparison with TDSI method

In order to compare the overall reconstruction acurracy of the UKF-based acoustic

tomography using the first order 3-D AR model and the TDSI method, the tempera-

ture and wind velocity fields are reconstructed using both methods and the boxplot

of the variations of reconstruction errors for all grids and for all snapshots are plotted

in Figure 6.4.

(a)
5 100 200 300 400 500

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Comparison of Temperature Reconstruction Error Boxplots for UKF−Based Acoustic Tomography and TDSI

(b)
5 100 200 300 400 500

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Comparison of Wind Velocity Amplitude Reconstruction Error Boxplots for UKF−Based Acoustic Tomography and TDSI

(c)
5 100 200 300 400 500

−15

−10

−5

0

5

10

15
Comparison of Wind Velocity Angle Reconstruction Error Boxplots for UKF−Based Acoustic Tomography and TDSI

Figure 6.4: Comparison of field reconstruction errors of UKF-based acoustic tomog-
raphy using the first order 3-D AR model and the TDSI method in (a) Temperature
(b) Wind velocity amplitude(c) Wind velocity angle reconstruction over all snapshots.

As can be seen from these boxplots the UKF-based acoustic tomography using

first order 3-D AR model outperforms the TDSI method in reconstruction accuracy

of temperature and wind velocity amplitude fields. However, the performance is very

close for the wind velocity angle reconstruction. In addition, the MSE of the field

reconstructions for these two methods are plotted in Figure 6.5 for all snapshots,

which also attest to the same observation.
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Figures 6.6-6.9 illustrate the results of the field reconstruction errors for UKF-

based tomography using the first order 3-D spatial-temporal AR model and TDSI for

three selected snapshots t = 50, 100, 150, and 250 on the synthetic data, respectively.

The histograms for the reconstruction errors for the UKF-based acoustic tomography

and the TDSI methods are also plotted in blue and red, respectively. Closer investi-

gation of these histograms together with the error images show that the UKF-based

acoustic tomography provides a more accurate reconstructions compared to those of

the TDSI method.
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Figure 6.5: Comparison of field reconstruction MSEs of UKF-based acoustic tomog-
raphy using the first order 3-D AR model and the TDSI method in (a) Temperature
(b) Wind velocity amplitude(c) Wind velocity angle reconstruction over all snapshots.

The computational complexity of the TDSI method, is O([(M + 1) ∗N ]3), where

M+1 is the number of snapshots used to reconstruct the fields at a single snapshot and

N is the number of paths. In our experiment we have usedM = 4 past observations for
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N = 96 acoustic paths at every snapshot. Compared to the computational complexity

of the UKF-based acoustic tomography, O(L3) with L = 96, the TDSI operates about

(M + 1)3 times slower than the UKF-based algorithm.

Overall, the UKF-based acoustic tomography outperforms the TDSI method in re-

construction accuracy as well as computational complexity. Furthermore, it is shown

in [11, 63] that the reconstruction accuracy of the TDSI method is higher than that

of SI and SIRT. Therefore, one would expect that the reconstruction accuracy of

UKF-based algorithm also outperforms those of the SI and SIRT.

Figure 6.6: Comparison of temperature and wind velocity fields reconstructions of
snapshot number 50, for UKF-based acoustic tomography using the first order 3-D
AR model and the TDSI method. The histogram is plotted for reconstruction errors
of snapshots 48 through 52.
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Figure 6.7: Comparison of temperature and wind velocity fields reconstructions of
snapshot number 100, for UKF-based acoustic tomography using the first order 3-D
AR model and the TDSI method. The histogram is plotted for reconstruction errors
of snapshots 98 through 102.

Figure 6.8: Comparison of temperature and wind velocity fields reconstructions of
snapshot number 150, for UKF-based acoustic tomography using the first order 3-D
AR model and the TDSI method. The histogram is plotted for reconstruction errors
of snapshots 148 through 152.
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Figure 6.9: Comparison of temperature and wind velocity fields reconstructions of
snapshot number 250, for UKF-based acoustic tomography using the first order 3-D
AR model and the TDSI method. The histogram is plotted for reconstruction errors
of snapshots 248 through 252.

6.3 Results on Real Data Sets

In this section, we have used the real data set collected at the Meteorological Observa-

tory, Lindenberg, Germany, within the project STINHO. The size of the investigation

field and the location of the sensors are the same as in Figure 5.2. The TOAs are

measured every minute as opposed to every 12sec in the synthesized data. The data

set is missing the TOA measurements for 17 of the paths for all snapshots (1038

snapshots). Therefore, the total number of observations reduces from 96 to 79.

Figure 6.10 shows the TOA measurements over all snapshots as a binary matrix

in which 0 and 1 denote whether the data is missing or not, and are illustrated with

blue and green, respectively. This presents a major difficulty when processing the

data using a recursive process such as UKF. As it can be seen from Figure 6.10, in

addition to the missing data for those 17 paths, the data is also missing randomly

throughout the snapshots, which can be due to equipment malfunction.
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Figure 6.10: The TOA measurements and the missing data points.

In order to deal with the random missing measurements, a cubic spline piecewise

regression interpolation [64] is used to interpolate those randomly missing data points,

for every path.

The acquired data set has only two in-situ measurements for temperature with

no measurement for wind velocity. Although, other research groups from German

Weather Service and University of Bayreuth, have more excessive in-situ measure-

ments for temperature and wind velocity fields, unfortunately we could not use those

data sets.

Figure 6.11 shows the actual investigation field and the location of the two in-situ

temperature sensors, T1 and T2. It can be seen that the in-situ sensors are located

at grids [i = 1, j = 4] and [i = 3, j = 5].

The first order 3-D AR state evolution model is also used here to capture the

dynamics of the state evolution. However, in the case of working with real data,

there is no training data set to capture the state model parameters. Therefore, we

employed the dual estimation framework and used dual UKF presented in Section

3.5 of Chapter 3, to update the state evolution model parameters at every snapshot

during the UKF process.

It is assumed that vt, ut, and nt are mutually uncorrelated, zero mean Gaussian
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Figure 6.11: The investigation field with the in-situ temperature sensors.

processes with covariance matrices Rv = σ2
vI, Ru, and Rn = σ2

nI, respectively where

σ2
v = 0.01 is chosen based upon the uncertainty measurements as mentioned before

and σ2
n = 0.0025 is chosen as the variance of parameter evolution driving noise. Note

that σ2
n is chosen based on the maximum range of the fluctuations of the state evo-

lution parameters observed in the synthetic data, which was 0.15. Finally, assuming

that the overall statistical properties of the real data are close to those of the synthe-

sized data we used the same estimated Ru as in the previous experiment as the state

evolution driving noise covariance matrix.

The mean temperature and wind velocity fields for the first snapshot are first

calculated using the method described in Chapter 3 and used as the initial state

x̂0|0 = [cTL(t0),α
T (t0), θ

T
(t0)]

T . The initial parameter vector is chosen to be ρ0|0 =

[1, 0, 0, 1, 0, 0, 1, 0, 0]T , which corresponds to starting from a random walk model. Fur-

thermore, the state and parameter error covariance matrices are taken to be P0|0 =

I96×96 and Pρ

0|0 = I9×9, respectively.
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Having these initial values as well as those for Rv, Ru, Rn, and using the interpo-

lated TOA measurements as the observation vector at every snapshot, the tempera-

ture and wind velocity fields were reconstructed using the dual-UKF method.

In order to evaluate the reconstruction accuracy of the proposed method, the re-

constructed temperature at the grids [i = 1, j = 4] and [i = 3, j = 5] (See Figure 6.11),

were compared to the reported temperature from nodes T1 and T2. Figures 6.12 and

6.13 show the reported and reconstructed temperature for the first 300 snapshots

together with the histogram of the reconstruction error for these snapshots. It can be

seen from these figures that the fixed point iterative UKF-based acoustic tomography

method tracks the temperature field successfully during this 300 snapshots.
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Figure 6.12: (a)The actual and reconstructed temperature at the grid [i = 1, j = 4]
(b) The reconstruction error histogram
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Figure 6.13: (a)The actual and reconstructed temperature at the grid [i = 3, j = 5]
(b) The reconstruction error histogram

Finally, Figure 6.14-6.19 show the reconstructed temperature and wind velocity

fields for 20 minutes 0 : 50 − 0 : 70 UTC with 4 minutes increments. As can be seen
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from these, the reconstructed fields over this time period are consistent and changing

gradually, as expected.

Figure 6.14: The reconstructed temperature and wind velocity fields for the snapshot
number 50.

Figure 6.15: The reconstructed temperature and wind velocity fields for the snapshot
number 54.

Figure 6.16: The reconstructed temperature and wind velocity fields for the snapshot
number 58.
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Figure 6.17: The reconstructed temperature and wind velocity fields for the snapshot
number 62.

Figure 6.18: The reconstructed temperature and wind velocity fields for the snapshot
number 66.

Figure 6.19: The reconstructed temperature and wind velocity fields for the snapshot
number 70.

6.4 Conclusion

In this Chapter the UKF-based acoustic tomography algorithm was tested on the

synthetic and the real data set. Two experiments were conducted in order to study

the accuracy performance of the proposed method. In the first experiment, we focused
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on the synthetic data set and aimed for finding the best state evolution model among

three linear models, namely random walk, first order 3-D AR, and temporal AR

models. These models were compared against each other and it was shown that the

first order 3-D AR model outperformed the others in reconstruction accuracy as well

as the computational complexity.

Next, the UKF-based acoustic tomography using the first order 3-D AR model

was compared with the TDSI method. It was shown that the UKF-based method re-

constructs the temperature and wind velocity amplitude fields more accurately, while

performing almost the same in the wind velocity angle reconstruction. Moreover, it

was shown that the UKF-based method is substantially faster than the TDSI method.

The computation time for the iterated UKF with K = 3 at every snapshot was found

to be approximately 5sec (on synthesized data) on a computer with Intel Core i7

CPU, 12.0GB RAM, and 64bit operating system while it takes approximately 200sec

for the TDSI method. Thus, the proposed UKF-based method is highly computa-

tionally efficient, ideally suited for applications where near real-time state estimation

is required.

In the second experiment, the UKF-based acoustic tomography method was ap-

plied to the real data set. The reconstructed fields were compared to the two available

in-situ measurements for temperature reconstruction and it was shown that the recon-

struction field closely follows the measured values. The temperature reconstruction

error was reported to have mean and standard deviation of approximately zero and

0.085 , respectively.

Not having adequate number of in-situ measurements, makes it difficult to evaluate

the performance of the method exclusively. However, relying on the comparison of

the reconstruction results with the available in-situ measurements the UKF-based

acoustic tomography method was succeeded in the temperature and wind velocity

reconstruction using the real data.
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CHAPTER 7

CONCLUSIONS AND SUGGESTIONS FOR

FUTURE WORK

7.1 Conclusions and Discussions

Acoustic tomography of the atmosphere is a nonlinear inverse problem which attempts

to reconstruct temperature and wind velocity fields in the atmospheric surface layer

(ASL) using the nonlinear dependence of the travel time of an acoustic wave on

temperature and wind velocity fields along the propagation path. Using acoustic

tomography is shown to be highly beneficial [7], as it uses a small number of acoustic

sensors to reconstruct the temperature and wind velocity fields with high spatial

resolution. However, Acoustic tomography of the atmosphere is an underdetermined

nonlinear inverse problem, which is in general difficult to solve.

Several acoustic tomography methods have recently been introduced that can

be categorized as statistical-based algorithms [7, 11], algebraic-based algorithms [9,

17] and those which use sparse reconstruction framework [18]. Part of this work

is devoted to studying these methods and reviewing the required assumptions for

each method. Our ultimate goal in this work was to develop a new statistical-based

algorithm with minimal simplifying assumptions and better performance. Hence,

a new statistical-based approach toward solving the acoustic tomography problem

was presented which casts the problem as a nonlinear state-estimation problem in

which states represent the temperature and wind velocity fields in each grid over the

monitored area. Unscented Kalman filter (UKF) [39] is employed to estimate and

track these states at every time snapshot. UKF is based on Unscented Transform
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method which does not require linearization of the state or observation equations.

First we reviewed the acoustic tomography formulation in Chapter 2 and showed

that the TOA is a nonlinear function of temperature and wind velocity fields. Several

atmospheric acoustic tomography methods and their assumptions were reviewed in

detail. This included SI [7] and TDSI [11] that are statistical-based algorithms as they

solve the inverse problem by applying the Wiener filter to the first order linear ap-

proximation of the forward problem. It was discussed that using Wiener filter requires

knowledge about the statistical characteristics of the temperature and wind velocity

fields and since these characteristics are unknown, optimal stochastic inverse is not

generally feasible. Then, we reviewed SIRT method [9], representing the algebraic-

based acoustic tomography methods. It was shown that algebraic-based methods

require no initial knowledge about the statistics of the temperature and wind velocity

fields, however their formulation requires reciprocal measurements, which may not

be cost-effective and realistic. We also reviewed the acoustic tomography algorithms

which use the sparse reconstruction framework, e.g., [18], and discussed the feasibil-

ity of their required assumptions such as non-moving atmosphere and the sparsity of

the fields in the atmosphere and questioned the applicability of these algorithms to

real-life applications.

In Chapter 3 the idea behind UKF and its different variations were presented

to prepare the foundation for the subsequent chapters. The Unscented Transform

(UT) process was described and utilized to derive the UKF. The original UKF was

explained in detail followed by the cases of state estimation and dual state-parameter

estimation. Then, the fixed point UKF was introduced as a better method to solve

the problems with large uncertainty in the choice of the initial error covariance matrix

and low SNR or insufficient measurements. The performance of UKF highly depends

on the accuracy of (a) the state evolution model, (b) the observation model, (c)

the covariance matrix of the driving noise, and (d) the covariance matrix of the
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observation noise. We discussed that when state evolution model is unknown or

has many different stochastic parameters, the dual state-parameter estimation UKF

should be used instead of the original UKF to estimate the state and model parameters

simultaneously from the observations. We also showed that the concept of fixed point

iteration can be extended to all variations of the UKF.

The new statistical-based acoustic tomography algorithm was proposed and for-

mulated in Chapter 4. The proposed method casts the problem as a state estimation

problem and solves the non-linear state estimation problem using UKF. Three dif-

ferent linear models, namely random walk, first order spatial-temporal 3-D AR, and

third order temporal AR models were suggested and formulated in order to capture

the state dynamics over time in an investigation area. The state-space equations are

then formed based on the state evolution model and the TOA formulation.

In order to test our proposed UKF-based algorithm a data set was acquired from

the university of Leipzig, collected at the Meteorological Observatory, Lindenberg,

Germany, within the project STINHO [27]. The data set consists of the TOAs for a

field of size 300m × 440m with 8 transmitters and 12 receivers (96 paths and TOA

measurements). The detailed explanation of these experiments can be found in [27].

However, the lack of sufficient in situ measurements (only 2 temperature sensors) for

a complete evaluation of the developed algorithm motivated us to devise a method

to construct a synthetic but close to realistic data set, using the same setup as in

STINHO. The process of generating the synthetic temperature and wind velocity data

sets is then reviewed in Chapter 5. Knowing the fact that the atmospheric patterns

have fractal properties [62], the fractal Brownian motion (fBm) [57, 58] was used as

the model to generate random wind velocity and temperature fields. The 1-D and

2-D Fourier-based filtering method was studied in order to generate realizations of the

random fields. The random temperature and wind velocity fields are generated for a

single snapshot in an area 10 times bigger than the investigation field (300m×440m ).
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Then, the frozen turbulence assumption is used to generate the data in time from the

single oversized snapshot. The synthetic data set was generated with spatial resolution

of 1m and temporal resolution of 12sec for 500 snapshots. These temperature and

wind velocity synthetic fields are then used to calculate the TOAs for all the paths.

Furthermore, an additive zero mean Gaussian process is employed to simulate the

effect of the measurement noise. It was noted that the same process can be used to

generate a 3-D random temperature and wind velocity data sets in order to study

the performance of the tomography methods for 3-D temperature and wind velocity

reconstruction.

Finally the UKF-based acoustic tomography algorithm was tested on the synthetic

and the real data set in Chapter 6. First, we aimed for finding the best state evolution

model among the three linear models presented in Chapter 4. Hence, the proposed

method was applied to the synthesized data set, using these three state evolution

models. The results were compared against each other and it was shown that the

first order spatial-temporal 3-D AR model outperformed the others in reconstruction

accuracy as well as the computational complexity. Next, the UKF-based acoustic

tomography using the first order 3-D AR model was compared with the TDSI method

[11]. It was shown that the UKF-based method outperforms the TDSI method in

reconstruction accuracy as well as computational efficiency. Given the fact that TDSI

outperforms the SI and SIRT methods, one would expect that the reconstruction

accuracy of the UKF-based algorithm is also better than those of the SI and SIRT.

This is due to the observation that the TDSI method outperformed these methods in

benchmarking results presented in [11, 63]

In the second experiment, the UKF-based acoustic tomography method was ap-

plied to the real data set. The dual UKF is used to reconstruct the temperature and

wind velocity fields as well as state evolution model parameters. The reconstructed
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fields were compared to the two available in-situ measurements for temperature re-

construction. Not having adequate number of in-situ measurements, makes it difficult

to evaluate the performance of the method extensively. However, relying on the com-

parison of the reconstruction results with the available two in-situ temperature mea-

surements the UKF-based acoustic tomography method was found to produce good

temperature reconstruction with mean and standard deviation of approximately zero

and 0.085 , respectively. Moreover, the reconstructed fields are found to be tempo-

rally consistent, meaning that they change gradually in time, as it is expected from

near surface atmospheric fields.

Based on the results presented in Chapter 6 it is evident that the UKF-based

acoustic tomography method is a computationally efficient method capable of recon-

structing and tracking the temperature and wind velocity fields accurately. Most of

the assumptions used by other acoustic tomography methods [7, 9, 11], such as the

linearization process, stationarity of the fields, and reciprocal measurements are lifted

in the proposed method. This work opens a new avenue to acoustic tomography of the

atmosphere and demonstrates the usefulness of the UKF for nonlinear tomography

problems.

7.2 Future Work

Although, the UKF-based acoustic tomography proposed in this thesis offers an accu-

rate solution to the acoustic tomography problem, there is still room for improvements

in many different aspects which can be pursued in the future. These include, but are

not limited to:

• The straight-ray model was used in this study to model the acoustic wave prop-

agation in the atmospheric surface layer. The next step in the development

would be to use the bent-ray model, and take into account the information

from the direction of arrivals (DOAs), in addition to the TOAs [19].
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• Different state evolution models with adaptive parameters can be studied in

order to find more realistic models which capture the state dynamics better.

• The UKF-based acoustic tomography formulation could be changed in the fu-

ture in order to deal with randomly missing data.

• The real data used in this study was lacking adequate in-situ measurements.

In order to evaluate the method more elaborately a data set with more in-situ

measurements should be used in the future studies.

• It would be interesting to study the acoustic tomography of the atmosphere

using particle filters [65,66] which do not require Gaussianity and compare the

results to those of the UKF-based acoustic tomography.

• Studying the impact of this UKF-based approach to other tomography problems

such as brain imaging could be of great interest.
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APPENDIX A

SIRT FORMULATION

This appendix reviews the application of the simultaneously iterative reconstruction

technique (SIRT) in acoustic tomography of the atmosphere. The acoustic propaga-

tion and the time of arrival (TOA) formulations are briefly reviewed. Finally, the

SIRT framework is studied and the corresponding assumptions are investigated.

A.1 Problem Formulation

The travel time for an acoustic wave to propagate from a source to a receiver is a func-

tion of temperature,wind velocity (air flow) and humidity along the path. However

the effect of humidity on the travel time is somehow negligible and hence is typically

be ignored. Acoustic tomography methods use this relation to reconstruct the tem-

perature and wind velocity fields in an investigation area based on several travel time

measurements between different sources and receivers deployed in an investigation

area.

Assuming a straight-ray model for sound propagation, the sound speed along a

propagation path can be written as

cray(r, t) ≈ cL(r, t) + s.v(r, t). (A.1)

where r is the position vector of a point on the investigation area, s is the unit vector

in the direction of sound propagation, cL is the Laplace sound speed (temperature

dependent), and v is the wind velocity vector.

Based on (A.1) the travel time formula for the n’th path is defined as:

τn(t) =

∫

Ln

dln
cray(r, t)

=

∫

Ln

dln
cL(r, t) + sn.v(r, t)

, (A.2)
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where the integration is along the n’th propagation path, Ln is the length of the n’th

propagation path and sn is the unit vector in its direction.

Discretizing the investigation area, into I×J grids and assuming that cL(r, t) and

v(r, t) are spatially constant in each grid, one can rewrite (A.2) as follow,

τn(t) = ΣI
i=1Σ

J
j=1

dn(i, j)

cL([i, j], t) + sn.v([i, j], t)
. (A.3)

Here dn(i, j) is the distance n’th propagation path travels in the (i, j)’th cell,

cL([i, j], t) and v([i, j], t) are the Laplace sound speed and the wind velocity vector in

the (i, j)’th grid at time t, respectively.

A.2 SIRT

Acoustic tomography using SIRT employs reciprocal sensors to separate the effects of

temperature and wind velocity and reformulate the problem. Figure A.1 shows the

parameters used in the TOA formulation.

Note that there are two TOA measurements for the path shown in Figure A.1,

R1−R2 and R2−R1 with respective TOA measurements τn,1 and τn,2. Using (A.3)

these measurements can be related to the Laplace sound speed and wind velocity

fields as follow,

τn,1 =
I∑

i=1

J∑

j=1

dn(i, j)

cL(i, j) + sn.v(i, j)
(A.4)

τn,2 =

I∑

i=1

J∑

j=1

dn(i, j)

cL(i, j)− sn.v(i, j)
. (A.5)

In order to ease the derivation process and avoiding confusion the 2-D arrays dn,

cL, and v are mapped into 1-D arrays (the notation is preserved), therefore the double
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Figure A.1: A tomographic setup with reciprocal sensors

summation in (A.4) and (A.5) are substituted by a single summation as follow,

τn,1 =

IJ∑

i=1

dn(i)

cL(i) + sn.v(i)
(A.6)

τn,2 =
IJ∑

i=1

dn(i)

cL(i)− sn.v(i)
. (A.7)

The SIRT method then separates the effect of the temperature and wind velocity

fields on the TOA by defining the effective sound speed, ceff ,

ceffn,1 ,
Ln

τn,1
(A.8)

ceffn,2 ,
Ln

τn,2
(A.9)

and the effective sound speeds are assumed to be the superposition of the effective

Laplace sound speed, ceffL,n , and the effective wind speed ,veffn , as follow,

ceffn,1 = ceffL,n + veffn (A.10)

ceffn,2 = ceffL,n − veffn . (A.11)
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The SIRT-based acoustic tomography then defines the temperature-based TOA

and wind-based TOA as follow,

τ cLn ,
L

ceffL,n

=
2τn,1τn,2
τn,2 + τn,1

(A.12)

τ vn ,
L

veffn

=
2τn,1τn,2
τn,2 − τn,1

(A.13)

and states that τ cLn represents the TOA for the n’th path when the wind velocity is

set to zero and τ vn represents the case in which the Laplace sound speed is set to zero.

Therefore, it claims that we can write,

τ cLn =

IJ∑

i=1

dn(i)

cL(i)
(A.14)

τ vn =

IJ∑

i=1

dn(i)

sn.v(i)
. (A.15)

and reconstructs the Laplace sound speed and wind velocity fields separately using a

gradient based iterative ℓ2 minimization algorithm.

However, one can question the validity of (A.14) and (A.15). In the rest of this

section, (A.14) and (A.15) are evaluated and the assumptions behind these claims are

investigated.

A.2.1 Temperature-Based TOA

Since we are evaluating (A.14) and (A.15) for an arbitrary path, in order to simplify

the notation we drop the path subscription, n, in the rest of the derivations, knowing

that the derivations are true for every path. From (A.12) and (A.14) we can write,

2τ1τ2
τ2 + τ1

=

IJ∑

i=1

d(i)

cL(i)
, (A.16)

and our goal in this subsection is to investigate the validity of (A.16).

Using equations (A.6) and (A.7), we expand the left hand of the equation (A.16)
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as follow,

2τ1τ2
τ2 + τ1

=
2
∑IJ

i=1
d(i)

cL(i)+s.v(i)

∑IJ

j=1
d(j)

cL(j)−s.v(j)
∑IJ

j=1
d(j)

cL(j)−s.v(j)
+
∑IJ

i=1
d(i)

cL(i)+s.v(i)

=

∑IJ

i=1

∑IJ

j=1
d(i)d(j)

(cL(i)+s.v(i))(cL(j)−s.v(j))
∑IJ

j=1
d(j)cL(j)

c2
L
(j)−(s.v(j))2

. (A.17)

Substituting (A.17) into (A.16) we have,

IJ∑

i=1

d(i)

cL(i)
=

∑IJ

i=1

∑IJ

j=1
d(i)d(j)

(cL(i)+s.v(i))(cL(j)−s.v(j))
∑IJ

j=1
d(j)cL(j)

c2
L
(j)−(s.v(j))2

⇒
IJ∑

i=1

IJ∑

j=1

d(i)d(j)cL(j)

cL(i)(c2L(j)− (s.v(j))2)
=

IJ∑

i=1

IJ∑

j=1

d(i)d(j)

(cL(i) + s.v(i))(cL(j)− s.v(j))

which can be expanded as follow,

IJ∑

i=1

IJ∑

j 6=i

d(i)d(j)cL(j)

cL(i)(c2L(j)− (s.v(j))2)
+

IJ∑

i=1

d2(i)

c2L(i)− (s.v(i))2
=

IJ∑

i=1

IJ∑

j 6=i

d(i)d(j)

(cL(i) + s.v(i))(cL(j)− s.v(j))
+

IJ∑

i=1

d2(i)

(c2L(i)− (s.v(i))2

Therefore for (A.16) to be true we need,

cL(j)

cL(i)(c
2
L(j)− (s.v(j))2)

=
1

(cL(i) + s.v(i))(cL(j)− s.v(j))
, ∀i 6= j ∈ {1, ..., IJ}

the right side of the above equation can be written as,

1

(cL(i) + s.v(i))(cL(j)− s.v(j))
=

(cL(j) + s.v(j))

(cL(i) + s.v(i))(c2L(j)− (s.v(j))2)

=
cL(j)(1 +

s.v(j)
cL(j)

)

cL(i)(1 +
s.v(i)
cL(i)

)(c2L(j)− (s.v(j))2)

and therefore (A.16) is valid if and only if,

cL(j)

cL(i)(c2L(j)− (s.v(j))2)
=

cL(j)(1 +
s.v(j)
cL(j) )

cL(i)(1 +
s.v(i)
cL(i) )(c

2
L(j)− (s.v(j))2)

, ∀i 6= j ∈ {1, ..., IJ}

which is only valid when s.v(i) ≪ cL(i), ∀i ∈ {1, ..., IJ}. Note that this assumption

is valid for most applications, therefore we have shown that the first claim of SIRT

about the temperature-based TOA is valid.
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A.2.2 Wind-Based TOA

In this subsection we are going to evaluate (A.15). Using (A.13), (A.15) can be

written as,

2τ1τ2
τ2 − τ1

=
IJ∑

i=1

d(i)

s.v(i)
. (A.18)

Using equations (A.6) and (A.7), we expand the left hand of the equation (A.18)

as follow,

2τ1τ2
τ2 − τ1

=
2
∑IJ

i=1
d(i)

cL(i)+s.v(i)

∑IJ

j=1
d(j)

cL(j)−s.v(j)
∑IJ

j=1
d(j)

cL(j)−s.v(j)
−∑IJ

i=1
d(i)

cL(i)+s.v(i)

=

∑IJ

i=1

∑IJ

j=1
d(i)d(j)

(cL(i)+s.v(i))(cL(j)−s.v(j))
∑IJ

j=1
d(j)(s.v(j))

c2
L
(j)−(s.v(j))2

therefore we can rewrite equation (A.16) as

IJ∑

i=1

d(i)

s.v(i)
=

∑IJ

i=1

∑IJ

j=1
d(i)d(j)

(cL(i)+s.v(i))(cL(j)−s.v(j))
∑IJ

j=1
d(j)(s.v(j)

c2
L
(j)−(s.v(j))2

⇒
IJ∑

i=1

IJ∑

j=1

d(i)d(j)(s.v(j))

(s.v(i))(c2L(j)− (s.v(j))2)
=

IJ∑

i=1

IJ∑

j=1

d(i)d(j)

(cL(i) + s.v(i))(cL(j)− s.v(j))

which can be expanded as follow,

IJ∑

i=1

IJ∑

j 6=i

d(i)d(j)(s.v(j))

(s.v(i))(c2L(j)− (s.v(j))2)
+

IJ∑

i=1

d2(i)

c2L(i)− (s.v(i))2
=

IJ∑

i=1

IJ∑

j 6=i

d(i)d(j)

(cL(i) + s.v(i))(cL(j)− s.v(j))
+

IJ∑

i=1

d2(i)

(c2L(i)− (s.v(i))2

Therefore for (A.18 to be true we need,

s.v(j)

(s.v(i))(c2L(j)− (s.v(j))2)
=

1

(cL(i) + s.v(i))(cL(j)− s.v(j))
, ∀i 6= j ∈ {1, ..., IJ}

the right side of the above equation can be written as,

1

(cL(i) + s.v(i))(cL(j)− s.v(j))
=

(cL(j) + s.v(j))

(cL(i) + s.v(i))(c2L(j)− (s.v(j))2)

=
(s.v(j))(1 + cL(j)

s.v(j)
)

(s.v(i))(1 + cL(i)
s.v(i)

)(c2L(j)− (s.v(j))2)
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and therefore (A.18) is valid if and only if,

s.v(j)

(s.v(i))(c2L(j)− (s.v(j))2)
=

(s.v(j))(1 + cL(j)
s.v(j) )

(s.v(i))(1 + cL(i)
s.v(i) )(c

2
L(j)− (s.v(j))2)

, ∀i 6= j ∈ {1, ..., IJ}

which is only valid when cL(i)
s.v(i)

≈ cL(j)
s.v(j)

, ∀j 6= i ∈ {1, ..., IJ}. Note that this assumption

could be true for special cases, however it is not valid in general, i.e. when s.v is

fluctuating near zero or when the wind is erratic in the investigation area.

A.3 Simulation and Results

In order to show the discrepancy of the SIRT method in calculating the wind velocity-

based TOA, a synthetic data set was generated based on the layout of the STINHO-2

experiment, shown in Figure A.2. The synthetic fields are generated for 500 snapshots

with spatial and temporal resolution of 1m and 12sec, respectively. The TOAs, τn,1

and τn,2 for n = 1, . . . , 28, are then generated for the paths between reciprocal sensors

R1, . . . , R8.

Figure A.2: Layout of the STINHO-2 experiment with reciprocal sensors
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A 5 × 6 grid is laid on the synthetic fields forming cells of the size 50m × 50m.

The actual temperature-based and wind velocity-based TOAs are then calculated

from (A.14) and (A.15), respectively. Finally, the estimated temperature-based and

wind velocity-based TOAs are calculated from (A.12) and (A.13), using τn,1 and τn,2

for n = 1, . . . , 28.

Figure A.3 shows the actual and estimated temperature-based TOA for the sample

path number four (R1-R5), and the estimation error for this path over all snapshots.

Note that the mean Laplace sound speed in this case was around 340 m
sec

while the

mean wind velocity amplitude was around 0.8 m
sec

, therefore the condition s.v(i) ≪

cL(i), ∀i ∈ {1, ..., IJ} holds and (A.16) is valid, as it can be seen in Figure A.3.

To investigate SIRT’s second claim (A.18), the actual and estimated wind velocity-

based TOAs were calculated from (A.15) and (A.13), respectively. Figures A.4 and

A.5 show the actual and estimated wind velocity-based TOAs for paths number 4 and

12. It can be seen that when sn.v is fluctuating near zero (the wind becomes semi-

perpendicular to the path), the condition cL(i)
s.v(i)

≈ cL(j)
s.v(j)

does not hold and the wind

velocity-based TOAs estimation errors increase drastically. These results confirm our

findings in the previous section.

The huge discrepancy between the actual and estimated wind velocity-based TOA

for some paths, will lead to inaccurate and in some cases irrelevant wind velocity

reconstruction.

A.4 Conclusion

The SIRT-based acoustic tomography formulation was studied closely and some dis-

crepancies were shown in the wind velocity-based TOA estimation, which can cause

noticeable inaccuracies in wind velocity reconstruction. We believe that this issue

should be addressed and studied in detail.
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Figure A.3: (a) Actual and estimated temperature-based TOA for the path number
4 (b) The temperature-based TOA estimation error
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Figure A.4: (a) The actual and estimated wind velocity-based TOA for the 4’th path
over all snapshots (b) the layout of the field and the 4’th path, with the mean wind
velocity over all snapshots

Figure A.5: (a) The actual and estimated wind velocity-based TOA for the 12’th
path over all snapshots (b) the layout of the field and the 12’th path, with the mean
wind velocity over all snapshots
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