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Abstract

An Algorithm for Modular Decomposition Based on Multiplexes

Modular decomposition is instrumental in the the design of algorithms for solving many

important graph theory problems. It has been applied towards developing recognition algo-

rithms for many important perfect graph families. It also forms the basis of a number of

efficient algorithms for solving combinatorial optimization problems on graphs. There are

a number of efficient algorithms proposed in literature for computing the modular decom-

position. Here we explore an O(n3) modular decomposition algorithm based on the theory

of transitive orientation. The algorithm highlights how the problem of finding a transitive

orientation is intimately related to that of finding the modular decomposition.
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CHAPTER 1

Introduction

A module is a set X of vertices of a graph G = (V,E) where every vertex in X has

identical neighbors in the set V \X. That is for each y ∈ V \X, y is either adjacent to every

member of X or to none. As an example, in figure 1.1 the vertex set {2, 3} is a module. The

set V and its all one element subsets are called trivial modules of G. A graph that only has

trivial modules is called prime.

Consider two disjoint modules X and Y , we claim that either all elements of X are

adjacent to all elements of Y , or no element of X is adjacent to any element of Y . If no

member of X is adjacent to any member of Y , then the claim is true. Alternatively suppose

x ∈ X has a neighbor y ∈ Y , then as X is a module, all elements of X are adjacent to y.

Furthermore, as Y is a module, every vertex of Y is adjacent to every vertex of X.

We can thus describe the relationship between two disjoint modules by saying that the

two modules are either neighbors or non-neighbors. Let a modular partition be a partition of

the vertices of a graph such that every partition class is a module. For a modular partition P
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(b)(a)

Figure 1.1. (a) Graph G with the modules color coded (b) The corresponding
quotient graph G/P
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the relationships between the partition classes define a quotient graph denoted G/P , whose

vertices are members of P and whose edges describe the neighbor and non-neighbor relations

between the members of P . Figure 1.1 (a)shows a graph G with vertices color coded, where

vertices of the same color belong to the same partition class and (b) shows its corresponding

quotient graph.

From the definition of a module it follows that each connected component of a graph

is a module. The quotient defined by a modular partition P , such that every member of

P is a connected component is an independent graph. Further, every union of connected

components of a graph is also a module. Also observe that a module in the graph complement

Ḡ is also a module in the graph G, and conversely a module in G is a module in Ḡ, hence

the operation of taking complement is module invariant. If P is a modular partition of the

vertices of G, such that every member of P is a connected component in Ḡ, then G/P is a

complete graph.

The quotient graph captures the adjacencies between the members of a modular partition

P . As a module may contain another module, partition classes of P may be recursively

decomposed further into modules and quotients. There are many possible ways to do this.

The modular decomposition is a unique canonical way to decompose a graph which subsumes

all others.

In optimization theory, a large number of scheduling problems are often modeled as graph

coloring problems. A graph coloring is simply an assignment of colors to vertices, such that

no two adjacent vertices have the same colors. The lower bound on the number of colors

needed is defined as the chromatic number of the graph. For example, in the graph shown in

figure 1.2, the chromatic number is 3. Observe that a complete graph G with n vertices has

2
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Figure 1.2. A graph with chromatic number 3

chromatic number n. A clique is a set of vertices in a graph such that every pair of vertices

in the set are connected by an edge. For any graph G, it must be the case that the chromatic

number is greater than or equal to the size of the largest clique of graph G. The size of the

largest clique is termed as the clique number. Perfect graphs [1] are a special graph class

where the chromatic number is exactly equal to the clique number. Perfect graphs were

introduced by Berge in the 1960s. These graphs have nice algorithmic properties. A number

of NP-hard optimization problems such as maximum stable set, maximum clique, minimum

coloring and minimum clique cover on general graphs can be solved in polynomial time for

perfect graphs. This theoretical result was first shown in a paper [2] by Grotschel, Lovasz

and Schrijver. Since then, many algorithms which use modular decomposition as a first step

to solve these problems on perfect graphs in linear time have been proposed in literature.

Modular decomposition is also an important ingredient of many recognition algorithms

for certain classes of perfect graphs. The general strategy adopted by algorithms based on

modular decomposition is to recursively decompose the given graph into subgraphs until no

further decompositions are possible on the obtained graphs. These graphs are prime. Then

the problem is solved on the prime graphs, and these partial solutions are then combined

recursively to find the solution for the input graph. This approach was pivotal to the design of

linear time recognition algorithms for comparability graphs, permutation graphs and interval

graphs.
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It is not surprising then that the problem of computing the modular decomposition of a

graph has received considerable attention. The theory of modular decomposition was first

described in a paper by Gallei. Since then a number of algorithms with different complex-

ities have been proposed for computing the modular decomposition. The first linear time

algorithm was developed by McConnell and Spinrad in 1994 [3]. Here in this report we ex-

plore an O(n3) modular decomposition algorithm based on a theory of transitive orientation

developed by Golumbic. [4].

The paper is organized as follows. Section 2 presents general graph theory preliminaries

and notation. This is followed by a review of the theories of modular decomposition and

transitive orientation. The next section details the relationship between transitive orienta-

tion graph classes and modules. These results lead to an efficient modular decomposition

algorithm. We end by describing a modular decomposition based recognition algorithm for

interval graphs.
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CHAPTER 2

Preliminaries

Let us recall some of the formal definitions in graph theory.

A directed graph G is a nonempty set of vertices and edges, formally described as an

ordered pair (V,E), where V or V (G) is a finite set and E or E(G) is a subset of V × V .

If (u, v) is an edge, then v is adjacent to u, and a neighbor of u. The set of vertices which

are adjacent to a vertex u denoted N(u) form the open neighborhood of u. The closed

neighborhood of u denoted N [u] is given as the set u ∪N(u). If (u, v) is an edge, then (u, v)

is incident to u and v.

An undirected graph is the special case of a symmetric directed graph, that is, where

(v, u) ∈ E whenever (u, v) ∈ E. An undirected edge is the pair {(u, v), (v, u)}; this is

denoted ûv.

The degree of a vertex v represented deg(v) is the number of graph edges incident to v.

An oriented graph is a directed graph having no symmetric pair of directed edges.

An orientation of an undirected graph G is an assignment of exactly one direction to

each of the edges of G.

Except when otherwise stated, we will henceforth assume that a graph is undirected.

1 2

34

5

6 7

Figure 2.1. A graph G(V,E) V = {1, 2, 3, 4, 5, 6, 7} E =
{1̂2, 1̂3, 1̂4, 1̂5, 1̂6, 1̂7, 2̂3, 3̂4, 4̂5, 5̂6, 6̂7, 7̂2, 3̂7}
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(c)

Figure 2.2. (b) is a sub-graph and (c) is an induced sub-graph of the graph
shown in (a)

For a graph G(V,E), a sub-graph is a graph H(V’,E’) with V’ a nonempty subset of V

and E’ a subset of E ∩ (V ′ × V ′). For nonempty V ′ ⊆ V , the sub-graph G[V ′] of G induced

by V ′ is the graph (V ′, E ′) such that, for any u, v ∈ V ′, (u,v) belongs to E’ iff (u,v) belongs

to E. Induced sub-graphs can be obtained by deleting vertices and all the incident edges

from G.

A subset A A ⊆ V is a clique if it induces a complete subgraph. A set defined with

respect to some property is maximal if it is not contained in a larger set satisfying the

property, for example a maximal clique is a clique that is not a subset of a larger clique. A

maximum clique of graph G is a clique of maximum possible size for G. A maximum clique

is a maximal clique, but the converse is not always true.

A clique cover of size k is a partition of the vertices V = A1+A2+ ..+Ak such that each

Ai is a clique. The size of the smallest possible clique cover of G is called the clique cover

number of G.

An independent set is a subset A of the vertices V of a graph such that no two vertices

in A are adjacent.

6



A sequence of distinct vertices [v0, v1, v2, v3, .., vk] is a path from v0 to vk provided that

ˆvi−1vi ∈ E for i = 1, 2, ....k

A sequence of vertices [v0, v1, v2, v3, .., vk, v0] is a cycle provided that v0, v1, v2, v3, .., vk are

distinct, ˆvi−1vi ∈ E for i = 1, 2, ....k and ˆvkv0 ∈ E

Finally, A predicate P about G is hereditary if P holds true for G and every induced

subgraph of G.
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CHAPTER 3

Modular Decomposition

Definition 3.0.1. Given graph G(V,E). For U ⊆ V , a vertex {v|v ∈ V and v 6∈ U}

distinguishes U if it has both a neighbor and a non neighbor in U . A module in a graph is

a non-empty subset of vertices not distinguished by any vertex.

Definition 3.0.2. A graph in which every module is trivial is called prime.

Definition 3.0.3. Two sets overlap if they have a non-empty intersection but neither is

a subset of the other.

Lemma 3.0.1. if M and M ′ are overlapping modules of a graph G, then the following are

also modules of G.

(1) M ∩M ′

(2) M ∪M ′

(3) M△M ′

(4) M \M ′
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Figure 3.1. A graph with the modules color coded
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(5) M ′ \M

Proof. (1) Let x be a vertex outside M . As M is a module, x does not distinguish

M and hence does not distinguish M ∩M ′. Similarly, as M ′ is a module, no vertex

outside M ′ distinguishes M ∩M ′.

(2) Let x be a vertex outside M ∪M ′. Further, suppose x is adjacent some vertex in

M . Since M is a module, x is adjacent to all vertices in M . This implies that x

is adjacent to at least some vertices in M ′. As M ′ is a module, this implies that x

is adjacent all elements in M ′. Similarly we can reason that if x is not adjacent to

any members of M , then it is not adjacent to any vertex in M ′ as well.

(3) No vertex outside M ∪M ′ distinguishes M△M ′. Suppose no vertex in M ∩M ′ is

adjacent to any vertex in M△M ′, then the claim is true. Alternatively, if vertex

x ∈ M ∩M ′ is adjacent to some vertex in M△M ′, then without loss of generality,

assume this vertex v is in M \M ′. As M ′ is a module, v is adjacent to all members

of M ′. Next, since M is a module, all vertices of M ′ \M are adjacent to all vertices

in M . Similarly, we can conclude that all vertices of M \M ′ are adjacent to all

vertices in M ′. Hence, no vertex in M ∩M ′ distinguishes M△M ′.

(4) M△M ′ and M are two modules which overlap, hence their intersection which is

M \M ′ is also a module.

(5) By symmetry.

�

Consider a modular partition {X1, . . . , Xk} of a graph G. The induced subgraphs of each

partition class Xi are called factors. Any induced subgraph of a set of vertices obtained

by selecting any one vertex per partition class, is isomorphic to G/P . Hence, the quotient

9



graph specifies all the edges of G which do not have both ends in a partition class. Thus,the

quotient graph along with the factors are a complete specification of G.

Lemma 3.0.2 ([5]). If X is a module of G, then the modules of G that are subsets of X

are the modules of G/X.

Lemma 3.0.3 ([5]). Let P be a modular partition of a graph G. Then X ⊆ P is a module

of G/P iff ∪M∈XM is a module of G.

Definition 3.0.4. A module U in G is proper if U 6= V (G). A module M is called a

strong module, if for any module M ′ 6= M of G, either M ′∩M = ∅ or one module is included

into the other.

Although the number of modules of a graph can be exponential, the number of strong

modules is O(n). One strong module may be contained in another, and the order of the

strong modules with respect to set inclusion forms the modular decomposition tree T . The

root of the tree is V , and the leaves are the single element subsets of V . Every other strong

module is the least common ancestor of its one element subsets. Let us call any module of a

graph G which is not strong, a weak module of G. As the strong modules do not overlap any

other modules, it follows that every weak module in the graph is a union of siblings in the

T . However, the tree described so far does not specify all the modules of G. The following

theorem describes a labeling scheme for the tree, which then allows one to determine all

modules of G from T.

Theorem 3.0.4. There is a labeling of each strong module in the modular decomposition

tree as degenerate or prime such that Y ∈ X is a module if and only if it is either a strong

module or a union of children of a strong module that is labeled degenerate.

10



The next is the modular decomposition theorem, which describes the structure of the

modular decomposition of G.

Theorem 3.0.5. [6] For any graph G one of the following three cases must occur.

(1) G is disconnected, with components G1, G2, ....., Gk. Each union of the sets V (Gi) is

a module of G, and the other modules of G are precisely all the modules of individual

components of Gi.

(2) The complement of G is disconnected, with components H1, H2, ....., Hl. Each union

of the sets V (Hj) is a module of G, and the other modules of G are precisely all the

modules of individual subgraphs H̄j.

(3) Both G and its complement are connected. There is a partition S1, S2, ....., Sr of

V (G)(which can be computed in linear time), such that all the modules of G are

precisely all the modules of individual subgraphs induced by the sets St, t = 1, ....,

plus the module V (G).

The theorem leads to the following recursive algorithm for computing the modular de-

composition tree of a graph.

Algorithm 1 Recursive Modular Decomposition

1: procedure MD(G)
2: If G has one vertex, v, then return v.
3: Let r be a new internal node in the modular decomposition tree representing G.
4: If G is disconnected, then for each connected component, C, make MD(C), a child of

r. Finally mark r as degenerate.
5: Else if the complement of G is disconnected, then for every connected component of

the complement, C, make MD(C), the child of r. Finally mark r as degenerate.
6: Else for every maximal module X, make MD(G[X]) a child of r. Finally mark r as

prime.
7: return r.

11



{1 2 3 4 5 6 7 8 9 10 11}(P)

{8 9 10 11}(P)

{11}{10}{9}{8}

{5 6 7}(D)

{7}{6}{5}

{4}{2 3}(D)

{3}{2}

{1}

Figure 3.2. The modular decomposition tree of graph shown in figure 3.1.
The nodes are labeled prime(P) and degenerate(D). Every node of the tree
and every union of children of a degenerate node is a module.

Lemma 3.0.6. If G and its complement are both connected, then the maximal modules,

induce a partition of the vertices of G, hence the modular decomposition tree is well defined

and unique.

Consider a node t of the modular decomposition tree , and let M(t) be the module

corresponding to t. We denote by G(t) the quotient graph of all the children of t.

Lemma 3.0.7. Let G be a graph, T (G) its modular decomposition tree. Then for any

internal node t that belongs to T (G), G(t) is an edgeless graph or a complete graph if t is a

degenerate node, and is a prime graph if t is a prime node.

Proof. The first case is trivial. For the third, as U is a prime node, the children are all

maximal modules and this partition is unique. Therefore, the modules in the quotient are

all singletons. �

Given the modular decomposition tree for a graph G and the set of quotient graphs for

the nodes, G can be reconstructed inductively by reconstructing the factors from the bottom

up, combining factors with the quotient at each level.
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CHAPTER 4

Transitive Orientation Theory

An orientation (V, F ) obtained by assigning directions to each edge of an undirected

graph is transitive if:

xy ∈ F and yz ∈ F implies xz ∈ F

Let us try to realize a transitive orientation of the four cycle shown in figure 4.1.

Arbitrarily orienting the edge {a, b} from a to b forces us to orient edge {b, c} from c to b

and edge {a, d} from a to d. Gallai formalized this idea by defining the Γ relation. We next

review the formal model of transitive orientation developed by Golumbic [4].

Definition 4.0.5. The binary relation Γ is defined on the edges of an undirected graph

G(V,E) as follows: ab Γ a′b′ iff either a = a′ and bb′ 6∈ E, or b = b′ and aa′ 6∈ E. This

relation is symmetric and reflexive. The equivalent classes of its transitive closure Γ∗ are

called implication classes and form a partition of the edges.

Lemma 4.0.8. Two edges are in the same equivalence class if ab Γ∗ cd, and hence there

exists a Γ chain from ab to cd of the form ab = a0b0Γa1b1Γ..Γakbk = cd

a d

cb

Figure 4.1. A four cycle
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Let ab denote a directed edge and âb denote an undirected edge. For an edge ab, edge ba

is called the inverse edge. A set of directed edges I−1 is the inverse of a set I iff for any edge

ab ∈ I, ba ∈ I−1. If I is an implication class then so is I−1. The set Î = I∪ I−1 is known as

a color class.

Lemma 4.0.9. Denote I[G] as the collection of all implication classes of G. For I ∈ I[G],

we have either I ∩ I−1 = ∅ or I = I−1 = Î

For example in the graph shown in figure 4.2 we have,

I1 = {12, 13} I−1
1 = {21, 31}

I2 = {14, 24, 34, 54, 56, 57} I−1
2 = {41, 42, 43, 45, 65, 75}

I3 = {67} I−1
3 = {76}

For the example in the graph shown in figure 4.3 we have,

I = I−1 = Î = {12, 23, 34, 45, 51, 21, 32, 43, 54, 15}

Definition 4.0.6. G(V,E) be an undirected graph. A complete subgraph (Vs, S) on

r + 1 vertices is called a simplex of rank r if each undirected edge of S is contained in a

different color class of G. The multiplex generated by a simplex S of rank r is defined to be

the undirected subgraph (Vm,M) with M = ∪C where the union is over all color classes C

satisfying C ∩ S 6= ∅.

14
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Figure 4.2. Graph G
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Figure 4.3. A five cycle

Lemma 4.0.10 ([4]). A multiplex M is maximal iff the simplex S generating M is a

maximal simplex.

Theorem 4.0.11 ([4]). If M1 and M2 are maximal multiplexes of an undirected graph G,

then either M1 ∩M2 = ∅ or M1 = M2

Theorem 4.0.12 ([4]). Let G(V,E) be an undirected graph and let E = M1 +M2 +Mk,

where each Mi is a maximal multiplex .

(1) If F is a transitive orientation of G, then F ∩Mi is a transitive orientation of Mi.

(2) If F1, ., Fk are transitive orientations of M1, .,Mk respectively, then F1+F2+ ...+Fk

is a transitive orientation of G.

The above theorem states that the maximal multiplexes partition the edges and act

independently with respect to transitive orientation.

15



CHAPTER 5

Modular Decomposition Algorithm

First we consider the problem of listing all the maximal multiplexes of an undirected

graph G. Assume G contains a tri-colored triangle T .

Lemma 5.0.13 ([4]). Let(Vs,S) be a simplex of an undirected graph G = (V,E) generating

a multiplex M . If G contains a tri-colored triangle on vertices a,b,c such that ab 6∈ M but bc

∈M , then we may adjoin the vertex a to (Vs,S) to obtain the larger simplex (Vt,T ) containing

(Vs,S), where Vt = Vs ∪ {a}, T = S ∪ {âd‖d ∈ Vs}

Let us say that any two edges are cousins of each other if they are in the same color

class. By lemma 5.0.12 all three edges of T must be in the same maximal multiplex and

must have cousins in any simplex generating this maximal multiplex M.

Theorem 5.0.14 (Golumbic 1977). Let S be a simplex contained in a multiplex M . There

exists a simplex Sm generating M such that S ⊆ Sm.

Proof. Now if S is of the same rank as the multiplex, then the claim is true. Suppose

the theorem is true for all simplex with rank greater than S’s rank. Let V be the multiplex

generated by S. Further, let U be any simplex generating M . All edges of S have cousins in

U. Thus we have V ⊆ M . Since U is connected, there exists a tri-colored triangle abc in U

where ab ∈ V and bc /∈ V , thus by lemma 5.0.12 S can be extended to obtain a simplex T

of rank = rank S + 1. Then by induction we have the result that there exists a simplex Sm

generating M such that S ⊆ Sm. �
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This theorem implies that T itself is a part of some simplex generating M . Let us call

this simplex St. Suppose another tri-colored triangle T1 is contained in G where at least

one of the edges of T1 has the same color class as an edge of T . Again by the appplication

of lemma 5.0.12, we can see that T1 is also contained in M . Further, all edges of T1 have

cousins in St. Thus it can be seen, that all triangles with intersecting color classes must be

contained in the same maximal multiplex, and hence their edges must have cousins in any

simplex generating this multiplex. The algorithm proceeds by computing the color class for

each edge of graph G. Then we detect all the tri-colored triangles. Finally we compute the

unions of color classes of all intersecting tri-colored triangles. Each union determines the

color classes of all the edges of a simplex generating a maximal multiplex. The remaining

color classes (whose edges are not in any tri-colored triangle) are each in a multiplex of rank

1.

Consider an undirected graph G with n vertices and m edges (each symmetric pair of

edges is counted as one). A naive algorithm with running time O(n3) may be implemented

for listing all the triangles of G. However, let us work on getting a tighter bound. We claim

that the number of triangles in any graph is O(m

3

2 ). To see this, consider the following

argument. Let the big neighbors of a vertex v be the neighbors whose degrees are at least as

large as v’s, and let the big degree of v be the number of big neighbors of v.

Since the sum of the degrees of all the vertices of any graph is 2m, for the case where a

vertex v of a graph has k big neighbors , we get the inequality:

k.k <= 2m(1)

k = O(m

1

2 )(2)
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For each triangle of G, choose a vertex of maximum degree in the triangle and charge the

triangle to the opposite edge. This implies that each edge is charged O(m

1

2 ) times. Next

there beingm edges each charged O(m

1

2 ) times, we can conclude that the number of triangles

in a graph is O(m

3

2 ). Working on similar lines, Thomas Schank developed algorithm Forward

[7] with running time O(m

3

2 ) for listing all the triangles in a graph. The algorithm accepts

as input a list of vertices ordered by degree. Since the degree of each vertex lies between 0

and n− 1, radix sort may be used to order the vertices in O(n) time.

Algorithm 2 Algorithm Forward

Input: ordered list (high degree first) of vertices (1,...,n); Adjacencies Adj(v)

1: for v ∈ V do

2: A(v)← ∅

3: for s ∈ (1, ......, n) do
4: for t ∈ Adj(s) do
5: if s < t then
6: for all v ∈ A(s) ∩ A(t) do
7: Output triangle {v, s, t}

8: A(t)← A(t) ∪ s;

Borrowing ideas from algorithm Forward, we develop an algorithm Implication Classes

to list all the implication classes of an undirected graph also in O(m

3

2 ) time. The algorithm

constructs the Γ graph X of G, whose vertices are the edges of graph G, and two vertices x

and y of X are connected by an edge iff xΓy in G. Note that in the algorithm we assume

that it takes O(1) time to tell whether there is an edge between two vertices of G.

Theorem 5.0.15. The connected components of graph X output by algorithm Implication

Classes represent the implication classes of the input undirected graph.
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Algorithm 3 Algorithm Implication Classes

Input: ordered list (high degree first) of vertices (1,...,n); Adjacencies Adj(v)
Empty Γ graph X;

Output: Graph X with edges set;

1: for s ∈ (1, ......, n) do
2: for t ∈ Adj(s) do
3: Add node st to X
4: for v ∈ V do

5: A(v)← ∅

6: for s ∈ (1, ......, n) do
7: for t ∈ Adj(s) do
8: if s < t then
9: for all v ∈ A(s)△A(t) do
10: if v is adjacent to s then
11: Add edges vs-ts and sv-st to X
12: else

13: Add edges vt-st and ts-tv to X

14: A(t)← A(t) ∪ s;

Once we have the triangles list of G, with each edge color coded, the list can be traversed

to detect all tri-colored triangles. The algorithm Multiplex with O(m

3

2 ) running time com-

putes the maximal multiplexes of G , when given as input the list of tri-colored triangles of

G.

Algorithm 4 Algorithm Multiplex

Input: List of tri-colored triangles (L) of an undirected graph G
L = xiyjzk where1 ≤ (xi, yj, zk) ≤ k ;(G has k color classes)

Graph C with nodes (1,...,k) and no edges;
Output: Graph C with edges set;

1: for all xyz ∈ L do

2: create edges xy, yz, zx in C if they do not exist

Theorem 5.0.16. The connected components of graph C outputted by algorithm multiplex

represent the maximal multiplexes of the input undirected graph G.
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5.1. Computing the Modular Decomposition from the Maximal Multiplexes

Let us begin to explore the relationship between modules and multiplexes. For a set of

edges C, define the vertex set of C, denoted VC , as the union of all the endpoints of all the

edges in C.

Lemma 5.1.1. The vertex set of each color class in a graph is a module.

Proof. Consider a color class C. Suppose VC is not a module. Then there is a vertex

v /∈ VC which distinguishes VC . Let x ∈ VC be a vertex which is adjacent to v and y ∈ VC

be a vertex not adjacent to v. As a color classes is connected, there is a path from y to x of

size n ≥ 2. Denote this path as {i1, ..., in}. Suppose ik is the first vertex in the path which

is a neighbor of v, then we have ikik−1Γikv, which implies that v ∈ VC . Hence we arrive at

a contradiction. �

Lemma 5.1.2. If both end points of an undirected edge in color class C are inside a

module M , then VC ⊆M .

Proof. Suppose there is a vertex v such that v ∈ VC and v /∈M . Then v distinguishes

M , a contradiction. �

Lemma 5.1.3. For all maximal multiplex M, VM is a strong module.

Proof. Suppose this is not the case then consider a maximal multiplex M1 whose vertex

set overlaps a module M . It is easy to see that VM1
is a module and that there is a tri-

colored triangle, with a vertex in VM1
\M , a vertex in M \ VM1

and a vertex in VM1
∩ VM .

Furthermore, this triangle has a side in M1 and a side not in M1, which then implies that

M1 is not maximal, which is contrary to our assumption. �
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Lemma 5.1.4. Let M be a strong module and âb be an undirected edge such that a, b ∈M .

if M is the maximal multiplex containing âb, then VM ⊆M .

Morvan et al.[8] develop these ideas and also present the following theorem.

Theorem 5.1.5. The canonical decomposition tree of any undirected graph G = (V,E)

verifies the following properties.

(1) Every non parallel interior node is a strong module VM where M is a maximal

multiplex.

(2) A node corresponding to a module M is an ancestor of a node corresponding to a

module N if and only if M covers N, or equivalently VN ⊆ VM .

The preceding theorem implies that for any undirected graph G, the list of maximal

multiplexes of G and the list of maximal multiplexes of the graph complement Ḡ can be

used to construct the modular decomposition of G. The maximal multiplexes of G may be

determined using the algorithm Multiplex. For finding the maximal multiplexes of Ḡ, a

simple O(nm) algorithm may be devised to first compute the implication classes of the Γ

relation of Ḡ. For each edge in G, we find a list L of vertices not adjacent to either of the

end points of the edge. For an edge âb and a vertex v in L, avΓbv and vaΓvb in Ḡ. After

the maximal multiplexes for G and the complement graph have been determined, it is fairly

simple to compute an ordering of the strong modules with respect to set inclusion in O(n3)

running time, which then leads to the modular decomposition algorithm.
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CHAPTER 6

Interval Graph Recognition

Interval graphs arise in modeling overlapping intervals of a line. Each interval is repre-

sented as a vertex in the graph and two vertices are adjacent if the corresponding intervals

overlap. Here we consider the problem of recognizing interval graphs. First we look at

methods to solve the problem on prime interval graphs. Solution to a prime interval graph

can then be used to construct a solution to a general interval graph using the modular

decomposition tree as a guide.

In 1959, an American biologist Seymour Benzer was working on problems of genetic

structure, specifically he worked with mutations of a virus that infect bacteria. He looked

into a large number of mutated strains of a bacteriophage T4. Normally virus T4 kills

bacteria. However, mutated forms of T4 (where a continuous interval is deleted from an

important gene) are unable to kill the bacteria. Suppose a bacteria is infected with two

different mutants at the same time, the question then arises is whether the infected bacteria

will survive. Surprisingly, as Benzer observed, a pair of mutated strains were able to kill

the bacteria in some cases. The explanation was that in some cases these mutated strains

were able to recombine and produce as offspring, a non-mutated form of T4. He expressed

his observations in the form of a matrix, part of which is shown in the following figure.

The rows and columns labels are the different mutated strains. Matrix element value of

0 indicates that the corresponding mutants in the row,column were able to recombine to

produce undamaged offspring. He showed that a graph where each vertex is a mutant, and

where there is an edge between mutant pairs iff the corresponding row,col value is one, is an

interval graph. This gave strong support to the hypothesis that the genes are arranged in a
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Strain 184 215 250 C33

184 1 1 1 1
215 1 1 0 0
250 1 0 1 1
C33 1 0 1 1 250C33

184 215

Figure 6.1. A matrix representing a subset of Benzer’s data and the cor-
responding graph, whose vertices are viral strains and whose edges connect
strains that couldn’t recombine to produce undamaged offspring.

linear sequence on the chromosomes. If two mutants had overlapping intervals deleted, they

were unable to recombine and recover the entire undamaged genome, thus were not able to

kill the bacteria.

Many more applications of interval graphs have come up since then. These graphs have

been applied to solving problems in a variety of areas from biology to chip design. Here we

explore the problem of recognizing interval graphs. The algorithm for interval graph recog-

nition involves using the modular recognition procedure described in the previous sections.

Also here we explore relations between chordal graphs, which are an important graph class,

and interval graphs.

6.0.1. Preliminaries on Interval graphs and Chordal graphs.

Definition 6.0.1. A graph G = (V,E) is called an interval graph if there exists a set

Iv|v ∈ V of real intervals such that Iu ∩ Iv 6= ∅ if and only if (u, v) ∈ E. The set of intervals

is known as the interval model of graph G.

Definition 6.0.2. A simple Graph G is triangulated if every cycle of length greater

than three has an edge joining two non-consecutive vertices of the cycle. The edge is called

a chord, and triangulated graphs are also called chordal graphs.
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Figure 6.2. An interval graph and the corresponding interval model

Figure 6.3. A chordal graph.

We can see that chordal graphs are hereditary, as deleting some vertices of a chordal

graph still results in a graph which is triangulated.

Lemma 6.0.6. All Interval graphs are Chordal

Definition 6.0.3. A vertex v in graph G is called simplicial if and only if the subgraph

induced by N [v] is a complete graph. A graph of n vertices has a perfect elimination ordering

if and only if the vertices of G can be ordered {v1, v2, . . . , vn} such that each vertex vi is
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a b

c

d

e

Figure 6.4. {a, b, c, d, e} is a perfect elimination order

simplicial in the subgraph induced by {vi, . . . , vn} In figure 6.4 {a, b, c, d, e} is a perfect

elimination order for the graph.

Definition 6.0.4. For graph G(V,E), S ⊂ V is an a-b separator for nonadjacent vertices

a,b, if a and b are in distinct connected components of G[V − S]. An a-b separator S is

minimal for a,b if no proper subset of S is an a-b separator.

Theorem 6.0.7. Every minimal a-b separator of a chordal graph G induces a complete

subgraph of G.

Proof. Assume graph G(V,E) is chordal. If G is complete then the claim is true.

Alternatively, suppose S is a minimal x-y separator for two nonadjacent vertices x,y of G.

Let X and Y be the connected components of G[V − S] which contain x and y respectively.

Since S is minimal, every element of S has one neighbor in X and one neighbor in Y . Let

{a, b} be an arbitrary pair of vertices in S, paths Px from a to b with internal vertices in

X and Py from b to a with internal vertices in Y exist. Select the paths to be of minimum

length. Then the vertices of Px and Py forms a cycle whose length is greater than 3. As G

is chordal this cycle must have a chord. Consider an internal vertex of Px and an internal

vertex of Py. No edge exists between any such pair of vertices. Furthermore, as the path

lengths are the smallest, for Px no edge exists between the internal elements of this path
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that are not consecutive. Similar is the case for Py. Therefore, the only possible chord is the

edge {a, b}. This implies that there is an edge between any pair of vertices in S. �

Theorem 6.0.8. Every chordal graph G = (V,E) has a simplicial vertex. Moreover, if

G is not a clique then it has two nonadjacent simplicial vertices.

Proof. if G is complete then every vertex is simplicial. For the case when G is not

complete the proof follows by induction on the number of vertices. Let x, y be two non-

adjacent vertices of G. Suppose the theorem is true for all graphs with fewer vertices than

G. Then, let S be a minimal x-y separator of x and y. Let X and Y be the connected

components of G[V − S] which contain x and y respectively. By the inductive hypothesis,

either the induced subgraph G[X ∪S] has two nonadjacent simplicial vertices or G[X ∪S] is

a complete subgraph. If G[X ∪ S] is not a complete subgraph then one of the non adjacent

simplicial vertex must be in G[X] as G[S] is complete. A simplicial vertex of G[X ∪ S] is

also a simplicial vertex of G as G[X ∪ Y ∪ S] = G and there are no edges between elements

of X and Y . Similarly it can be shown that Y contains a simplicial vertex. Thus we have

the result that if G is chordal then either it has two non-adjacent simplicial vertices or it is

a complete graph. �

Theorem 6.0.9. A graph G is chordal if and only if G has a perfect vertex elimination

ordering.

Proof. Find a simplicial vertex x in G. By theorem 6.0.8 x must exist. Remove the

vertex from the graph and repeat the procedure until all the vertices are consumed. The

order in which the vertices were removed is the perfect elimination order. Conversely, let C

be a cycle of G and v be the vertex of C which is leftmost in the perfect elimination order.
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Since x has at least two neighbors in C, the eventual simpliciality of x guarantees a chord

in C. �

The number of maximal cliques in a graph is generally greater than O(n). Consider a

complete bipartite graph, which is a bipartite graph where every vertex of the first set is

connected to every vertex of the second set. It is easy to see that the number of maximal

cliques is O(n2) in such a graph. Similarly we can see that a complete tripartite graph

denoted Kr,s,t ,where r is the number of vertices in the first set, s is the number of vertices

in the second set and t the number of vertices in the third set, can have O(n3) cliques. A

complete multipartite graph K3,3,..., has 3
n maximal cliques. For the case of chordal graph,

let us establish an upper bound on the number of maximal cliques.

For a chordal graph G = (V,E), let X(v) denote all the neighbors of a vertex v ∈ V

which are to the right of it in a perfect elimination ordering. We claim that all maximal

cliques in a chordal graph are of the form {k ∪X(k)}. The set {k ∪X(k)} is a clique, this

is implied by the definition of a perfect elimination ordering. Further, if w is the leftmost

vertex of a maximal clique C, in the perfect elimination ordering, then C is of the form

w ∪ X(w). Thus, all the maximal cliques of G are included in the set {vi ∪ X(vi)} where

1 ≤ i ≤ n. This leads to the following result.

Proposition 6.0.10. Every chordal graph has at most n maximal cliques, where n is the

number of vertices in the graph.

6.0.2. Recognition of Interval graphs. We saw earlier that a chordal graph has

two non-adjacent simplicial vertices. Further, as chordal graphs are hereditary, it is possible

to make any vertex v as the last in a perfect elimination ordering. The algorithm is simple,

find a simplicial vertex which is not v, delete it and recurse on the updated graph. The
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Figure 6.5. The interval model is a collection of intervals which are subsets
of the real line. The intervals are shown one above another for clarity. Intervals
which form a maximal clique are marked by a dashed line.

algorithm described above is O(nm) as one must first find a simplicial vertex in each iteration.

Also note, that if G is a clique, then every possible ordering of the vertices is a perfect

elimination order. Many algorithms for computing a perfect elimination ordering of chordal

graphs in linear time have been devised. They exploit the fact that any vertex may be the

last vertex in a perfect elimination order, and proceed to construct the ordering in reverse.

The general strategy is to first select any vertex v and put it in position n in the order,

then select a neighbor of v and put it in position n− 1 and so on. Lex-BFS is a linear time

algorithm based on this strategy which was introduced by Rose and Tarjan in 1976 [9]. The

algorithm accepts a G(V,E) and a vertex v ∈ V as input and outputs a linear ordering of

the vertices. When the input graph is a chordal graph, the Lex-BFS ordering is in fact a

reversed perfect elimination ordering.

As seen in figure 6.5, all maximal cliques of an interval graph can be represented by

distinct points on the real line (the point where the dashed lines touch the real line). Thus,

interval graphs seem to have a natural ordering of the maximal cliques. This observation

motivated the following theorem by Gilmore and Hoffmann.
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Theorem 6.0.11. [10] An undirected graph G is an interval graph if and only if the

maximal cliques of G can be linearly ordered such that, for every vertex v in G, the maximal

cliques containing the vertex v occur consecutively.

Let us call such a linear ordering of the maximal cliques an interval ordering. Generally

an interval graph may have many interval orderings. However, prime interval graphs have a

unique interval ordering[11].

Definition 6.0.5. A maximal clique C is an outer clique if there is an interval ordering

of the maximal cliques such that C is either the first or the last clique.

Theorem 6.0.12. [12] Let G = (V,E) be an arbitrary graph with associated Lex-BFS

ordering λ = [v1, ...., vn], and let Gi denote the subgraph of G induced by Vi = (v1, ...., vi).

Then G is an interval graph iff, for each i = 1 . . . n−1, Gi is an interval graph and N(vi+1)∪vi

is contained in an outer clique of Gi. In this case, vi+1 is a simplicial vertex of Gi+1.

So the Lex-BFS traverses the maximal cliques of G in some order and stops with the

vertices from an outer clique. All the maximal cliques of a chordal graph can also be com-

puted with Lex-BFS in linear time. Given the set of maximal cliques and a vertex from an

outer clique, an algorithm developed by Hsu[11] may be used to find the interval ordering of

a prime interval graph in linear time.

Lemma 6.0.13. Let S be a module in a chordal graph G = (V,E). Either S is a clique

or N(S) is a clique.

Proof. Suppose neither S nor N(S) is a clique. Then S has two non adjacent vertices,

call them x, y. Similarly N(S) has two non adjacent vertices, call them a, b. We now see

that {x, a, y, b, x} is a four cycle with no chord, a contradiction. �

29



Moving on to the problem of identifying interval graphs. Consider a module S of a

chordal graph G. If we replace all the vertices of S by a single marker vertex Vs and set the

adjacencies of this vertex to be the adjacencies of any vertex in S, then the resultant graph

G2 is still an interval graph. Further, we can separately compute the interval model for S

and G2. To obtain an interval model of G, we can replace the interval of Vs with the interval

representation of S. This observation enables us to build an interval model for any interval

graph from its modular decomposition tree. We start with the modular decomposition tree.

First we find the interval models for all quotient graphs, for the prime case we use Hsu’s

algorithm. Then we combine these partial models and build the interval model in a bottom-

up fashion. This is a recurring theme seen in many graph algorithms. For example, a similar

approach has been used to find the transitive orientation of comparability graphs. First a

solution to the problem is designed for the prime case, then this solution is used to find a

solution to the general case using the modular decomposition tree as a guide.
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