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ABSTRACT 

 

 

 

ENGINEERING SYSTEM MODELING FOR SUSTAINABILITY ASSESSMENT 

 

 

 

The increase in global greenhouse gas emissions has driven interest in the development 

of renewable energy sources. The commercial development of emerging renewable technologies 

like algal biofuels requires the identification of an economically viable production pathway. This 

study examined the sustainability of generating renewable diesel via hydrothermal liquefaction 

(HTL) of algal biomass from an attached growth architecture. Pilot-scale growth studies and 

laboratory-scale HTL experiments validated an engineering system model, which facilitated 

analysis of economic feasibility and environmental impact of the system at full scale. Techno-

economic analysis (TEA) results indicate an optimized minimum fuel selling price (MFSP) of 

$11.90 gal-1, and life-cycle assessment (LCA) found a global warming potential (GWP) of -44 g 

CO2-e MJ-1 and net energy ratio of 0.33. Results from this work identified current gaps in 

sustainability assessment through TEA and LCA. Two needs were identified to improve 

sustainability assessment: the internalization of a carbon emission price into TEA and the 

consideration of the time-value of carbon emissions in LCA. With these effects considered, MFSP 

and GWP increase by 23% for the modeled biofuels system. Results from a harmonized model of 

an array of energy technologies indicate that prices for fossil-based energy increase 200% and 

GWP increases 25% when these factors are considered, whereas low-emitting technologies 

increase minimally in both metrics. Based on these findings, the development of improved 

sustainability assessment methodology is proposed.  
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1 ATTACHED GROWTH ALGAL BIOREFINERY CASE STUDY 

1.1 Introduction 

A global increase in energy consumption combined with the environmental impact 

associated with fossil fuels has generated interest in producing renewable fuels. Algal biofuels 

are a promising renewable biofuel feedstock due to the high photosynthetic efficiency of algae 

and its potential for utilization of low-quality land and water. The commercial viability of algal-

based biofuels is yet to be demonstrated and alternative production and conversion technologies 

are being explored. Hydrothermal liquefaction (HTL) represents a promising technology to 

convert algal biomass to biofuel. This process utilizes a wet algal feedstock and converts a high 

degree of the embodied feedstock energy into a biocrude. In contrast to fatty-acid methyl ester 

biodiesel, biocrude is chemically comparable to petroleum crude and can be refined into an array 

of drop-in fuels.  

Algal biomass cultivation remains a significant technical barrier to commercial algal 

biofuel and bioproduct production. Cost of algal feedstock was the most significant determinant 

of biofuel selling price in economic evaluations of algal biofuel production by Davis et al. (2014a) 

and Jones et al. (2014) exploring fermentation of fractionated biomass and HTL conversion, 

respectively. The economics and environmental impacts of traditional suspended algal 

cultivation systems such as open raceway ponds (ORP) and photobioreactors (PBR) have been 

researched in detail (Beal et al., 2015; Borowitzka, 1999; Davis et al., 2016; Quinn and Davis, 

2015; Richardson et al., 2012; Slade and Bauen, 2013). However, attached growth architectures, 

which include algal turf scrubbers (Adey et al., 2011) and a variety of mechanized biofilm reactors 
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(Gross et al., 2015a), including a rotating algal biofilm reactor (RABR) that generates a harvestable 

algal biofilm by rotating in wastewater (Christenson and Sims, 2012), have not been characterized 

in terms of economic viability and environmental impact.   

Biofilm cultivation offers several advantages in comparison to suspended algal cultivation. 

Biofilm biomass is mechanically harvested from the growth substratum in a dewatered form, 

whereas suspended growth systems must undergo energy-intensive processes to produce a 

dewatered feedstock (Johnson and Wen, 2010; Ozkan et al., 2012). Flocculation, dissolved air 

flotation, and centrifugation, which account for a significant portion of algal feedstock cost and 

energy input, are therefore avoided in attached growth systems. In contrast to homogeneous 

suspended growth systems, biofilm cultures capture carbon directly from the atmosphere and 

exhibit increased resilience due to the diversity of the biofilm polyculture (Gross and Wen, 2014; 

Hamilton et al., 2014; Lohman et al., 2015). Disadvantages of attached growth systems include 

relatively low lipid content and high ash content (Johnson and Wen, 2010; Mulbry et al., 2008).  

The impact of these advantages and disadvantages at a systems level needs to be evaluated. 

The objectives of this work are to understand the economic viability and environmental 

impact of an algal biofilm based biorefinery integrating representative experimental results for 

model validation. This work develops and leverages experimental data from a pilot-scale 

cultivation platform and lab-scale HTL reactor into an engineering system model. This system 

model represents the foundation that supported the evaluation of economic viability and 

environmental impact through techno-economic analysis (TEA) and life-cycle assessment (LCA). 

The model is constructed modularly to support the evaluation of alternative sub-processes and 

multiple scenarios. Specifically, the baseline scenario includes coupling an open-lagoon 
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wastewater treatment plant with a rotating algal biofilm reactor cultivation facility and HTL 

conversion plant. Subsequent scenarios consider integration of wastewater treatment and 

optimization of system performance parameters. Results include the performance of the system 

in terms of global warming potential, net energy ratio, and economics of generating renewable 

fuels. Discussion focuses on a sensitivity analysis, optimization of the process to minimize the 

minimum fuel selling price and environmental impact, and a direct comparison of results to 

literature.   

1.2 Materials and Methods 

This section first presents methods for the laboratory-scale HTL experiments, then 

describes the system model informed by experimental inputs followed by details on the LCA and 

TEA methods.  Experimental work included the cultivation of algal biomass from a biofilm reactor, 

conversion of the biomass to biocrude by HTL, and downstream analysis of products to establish 

energy and mass balances. The system model grounded in these results includes the definition 

of the baseline scenario and description of alternative scenarios, which are intended to represent 

the performance of a near-term realizable system.  

1.2.1 Hydrothermal liquefaction (HTL) of algal biomass 

Mixed-culture algal biofilm biomass was generated from a RABR system constructed and 

operated as described by Christenson and Sims (2012). Biomass from three separate harvests 

was blended for homogeneity and had a solids content of 21% and ash content of 31%. Total 

solids content of the biomass was calculated as the fraction of stable oven-dry weight at 105 °C 

of wet weight. Ash content was calculated as the fraction of stable fired weight at 550 °C of dry 

weight. On a dry-weight basis, the biomass was 36% carbohydrate, 4% lipid, and 19% crude 
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protein. Carbohydrate content was measured by the sulfuric acid-UV colorimetric method 

(Albalasmeh et al., 2013). Lipid content was measured by a sulfo-phospho-vanillin method 

(Mishra et al., 2014). Biomass protein content was calculated by multiplying the total biomass 

nitrogen content by the factor 6.25 (Jones, 1931). 

HTL reactions were conducted in triplicate in a 500-ml pressure reactor (Parr 4520, 4848 

controller). Operating parameters were selected within the range of previously identified 

optimum values to be most representative of scale-up scenarios (Guo et al., 2015; Jones et al., 

2014; Tian et al., 2014).  Wet algal biomass was sealed in the reactor and the headspace was 

vented and then pressurized to 2 MPa with nitrogen. The reactor was heated at an average rate 

of 7.6 °C min-1 to 325 °C ± 6 °C, for a 60-min retention time upon reaching that temperature. 

Operating pressure ranged from 14.5-16.2 MPa with minor fluctuations in temperature. The 

reactor was vented after cooling to 40 °C with an internal water loop.  

At the end of each reaction, the contents were extracted from the vessel in equal volume 

of dichloromethane (DCM). The mixture was agitated manually for 3 min and centrifuged at 3700 

x g for 10 min. The aqueous layer was decanted and filtered (Whatman 541 filter). The nonpolar 

phase, containing DCM and biocrude, was also filtered (Whatman 541 filter). The solid phase was 

re-suspended in 100 ml DCM, agitated, and centrifuged and decanted twice more to ensure full 

recovery of biocrude. Solids retained by filtration were combined and dried at 105 °C. Trace water 

was separated from the nonpolar phase by a separatory funnel and combined with the aqueous 

fraction. The nonpolar extract was distilled at 40 °C to recover the DCM solvent, and then dried 

to a stable weight at 60 °C to remove trace water and solvent.  The solvent extraction was used 
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to quantify the yield from the system and is not the modeled large-scale recovery method as 

detailed in section 2.2.4. 

HTL products were analyzed to establish mass and energy balances. Elemental analysis of 

the algal feedstock, HTL solids, aqueous phase, and biocrude was conducted with a Flash 2000 

Organic Elemental Analyzer (Thermo Scientific, Waltham, MA). Total nitrogen and total 

phosphorous content of the biomass and HTL aqueous phase was measured by Hach analysis kits 

(Hach Co., Loveland, CO). Higher heating value (HHV) of the algal feedstock and biocrude was 

measured by bomb calorimetry (IKA C-2000) and values were corrected for the formation of acids 

by titration with base solution. Biocrude conversion was calculated as mass of biocrude divided 

by feedstock ash-free dry weight (afdw), and gas mass was determined by difference.  

1.2.2 System model 

Economic feasibility and environmental impact of system scale-up were evaluated through 

the development of a modular system model. This engineering system model is constructed with 

sub-process models that were validated with experimental mass and energy balances as well as 

values from the literature where appropriate. The model includes RABR algae cultivation coupled 

with wastewater treatment, mechanical harvesting of algae, conversion of the wet algal biomass 

to biocrude by HTL, upgrading and refining to renewable diesel, and transportation and 

distribution of the products (Figure 1). 

The system model considers six scenarios with varying inputs in order to examine a range 

of system performances (Table 1). All model scenarios consider the operational costs (op-x) and 

capital costs (cap-x) of each sub-process from cultivation through transportation and distribution. 
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Figure 1: Process flow diagram of modeled system. Images depict Logan, Utah Lagoons 

wastewater treatment (WWT) facility, RABR cultivation, biomass separation by mechanical 

harvest, and lab-scale conversion by hydrothermal liquefaction to produce renewable diesel, 

naphtha, and aqueous fertilizer. Analyses were conducted within the indicated well-to-product 

system boundary (dashed line).  

 

 

 

Table 1: Model scenarios and key inputs.  

Scenario Description Productivity 

(g afdw m-2 d-1) 

Biocrude yield 

(% afdw) 

Cultivation area 

(acre)  

WWT credit RABR duty cycle 

1 Base  12 21 460 None 1 

2 Mid  20 30 460 None 1 

3 WWT op-x  20 30 460 Op-x 1 

4 WWT cap-x 20 30 460 Op-x, cap-x 1 

5 Expanded 20 30 4600 Op-x, cap-x 1 

6 Optimized 30 42 4600 Op-x, cap-x 0.5 
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To define a realistic base scenario, the conversion of the 460-acre Logan Lagoons wastewater 

treatment plant in Logan, Utah was modeled. The base scenario considers conservative algal 

productivity and the experimental HTL yield with a modeled annual output of 270,000 gallons of 

renewable diesel (RD). Mid-value productivity and HTL yield are considered in scenario 2. 

Scenarios 3 and 4 examine economic credits associated with displacement of wastewater 

treatment (WWT) op-x and cap-x, respectively. Scenario 5 adds an economy of scale achieved by 

expansion from a 460-acre to 4600-acre cultivation facility. A near-term realizable performance 

achieved by optimization of parameters is presented in scenario 6, with an annual output of 13.5 

Mgal RD.  

Cultivation process inputs were scaled from pilot-scale costs, energy inputs, and biomass 

yields. RABR capital costs were scaled with an economy of scale exponent of 0.6 to define a 

design-case RABR that is a seven-fold surface area expansion of the experimental architecture. 

The design-case RABR capital cost of $40 m-2 accounts for a packing factor of 0.6 to accommodate 

balance of plant and maintenance access. An installation cost factor of 1.1 was applied to RABR 

capital costs. Labor for algae cultivation was estimated from Davis et al. (2016). Operational costs 

were based on scaled electricity consumption for RABR drive motors corresponding to 1 W m-2. 

Case 6 considers a 50% reduction of this energy input by reduction of the drive motor duty cycle. 

Cost estimates for land, infrastructure, and site preparation were performed as described by 

Davis et al. (2016).  

Base-case algal productivity was directly informed by experimental values and growth 

conditions in Logan, Utah and accounts for 3 months of zero productivity in the winter season 

and a summer productivity of 30 g afdw m-2 d-1 as reported by Christenson and Sims (2012) 
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resulting in an annual average of 12 g afdw m-2 d-1. Productivity for model scenarios 2-5 is based 

upon separate RABR experiments that have achieved a six-month average of 20 g afdw m-2 d-1 

and peak productivity of 45 g afdw m-2 d-1 for a combined annual average of 20 g afdw m-2 d-1. 

Relocating the cultivation facility to a region with increased temperature and photosynthetically 

active radiation is expected to increase annual productivity to 30 g afdw m-2 d-1 (scenario 6) based 

on simulated results.  

Algal biomass separation was modeled as direct mechanical harvest of the RABR surface 

by a stationary blade system. Separation capital cost was projected at 10% of RABR capital costs. 

A piping system for biomass collection was modeled with cost estimates as described by Davis et 

al. (2016). Energy associated with harvest was projected as a RABR drive power increase of 10% 

for the period of one RABR revolution, a weekly harvest frequency, and pumping requirements 

necessary to transport wet algal slurry from the center of the cultivation facility to a co-located 

HTL plant. Pumping energy requirements were calculated by modeling the algal slurry as a power-

law fluid with an average consistency index from concentrated samples of 3 species (Wileman et 

al., 2012).  Head requirements for slurry transport to the co-located HTL conversion facility 

include frictional losses for pipe length and apparatus as well as 10 m of head at the entrance of 

the HTL conversion plant. Installation cost factors of 1.2 and 1.4 were applied to piping and 

pumps, respectively.  

Conversion process data were leveraged from Jones et al. (2014). Each conversion sub-

process (HTL, catalytic hydrothermal gasification, hydrogen generation, and catalytic 

hydrotreating) was scaled according to experimental mass balances. Capital costs were scaled 

exponentially to varying production capacities with a whole-plant exponent of 0.7. The HTL gas 
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phase is assumed to be utilized as modeled by Jones et al. (2014), the aqueous phase is credited 

as a fertilizer co-product, and solids are assumed to be transported 50 km in a 22-ton truck. 

Fertilizer cost credit is based upon market values of comparable aqueous nitrogen and 

phosphorus products. The environmental impact of fuel transportation and distribution (T+D) is 

also included in the modeling effort.  

The baseline biocrude yield of the system is based on the experimental data generated in 

this study. A yield of 30% is expected to be achieved with optimization of reaction parameters 

(scenarios 2-5). Separate HTL experiments performed on RABR biomass cultivated in oilfield 

produced water achieved a maximum yield of 38%, and further optimization of HTL parameters 

is expected to achieve a yield of 42% (scenario 6).   

Wastewater is modeled to provide all necessary water and nutrients for algal cultivation 

based on previous RABR cultivation studies (Christenson and Sims, 2012) and municipal WWT 

data (Tchobanoglous et al., 2003).  Algal nutrient removal during cultivation is considered to 

displace emissions and costs associated with treatment by conventional Bardenpho biological 

nutrient removal (BNR). Capital and operational costs for WWT displacement were obtained 

directly from Logan City, UT (2015) and average values from a survey of 16 BNR systems with 

capacities ranging from 0.1-150 MGD (US EPA, 2015). WWT displacement rate was based upon 

the stoichiometric nitrogen and phosphorous composition of the experimental biomass.  

1.2.3 Techno-economic analysis 

A discounted cash flow rate of return (DCFROR) analysis was conducted for the projected 

30-year lifespan of the modeled system. For consistency with other system models reported in 

the literature, Nth plant assumptions were applied to all economic analyses, with key inputs 
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including a 10% internal rate of return, 35% income tax rate, and 8% interest on debt financing. 

Additionally, the capital costs of the RABR cultivation and separation facilities were projected to 

Nth-of-a-kind values based on experience curves as outlined by the National Energy Technology 

Laboratory (2013). Other operational costs including maintenance capital, insurance, and 

overhead were calculated as described by DOE design reports (Davis et al., 2012). Indirect capital 

costs, which include fees and other fixed expenses, were similarly considered. All economic 

analyses were scaled to year 2014 dollars based on the most recent data available from the 

Chemical Engineering Plant Cost Index for capital costs and the Bureau of Labor Statistics Labor 

Indices Series ID CEU3232500008 for labor. The naphtha co-product price was fixed at $3.25 gal-

1.  

1.2.4 Life cycle assessment 

LCA was conducted based on process data from the engineering system model. Net 

energy ratio (NER) and global warming potential (GWP) were determined for each process and 

are described further below. For consistency with other studies, LCAs were conducted within a 

well-to-product system boundary, i.e., processes including the production and distribution of fuel 

but excluding its combustion. All LCA results were normalized to the functional unit of 1 MJ of 

fuel product delivered to the commercial pump.   

NER of the fuel production system was defined as the ratio of direct energy input to direct 

energy output. Energy inputs from each sub-process were summed and divided by direct energy 

outputs: 

ሺ���ሻ ݋�ݐܽݎ �݃ݎ݁݊݁ ݐ݁� =  ∑ ∑ݏݐݑ݌݊� �݃ݎ݁݊݁ ݐܿ݁ݎ�݀  ݏݐݑ݌ݐݑ݋ �݃ݎ݁݊݁ ݐܿ݁ݎ�݀
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A value less than one represents an energetically favorable system. The modeled energy outputs 

included the renewable diesel product and the naphtha co-product. 

The energy and mass balance from the experimental system model was used in 

combination with life-cycle inventory (LCI) data to quantify the environmental impact of the 

biorefinery. LCI data were extracted from the Argonne GREET model, the NREL LCI database, and 

the literature where appropriate (Jones et al., 2014). Greenhouse gas emissions were normalized 

to the metric of 100-yr GWP of carbon dioxide equivalent (CO2-e). GWP values were calculated 

by combining emissions from carbon dioxide, methane, and dinitrogen monoxide with their 

respective equivalency factors of 1, 25, and 298, as defined by the Intergovernmental Panel on 

Climate Change (IPCC). Emissions were allocated to the combined fuel output of renewable diesel 

and naphtha and credited for atmospheric carbon uptake during cultivation, displacement of 

fertilizer production by the HTL aqueous phase co-product, and displacement of WWT energy as 

described by Sturm and Lamer (2011). 

1.2.5 Sensitivity analyses 

Sensitivity analyses were conducted on model inputs to identify impactful parameters for 

future research. Pertinent model inputs were varied by ±10% of base values and deviations from 

the corresponding model results were statistically analyzed with a least-squares model. To 

identify statistically significant model inputs, confidence intervals were constructed from a two-

tailed t distribution at a significance level of 0.05.  

1.3 Results and discussion 

Experimental data generated from pilot-scale cultivation systems, results from HTL 

experiments, and pertinent data from literature were used to validate a modular engineering 
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system model. Mass and energy balances from this model served as the foundation to perform 

an economic and environmental impact assessment of an attached growth algal biorefinery. Six 

scenarios were modeled to evaluate alternative performance scenarios. The corresponding TEA 

and LCA results are presented for each scenario to highlight variations in system performance 

with results compared directly to the literature. Sensitivity analyses identify the most impactful 

system parameters for future research and development.  

1.3.1 Hydrothermal liquefaction results 

Biomass was harvested from a RABR representative of the modeled cultivation 

architecture. The biomass harvested had an ash content of 31% and lipid content of 4% on a dry-

weight (dw) basis. These properties are consistent with other attached growth systems: Gross 

and Wen (2014) found ash and lipid contents of 29% and 8%, respectively, in biomass from a 

pilot-scale revolving biofilm reactor and Mulbry et al. (2008) reported ash content up to 49% in 

biomass from pilot-scale algal turf scrubbers. Direct mechanical harvest of the RABR yielded 

biomass slurry at 21% solids content, confirming that downstream dewatering prior to 

conversion through HTL is not required.   

HTL experiments were conducted on RABR biomass to establish mass and energy 

balances for sub-process model validation. Biomass was converted to biocrude with a mean yield 

and standard deviation of 14.9±0.4% on a dry weight basis, corresponding to a mean yield of 21% 

afdw. Tian et al. (2015) achieved a comparable HTL biocrude yield of 18.4% afdw in a study of 

low-lipid (2% dw) and high-ash (41% dw) suspended biomass. Chen et al. (2014) demonstrated 

that HTL parameter optimization increased biocrude yield from 17.2% to 49.9% afdw in mixed-
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culture algal biomass cultivated in wastewater. Such findings support the range of biocrude yields 

considered in the system model scenarios.  

The mean dry weight yields and standard deviations of the aqueous, solid, and gas phases 

were 6.2±0.3%, 48.5±2.0%, and 30.4±2.5%, respectively. The HTL aqueous phase contains 

concentrated dissolved nitrogen and phosphorus that can displace traditional fertilizers as an 

aqueous co-product. The HTL aqueous phase had an average total nitrogen concentration of 

5600 mg l-1 and total phosphorus concentration of 250 mg l-1 and these values were the basis for 

fertilizer displacement in all modeled scenarios.  

Results from the experimental work were leveraged to validate the sub-process model 

used in the engineering system model. Conversion process data from Jones et al. (2014) were 

scaled according to the yields reported in this study, resulting in decreased relative fuel 

production capacity in the modeled biorefinery. The composition of the experimental biocrude 

was similar to that modeled by Jones et al. (2014), with average C, H, O, N, S, and ash contents 

of 73.6%, 8.6%, 10.9%, 5.3%, 0.4%, and 1.2%, respectively. The average biocrude HHV of 35.0 MJ 

kg-1 is in the mid-range of values widely reported in the literature (Biller and Ross, 2011).  The 

sub-process model validated with these experimental data was integrated into the engineering 

system model for sustainability assessment work. A baseline mass balance around one unit of 

algal feedstock is depicted in Figure 2. 

 

Figure 2: Baseline mass flow diagram for modeled process. 
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1.3.2 Techno-economic analysis 

TEA was conducted to elucidate the economic viability of the biorefinery. A minimum fuel 

selling price (MFSP) was calculated to account for all cash flows over the lifetime of the plant. A 

separate economic analysis was conducted to determine a minimum algal feedstock selling price 

for the RABR cultivation process unique to this study and its effects on fuel selling price.  

The MFSP in this study varies across the scenarios modeled (Figure 3). The baseline MFSP, 

modeled on conservative algal productivity and experimental biocrude yield, is $104.31 gal-1. 

Scenario 2 considers mid-range algal productivity and biocrude yield with a resulting MFSP of 

$47.38 gal-1. The displacement of WWT op-x and cap-x reduces MFSP to $45.70 gal-1 (scenario 3) 

and $40.60 gal-1 (scenario 4), respectively. Expanding the cultivation facility from 460 acres to 

4600 acres achieves increased production capacity and capital economy of scale corresponding 

to a MFSP of $28.63 gal-1 (scenario 5). A near-term realizable MFSP of $11.90 gal-1 (scenario 6) is 

attained with increased algal productivity to 30 g afdw m-2 d-1 and biocrude yield to 42% as 

detailed in the methods. The economic viability of renewable fuels from the modeled system 

relies primarily on optimization of these parameters as discussed in the sensitivity results below.  

Increased energy demand and capital costs arise from the high ash content of the biofilm 

biomass. Conversion plant infrastructure must be increased in scale to accommodate additional 

mass throughput, contributing to increased initial capital costs. The increased energy demand 

also translates into greater operating costs over the life of the plant. Such downstream effects 

alone account for a 49% increase in MFSP in the optimized modeled system compared to the 

results from Jones et al. (2014).  
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Figure 3: Categorized minimum fuel selling price (top) and minimum feedstock selling price 

(bottom). Model scenarios consider variations in modeled productivity, biocrude yield, and 

wastewater treatment (WWT) cost displacement.  
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The economic viability of numerous algal biofuels systems has previously been evaluated. 

MFSP results reported in the literature vary by feedstock type, conversion technology, and 

operating parameters. Davis et al. (2012) harmonized results for lipid-based fuels and determined 

a MFSP of $19.60 gal-1 with conservative algal productivity. Laurens et al. (2015) attained a 33% 

reduction from this MFSP by modeling an alternative biochemical-based pathway for the 

conversion of algal lipids and carbohydrates. Summers et al. (2015) examined HTL conversion of 

oleaginous yeast and found a MFSP of $4.78 gal-1, a value similar to large-scale algal HTL 

conversion at a MFSP of $4.77 gal-1 (Jones et al., 2014). These studies reflect MFSP reductions 

attained with economy of scale, low-cost feedstock, and increased yield associated with HTL 

conversion.  

The near-term realizable MFSP in this study is supported by results from similar studies 

considering HTL pathways. Delrue et al. (2013) modeled an 800-acre cultivation facility with HTL 

conversion and found an average MFSP of $10.18 gal-1, which is comparable to the optimized 

scenario presented here. The similarity arises from comparable model inputs, which included 

algal productivity of 30 g m-2 d-1, biocrude yield of 30-50%, and WWT integration. Davis et al. 

(2014b) modeled a large ensemble of geographic locations with ORP cultivation and HTL 

conversion. Though the average annual productivity in that study was 14.6 g afdw m-2 d-1, the 

relatively high biocrude yield (59% afdw) and economy of scale associated with a 27 Mgal yr-1 

HTL plant capacity yielded an average MFSP of $9.80 gal-1. When scaled to accommodate 

variations in algal productivity across the numerous sites considered, MFSP in that study 

increased to $12 gal-1, a value that aligns closely with scenario 6 in this study. The relatively high 
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MFSP for scenarios 1-4 in this study arise from conservative algal productivity and biocrude yield, 

limited production capacity, and high feedstock-related costs.  

Biomass feedstock cost is the most influential component of MFSP, accounting for over 

80% of the baseline MFSP (Figure 3). The optimized scenario (6) with a MFSP of $11.90 gal-1 in 

this study is 150% greater than the $4.77 gal-1 MFSP for an ORP-based system in a comparable 

system model (Jones et al., 2014). This can be primarily attributed to differences in feedstock 

costs, where a price of $430 ton-afdw-1 was assumed in the ORP study. Results from this study 

show, based on the optimized scenario (6), biomass price is $1051 ton-afdw-1. Secondary effects 

include a decreased biocrude yield and economy of scale in this study. Achieving the long-term 

DOE goal of $3 per gallon gasoline equivalent (gge) with the modeled biofilm growth system 

would require a feedstock price of $148 ton-afdw-1, a seven-fold reduction from the optimized 

scenario.  

To elucidate the economics of the attached growth system, the scope of the modular 

system model was narrowed to analyze the cultivation and separation sub-processes. Under 

experimental conditions, model results indicate a minimum feedstock selling price of $4091 ton-

afdw-1 (Figure 3). Increasing productivity significantly reduces this price in the mid-range scenario 

(2) to $2,455 ton-afdw-1. Displacing WWT op-x only reduces biomass selling price by 5% (scenario 

3), but significant savings are achieved by displacing wastewater treatment cap-x (scenario 4). 

Optimization of productivity and RABR drive energy reduces the selling price to $1051 ton-afdw-

1 in scenario 6.  

The minimum feedstock selling price is dominated by RABR capital costs. Capital costs 

account for 74% of the near-term realizable $1051 ton-afdw-1. A comparable economic model of 
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an open raceway pond (ORP) system by Davis et al. (2016) determined a minimum biomass selling 

price of $491 ton-afdw-1. This discrepancy can be largely attributed to the difference in capital 

cost between the two growth systems: RABR capital cost is five times greater than the ORP capital 

cost modeled by Davis et al. (2016), including the dewatering and CO2 delivery costs in the ORP 

system that are avoided in the RABR system. The high capital cost of the RABR system is a 

reflection of the complexity and material requirements of mechanized biofilm reactors. A 90% 

reduction in capital cost would be required to attain the $148 ton-afdw-1 feedstock price required 

for meeting the long-term DOE goal of $3 gge-1 with an optimized RABR growth system. Design 

modification or extraction of a high-value biomass co-product would be required to attain such 

a reduction in biomass selling price.  

Biofilm systems have demonstrated robust culture management that may lead to cost 

savings at scale. In contrast to single-strain open raceway ponds that undergo culture collapses, 

biofilm systems often utilize naturally occurring polycultures that exhibit increased stability. 

Gross and Wen (2014) demonstrated yearlong operation of a mechanized biofilm reactor at pilot 

scale, and Adey et al. (2011) achieved six months of continuous outdoor operation with a pilot-

scale algal turf scrubber and a naturally selected polyculture. Furthermore, depth and turbidity 

do not limit most biofilm reactors due to direct exposure of the growth substratum to the 

atmosphere and these systems are therefore well adapted to integration with WWT for further 

cost savings (Kesaano and Sims, 2014). The robustness of the culture is directly coupled to the 

productivity, which is shown to be critically important to the economic viability. 
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1.3.3 Life-cycle assessment 

The environmental impact of the biorefinery is presented in terms of NER to determine 

energy balance and GWP to describe impact from greenhouse gas emissions. Algal biofuels water 

consumption and wastewater integration are discussed based on literature review.  

NER of each process was modeled to determine an energy balance of the biorefinery 

(Figure 4). NER was calculated as the ratio of direct energy input to direct energy output with 

favorable energy systems having a value less than 1. The baseline NER of 1.65 reflects the fact 

that more energy is invested in the fuel than is embodied in it. The most significant energy input 

is the RABR drive motor for biomass cultivation. Energy input for biomass separation by direct 

mechanical harvest and pumping of the biomass slurry is negligible in all scenarios and 

transportation and distribution of the fuel product accounts for less than 1% of total energy input. 

NER is comparable across scenarios 2-5, which consider variations in economic inputs that do not 

affect the energetics of the system. The optimized NER of 0.33 is achieved by high productivity, 

high yield, and reduction of the RABR drive motor duty cycle. The reduction of RABR drive duty 

cycle is a realizable method of reducing energy input while maintaining sufficient mechanical 

power for RABR rotation. 

On a comparable well-to-product basis, the NER of conventional diesel is 0.19, and the 

NER of soybean biodiesel is 1.64 (Batan et al., 2010). These values span the range determined 

across the six model scenarios. In a study considering HTL and wastewater-coupled suspended 

cultivation, Delrue et al. (2013) found a NER of 0.5, which is comparable to the mid-range 

estimates in this study. Though baseline biofilm system performance is energy intensive, 
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optimization of RABR duty cycle, productivity, and yield can represent an energetically favorable 

system with a low NER.  

GWP of the fuel product provides insight into environmental impact from greenhouse gas 

emissions (Figure 4). GWP values for the modeled scenarios closely reflect the energy inputs and 

outputs represented by NER but additionally include the upstream environmental burdens 

associated with energy and material production. The baseline scenario has a GWP of 79.7 g CO2-

e MJ-1, with emissions from RABR drive energy and conversion outweighing the carbon credit 

attained by atmospheric uptake and WWT displacement. 

 

Figure 4: Net energy ratio (left) and global warming potential (right) of modeled scenarios. 

Results are normalized to functional unit of 1 MJ of fuel within a well-to-product system 

boundary. Energy and emissions contributions from the separation sub-process are minimal. 
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Scenarios 2-5, which consider variations in economic inputs that do not affect the 

environmental impact, consider mid-range productivity and biocrude yield and are nearly net-

neutral at -2.7 g CO2-e MJ-1. Scenario 6 achieves a significant net-negative GWP from the 

combination of reduced RABR duty cycle, optimized algal productivity, and optimized biocrude 

yield at -43.6 g CO2-e MJ-1. In all cases, emissions from separation and T+D sub-processes are 

minimal.   

Previously reported GWP values for algal biofuels systems range from -75 to 534 g CO2-e 

MJ-1 (Quinn and Davis, 2015). Several researchers have examined algal HTL-specific conversion 

pathways with results varying according to system pathways and key input assumptions. Frank 

et al. (2013) found a GWP of -44 g CO2-e MJ-1 for a system with a productivity of 25 g afdw m-2 d-

1 and biocrude yield of 38% afdw. Using comparable inputs for productivity and yield, Delrue et 

al. (2013) additionally accounted for WWT integration and determined a GWP of -49.6 g CO2-e 

MJ-1. Both of these values align closely with scenario 6 in this study due to similar model inputs 

and process flows. Davis et al. (2014b) considered a lower productivity of 14.6 g afdw m-2 d-1 and 

accordingly found a higher GWP of -36 g CO2-e MJ-1. Model scenarios 2-5, which consider mid 

productivity and biocrude yield, are environmentally favorable in comparison to petroleum 

diesel, which has a GWP of 17 g CO2-e MJ-1. As expected, increasing the yields from the cultivation 

system and HTL conversion for scenario 6 results in an environmentally favorable system as well. 

Life-cycle data are presented here on a well-to-product basis for consistency with other 

studies in the literature. Expansion to a well-to-wheels system boundary, which includes the 

emissions from fuel combustion, is assumed to contribute 74 g CO2-e MJ-1 (Argonne National 

Laboratory, 2013). On a well-to-wheels basis, the GWP of modeled scenario 6 would be 30.4 g 
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CO2-e MJ-1, a 67% reduction compared to petroleum diesel. These findings indicate an 

environmentally favorable fuel product can be generated with optimized system parameters.  

Water scarcity is a growing concern for energy systems. The most water-intensive process 

of algal biofuels systems is cultivation. Little is currently known about evaporative losses from 

mechanized biofilm cultivation architectures. Gross et al. (2015b) determined water losses from 

a revolving algal biofilm cultivation system to be 0.32 l g-biomass-1. Assuming this rate is 

applicable to the RABR system, the cultivation losses would be 1420 gal-water gal-RD-1. Water 

consumption for the conversion process was scaled from Jones et al. (2014) and found to be 5.1 

gal-water gal-RD-1, accounting for less than 1% of total water consumption in the modeled 

biorefinery. The aqueous phase produced by HTL may displace pristine irrigation water if used as 

aqueous fertilizer, but only accounts for 25 gal gal-RD-1. Water consumption rates for algal 

biofuels reported in the literature range from 200 to 2000 gal-water gal-fuel-1 for ORP systems 

using transesterification to produce biodiesel (Tu et al., 2016). In a study of wastewater algal 

cultivation and HTL conversion, Delrue et al. (2013) modeled water losses of 260 gal-water gal-

fuel-1. For comparison, the water consumption for petroleum diesel is 5.6 gal-water gal-fuel-1 

(Lampert et al., 2016).  

The water-intensive nature of algal biofuels systems motivates the utilization of 

wastewater for algae cultivation. Nutrient demand of the modeled cultivation system could be 

met by municipal wastewater production. Assuming mid-range nutrient loading and average 

municipal production, the baseline nutrient demand could be satisfied by wastewater production 

of 4.5 MGD, corresponding to an approximate population of 45,000 people (Tchobanoglous et 

al., 2003). The optimized case, which considers high productivity and a 4600-acre facility, could 
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be satisfied by 110 MGD – the wastewater produced by a population of approximately 1.1 million 

people. These initial findings indicate that integrating algae cultivation with WWT can reduce 

pristine water consumption. Wastewater integration furthermore reduces biorefinery energy 

consumption, environmental impact, and product selling prices. Future resource evaluation 

needs to be completed to understand geographical limitations associated with co-location.  

1.3.4 Sensitivity analysis  

Sensitivity analyses of model inputs were conducted to determine their relative impact on 

resulting MFSP and NER (Figure 5). Sensitive inputs highlight areas for future research and 

optimization. Analysis indicates that algal productivity and biocrude yield are the most significant 

inputs for both MFSP and NER as expected. Optimization of algal productivity and biocrude yield 

will be most impactful in development of commercial-scale systems. Further optimization of algal 

productivity may be achieved by situating cultivation facilities in regions that support year-round 

operation. The base capital cost of the RABR is also a significant contributor to MFSP and 

reductions in this input may be attained by design modifications. Economic uncertainties 

surrounding co-product prices and the costs for land and civil work during facility preparation are 

not significant. A 10% variation of WWT displacement does not significantly affect either metric, 

though full-scale integration of WWT significantly reduces GWP and MFSP. Separation energy 

and several other inputs not listed here had no significant effect on either sustainability metric. 

Focusing future research on the most significant inputs will further reduce MFSP and NER values 

towards a commercially viable and environmentally sustainable biorefinery.    
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Figure 5: Sensitivity analysis of key inputs to minimum fuel selling price (top) and NER (bottom). 

Model parameters with t ratios exceeding 95% confidence intervals (vertical dashed lines) are 

considered statistically significant.  

 

1.4 Conclusions 

The systems-level impacts of integrating a biofilm cultivation system with WWT and HTL 

conversion were evaluated. A system model grounded in experimental results was developed to 

determine economic viability and environmental impact of an attached growth algal biorefinery.  

Techno-economic results indicate a range of MFSP values with a near-term realizable scenario of 

$11.90 gal-RD-1. Life-cycle assessment found a NER of 0.33 and GWP of -43.6 g CO2-e MJ-1 under 
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optimized system parameters, reflective of an energetically and environmentally favorable 

system. Algal productivity and biocrude yield were determined to be the two most important 

factors affecting environmental impact and economic viability.  
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2 TIME VALUE OF GREENHOUSE GAS EMISSIONS 

2.1 Introduction 

An engineering system modeling approach to sustainability assessment is grounded in 

mass and energy balances to describe direct economics, energetics, and greenhouse gas 

emissions. The system analysis can be expanded to examine additional impacts; water 

consumption, eutrophication potential, solid waste generation, and other aspects may be 

modeled. In the most comprehensive sense, sustainability assessment is defined by a 

consideration of impacts in the context of human and planetary welfare, in perpetuity. The 

diverse social, political, and economic aspects in this encompassing definition are inherently 

important to consider in sustainability assessment but often beyond the scope of engineering-

based approaches. In this chapter I propose the incorporation of social costs and temporal 

weighting of greenhouse gas emissions in an effort to more holistically assess the sustainability 

of energy generation systems.  

A holistic understanding of the economics and environmental burden of energy 

generation is necessary because impacts are typically realized over a long-term. A lock-in effect 

arises from the long-run nature of energy generation planning, with infrastructure investments 

and their associated impacts typically being committed for several decades or more (Unruh, 

2000). Systems-level sustainability assessments, which may serve as the decision-making basis of 

energy generation investment, must therefore consider the time value of both economics and 

environmental impact.  
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Future carbon emissions are expected to cause greater relative damage than present 

emissions. This effect is reflected by the rising social cost of carbon (SCC), a measure of societal 

impact calculated by climate integrated assessment models. The SCC monetizes holistic 

detrimental effects of climate change including those on human health, agricultural productivity, 

and natural ecosystems (Interagency Working Group on Social Cost of Carbon, 2015). The 

physical basis for these increasing impacts arises from climate feedbacks such as changing 

albedo, increased releases of greenhouse gases, and potential reductions in carbon uptake 

capacity (Interagency Working Group on Social Cost of Carbon, 2011; Stern, 2007). 

Current carbon accounting methods in sustainability assessment rely on a static metric of 

impact. Though the IPCC acknowledges the need for metrics to reflect the time value of 

emissions, it employs the static global warming potential index due to its transparency and 

comparability (IPCC, 2007). A global temperature potential has been proposed as an alternative 

to the GWP, but relies on the same underlying static principles. Temporal metrics have also been 

developed. Richards (1997) developed a temporal metric based on a marginal cost-benefit 

analysis. In a study of biofuels systems, Marshall (2009) expanded on this work to develop a 

physical discount rate for carbon accounting. These studies were based in the value of temporary 

carbon storage, however, and do not provide a common framework for evaluating the time value 

of impact on a physical basis alone. Furthermore, greenhouse gas emissions are not currently 

monetized in techno-economic analyses, resulting in market distortion and underestimation of 

the cost of energy.  

The time value of economics and environmental impact must be integrated into 

sustainability assessment to provide a holistic assessment of committed impacts and viability. To 
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examine these effects, a harmonized TEA and LCA sustainability assessment model was 

constructed to analyze an array of energy generation technologies based on contemporary 

methodology. The model was adapted to evaluate the effects of internalization of SCC and 

temporal emissions impact factors derived from SCC models. Based on these findings, the 

discrepancy between current standard methods and time-value sustainability assessment is 

highlighted. Results from the work emphasize the need for improved methodology to evaluate 

the feasibility and impact of energy production technologies.  

2.2 Methods 

Harmonized TEA and LCA models were generated based on data from contemporary 

reviews. To facilitate the assessment of carbon pricing and temporal impact, emissions data were 

disaggregated into upstream burdens, occurring once at the outset of energy generation, and 

operational emissions, which occur for the remainder of the plant lifespan. Multiple scenarios 

were evaluated based on a range of SCC and corresponding derived impact factors. An array of 

technologies were analyzed based on data availability, technology maturity, and resource 

development capability at scale.  

2.2.1 Techno-economic analysis 

A harmonized discounted rate of return TEA model was utilized to calculate levelized cost 

of energy (LCOE) across the various technologies. In contrast to a conventional simplified LCOE 

analysis, harmonized financial inputs were implemented including an internal rate of return of 

10%, debt interest rate of 8%, income tax rate of 10%, 60% debt financing of capital costs, and 

seven-year MACRS depreciation schedule on plant capital. Technology-specific inputs are listed 

in Table 2, with further details provided in subsequent sections. 
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Table 2: Key inputs to techno-economic analysis. NG=natural gas; PV=photovoltaic; 

CSP=concentrating solar power; CCS=carbon capture and sequestration. 

Technology Capital cost ($/kW) Fixed O+M ($/kW-yr) Variable O+M ($/kWh) Capacity factor 

Coal1,2 3246 31.60 0.0045 0.87 
Coal-CCS2 5227 80.53 0.0095 0.87 
NG2 1540 15.37 0.0033 0.85 
NG-CCS2 2095 31.97 0.0068 0.85 
PV1,3 2200 18.00 0.0000 0.20 
CSP1,3 6300 65.00 0.0030 0.39 
Nuclear1  5300 91.03 0.0006 0.90 
Wind1,3 2200 60.86 0.0137 0.39 

1(US DOE, 2016) 2(US EIA, 2013) 3(IRENA, 2015) 

2.2.2 Internalization of carbon price 

SCC values were leveraged from updated estimates by the US Government (Interagency 

Working Group on Social Cost of Carbon, 2015). Briefly, estimates are derived from average 

values of three prominent climate integrated assessment models. Using emissions data as inputs, 

global temperature change and the resulting social damages are expressed as a distribution of 

prices per tonne emitted (Figure 6). Future damages are discounted across a 300-year horizon 

with an internal discount rate to generate three series of estimates: 2.5%, 3%, or 5%. A fourth 

estimate series is generated from the 95th percentile of the 3% model, representative of more 

severe future impact scenarios. 

The TEA model was constructed to facilitate the evaluation of these alternative model 

estimates. SCC values from these model estimates were applied to time-resolved emissions data 

over a 30-year period over the years 2020-2050 to generate carbon emissions cash flows. These 

cash-flows were then integrated into baseline TEA models and the internalized LCOE was 

calculated for each SCC model scenario.  
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2.2.3 Life-cycle assessment  

LCA was performed on each energy system to determine global warming potential of the 

energy product, based on data from contemporary reviews. Global warming potentials were 

normalized to the metric g CO2-e kWh-1 by combining emissions from methane, dinitrogen 

monoxide, and carbon dioxide with their respective IPCC weighting factors. Emissions were 

disaggregated into upstream and operational burdens over the 30-year generation lifespan.  

2.2.4 Temporal emissions impact factors 

As a first approximation of the physical basis of increasing emissions impacts, emissions 

impact factors were derived from the SCC estimates, grounded in integrated assessment models 

(Figure 6). These relative impact factors, scaled to unity at year 2020, represent the relative 

burden of future emissions on a per-tonne basis. Impact factors were applied to time-resolved 

emissions data for each index year i over the project lifespan (n=30). Weighted emissions were 

then averaged over the energy generated, yielding a weighted GWP:  

ሺ���ሻ ݈ܽ�ݐ݊݁ݐ݋݌ ݃݊�݉ݎܽ� ݈ܾܽ݋݈� = ∑ × �ݏ݊݋�ݏݏ�݉� �݊݋�ݐܽݎ݁݊݁��ݎ݋ݐ݂ܿܽ ݐܿܽ݌݉�
�

�=1   
Baseline GWP values were calculated with a static impact factor of one for each year.  

2.2.5 Coal 

Cost data were obtained from the US Energy Information Administration (US EIA, 2013). 

LCA data were obtained from median values in a contemporary review (Whitaker et al., 2012). 

The LCA model considers 1% of life-cycle emissions to occur as year-one upstream emissions, 

consistent with harmonized reviews. A 30-year plant lifespan is also analyzed by the majority of 

harmonized models. Carbon capture and sequestration (CCS) was considered by augmenting the 
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coal model with LCA data from Whitaker et al. (2012) and cost data from US EIA (2013) for an 

integrated gasification combined-cycle coal plant with post-combustion CCS.  

2.2.6 Natural gas  

Capital and operational cost data for natural gas combined-cycle plants were obtained 

from the US EIA (2013). LCA for natural gas generation facilities was based on a case study of a 

555-MW combined-cycle plant with domestic gas supply as described by the National Energy 

Technology Laboratory (2012). Upstream and operational emissions were partitioned with 99.7% 

of life-cycle emissions attributed to operational fuel combustion. CCS was considered with data 

from the same sources. 

2.2.7 Nuclear 

Capital and operational cost data were obtained from the Department of Energy 

Transparent Cost Database (US DOE, 2016). LCI data were obtained from a harmonized review 

(Warner and Heath, 2012). LCA data were obtained for light water reactors due to data 

availability. The 40-yr operational lifespan considered in the harmonized review was truncated 

at 30 years for internal consistency. 

2.2.8 Concentrating solar power (CSP) 

To date, two predominant CSP architectures have been developed: parabolic trough and 

central receiver. Cost data were obtained from an average of these technologies (US DOE, 2016). 

LCA data were obtained from median values of a harmonized review of trough and central 

receiver technologies (Burkhardt et al., 2012). 
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Figure 6: Social cost of carbon model estimates (top) and relative impact factors (bottom) 

derived from respective SCC model for the range years 2020-2050. Source: Interagency Working 

Group on Social Cost of Carbon, 2015. 
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2.2.9 Solar photovoltaic (PV) 

Operational cost data were obtained from the Transparent Cost Database (US DOE, 2016). 

Capital cost data were obtained from the median of grid-scale capital cost estimates of global 

utility-scale projects installed in 2014 (IRENA, 2015). LCA data were obtained from a harmonized 

review of crystalline-silicon PV technologies (Hsu et al., 2012) and disaggregated into upstream 

and operational burdens attributing 0.1% of upstream manufacturing emissions to annual 

operations to account for maintenance and replacement of modules (Hou et al., 2016). Several 

of the studies projected facilities to outlast the analyzed 30-year lifespan.  

2.2.10 Wind 

Capital cost estimates for wind were obtained from the median of 2014 installed costs for 

large-scale onshore and offshore projects (IRENA, 2015). Operational costs and parameters were 

obtained from the Transparent Cost Database (US DOE, 2016). LCA data were obtained from a 

harmonized review (Dolan and Heath, 2012). Uncertainty surrounds the lifespan of large wind 

turbines, with most projected to last 20 years. However, several studies in the harmonized review 

considered 30-year lifespans (Hondo, 2005; Rydh et al., 2004; White and Kulcinski, 1998) and 

other researchers have identified a 30-year lifespan as more realistic (Jacobson, 2009). This study 

considers a 30-year lifespan by extending operational emissions. 

2.3 Results and discussion 

2.3.1 Techno-economic analysis  

Baseline LCOE varies widely across the generation technologies analyzed (Figure 7). Fossil-

fuel generation technologies, benefiting from market maturity, economy of scale, and low fuel 

price, represent the lowest LCOE. The analyzed renewable technologies have significantly higher 
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LCOE. Because fuel costs are minimal for these technologies, the high LCOE is dominated by 

capital and maintenance costs. These technologies are expected to experience significant future 

reductions in price with economy of scale and manufacturing experience, and efficiency gains in 

the case of PV (Alsema and de Wild-Scholten, 2006; IRENA, 2015, 2012).  

LCOE increases in all cases upon internalization of SCC. Fossil generation technologies, 

with significant operational emissions, increase in LCOE significantly. The LCOE of coal increases 

67% from baseline when the median SCC model is incorporated, and 200% when the maximum 

estimate is considered. Conversely, low-carbon technologies exhibit smaller increases in LCOE 

upon internalization of SCC, as expected. PV, which has significant upstream emissions but 

minimal operational emissions, increases only 1% in LCOE when the median SCC model is 

incorporated (4% when maximum estimate considered). Wind and nuclear generation, with 

minimal upstream and operational emissions, increase less than 1% upon internalization of the 

median SCC price estimates.  

CCS can be applied to fossil-fuel generation technologies to reduce post-combustion 

emissions. The increased capital and operational costs associated with CCS give rise to a higher 

LCOE; coal-CCS has a baseline LCOE 69% greater than non-CCS coal generation. However, when 

median carbon prices are internalized, the two technologies have LCOE values within 10%. At 

higher SCC values, the avoided emissions charges offset the CCS costs: coal-CCS is 39% cheaper 

than non-CCS coal when the maximum carbon cost estimates are considered. A similar trend 

applies to natural gas generation. 
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Figure 7: Levelized cost of energy (top) and global warming potential (bottom) across various 

generation technologies. Base values reflect harmonized average and model point estimates 

reflect values after integrating social cost of carbon or impact factor, respectively. Shaded boxes 

indicate median range of values. NG=natural gas; PV=photovoltaic; CSP=concentrating solar 

power; CCS=carbon capture and sequestration. 
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The internalization of carbon price presents an alternative view of LCOE and the 

subsequent decisions made for the deployment of energy generation technologies. Within the 

most probable range of LCOE values upon internalization of SCC prices, only PV and CSP are more 

expensive than coal generation. This finding suggests that the future energy mix could shift 

drastically to more economically favorable generation technologies if a carbon price was 

internalized in market LCOE. Furthermore, future SCC prices will increase, while renewable LCOE 

is expected to decrease, yielding a potential feedback towards low-emissions technologies 

dominating the future energy market. It should be noted that this analysis utilizes conservative 

SCC prices, with some researchers suggesting SCC may be six-fold greater than current median 

estimates (Moore and Diaz, 2015). Such findings emphasize the current market distortion in LCOE 

and the significance of internalizing emissions pricing.  

2.3.2 Life-cycle assessment 

The need exists to fully describe the environmental impact of energy generation, even 

when emissions costs are internalized. Baseline GWP values are static averages of emissions 

intensity per unit of energy produced and vary drastically by generation technology (Figure 7). A 

distinct dichotomy exists between the GWP of fossil and non-fossil energy generation 

technologies, with the former orders of magnitude greater than the latter. A 140-fold difference 

exists between the baseline GWP of coal, the highest emitting technology, and wind, the lowest 

emitting technology considered.  

The application of temporal impact factors shifts the GWP from a static to a dynamic 

metric. This shift reflects the increased impact expected to arise from future emissions. When 

impact factors are incorporated into LCA, all technologies considered exhibit an increase in GWP. 
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Fossil generation technologies increase significantly upon weighting, whereas low-emission 

technologies increase minimally, as expected. Whereas coal exhibits a 30% increase in GWP with 

median estimates, wind exhibits an increase of only 3%. Solar PV, with a significant upstream 

emission but negligible operational emissions, increases less than 1%, even when maximum 

estimates for impact factors are incorporated. These findings highlight the current 

underestimation of the impact from fossil generation technologies.  

The application of CCS to fossil energy generation lowers impact significantly. The 

baseline GWP of coal decreases 77% when CCS is applied. Natural gas follows a similar trend, 

with NG-CCS attaining a GWP 38% lower than coal-CCS generation. However, this GWP is still 

three-fold greater than that of PV, and 20-fold larger than wind, the lowest emitting technology 

considered. These discrepancies increase when impact factors are applied, reinforcing the 

dichotomy between fossil and non-fossil generation technologies in terms of global warming 

potential.  

The weighted GWP analysis performed in this study was derived from integrated 

assessment models as an approximation of the physical mechanisms for future increases in 

emissions impact intensity. However, the need exists to develop an impact metric to directly 

reflect this physical basis in order to transparently elucidate the time value of emissions impacts. 

Alternative metrics have been proposed to correct the intentionally simplistic GWP defined by 

the IPCC. Global temperature potential (Shine et al., 2005), ton-year impact (Marshall and Kelly, 

2010), or a new metric altogether may best define the true environmental impact committed by 

energy generation.  
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2.4 Conclusions 

Current sustainability metrics fail to reflect the social cost of carbon and the time value of 

its emission. Internalization of the social cost of carbon increases fossil energy prices significantly, 

while low-emitting technologies remain relatively unchanged. Similar methodology was applied 

to evaluate global warming potential. Consideration of temporal impact factors to account for 

the increasing impact of future emissions increases GWP significantly for fossil energy sources 

and minimally for low-emitting sources. The resulting discrepancies between static and time-

value sustainability assessment compel the development of improved sustainability assessment 

methodology. 
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