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Abstract-Kinematically redundant manipulators, 
by definition, possess an infinite number of general­
ized inverse control strategies for solving the Jacobian 
equation. These control strategies are not, in gen­
eral, repeatable in the sense that closed trajectories 
for the end effector do not result in closed trajectories 
in the joint space. Two methods for generating control 
strategies which are repeatable are presented in this 
work. The first method, which requires one to solve 
a set of partial differential equations, may be difficult 
to apply to complicated manipulators thus motivating 
the second method, which assumes a certain form for 
the control strategies. Both of these methods result in 
a technique for designing a repeatable control which 
is nearest, in an integral norm sense, to a desired op­
timal control. The desired optimal control is allowed 
to take the form of any generalized inverse. An ex­
ample is presented for both methods which illustrates 
the capability of designing repeatable controls that ap­
proximate the behavior of desired optimal inverses in 
selected regions of the workspace. Finally a compari­
son of the two methods ls made by studying the results 
of an example simulation. 

I. INTRODUCTION 

Kinematically redundant manipulators are robotic 
systems which possess more degrees of freedom than are 
required to perform a specified task. For single arm ma­
nipulators the task is usually specified as a location or 
path for the end effector. A manipulator can be described 
by its kinematic equation 

x = f(O) (1) 

where X E /Rm represents the workspace position and/or 
orientation of the end effector and 0 E !Rn represents the 
manipulator's joint configuration. Thus m < n by defini­
tion for redundant manipulators. The Jacobian equation 
relates the joint velocities to the end effector velocities 
and is obtained by differentiating (1), resulting in 

(2) 
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Due to the extra degrees of freedom, redundant manipu­
lators possess an infinite number of local control schemes 
of the form 

(3) 

where JG = I (except at singularities of J or possibly G) 
in order to satisfy the constraint of a given end effector 
velocity. A popular local control scheme is pseudoinverse 
control due to its desirable minimum norm property. 

A generalized inverse control like the one given in 
(3) may not be repeatable in the sense that closed tra­
jectories in the workspace may not be mapped to closed 
trajectories in the joint space. Pseudoinverse control is 
no exception as Klein and Huang [2] have shown. When 
a cyclic task is performed using a nonrepeatable control, 
the joint angles of the manipulator do not necessarily re­
turn to their initial position. In other words, generalized 
inverse control of kinematically redundant manipulators 
may produce a drift in joint space when a cyclic task is 
performed in the workspace. This may pose a problem 
since the manipulator's behavior would be hard to pre­
dict without prior analysis. By using a repeatable control 
the setup time for a manipulator can be reduced for cyclic 
tasks since one would only need to check one cycle to see 
if the manipulator functioned as desired. 

Shamir and Yomdin [4] have developed an elegant 
test using Frobenius's theorem from differential geometry 
for determining whether or not an arbitrary inverse is re­
peatable in an open subset of the joint space. This test, 
called the Lie Bracket Condition (LBC), is formulated in 
terms of the Lie bracket of the columns of the inverse. The 
Lie bracket of two vectors u and v, where both vectors 
are functions of 0, is given by 

[u,v] = (:)u- (~;)v. (4) 

An inverse G is said to satisfy the LBC if the Lie bracket 
of any two columns of G is in the column space of G. For 
the special case of the pseudoinverse one need only apply 
the LBC to JT which greatly simplifies the computations 
required. 

The remainder of this paper is organized in the fol­
lowing manner: Section II presents two methods for gen­
erating repeatable solutions. After a class of repeatable 



solutions is found, a technique for determining the mem­
ber of this class which is nearest to a desired inverse in 
an integral norm sense is discussed. Section III then illus­
trates these two design techniques with a specific example. 
Simulation results are then presented in Section IV with 
conclusions appearing in Section V. 

II. A CLASS OF REPEATABLE INVERSES 

This section illustrates two methods for generating a 
class of repeatable solutions. These inverses, like the ex­
tended Jacobian [1], have foliations of stable surfaces and 
so are guaranteed to be repeatable. The inverses under 
consideration are generalized inverses like those described 
by (3). For a manipulator with a single degree of redun­
dancy, any of these inverses can be written in the form 

(5) 

where ftJ is the unit length null vector of the Jacobian 
J and w is a vector which uniquely determines G. This 
follows from the fact that J(G- J+) = [0]. From (5) it 
is easy to verify that 

(6) 

is a null vector of GT. 
In order to implement the first method for designing 

an optimal repeatable inverse it is necessary to determine 
a class of vector functions w which characterize a set of 
repeatable inverses. This can be done by determining a 
set of the w that satisfy the differential equations given 
by 

1 ~ i < j ~ m. (7) 

For three-link planar manipulators (7) simplifies to 

na · V x na = 0. (8) 

Equation (7), or (8) where applicable, determines a class 
of admissible w so that for any w in this class the corre­
sponding inverse Gr is repeatable. 

There are infinitely many such repeatable inverses 
so that it is possible to optimize over this class in order 
to obtain additional desirable properties. One possible 
approach is to minimize the distance to an unrepeatable 
inverse Gd that possesses some desirable characteristics. 
The measure that will be used in this work is 

connected subset 0 of the joint space. From (5) it follows 
that 

where wd is the unique vector that corresponds to Gd. 
Since ftJ is of unit length, (9) becomes 

which greatly simplifies the computations. 
Unfortunately solving for closed form analytical so­

lutions to a set of partial differential equations such as (7) 
may be a difficult if not impossible task. In order to find 
a near optimal repeatable control for more complicated 
manipulators it is necessary to develop a second method, 
which does not rely on solving complicated PDE's. This 
method, which will be called the direct method, uses the 
known geometrical properties of repeatable inverses to 
generate a subset of analytic solutions to these PDE's by 
utilizing gradient functions. While this technique has the 
advantage of avoiding complicated PDE's, it's disadvan­
tage is that it optimizes over a smaller subset of repeatable 
inverses. 

In order to apply this technique a different character­
ization of the repeatable control strategies, which does not 
utilize the Lie bracket, is necessary. This method relies 
on characterizing those vectors which are at every joint 
value orthogonal to the joint trajectories determined by 
the control strategy. These vectors are given by the null 
space of the transpose of the generalized inverse, which 
for a repeatable generalized inverse is determined by a 
gradient function. Thus the repeatable strategies can be 
obtained by inverting the square matrix 

(12) 

where v is a gradient function which characterizes the 
repeatable generalized inverse. Note that Jv is of the 
same form as the extended Jacobian; however, the gradi­
ent function may not be related to any physically mean­
ingful function of the joint positions. These repeatable 
inverses are calculated at nonsingular configurations by 
taking the first m columns of 

J-l=[G -ft vTa, -f!.L] (13) 
V d J DJ'V DJ'V 

where once again Gd is some desired (but typically notre­
(9) peatable) generalized inverse. Thus any repeatable strat­

egy has the form 

where II · l12 is the Euclidean norm. Equation (9) gives 
a measure of the closeness of the two inverses over the 
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where v is a gradient function. From equation (14) it 
follows that w is given by 

Giv 
W=---. 

ftJ ·V 
(15) 

The values of 8 which result in liJ(O) · v(O) O, but 
correspond to nonsingular configurations of the J a.cobian, 
are called algorithmic singularities. These singularities, 
which were first noted by Baillieul [1] in the case of the 
extended Jacobian, cause llwll2 to take on infinite val­
ues. The cost function, corresponding to (9), on a simply­
connected singularity-free subset {} of the joint space is 
thus given by 

ll wll2 -IIG - G 112 - { ll~vll~ dO o - r d o - Jo (:tiJ . v)2 • 
(16) 

Since every repeatable control strategy can be written in 
the form of (14) it is possible to optimize over a set of these 
strategies by considering a linear space of gradients. Such 
a space can be given by the span of N linearly independent 
gradient functions {v~, v2, ... , VN} so that the augment­
ing vectors take on the form v = E~1 <JiVi· One must, 
however, be careful to select these gradient functions in 
such a way that they are not linear combinations of the 
rows of J since such a choice would result in a singular 
augmented J a.cobian. One final consideration relates to 
the fact that all multiples of the gradient function will 
result in the same control so that a normalization is in 
order. Such a normalization can be done for example by 
requiring that E~1 a~ = 1 or by setting some particular 
<li equal to one. In some instances it may be possible to 
make further constraints on the coefficients <Ji so that the 
resulting control strategy contains no algorithmic singu­
larities. 

Ill. AN EXAMPLE 

In order to illustrate the two methods described in 
the previous section, a specific example will be presented. 
Consider the planar manipulator shown in Fig. 1 which 
consists of two orthogonal prismatic joints and a third 
revolute joint of 1 m length. The kinematic function for 
this manipulator is given by 

x=f(O) = [d1 +c~Os] 
d2 + smOs 

(17) 

where x = [ z y ]T and 8 = [ d1 d2 Os f. It is easy to 
see that the Jacobian for this manipulator is 

J = [ 1 0 - sin Os ] . 
0 1 cosOs 

(18) 
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Fig. 1. Geometry of a planar three-link manipulator whose first 

two joints are prismatic and whose last joint is revolute and of 1 m 

length. 

The first step in determining the repeatable inverse 
which is closest to the pseudoinverse is to characterize all 
generalized inverses by their null vectors. By using (6) 
these vectors can be written as 

[ 

Wt- ~sinOs l 
nG = W2 + *cosOs 

-w1 sin Os + w2 cos Os - ~ 

(19) 

where they are now parameterized by w1 and w2. Next, 
these null vectors are restricted to those null vectors which 
correspond to a subset ofrepeatable inverses. This can be 
done by determining solutions to the differential equations 
obtained from (8) and (19). For this particular example 
the solution of these equations is characterized by the re­
lation 

Wt = kw2 + ~(sinOs + kcosOs} (20) 

where k is an arbitrary constant and it is assumed that the 
inverses are only functions of 83 • Thus, (20) parametrizes 
these repeatable inverses in terms of the function w2 and 
the constant k. 

Now that a class of repeatable inverses has been de­
rived, the optimal member of this class with respect to an 
appropriately chosen criterion function can be found. For 
this example the criterion function is given by 

(21} 

which is a measure of the distance from the repeatable 
inverse Gr to the pseudoinverse in the region a :5 83 :5 b. 



It has been shown [3] that the optimal solution must take 
the form 

k COB 83 + sin 83 
(22) W1 = 

v'2(k2 + 1) 

w2 = 
k(sin 83 + k COB 83) 

(23) 
y'2(k2 + 1) 

Equations (22) and (23} give a family of repeatable in­
verses, parameterized by k, that minimize (24}. Substi­
tuting (22} and (23} into (24} gives 

II 11
2 = (sin 83 + k COB 83)2 

w 2 2(k2 + 1) (24) 

which is bounded by 1/2 thus insuring that the criterion 
function is well-defined. Therefore (21) becomes 

b 

C(k) = I (sin 83 + k cos 83}
2 

d8 . 
2(k2 + 1} 3 (25) 

a 

Note that the optimization resulting in (22} and (23) is 
independent of a and b, the limits of integration for (25). 

The criterion function C(k) can be rewritten as 

where <P = tan-1 k E [-1rj2, 1rj2]. The cost function C(k) 
has now been written as a differentiable function of <P on 
the interval [-7r/2,7r/2]. It then follows that C has a 
minimum value on this closed interval and that this min­
imum occurs either at a point where the first derivative 
of C with respect to <P is zero or at an endpoint of the 
interval. Setting dC /d<P to zero and applying the second 
derivative test results in the following optimal solution 

(27) 

where n is chosen so that ¢* E [-1rj2, 7r/2]. Since ¢in 
equation (26} can vary over 1R one does not need to check 
the endpoints -71"/2 and 1rj2. Also since (26) is periodic 
with respect to 1/J with period 1r, one knows that (27) 
determines a global minimum. The corresponding k* is 
found by taking the tangent of ¢* resulting in 

k* = {-tan(~), if 0 < b- a< 1r 
cot(~), if 1r < b- a< 271". 

(28) 

Note that infinite values of k* are allowable and that this 
in fact does correspond to an inverse which is given by 
the limit of equations (22) and (23} as k approaches ±oo. 

Thus for k = ±oo the inverse is given by taking w1 = 0 
and w2 = -~cos83. 

The second method described in the previous section, 
which consists of augmenting the Jacobian with a gradient 
function, can also be used. Consider augmenting vectors 
of the form v = ae1 + fJe2 +1e3 where e1, e2, and e3 rep­
resent the standard basis for JR3. Clearly any such vector 
function is a gradient, and since it is not a function of d1 
or d2, the resulting repeatable control strategy will be a 
function of 83 only. Therefore, in this case the resulting 
optimal solution for the direct method cannot be better 
than the one obtained above, which optimizes over all re­
peatable control strategies which are functions of 83 only. 
Thus the solution resulting from the direct method can 
be considered an approximation of the optimal solution 
obtained previously. From (15) it follows that the vector 
w is given by 

w _ ! [a(1 + cos2 83) + fJ sin 83 cos 83 - 'Y sin 83] (29) 
- 6 a sin 83 cos 83 + fJ(1 + sin2 83) + 'Y cos 83 

where 6 = v'2(a sin 83 - fJ cos 83 +'"f). Under the sim­
ple coordinate transformation r = J a2 + {32 and 1/J 
arctan( -a/ fJ) it follows that 

llwll2 = 2r2 + 2'Y - ~ 
2 .!l2 Ll 2 (30) 

where Ll = 1+rcos(83 -1/J). Algorithmic singularities for 
this control strategy will occur when Ll = 0. This problem 
can be remedied by either requiring 'Y + rcos(83 -1/J) to 
be strictly positive or strictly negative. Such a restriction 
would require 'Y to be nonzero, and since any multiple 
of v results in the same control, 'Y can be, without loss 
of generality, taken to be 1. Thus in order to eliminate 
algorithmic singularities one requires that 1 + r cos( 83 -
1/J) > 0, or equivalently that 0 ~ r < 1. In this example 
the values or r will be restricted to lie in the closed interval 
[0,0.9]. 

As before the cost function has the form 

(31} 

where now the dependence is on the variables r and 1/J. 
Substituting {30} into (31) yields 

lb ( r2 1) 3(b- a) 
C(r,1/J)=2 2+- d83---

a Ll Ll 2 
(32) 

where 'Y = 1. Applications of the first and second deriva­
tive test individually to the first two terms of (32) shows 
that the optimal,P is given by 

1 
1/J* =-(a+ b) 

2 
{33) 
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Fig. 2. The desired end effector trajectory (3 m square) used in 

the simulation of the manipulator depicted in Fig. 1. 

for intervals of less than 211'. For ()3 intervals [a, b] of length 
less than 1r /6 the optimal r is given by 0.9. This follows 
readily from the fact that the first derivative of llwll2 with 
respect tor is strictly negative for 1031 :$ 11'/12 and 0 :$ r :$ 
0.9. Thus the optimal coefficients are a = 0, {3 = -0.9, 
and "' = 1. The resulting w is 

(34) 

IV. SIMULATION 

In order to compare the two methods used in the ex­
ample in Section III, this section presents simulation re­
sults for the manipulator depicted in Fig. 1, commanded 
to follow the 3 m square end effector trajectory shown 
in Fig. 2. The manipulator's initial configuration is set 
to the origin of the joint space which corresponds to the 
point (x, y) = (1, 0) in the workspace. The joint space 
trajectory obtained using pseudoinverse control is shown 
in Fig. 3. As expected, pseudoinverse control produces a 
drift in the joint space which results in a joint trajectory 
which spirals down the fiber corresponding to the point 
(1,0) in the workspace. Superimposed on this figure are 
the two stable surfaces which correspond to the optimal 
repeatable inverse, which was designed to approximate 
the pseudoinverse in the ()3 region [-11' /12, 11' /12], and the 
approximation to this optimal obtained by applying the 
direct method. Clearly, the pseudoinverse trajectory ini­
tially lies on both of these stable surfaces, as designed, 
but starts to diverge as the end effector leaves point C. 
It is at this point that the global repeatability require­
ment forces the repeatable inverse to abandon the desired 
pseudoinverse solution. 
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Pseudoinverse 

Optimal Repeatable 

Approximate Optimal 

A 3D view of the joint space trajectory corresponding 

to pseudoinverse control for the manipulator in Fig. 1. The stable 

surfaces for the optimal repeatable control and the approximate 

optimal repeatable control are also shown. 

_ Pseudoinvelll8 

Optimal Repeatable 

. • • • • • • • • Approximate Optimal 

Fig. 4. Three orthogonal views of the joint space trajectories ob­

tained using pseudoinverse control, the optimal repeatable control, 

and the approximate optimal repeatable control for the end effector 

path in Fig. 2. 
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Fig. 6. A plot of 83, which together with the end effector posi- Fig. 6. A plot of the joint velocity norm as a function of the 

tion uniquely identifies the configuration of the manipulator shown 

in Fig. 1, as a function of the position of the end effector in the 

workspace for the trajectory used in Fig. 2. 

Fig. 4 provides a direct comparison of the resulting 
joint space trajectories when these three different control 
techniques are used to follow the desired end effector tra­
jectory specified in Fig. 2. Both of the repeatable controls 
provide quite good approximations to the pseudoinverse 
in the design region, i.e. in the neighborhood of A. This is 
more clearly illustrated in Fig. 5 which in effect plots the 
configuration of the manipulator, since any joint value 
uniquely identifies the configuration, along the specified 
end effector trajectory. It is easy to see from this fig­
ure that the optimal repeatable inverse solution exactly 
matches the performance of the pseudoinverse trajectory 
up to the point C. The approximation to the optimal re­
peatable inverse is likewise quite good until about halfway 
between point B and C. The norm of the joint velocity for 
these three trajectories is presented in Fig. 6. This figure 
illustrates the tradeoff resulting from the use of the ap­
proximate optimal inverse. Note that outside of the design 
region, i.e. the limits of integration on (31), the perfor­
mance of the approximate inverse can be quite poor 1 as is 
the case near C and D. 

V. CONCLUSIONS 

The constraint of repeatability for all end effector tra­
jectories and all initial conditions, which is characterized 
by foliations of stable surfaces, significantly restricts the 
choice of available generalized inverse controls. However, 

position of the end effector in the workspace for the trajectory used 

in Fig. 2. 

it has been shown that it is possible to approximate the 
behavior of any desirable optimal inverse in a specified re­
gion by determining the repeatable inverse that is closest 
to the desired inverse. This results in a controlwhich takes 
advantage of the available redundancy to locally optimize 
some desirable performance criterion in the specified re­
gion of the workspace while also satisfying the extremely 
restrictive global constraint of repeatability. 
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