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ABSTRACT 

Reflectivity (ZH) and differential reflectivity (ZoR) measurements collected by Polar 55C over the Amo River 
basin in Italy are presented. The applicability of dual-polarization (ZoR )-based rainfall algorithms at C band in 
an operational setting is studied in conjunction with a network of rain gauges. Conventional pointwise compar­
ison of radar and rain gauge estimates of rainfall, as well as statistical comparison of dual-polarization radar and 
rain gauge data via probability matching procedure, are presented. Error structure of reflectivity rainfall Z-R 
relation, as well as Z0 R-based algorithms, is evaluated as a function of spatial and temporal averaging. Pointwise 
comparison, as well as statistical evaluation based on cumulative distribution function (CDF) matching, are used 
to show that in an operational environment with excessive ground-clutter contamination and attenuation problems 
the dual-polarization-based rainfall algorithm performs better than any arbitrary Z-R relation. In addition, it is 
shown that a dual-polarization (ZoR) algorithm obtained matching the CDFs performs better than the best possible 
Z-R relation. 

1. Introduction 

Remote estimation of rainfall using multiparameter 
radars is a topic of active research. In the last decade, 
several experiments have been done with polarization 
diversity radars with the objective of rainfall estima­
tion. Several carefully conducted experiments have 
shown that polarimetric rainfall algorithms using dif­
ferential reflectivity (ZoR) can improve upon the con­
ventional algorithms based on reflectivity alone (Z-R 
relations), especially in absence of a good Z-R equa­
tion to use (Seliga and Bringi 1976; Aydin et al. 1990; 
Gorgucci et al. 1995b). The experiments referred to 
here were carefully done in a "research mode" of op­
eration with low-elevation scans, clear of ground clut­
ter, and at S-hand frequencies so that there is no sig­
nificant attenuation. However, for operational applica­
tions fairly robust performance is needed. This paper 
studies the application of polarimetric radar for rainfall 
measurements collected under operational environ­
ments with. ground-clutter contamination, with pres­
ence of attenuation and routine full 360° azimuthal 
scans independent of the location of the storms with 
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respect to the radar. This paper presents one of the first 
datasets of its kind, namely, operational monitoring by 
a dual-polarized C-band radar over a rain gauge net­
work; results of operational monitoring of the Arno 
River basin (near Florence, Italy) by the C-hand dual­
polarization radar, Polar 55C, are shown. 

The Arno River has a history of flooding the city of 
Florence and the surrounding areas, damaging not only 
private property but also the unique priceless art trea­
sures kept in museums and churches. This has resulted 
in efforts to monitor routinely the Arno River basin to 
obtain the cumulative rainfall over the basin with the 
objective of the flood forecasting, via several initia­
tives. Some of those include the "Arno Project" ad­
ministered by National Group for Defence from Hy­
drogeological Hazards ( CNR, Italy) and the European 
Economic Community (EEC) program called "Storm 
'93" for studies on extreme precipitation events. Thus, 
as part of these various initiatives, the Arno River basin 
has been monitored during some storm events by the 
Polar 55C, the radar of the Institute of Atmospheric 
Physics of the National Research Council (CNR) of 
Italy jointly operated with the University of Florence 
in Italy. 

The Amo River basin is a mountainous region 
bounded by the Apennines, which form an arc over the 
river basin with an average altitude of 1000 m above 
sea level with a maximum altitude of 2000 m. The 
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mountainous terrain of the radar location and the cov­
erage area is prone to severe ground-clutter contami­
nation. The applicability of Z0 R-based algorithms for 
rainfall estimation in an operational setting (where rou­
tine scans are made at 10-min intervals over a 36-h 
period) over the Arno River basin is studied in this 
paper. The basin is also instrumented with several rain 
gauges. This study also provides an opportunity to test 
the robustness of the algorithms used in the presence 
of ground-clutter contamination and attenuation prob­
lems. Two approaches are used, namely: (a) pointwise 
comparison, where the rainfall at a gauge location is 
estimated from the radar as a function of time, and (b) 
comparison in a statistical framework using the cu­
mulative distribution function (CDF) procedure (Cal­
heiros and Zawadzki 1987) in the context of Z0 R-based 
estimation of rainfall. In addition, the CDF matching 
technique is utilized to obtain the parameters of Z0 R­
based algorithm. 

It is well. known that radar and rain gauges go 
through fundamentally different processes to estimate 
rain. Rain gauges collect the raindrops over a period of 
time to estimate rainfall, whereas radar obtains instan­
taneous snapshots of electromagnetic backscatter from 
a rain volume that is then converted to rainfall via some 
algorithms. Both instruments have their advantages and 
disadvantages, such as, 

(a) railn gauge measurements are made over a very 
small area compared to those obtained with radars, 

(b) rain gauge measurements have to be integrated 
over some finite time interval to get a good estimate of 
rainfall, 

(c) radar measurements have to go through an al­
gorithm conversion to estimate rainfall. 

Spatial and temporal averaging of radar and rain gauge 
data has always been used by researchers to reduce the 
discrepancy between radar and rain gauge estimates of 
rainfall. Therefore, extensive analysis of space-time 
averaging of rainfall over the basin is conducted to 
study thi;! error structure of the comparison between the 
radar and the gauges. 

Our paper is organized as follows. Section 2 briefly 
presents the principle of rainfall estimation at C band. 
In section 3 the radar and rain gauge datasets used in 
this research work are described. Section 4 presents the 
pointwise comparison of radar and rain gauges, as well 
as the probability matching procedure using multipar­
ameter algorithms. In section 5 the analysis of the 
space-time averaging procedure over the basin is pre­
sented. Section 6 summarizes the key results of this 
paper. 

2. Rainfall· estimates at C band 

The distribution of raindrop size and shape forms the 
building block for obtaining the properties of the rain 
medium such as the reflectivity Z, rainfall rateR, and 

the differential reflectivity ZoR· The gamma distribu­
tion model can adequately describe many of natural 
variations in the raindrop size distribution ( RSD) ( Ul­
brich 1983). This model is given by 

N(D) = N0 D'" exp[ -( 3 · 6~0+ p,)D], (1) 

where N0 , D0 , and p, are the parameters of the RSD. 
Rainfall rate R and the radar parameters such as ZH and 
ZoR can be expressed in terms of the RSD as follows: 

R = 0.6-rr X 10-3 J D 3N(D)v(D)dD, (2) 

where v(D) is the terminal fallspeed in still air; 

ZH.v = rr 5~~~ 2 f aH,v(D)N(D)dD (3) 

ZoR = 10 log(~:) (4) 

(Seliga and Bringi 1976). 
Utilizing the radar observables ZH and ZoR, two es­

timates of rainfall rate R can be obtained as follows 
( Gorgucci et al. 1994): 

RZH = CZHZ H 
RoR = CoRZ fi10flZoR, 

(5) 

(6) 

where CZH, C0 R, v, a, and f3 depend on the operating 
wavelength. Gorgucci et al. ( 1994) have derived the 
dual-polarization rainfall algorithm at C band based on 
simulation as 

RoR = 7.60 x w-3z i>rw-o.2slzoR. (8) 

However, the same simulation can be used to get a 
representative Z-R relation, and it is given by 

RZH = 2.71 x w-2z ~71 • (9) 

The algorithms given by (8) and (9), as well as the 
Marshall-Palmer rainfall algorithm, 

RMr = 3.65 x w-2z~625 , (10) 

are the three algorithms used throughout the various 
procedures in this paper. 

3. Data description 

The radar Polar 55C is located at Montagnana near 
Florence to provide good radar coverage over the Arno 
River basin. Figure 1 shows the regional map with the 
radar location. The Polar 55C is a dual-polarized pencil 
beam weather radar with a 0.9° beamwidth. The radar 
signals are processed by a SP20 radar signal processor 
(manufactured by Lassen Research) that is capable of 
obtaining real-time estimates of reflectivity at horizon­
tal polarization ZH and the differential reflectivity ZoR. 
More details about the radar can be found in Scarchilli 
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Fro. 1. The location of Polar SSC radar. 

et al. (1991). The Arno River basin was also instru­
mented with a network of 41 tipping-bucket rain 
gauges. The rain gauge network was operated by the 
"Servizio Idrografico e Mareografico" of Pisa, Italy. 
The rainfall accumulation in the rain gauges was re­
corded every 15 min with a resolution of 0.2 mm. The 
rain gauges were distributed throughout the basin, with 
the closest being 12 km and the farthest being 90 km 
from the radar. The experimental region is a mountain­
ous terrain, and therefore the gauges were at various 
altitudes ranging between sea level and 1400 m. Figure 
2 shows the location and the altitude of the rain gauges 
with respect to the radar. 

The data presented in this paper were collected dur­
ing a meteorological event that occurred on 30 and 31 
October 1992 over central Italy. Radar and rain gauge 
data were collected during this event covering a time 
period of 36 h. The event was associated with the pas­
sage of a frontal perturbation that originated on the 
southern Mediterranean areas and moved toward north, 
northeast; that was characterized by the presence of 
very unstable masses of warm moist air. The storm as­
sociated with this event produced intense rainfall over 
the Arno River basin, creating flood warnings in some 
of the rivers in the Arno River basin. During this event 
the Polar 55C was put on an "operational mode" to 
monitor the basin for hydrological application. This 
mode consisted of a scan strategy as follows. PPI scans 
were done over full 360° in azimuth at a fixed elevation 

angle at routine time intervals. Because of the excessive 
ground clutter in the area, the elevation angle was cho­
sen to be 1.8°. The melting layer of the storm was at 
3.5 km, and therefore most of the radar measurements 
were in the rain phase of the storms. The time interval 
between the PPI scans was set to be 10 min to sample 
the storm system adequately. Figure 3 shows a typical 
PPI of the reflectivity data from the storm. The radar 
measurements were obtained integrating 64 sample 
pairs of the radar returns with a pulse repetition time 
(PRT) of 0.85 ms. The archived parameters were the 
reflectivity at horizontal polarization, the differential 
reflectivity, the mean Doppler velocity, and spectral 
width. 

Several preprocessing data reduction procedures 
were applied to the radar data as described below. The 
radar reflectivity was thresholded at -10 dBZ to avoid 
possible noise contamination. This procedure can po­
tentially remove good data close to the radar, where the 
-10-dBZ levels could be above noise. However, the 
regions of the storm with these reflectivity levels do not 
contribute significantly to rainfall and therefore can be 
ignored for our application. Second, potential contam­
ination from hail/ice regions were eliminated thres­
holding on ZvR values of 0 dB, and enforcing an upper 
limit of 55 dBZ for the reflectivity factor (Aydin et al. 
1986). Again here the loss of good data points near 
this boundary is outweighed by potentially erroneous 
data that can bias the rainfall estimates significantly. 
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Third, potential ground-clutter contamination was re­
moved by eliminating data points with zero velocity 
and near-zero spectral width, especially at close ranges 
from the radar. Subsequently, the radar measurements 
were averaged over nearest neighbors of 1 km on either 
side to reduce the measurement error fluctuations. 

Radar PPis are obtained nearly instantaneously, 
whereas rain gauge data are obtained as accumulation 
over finite time intervals. With a scan rate of 6°s -I it 
takes 1 min to get a PPI, whereas the rain gauge data 
in this dataset is integrated over 15 min. Therefore, to 
enable proper comparison between radar and rain 
gauge data, the following procedure is adopted: a time 
series of radar data was constructed at the gauge lo­
cations from the instantaneous snapshots of the PPis, 
and then this time series was interpolated to provide the 
time synchronization between the radar and rain gauge 
data. Figure 4 shows a sample time series of rainfall 
constructed for a rain gauge and the corresponding ra­
dar estimate RZH at the gauge location. 

One additional point of concern with C-band radar 
data in rain is attenuation. It is well established that C­
hand radar signals undergo nonnegligible attenuation 
and differential attenuation in rainfall. Thus, to be able 
to use the data successfully, it should be corrected for 
attenuation. Correction for attenuation can be done ei­
ther from reflectivity and ZoR (Aydin et al. 1986) or 
using differential propagation phase ( Bringi et al. 1990; 
Scarchilli et al. 1993), depending upon the measure­
ment parameters that are available. A cumulative atten­
uation correction procedure based on ZH and ZoR is ap­
plied here (Gorgucci et al. 1995a). This procedure is 
a simplified version of the technique suggested by Ay­
din et al. (1989) and is described in the appendix. 

4. Pointwise radar and rain gauges comparison 

a. Data analysis procedure 

The procedure to compare point rainfall using radar 
and rain gauges is conceptually straightforward but nu­
merous detail are important. The steps involved in pro­
cessing radar data for comparison with rain gauge are 
the following ones. 

(a) The location of each rain gauge is mapped onto 
the radar PPI of reflectivity factor and differential re­
flectivity. Subsequently, the radar data is converted to 
rainfall rate using each of the following three algo­
rithms: (i) the Marshall-Palmer relation, (ii) the Z-R 
relation given by (9), and (iii) the dual-polarization 
algorithm given by ( 8). 

(b) The radar estimates of rainfall are then averaged 
over its nearest neighbors of 1 km either side to obtain 
average measurements. This is done to smooth the data 
over measurement errors. The rainfall obtained from 
the radar over time is then integrated either in time or 
space, depending on the objectives, and the results are 
discussed in the following section. An error measure is 
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FIG. 4. Time series of rainfall rate constructed from radar and rain 
gauge measurements. The radar rainfall is obtained using Z-R al­
gorithm. 

computed to enable comparison of the three algorithms 
used in the paper. The estimate of the error measure, 
namely, the fractional standard error (FSE), can be ob­
tained as 

( [rainfall (radar) - rainfall (gauge)) 2 ) 
05 

FSE = ~--~---''-------'-:"::..-..;"'--'-.;:__:_-
(rainfall (gauge)) 

( 11) 

where the angle brackets indicate the expected value. 

b. Experimental results 

Rainfall accumulation at each rain gauge location 
is estimated from radar measurements for compari­
son with rain gauge estimates. The FSE of the Mar­
shall-Palmer rainfall estimate was found to be 84%, 
whereas the standard error in Z-R relation from (9) 
was found to be 64%. The corresponding standard 
error in dual-polarization rainfall estimate was 59%. 
The FSE estimates were also computed for each 
gauge location, and they were stratified with respect 
to range from the radar. There was no noticeable 
trend in the FSE with respect to distance from the 
radar. 

5. CDF matching analysis 

It can be seen from the pointwise analysis of the 
previous section that the multiparameter algorithm per­
forms better than the Marshall-Palmer relation as well 
as the Z-R algorithm given by (9). In this section the 
Z-R relations and multiparameter algorithms that are 
obtained by matching the experimental CDF of rainfall 



1226 JOURNAL OF APPLIED METEOROLOGY VOLUME 35 

1.00 

;:>, 

·- .7S 

.C) 

d 
.C) 

0 
<... 

ll.. 
.so 

Q) 

.:: 

.9 
::J 
E 

.25 ::J 
<...l 

.00 

1.00 

;:>, 

- .7S 
.C) 

tl 
.C) 

0 
<... 
ll.. 

.so 
Q) 

.:: 

.9 
::J 
E: 
::J .25 

<...l 

.00 

o. 

.. ·-···· 

t 
•' 

/ 

0. 2S. so. 
Rainfall Rate 

25. 50. 

Rainfall Rate 

__ Gauge 

............. Radar 

7S. 

(mmh- 1
) 

__ Gauge 

............... Radar 

75. 

(mmh- 1
) 

100. 

100. 

derived by the radar and rain gauge are analyzed. The 
CDF of rainfall can be constructed from radar data, and 
the functional shape of the CDF will depend on the type 
of algorithm that is used to convert the radar observa-

TABLE 1. The summary of the fractional standard errors FSEs of 
the pointwise comparison for the various algorithms. 

RMP 

Rm 
RoR 
Rm (CDF) 
RoR (CDF) 

FSE 

84% 
64% 
59% 
66% 
53% 
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Fro. 5. (a) Experimental cumulative distribution func­
tion of rainfall. The solid line shows the CDF observed by 
the rain gauge, whereas the dotted line shows the CDF 
obtained from the radar data using Marshall- Palmer re­
lation. (b) Same as (a) except the radar based CDF of 
rainfall is obtained using Z-R algorithm Eq. (9). (c) Same 
as (a) except the radar based CDF of rainfall is obtained 
using the dual-polarization ~lgorithm Eq. (8). 

100. 

tions to rainfall. Figures Sa-c show comparisons of the 
CDF of rainfall obtained from rain gauge and radar 
using Marshall-Palmer relation, Z-R relation from 
( 9), and multi parameter algorithm given by ( 8), re­
spectively. The corresponding error between the two 
CDFs in self-consistent scale is as follows: 

(a) Marshall-Palmer equation, SSE = 930, 
(b) Z-R equation, SSE= 317, 
(c) multi parameter rainfall algorithm ( 8), SSE 

= 253, 

where SSE is the sum of square errors between the 
radar-based CDF and rain-gauge-based CDF, obtained 
as integration of the square deviation between the two 
CDFs over the entire range. In practice, the SSE is com-
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puted as the numerical integration of the square of the 
deviation between the two CDF curves. 

The above analysis based on CDF of rainfall rate 
suggests that without knowledge of the right kind of 
Z-R relations to use, multiparameter radar rainfall al­
gorithm can match the natural CDF of rainfall better 
than the Z-R relations considered here. 

The optimum Z-R and the multiparameter relations 
can be obtained matching the CDFs. The rainfall con­
version algorithm can be Z-R based or multiparameter 
based depending on the algorithm used. The Z-R al­
gorithms have parameters of the following form ( 5): 

R(ZH) = CZHZ ;:;., 

where CZH and v are parameters of the algorithm. Sim­
ilarly, the multiparameter rainfall estimate R(ZH, ZoR) 
has the form ( 6) 

R(ZH, ZoR) = CoRZ f{JO-f3ZoR, 

where CoR, a, and f3 are the parameters of the algo­
rithm. The procedure for estimating the parameters of 
the radar rainfall algorithm based on CDF matching is 
as follows: 

(i) For a given starting guess of parameters CzH, v, 
CoR, a, and f3 evaluate the radar rainfall estimate at 
each rain gauge location as described in section 4. Typ­
ically, the initial guess is based on established relation 
such as Marshall-Palmer or multiparameter algorithm 
given by (8). 

( ii) Construct the CDF based on result of step ( i ). 
(iii) Construct the CDF based on rain gauge obser­

vations. 
(iv) Construct the SSE. 
( v) Iterate the coefficients to minimize the mean­

square error. 

It should be here noted that the optimization is done 
using nonlinear algorithms to minimize the SSE. Nei­
ther the R (ZH) relation nor the R (ZH, ZoR) is linearized 
taking logarithms. The linearization procedure taking 
logarithms disturbs the natural distribution of rainfall 
in the minimization process. The resulting parameter 
estimates for R(ZH) and R(ZH, ZoR) based on CDF 
matching criteria are as follows: 

RZH(CDF) = 4.07 x w-2z ~71 , (12) 

with the corresponding SSE= 130, and 

RoR(CDF) = 1.80 X w-2z~ssw-0374ZoR, (13) 

with the corresponding SSE = 108. 
One important observation that can be made from 

the results depicted in ( 12) and (13) is that the best 
multi parameter algorithm has a lower sum square error 
compared to the best Z-R relation, thereby indicating 
that even in a statistical approach to rainfall estimation, 
polarimetric techniques have some improvement to of­
fer. It is to be noted here that a new approach is used 

to obtain the parameters of dual-polarization radar es­
timates of rainfall. The algorithms given by ( 12) and 
(13) have been obtained in a statistical framework for 
radar-rain gauge comparison. The rainfall accumula­
tion at the gauge locations based on (12) and (13) is 
then compared using the procedure similar to the anal­
ysis done in section 4. Table 1 shows the summary of 
pointwise comparison of the various algorithms and the 
associated FSEs. The total standard error based on 
RZH( CDF) is 66%, whereas the corresponding standard 
error for RoR(CDF) is 53%. Though the parameteriza­
tions (12) and (13), which are obtained through the 
optimization criteria, are different from the equations 
(8) and (9), the results are similar, that is, RoR(CDF) 
performs slightly better than RZH(CDF). 

6. Space-time averaging of rainfall estimates from 
radar and rain gauge 

In this section a comparative study of spatial and 
temporal averaging of rainfall estimates is presented. 
To be able to conduct meaningful spatial averages, a 
subset of the gauges located close to each other are 
used, so that spatial averaging over the small area will 
not have large gradients in rainfall rates. Spatial and 
temporal averaging typically reduces the discrepancy 
in rainfall comparison due to several reasons. The dis­
crepancy in the rainfall volumes sampled by radar and 
rain gauges progressively decreases as the samples in 
space or time are increased. However, to conduct an 
error analysis of space-time averages is not easy be­
cause as soon as any averaging is done, the sample size 
reduces by the same amount. In this section an error 
evaluation of the spatial and temporal averaging over 
a small area is presented. The location of the small 
basin is shown in Fig. 6. 

The FSE evaluation of spatial and temporal averag­
ing is done as follows: 

(a) The time series data from the several gauges in 
the basin, as well as the corresponding radar data, are 
arranged in a matrix. 

(b) The data are then averaged over the nearby 
gauges or consecutive time intervals to obtain spatially 
averaged estimates or temporally averaged estimates, 
where the extent of averaging (or the number of units 
averaged) is the same. 

(c) Subsequently, the averaged estimates are used 
in the FSE analysis. 

Figures 7 and 8 show that the FSE of rainfall for the 
various algorithms as a function of the number of units 
of temporal and spatial averaging, respectively. For ex­
ample, n units of spatial averaging correspond to n rain 
gauges nearby, whereas the same n units of temporal 
averaging correspond to consecutive averaging over n 
rain gauge measurements, where each rain gauge esti­
mate is an accumulation over 15 min. The radar rainfall 
estimates and rain gauge data were averaged in iden-
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FIG. 6. Location of small basin. 

tical ways. Figure 7 shows the FSE results of the five 
rainfall algorithms as a function of the number of units 
of temporal averaging. The various algorithms are as 
follows: (i) RMP the Marshall and Palmer algorithm 
(10), (ii) RoR algorithm from (8), (iii) RZH algorithm 
from (9), (iv) RZH(CDF) algorithm from ( 12) and, (v) 
RoR(CDF) algorithm from (13). It can be seen from 
the results of Fig. 7 that the algorithm RoR performs 
better than R28 and RMP. In addition the R28 ( CDF) per­
forms as well as RoR· However, RoR(CDF) performs 
the best among the five algorithms. It should be noted 
here that the analysis in this section involves only the 
data from a smaller basin and, therefore, the analysis 
does not use the exact dataset that was used to obtain 
the CDF matching. One observation that can be made 
from these error quantities is that in a routine opera­
tional scenario, RvR does not perform significantly bet­
ter than the best Z-R relation. However, without 
knowledge of the best Z-R relation to use, RvR still 
outperforms an arbitrary Z-R relation. Figure 8 shows 
results similar to Fig. 7 except that the averaging is in 
spatial domain. Figure 8 shows the FSE of the five al­
gorithms, namely, RMP• RZH, R0 R, RZH(CDF), and 
RvR(CDF) with respect to units of spatial averaging. 
The comparison between the five algorithms is similar 
to that of Fig. 7. From the above discussion, the com­
parison of different algorithms with respect to spatial 
or temporal averaging can be studied; it should be noted 
here that there is no relation between the units of spatial 
and temporal averaging. A comparison of the same al­
gorithm between Figs. 7 and 8 shows that the FSE de­
creases more sharply with temporal averaging in com­
parison to spatial averaging. This result is due to the 
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difference between the correlation structure of rainfall 
in space and in time. 

In the following the FSE from the two averaging 
procedures is stratified with respect to the cumulative 
rainfall estimates for the five algorithms, thereby pro­
viding a common basis for comparison. The FSE of 
rainfall can be studied as a function of the total rainfall 
in two ways, namely: (a) via spatial averaging, and (b) 
via temporal averaging. Figure 9 shows the FSE of the 
five algorithms as a function of rainfall amounts, for 
temporal averaging estimates, whereas Fig. 10 shows 
the same five algorithms as a function of the total rain­
fall amounts obtained with spatial averaging estimates. 
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R0 R(CDF) shown as a function of rainfall accumulation. 

It should be noted here that Figs. 9 and 10 were also 
constructed using data from the small basin only. The 
intercomparison of the algorithms for each case is sim­
ilar to those of Figs. 7 and 8. With this stratification, it 
appears that the errors decrease with rainfall amounts, 
and the error levels are comparable for the same rainfall 
amount irrespective of the averaging process (spatial 
or temporal) . 

7. Summary and conclusions 

One of the first datasets of its kind, namely, opera­
tional monitoring by a dual-polarization radar at C band 
over a rain gauge network, is presented here. The ap­
plicability of dual-polarization (ZoR)-based rainfall al­
gorithms in an operational setting is studied. The re­
flectivity and differential reflectivity measurements 
from Polar 55C are utilized to obtain estimates of rain­
fall amounts for an intense precipitation event over the 
Arno River basin that lasted for a couple of days. The 
radar was operating in an environment with ground­
clutter contamination. Since the operating frequency 
was in C band, there was also attenuation of the radar 
signal. The radar data was collected in full 360° PPis 
at routine intervals. Data collected in the above mode 
was analyzed in two ways, namely: 

(a) pointwise comparison of radar and rain gauge 
estimates, 

(b) statistical comparison via probability matching 
procedure. 

Conventionally, multiparameter radar estimates of 
rainfall have taken the first approach, and the second 
approach has used only reflectivity. In this paper mul­
tiparameter radar data are utilized both ways to study 
the comparison of radar and rain gauge measurements 

of rainfall estimates. The fractional standard error de­
fined in the paper was utilized as a quantitative measure 
of the error in the discrepancy between the radar and 
rain gauge estimates. Pointwise comparison over the 
entire event showed that the RMP had a FSE of 84% 
and the RZH algorithm described in our paper had an 
FSE of 64% and the Z0 R-based RoR algorithm had a 
FSE of 59%. 

The experimental CDF obtained from the radar and 
the rain gauge network were analyzed and compared. 
This analysis showed that the Marshall-Palmer algo­
rithm RMP and RZH have SSE of 930 and 317, respec­
tively, whereas the multiparameter rainfall algorithm 
using ZoR has a SSE of 253. Subsequently parameter­
izations for the Z-R and RoR relations were obtained 
under the criterion that the sum square error between 
the experimental CDF of rainfall obtained from radar 
and the rain gauge is minimized. This evaluation 
showed that RoR can be parameterized to match the rain 
gauge CDF better than Z-R relation. This indicates that 
polarization diversity radar measurements can be used 
successfully in a statistical framework. The RoR(CDF) 
algorithm was also used in pointwise comparison that 
gives an FSE of 53%. 

Averaging in time and/ or space is a very commonly 
used procedure to reduce the discrepancy between ra­
dar and rain gauge measurement. The behavior of the 
fractional standard error as a function of the amount of 
averaging done in space and time is analyzed, based on 
pointwise comparison between radar and rain gauges 
over a smaller area in the basin. For both spatial aver­
ages as well as temporal averages the FSE of rainfall 
decreased steadily as the amount of averaging is in­
creased. Based on the comparison of the algorithms 
over the two types of averages, we can conclude that 
(i) RoR performs better than RMP and RzH, (ii) the best 
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FIG. 10. Fractional standard error of the rainfall obtained integrat­
ing over space for the five algorithms RMP• RzH• RoR• Rm(CDF), and 
R0 R(CDF) shown as a function of rainfall accumulation. 
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Z-R tuned to the data based on CDF matching algo­
rithm performs as well as the theoretical (ad hoc) RoR 
algorithm, and (iii) the CDF-matched RoR algorithms 
perfonn the best among the five algorithms studied. 
Therefore, on the basis of FSE, SSE, of CDF matching 
as well as space-time averaging, it appears that in an 
operational environment with ground-clutter contami­
nation as well as attenuation problems, RoR cannot per­
form much better than the best possible RZH. However, 
without knowledge of the best Z-R relation to use 
(which may change from storm to storm and region of 
observation), RnR performs better than an arbitrary Z­
R relation. 
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APPENDIX 

Attenuation Correction Procedure 

Reflectivity measurements at C band are signifi­
cantly affected by the attenuation of radar signals prop­
agating through the precipitation that exists between 
the radar and the measurement cell. Differential reflec­
tivity measurements at C band are similarly affected by 
the differential attenuation between the horizontal and 
vertical polarization due to the propagation through the 
same precipitation path. The absolute specific attenu­
ation AH and the specific differential attenuation An be­
tween the two polarizations are related to RSD as fol­
lows ( Bringi et al. 1990): 

AH,v = 4.343 X w-3 Im f' !H,vN(D)dD (AI) 

(A2) 

where !H,v are the forward-scattering amplitudes at the 
two polarization states. Using nonlinear regression 
analysis, AH and An can be estimated by means the radar 
observables ZH and ZnR as 

AH = a,Z ~?lO"'zoR 

An = f3,Z _e210~,zoR. 

(A3) 

(A4) 

The coefficients a 1 , a 2 , a 3 , (3" (32 , and (33 can vary 
with temperature, but not extensively. Based on the en-

vironmental conditions, we have used the parameter­
ization at 1 0°C. The corresponding coefficients are as 
follows: 

a,= 6.31 X 10-6
, a2 = 0.97, a3 = -0.104 

(3, = 5.86 x w-7, fJ2 = 1.02, f33 = -o.o3o. 

Using a cumulative correction scheme, the corrected 
value of horizontal reflectivity on decibel scale and dif­
ferential reflectivity at the nth range gate can be esti­
mated as 

n-1 

(ZH)n = czy;eas)n + L (AH);L1r (AS) 
i=l 

n-1 

(ZnR)n = (Z 'ERas)n + L (An);L1r, (A6) 
i=l 

where L1r is the length (km) of a range gate, AH and 
An are determined from (A3) and (A4), respectively. 
It should be here noted that some calibration errors in 
reflectivity factor can drastically deteriorate the esti­
mates corrected for attenuation. 
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