
DISSERTATION

EXPLORING THE BIAS OF DIRECT SEARCH AND EVOLUTIONARY OPTIMIZATION

Submitted by
Monte Lunacek

Department of Computer Science

In partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

Colorado State University
Fort Collins, Colorado

Summer 2008

UMI Number: 3332726

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3332726

Copyright 2008 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PO Box 1346
Ann Arbor, Ml 48106-1346

COLORADO STATE UNIVERSITY

May 9, 2008

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER OUR

SUPERVISION BY MONTE LUNACEK ENTITLED EXPLORING THE BIAS OF DIRECT

SEARCH AND EVOLUTIONARY OPTIMIZATION BE ACCEPTED AS FULFILLING IN PART

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY.

Committee on Graduate Work

11

ABSTRACT OF DISSERTATION

EXPLORING THE BIAS OF DIRECT SEARCH AND EVOLUTIONARY OPTIMIZATION

There are many applications in science that yield the following optimization problem: given an

objective function, which set of input decision variables produce the largest or smallest result? Op

timization algorithms attempt to answer this question by searching for competitive solutions within

an application's domain. But every search algorithm has some particular bias. Our results show

that search algorithms are more effective when they cope with the features that make a particular

application difficult.

Evolutionary algorithms are stochastic population-based search methods that are often designed

to perform well on problems containing many local optima. Although this is a critical feature, the

number of local optima in the search space is not necessarily indicative of problem difficulty. The

objective of this dissertation is to investigate how two relatively unexplored problem features, ridges

and global structure, impact the performance of evolutionary parameter optimization. We show that

problems containing these features can cause evolutionary algorithms to fail in unexpected ways.

For example, the condition number of a problem is one way to quantify a ridge feature. When a

simple unimodal surface has a high condition number, we show that the resulting narrow ridge can

make many evolutionary algorithms extremely inefficient. Some even fail.

Similarly, funnels are one way of categorizing a problem's global structure. A single-funnel

problem is one where the local optima are clustered together such that there exists a global trend

toward the best solution. This trend is less predicable on problems that contain multiple funnels.

We describe a metric that distinguishes problems based on this characteristic. Then we show that

the global structure of the problem can render successful global search strategies ineffective on

relatively simple multi-modal surfaces. Our proposed strategy that performs well on problems with

iii

multiple funnels is counter-intuitive.

These issues impact two real-world applications: an atmospheric science inversion model and

a configurational chemistry problem. We find that exploiting ridges and global structure results in

more effective solutions on these difficult real-world problems. This adds integrity to our perspec

tive on how problem features interact with search algorithms, and more clearly exposes the bias of

direct search and evolutionary algorithms.

Monte Lunacek
Department of Computer Science
Colorado State University
Fort Collins, Colorado 80523
Summer 2008

IV

ACKNOWLEDGMENTS

I am extremely grateful for all the support and guidance I received during my graduate career.

First, I would like to thank my advisor Darrell Whitley. His encouragement kept me going strong

and gave me the confidence I needed during the times when I was struggling. I especially appreciate

the long hours he invested in me and the knowledge and wisdom he shared. I feel fortunate to have

had the opportunity to work with one of the most respected scientists in evolutionary computation.

I appreciate the freedom he gave me to explore topics I was interested in, as well as the advise and

direction he offered. I can't image a better experience. The primary reason I have finished this Ph.D.

is because of the strong relationship I have with Dr. Whitley. I am grateful for his mentoring and

friendship. Thank you so much Darrell.

I feel fortunate to have met so many wonderful people while living in Fort Collins. In particular,

to my friends in the "fun zone", I am deeply grateful for your support, encouragement, and all the

laughter and fun.

My parents, Ted and Nancy, are amazing people. I appreciate all they have done for me during

graduate school and the support they provide. Their continual encouragement and support, friend

ship, and love is the foundational in everything I do.

I appreciate the comments and feedback from my committee members, Charles Anderson, Ross

McConnell, and Darrell Fontane. Thank you investing your time and making my dissertation a

better paper.

The research in this dissertation is a product of collaboration with several people. I appreciate

the perspective, support, advise, and ideas that Jean-paul Watson and William Hart at Sandia Na

tional Labs offered. Jean-Paul first introduced me to the Lennard-Jones clusters and Bill pushed

me to look more closely at self-adaptation in evolution strategies. I enjoyed working with Philip

Gabriel and Graeme Stephens on their temperature problem and am grateful for all the time they in-

v

vested. I am especially grateful for the support of other graduate students in the Computer Science

department. In particular, I worked most closely with James Knight, Andrew Sutton, and Artem

Sokolov. Their ideas and comments were invaluable.

This work was supported by the National Science Foundation under Grant No.0117209 and by

Sandia National Labs. The research presented in this dissertation is based on the following papers:

Chapter 3

• Comparing the Niches of CMA-ES, CHC, and Pattern Search Using Diverse Benchmarks

with Darrell Whitley and Artem Sokolov [106].

• Alternative Implementations of the Griewank Function

with Artem Sokolov and Darrell Whitley [91].

Chapter 4

• Ruffled by Ridges: How Evolutionary Algorithms Can Fail

with Darrell Whitley and James Knight [105].

• Searching for Balance: Understanding Self-adaptation of Ridge Functions

with Darrell Whitley [57].

Chapter 5

• Applying Search Algorithms to the Temperature Inversion Problem

with Darrell Whitley, Philip Gabriel, and Graeme Stephens [58].

Chapter 6

• Measuring Mobility and the Performance of Global Search Algorithms

with Darrell Whitley and James Knight [59].

• Function dispersion and the CMA Evolution Strategy

with Darrell Whitley [56].

Chapter 7

• The Impact of Global Structure on Search (submitted April 2008)

with Darrell Whitley, Andrew Sutton, and Jean-paul Watson [60].

vi

TABLE OF CONTENTS

1 Introduction 1

1.1 Problems Features 2

1.2 Objective 5

1.3 Approach 8

1.3.1 Comparing Algorithms 9

1.3.2 Ridges 10

1.3.3 Temperature Inversion 10

1.3.4 Global Structure: Measuring Function and Algorithm Dispersion 11

1.3.5 When does Global Structure Matter? 12

1.4 Summary 13

2 Search Algorithms 15

2.1 Problem Representation 16

2.2 Genetic Algorithms 17

2.2.1 CHC 18

2.3 Evolution Strategies 19

2.3.1 Self-Adaptation in Evolution Strategies 20

2.3.2 Covariance Matrix Adaptation 21

2.4 Pattern Search 25

2.4.1 Nelder and Mead Simplex 26

2.4.2 Generalized Pattern Search 26

2.4.3 Mesh Adaptive Direct Search 28

2.4.4 Local Search 30

vii

2.5 Gradient-based Methods 31

2.5.1 Steepest-descent 31

2.5.2 Quasi-Newton Methods 32

2.5.3 Conjugate Gradient Method 34

2.5.4 Levenberg-Marquardt 36

2.6 Summary 38

3 Comparing CMA-ES, CHC, and Pattern Search Using Diverse Benchmarks 39

3.1 Benchmark Test Problems 40

3.1.1 Separability 43

3.1.2 Revisiting Griewangk's function 49

3.1.3 Synthetic Static Corrections for Seismic Surveys 50

3.2 Empirical Results 53

3.2.1 Revisiting Separability 56

3.2.2 Ridges 57

3.2.3 Global Structure and Big Valley 58

3.3 Summary 59

4 Understanding Local Search and Self-Adaptation on Ridges Functions 60

4.1 Background 61

4.2 Ruffled by Ridges: Local Search on Ridge Functions 63

4.2.1 Gray Encoding and Local Optima 63

4.2.2 Precision Matters 65

4.2.3 Rotating Search Coordinates 67

4.2.4 Discussion 69

4.3 Searching for Balance: Self-adaptation and Ridges 71

4.3.1 Self-adaptation and the General Ridge Function 71

4.3.2 Related Work 72

4.3.3 Why is self-adaptation sub-optimal? 73

4.3.4 Discussion 77

viii

4.4 Summary 78

5 Applying Search Algorithms to the Temperature Retrieval Problem 80

5.1 The Temperature Retrieval Problem 82

5.2 Empirical results 83

5.3 Problem difficulty 85

5.3.1 Separability, Ridges, and Bias 85

5.3.2 Computing the Condition Number 88

5.4 Directly Exploiting Problem-Specific Information 90

5.4.1 Physical Continuity 90

5.4.2 Exploiting Objective Function Structure 95

5.5 Summary 98

6 Dispersion, Mobility, and Search 99

6.1 Function Dispersion 101

6.1.1 Benchmark Test Functions 103

6.1.2 Related Work 105

6.2 Mobility: A Measure of Algorithm Dispersion 107

6.2.1 Measuring Mobility 107

6.2.2 Related Work 109

6.2.3 Computing Mobility 110

6.2.4 Mobility and Performance 113

6.2.5 Discussion 115

6.3 Dispersion and CMA-ES 117

6.3.1 Understanding Rate of Convergence 120

6.4 Summary 123

7 Double Trouble: How Funnel Landscape Characteristics Impact Search 125

7.1 Background and Motivation 127

7.1.1 Lennard-Jones Clusters 127

7.1.2 Basin Hopping 129

ix

7.1.3 Evolutionary Algorithm Performance 131

7.2 Creating Double-Funnel Landscapes 133

7.2.1 The Double-Sphere 134

7.2.2 The Double-Rastrigin 136

7.3 Understanding the Impact of Global Structure 137

7.3.1 Local Search Properties of the Double-Sphere 138

7.3.2 Global Search Properties of the Double-Sphere 139

7.3.3 Implications for Global Search: Double-Rastrigin 142

7.4 Limiting Exploration with Dynamic Populations in CSA-ES 145

7.5 Summary 147

8 Conclusion 149

8.1 Evolutionary Search and Feature Interaction 150

8.1.1 Ridges 150

8.1.2 Global Structure 152

8.2 Specialized Algorithms 154

8.2.1 Ridges: Searching for Temperature Profiles 154

8.2.2 Global Structure: Funnel Characteristics 154

8.3 Implications 155

x

LIST OF TABLES

2.1 Default parameters: CHC 18

2.2 Default parameters: self-adaptation 21

2.3 Default parameters: CMA-ES 25

2.4 Default parameters: local search 30

3.1 Synthetic test functions 44

3.2 Alternative Griewangk functions 50

4.1 Local search on 2D Rosenbrock and Rana 66

4.2 Rotated local search 69

4.3 Rotated local search 70

5.1 Optimize and refine vs. tube search 96

6.1 Correlation between mobility and basins I l l

6.2 Average fitness on Rana and Schwefel I l l

6.3 Average mobility on Rana and Schwefel 113

6.4 Average fitness on Rana and Schwefel 115

XI

LIST OF FIGURES

1.1 Rastrigin's function 4

1.2 A simple ridge function 5

1.3 Big Valley landscape examples 6

1.4 Global Structure 7

2.1 TheCHC genetic algorithm 19

2.2 Self-adaptation failure 22

2.3 The CMA evolution strategy 23

2.4 CMA-ES and the rank-jj, update 24

2.5 CMA-ES step-size control 25

2.6 The simplex method of Nelder and Mead 27

2.7 Generalized Pattern Search 28

2.8 Mesh Adaptive Direct Search 29

2.9 Local Search 30

2.10 The method of Steepest-descent 32

2.11 Comparing Steepest-descent and Newton's method 35

3.1 The Rana and F8F2 surfaces 43

3.2 Real-valued crossover 47

3.3 Griewangk diagonal slices 49

3.4 Static corrections: sensor shot signals 50

3.5 The synthetic static corrections problem 52

3.6 Static corrections surface plot 53

3.7 Empirical results: Rosenbrock, F101, and F8F2 54

xii

3.8 Empirical results: Griewangk, Rana, and Schwefel 55

3.9 Empirical results: Static corrections 56

4.1 Benchmark ridge functions 62

4.2 Steepest-descent example 63

4.3 Local search and ridges 64

4.4 Local search, Rosenbrock, and precision 67

4.5 Higher precision decreases local optima 68

4.6 Parabolic ridge bias 74

4.7 Explaining self-adaptation on ridges 76

4.8 Self-adaption on scaled ridges 77

5.1 Evolutionary algorithms on the Temperature problem 84

5.2 The median solutions for the Temperature problem 86

5.3 Temperature problem surfaces 87

5.4 Temperature problem parameter bias 88

5.5 Salomon's test function 91

5.6 Self-adaptation on Salomon's function 91

5.7 The optimize and refine method 93

5.8 Tube search 95

5.9 Gradient algorithms and the temperature problem 97

6.1 Dispersion metric explained 101

6.2 The dispersion metric pseudo-code 103

6.3 The dispersion of benchmark test functions 104

6.4 Disconnectivity graph example 105

6.5 Locatelli's view of a funnel landscape 106

6.6 Minimal spanning tree of local optima 109

6.7 Invariance of the mobility metric 110

6.8 Number of visited basins vs. mobility I l l

6.9 Minima mple.pdfspanning tree of sub-threshold points 113

xiii

6.10 Fitness vs. mobility 114

6.11 Convergence of CMA-ES 119

6.12 Scaled convergence of CMA-ES 121

6.13 Gaussian distributions in high dimensions 122

7.1 A cartoon of the 38-atom problem 129

7.2 The transformed function used by Basin Hopping 130

7.3 Leary's Monotonic Basin Hopping results on Lennard-Jones instances 131

7.4 Evolutionary algorithms on select Lennard-Jones cluster problems 132

7.5 CMA-ES on Lennard-Jones 133

7.6 The double-sphere function properties 136

7.7 The Rastrigin and double-Rastrigin functions 137

7.8 Local search on the double-sphere 139

7.9 Global search on the double-sphere 140

7.10 Evolution strategies on the Rastrigin and double-sphere 143

7.11 Evolution strategies on the double-Rastrigin function 144

7.12 Dynamic population size in evolution strategies 146

8.1 Learning Rotations with PCA 152

xiv

Chapter 1

Introduction

Many applications in science and engineering that involve a set of input variables. Each application

can be viewed as a black box containing several "knobs" that represent specific input parameters.

The optimization problem is to find the set of knob positions that returns the largest or smallest value

from the given application. If the black box represents an objective function, fix), then parameter

optimization is the task of finding the set of parameter values, denoted x, that yields the greatest or

least objective function value. The best set of parameter values is called the global optimum.

Search algorithms are used to locate globally competitive solutions within the domain of a given

parameter optimization problem. Some search algorithms, like classic gradient-based methods, use

derivative information from the objective function to guide search. Direct-search methods use only

the values returned by the objective function as a means of finding better candidate solutions. These

strategies are also referred to as derivative-free methods, and can be either stochastic or determin

istic. Stochastic algorithms have some form of random variation built into their search heuristics.

Genetic algorithms [45; 24] and evolution strategies [88] are two well-known direct-search stochas

tic algorithms. Algorithms that use a deterministic search heuristic include the popular Nelder-

Mead simplex algorithm [69] and the general class of pattern search methods [96], which includes

steepest-descent local search.

All search algorithms have some particular bias: since there are no general purpose search

methods that work well on all problems, every search algorithm must have a specific domain for

which it is likely to perform the best. But rarely do the developers of new heuristic search methods

document the types of problems on which their algorithm is likely to yield good performance.

While there are exceptions to this observation, the relative strengths and limitations of direct search

1

methods are not well understood, in part, because algorithm behavior is often inferred through

comparative studies that are greatly influenced by the selection of algorithms compared and the

problems used to evaluate them.

Given the complexity of both algorithms and objective functions, most researchers realize that

empirical comparisons are necessary for understanding the relative behavior of search algorithms

[13]. New search algorithms are often shown to be either more efficient or effective on a given

benchmark problem when compared to other established methods. But often, search algorithms

are developed and evaluated in isolation from other algorithms that would also make good can

didates for the problems that they are trying to solve. Sometimes, new heuristic search methods

are compared against an established, but ineffective, canonical strategy rather than other functional

algorithms. The problem is that there may exist a more efficient or effective way of solving the

particular problem. As a result, there are inherent limitations in any comparative study; since it is

impractical to compare all algorithms across all problems, understanding the strengths and limita

tions of any single algorithm, in the general case, is intractable.

Artificial functions are normally used in empirical studies because real applications are often too

computationally costly and acquiring (or disseminating) them is difficult. Ideally, these synthetic

test problems embody the characteristics of real applications. The assumption is that if an algorithm

performs well on the artificial test functions, then it will also work well on other applications.

This assumption fails when realistic problem characteristic are either not present, or have a limited

representation in the overall test suites. Consequently, building challenging, diverse, and realistic

test functions implies understanding the characteristics that make realistic parameter optimization

problems difficult. The value of any comparative study is also limited, in part, by our ability to

understand the characteristics of realistic problems, and by our ability to embed these features into

benchmark test problems.

1.1 Problems Features

Several features have been identified that help explain why some optimization problems appear more

challenging than others when compared against a varying assortment of algorithms. These features

include dimensionality, noise, symmetry, separability, modality, scale, and global structure. It is

2

well accepted that increasing the number of objective parameters, or dimensionality, usually makes

an optimization problem more difficult to solve. Noisy objective functions, which are common

in many real-world applications, can make an otherwise smooth landscape appear more rugged

from the perspective of search. Adding even a small amount of noise to an objective function can

cause some direct search strategies to fail [3]. Highly symmetric functions can be easier for some

algorithms to solve than problems that have a more asymmetry structure [109].

Whitley et al. [107; 109] noticed that most of the test functions used to evaluate evolution

ary algorithms are separable. Separable problems contain no non-linear interactions between the

parameters of the objective function—an unrealistic assumption to make about most real-world

optimization problems. A separable objective function can easily be solved by searching for the op

timal solution separately in each dimension [109]. The way in which problem separability affects

performance has been extensively studied [83; 43; 71; 31; 78].

The number of local optima, or modality, can also affect problem difficulty. Often an algo

rithm fails to locate the global optimal because it has converged to a local optima. One common

assumption is that highly multimodal problems are more difficult than those with fewer local op

tima because there are more "traps" where search can get stuck. Figure 1.1 displays two views

of a frequently used multimodal benchmark test function. The surface on the left is the landscape

generated from a two-dimensional instance of the Rastrigin function. Each parameter translates to

a single dimension and the objective function value determines the elevation of the landscape. The

one-dimensional function on the right is a slice of a single dimension. Each local optima creates a

barrier for search.

Problems that are poorly scaled have a different rate of change between the parameters of the

objective function. This creates a long narrow ridge in the landscape that can greatly impact the

local efficiency of search. The ridge axis corresponds to the direction of the smallest rate of change

in the objective function. Figure 1.2 shows two contour plots that give a birds-eye view of the

landscape. The right-most surface has a more dramatic difference in scale because the objective

function has been "squeezed" in the direction of the ridge axis. Although this surface is smooth

and unimodal, ridges can cause a wide variety of algorithms to behave inefficiently, including line

search and gradient descent [81], pattern search methods [54], and evolutionary algorithms [105].

3

Figure 1.1: The multimodal Rastrigin test function. The surface on the left is the objective function
landscape of a two-dimensional problem instance. The right function is a slice of a single dimension
of the landscape on the left. Each local optima can act as a "trap" for search.

Hu et al. were probably the first to document that some multimodal objective functions appeared

to have a convex global structure [48]. They comment that the local optima of such functions can

be viewed as "blips" of a more predicable underlying convex surface. Addis et al. complements this

by suggesting that some multimodal surfaces can be seen as perturbations of a simple underlying

structure that has a low number of local optima [2]. Referring back to Figure 1.1, the dashed

curve on the one-dimensional slice of Rastrigin's function highlights this problem's unimodal global

structure.

A convex global structure may be described in different ways. Several optimization problems in

computational chemistry exhibit "single funnel" behavior. Although the surface is multimodal, the

local optima of a single funnel landscape are clustered such that search is "funneled" down towards

the global optimum. A "funnel" essentially refers to a part of an underlying global structure that

is convex. In this way, Rastrigin's global structure can be described as having a single funnel.

Globally convex structures were also discovered in several combinatorial optimization problems,

including the well-know Traveling Salesperson Problem (TSP). Boese, Kahng, and Muddu [16]

discovered a strong correlation between the fitness of a given solution and its distance to the global

optima. Problems of this type exhibit a "big valley" structure; the best local optima are close to the

global optima and more distant local optima have poorer fitness values.

Figure 1.3 shows the correlation between objective function cost (y-axis) and distance to the

4

Squeezed

Figure 1.2: The contour plots of two ridge functions. The left-most figure shows the ridge axis of
a simple two-dimensional, non-separable ridge function. The direction of smallest change in the
objective function corresponds to the ridge axis. The right-most figure shows a more exaggerated
ridge, where the sides of walls of ridge have been "squeezed" together.

global optima (x-axis) for two domains where big valley topology has been observed: a discrete

Traveling Salesperson Problem and a continuous configuration chemistry problem. The left-most

graph represents 2,500 local optima from a benchmark TSP problem [16]. The local optima in the

right figure are taken from a 19—atom Lennard-Jones instance [26], an optimization problem which

we discuss below. The details of each problem are not important here. In both applications, however,

an improvement in objective function cost (y-axis) implies that the local optima is generally closer

to the global optima (x-axis).

1.2 Objective

The evolutionary algorithm community has not developed a clear understanding of how search

algorithms interact with different types of problem features. Most new research is still focused on

escaping local optima (modality), and maybe on rotational invariance (separability), but there is very

little discussion of how some of the other features we just described impact search. Yet we strongly

believe that if an algorithm is going to be successful on a particular application, its heuristics must

address the features that exist with in the objective function.

The objective of this dissertation is to investigate how ridges and global structure impact the

performance of evolutionary algorithms.

5

:«-•: •

distance to global optima - distance to global optima

Figure 1.3: Big valley landscapes have been noticed in discrete Traveling Salesperson Problems and
several continuous Lennard Jones cluster instances. The left-most graph was reconstructed from
TSP data collected by Boese, Kahng, and Muddu [16]. The right-most graph was reconstructed
from local optima based on the 19-atom Lennard-Jones cluster generated by Doye, Miller, and
Wales [26]. The y-axis represents the objective function cost and the x-axis measures distance from
the global optima. In both cases, there is a general trend where a decrease in objective function cost
(y-axis) tends to imply the local optima is closer to the global solution (x-axis).

This objective was cultivated through several observations. First, we have been working on an

application that computes the inverse of a weather prediction model [58]. Sometimes first-order

derivatives can be calculated analytically for this application, but in the more complex and realistic

models, the analytical gradient is impossible to compute [30]. It would appear that this problem is

a perfect candidate for direct search methods. However, our results indicate that many well known

evolutionary algorithms and local search methods do not yield acceptable solutions. This is because

there are ridges in the search space. Although the "ridge problem" has been acknowledged and

documented in mathematical literature on derivative-free optimization, there is surprisingly very

little discussion of this feature from an evolutionary optimization perspective.

Second, not all optimization problems have a big valley structure. Sometimes very distant so

lutions can be nearly as good as the global optima. There are several applications in computational

biology that are considered to be difficult because the objective function appears to have multiple

local optima that form distinct, spatially separate clusters in the search space [99]. Lennard-Jones

clusters, for instance, are a class of configuration optimization problems where the goal is to find

the spatial position for a set of atoms that has the smallest potential energy. While some instances

6

-* distance to global optimum

Figure 1.4: Not all realistic applications have a "big valley" global structure. The left graph is a
reconstruction of data obtained from Doye, Miller, and Wales [26] based on the 38-atom Lennard-
Jones cluster. The y-axis represents the objective function cost and the x-axis measures distance
from the global optima. Notice that objective function cost (y-axis) is not tightly correlated with
distance to the global solution (x-axis). The Schwefel test function (right) is an example of an
artificial test problem that does not have a unimodal global structure.

of this problem do have a single funnel (see Figure 1.3), there are several instances that do not have

this type of convex global structure. Researchers are starting to observe that it is the underlying

problem structure that makes multimodal problems easier or more difficult, not the actual number

of local optima [77]. As a result, the underlying structure of a problem can have a significant impact

on how difficult it will be to find the global optimum.

Figure 1.4 shows an example of two functions that do not have a convex global structure. The

left graph is a reconstruction the 38-atom Lennard-Jones cluster fitness-distance plot created by

Doye, Miller, and Wales [26]. Notice the two "funnels" that form in this instance. The right plot is

a one-dimensional slice of the Schwefel test function. Notice that this function does not have a big

valley structure. The second most competitive solution is far from the global optima, which means

that an average decrease in fitness does not necessarily imply that search is getting closer to the best

solution.

Despite the impact global structure has on algorithm performance, the evolutionary algorithm

community has largely ignored how this feature plays an important role in global optimization.

Instead, multimodal problems are treated as if they are indistinguishable even though the actual

problem difficulty can vary wildly from easy to impossible. One consequence of ignoring global

7

structure in an empirical study is that some algorithms are claimed to be effective global optimiza

tion strategies based how well they solve unrealistic and potentially easy multimodal functions.

1.3 Approach

Like most empirical studies, the conclusions we observe have some inherent limitations because,

as mentioned, it is infeasible to identify and compare the very best algorithms against a broad and

diverse set of problems. Therefore, our empirical conclusions are still shadowed by two reasonable

complaints: First, algorithms are often evaluated in isolation from other strong strategies, including

optimization algorithms that are being developed outside the evolutionary algorithm community.

Second, the test problems are too easy and do not resemble realistic applications.

We address the first concern by carefully selecting algorithms with diverse heuristics. In the

next chapter, we describe several search algorithms, both direct search and those that use gradients.

We include simple direct search methods for perspective, like the self-adaptive evolution strategy

and steepest descent local search. We also describe more complex evolutionary algorithms such as

CHC [32], a non-traditional genetic algorithm, and an evolution strategy using Covariance Matrix

Adaptation, or CMA-ES [43].

While these algorithms share some common features, they are also unique in distinct ways.

For example, most evolutionary algorithms use a set of potential solutions that is initialized in a

disperse way in order to explore the search space. Over time, variation and selection drive this set

of candidate solutions, or population, towards more concise regions of the landscape. The exact

nature of this process—variation and then selection—is one characteristic that makes an algorithm

unique. We explain and highlight these differences in greater detail in Chapter 2, but point out here

that CMA-ES, for example, relies heavily on a so-called mutation operator to create variation, while

CHC exclusively uses what is known as crossover to vary population members from one iteration

to the next. Algorithms also differ in how new populations are chosen. CHC requires that the

new population members compete with the current population for future reproductive opportunity.

CMA-ES, and some forms of self-adaptation, considers only the offspring of the current generation

as potential candidates for the next iteration.

These subtle differences create a diverse group of heuristic strategies. We also include recent

8

pattern search algorithms in some of our comparisons in order to give a perspective on what is

happening outside the evolutionary algorithm community. In contrast to the stochastic nature of

most evolutionary algorithms, some of the methods included in this dissertation are largely deter

ministic once they have been initialized. In Chapter 5 we compare evolutionary algorithms with

gradient-based algorithms. This gives a good perspective on how evolutionary search compares

with gradient-based algorithms on ridges functions. Finally, we also compare specialized algo

rithms where appropriate. This includes algorithms that exploit physical continuity (Chapter 5) and

algorithms designed to exploit funnel structure (Chapter 7).

Throughout this dissertation, difficult test functions and realistic applications are used in order

to make our test suite more challenging and complex. As with our algorithm selection, these func

tions are not randomly chosen. We deliberately select them based on the features that make them

difficult. In Chapter 3, we introduce several of the standard artificial test functions used to evaluate

evolutionary algorithm and discuss the features that are believed to make these problems difficult.

Since some algorithms exploit separability, we create non-separable functions using rotation [83].

One popular function actually gets easier in high dimensions. We provide some alternative imple

mentations that makes the difficulty of this problem scale well as dimensionality increases. We also

introduce a class of multi-funnel test functions in Chapter 7.

Realistic applications also add to the diversity and difficulty of our empirical tests. We introduce

a synthetic version of a geophysics problem in Chapter 3. Later, in Chapter 5, we compare several

search strategies on the previously mentioned atmospheric science problem. We also present results

in Chapter 7 of several algorithms applied to some Lennard-Jones cluster instances.

With a thoughtful selection of algorithms and functions, we mitigate some of the restrictions

that inherently come with an empirical study. Then, in Chapters 3—7, we explore how ridges and

global structure impact search from several perspectives. The following subsections summarize the

objectives of each chapter.

1.3.1 Comparing Algorithms

When we compare some of these diverse algorithms on a more challenging set of test functions in

Chapter 3, we find that there is no single algorithm that works well on every problem. We find that

9

observable differences in algorithm performance can be related to problem features. In particular,

most of the discrepancies that we witness in algorithm performance can be explained by either

separability, ridges, or global structure.

The way that separability impacts search has been widely explored, and we review this related

literature in Chapter 3. There is significantly less research devoted to ridges and global structure.

Yet they account for some of the discrepancies we notice. We assert that these kinds of differences

are rarely reported in optimization literature, especially how they relate to problem characteristics.

Chapter 3 brings to light the fact that the evolutionary optimization community still has not devel

oped a clear understanding of how different algorithms exploit different types of problem features.

1.3.2 Ridges

Ridges in the search space can make some algorithms extremely inefficient. The ridge feature is

interesting from a search perspective because it affects different algorithms in different ways.

In Chapter 4 we explain why algorithms that are biased in search direction will behave ineffi

ciently or fail on ridges when their search direction is not aligned with the ridge axis. In particular,

we show that a simple local search algorithm, that uses a neighborhood search pattern aligned with

the coordinate axis, creates false local optima in the search space. We also look at how a rotated

representation of the search coordinates can make this simple local search algorithm dramatically

more efficient.

We also explain why ridge functions are equally difficult for algorithms that sample points in an

unbiased direction. We provide empirical evidence that the self-adaptive evolution strategy, which

we discuss in Chapter 2, will decrease its step-size until the selection of the next iterations step-size

is not biased toward larger or smaller step-size values.

1.3.3 Temperature Inversion

We present a temperature inverse problem in Chapter 5, which is a forward model that relates

vertical temperature profiles to observed measurements. What is actually needed is the inverse:

given a set of observations, what is the corresponding temperature profile? These profiles are used

in global atmospheric circulation and weather prediction models, and must be found efficiently.

We formally show that several of the evolutionary algorithms we describe in chapter 2 fail to

10

find useful solutions to this application. Furthermore, the time required by the only algorithm that

does find useful profiles is too long for practical use. Ridges in the search space account for part

of the problem difficultly. There is also a high degree on nonlinearity between the input parameters

and a strong bias toward certain regions of the search space. We discuss how this relates to our

results.

The results we present are unsatisfying from a practical point of view because we still have not

identified an algorithm that is efficient and effective. At the same time, the heuristic search methods

we are applying are used "off the shelf and do not make any assumptions about the search space.

Usually incorporating some problem-specific knowledge will increase performance.

The temperature problem has two features that we exploit. First, spatially close object param

eters should have similar temperature values. This is because we don't expect there to be a sharp

drop in temperature as we ascend into a relatively stable atmosphere. We examine two methods that

exploit the smooth nature of the temperature profile; Salomon's optimize and refine algorithm ??

and a new algorithm we call tube search. Both find relatively useful (and smooth) temperature pro

files using a reasonable number of calls to the evaluation function. Second, the temperature problem

actually belongs to a family of nonlinear least-squares search problems. The structure of the ob

jective function is exploited by the gradient-based Levenberg-Marquardt algorithm. Compared with

other gradient methods and evolutionary algorithms, this method is extremely fast.

The temperature problem adds integrity to our perspective on ridges. It serves as a real applica

tion that identifies which algorithms address the ridge problem and which do not. Our investigation

indicates that evolutionary algorithms, in general, do not focus on ridges in the search space.

1.3.4 Global Structure: Measuring Function and Algorithm Dispersion

Although most of the test functions we describe in Chapter 3 have a "big valley" structure, others

do not. Our results suggest that problems with a more complex underlying structure are more

difficult than those with a more predictable and simple global structure. This is consistent with

other related research [77]. Yet often these problems are treated as if they belong to the same class

of "multimodal" test functions.

In Chapter 6, we explore how global structure impacts search. We start this chapter by introduc-

11

ing function dispersion, an algorithm independent metric that allows us to categorize the benchmark

test functions based on their underlying global structure. A low dispersion function is one that has

a "single funnel", or "big valley". High dispersion is the opposite. The best regions of the search

space in these functions are not clustered together, but tend to be spread out and disperse.

On high dispersion functions—those that lack a predictable "big valley" effect—we reason that

the most effective algorithms will ultimately compare the best local optima in the search space. This

means that the local optima they visit are likely to be very disperse. To measure this, we define a new

metric, mobility, that measures algorithm dispersion, which we define to be the dispersion of the

best local optima visited by search. We show that algorithms that visit more disperse local optima

(higher mobility) tend to find better overall solutions on high dispersion functions. Unfortunately,

we are unable to capture this trend in dimensions higher than about 10. This is partly because the

algorithms become less variable in terms of performance as dimensionality increases.

The CMA-ES algorithm, which is driven by local search heuristics, must rely on restarts to

increase its mobility. We explore how function dispersion impacts CMA-ES and show that our dis

persion metric can predict how well CMA-ES will perform on multimodal functions. Our results

indicate that CMA-ES works very well on low dispersion functions, but has difficulties when com

pared with high dispersion functions. We discuss why CMA-ES is less efficient on problems where

the best regions of the search space are too spread out.

1.3.5 When does Global Structure Matter?

We continue investigating global structure in Chapter 7 by formally describing the Lennard-Jones

cluster optimization problem and discussing what researchers believe make multi-funnel instances

of this problem difficult for search. Then we show that evolutionary algorithm do not perform well

on applications where the optimal solution belongs to a funnel that occupies a small proportion of

the search space. We found that part of the problem is the way that evolutionary algorithms often

initialize their populations.

It is commonly believed that population-based methods are better at optimizing multimodal

functions because they tend to explore more of the fitness landscape before their population con

verges to a compact, globally competitive region. The assumption here is that by exploring the

12

search space first—and then exploiting promising regions next—population-based algorithms have

a better perspective of the entire search space than local search methods. But we show that when

the optimal solution lies at the bottom of a proportionally small funnel, too much exploration can

cause search to fail.

We isolate this feature by introducing a class of double-funnel test functions where the number

of funnels remains constant (two) as dimensionality increases and the relative size and depth of each

funnel is adjustable. Then, we show that evolutionary algorithms utilizing the "explore then exploit"

philosophy are increasingly less effective on some of our double-funnel test functions. Our results

indicate that too much exploration hinders search in high dimensions. When we reduced the amount

of exploration in a simple evolution strategy by using a variable population size, we find this results

in a performance gain on our most difficult double-funnel functions. One surprising result from

chapter 7 is that limiting the degree to which an algorithm explores the search space can actually

improve its global search performance.

The Lennard-Jones clusters demonstrate that a less predictable underlying global structure is

a realistic feature that can be difficult for search. We find that exploration is biased towards large

funnels, and that this limits the ability of the algorithms we compare to find optimal solutions that

exist in proportionally smaller funnels.

1.4 Summary

There is no one algorithm that will behave efficiently and effectively on every type of optimization

problem. This realization is widely accepted within the majority of the optimization community

and is evidenced in both theory and by practitioners, who continually incorporate problem-specific

knowledge into a particular algorithm in order to find more effective solutions, more efficiently.

With this in mind, a fruitful direction of research is to identify where algorithms perform the best,

and where they fail. Identifying new features that make real problems difficult for search is a re

quired first step. Understanding how different algorithms interact with these features is the next log

ical consequence. We are exploring how ridges and global structure impact evolutionary algorithms

and in the process, we are better understanding the bias of evolutionary parameter optimization.

The evolutionary algorithm community has still not completely embraced this notion of feature-

13

based optimization development. Some algorithms, like CMA-ES, are developed with certain fea

tures in mind, such as separability and scale. But this seems to be a rare exception in algorithm

development. It is often still the case that new algorithms are introduced as a metaphor first, and

then claimed to do well on a potentially easy test suite. The problem is, we have failed to learn

anything about search in this process.

A potentially more productive extension of adopting the idea that we are not looking for a

"one size fits all" algorithm is to design heuristics that directly address certain problem features

and identify those function characteristics that cause them to fail. This will ultimately create more

diverse heuristic methods and aid our understanding of how algorithms interact with parameter

optimization landscape features.

Ridges and global structure are two such features. They challenge the common belief that

unimodal problems are easy and multimodal problems are hard. For example, ridges can make

unimodal surfaces more challenging for search than some multimodal functions that have a convex

global structure. At the same time, the global structure of a problem may be more indicative of its

problem difficulty than the modality.

The research presented here ultimately shows that evolutionary algorithms have, for the most

part, ignored how these features impact search. Paying attention to these features—and implement

ing strategies that address them—may expand the role that evolutionary algorithms play within the

global optimization community.

14

Chapter 2

Search Algorithms

Prior to the 1950's, the most popular methods for solving unconstrained optimization problems were

gradient-based techniques. These methods, which require derivative objective function information,

include well-known strategies such as steepest-descent, the conjugate gradient method, and the

general class of quasi-Newton methods.

Researchers eventually began exploring new ways to solve optimization problems without the

use of derivatives. Davidon describes an early method of a basic pattern search where the features

were varied "one parameter at a time by steps of the same magnitude", decreasing the step size

when no improvement could be found [22]. A few years later, in 1966, Fogel et al. describe their

optimization process of finite state machines as evolutionary programming [36]. Within the next

decade, John Holland began developing a strategy based on selecting, recombining, and mutating

the features of candidate solutions [45]. This created a class of heuristic techniques later referred

to as genetic algorithms [24]. Around the same time, Ingo Rechenberg independently proposed the

idea of random changes to the parameter values of a difficult flow engineering problem—an idea

he conceived from nature's own mutations [88]. Techniques based on this foundation are known as

evolution strategies.

Following these early developments, successful variations and modifications have kept heuris

tic search methods extremely popular in practice. This chapter describes several search algorithms

that are suitable for solving unconstrained nonlinear optimization problems. Specifically, we dis

cuss stochastic direct search algorithms, including a discrete genetic algorithm and two evolution

strategies. We also look at deterministic methods, both pattern-search and gradient-based.

15

2.1 Problem Representation

We are interested in objective functions that quantify a set of real-valued input values. The min

imization problem is to find the input vector that produces the smallest value. Formally, we are

interested in minimizing an unconstrained nonlinear optimization function that maps a set of real-

valued input parameters to a single value:

/ : RN -» R

Most of the algorithms described in this chapter represent candidate solutions as real-valued

vectors. Therefore, the individual candidate solutions can be directly applied to the objective func

tion. However, some of the algorithms described in this chapter use heuristics that require a discrete

representation. In particular, CHC, a genetic algorithm, and local search, a deterministic pattern

search algorithm, both use finite bit-strings to represent candidate solutions, and create new can

didate solutions using heuristics that operate on these bit-strings. Instead of having the full range

of machine precision available in the continuous domain, they often operate on candidate solutions

that have a lower, less precise, range of values for each input parameter.

Applying these discrete algorithms to continuous parameter optimization problems requires a

unique mapping from the discrete representation (e.g. the bit-string) to a real-valued representation

before the objective function can be evaluated. A Standard Binary encoding scheme with a prede

termined level of precision is one way to do this. Traditionally, 10- to 20-bits of precision is used

for each parameter. This means that there are 210 or 220 values that a particular input parameter

can hold. In the following example, the vector y is a three dimensional 5-bit representation of a

candidate solution. The corresponding vector x is the Standard Binary transformation of y that can

be applied to the objective function (assuming a domain of [0,25]).

y = [01010,11110,00101]r and f = [1 0 , 3 0 , 5] r

Gray codes are an alternative to Standard Binary representation. Here, Gray code refers to the

Standard Binary Reflected Gray code. One reason Gray codes are popular is because they remove

Hamming Cliffs found in binary encoding schemes. A Hamming Cliff occurs when two adjacent

numbers in numeric space have complementary bit representation. In terms of Hamming Distance,

16

which measures the number of bit positions that are different between two bit strings, a Hamming

Cliff occurs when two strings maximally distant from each other in Hamming space. For example, 7

and 8 are adjacent neighbors in integer space, but their 4-bit binary representations, 0111 and 1000,

are complements of each other in Standard Binary. They have a Hamming Distance 4.

Gray codes also preserve the adjacency found in numeric representation, because by definition,

adjacent integers are adjacent neighbors. In other words, each neighbor under Gray code repre

sentation is only Hamming Distance 1 from adjacent neighbors in integer representation. In the

previous example, 7 and 8 are Hamming Distance 4 from each other under Standard Binary. But

under Standard Binary Reflected Gray code, their representations are 0100 and 1100, which are

only Hamming Distance 1 from each other.

The consequence of preserving adjacency is that, for all one dimensional functions, Gray codes

will not create any additional local optima when compared to the original real-valued function [109].

Because Standard Binary destroys the natural adjacency, it can create local optima that do not exist

in the original function. This argument supports empirical evidence that Standard Binary Reflected

Gray code is usually a more effective representation than Standard Binary [109]. For this reason,

the discrete representation used throughout this thesis is Standard Binary Reflected Gray code.

2.2 Genetic Algorithms

Genetic algorithms traditionally represent individuals in the search space as finite bit strings.

Through a process of selection and reproduction the current population of individuals is transformed

into a new generation. Selection dictates which individuals in the current population will have a

chance to reproduce. The goal of selection is to allocate more reproductive opportunities to above

average individuals in the population. This creates a bias called selective pressure. Reproduction

usually involves both crossover and mutation. In most genetic algorithms, the crossover rate is

set much higher than the mutation rate, making the crossover operator responsible for more of the

variation that occurs between generations. The crossover operator combines two selected parents

by concatenating specific pieces of each parent's string together. Mutation randomly changes part

of an individual as a means of exploration and diversification.

17

2.2.1 CHC

One of the more effective variants of the traditional genetic algorithm is CHC [32]. CHC is differ

ent because it selects two parents for recombination in a uniform random way —there is no bias

toward selecting better individuals. Instead, selective pressure is created using cross-generational

truncation selection; newly created offspring must compete with the parent population for survival.

CHC also uses a modified version of uniform crossover, where half of the non-matching bits are

exchanged. The children under this scheme are always the same maximal Hamming distance from

both parents. Further steps are taken to ensure that parents are not allowed to mate unless they are

sufficiently different. Eshelman refers to this as incest prevention [32]. Initially, two strings must be

different by at least L/A bits, where L is the length of an individuals string. This difference threshold

decreases by 1 each time crossover fails to produce an improving individual. This means that over

time, crossover may occur on strings that are more similar. Eshelman states that incest prevention

coupled with a difference threshold enables CHC to perform a coarse grain search initially, which

preserves diversity, and eventually resort to a more fine grain exploitive search.

No mutation is used to alter one generation to the next. Instead, when the difference threshold

decreases to zero, CHC initiates a restart mechanism called cataclysmic mutation, that reinitializes

the entire population by randomly flipping 35% of the bits of the best individual. The entire CHC

process is shown in Figure 2.1.

Table 2.1 shows the parameters specific to CHC. One advantage in using CHC is that almost

no parameter tuning is needed. The population size can be changed, but Whitley et al. have shown

that increasing the population size from the standard value of 50 usually results in a performance

loss [103]. Precision is the only other consideration. Typically, this is set between 10- and 20-bits.

A higher precision search will tend to restart less often because each individual's representation

considers more information, and therefore, will maintain diversity longer.

Symbol
A
b

Parameter
Population size
Precision

Range
N
N

Default
50
10

Table 2.1: The default parameter settings for CHC.

18

Cataclysimic Mutation
(difference threshold)

Population'

Uniform selection & HUX
(with incest prevention)

Cross-generational truncation selection
(the best of the offsrpring & parents)

Figure 2.1: The CHC genetic algorithm.

2.3 Evolution Strategies

Offspring

offspring. 1
offspring.2

off spring.N

The canonical evolution strategy is an iterative process where a population of p parents produce A

offspring based on mutation distributions that center around the parents. Evolution strategies differ

from genetic algorithms in that individuals in the population are generally represented as real-valued

vectors instead of discrete bit-strings. Evolution strategies also use a deterministic selection scheme

instead of a stochastic one. In a (p, A) selection strategy, the new population is created by choosing

the best p individuals from the A offspring. An elitist strategy, on the other hand, selects the p best

individuals from a set that contains both the parents and the offspring. This is known as a (p + A)

selection strategy.

Since evolution strategies use a real-valued representation, discrete recombination is not used.

Instead, a form of continuous recombination creates a single offspring based on a linear combination

of p parents. The mixing number, p, refers to the number of parents that are combined together to

produce a single offspring. When p = 1, no recombination occurs. Intermediate recombination is

a special case where p = p. Here, a single offspring is created based on the average position of the

current best p individuals. Sometimes a weighted average is used in recombining the parents. The

notation of the canonical evolution strategy using recombination is (p/p, A)—ES.

Mutation in an evolution strategy is defined by a probabilistic distribution. The way in which

19

these mutation distributions are defined distinguishes one evolution strategy from another. In this

paper, we consider two ways of adapting mutation distributions: self-adaptation and covariance

matrix adaptation.

2.3.1 Self-Adaptation in Evolution Strategies

In self-adaptation, each individual in the population is described by a set of object parameters,

which define its location in the search space, and a set of strategy parameters, that define its mu

tation distribution. An individual's fitness is derived directly from its location in the search space

(object parameters). In general, individuals with higher fitness, and therefore better object param

eters, are more likely to survive. Unlike object parameters, strategy parameters are not directly

optimized. One of the defining assumptions made by self-adaptation is that the best individuals of

the current generation are likely to have strategy parameters that will create better children in the

coming generations.

Back describes the typical evolution strategy for self-adapting a global step-size [8]. In the

following equations, N(0,1) denotes a normally distributed random number with mean 0 and a

standard deviation of 1. Before the object parameters are created, the step-size for each offspring is

adapted.

a9
+l = a9-exp(iV(0,T'))

Here r is the global mutation strength on a. This determines how quickly a can change from one

generation to the next. We use the standard value of r = 1/V2n. Once each individual has been

assigned a new value for a, its object parameters are created based on this new distribution.

sf+1 = xf + ^+1.Ar,(0,l)

Note that, for each offspring, a new random number is sampled for each dimension, denoted

iVj(0,1), scaled by a9+l, and translated around the parent xf.

The specific parameters used by self-adaptation are shown in Table 2.2. Back and Schwefel

assert that the ideal ratio of p,/\ is 1/7 [10]. The initial step-size is problem dependent. Beyer and

Schwefel suggest decreasing the learning rate r for multimodal surfaces.

20

Symbol Parameter Range Default

M
A

P
0 0

r

Number of parents
Population size (# of offspring)
Mixing number
Initial step-size
Learning rate

N
N
N
M+
R+

1
7 - A *

1
1
1/V2N

Table 2.2: The default parameter settings for self-adaptation of a single global step-size. The value
of N represents the problem dimension.

Self-adaptation can be extended to adapt elliptical distributions denned by individual step-sizes,

but this mutation distribution has a tendency to collapse and search only a subset of the search space

[15; 72; 43; 70; 47; 62]. Figure 2.2 graphically illustrates this problem. The elliptical distributions

represent the step-sizes for two parameters of the best individual from each generation. For clarity,

not all generations are shown. As search progresses, the step size in one parameter starts to shrink.

This creates a long elliptical distribution that has the potential to highly influence future generations.

Without a lower bound on the step-size, the distribution eventually decrease to machine precision,

causing search to stagnate in that dimension.

Correlated mutations extends self-adaptation even further by estimating the covariance for each

pair of object parameters, which, in theory, can describe any elliptical distribution in the search

space. But Hansen et al. show that using correlated mutations becomes impractical when the

dimensionality is higher than about ten [43] and that the performance of correlated mutations is

strongly related to the initial values of the strategy parameters [39]. These shortcomings suggest

that self-adapting more than one strategy parameter is unreliable.

2.3.2 Covariance Matrix Adaptation

Hansen and Ostermeier introduced Covariance Matrix Adaptation, or CMA, as an alternative to cor

related mutations that uses a covariance matrix to explicitly rotate and scale the mutation distribution

[43]. The orientation and shape of the distribution is not indirectly adapted, as in self-adaptation, but

calculated based on the search path and, when applicable, local information extracted from large

populations. This makes CMA-ES extremely efficient on many poorly scaled and non-separable

functions. Hansen and Ostermeier define the reproduction phase from generation g to generation

21

Figure 2.2: The above figure is a two dimensional slice of the path taken by an evolution strategy
while operating with individual step-sizes. The x-axis is parameter 21 and the y-axis is parameter
22 from a single trial of a simple 30 dimensional function. The black circles show the mutation
distribution defined by the individual step-sizes associated with parameters 21 and 22 of the best
individual of the generation (black dot). Without a lower bound on the step-size, the value of the
object parameter associated with dimension 21 will not be able to move, causing search to stagnate.

g + 1 as:

,<*+!> = {x)(3) + a(9)B^D^49+1)

A9+1) where zjf are randomly generated from an N(0,1) distribution. This creates a set of base points

that are rotated and scaled by the eigenvectors (B^90 and the square root of the eigenvalues (D ^) of

the covariance matrix C. The single global step size, a^ is used to scale the distribution. Finally,

the points are translated to center around (x)/f , the mean of the \x best parents of the population.

The objective of CMA-ES is to adapt a covariance matrix that fits the contour lines of the

objective function (Figure 2.3). This goal is partly achieved by using a time dependent portion of

the evolution path to adapt the covariance matrix. The evolution path is a vector that points in the

recent overall direction search has progressed. The evolution path is calculated as

pt+D = (1 _ c) .#) + ^(2^0)) • ̂ (< £) ^) - <f)k))

where (x)(9+1) — (x)^ is the vector representing the current step. Intermediate recombination is

used to create (x)^ , which represents the mean of the /j, best points of generation g. The relative

22

CTJV(0, I) aDN(0,1) aBDiV(0,1)

Figure 2.3: The CMA evolution strategy: The leftmost figure represents a distribution defined by a
single strategy parameter, a. The middle figure requires n strategy parameters and yields a distribu
tion that is an axis-aligned ellipsoid. The far right distribution uses a full covariance matrix and is
capable of fitting the contours of a quadratic objective function.

importance of previous steps is weighted by c, the cumulative time parameter. When c = 1, no

history is considered. The value for c is usually on the order of 1/n. The value y/JI^/a9 is a

normalization constant [43]. The covariance of the evolution path is the rank-one update of the

covariance matrix C.

When a larger population is used, the steps of the best \i individuals may help describe the

topology around the mean of the current generation [42]. This may increase the accuracy of the

covariance matrix estimation. In order to exploit this information, CMA-ES uses a rank-/i-update,

that calculates the covariance of the steps that lead to the best /i individuals:

This information, along with the evolution path, pi9', is used to update the covariance matrix. As

suming 7J-9+l^ is the covariance of the steps leading to the best JJL individuals, and p(#+1-) is the

covariance of the evolution path, the new covariance matrix is

C(s+i) = (1 - C r o) C ^ + ccv (acM
9+l) + (1 - «c.)Z(3+1)) ,

where ccv and acv are constants that weight the importance of each input. A principal components

analysis on the covariance matrix extracts the eigenvectors B ^ and the square root of the eigen

values D ^ . This information allows CMA-ES to construct elliptical mutation distributions that are

unbiased to any orientation in the search space. Figure 2.4 illustrates this idea in two dimensions.

23

generation = 1

& :
L

generation = 7

••*A- .

Figure 2.4: The rank-/u update: The light gray points are sampled from the distribution defined by
the black ellipse. The black points are the best of the sample. Using the steps to these points to
update the covariance matrix is called the rank-/x update.

The global step-size, o^9\ is adapted using cumulative step-size adaptation (CSA). Introduced

by Ostermeier et al. [73], CSA uses the evolution path (not scaled by the eigenvalues D^9' of C*-5-*)

to determine parallel, or anti-parallel steps. When the evolution path is longer than expected, the

search steps are probably parallel and the mutation strength should increase and decrease otherwise.

Figure 2.5 illustrates this heuristic.

The expected length of the evolution path under random selection is simply the expected length

of a random normal vector (E\\N(0,1) | |). This is approximated as:

E\\N{0J)\\ = Xn = ^ (l - l + l - ^)

The strategy parameter defining the global step size is updated as follows:

a(g+i) = a{g) . e x p 2.
a Xn

Here, d is the damping factor, whose default is 1. The evolution path p3+ is calculated such that it

is not scaled by D^ (e.g. not to be confused with p<?+1).

The default parameter settings for CMA-ES are listed in Table 2.3. Increasing the population

size will increase the learning rate of the global step-size a^9\ but has also been shown to increase

the robustness of CSA (CMA without matrix adaptation) in noisy environments [4]. Increasing the

population size has also been shown to increase the performance of CMA on multimodal functions

[41; 7]. Decreasing the cumulative time parameter will result in a evolution path that includes a

greater number of generation steps. The initial step-size is problem dependent. If OQ is too small,

24

Decrease a Increase a

Figure 2.5: Step-size control using cumulation. The gray arrows indicate generational steps. The
dashed line is the expected length of a random normal vector (E\\N(0,1)\\) and the black line with
the white arrow is the length of the evolution path pc. When the evolution path is shorter than
expected, a should decrease. When the path is longer than expected, the generational steps are
probably parallel and the step-size should increase.

the performance of CMA will be dependent on where in the search space it is initialized. By default,

CMA uses weighted recombination. Intermediate recombination can also be used where w\ = 1 for

alH € 1 : N.

Symbol Parameter Range Default

A

c
Wi

Parent number
Population size (# of offspring)
Initial step-size
Cumulative time
Weight of the ith parameter

\i < A

N
R+
0 < c< 1

H = LA/2J
4 + [31niVj
1

lnz
1/VN
l n*± i -

Table 2.3: The default parameter settings for CMA. In the above equations, N is the problem
dimension.

2.4 Pattern Search

Pattern search methods differ from evolutionary algorithms in that they are primarily determinis

tic. The underlying performance of a typical pattern search algorithm resembles that of basic local

search. At every iteration k, the current solution Xk is compared to a finite set of points either on a

next-descent or best-descent basis. The deterministic pattern of finite points is used to create varia

tion on the current solution, xj,. This takes the place of stochastic operators, such as recombination

25

and mutation, that are used in evolutionary algorithms. Selection is also deterministic; the current

solution for the k + 1 iteration is chosen from the pattern of finite points and the best solution from

iteration k.

The simplex method of Nelder and Mead is probably the most widely used direct search al

gorithm. Surprisingly, this method is known to fail on relatively simple problems. We describe

this method for historic reasons and then discuss more advanced pattern search methods, such as

Generalized Pattern Search (GPS) [96] and Mesh Adaptive Direct Search (MADS) [6].

2.4.1 Nelder and Mead Simplex

Spendly, Hext, and Himsworth [92], noticed that, given an optimization problem with n parameters,

it only requires n + 1 calls to the objective function to identify the estimated gradient direction of

the surface. This is the basic idea of their original simplex search.

Once the initial simplex is formed, each vertex is evaluated. Of the n + 1 points evaluated, the

vertex with the least desirable fitness is singled out as the candidate for replacement, and is replaced

by reflecting the point through the centroid of the remaining vertexes. These reflection steps allow

the simplex to "flip" down the surface in the direction of the gradient.

Nelder and Mead applied the simplex algorithm of Spendly, Hext, and Himsworth [92] to op

timize nonlinear functions. They added additional expansion and contraction moves designed to

increase the efficiency of the search [69]. For example, if the reflection move provided a new best

solution, they reasoned that was advantageous to continue searching in that direction. If neither the

reflective step, nor the expansion step improve the current best solution, Nelder and Mead assume

that the simplex is straddling the minimum, and a contraction step is necessary. The contraction

moves from the centroid, either toward the reflection step or away. If neither of the steps prevail as

a new best solution, the Nelder-Mead simplex resorts to shrinking the length of the simplex, similar

to the algorithm defined by Spendly, Hext, and Himsworth. Figure 2.6 graphically shows how the

Nelder-Mead simplex expands and contracts.

2.4.2 Generalized Pattern Search

Generalized Pattern Search (GPS) refers to a group of deterministic search algorithms that are uni

fied under an abstract definition developed by Torczon [96], that includes early pattern search meth-

26

\ \ v

' • V "• \

Figure 2.6: The simplex method of Nelder and Mead. The first graph on the left shows the two
contraction steps that move either toward the reflection step or away. If the reflection step provides
improving fitness, then the expansion step searches further in that direction. Finally, if all steps fail,
the simplex shrinks.

ods such as Evolutonary Operation proposed by Box [18] and Hooke and Jeeves' pattern search

[46], as well as her own multi-directional search [95]. If constructed appropriately, generalized

pattern search methods are guarantee to converge to a local optima within a predetermined degree

of precision.

At each iteration k, GPS methods create variation by evaluating points that belong to a mesh

grid constructed from a matrix of directions D and a step size a. Together, D and a create a

neighborhood of potential candidate solutions. The search directions must remain constant during

the course of search, which means that arbitrary search directions are not allowed once D has been

initialized. Each pattern must contain at least n + 1 points in order to guarantee a descent direction,

where n is the number of dimensions.

Although the shape of the pattern cannot change, the size of the initial pattern can. Because

of this restriction, the progress of these methods largely depends on the choice of the initial search

directions [95]. The step-size update rule is simple and intuitive: if none of the neighborhood points

(a D) offer an improvement, the step-size is decreased by half, and doubled otherwise. Torczon and

Trosset point out that pattern search methods pay a price for a convergence guarantee because they

may need to evaluate as many as n + 1 points in order to alter the step-size [97]. This is especially

27

Figure 2.7: A selection of patters allowed by GPS. Notice that each pattern maps onto a lattice.

problematic in higher dimensions.

Any pattern with at least n + 1 points is admissible as long as they map onto a rational lattice.

Figure 2.7 shows three possible patterns. The leftmost pattern is a simplex. The first n directions

are the positive unit vectors along each dimension axis. The (n + l)st direction is taken to be the

negative sum of the first n dimensions. We label this implementation GPS(n+l). The middle pattern

evaluates points on the positive and negative coordinate axis, and is denoted GPS(2n). The pattern

on the right is Torczon's multi-directional search.

2.4.3 Mesh Adaptive Direct Search

Audet and Dennis [6] introduce Mesh Adaptive Direct Search (MADS) in order to add flexibility

to the GPS framework. The main difference between MADS and GPS is that the neighborhood

pattern, defined by D, is not limited to a finite number of directions once initialized. The search

directions can be chosen arbitrarily, and randomly, as long as they span the search space.

As with GPS, the points are taken such that they belong to a mesh constructed from a matrix

of directions and a step size. However, additional flexibility allows the directions of the pattern to

change by specifying a mesh size parameter, A. The directions are still specified by the columns of

D and, as mentioned, can be chosen arbitrarily with the only requirement that D spans Rn. A can

be thought of as the granularity of the mesh. Its value is increased if an improving point is located,

and decreased otherwise.

We used the NOMAD package [21] as a code base for running experiments with GPS and

MADS. In each instance, the step size, a, was adapted as already described for GPS. This software

28

Figure 2.8: Mesh Adaptive Direct Search: Adapting the granularity of the mesh allows MADS to
search in arbitrary directions as long as the random pattern still spans the search space. In the above
graphics, the mesh size is A = 1, \, and | .

contains an implementation of five direction sets that, for this document, we label as: GPS(2n),

GPS(n+l), Unif(n+1), MADS(2n), and MADS(n+l). The set Unif(n+1) is a simplex and its di

rections radiate from the current iterate uniformly through the search space (e.g. vertices of an

equilateral triangle, regular tetrahedron, etc.), rather than being aligned with dimension axes.

The initial pattern directions of MADS(2n) and MADS(n+l) are the same as those previously

described for GPS(2n) and GPS(n+l). The sets MADS(2n) and MADS(n+l) should really be

thought of as higher-resolution versions of their GPS counterparts. That is, MADS is not lim

ited to step-size variations of the initial pattern, but can adapt arbitrary directions. For example,

because the directions in GPS(2n) are aligned with the search space axes, the search is expected to

creep along any encountered ridges. MADS allows the search to progress along directions that are

not necessarily aligned with the axes. The number of such possible directions is determined solely

by the ratio a /A. Figure 2.8 shows how MADS can allow for arbitrary search directions using the

mesh grid parameter A. For MADS, A was multiplied by four at each iteration if an improving

point is found and divided by four otherwise.

Typically, a pattern search algorithm is terminated when the step size falls below a certain thresh

old. For comparison reasons, we are interested in using the number of function evaluations as termi

nating conditions. Thus a restart mechanism was used when the step size became too small: search

continues to restarted from a random position until some maximum number of function evaluations.

29

Symbol Parameter Range Default
b Precision N 10

Table 2.4: The default parameter settings for local search.

Figure 2.9: Local Search: After evaluating each point in the coordinate pattern, local search moves
to the best point (this move is shown with an arrow). The process repeats until no improvements are
found.

2.4.4 Local Search

In this paper, local search refers to a steepest ascent bit climber, where each parameter is encoded

as a bit-string using the same technique employed by the CHC discrete genetic algorithms. A

neighborhood pattern forms around the current best solution by flipping one bit at a time. Local

search evaluates all these neighborhood points before taking the best, or steepest, step. Local search

restarts when no improving move is found. Figure 2.9 illustrates this idea.

The only parameter for local search is the precision, which is expressed as the number of bits

used to represent each parameter. This makes local search extremely easy to use. The default values

are typically set between 10- and 20-bits. A higher precision will converge more slowly because the

neighborhood pattern is larger. This becomes a practical problem in high dimension. For example,

on a 100 dimensional problem with 20-bits of precision, the neighborhood size of local search is

100 • 20 = 2000. The can be cut in half using 10-bits of precision, but it will still take 1000

evaluations just to take a single step.

30

2.5 Gradient-based Methods

The methods described so far search the objective function using only the values it returns (e.g.

direct-search). Gradient-based methods require the objective function to be differentiable. Unlike

evolutionary algorithms, gradient-based methods are strictly local search methods, meaning they

will only find the local optima that exists in the basin of attraction for which they are initialized.

The gradient of a function at a particular point is a vector pointing in the direction that represents

the greatest rate of increase. The "steepness" of the function is given by the magnitude of the

gradient. This is often interpreted as the fall line of a hill. Mathematically, if

f(x) = f(xi,x2,...xn)

is the objective function we are optimizing, then the gradient is the vector of first derivatives:

V/(x) =
df(x) df(x) df(xy

T

hn dx\ ' 8x2 ' '' dxv

The Hessian of a function is less intuitive than the gradient. Essentially, the Hessian at a partic

ular point measures the degree to which the parameters of the objective function function interact.

The Hessian is the matrix of second derivatives:

Wx)
V / W " SxtaXl

2.5.1 Steepest-descent

The method of steepest-descent iteratively line searches in the direction of the gradient to minimize

a function. Formally, if our current point is xk, then steepest-descent finds the step-size, a, that

minimizes the objective function in the direction of the negative gradient, — V/(x) . An iteration

moves search from xk to xk+\ as:

xk+i = xk - aVf{x)

A line search method finds the step-size a that minimizes

f(xk - Q V / W)

Figure 2.10 graphically shows this process. The leftmost figure shows the direction of the

gradient from the point x^ as a dashed line. The one-dimensional curve in the right most figure

31

xt.

Figure 2.10: The method of steepest-descent: A line search in the direction of the gradient (dashed
line) leads to the minimum in that direction, x/t+i-

shows a slice of the objective function along this line, which is the direction of the gradient. A line

search procedure will find the value of a such that Xk — aV/(x) is minimized. This results in the

new point Xk+\. The length of the black line in the leftmost figure represents the value of step-size

a.

As it turns out, simply following the gradient is an inefficient way of minimizing most functions.

In fact, the efficiency of steepest-descent is directly proportional to how poorly scaled the objective

function is. We discuss this in greater detail in chapter 4, but point out here that, for this reason,

steepest-descent can be inefficient when used as a gradient-based local optimizer. The conjugate-

gradient method, and the class of quasi-Newton methods, use the gradient in a much more efficient

way.

2.5.2 Quasi-Newton Methods

All quasi-Newton methods are based on Newton's method. Newton's method starts with the first-

order necessary condition for a local optima, which states that the gradient of a particular point be

equal to zero.

V/(x) = 0

32

Then Newton's method makes a quadratic approximation of the objective function, f(x), by using

the first three terms of the Taylor series expansion for / at the point Xk '•

q(x) = f{xk) + {x-xk)TVf{xk) + hx-xk)TV2f(xk){x-xk)

This creates a quadratic surface, q(x), that approximates the nonlinear function f(x). Then New

ton's method finds the minimum of q(x) by setting its gradient equal to zero. This constitutes an

iteration of Newton's method. The standard form is best understood through the following deriva

tion. First, we minimize the approximate function q(x).

V9(x) - Vf(xk) + V2f(xk)(x-xk) = 0

Solving this equation for x gives:

Vf(xk) + V2f(xk)(x-xk) = 0

V2f(xh)(x-xk) = -Vf(xk)

x-x
k = -[V2f(xk)]-lVf{xk)

x = xk-[V2f{xk)]-1Vf{xk)

The point x represents the minimum of the quadratic approximation. In practice, the inverse Hessian

[V2f(xk)]~1 is not computed. Instead it is more efficient to solve the system of equations for the

vector p = x — x^.

V 2 / K) P = V/(xfe)

This gives the direction and step-length that minimizes q(x). In other words, given p, the next step

is:

Xk+l = Xk + P

The effectiveness of this step is proportional to how well the quadratic surface q(x) approxi

mates the objective surface f(x). On quadratic functions, it will find the exact solution in one step.

On some nonlinear functions, it may only requires a few steps. But this method can fail. If the Hes

sian V2f(xk) is not positive definite, then the search direction is no longer a descent direction, and

33

the next iteration may return a value that is greater than the current iterate (e.g. f(xk+i) > /(#&)

may occur). Newton's method is also costly; computing the Hessian requires second derivatives,

which are often complex and expensive.

Quasi-Newton methods increase reliability and decrease complexity by approximating the Hes

sian W2f(xk) in a lower cost way that ensures the resulting matrix is still positive definite. This

is a trade-off between algorithm complexity and number of iterations. Quasi-Newton methods re

quire more iterations, but do not require second derivatives. Instead, the Hessian V2f{xk) is ap

proximated by a matrix B\. using only the gradient. Then a step-size is computed by solving the

following system of equations:

Bk p = ~Vf(xk)

Since Bk is only an approximation, a line search finds a such that an optimal step is taken in the

direction of p:

xk+i =xk + ap

In Newton's method, a = 1. Before the next iteration, the approximate Hessian Bk is updated based

on information from this step. The way that this update occurs often distinguishes one quasi-Newton

method from the next.

Steepest-descent can be thought of as a quasi-Newton method that uses the identity matrix as an

approximation to the Hessian. On functions that are not poorly scaled and have limited parameter

interaction, this is a reasonable approximation and steepest-descent works well. When this is not

the case, the direction used by steepest-descent can be an inefficient choice. Figure 2.11 graphically

explains this difference.

In chapters 5 and 7 we compare evolutionary search with the BFGS [20; 34; 37; 89] quasi-

Newton method, which is named after its creators: Broyden, Fletcher, Goldfarb, and Shanno. The

details of this update can be found in any introductory optimization text, such as Nash and Sofer

[68] "Linear and Nonlinear Programming", and are not critical for the work presented here.

34

Figure 2.11: Steepest-descent and Newton's method: The figure on the left is steepest-descent,
which can be thought of as a quasi-Newton method where the identity matrix approximates the
Hessian. In this instance, the search directions point in the direction of the greatest rate of change,
which is rarely toward the optimum. Knowing the Hessian allows these directions to correct for
the scale and interaction of the parameters. This means that the search directions used in Newton's
method will point in the direction of the optimum of a quadratic function (right figure).

2.5.3 Conjugate Gradient Method

Conjugate gradient methods [35] exploit the fact that steepest descent often takes steps in the same

direction, multiple times. Assuming an algorithm could find the right set of directions, conver

gence could be increased by taking fewer steps in the correct directions. The goal, therefore, of the

conjugate gradient method is to find a good approximation to this optimal set of directions.

The algorithm starts at a point XQ and takes the steepest step.

d0 = — V/(x) (gradient direction)

x\ — XQ -\—a do

Instead of repeating the next iteration in the steepest direction, the conjugate gradient method com

putes a search direction that is "conjugate" to the previous direction as opposed to "orthogonal", as

is the case with steepest descent. This new direction is calculated by first computing an adjustment

factor Cfc.

(V/ (g*) -V/(s fc - i)) r V/(sfc)
Ck v/fo-iFv/fo-i)

35

This particular update of ck is known as the Polak-Ribiere formula. Then, instead of searching in

the direction of the gradient (—V/(xfc)) at iteration k, the new direction is adjusted based on ck and

the previous search direction dfc_i.

4 = -Vf(xk) + ckdk-i

The conjugate gradient method does not store an approximation of the Hessian matrix. This

makes it suitable for larger dimensional problems where storage is a concern. This method is also

very efficient because it does not require solving a system of equations that is necessary in quasi-

Newton methods.

The direct search community has recognized the merits of this algorithm. In his paper titled, "An

efficient Method for Finding the Minimum of a Function of Several Variables Without Calculating

Derivatives", Powell outlined a way to approximate this method by generating one-dimensional line

searches [79]. But this method can fail. Zangwill demonstrated that if no success is obtained in

one of the search directions, the directional vectors would no longer span the search space [112].

Brent outlines several modifications to Powell's method, which he called PRAXIS, or principal axis

[19], that solves the problem of linear dependency among search vectors by resetting the search

directions after each iteration. Instead of resetting the search directions back to the coordinate axis,

Brent proposes finding principal vectors that are computed under the assumption that the objective

function is quadratic.

2.5.4 Levenberg-Marquardt

There are several objective functions that have the following basic form:

1 M

= 2rix)Tr{x)

The objective is to find the vector x that minimizes f(x), meaning that each of the m sub functions

ri are indirectly minimized also. Often these sub functions are thought of as residuals and are

expected to go toward zero when f(x) is minimized. Objective functions of this nature are called

nonlinear least-squares problems.

36

Any of the algorithms we have discussed so far can be used to minimize an objective function

of this form. However, because of the structure of the objective function, the Hessian matrix has

a distinctive form; it is the sum of two terms: the first only involves the gradient and the second

is zero when the residuals r\ are zero. Algorithms that are specifically designed to solve nonlinear

least-squares problems exploit this unique structure.

Motivation: Gauss-Newton method

If we applied Newton's method to a nonlinear least-squares problem, we would solve the following

system of equations to find the vector p that minimized the underlying quadratic approximation

function based on a Taylor series expansion of f(x).

V2f{x) V = V/(x)

(J{xf J(x) + S(x)) p = J(x)Tr(x)

Here J(x) is the Jacobian of f(x) at the point x. The term S{x) is defined as:

d2n(x)
S(x)ij = Tiix)

dxidxj

Instead of using the actual Hessian, the Gauss-Newton method approximates the Hessian using

only first-order information.

Bk = J{x)TJ{x) « V2f{xk).

The rational behind this approximation is simply that when rj(x) « 0, then S{x) K, 0 and the true

Hessian V2f(xk) ~ J(x)TJ(x).

The best of both worlds

Although there are several problems with this approach, the primary complaint is that when the

residual values rt(x) are not small, J(x)TJ(x) is a poor approximation of the true Hessian. It is

also possible that J(x)TJ(x) becomes nearly singular and may not be positive definite.

The Levenberg-Marquardt [53; 61] algorithm adds a positive parameter A to the approximation

of the Hessian that is adjusted to ensure convergence.

Bk = J(x)T J(x) + IX « V2f{xk)

37

A positive A ensures that Bk is never non-singular and that the eigenvalues of this approximate

Hessian are positive. When A is small, this method becomes the Gauss-Newton method. If A « 0

and ri(x) « 0, this method resembles Newton's method. And large values of A make this method

mimic steepest-descent. The Levenberg-Marquardt method simply ties these three search strategies

together with the addition of the parameter A.

2.6 Summary

We have discussed several search algorithms, from a variety of disciplines, that are appropriate for

solving nonlinear optimization problems. Each of these methods have a distinct set of heuristics that

are used to explore the solution space and find more effective parameter values. These heuristics

shape algorithm behavior, causing each method to respond differently to the features of a given

problem. This creates a niche—a set of strengths and weaknesses—for each algorithm.

Gradient-based algorithms are extremely efficient local optimization strategies when gradient

information is available. It is unlikely that a direct-search strategy will be competitive in this do

main. In practice, however, the physical world that the objective represents may be quite compli

cated, and computing derivatives can be difficult, or even impossible, in many instances. And these

methods will only find the local optimum that exists in the basin of attraction for which they are

initially started.

Direct search methods were created, in part, because researchers were tired of the tedious nature

of optimization using classic gradient methods. Direct-search methods allow practitioners to find

quick and dirty solutions to a particular problem without the complexity of using a gradient method.

Sometimes this is good enough.

Evolutionary algorithms—and in particular genetic algorithms—were developed with modality

in mind. The deterministic search methods we have discussed, both gradient-based and pattern

search, are best thought of as local search strategies. When employed on a multimodal surface,

multiple restarts are the only heuristic that gives them a global perspective. Evolutionary algorithms

are often thought of as being better global optimization techniques because they tend to sample

more of the search space first, before isolating a particular region as the most effective.

38

Chapter 3

Comparing CMA-ES, CHC, and Pattern
Search Using Diverse Benchmarks

Empirical studies are commonly used to understand algorithm behavior. As mentioned in the intro

duction, most empirical studies use a standard set of benchmark functions because they are readily

available and the evaluation time is fast compared to many real-world applications. Often the goal

when comparing different algorithms across these benchmark problems is to show that one particu

lar algorithm, usually a novel one, is better than a set of existing and well know heuristic methods.

But this approach frequently generates two complaints about evaluating evolutionary algorithms:

1. The test problems are too simple and easy.

2. There are not enough comparisons that include optimization algorithms used in the larger

scientific community, such as the pattern search methods described in the previous chapter.

This chapter addresses these concerns in the following way. First we describe several of the

synthetic test functions used to evaluate evolutionary algorithms and include a brief description of

why these functions are believed to be difficult. We make this standard test suite more challenging

by: 1) including a rotated version of each problem, 2) describing two new versions of the Griewangk

function, and 3) introducing synthetic version of the "static correction problem" from geophysics.

This problem is nonlinear, multimodal, scalable and it has the nice property that one can visualize

the solution.

Then we compare CMA-ES, CHC, GPS, MADS, and local search on this set of problems. The

comparisons are not meant as a competition. In fact, our results suggest that no one method is the

best across all problems. This conclusion motivates the question: can these observed differences

39

in algorithm performance be related to problem features? We dissect our results based on a subset

of the problem features described in the introduction. Our discussion suggests that the consistent

differences in algorithm performance can be related back to problem features.

We focus our discussion on three specific features: separability, ridges, and global structure.

These problem characteristics account for the majority of the discrepancies in performance we ob

serve between the different algorithms we tested. One of the surprising results of this chapter is

how much a simple rotation of the search space can change the performance of some algorithms.

We review the literature on algorithms and their relationship to problem separability in this chapter.

In the coming chapters, we explore more deeply how ridges and global structure affect some of the

algorithms presented here.

We include a rotated and shifted version of most benchmark problems because many of the

test functions described here are separable. Since separability creates an unrealistic surface for

algorithms that exploit this feature, we review a method for altering such functions so that they are

non-separable. This also ensures that the problems are no longer symmetric and that the global

optimum is not located at some fortuitous location in the search space. All of our problems also

have bound constraints on the input domain; thus, an algorithm that is invariant under rotation (e.g.

CMA-ES) will not necessarily produce the same results in expectation on the rotated version.

3.1 Benchmark Test Problems

Below is a description of the most frequently used test functions in the evolutionary algorithm

community. Table 3.1 lists the corresponding equations.

Sphere : This function is a simple convex unimodal surface. It is separable, symmetric,equally

scaled in all dimensions, and invariant under rotation, arguably making it the easiest test

function. Much of the theory developed in the evolution strategy community is connect with

the sphere function. Back points out the importance of functions like the sphere: "..., before

we can expect an algorithm to be successful in the case of hard problems, it has to demonstrate

that it does not fail to work on simple problems" [8].

Ellipse : Similar to the sphere in all its properties except that it is scaled differently in each dimen-

40

sion. This creates a ridge axis along the dimension that has the smallest weight.

Rosenbrock : Rosenbrock's "banana function" is a well-known and difficult ridge function [81].

Rosenbrock notes, "Computer runs were started from x\ — —1.2, 22 = 1, so that the current

point had to descend into the valley, and then follow it around its curve to the point (1,1)"[81].

Voigt has recently argued that the curvature of the ridge, not the scale, is the primary feature

that make the high dimensional Rosenbrock problem difficult [98].

Rastrigin : The Rastrigin function [80] is created by perturbing a sphere with a cosine term to

create a highly multimodal surface that has a unimodal underlying shape. The local optima of

this function are also located on the integer coordinate axes, making this function easier for

algorithms that exploit symmetric topology (discussed below). Muhlenbein, Shomisch, and

Born [67] are responsible for the modified version listed in Table 3.1.

Ackley : The Ackley function [1] generalized by Back [10] has a large number of local optima

covering its simple underlying surface structure. Ackley suggests that "an iterated hillclimber

will get stuck on one of the hilltops most of the time" [1]. At the same time, however, Ackley

acknowledges that a search strategy with a larger neighborhood will likely be able to "see the

higher lands hidden by the intervening valley", and therefore, these smaller traps are less of a

damaging feature.

Griewangk : The Griewangk function also oscillates on a sphere surface that becomes more

smooth, and therefore easier, in high dimensions [109].

Bohachevsky : Bohachevsky [17] proposed a test function with "many local optima" as a way to

test his generalized simulated annealing algorithm. The function listed in Table 3.1 is one

instance of the general class of functions proposed by Bohachevsky.

Schaffer : Schaffer et al. [86] originally proposed two test functions. Both functions are multi

modal with different barrier heights between the local optima. Schaffer et al. state that their

functions were designed to be difficult for search by simulated annealing [86]. The one listed

in Table 3.1 is the most common.

41

Schwefel : Schwefel's function is actually one of several described by Hans-Paul Schwefel and

with which his name is unofficially connected. This particular function is based on problem

2.3, page 328 in the 1995 edition of his book "Evolution and Optimum Seeking" [88]. This

problem is a separable multimodal function where the second best local optima in the search

space is distant from the global solution, which occurs near the bounds of the search space.

Schwefel found that, "only the multi-member (e.g. // > 1) evolution strategy converged to

the apparent global minimum; all other methods only converged to the first (nearest) local

minimum" [88].

F101 and Rana : Whitley et al. noticed that most of the benchmark test functions were separable

and symmetric. In response to this, they constructed test functions that were nonseparable,

nonsymmetric, highly multimodal, and had a unique global solution along the diagonal of

the two dimensional surface [109]. The first function, F101, was designed to be similar to

Schwefel's problem, but nonseparable. The Rana function has ridge features and is highly

multimodal. This is the rightmost graphic in Figure 3.1.

F8F2 : This function was also introduced by Whitley et al. It is a nonseparable composite func

tion that passes the result from Rosenbrock's function (traditionally called F2) to Griewangk

function (traditionally called F8); this adds numerous local optima to Rosenbrock's original

surface. A slice of the 2D surface (leftmost graphic) in Figure 3.1 highlights the additional

local optima that form on Rosenbrock's problem.

The primary complaints with this set of benchmark test functions is that most of the functions

are too simple and do not represent realistic problems. We address these concerns in three ways.

First, all of the above multimodal functions, except F101, Rana, and F8F2, are separable. Sep

arable problems contain no non-linear interactions between the parameters of the objective func

tion. Although some problems can be separable and still have some degree of non-linearity (e.g.

f(x) = x\ • X2 + xs), these problems, as noticed by Whitley et al. [109], contained no non-linear in

teractions between parameters. The implication here is that these functions can be easily solved by

42

Figure 3.1: Two-dimensional surface slices of the F2F8 (left) and Rana function (right).

searching for the optimal solution separately in each dimension. As we will see in the next section,

several algorithms exploit this characteristic.

Second, the Griewangk function exemplifies another concern within this test suite; it actually

gets smoother, and therefore, easier as the dimensionality of the problem increases. We propose two

modifications to this function that allow problem difficulty to scale well with dimensionality.

Finally, there is a general concern that test problems formed by mathematical equations may

lack the problem structure found in more complex and realistic applications. In this section, we

model a synthetic version of a problem from geophysics.

3.1.1 Separability

Both Salomon [83] and Whitley et al. [109] noted about 10 years ago that most functions used

to evaluate evolutionary algorithms are separable and can easily be solved to optimality by in

dependently searching each dimension of the search space. Whitley et al. proposed some new

nonseparable test functions (F101, Rana, and F8F2). Salomon created new nonseparable problems

by rotating some of the existing test functions. This rotation make the problems nonlinear and also

breaks symmetry in the search space that can make problems much easier to optimize.

Salomon [83] found the Breeder Genetic Algorithm [66] performed poorly after rotation and he

concluded from this that recombination was of limited value as a search operator on surfaces where

there was a high interaction between the parameters of the objective function. Part of the problem

is that the Breeder Genetic Algorithm uses the coordinate axis as basis for recombination. The

43

Name

Sphere

Ellipsoid

Rosenbrock

Schwefel

Rastrigin

Schaffer

Bohachevsky

Griewank

Ackley

F101

Rana

F8F2

Function

2-,i=l xi

Ef= 1(ioo^)2

Ell1 IOOK2 - * m) 2 + (i - Xif

V^N • / A f\
2^i=l-xiSmW\Xi\)

10 • N + Eliitf - 10cos(27rxi))

Ztl\xf + x 2
+ 1) i) • [sin2 (50 • (*2 + xi,)0-1) + 1-0]

E U l ^ ^ + ^ f + i - O - S c o s C ^ ^ ^ - O ^ c o s ^ ^ + O + O - 7)

4000 Z J I = 1
 Xi ~ l l i= l C 0 S \Jjt) + *

-20.«cp^-0.2^E£i^J-
e x P (l7 E l i cos(27rxi)) + 20 + e

E i l T ' - ^ s m f V N ~ y |) - y s i n (v
/ | y + Xj/2|),

with y = xi+i + 47

Ejil1 xi sinW\ -xi + y\) cos(v/|xi + j/|)+
y c o s ^ l - £ i + y\)sm(y/\xi + y\),

with y = xi+i + 1

v^Af-i Rosenbrock^^xi+x)2

2^i=l 4000
r y ^ co/Rosenbrock(Xi,xi+1)\ ^ 1
\.H—l \ \fi)

Domain

[-5.120,5.110]

[-5.120,5.110]

[-2.408,2.408]

[-512.0,511.0]

[-5.120,5.110]

[-10.24,10.23]

[-1.024,1.023]

[-512.0,511.0]

[-10.24,10.23]

[-512.0,511.0]

[-512.0,511.0]

[-2.048,2.047]

Table 3.1: Common synthetic test functions.

question is: can we change the basis we are using and have a more effective genetic recombination

operator?

In the mid 1990's, Kazadi [49] motivated a new representation for genetic algorithms called a

conjugate schema. Like Salomon, Kazadi asserts that sometimes crossover disrupts the efficiency of

a real-valued genetic algorithm by producing low fitness offspring. As a solution, Kazadi proposed

44

finding a new basis, called a conjugate schema, that minimizes the functional dependencies between

the parameters of the objective. This new basis creates local separability in the objective function

near the current point and, hopefully, allows the vectors of the genetic algorithm to cross with a

higher likelihood of strong children. In other words, instead of forcing the offspring to align with

the coordinate axis, as is the case of most genetic algorithms, the rotated conjugate basis aligns with

local features and creates offspring that are more likely to fall on these higher fitness areas. Kazadi

uses the eigenvectors of the absolute Hessian matrix to find an optimal basis.

One practical problem here is that Hessians require twice differential functions, and can be dif

ficult to compute. This certainly takes away some of the appeal of using a "black box" evolutionary

algorithm. Kazadi explains a computationally expensive method for rotating a coordinate basis.

Unfortunately, the rotated basis method only generates orthogonal basis, and therefore, cannot nec

essarily guarantee conjugate schema. Kazadi also points out that conjugate schema continually

change depending on the location in the search space. This implies that a good basis for one point

may not be appropriate for another point. Recomputing a new basis for different intervals of the

search, as proposed by the author, doesn't seems to fix the problem until the population starts to

converges to the same neighborhood.

Wyatt and Lipson [111] arrive at similar conclusions from a different perspective. Their work

focuses on genetic linkage, which is a measure of the correlation between functional dependency

and gene location. Ideally, representations with high genetic linkage will push separable parts of

the problem together, and these parts will become useful building blocks for genetic search. In

order to find an optimal gene ordering, Wyatt and Lipson also use the eigenvectors of the Hessian

around the current best point, and uses this ordering for the entire population. This is is not the

same as finding a more efficient rotational basis. Instead, Wyatt and Lipson are using the Hessian

to determine the degree to which the parameters of a problem interact, and then use this knowledge

to find an ordering of the parameters that is less disruptive under a given crossover operator.

The computational cost of the Hessian is still a practical problem. Wyatt and Lipson also briefly

discuss higher-order transformations that could potentially transform landscapes that are non-linear

into linearly separable problems. Like the method of conjugate schema, different representations are

better in different parts of the search space, and again, using the representation around the current

45

best only seems effective as the population approaches a similar optima.

Although these ideas may be useful in addressing the shortcomings of algorithms that use the

coordinate axis as its search basis, but they are far from being a practical solution. This adds to the

growing concern that discrete crossover is bias toward the coordinate axis. However, using a real-

valued representation does not necessarily solve this problem; as previously mentioned, Salomon

[83] found that the Breeder Genetic Algorithm [12], which uses the real-valued representation, was

highly dependent on the degree to which a function is separable.

Real-valued genetic algorithms require reproductive operators that act on real-valued vectors.

One way of recombining two parents is simply to average their positions in a weighted or un

weighted form [110]. This is identical to the recombination operator used in an evolution strategy.

Figure 3.2 shows an example of this type of Linear recombination. Eschelman and Schaffer pro

pose the "blend crossover" operator, denoted BLX-a [31], which is a generalization of Radcliffe's

"flat" recombination operator. BLX-a produces an offspring based on an interval that extends a

times past either parent. In two dimensions, the parents define a box that has a border of width

a • Ii, where Ii is the length of the interval in dimension i. Figure 3.2 shows this two dimensional

example. Offspring are chosen uniformly such that they fall within the defined boundary.

Eschelman and Schaffer compared their BLX-a operator against the discrete version of CHC

that uses bit-strings and were left with mixed results; sometimes BLX-a was more effective, some

times there was no difference between the two algorithms, and at times, CHC used fewer evaluations

to find more effective solutions. Most of the problems they tested each algorithm on are separable.

Ono and Kobayashi argue that the BLX-a operator creates children that do not always inherit

the parents strong characteristics [71]. They continue, " This often occurs and makes the search

inefficient when the parents are on a valley or ridge that is not parallel to the axes of the coordi

nate system". As a solution, Ono and Kobayashi offer a Unimodal Normal Distribution Crossover

operator, denoted UNDX, that creates offspring based on a distribution defined by three parents.

The normal distribution between the first two parents and is proportional to the Euclidean distance

between them. All other n — 1 standard deviations are based on the orthogonal distance from the

third parent to the axis that connects the first two. Figure 3.2 also shows an example of this type of

crossover.

46

• "

X! X, X |

Linear BLX-a UNDX

Figure 3.2: Real-valued crossover. The left-most figure shows a simple weighted average of the
two parents. The middle figure is the blend crossover operator. Individuals are created anywhere
in the box, including the area that extends past each parent. Finally, the right-most figure is UNDX
mutation distribution defined by the three individuals pi, p2, and p3.

One concern here is that this crossover operator is creating offspring in high dimensional space

based on a distribution that is being modeled by very little information (using only three individuals,

regardless of dimensionality). Although the authors claim that the offspring inherit more of the

parents characteristics, this is really based on the assumption that strong individual properties occur

in the neighborhood of a line segment between two parents. This is clearly different from learning

a better representation. It is rather a heuristic for creating offspring in a way that is not bias toward

the coordinate axis—two very different concepts.

The evolution strategy community has often focused on mutation as the main operator for cre

ating variation in the population. Some mutation operators are invariant to rotations of the search

space. Salomon concluded that, unlike the breeder genetic algorithm, the simple self-adaptive evo

lution strategy is invariant under rotation, and therefore, not affected by parameter interaction [83].

Similarly, CMA-ES is also invariant to rotations of the search space. We expect these two evolu

tion strategies to perform similarly regardless of how strongly the parameters of a given problem

interact.

Rotating Test Functions

Many of the previously mentioned empirical studies determine an algorithm's rotational bias by

comparing its performance on a separable function with that of the same function rotated by an

orthogonal transformation matrix [71; 83; 43]. Rudolph [82] showed how to create a random or-

weighted average

H — a-I

•

/

uniform

Vi

47

thogonal rotation matrix. To the best of our knowledge, Salomon [83] was the first to use this

method to rotate separable functions.

Rotating the search space can change the degree to which the parameters of a given test function

interact. Rotation is commonly done by first creating an orthogonal rotation matrix M, and then

transforming the input parameters x before evaluating the individual. Specifically, if f(x) is the

objective function then the individual that corresponds to the point x is assigned the fitness of

/ (M f) . We create an orthogonal matrix in a method similar to that of Salomon [83]. In order to

increase reproducibility and control the degree of parameter interaction, we use a constant rotation

angle of a = 22.5 for every dimension.

Rotation also breaks the symmetry that exist around the coordinate axis. One drawback of using

symmetric functions for evaluation is their potential bias toward search neighborhoods that use a

bit-encoding. For example, standard reflective Gray code always creates a symmetric neighbor

reflected about the origin. On functions like the two dimensional Rosenbrock, finding the local

optima at (1,-1) implies one of the neighbors for the next search will be the global optima located at

(1,1). Eiben and Back catalog multimodal functions differently based on the symmetry of the local

optima [29]. In this chapter, we translated each function by 5% of the domain to reduce symmetry

that exists around the origin of the search space.

Comparing an algorithm's performance on a rotated and unrotated problem is straight forward

when the optimal solution is near the center of the bound search space. In this case, detecting a

performance difference is easy because the optimal solution should be the same. Any discrepancy

is due to rotational effects. However, when the optimal solutions lie near the boundaries of the

search space, the optimal solutions will not necessarily be the same for the rotated and unrotated

surfaces if the domain is constrained. This means search algorithms will not necessarily produce

the same results for the rotated and unrotated problem.

Rotation is one way of making a separable test function more realistic. The remainder of this

section describe two additional contributions to our test suite: the revised Griewangk functions and

a synthetic static correction problem.

48

to to
g1,20-D

to to m tommmmpnn
on rfl

rfl (0

Figure 3.3: Diagonal slices of Gl and G2 in 20 dimensions. While the original Griewangk function
becomes smooth and easier, these modified problems retain the modality that Griewangk intended
in higher dimensions.

3.1.2 Revisiting Griewangk's function

The original Griewangk function is as follows [109]:

N
 T2

f(xi\i=lN) = l + Y^L-
Jy ' * ' ^ " 4 0 0 0

N

Y[(cos(xi/Vi))
i = l

The global optimum is at the origin. The search space is bowl shaped and local optima are created

over the bowl through the oscillation of a cosine function. The problem is, the range of a cosine

function is [—1,1] and as the number of dimensions increase, multiplication of the cosines destroys

the local optima. Thus, higher dimensional versions of this problem become smooth with a strong

global optimum [109].

We used two modifications of the original Griewangk function denoted Gl and G2 that include a

scaling factor that is added to the summation term to stabilize the function range across dimensions

[91]. In addition, the output from a cosine function is translated and/or scaled to offset the effect of

multiplication. For Gl and G2 the global optimum does not have a consistent value as the number

of dimensions is varied. The new forms of Griewangk are given in Table 3.2. Gl is characterized by

taking a logarithm of the product term. Figure 3.3 shows slices of Gl and G2 at 20D. The optima

are now rather wide with thin barriers separating one from another. On G2 the search space also

loses its symmetry due to a phase shift.

49

Name Function domain

Gl

G2

N Xi2 E N
4000AT 1.5"/" Ili=i y/cos{Xi/N + i) + 1.0

1/4

E i l i 4o3iV ~ l - 5 ^ 4 \UL y/co8{zi/N + i) +1.0
.-,1/4

-512.0,511.0]

-512.0,511.0]

Table 3.2: New Griewangk functions.

- Q - — E 3 - - Q — B - - - - B - - - E } — B - ---E3---D—D---E3-—-E>—Ej---p } Shot/SensoLine

SurfaceMaterials

Rock Beds

} Signal

Figure 3.4: Sensor Shot Signals.

3.1.3 Synthetic Static Corrections for Seismic Surveys

All the test functions previously mentioned are easy to disseminate and have fast evaluation times

because they are simple mathematical equations. We propose a synthetic test function here that

sacrifices some of this convenience, but in turn, adds diversity the problem structures that exists

within our test suite.

There are many difficult optimization problems in geophysics. One such problem is the "static

corrections" problem. Seismic reflection surveys are used to construct subsurface images of geo

logic strata. The images are distorted by variation in surface materials and ambient noise [63].

Seismic reflection surveys are performed by setting off a detonation (shot) and then recording

the resulting signals at a series of sensor sites. Figure 3.4 illustrates the reflection signals that a

single sensor (•) would collect for a single shot (o) as well as the waveform corresponding to the

50

signal. Each of the sensors along the sensor-line would collect a similar set of reflection signals for

this shot. (The data can be filtered and refined using common midpoint gathers of the signals. We

ignore this detail in our discussions.)

Differences in the materials at the earth's surface affect the arrival time of seismic signals. Loose

materials, such as sand, slow down signal arrival, whereas packed materials, such as clay, speed

up signal arrivals. Given a collection of signals, a "static correction" can be made that corrects for

differences in arrival time; then the collection of signals can be aligned to produce an accurate image

of the subsurface strata. The optimization problem is to find a static correction for each signal such

that it correctly aligns strata to reveal subsurface geology. Misalignment of signals can result in

numerous local optima, and conventional optimization methods can easily be trapped in these sub-

optimal regions. These methods are unacceptable when there exists severe surface heterogeneities

or a high level of ambient noise.

We introduce a synthetic static correction problem as a test function. The synthetic problem

consists of a base matrix, which defines the structure of the simulated geologic strata. The base

matrix M has i rows and j columns, where i indexes the ith strata and j indexes the j t h signal.

Entry M(i,j) stores the depth of strata i as observed in signal j (we can assume depth=time). For

example, consider the following 3x5 base matrix:

-100 -100 -100 -100 -100 \
-375 -350 -300 -275 -250
-450 -525 -550 -525 -450 /

To simulate near surface variation of the earth we add a nonuniform profile, denoted p, to the

problem. The profile has length equal to the problem dimension. Element p3 in the profile is added

to each element of column j of matrix M: this effectively shifts signal j by pj units and creates a

new matrix M.. The optimization problem is to search for and retrieve vector p given the shifted

matrix M. Finding p will undo the shifts and restore the original matrix M, and thereby align the

geological strata.

Our simplified version of static correction assumes that the strata in M are structured and well

behaved, while the shifts in matrix M are not regular. Fitness is usually calculated by computing

the cross-correlation (e.g. the dot product) between all pairs of shifted signals. In the current

experiments, we use simplified signals, such that the vector is 0 except when near the location of

51

o
S3 O
'3 CD _

a
o
Q o o

CM "

O
o o
T

& o
KS O
is CM
oo l

o
o
CO

Dimension

Figure 3.5: The synthetic static corrections problem. In the top figure, signals are indicated by
column slices of the figure, and the known and proposed arrival times are shown across the top of
the figure. If the solution is locally optima, moving any signal up or down (i.e., adjusting its arrival
time in the Domain) will result in a poorer alignment of Strata.

a strata. Within a distance of delta of the strata, the vector is 1. When the total depth (length of

the vectors) is greater than the number of signals (denoted by N), evaluation time is greater than

0(N3). In our simplified model the dot-product is the same as overlap and we do not actually have

to construct signals, which allows for evaluation in 0(N2) time. If one wishes to model ambient

noise the full evaluation must be used.

Figure 3.5 shows a 20 dimensional problem, including the simple profile vector, which does not

have any discontinuities (upper graphic), and the deviation of the current solution from the profile

(lower graphic). The signals are shown as offset column slices. Real static correction problems

generally have 100's of variables.

This problem has several features: it is scalable, it can be made noisy, and more complex geol

ogy and signals can be used to make the problem more difficult; yet, it is easy to visualize misalign

ments in the solution. There are also several local optima that form from non-optimal alignments

of the strata. Figure 3.6 shows a surface of the first two dimensions of a 20 dimensional problem

with a delta of + / - 50 units. The local optima in the surfaces are created from non-optimal strata

alignments.

52

— i z r r L Z Z J ' • — — -

*

1M _ — • r

Figure 3.6: This figure shows there are many locally optimal alignments in a 2D slice of the search
space.

3.2 Empirical Results

This section compares CHC, CMA-ES, GPS, MADS, and local search on a selection of 20 dimen

sional benchmark problems from the previous section. In order to keep the analysis here contained

and manageable, not every benchmark test function is presented. Instead, we chose functions based

on feature diversity and perceived difficulty. For example, we did not include the Rastrigin or

Ackley functions in this section because we already have several test problems that have a unimodal

bowl-like global structure that is perturbed by local optima. Including these additional test functions

would not add feature diversity to the test suite.

Local search and CHC were run using 10-bits and 20-bits of precision. CHC used a population

size of 50. We ran CMA-ES with rank-^-updates and a population size of 200 and 500 [41]. These

parameter settings are We distinguish each algorithm based on its parameters; CHC-10, CHC-20,

LS-10, LS-20, CMA-200, CMA-500. The Pattern Search algorithms are MADS-2n, MADS(n+l),

GPS-2n, GPS(n+l) and Unif(n+1), as described in chapter 2. Each algorithm was run for 50 trials;

restarts ensured that each trial ran for exactly 100,000 evaluations. The results are presented in

Figures 3.7, 3.8, and 3.9. Since we are minimizing each function, a lower value is a more effective

solution.

The "big picture" observation we make is that no single algorithm is best across all problems.

Sometimes there is a clear winner and other times there are no significant differences between the

algorithms. But overall, there is no one algorithm that dominates all the others. The question we

53

CHC CHC
10 20

Rosenbrock Rot

-°— —

LS
10

o
o

"V3

LS
20
0

O
 O

G
D

O

T -

CMA
200

CMA
500

MADS
2n

•

MADS
n+1

_

GPS
2n

_ ^

GPS
n+1

o

0

- * -

Unif
n+1

o

-^

CHC
10

f101

CHC
20

LS
10

i r

LS
20

L ^

CMA
200

~r-

| . " ' • |

CMA
500

T

MADS
2n

MADS
n+1

P-%b=l

0

GPS
2n

-*-

0

GPS
n+1

- „ T _ .

- I -

Unif
n+1

t j

K H

CHC
10

f101 Rot

-i-

CHC
20

-!-

LS
10

pzq

LS
20

8

->-

CMA
200

,

I I
L_ rJ

CMA
500

- l -

MADS
2n

;

MADS
n+1

.

GPS
2n

0

I

GPS
n+1

T

O

Unif
n+1

o

; r ^ - 7 -
• - • •

\
o

CHC
10

f8f2 20

CHC
20

LS
10

LS
20

o

I 1

CMA
200

8

CMA
500

[

0

MADS
2n

mmm

MADS
n+1

- • -

GPS
2n

i i

GPS
n+1

o

Unif
n+1

8

l,'„„'„ , I

CHC
10

f8f2 Rot

0

TLT5

CHC
20

b i£a

LS
10

LS
20

'

CMA
200

| =]

CMA
500

T

- -

MADS
2n

-ir

MADS
n+1

GPS
2n

o

F^—-I
I I

GPS
n+1

U=J

Unif
n+1

o

CHC
10

CHC
20

LS
10

LS
20

CMA
200

CMA
500

MADS
2n

MADS
n+1

GPS
2n

GPS
n+1

Unif
n+1

Figure 3.7: The midline in the gray box is the median, while the gray box represents 25 percent
above and below the median. The bars outside the gray box generally represent the max and min
values, except when there are outliers, which are shown as small circles. The y-axis represents the
value of the evaluation function.

54

CHC CHC
10 20

LS
10

LS
20

CMA CMA MADS MADS GPS GPS Unif
200 500 2n n+1 2n n+1 n+1

CHC
10

Rana

0

— < —

CHC
20

o

LS
10

-^

LS
20

§

CMA
200

~]~

l — i —

CMA
500
—r-

t— 1

0

MADS
2n

e

-ir

MADS
n+1

-^

GPS
2n

I " - i

GPS
n+1

0
o

t — — i

Unif
n+1

^

CHC
10

Rana Rot

f • . ' I

- • -

C H C
2 0

LJ

LS
10

I ' I

-1-

LS
20

CMA
200

8
8

1

i

-i-

CMA
500
" J -

-i-

MADS
2n

o

1 1
t :, ""I

0
o
o

MADS
n+1

\J~4
O

GPS
2n

o

h-H
o

GPS
n+1

R

Unif
n+1

,
•

-!-

CHC
10

CHC
20

CHC CHC
10 20

Schwefel Rot

[_I_
L_J

LS
10

I — I

--I o
 o

LS
20

o

t

I I
I J

o

CMA
200

o

CMA
500

"T"

MADS
2n

I l
i , I

MADS
n+1

E7^\

GPS
2n

~r

o

GPS
n+1

i — ^

Unif
n+1

|= '=':- I

o

CHC
10

CHC
20

LS
10

LS
20

CMA CMA MADS MADS
200 500 2n n+1

GPS
2n

GPS
n+1

Unif
n+1

Figure 3.8: The midline in the gray box is the median, while the gray box represents 25 percent
above and below the median. The bars outside the gray box generally represent the max and min
values, except when there are outliers, which are shown as small circles. The y-axis represents the
value of the evaluation function.

55

8 J

CHC CHC LS LS CMA CMA MADS MADS GPS GPS Unif
10 20 10 20 200 500 2n n+1 2n n+1 n+1

Figure 3.9: The static correction problem. The midline in the gray box is the median, while the gray
box represents 25 percent of the sample above and below the median. The bars outside the gray
box generally represent the max and min values, except when there are outliers, which are shown
as small circles. The y-axis represents the value of the evaluation function.

explore here is: can we explain algorithm differences in terms of how well each algorithm addresses

the features of a particular problem? We highlight three specific points with respect to the empirical

differences we observe and then discuss how these differences relate to algorithm heuristics and

problem feature interaction. The key points are:

1. Separability: Rotating the functions generally reduces the observed differences in algorithm

performance. In particular, this occurs on the following functions: F101, F8F2, Rana, and

Schwefel, all of which are located in Figures 3.7 and 3.8.

2. Ridges: Rosenbrock's ridge function (Figure 3.7), both rotated and unrotated, is difficult for

most algorithms.

3. Global Structure: CMA-ES does well on those problems where the best local optima are

clustered together. This includes the Static Corrections problem (Figure 3.9) and variants of

the Griewangk function (Figure 3.8). On functions that lacked this "global structure", the

performance advantage of CMA-ES was much less pronounced.

3.2.1 Revisiting Separability

The first observation we address is how a simple rotation of the search space impacts algorithm

performance. Without rotation, CHC is clearly the most effective algorithm on the multimodal

functions we tested. However, on the rotated versions of F101, Rana, the F8F2 composite function,

and the Schwefel function, there is much less difference in performance between the algorithms

being compared. In particular, the performance advantage of CHC often disappears when these

56

functions are rotated.

CHC and Local Search use a bit representation and appear very sensitive to both search space

symmetry and its alignment with the coordinate axes. We already mentioned Salomon [83] con

clusions with respect to recombination; he suggests that this search operator is of limited value on

surfaces where there exists a high interaction between the parameters of the objective function. But

this limitation does not extent to all genetic algorithms that use crossover. For example, CHC creates

variation in the population from one generation to the next by using a variant of uniform crossover.

This effectively changes many parameters at once, and the changes may be local or global. Al

though CHC does use a fixed coordinate system, our results suggest that Salomon's conclusion is

too sweeping. We found the CHC to be highly competitive on F8F2 and F101 and Schwefel even

after the functions are rotated. The results of this section simply support the well documented ob

servation that some algorithms performance may be overly inflated because they exploit problem

separability and symmetry.

3.2.2 Ridges

We also observe that Rosenbrock's function is difficult for most algorithms. As previously men

tioned, Rosenbrock's function has a long narrow ridge that leads to its optimal solution. On the

original version, CMA-ES with a population size of A = 200 is the only evolutionary algorithm that

solves this problem. CMA-ES with the higher population size of A = 500 did not converge to the

optimal solution because it did not have enough generations per trial (e.g. the population size is too

large for this problem).

Most algorithms did better on the rotated version. This is because the rotation aligns the "ba

nana" (ridge) more closely with the search space coordinates. Still, CHC and local search perform

poorly on both the rotated and unrotated versions. GPS(n+l) performed better on the unrotated

version of this problem. This is because the base pattern that the GPS "simplex" uses aligns more

closely with the ridge on the original version. This coincidence does not imply that the pattern

search methods are capable of exploiting ridge structure.

This example problem highlights the fact that the ridge feature is difficult for heuristic search. At

the same time, there is surprisingly very little references made to this feature within the evolutionary

57

algorithm community. For example, both Kazadi's and Wyatt and Lipson's ideas of learning a better

rotational basis are really focused how parameter interaction impacts crossover. These proposed

ideas may indeed be useful, especially with respect to separability, but these studies take a very

narrow view of how the representation is being changed. Neither of these studies were concerned

with mutation or the direction of the gradient. On the other hand, the evolution strategy community,

in particular the CMA-ES algorithm, has focused more on rotations and concerns about the search

direction and step-size.

There are still open questions within the evolution strategy community with respect to ridge

functions. The theoretical and empirical behavior of an evolution strategies using constant mutation

strength and a single global step-size is well documented on ridge functions [76; 74; 75; 14; 5].

Beyer points out that the results derived using a constant mutation strength can serve as a perfor

mance benchmark for self-adaptation [14]. That is, if self-adaptation is working as expected, its

performance should be close to that of the evolution strategy that does not adapt. Unfortunately,

self-adaption fails on ridge functions, but it is unclear why.

This chapter highlights the need to understand how ridges impact search and why some heuris

tics fail to overcome this barrier. In the next chapter, we discuss how local search and the self-

adaptation evolution strategy are affected by ridges.

3.2.3 Global Structure and Big Valley

Lastly, we point out that CMA-ES does well on those problems where the best local optima are

clustered together in a "big valley" or single-funnel. This includes the Static Corrections problem

and variants of the Griewangk function. On functions that lacked this predictable global structure,

the performance advantage of CMA-ES was much less pronounced. In fact, CHC performed best

on the functions that do not have a big valley structure. Later in this thesis, we show that CMA-ES

is also less efficient on problems that lack a simple global structure. We use a dispersion metric

to predict how well CMA-ES will perform and describe why it is inefficient on some problem

instances.

Like the ridge problem, there is almost no mention of how global structure impacts evolutionary

algorithm performance, or what the most effective and efficient strategies are for searching through

58

landscapes that do not have a strong attraction towards the global optimum. In fact, there are only

suggestions that global structure may play a larger role in the success of global optimization at

tempts. Kern et al. assert that "For the CMA-ES, functions are hard to solve where the attractor

volume of the global optimum is small, and an overall topology pointing to the global optimum is

missing" [50]. This is an important direction of research because real problems are emerging where

the global optimum is not located in the largest volume of the search space. Chapter 7 is devoted

to creating test functions that have more than a single-funnel (big valley) landscape, and discussing

how this impacts evolutionary search.

3.3 Summary

We have introduced the standard set of test problems used to evaluate evolutionary algorithms. To

make these problems more realistic, we discussed how rotation is used to transform separable and

symmetric surfaces into landscapes that have less symmetry and a higher degree of parameter inter

action. Two variations of Griewangk's function are introduced that prevent local optima from being

destroyed as the dimensionality increases. We also introduce a synthetic version of the "static cor

rections" problem. Together, these modifications create a more challenging and realistic benchmark

suite.

When we compare a diverse selection of algorithms on this relatively difficult set of test prob

lems, we find that no single algorithm dominates the others, and different algorithms have better

performance on different types of problems. Furthermore, these differences can be related to prob

lem features.

Yet these kinds of differences are rarely reported in the literature; especially how these differ

ences relate to problem features. Perhaps the main significance of this chapter is that the evolu

tionary optimization community still has not been able to develop a clear understanding of how

different algorithms exploit different types of problem features. The remaining chapters of this

thesis are dedicated towards exploring and understanding this gap as it relates to ridges and global

structure.

59

Chapter 4

Understanding Local Search and
Self-Adaptation on Ridges Functions

Ridges in a search space are a difficult barrier for most search algorithms. In the previous chapter,

we observed that several of the algorithms discussed so far performed poorly on Rosenbrock's ridge

function. A ridge is essentially comprised of two characteristics: direction and scale. The difference

in scale between the objective parameter values creates the ridge feature and the interaction of the

parameters determine how the ridge is oriented in the search space. If the objective function is

twice differentiable, the condition number of the Hessian, which we discuss shortly, is one way of

quantifying the degree to which the ridge is poorly scaled.

The ridge characteristics, scale and direction, affects different algorithms in different ways. If an

algorithm looks for improving moves by changing only one dimension at a time (e.g. a coordinate

pattern), it will not see better points that fall between the neighborhood axis. This is the direction

problem. A similar problem occurs for algorithms, such as GPS, that use a fixed pattern; search is

blind to any ridge that is not aligned with its pattern.

The ridge scale also affects search. Isotropic distributions are invariant to rotations of the search

space, meaning that the offspring are created in an unbiased search direction. But being invariant

with respect to direction and being able to exploit ridge structures is not exactly the same [105]. The

implication here is that problem scale, not the ridge orientation, is the primary characteristic that

will affect performance.

In this chapter we explore why ridges are detrimental for local search and the self-adaptive

evolution strategy. First, we show that local search can exhibit extremely slow convergence, or even

60

fail, on functions that display ridge structures. We explain how representation and precision account

for this observed behavior. We also propose and explore a class of rotated representations; these can

be based on Principal Components Analysis (PCA), or use the Gram-Schmidt orthogonalization

method. Some algorithms, such as CMA-ES, already make use of similar rotated representations.

Second, several researchers have also noticed that the self-adaptive evolution strategy can be

extremely inefficient on ridge functions because the global step-size becomes too small. On the

parabolic ridge we conjecture that this step-size will stabilize when selection is unbiased towards

larger or smaller step-sizes. On the sharp ridge, where the bias in selection is constant, the step-size

will continue to decrease. We provide empirical evidence that supports our conjecture and accounts

for self-adaptation's poor performance on ridges.

4.1 Background

Some of the other common benchmark test functions described in chapter 3 contain ridge features.

The leftmost 2D illustration in Figure 4.1 is Rosenbrock's classic unimodal ridge that we have

already discussed. The Rana function (middle 2D illustration) also contains ridge features. The

rightmost cartoon shows the direction of the ridges that lead to the best regions of the search space.

The direct search community has been aware of the ridge problem since the early 1960's. In fact,

Rosenbrock created his test function specifically to illustrate the weakness of methods which change

only one variable at a time during search [81]. Rosenbrock showed that even some gradient methods

move very slowly on this function because the direction of the gradient significantly changes at each

time step.

Rosenbrock proposed a search method that uses the Gram-Schmidt orthogonalization algorithm

to adapt the search coordinate system. Later the Nelder-Mead Simplex method was introduced [69],

in part, to deal with this problem. These methods often compute a direction of improvement based

on a sample of points; then, line-search type methods are often used to look for improving moves.

In theory, these methods should be able to follow ridge structure if they select the correct direction.

The potential disadvantage of these methods is that they heuristically compute a direction based on

very little information.

The mathematical optimization community also understands why it is necessary to pay atten-

61

Figure 4.1: The leftmost figure is Rosenbrock's function. The middle figure is Rana's function. The
rightmost figure is a cartoon showing the "ridges" that lead to the global optimum as well as other
competitive local optima.

tion to algorithm performance on ridge features. About two hundred years after Newton's method

was invented, Cauchy proposed a more simple optimization method: compute the gradient and then

line-search in that direction iteratively until a local optimum is reached [68] . This is the method

of steepest-descent as described in chapter 2. But following the gradient turns out to be an ex

tremely inefficient way of optimizing a function that contains ridges. As previously mentioned, the

efficiency of steepest-descent is directly proportional to how poorly-scaled the ridge is.

The condition number of an objective function's Hessian at a particular point is standard way of

measuring the localized change rate in the objective function (e.g. its scale). The condition number

is the ratio of the maximum and minimum singular values of the Hessian. Larger condition numbers

correspond to problems that are ill-conditioned; the ridges that form in these landscapes have a

larger difference in scale. Graphically, the maximum and minimum singular values correspond to a

landscape projection that has the most dramatic ridge feature. The two quadratic surfaces in Figure

4.2 have different condition numbers. The rightmost graphic has a higher condition number, and

therefore, causes steepest-descent to take more steps in order to reach the optimum.

The gradient methods that work well on ridge functions either 1) estimate a better search di

rection, as is the case for the conjugate-gradient method, or 2) they attempt to estimate the inverse

Hessian and use this in Newton's method. The merits of finding the correct search direction is rather

intuitive; instead of taking multiple steps in the same direction, why not get the direction correct the

first time and just take one [90]? Estimating the inverse Hessian is effective because it transforms a

quadratic ridge surface into a sphere. It then only takes one line search method in the direction of

62

V V

\ •

Figure 4.2: Steepest-descent on two different quadratic surfaces. More pronounced ridges in the
search space (rightmost figure) cause steepest-descent to be less efficient because it must take more
steps to reach the optimum.

the gradient to reach the optimum. In either case, the complexity cost per iteration is increased in

order to lower the overall cost of search.

4.2 Ruffled by Ridges: Local Search on Ridge Functions

Local search, like the method of steepest-descent, is an appealing strategy partly because of its sim

plicity; the computational cost per iteration is minimal and almost no parameter tuning is required.

In chapter 2, we stated that the behavior of local search is partly based on the precision. Precision

controls the neighborhood size and the distance to the closest neighbor. Encoding can also have an

affect. We have already discussed the relative merits of using the standard binary reflected Gray

code. In this section, we explore how these two factors, encoding and precision, impact local search

on ridge functions We also discuss how genetic algorithms, which often use a similar representation,

may be affected by ridges.

4.2.1 Gray Encoding and Local Optima

Over the last few years experiments have shown that genetic algorithms are more sensitive to local

optima induced by different bit representations than was previously believed. Until recently, much

of this work has focused on how representations such as Gray codes destroy local optima [102].

This section focuses on when Gray codes create new optima: this happens only along ridges.

63

1

4 ! ! i I

Figure 4.3: Local search moves only in the horizontal and vertical directions. It therefore "finds"
the diagonal, but becomes stuck there. Every point on the diagonal is locally optimal. Local search
is blind to the fact that there is gradient information moving along the diagonal.

Recall that local search search terminates at a local optimum when none of the points in its

neighborhood improve upon the current best point when evaluated by some objective function. Gray

codes are often used for bit representations, in both genetic algorithms and local search, because

by definition, adjacent integers are adjacent neighbors. Whitley and Rana prove that if a one-

dimensional function is unimodal under the natural encoding, it is also unimodal under Gray code

[108]. But are there unimodal functions where the natural encoding is multimodal? If the function

is not one-dimensional, the answer is yes. "False" local optima are induced on ridges.

A simplified sharp ridge problem appears in Figure 4.3. Changing one variable at a time will

move local search to the diagonal. However, looking in either the x-dimension or the y-dimension,

every point along the diagonal appears to be a local optimum. Local search fails on this problem,

even though there is actually gradient information if one looks along the diagonal. However, this

requires either changing both variables at once, or transforming the coordinate system of the search

space so as to "expose" the gradient information.

This limitation is not unique to local search, and it is not absolute for genetic algorithms. Any

method that searches 1 -dimension at a time has the same limitation, including simple "line search"

methods. A genetic algorithm is not absolutely trapped by ridges either. Early population sampling

can allow the search to avoid being trapped on "ridges." But genetic algorithms can quickly lose

diversity. If this happens, then the search must use mutation or otherwise random jumps to move

along the ridge. For example, simple 1-point crossover inherits "fixed but mixed" parameters from

64

parents for the most part. That is, the inherited parameters come directly from the parents without

changes except for one parameter that is broken by crossover. Uniform crossover would seem to

have the ability to move along ridges: every bit is independently inherited from the two parent

structures. But Syswerda [94] points out that when using uniform crossover, bits that are common

between the two parents are inherited and all non-common bits are randomly reset because 0 or 1 is

randomly inherited. So the ability of uniform crossover to move along ridges may be no better than

that of random mutation.

One of the fundamental problems that is encountered when trying to compare direct search

methods, local search methods, and even different evolutionary algorithms, is the representation

and precision used for constructing the search space.

Genetic algorithms and local search [23] tend to use low precision bit encodings. Evolution

strategies and direct search methods such as Nelder-Mead use high precision, real-valued represen

tations. The search community has long struggled with the debate over which is better, bit rep

resentations or real-valued representations? Unfortunately, different experiments seem to support

different conclusions, even when compared on the same test functions.

Recent work suggests that the choice of real-valued versus bit encodings may not be nearly

as important as the level of precision. Precision can dramatically change the rate of convergence.

One of the potential advantages of using bit encoding is that they can use lower precision for many

applications and achieve faster convergence compared to real-valued encodings. This also makes

comparing real-valued representations and bit encoded representations difficult. However, forcing

the bit encodings and real-valued encoding to use 32 bit precision just to make them the same is

probably not a reasonable solution: precision matters.

4.2.2 Precision Matters

Recall that the local search creates a neighborhood pattern by flipping one bit at a time. Since

only a single bit changes, each neighbor will be aligned with one of the coordinate axis. Precision

dictates how close local search looks for improving neighbors. If the ridge is poorly scaled and

rotated, higher precision will be needed to find an improving move. A lower precision search will

get stuck on the ridge, blindly assuming it has found a local optima because none of its neighbors

65

offer improvement.

Increasing the precision will generally decrease the number of false optima. This is because

a higher precision search algorithm will be able to move further on the ridge and arrive at better

solutions than an algorithm searching at a lower precision. Increasing precision, however, forces

search to move very slowly through the landscape. This is partly because the neighborhood size is

larger with higher precision. The more serious problem is that local search will take the steepest

step, which, when the ridge axis is rotated away from the coordinate axis, will be one of the highest

precision neighbors. This phenomena of taking extremely small steps is known as creeping.

Whitley et al. [104] first noticed that local search using 20-bits of precision required a surpris

ing number of evaluations on both the Rana and Rosenbrock functions. Their examination of the

problem revealed that local search was in fact creeping along the 45 degree ridges shown in Figure

4.1. In order to understand how creeping can impact local search, and also to explain why precision

is so important on ridge functions, we executed local search on the 2D Rosenbrock and Rana test

problems at 10 and 20 bits. Results are shown in table 4.1. The number of steps required to reach a

local optimum jumps from about 200 steps under local search at 10 bits of precision to 200,000 or

more steps at 20 bits of precision.

Function

Rosenbrock, 2D

Rosenbrock, 2D

Rana, 2D

Rana, 2D

Precision

10-bits

20-bits

10-bits

20-bits

Mean

0.001

4x l0~ 7

-501.9

-503.0

Std

0.002

l x H T 7

06.0

04.8

Steps

235

2x l0 5

225

3x l0 6

Std

30

4 x l 0 3

22

8x l0 3

Table 4.1: Results of steepest ascent bit climbing with 100 restarts at 10 and 20 bit resolution.
Results are averaged over 30 runs. Mean is calculated using the best of the 100 restarts. Steps is the
average number of steps needed to reach a local optimum.

As shown in Figure 4.1, both of these functions have ridge like properties. Search must move

toward the upper corners to find the global optimum, as well as the better local optima. The behavior

of local search on Rosenbrock's function is shown in Figure 4.4. The first south to north move

occurs in a single step. The second west to east move also occurs in one step. The ridge is therefore

encountered after only two moves. Because local search has sufficient precision and the ridge is

66

, /
/ /

"creeping" towards / j#
the optimum / J?

f

Figure 4.4: The left figure tracks the movement of an actual run of local search on Rosenbrock's
function. After two moves the ridge is encountered. Then, local search begins to take small steps
and creep toward the optimal solution. A higher precision search will be able to move through more
narrow ridges. The problem is, adding 1 bit of precision in two dimensions doubles the number of
steps local search will take. This is shown in the rightmost figure.

continuous and smooth (e.g. not a sharp ridge), local search is not completely blind and does not

stop. Instead, the ridge becomes a "staircase". Local search makes the smallest move possible and

therefore "creeps". The problem is exponentially worse at high precision because the steps of the

staircases are exponentially smaller. In two dimensions, adding a single bit of precision doubles the

number of steps local search will take.

Figure 4.5 also graphically explains this problem on a simple parabolic ridge. The leftmost

graph shows that the low precision local search induces a false local optima on the ridge. The

higher precision search is able to move farther along the ridge and finds a better solution, but incurs

a much higher cost.

Genetic algorithms are very often used at 10 bits of precision. We have tested various genetic

algorithms at 20 bits of precision across a number of the common benchmarks discussed in chapter

3 and found that they can be 10 to 100 times slower to converge using higher precision. This may

in part be due to the failure of genetic algorithms to exploit ridges in the search space.

4.2.3 Rotating Search Coordinates

One way to deal with ridges in the search space is to search along the direction of the ridge. Recall

that this idea is used in the conjugate-gradient method [90], and other direct search methods such as

Powell's conjugate directions [79], and Brent's Praxis algorithm [19].

The ridge direction can be computed in two ways: either use a Principal Component Analysis

67

~f

Figure 4.5: A low precision search induces local optima on a simple parabolic ridge because all the
neighbors (dashed lines) have poorer evaluation. The higher precision search (rightmost) is able to
make more progress, but at the expense of significantly more evaluations.

(PCA) on a sample of points or use the Gram-Schmidt (GS) orthogonalization algorithm to rotate

the space based on a promising direction. Either way, we can change the search coordinates used

by using a rotated representation.

Probably the more standard way of computing a rotation is to use Principal Component Anal

ysis. Given a data set of sample points, an eigen decomposition is performed. The eigenvectors

are represented by a rotation matrix R. Let A be the diagonal eigenvalue matrix. Let X represent a

matrix of data vectors. Using PCA we find R and A such that

R XXT = AR

For a single search point represented by the vector x we compute xR, which is the projection of the

point x into the space defined by R. The rotation matrix is orthonormal, so a simple correction is

also needed to translate and re-center the rotation during search.

To find a structure such as a ridge, PCA can be used to sample locally and isolate a subset of

the better sample points. For example, sample 20 points and then apply PCA analysis to the 10 best

solutions. While this can give a correct rotation, the direction of maximal variance might be in the

direction of the gradient if the samples are on a ridge, or the maximal variance may be orthogonal

to the gradient if the sample is drawn from a sloping plateau.

Another approach is to use the Gram-Schmidt (GS) orthogonalization algorithm to rotate the

68

• — • 1>

• <•

• -i •

Functions

Rosenbrock

Rana

Search

LS

PCA

LS

PCA

Best

+4.5E-07

+3.1E-10

-510

-511

Mean

+5.4E-07

+2.5E-07

-417

-480

Std

+1.2E-07

+2.5E-07

87

24

Steps

6,193

138

208

23

Std

814

58

321

6

Evals

247,710

7,603

8,305

1,262

Std

32,541

3,189

12,822

341

Table 4.2: Results of local search and a rotated local search method. No restarts were used in these
experiments. Mean is the mean best over 30 experiments, and best is the best of the 30 experiments.

space. Often the Gram-Schmidt algorithm is used to construct a representation that is orthogonal

with respect to two points in the search space-such as the best two points seen so far. This is a

heuristic way of determining a useful "rotation" for changing the problem representation.

In Table 4.2 local search (LS) with a Gray Code representation is compared with local search

using PCA to rotate the search space. For the PCA, 15 points were sampled, with PCA applied to

the best 8. The speed-up is dramatic using rotated representations.

We applied the local search algorithm with and without a PCA rotated representation to 5D and

10D versions of Rosenbrock's banana function and the Rana function. PCA was applied after every

step, which adds to the number of evaluations. The number of steps taken during search is 5 to

10 times less under local search with PCA compared to the non-rotated representations on the 5D

problems. The number of steps is 2 to 3 times less under local search with PCA compared to the

non-rotated representations on the 10D problems. Using a rotated representation is more effective

on Rosenbrock's function than on the Rana function. This may be because the ridge is the only

feature that makes Rosenbrock's difficult, while Rana is also extremely multimodal. There is a

clear advantage using PCA on the 5D problems; the advantage is less dramatic at 10D for Rana.

4.2.4 Discussion

The goal of this section is to highlight and explain the ridge problem as it pertains to local search and

explore the use of rotated representations. Rotated representations could be used in conjunction with

various types of evolutionary algorithms. Despite work in this direction, most of the evolutionary

computation field has not looked seriously at rotated representations or the ridge problem.

We have already discussed at least one algorithm that already makes extensive use of rotated

representations and has mechanisms to address some of the key questions that arise when using

69

Function

Rosenbrock 5D

Rana 5D

Search

LS

PCA

LS

PCA

Best

2.4E-06

5.3E-07

-386

-399

Mean

2.4E-06

2.4E-06

-313

-310

Std

8.1E-08

1.3E-06

49

42

Steps

11,663

1,057

506

112

Std

1,415

177

915

167

Evals

1,166,268

148,042

50,551

15,662

Std

141,503

24,800

91,540

23,318

Function

Rosenbrock 10D

Rana 10D

Search

LS

PCA

LS

PCA

Best

5.9E-06

3.8E-06

-427

-411

Mean

6.1E-06

5.9E-06

-354

-308

Std

1.3E-07

2.2E-06

40

47

Steps

29,437

8,915

758

525

Std

1,865

406

940

632

Evals

5,887,321

2,496,201

151,628

146,917

Std

372,921

113,735

187,959

176,958

Table 4.3: The results of applying local search with and without PCA rotated representations on
5D and 10D versions of the Rana and Rosenbrock functions. At 5D, PCA used the best half of 40
samples; at 10D PCA used the best half of 80 samples to compute rotations.

rotated representations: CMA-ES rotates and scales the mutation operators used by an evolution

strategy. Other evolution strategies have tried this in the past also. In chapter 2 we briefly discussed

correlated mutations, a concept that uses self-adaptation to evolve a set of rotation strategy parame

ters [8]. However, indirectly adapting rotation strategy parameters of the form used by this evolution

strategies is too imprecise and impractical for large problems.

The key concern when computing rotations is: what kind of sample should be used? If a lo

calized sample is taken and then the best points (e.g., the best A individuals of the sample) are

used to calculate the eigenvectors and eigenvalues, the direction of maximum variance can be in the

direction of the gradient or it can be orthogonal to the gradient.

Recall that the Gram-Schmidt algorithm is often used to construct a representation that is or

thogonal with respect to two points in the search space-such as the best two points seen so far.

This kind of approach used less information, but emphasizes knowledge about gradient based on

the most recent move or moves. This is a more localized and heuristic way of determining a useful

"rotation" for changing the problem representation.

In effect, PCA exploits information about variance, whereas Gram-Schmidt uses path informa

tion. The path information acts as a kind of "momentum" term that keeps the search moving in it's

current direction. Simple empirical experiments show that path information is most useful when

70

approaching a ridge, or when following a straight ridge. But path information is sometimes mis

leading, for example on a curved ridge. On a curved ridge, calculating the direction of maximum

variance helps to track the changing gradient. These ideas are already exploited by the CMA-ES

algorithm. CMA-ES uses path information, called "cumulation", which acts as a momentum term,

and also uses information from the variance in the population, which is called the "rank-/L/" update.

4.3 Searching for Balance: Self-adaptation and Ridges

Like local search, self-adaptation is a simple and often effective search method. It is invariant to

rotations of the search space because it samples individuals in an unbiased direction. Therefore,

unlike local search, it is not affected by the orientation of the ridge. At the same time, it has been

empirically observed that the self-adaptive evolution strategy frequently generates a step-size that

is sub-optimal on ridge functions. This causes self-adaptation to also creep or even to stall [44; 85;

43]. In this section we conjecture that the global step-size of a (1, A)-ES will stabilize when the

selection of a is unbiased toward larger or smaller step-sizes. This occurs when the probability of

selecting an individual with a smaller a value is approximately equal to the probability of selecting

an individual with a larger a value.

We provide empirical evidence that shows when the ridge function is smooth (e.g. the parabolic

ridge), self-adaptation will decrease its step-size until it is unbiased in selecting a. On the sharp

ridge, which is not continuously differentiable, the local topology in the neighborhood of the step-

size does not change as a decreases; this implies that for any a value, there is a constant bias toward

selecting individuals that have smaller step-sizes. Our explanation for this behavior supplements

other justifications for the failure of self adaptation on the sharp ridge [85].

4.3.1 Self-adaptation and the General Ridge Function

Isotropic distributions are invariant to rotations of the search space. This means that the offspring

are created in an unbiased search direction. The implication here is that the difference in scale

between the parameters of the ridge, and not the ridge orientation, is the primary characteristic that

can affect performance.

The generalized ridge function, as defined by Beyer [14], does not have an obtainable optimal

71

solution. Instead, this "treadmill" function is used to understand the steady-state behavior of search

algorithms on the ridge. The goal is to maximize the following:

/ N \ « / 2

f(x) = X0-d- lYlXi)

where d is a scaling factor that determines how narrow and steep the ridge will be. The a constant

determines the type of ridge; the parabolic ridge corresponds to an a = 2 and the sharp ridge forms

when a = 1. Although the ridge axis (denoted XQ) is aligned with a coordinate axis, this will not

skew our results because, as mentioned, isotropic distributions are unbiased to the orientation of the

ridge axis.

The goal is to make progress in the XQ direction while minimizing the distance to the ridge axis

in all other dimensions [76]. This creates a problem for an isotropic distribution because offspring

are sampled in an unbiased way. For example, there is no adaptive mechanism that allows self-

adaptation with a global step-size to search for larger values in one direction while minimizing the

other parameter values.

4.3.2 Related Work

The theoretical and empirical behavior of evolution strategies using constant mutation strength and

a single global step-size is well documented for the parabolic ridge function [76; 74; 75]. Beyer

extended this work by looking at the performance properties of the (1, A)-ES on the general class

of ridge functions [14]. Recently, Arnold and Beyer have studied CSA on the noisy parabolic ridge

[5].

The behavior for an evolution strategy with a fixed mutation strength can be summarized using

two important theoretical equations (see Beyer for details [14]). First, the distance of the best

individual to the ridge axis tends to fluctuate within a predictable range, R, which is called the

stationary distance [74]. This measurement is used in the second equation, the progress rate (<p),

that predicts the average expected change in the direction of the ridge axis given a fixed a value.

Algorithms that creep on the ridge will tend to have lower progress rates.

Beyer points out that the results derived using a constant mutation strength can serve as a per

formance benchmark for self-adaptation [14]. If self-adaptation is working as expected, the steady -

72

state a values should be close to the optimal predicted values using a constant step-size. Unfortu

nately, they are not.

Because an adaptive step-size is necessary in practice, it is important to understand how different

adaptive strategies will perform. Oyman, Beyer, and Schwefel present conditions on the parabolic

ridge where a (1 + 10) -ES limps, or creeps [74]. Several researchers have also noticed that non-

elitist self-adaptation fails on ridge functions. Herdy showed that the self-adaptation with a single

global step-size fails on the sharp ridge [44]. Salomon empirically showed that the (1, A)-ES with a

global step size failed on two instances of the sharp ridge x function [85]. Salomon found that the

estimated progress rate is essentially negative for nearly all values a > 0. Only when the population

size was large enough, which Salomon found grew exponentially with problem dimension, did a

small neighborhood of acceptable a values yield positive progress.

Given the amount of attention devoted to evolution strategies on the ridge, it is surprising that no

explanation has been put forth as to why self-adaptation tends to evolve less than optimal step-sizes

on the general ridge function. In the conclusion of his paper, Beyer observes that self-adaptation

appears to reward the short-term goals of reducing the stationary distance rather than the long-term

goal of making progress along the ridge axis [14]. In the next section, we provide evidence that

supports our conjecture as to why this occurs.

4.3.3 Why is self-adaptation sub-optimal?

On the ridge function there is a small "window" of improving search directions. This window gets

smaller as either the dimensionality increases or the scaling factor, d, increases. This means that an

unbiased isotropic distribution is more likely to sample the search space in a poor direction rather

than an effective one. This creates a strong bias towards selecting smaller and smaller step-sizes.

In order to understand this bias, consider the three parabolic ridges in figure 4.6. The left ridge

is sharp (a = 1) whereas the other two ridges are parabolic (a = 2). Two isotropic distributions

based on a are shown. One is slightly larger than a and the other is slightly smaller. The base a

value in the first two graphs is 1 and decreases to a = 0.1 for the right most graph. The "window"

'Salomon's test functions were similar to the general ridge function with a = 1 and a — 0.5.

73

sharp, a = \

Figure 4.6: Contour plots of three ridge functions. The dotted arc in each plot corresponds to the
region where the smaller step-size has greater fitness. The solid arc indicates the region where the
larger step-size is best.

where the larger step size has greater fitness is less than the small step-size window in all cases.

In other words, the smaller step-size has a larger region where its fitness is better than that of the

larger step-size. This creates a bias towards selecting smaller o values. Notice that on the sharp

ridge, the "window" aligns perfectly with the contour lines; decreasing a will not change the ridge

bias. However, comparing the two right graphs shows that as a decreases on the parabolic ridge,

the neighborhood around the step-size becomes more linear and the bias towards smaller step-sizes

is less pronounced. Given this inherent bias toward smaller step-sizes, we propose the following

conjecture.

Conjecture 1. The global step-size of a self-adaptive (1, \)-ES will stabilize when the selection of

a is unbiased toward larger or smaller values. If the ridge bias cannot be removed, self-adaptation

will continue to decrease a by selecting smaller step-sizes.

We found that the steady-state value of a on the parabolic ridge occurs when the probability of

selecting a small step-size is approximately equal to the probability of selecting a larger one. Self-

adaptation decreases its step-size until the ridge bias diminishes. Intuitively, this makes sense. When

a is large, the ridge bias will drive a towards a smaller value. If a gets too small, the probability that

a larger step-size will be selected increases. Self-adaptation tends to have a steady-state behavior

that reflects this balance.

On the sharp ridge, however, the inherent bias cannot be removed. Although the sharp ridge is

74

continuous everywhere, its gradient is discontinuous along the ridge axis. This means that as the

step-size decreases, due to the inherent ridge bias, the topology in the neighborhood around a looks

identical for all values. In other words, there does not exist a small enough step-size such that the

bias toward selecting smaller a values diminishes. This compliments Salomon's results [85]; in

high dimensions, the population size needed to effectively sample the search space adequately is

exponentially large. Without an adequate sample, an individual with a larger step-size will rarely

search in the small window where the larger step-size is best.

The correlation between fitness and step-size is another way to understand how self-adaptation

removes this bias. When the parent is located on the ridge axis and the current step-size is relatively

large, the topology of the fitness function tends to look like a ridge. This means that there will

be a positive correlation between fitness and step-size; smaller step-sizes will tend to produce the

best individuals. On the parabolic ridge (a = 2), as the step-size decreases, the topology around the

parent appears more linear. This is because the function is continuous and differentiable everywhere.

On linear fitness functions, fitness and step-size are uncorrelated [40]. That is, small step-size is just

as likely to produce the best offspring as a large one.

In order to provide evidence for our conjecture, we would like to measure the probability that

the step-size of the next generation parent is smaller than that of the current parent. If ag equals the

step-size of generation g, then what we would like to measure is: P(ag+i < ag). We denote this

probability as ui. This will allow us to show that when a reaches a steady-state, w » 0.5.

We can estimate u by conducting a series of "single generation" experiments 2. We do this by

creating A offspring based on a distribution defined by a and the parent's location, x. Then we

evaluate the fitness of the offspring and ask the question: is the step-size of the best individual less

than the value of <r? We repeat this 200 times and keep track of the number of times that a small

step-size is successful. This is our estimate of UJ, denoted u.

We ran 100 trials of a (1, 60)-ES on both the parabolic and sharp ridge function. Each trial ran

until either 1.) 1000 generations passed, which is ample to measure the stable behavior, or 2.) the

step-size was below le — 10, which is appropriate for measuring failure. After each generation,

2An idea used by Beyer [14] for a different purpose.

75

a = 1 sliavp
Csl ~| o = 2 parabolic

100 200 300 400 500 600 100 200 300 400 500 600

Figure 4.7: The left graph shows the convergence of log(er) for A = 60 on the sharp (a = 1) and
parabolic (a = 2) ridge. The graph on the right shows to. The cc-axis is the generation number.

we estimated u> using the position and step-size of the current parent, as well as the corresponding

population size, A = 60. We tested several settings for the ridge scaling factor d = {1,2,5,10}.

Larger values of d create a steeper ridge function, which, given the same value for a, increases

the bias toward selecting smaller step-sizes. Figure 4.7 illustrates how self-adaptation behaves on a

iV = 30 dimensional ridge function where d = 2. The left graph shows the logarithm of a for each

generation. On the parabolic ridge, a decreases until it reaches a steady-state value. Although this

is sub-optimal, the strategy continues to make progress along the ridge axis. The step-size on the

sharp ridge continues to decrease, never reaching a stable value. This is consistent with previously

reported observations [44; 85]. The right graph shows the average CJ for each function. The value for

cD is approximately 50% on the parabolic ridge. The step-size decreases until the topology around

its expected distance from the ridge is unbiased toward selecting small or large values of a. On

the other hand, as soon as the self-adaptation finds the sharp ridge, the value for u> is constant and

greater than 50%. This is because changing the step-size does not impact the bias toward selecting

smaller a values. Therefore, the step-size will continue to decrease.

Increasing the scaling factor d increases the rate at which the last N — 1 parameters decrease.

This makes the difference between the rate of change for ridge axis (XQ) and all the other parameters

more pronounced, and therefore, increases the ridge bias. There are two implications here. First,

the steady-state a values on the parabolic ridge will decrease as d increase. This is because it will

take a smaller step-size to create an unbiased selection operator required for a to stabilize. Second,

76

o

IT)
CO

o
CD ~

"3 LO

i n

-+-

1

B

I

f

i

-y

?

i

T

-i-

T"

1
_L

T
1 "T

rizzr"
1 1-

i i

s1 s2 s5 S10 p1 p2 p5 p10 o 200 400 600 800 1000

Figure 4.8: The graph on the left shows to for all values of the ridge scaling factor d. Each experi
ment is denoted with an s or p, depending on whether the ridge is sharp or parabolic, and the d value.
For example, s i refers to the sharp ridge with d = 1. The right graph shows the the convergence of
log(cr) for A = 60 on the sharp with d = 1. Although Co appears to be close to 50 for the sharp ridge
with d = 1 (si), it is in fact significantly higher (using a t-test with a 0.95 confidence interval).

because the bias in the sharp ridge cannot be removed, an increased ridge bias will cause the step-

size to decrease at a higher rate.

Figure 4.8 shows how the scaling factor d can affect self-adaptation on the sharp ridge. The

right box plot indicates that increasing d creates a larger bias toward selecting smaller step-sizes for

the sharp ridge. The parabolic ridge still reduces it step-size until u « 50, but this requires a smaller

<T for larger values of d (which is not shown here). Although the to value for the sharp ridge with

d = 1 appears to be close to 50, it is actually significantly different. Even this small bias will cause

instability in the step-size. The right graph of figure 4.8 shows the convergence behavior for a on

the ridge functions with d = 1. The parabolic ridge balances when CJ « 50. On the sharp ridge, a

slight bias in selection (to > 50) causes the step-size to decrease slowly. Given 1000 generations,

self-adaptation makes greater progress on the unsealed (d = 1) sharp ridge than it does on the

unsealed parabolic ridge. This is not surprising because the parabolic ridge has a much larger rate

of decrease to the ridge axis than the sharp ridge, which decreases linearly.

4.3.4 Discussion

We have provided evidence to support our conjecture that self-adaptation will continue to decrease

its step-size on the parabolic ridge function until it removes the bias toward selecting smaller a

values. On the sharp ridge function, this inherent bias cannot be removed, and a will decrease on

77

average. This explains why the performance of self-adaptation is poor on ridge functions.

The shortcomings of correlated mutations and the lack of robustness that frequently occurs

when adapting individual step-sizes leave an impression that the only safe way to use self-adaptation

is with a single strategy parameter. And this strategy can also fail on the sharp ridge, a relatively

harmless looking unimodal surface. To confuse the issue even more, when self-adaptation does not

fail, it usually adapts step-sizes that are too small. All of these arguments seem to indicate that

the self-adaptive assumption - highly fit individuals will also have useful strategy parameters - is

incorrect.

On the other hand, the selected individuals will tend to have distributions that are more likely

to explore better regions of the search space on the ridge function. A large step-size is less likely

to "explore" better regions of the search space because of the inherent bias that comes with ridge

functions.

4.4 Summary

We have explored why ridges are difficult for local search and the self-adaptive evolution strategy.

For local search, changing only one variable at a time creates a fixed neighborhood search direction.

Ridges that do not align with this coordinate pattern will cause local search to creep or even stall if

the ridge is sharp. Similar problems exist for other pattern search methods such as GPS. Changing

the search direction for these algorithms can increase their efficiency, but getting the right direction

adds complexity and is difficult as the number of parameters increase.

The self-adaptive evolution strategy decreases its step-size until it finds a balance between ac

cepting larger and smaller values of a. Like local search, this makes self-adaptation also creep on

smooth ridges and fail on sharp ridges. CMA-ES overcomes this problem by altering its search

distribution based on path information and the best points of the current sample.

One common theme in optimization that continues to emerge across different disciplines is this:

unless an algorithm specifically exploits covariance information, it is unlikely that its heuristics,

either direct or using the gradient, will perform well on ridge problems. Furthermore, it seems

that algorithms that do address the ridge problem must incur additional complexity in order to

gain overall efficiency. That is, finding the ridge direction is difficult and appears to come with

78

a computational penalty. Simple methods, like steepest-descent, local search, and self-adaptation,

are all less efficient, or even fail, on ridge surfaces, while more complex algorithms, such as a

quasi-Newton method or CMA-ES, are overall more efficient and effective.

In terms of difficulty, the ridges used in this chapter are relatively easy. For example, the con

dition number for Rosenbrock's function is K « 2.5e3. This number also does not increase with

dimensionality. A function is generally considered ill-conditioned when it has a value K > 10e6.

This means that, although local search and self-adaptation were able to creep along the ridges in

this chapter, numerical precision may cause these methods to fail on problems with more dramatic

ridge features. The evolutionary algorithm community should pay more attention to ridge features.

79

Chapter 5

Applying Search Algorithms to the
Temperature Retrieval Problem

Our exploration of the ridge problem in chapter 4 was partly motivated by our work with a real-

world inverse problem from the atmospheric sciences, the temperature retrieval problem. This

problem seems to be a good application for heuristic search because, although traditional optimiza

tion methods can be used, the gradient is sometimes not available or is extremely costly to compute.

This can make the search times slow (e.g. hours). However, we have found that some evolutionary

algorithms do not work well on this problem. We now know that there are ridges in these search

spaces and that, as we discussed in chapter 4, they can induce "false" optima for algorithms that use

bit-encoding, and are equally as challenging for search strategies, like self-adaption, that sample the

search space in an unbiased way.

The temperature retrieval problem is a forward model that relates vertical temperature profiles

to observed measurements. Researchers working in the atmospheric sciences actually need the

inverse: given the observed data, what temperature profile produced those observations? Every set

of observations that is collected results in a new temperature inversion problem that must be solved.

These temperature profiles, which are used in global atmospheric circulation and weather prediction

models, must be found efficiently in order to process a days' collection of data in a day.

We formally present results for a variety of search methods: CHC, CMA-ES, the self-adaptive

evolution strategy, which we again denote SA-ES, and local search. A number of algorithms

have been been applied to the temperature retrieval problem on a more limited basis, including

Population-Based Incremental Learning, or PBIL [11] and Differential Evolution [93]. With the

80

exception of CMA-ES, all of these algorithms fail in similar ways. Even the useful solutions found

by CMA-ES take too long to be of practical use. We show that the temperature retrieval problem is

difficult for these heuristic search methods because there are ridges in the search space.

The inefficiency—and even failure—of these methods naturally raises a practical question: what

is the best way to find useful temperature profiles efficiently? It is usually the case that the more

knowledge an algorithm has about a particular problem, the more efficiently it will be able to find

better solutions. In light of this observation, we investigate how to exploit two knowledge-specific

features of the temperature problem.

First, since this model measures some physical phenomena, the expectation is that spatially

close object parameters will tend to have similar temperature values. Salomon has proposed an

optimize and refine algorithm that exploits the smoothness of temperature profiles and produces

useful results efficiently when compared to the standard evolutionary algorithms we tested [84].

We show that even with this added problem-specific knowledge, not all the solutions found by this

method are acceptable. We respond to this by presenting a new algorithm called "Tube Search".

Our algorithm uses smoothness constraints to avoid ridge problems and quickly produces good

approximate solutions.

Second, the way the objective function calculates the quality of a particular solution is not

arbitrary; it is a nonlinear least-squares problem. Recall from chapter 2 that the structure of this

problem is exploited by the Levenberg-Marquardt algorithm. We show that this gradient-based

strategy is extremely fast on this problem.

This chapter is built around the temperature retrieval problem in the following way. The next

section describes the temperature retrieval problem in greater detail. Then, we discuss the results

of several search algorithms that we have applied to the temperature problem. We show that the

temperature problem is difficult for search because ridges exist in its fitness landscape. Then we

explore two algorithms that exploit the physical continuity of the temperature problem: Salomon's

optimize and refine method and our new algorithm, tube search. Finally, we show that exploiting

objective function structure and using gradient information is incredibly fast on this problem.

81

5.1 The Temperature Retrieval Problem

Researchers working in the atmospheric sciences have created a forward model that relates vertical

temperature profiles to observed measurements. The forward model, as described in this paper, gen

erates 2000 radiance measurements (observations) given a 43 dimensional temperature profile. The

kth parameter in the profile is the estimated temperature at an altitude of approximately k kilometers

in the atmosphere (in reality, the spacing is somewhat greater at higher altitudes). We actually want

to solve the inverse problem: given a set of observations, what is the corresponding temperature

profile? In practice, radiance measurements from a constellation of satellites are used in an inverse

radiative transfer model. Examples of extant observing systems are: Operational Vertical Sounder

(OVS), the Special Sensor Microwave Imager (SSM/I), and the Advanced Microwave Sounder Unit

(AMSU). The inverse solution must be accurate and fast; measurements are often collected at a high

spatial resolution from satellites whose orbital period is about 90 minutes (i.e. moving at about 8

km /sec).

The forward model is the simplified form of the equation of radiative transfer that does not

account for the presence of clouds. The equation of transfer is solved for the radiances at different

wavelengths observed at the top of the atmosphere. This radiative transfer model is "plane parallel"

(e.g. one with no horizontal variations in its properties). The radiances are calculated at a certain

viewing angle 9 as:

I{r#) = Bu{Ta)e-T'/» + f Bu{T)e-T'^-ldT
Jo

where I(Tttl) = radiance

jJL = COS (6)

T — optical depth

s = surface

BV(T) = Planck radiance for temperature T.

An analytical inversion of this model is impossible. Alternatively, the inverse temperature model

can be formulated as an optimization problem, where the target temperature profile is the global

82

optimum of the search space. Specifically, the objective function becomes a nonlinear least-squares

problem where the fitness is the sum-squared-error between the the observable measurements, Vj,

and the output of the forward model at a given temperature in the search space, F(x),.

M

First order derivatives can be calculated analytically for the temperature retrieval problem [30].

In the more complex and realistic models, the analytical calculation of derivatives is impossible.

Currently, success has been achieved using the Gauss-Newton iterative method and a good starting

profile. Although the solution can be accurate, achieving a quadratic convergence rate for solutions

near the optimum is highly dependent on a good apriori guess of the temperature profile. Later in

this chapter, we show that the Levenberg-Marquardt algorithm works well from any random starting

point.

5.2 Empirical results

We used the well-known McClatchey tropical temperature profile [64] as our empirical search ob

jective. Experiments performed on other McClatchey profiles indicate that this target profile is

representative of the problem difficulty.

In this section, we compare CHC, CMA-ES, the self-adaptive evolution strategy (SA-ES), and

local search (LS) on the temperature problem. As mentioned, the precision for CHC is typically

set between 10- and 20-bits. A higher precision search will tend to restart less often because each

individuals representation considers more information, and therefore, will maintain diversity longer.

In our experiments, we used 20-bits.

Precision was also the only parameter we considered adjusting for local search. We have seen

that higher precision will converge more slowly because the neighborhood pattern is larger and the

potential to creep is greater. This becomes a practical problem in high dimensions. For example,

a 20-bit LS on the temperature problem requires 860 neighborhood evaluations in order to take

a single step. In order to make LS more efficient, we used 10-bits of precision, which cut the

neighborhood size in half. We know from the previous chapter that this precision choice will likely

induce more local optima on ridges than a higher precision search.

83

o v * ' • • • m

' ° \ o o. * *-» ' " " • • • .
"„ " " • • > o o „ ' J ; * . A . 4

V CMA|
o CHC
* SA

' • " ' • • • • 1 1 « • « : « « » :

10,000 evaluations

400 600

evaluationsxioo

1000 CMA CHC SA LS

[; "•]

100,000 evaluations

CMA CHC SA LS

Figure 5.1: The convergence of each algorithm, based on log(fitness), with respect to the number of
evaluations. The right two graphs are box plots of log(fitness) for each algorithm after 10,000 and
100,000 evaluations. Only CMA-ES is able to find acceptable solutions to this problem. Unfortu
nately, using 100,000 evaluations is impractical for real-time performance.

We used a population size of A = 100 for both CMA-ES and SA-ES. The initial step-size was

set to a = 30, which is 25% of the domain. Our preliminary results indicated that the larger rec

ommended step-size values did not yield better results. We also found that smaller population sizes

were less effective. CMA-ES used the default parent number and weighted intermediate recombi

nation (p — n). We used a single parent (fj, = 1) for SA-ES.

Each algorithm ran for 30 trials and each trial used exactly 100,000 evaluations. Random

restarts were used to ensure that every trial used all of its allocated evaluations. While 100,000

evaluations may seems small, or arbitrary, for a problem of this dimension, we actually need to

reduce the number of evaluations significantly to achieve real-time performance.

The median convergence for each algorithm is plotted in Figure 5.1. The box plots on the right

show the fitness of the solutions found by each algorithm after 10,000 and 100,000 evaluations.

The most striking observation in Figure 5.1 is that CMA-ES is dramatically more effective on this

problem than the other algorithms tested. And, although each search strategy continues to improve

with an increased number of evaluations, the rate at which CMA-ES is improving is significant.

What is unclear from this data is exactly how useful any of these solutions are.

The five median solutions (out of 30) found by each algorithm after 100, 000 evaluations are

84

displayed in Figure 5.2 along with the McClatchey tropical profile. These solutions are indicative of

the expected performance. The solid black line is the target profile; the gray lines are the five median

solutions. From a practical point of view, CMA-ES is the only algorithm capable of finding solutions

that are a reasonable fit to the desired temperature profile. All the other median solutions zig-zag the

target profile too much to be of any practical use. Unfortunately, even the useful solutions obtained

by CMA-ES take an unrealistic number of evaluations.

We also observe from Figure 5.2 that the solutions found by each search algorithm fit the lower

parameters of the profile better than they fit the upper dimensions. This is most pronounced in the

SA-ES results, but still noticeable in the other algorithms. For example, the median solutions of SA-

ES fit the profile well between parameters 2 through 20, but zig-zag the profile elsewhere. Although

the solutions found by CMA-ES are close to the target, we found that it assigns the correct values

to the lower dimensions first, and then continues to search for more effective values in the upper

parameters second.

5.3 Problem difficulty

Our results show that CMA-ES has a clear advantage on the temperature problem. One interpre

tation of this performance gap is that the heuristics employed by CMA-ES interact well with the

surface features of the this problem. In chapter 3, we observed that CMA-ES was the only algo

rithm that performed well on ridge features and is the only method that presented here that has

heuristic mechanisms in place that allow it to travel along ridges in the search space. The dominat

ing performance of CMA-ES here is a good indication that there are ridges in the search space of

the temperature problem. The question we explore in this section is: what are the problem features

that make the temperature retrieval problem difficult for search?

5.3.1 Separability, Ridges, and Bias

We know that the problem is highly non-separable. There exists a strong non-linear interaction

between adjacent parameters. For example, finding the correct temperature value for parameter k

will imply changing the values of the parameters that are in the range k—i to k+i. The neighborhood

size, i, of this local interaction is unknown. The closest parameters are likely to have the strongest

85

CMA-ES: 100,000 Evaluations

SA: 100,000 Evaluations

CHC: 100,000 Evaluations

LS: 100,000 Evaluations

0 10 20 30 40

Figure 5.2: The five median solutions found by each algorithm. The solid black line is the target
profile. The gray lines are the actual solutions. Notice that all algorithms pay more attention to the
lower dimensions of the profile. These are the parameters that offer the largest rate of descent. This
is most noticeable in Self-adaptation (SA).

86

y.
10 38 39 41

Figure 5.3: Two-dimensional surfaces created by varying the two dimensions of the optimal solu
tion. The axis in each case is aligned with the ridge and shows the degree to which the parameters
interact near the optimal solution. The surface on the left is poorly-scaled and the interaction be
tween the variables is minimal. The surfaces to the right are more evenly scaled, but there is also a
strong interaction between the variables.

interactions while more distant dimensions will exhibit a weaker correlation.

As expected, we have also noticed that there are ridges in the search space. Figure 5.3 shows

several representative 2D slices of the temperature problem's search space. Each surface was created

by changing two parameters of the optimal solution. For example, to create the left-most surface,

we varied parameters 10 and 40. The resulting surface shows that there is very little interaction

between these two variables, but that there exists dramatic difference in scale; the rate of change

in parameter 10 dominates the landscape. The other three contour plots in Figure 5.3 show the

interaction of parameter 40 with parameters 38, 39, and 41. Although the difference in scale is less

pronounced in these other slices, there exists a much stronger interaction between the variables.

This is because each of these surfaces involve parameters that are in the neighborhood of parameter

40 (e.g. 38, 39, and 41).

We believe that search algorithms pay greater attention to the lower dimensions of the temper

ature problem because these dimensions offer the greatest rate of decrease in error. Starting from

the globally optimal solution, we varied each parameter by ± 2 units (degrees Kelvin). Every move

increases the objective error, which is zero when no change is applied. The average change per di

mension, denoted 6, is a rough estimate of the expected change in the objective function associated

with each object parameter near the optimal solution.

Figure 5.4 shows the estimated bias b for the temperature retrieval problem. Notice that the

parameters offering the greatest opportunity to reduce the error will correspond to the largest values

of the estimated bias b. This bias causes the search algorithms to fit the "steeper" dimensions of

i

"

87

•
/

•
/

•

/ •

•

h
11

•>
•

•N

•
•

•
• • * '

. - • ' •
•

•
•
\
•
'i •

•
\

• • • « > • • r -
. - • • • - •

• • • • •

• » •

1 10 20 30 43

Parameter

Figure 5.4: An estimation of the parameters that offer the greatest influence on the fitness function.
The average bias per dimension is lower for the parameters upper dimensions of the problem.

the profile first - and to assign less precise values to the other parameters. Comparing the profile in

Figure 5.4 to the results displayed in Figure 5.2 it becomes more clear that each algorithm favors

the parameters that have the greatest bias.

5.3.2 Computing the Condition Number

In the previous chapter, we mentioned that the condition number of the Hessian is representative of

how poorly-scaled a surface is. For the Temperature problem, computing the Hessian analytically

may be possible, but would be extremely challenging. Furthermore, the Hessian is almost never used

directly in search; the most efficient nonlinear optimization methods use first-order information to

approximate the Hessian. Yet it would still be informative to have an idea of how difficult the ridge

features in the temperature problem are.

With very little effort, we can compute the exact Hessian around the optimal solution using

only first-order information. This is a well-known intrinsic property of any least-squares objective

function. Gradient-based optimization algorithms like the Gauss-Newton and Levenberg-Marquardt

use this property as part of their heuristic for estimating the Hessian. Recall that the objective

function is of the form:

minimize f(x) = ^2,ri{xf
i=i

= \R{X)TR{X)

where R(x) — F(x) — Y

88

The gradient is:

V/(x)
df(x)

dri(x)

dXj

m
[X Y,r^

• i dxj

We can define the Jacobian as:

J(x)
dri(x)

^ dXj

Substituting the Jacobian notation into the above gradient and writing this in matrix form we have:

V/(x) = J(x)TR(x)

The Hessian is:

d2f(x) a fdf(x
dxidxj dxi \ dxj

- JL I V < \dri(X)
dxi \ f-f dxj

m y, , drjjx) &n(x) + d2n{x)
4^i \ dxj dxj l dxidxj

If we denote

then the Hessian in matrix form becomes:

V2f(x) = J(x)TJ(x) + S(x)

The important point here is that when the candidate solution x is at the optimal temperature, the

second term in the Hessian, S(x), goes to zero because the residual term ri{x) is zero. This means

that we have the exact Hessian around the optimal temperature solution by using only the Jacobian,

J(x), which is comprised of first-order information only. When we do this we find that the condition

number of the temperature problem at the optimal solution is K ft* 5.8el0, an indication that near

the optimal solution, this problem is highly ill-conditioned. Recall from chapter 4 that the condition

number of Rosenbrock's test function was only K ft* 2.5e3.

89

5.4 Directly Exploiting Problem-Specific Information

So far we have observed that the only general-purpose algorithm that found acceptable solutions to

the temperature problem is CMA-ES. We use the term general-purpose here because there is nothing

about CMA-ES—or any of the other algorithms tested so far—that exploits problem-specific apriori

knowledge about the temperature problem. But the more knowledge an algorithm has about a

particular problem, either directly, based on problem-specific information, or indirectly, based on

its relative bias, the more efficiently it will find better solutions. We ask the question: can we directly

exploit some characteristics of this problem to increase efficiency?

In this section, we exploit two specific features of the temperature problem. First, the temper

ature retrieval problem is one instance of an application that measures some physical phenomena.

The expectation is that spatially close object parameters will tend to have similar values. This cre

ates a "smooth" expected profile through the parameter values being optimized. This characteristic

can be exploited by imposing a smoothness constraint on the parameter values of the objective

function.

Second, the objective function for a nonlinear least-squares problem is not arbitrary. There is

structure that exists in this function that is specific to a least-squares problem and can be exploited.

In the previous section, we demonstrated that the exact Hessian can be computed using only first-

order information when the trial vector is optimal. We discussed how the Gauss-Newton method

uses only the Jacobian to approximate the actual Hessian even when the trial solution is not optimal.

The Levenberg-Marquardt also makes this assumption, but is more robust than the Gauss-Newton

method. We show that this algorithm works extremely well for the temperature problem.

5.4.1 Physical Continuity

Salomon [84] found that self-adaptive evolution strategies produced unsatisfactory results when the

desired solution displayed physical smoothness. Salomon created an artificial test function with

physical continuity to demonstrate that a (1,6) self-adaptive evolution strategy (with a single global

step-size) often fails to converge to the optimal solution. The test problem used a simple convex

function (i.e. f(x) = 1 — x2) as the target profile. The fitness of an individual was an approximation

of the area between the current solution and the target profile. Figure 5.5 shows this test function.

90

• s.

" 'N.

• ' M t -
i , '

1 ' S*

i

-

- . :- r-iT:..
::<•• •• \ s

I'.

1

»-
yj~ '"••• -|

" yl ~*^1-T - ^

i i - i , —

* ; . ' - -
i- '- 1 l

i i i

-1.0 -0.5 0.0 0.5 1.0

Figure 5.5: Salomon's test function: Fitness is calculated as the sum of the gray rectangles, which
are an approximation of the area between the current solution (zig-zag line) and the target profile.

This is consistent with our results on the temperature problem. In fact, Salomon's solutions often

"zig-zag" the target profile producing results similar to the self-adaptation results in figure 5.2.

We replicated Salomon's results on 43 dimension version of this artificial test problem. Figure

5.6 shows a typical solution. Salomon attributes the evolution strategies poor performance to a

failure in step-size; by the time that most of the parameters have converged, the global step-size

is small and it is increasingly unlikely that a parameter far from the target profile will progress

towards to optimal solution. That is, a small global step-size adapts because the best individuals of

the population are likely to be close to the current solution, which in turn is near the target profile.

With a small global step-size, the outlier points are unlikely to converge on the target profile. This

leaves the undesirable "peaks" or "zig-zags" in the solution.

Figure 5.6: A typical solution found by SA-ES on Salomon's artificial test function.

We also tested CMA-ES, CHC, and local search on this problem. We found that the self-

adaptive evolution strategy was the only algorithm that failed to find the optimal solution. There is

nothing inherently difficult with problems that have optimal solutions exhibiting physical continuity.

91

Salomon's objective function is difficult for self-adaptation because the discontinuous nature or the

objective function creates sharp ridges in the fitness landscape. In chapter 4, we showed that on

sharp ridges, self-adaptation is unable to remove the bias between small and large step-sizes, and

therefore, continues to decrease its step-size until it fails. However, this simple problem does not

have the same degree of non-linearity and scale that makes the temperature problem difficult for the

remaining algorithms. Local search is actually successful on this problem because the sharp ridges

are closely aligned with the coordinate axis.

Optimize and Refine

Salomon suggests an optimize and refine evolution strategy as a means of avoiding the problematic

"peaks" shown in Figure 5.6. The optimize and refine technique was inspired by manufacturing

methods: many products start with a rough approximation that is refined to be more smooth. The

smooth target profile of the temperature retrieval problem may be tackled in the same way. The pro

cedure starts by approximating the target with a linear fit. The endpoints, x\ and £43, are searched

for the position where linear interpolation minimizes the objective error. Refinement reduces the

regions by half, and the solution becomes a piecewise linear approximation. For example, the next

iteration would increase the dimensionality from two to three by adding the point £20- This two

piece linear approximation is optimized before more points are added in the next refinement phase.

This method is efficient in several ways. First, a close approximation to the target is found by

searching small landscapes. In the temperature retrieval problem, a linear approximation reduces

the dimensionality of the search space from 43 to only two. This gives higher dimensional searches

a good place to start. Second, it forces a smoothness constraint on the problem. Neighboring points

in the domain are forced to be relatively close in the range.

Salomon used a (1,6) evolution strategy in his optimize and refine method. We implemented a

simple binary search to locate the minimum at each inflection point of the piecewise linear solution.

The search started at the endpoints, x\ and X43. The binary search moved to the optimum in each

dimension for several iterations until no improvement could be found. Then, the point £20 w a s

added to break the linear region in two, and the optimize procedure was repeated, this time with

three points instead of two. At each step, the regions, defined by the current set of points, were cut

92

0 10 20 30 40

Figure 5.7: Optimize and Refine. A fully convergent subarctic summer solution required an average
of 10,446 evaluations. Although this solution fits the profile better than previous methods, it still
zig-zags the target solution.

in half after they had been fully optimized. Figure 5.7 shows this procedure for the McClatchey

subarctic summer profile. Although this method shows promise, it is able to fit some data examples

better than others. Sometimes the solution still "zig-zags" the target. This method also struggles to

fit the ends of the profile.

A New Algorithm: Tube Search

We know that the target temperature profile we are trying to retrieve is relatively smooth, a constraint

that is exploited by the optimize and refine algorithm. In response to this, we implemented a new

algorithm called tube search.

Like optimize and refine, tube search starts with a linear fit. This provides a consistent starting

point that is smooth, a quality we hope to retain throughout the search. Once the linear fit has

been determined, tube search begins. A fixed step is taken on either side of the linear fit - in effect

93

defining a tube about that solution - and the change in evaluation is recorded and stored in a vector.

Some moves will offer improvement, while others will not. Once improving moves have been

determined, a step of the same magnitude is taken in each improving dimension simultaneously. A

three-parameter moving average is run on the solution every five iterations to maintain a smoothness.

Each parameter, except the first and last two end points, is replaced by the average of itself and its

two neighbors.

• M — s°hition[i — 1] + solution[z] + solution^ + 1]
so ution^j - -

Figure 5.8 graphically explains the tube search and shows the final solution generated by searching

the temperature problem. Note that 43*2 evaluations are needed to evaluate the moves defined by

the tube. Given the small number of moves used by the tube search, the total number of evaluations

is less than half of that used by the the optimize and refine algorithm.

The error values associated with the move forming the tube around the current best solution will

drive the search toward better points while maintaining smoothness. Because all of the parameters

change at once, tube search is not a simple coordinate search scheme. Additionally, when each

step is taken the magnitude of the step is the same independent of the magnitude of the error. In

this way, tube search ignores the bias in the evaluation function. Higher dimension parameters can

change just as much as lower dimension parameters, even when they have a smaller contribution to

the error.

Tube search works surprisingly well on all temperature profiles we have optimized. Oddly

enough, the errors associated with the tube search solutions are not particularly low: the errors are

generally much lower for optimize and refine. Even CHC achieves lower errors. However, if we

compute a sum-squared error (SSE) between the actual target temperature (which we don't have

in the general case) and the tube search solution, the fit between the tube search solutions and the

actual profile is better, on average, than is achieved with other methods. A smooth solution closer

to the actual profile is more useful than a jagged solution with a lower error. Table 2 shows the

optimize and refine method compared to the tube search method for all the McClatchey profiles we

tested. The better objective fitness achieved in the optimize and refine algorithm does not imply a

closer fit to the target solution. This may be because the other methods are more affected by bias in

the evaluation function.

94

T 1 1 1 [~

0 10 20 30 40

Figure 5.8: Tube Search: The top two graphs show select iterations of the tube search. The bottom
graph shows the final solution after 3,487 evaluations. Of all the profiles tested, this was the worst
fit. The step distance for each parameter is exactly the same, so bias has no impact on tube search.

Tube search is also much faster than the other methods using fewer than 3,612 evaluations on

all data sets. This is still not fast enough to allow for real-time evaluation. However, tube search

has another attractive feature. Each of the 86 evaluations required to evaluate the moves defined by

the tube around the current best solution are independent and can be done in parallel. This would

allow us to use parallelism to speed up Tube Search by a factor of 86. Parallel tube search could

obtain a solution in the amount of time taken to do 3, 612/86 = 42 sequence evaluations. This is a

major advantage given the goal of doing real-time temperature retrieval. For perspective, a parallel

version of CMA-ES would requires roughly 1000 steps to converge.

5.4.2 Exploiting Objective Function Structure

The solutions found by CMA-ES are impractical because they take too many evaluations. The op

timize and refine method and tube search force a smoothness constraint on the solution, but these

95

Profile

Mid-latitude Summer

Mid-latitude Winter

Sub-arctic Summer

Sub-arctic Winter

Tropical Summer

Original Profile

Tube Search

Fitness

932,322

743,194

760,703

1,092,430

1,664,570

1,472,380

SSE

933

738

1,610

348

1,189

1,950

Optimize & Refine

Fitness

256,605

298,684

324,395

314,486

399,106

314,486

SSE

2,592

3,342

3,502

1,383

1,423

1,370

Table 5.1: Sum-squared error (SSE) for the optimize and refine method and the tube search for all
the McClatchey profiles we tested.

methods still have difficulty getting close enough to the actual profile to be useful. This section

compares several gradient-based methods: the quasi-Newton BFGS, the conjugate-gradient method

(CG), and the Levenberg-Marquardt (LM) algorithm. We show that the Levenberg-Marquardt

method, which exploits direct knowledge of the objective function's structure, is incredibly effective

and efficient on this problem.

We would like to make these results comparable to the results already presented. The problem is,

a call to the evaluation function is significantly less complex than a call to the gradient. For example,

a call to a finite-difference gradient would require either 43 or 86 calls to the objective function

depending on the type of finite-difference method used. Fortunately, the gradient of the temperature

problem is not as expensive; logically and empirically, we determined that calling the gradient once

is approximately equivalent to calling the evaluation function 20 times. The results present here are,

therefore, in computational units. We define a computational unit for the temperature problem as:

computational unit = objective function calls + 20 • gradient calls

The results of the BFGS, CG, and LM algorithms are very consistent. Like CMA-ES, every

trial for both algorithms converges to a solution that is within a tight neighborhood of the optimal

given the constraints on the computational units. Figure 5.9 shows the convergence plot for 30 runs

of CMA-ES, BFGS, and LM. All the gradient methods find solutions that are satisfactory from a

practical point of view.

The most dramatic features in Figure 5.9 is the steep final convergence of the LM algorithm.

96

Oe+00 29+04 49+04 69+04 89+04 19+05 09+00 29+04 4g+04 69+04 89+04 19+05 0 500 1000 1500

Figure 5.9: Gradient algorithms and the temperature problem. The black line is the average con
vergence for each algorithm. The convergence for each trial is shown as a gray line and is included
for visual variance information. The leftmost graph is an average convergence plot of CMA-ES,
included for perspective. The middle graph is a representative convergence graph for BFGS. The
rightmost figure is the extremely efficient Levenberg-Marquardt algorithm. Notice that CMA-ES
and BFGS have similar scale on the x-axis, which is the number of computational units. The LM
algorithm, on the other hand, only uses a little over 1500 computational units to converge.

This is even more extreme because the number of computational units required to converge for LM

is only « 1500! In contrast, both CMA-ES and BFGS require the full 100,000 computational units,

which for CMA-ES are objective function calls only. The efficiency here is a direct consequence of

LM exploiting the structure of the objective function. As search approaches the optimal solution,

the Hessian approximation gets more and more accurate because the residual term, ru gets closer

and closer to zero. The Hessian approximation

Bk = J(x)TJ(x) « J(x)T J{x) + S(x) = V 2 / 0)

gets closer to the true Hessian as the term S(x) goes to zero. This essentially transforms the ill-

conditioned temperature ridge into a sphere within a local neighborhood of the optimal solution.

And a spherical surface is easy to optimize because every gradient points to the minimum.

The BFGS algorithm is more efficient than CMA-ES, but considering that it is using the gra

dient, its performance when compared to LM is disappointing. We also ran the conjugate-gradient

algorithm and found it was even less efficient. We have already mentioned that the parallel version

of CMA-ES would only require 1000 steps to find adequate solutions. This makes the direct search

surprisingly competitive on this problem with these well-known gradient algorithms.

97

5.5 Summary

Temperature retrieval is a real-world optimization problem that has ridges in its search space. At

tempts to solve this problem using well-known evolutionary algorithms and local search methods

often produce poor results. We know that the algorithms that fail, also do not address the ridge

problem. In the previous chapter, we explained why local search and self-adaptation cannot effi

ciently move along ridges structures. In light of this, it is not surprising that they perform so poorly

on the temperature problem. The CMA-ES algorithm has,to a large degree, overcome the problems

associated with attempting to adapt rotational parameters. This use of rotated representation has a

clear advantage on the temperature problem.

Salomon's optimize and refine method and our tube search strategy produce approximate solu

tions quickly, but the temperature profiles found are imprecise. This leaves two limited choices if

we are restricting ourselves to direct search methods; either retrieve a quick and dirty solution using

a strategy that exploits continuity or spend more time finding an effective temperature profile using

an evolutionary algorithm like CMA-ES. Of course, what we would like to have is an algorithm that

quickly finds precise solutions. Running CMA-ES with parallel sampling would certainly increase

its efficiency.

The Levenberg-Marquardt algorithm utilizes two well-known ideas within the optimization

community. First, if gradient information is available, then using it will likely result in a more

efficient and effective search. Of course, this not absolute: the performances of the BFGS and

conjugate-gradient algorithms were slightly disappointing. Second, the more knowledge you can

exploit about a particular problem, the better. This is where the Levenberg-Marquardt gets its effi

ciency. On temperature retrieval problems, where derivative information is available and the objec

tive function can be stated as a least-squares problem, this algorithm is clearly the best choice.

98

Chapter 6

Dispersion, Mobility, and Search

It is not clear how global structure impacts search. This is partly because test functions with a

less predictable underlying structure are often underrepresented in empirical studies and are over

shadowed by easier problems with a unimodal global structure. This creates two problems: First,

on a more general level, an algorithm's global search ability can be misunderstood based on how

well it solves relatively easy benchmark test problems. For example, solving the Rastrigin function

does not necessarily imply that an algorithm will find competitive solutions on an application that is

highly multimodal. Second, in order to understand how global structure affects search, we must first

be able to categorize test functions based on the complexity of their underlying global structure.

Ultimately in the chapter, we want to explore the question: how does the more complex global

structure, that we know exists in some benchmark test problems, affect evolutionary parameter

optimization? We investigate this question from several perspectives.

We start this chapter by introducing an algorithm independent metric that measures function

dispersion based only on a uniform random sample of points. This allows us to categorize the

benchmark test functions described in chapter 3 as either high dispersion or low dispersion land

scapes. At a high level, a low dispersion function corresponds to landscapes that have a big valley

or single-funnel. A high dispersion function, on the other hand, is one where the underlying global

structure is not a predictable bowl-like shape. Instead, the best regions of the search space tend to

be more spread out.

Then we explore how high dispersion functions impact search. Intuitively, an effective global

search algorithm will spend most of its time comparing the best local optima. On high dispersion

functions, the best local optima are not be clustered in a compact region of the search space, but exist

99

in several disperse regions. The way this will impact search is unclear. For example, an algorithms

like CMA-ES, where the population stays together and exploits a single region of the search space,

may require restarts to visit diverse local optima. CHC's population, on the other hand, can in theory

exploit multiple disperse regions of the search space simultaneously. Our hypothesis is that CHC

will be a better global search strategy for high dispersion functions. We pose two questions that

we believe will help investigate this intuition. How disperse are the local optima visited during a

search? How does the dispersion of local optima relate to performance?

We explore these questions using a new metric that quantifies algorithms dispersion, which we

define as the dispersion of local optima visited during search. We call this metric mobility. Then

we compare local search, CHC and CMA-ES, on a set of high dispersion test functions and show

that, in low dimensions, algorithms that visit more disperse local optima (higher mobility) tend to

find better overall solutions on high dispersion functions. In general, we find that the heuristics

employed by CHC create higher mobility, and therefore, render CHC more effective. However,

as the dimensionality increases, this trend no longer holds. This is partly because the differences

in performance between these algorithms is less significant (see chapter 3) and partly because our

mobility metric does not work as intended in high dimensional space.

The CMA-ES algorithm is really employing "local search" heuristics to the global search do

main, and therefore, must rely on restarts to increase its mobility. This emphasis on detecting and

exploiting local structure also makes CMA-ES competitive on low dispersion multimodal functions.

Hansen and Kern have empirically shown that CMA-ES performs well on multimodal functions

where there exists a "global topology" and found that CMA-ES is more prone to fail when the

global structure is less predictable [41].

We believe that dispersion will capture this notion of "global topology". Consequently, we

investigate how dispersion impacts CMA-ES. First, we show that our dispersion metric can predict

how well CMA-ES will perform on multimodal problems. Our results indicate that CMA-ES works

very well on low dispersion functions, but has difficulties when compared with high dispersion

functions. Then we explore the question: why does CMA-ES behave inefficiently on problems that

do not have a globally convex structure? Our research indicates that the adaptive step-size heuristic,

called cumulation, does not function as intended when the best regions of the search space are too

100

VVH
Figure 6.1: The graphically illustration of dispersion as a means of measuring global structure.
Decrease the threshold will tend to decrease the dispersion of the best regions of the search space
on the Rastrigin function (left) and increase the dispersion of the Schwefel function (right).

spread out.

6.1 Function Dispersion

The goal in this section is to introduce an algorithm independent metric, which we call dispersion,

that distinguishes functions based on their underlying global structure. Our metric exploits the

following observation: the sub-threshold regions of problems that have a convex global structure

will tend to get closer to one another as we decrease the threshold, while the opposite is true on

functions where the global structure is less predicable. We expect the sub-threshold regions on

these functions to be more disperse as we decrease the threshold.

The one dimensional Rastrigin and Schwefel functions shown in Figure 6.1 graphically illustrate

this idea. The shaded area in each figure represents the sub-threshold regions of the search space.

As we decrease the threshold, the distance between the distinct basins of attractions that form below

the threshold changes. Notice that on the Rastrigin function, the best regions of the search space

tend to get closer as we decrease the threshold. On the Schwefel function, however, decreasing the

threshold actually increases the distance between the basins of attraction. In other words, lowering

the threshold will cause the dispersion of the best regions of the search space to increase.

We create sub-threshold regions of the search space by selecting the best points of a random

sample. The sample of points is constructed such that it represents an aspiration threshold expressed

as a target percentage of the search space. This allows us to use the dispersion metric in two ways.

1. We can compare the dispersion of different functions at a particular threshold.

2. We can calculate the dispersion of a single function at different thresholds.

101

In the second case, we might measure the dispersion of the points estimated to be in the top 5% of

the search space and compare this to points estimated to be in the top 0.5% of the search space. A

low dispersion function is one where the dispersion decreases as the sample is restricted to better

regions of the search space. This corresponds to functions with a convex global structure (e.g.

Rastrigin's function). A high dispersion function is one where dispersion stays constant or increases

as the sample is restricted to better regions of the search space. Functions of this type have a less

predictable global structure (e.g. Schwefel's function).

The dispersion metric gives us a means to determine a significant feature of the global topol

ogy of a function. Are the best regions in the search space localized or disperse? Some highly

multimodal functions have dispersion measures that are approximately the same as a simple uni-

modal sphere function: when this is the case, empirically experiments confirm that low dispersion

functions are easy to optimize.

There exists other recently introduced metrics that attempt to measure similar trends in the

global topology, but these measures have the unrealistic requirement that the search space be enu

merated, or at least that the best local optima are located and enumerated. These metrics are briefly

reviewed later in this section.

We calculate dispersion by drawing a uniform random sample of points from the search space

and calculate approximate thresholds that breaks the sample into subsets representing the best X% of

the search space. For example, if we sample 100,000 random points, we can define a 10% threshold

to be the maximum fitness of the best 10,000 points. A 1% threshold is the maximum fitness of the

best 1,000 points. As the percentage decreases, the threshold also decreases. In this way, a threshold

is determined by a sample size, sv, and a percentage p. At this threshold, dispersion refers to the

average pair-wise distance between the best p x sv points in the sample. In practice, computing

the average pair-wise distance o f p x s„ points can be computationally costly. For example, if

sv = 100,000 and p = 0.01, then sv x p = 1000. This implies computing the distance between

1,0002/2 - 1,000 = 499,000 points.

To make the dispersion calculation more efficient, we define s& = sv x p to be a fixed sample

size. Our dispersion metric is: given an objective function, f(x), a fixed sample size, Sb, and a

variable sample size, sv, dispersion(si,,sv,f(x)) calculates the average pair-wise distance between

102

the best sj, points of the random sample, sv. The variable sample size, sv can be expressed as a

function of the fix sample size st, and the desired percentage, p: sv = s^/p. For example, given

a fixed sample size of si, = 100, a variable sample of size sv = 100/0.01 = 10,000 is needed

to create a p = 0.01 threshold. The dispersion pseudo-code is given in Figure 6.2 and emphasizes

clarity instead of efficiency.

Dispersion(sfe,s^,/(x))

input
Integer S(, - the fixed sample size
Integer sv - the variable sample size
f(x) - the objective fitness function

variables
allPoints - a vector of random {x, f(x)} pairs.
bestPoints - a vector of the best {x, f(x)} pairs.

for i = 1 to sv do
Create a random point, x.
Evaluate its fitness, f(x).
Add {x, f(x)} to allPoints.

end for

bestPoints <— best Sf, points of allPoints
return average pairwise distance (bestPoints)

Figure 6.2: The dispersion pseudo-code.

6.1.1 Benchmark Test Functions

The point estimate of dispersion given in the dispersion pseudo-code is not invariant with respect

to scale. That is, it is possible for two functions with completely different underlying structures

to have similar dispersion measures for a given sample size. However, decreasing the aspiration

threshold will change this point estimate, and this change is a more accurate measure of the under

lying topology. We calculated the dispersion of several classic benchmark test functions discussed

in chapter 3. In particular, we computed the dispersion of the best s& = 100 points for a set of

increasing sample sizes, starting with sv = 100 • 2°, and doubling the sample size each iteration

until we reached sv = 100 • 212 samples (e.g. 100, 200, 400, 800,..., 204800, 409600). This yields

103

\ s '""••*•

-©- rana
A - schwefel
+ • schalfer
-x- rastrigtn
©- ackley
•? - sphere

16 32 64 128 256 512 1024 2048 4096 schwefel rana 1101 schaffer rastrigin boha ackley sphere griewank

Figure 6.3: The dispersion of each test function computed for different sample sizes (x 100). On the
left most graph, the horizontal indicates the dispersion of the initial random sample of 100 points (
denoted dispersion(100,100)). Because we rescaled the boundaries of each function such that the
range was (0,1), the initial dispersion using the first 100 points is the same for all functions. The
right most graph shows the change in dispersion of each test function.

both a point estimate of dispersion at a particular threshold as well as information about how the

dispersion changes as the threshold decreases. In order to make cross-function comparisons more

meaningful, we rescaled the best 100 points based on the boundaries of the function such that the

new minimum and maximum parameter values are 0 and 1 respectively. Then, we computed the

distance for all (1002/2 - 100) = 4,900 pairs of points and averaged this number. We repeated this

30 times for each function in 20, 50, and 100 dimensions. Figure 6.3 shows the average dispersion

as a function of sample size for several 50 dimensional functions. The solid horizontal line indicates

the dispersion of a random sample of 100 points, which we denote dispersion(100,100) (leaving

the objective function out of the notation in Figure 6.2). We found that as we increased the sample

size, the dispersion increased on the Schwefel, Rana and F101 functions. The opposite was true for

all the remaining functions. Increasing the sample size actually decreased the dispersion of these

functions.

We computed the change in dispersion for each benchmark function by subtracting the lowest

threshold dispersion value in our set from the average dispersion value when no selection is applied.

Specifically, we computed the value: dispersion(100,409600) - dispersion(100,100). On functions

where the dispersion increases as we decrease the threshold (by increasing the sample size sv), we

should get a positive number. When the dispersion decreases as we decrease the threshold, we will

get a negative number. Figure 6.3 also shows the change in dispersion for several benchmark test

104

Figure 6.4: The disconnectivity graph for the Rastrigin (left) and Schwefel (right) functions.

problems. This allows us to clearly distinguish between low and high dispersion functions. For

the remainder of the paper, low dispersion is associated with functions whose change in dispersion

is negative. Low dispersion functions include the Schaffer, Rastrigin, Bohachevsky, Ackley, and

Griewank functions. The Schwefel, Rana, and F101 are referred to as high dispersion functions.

6.1.2 Related Work

Doye and Wales use disconnectivity graphs to visualize the global structure of various energy land

scapes [28]. The disconnectivity graph is actually a tree whose leaves are the local optima. Two or

more leaf nodes are connected by a node if they exist in the same basin of attraction. Doye uses dif

ferent energy levels to define basins of attraction. A split in the tree implies that every local optima

below this point is reachable by a path whose fitness does not exceed the given energy threshold.

In other words, the minimum saddle point of the path connecting two local optima is lower than

the energy threshold. Figure 6.4 shows the disconnectivity graphs for the one dimensional Rastri

gin and Schwefel functions. Notice that the Rastrigin function has a single dominate stem. This is

indicative of a "big valley" topology. On the other hand, the Schwefel function has several stems

that split early at high energy levels and has a less predictable global structure.

Disconnectivity graphs have been applied to discrete optimization problems where landscape

concepts, such as local optima, basins of attraction, and saddle points are clearly defined [33].

Flamm et al. extend these critical definitions so that disconnectivity graphs, which they call barrier

trees, can be generated for highly degenerate discrete problems [33].

Locatelli et al. offers a different view of global structure [55]. A graph is defined where the

105

Figure 6.5: Locatelli's view of a funnel landscape.

nodes of the graph are the local optima of the function and an directed edge is extended from node

X to node Y if f(X) > f(Y) and X and Y axe adjacent local optima. Local optima that are

within distance r of each other are said to be adjacent. A funnel bottom is a node with no outgoing

directed edges. An example of this graph for the one dimension Rastrigin and Schwefel functions is

given in figure 6.5. One drawback to this method is that Locatelli's graphs will change dramatically

depending on what distance measure r is used.

One problem with disconnectivity graphs, barrier trees, and Locatelli's method is that they all

requires locating the relevant local minima in the search space. This cannot be efficiently done for

"black box" optimization problems where the underlying mathematical function is unknown or does

not exist. Even when derivative information exists and can be used to catalog all the local optima

and saddle points, these methods are limited to relatively small problems. Doye et al. admit that

finding all the minima for large clusters is impossible: "We therefore stopped searching once we

were confident that we had obtained an accurate representation of the low-energy regions of the [

Potential Energy Surface] " [26]. Hallam and Prugel-Bennett point out that exhaustive enumeration

of the search space raises concerns regarding the usefulness of barrier trees [38]. To mitigate

this problem, they use a branch and bound technique to find only the best local optima. But this

technique is still limited to relatively small problems. Hallam and Prugel-Bennett construct barrier

trees for MAX-SAT problems with 40 variables.

Our dispersion metric is appealing because it requires a relatively modest number of samples to

observe a noticeable change in function dispersion, even on problems with 500 parameters. Further

more, disconnectivity graphs and barrier trees do not directly address the distance between local

optima but rather the barrier height between local optima.

106

"Vj K^J J
lJ

6.2 Mobility: A Measure of Algorithm Dispersion

Our dispersion metric clearly brands the benchmark test functions based on their underlying struc

ture. The distinction creates an opportunity to better understand the global search properties of

heuristic search. In particular, we explore in this section how high dispersion impacts CHC, CMA-

ES, and local search.

It is reasonable to expect that an effective global search will spend most of its time comparing

the best local optima. On a high dispersion function, this implies that search should be comparing

different and disperse regions of the search space, and then focusing its resources on those areas

that appear to be the most promising. In order to quantify this intuition, we define a new metric,

mobility, that quantifies algorithm dispersion, which we define to be the dispersion of local optima

visited during search. This allows us to explore two questions: First, how disperse are the local

optima visited during a search? Second, do effective global search algorithms tend to be more

mobile? We show that on two difficult multi-modal, high-dispersion functions, algorithms that visit

more disperse local optima tend to find better overall solutions in low dimensions.

6.2.1 Measuring Mobility

Our goal is to measure the dispersion of local optima visited during search. In order to measure how

many of the local optima were sampled during search,we need quantify what it means to be "close"

to a local optima. Once we know which local optima were sampled, we need to define a metric to

measure their spread.

Two problems arise with respect to measuring the number local optima sampled during search.

First, how do we define boundaries for the basins that surround local optima. Second, once we have

defined this boundary, how do we cluster points that fall within a given basin?

Ideally, we would look at the basins of attraction that contain the best points of the search space.

We have already discussed one way of doing this; choose a fitness threshold, and only consider

points that fall below this value. This defines a measure of closeness to the local optima that is

based on fitness and only includes the best local optima of the search space.

Like our dispersion metric, we need to define an appropriate threshold value for each function.

In low dimensions, we can define this value by enumerating a fine mesh grid in the search space,

107

sorting the points by fitness, and retrieving the maximum fitness of the best percentage of points.

For example, we may want to find the threshold that defines the best 10% of the search space. This

estimation is only an approximation due to finite precision effects. In higher dimensions (more than

three), the enumeration and evaluation is intractable so another method must be used.

We defined a threshold as follows: First we ran local search, CHC, and CMA-ES on the Rana

and Schwefel problems described in chapter 3. Each algorithm ran for 30 trials and each trial ran

for exactly 25,000 and 50,000 evaluations in five and ten dimensions respectively. Since parameter

settings affect performance, we ran two versions of each algorithm. Local search and CHC were

run using 10-bits and 20-bits of precision. As in previous chapters, CHC uses the time-tested popu

lation size of 50. We ran CMA-ES with rank-^-updates and a population size of 200 and 500. We

distinguish each algorithm based on its parameters; CHC-10, CHC-20, LS-10, LS-20, CMA-200,

and CMA-500. We used restarts to ensure that each algorithm used all the allotted evaluations. That

is, if an algorithm finished before all the evaluations were used, the algorithm was given a random

restart during the same trial and allowed to run until it uses up its remaining evaluations.

Then we combined all the points visited, from all 30 trial of each algorithm, and choose the

threshold to be the fitness of the best 20% of the points. In other words, we looked at every point

evaluated during 30 trials of CHC, CMA-ES, and local search, sorted the points and picked the

threshold value to be the maximum fitness of the best 20% of all the points. We use this aggregate

number to evaluate the global search properties of each trial.

Once a threshold has been calculated, we consider only the unique points that are below thresh

old. We assume that these points fall into the basins of attraction for the local optima we are

interested in counting.

Once we have determined these points, we constructed a completely connected graph of the

local optima with edges weighted by Euclidean distance. We describe how we assign each sub

threshold point to a unique local optima later in this section. From this, we created a minimum

spanning tree of the local optima. Figure 6.6 shows an example of the minimum spanning tree for

local optima found by CHC on the Rana function in two dimensions. An algorithm's mobility is the

sum of all the edge weights from the minimal spanning tree.

Mobility measures the minimum connecting distances between a set of points, and does not

108

\

/ •

/ \ , .-—

i \ / \

r
j^

^

•

V /
\AS~~-

,
^^ * " \ .

Figure 6.6: A minimal spanning tree of local optima on the Rana function.

distinguish, for example, between four points connected on a line and four points on connected on

a box with equal edge lengths (Figure 6.7). In this example the mobility metric has a value of 3 in

both configurations. We believe mobility gives a rough estimate of the dispersiveness of the local

optima visited during search.

6.2.2 Related Work

Schuurmans and Southey defined three metrics that characterized local search performance on sat

isfiability problems [87]. The first metric, depth, measures the average depth local search travels

into the fitness function. More specifically, depth, refers to the number of unsatisfied clauses at

any point during search. Mobility measures how rapidly local search moves away from recently

explored areas. Finally, coverage captures how well local search is exploring new regions that have

not been previously visited. Schuurmans and Southey show that effective local search algorithms

tend to have low depth and high mobility and coverage.

We are defining and exploring similar properties in the parameter optimization domain. Schu

urmans' depth measurement is similar to our threshold. Our mobility metric is similar to both

Schuurmans' mobility and coverage. Schuurman and Southey used Hamming distance to compute

their metrics. In the parameter optimization domain, Euclidean distance is more meaningful. Like

109

file:///AS~~-

1
9 f

Figure 6.7: The mobility metric is invariant under certain sets of patterns.

Schuurmans and Southey, we relate mobility to algorithm effectiveness.

Bit-encoded algorithms can explore a large portion of the search space by only changing a few

bits. One concern is: does measuring Euclidean mobility bias our results to bit-encoded algorithms?

Although a small change in Hamming distance can correspond to a large change in Euclidean space,

mobility is only measuring the distance to those sub-threshold neighbors. In other words, local

search visiting a distant neighbor, as guided by its heuristic, does not imply that the point will be

included in the mobility measurement. As discussed earlier, this point is considerably stronger

when the test functions are non-symmetric and non-separable. We also observe that Hamming-

space mobility would mean something completely different, which renders a direct comparison in

Euclidean space confusing and potentially impossible.

6.2.3 Computing Mobility

In low dimensions, we use a modified form of local search to assign each sub-threshold point to a

unique local optima. The neighborhood pattern of our modified local search was created by modi

fying the current best solution by ±0.001 in each dimension. This creates a compact neighborhood

that includes two points in each dimension that surround the current best point. Keeping the neigh

bors close to the sub-threshold point is important for two reasons. First, it ensures that each point is

assigned to the correct local optima. That is, local search can't discover better basins farther away

using a small step-size. Second, as already discussed in chapter 4, a high precision local search also

decreases the number of false local optima generated by ridges in the search space.

Various measurements for both the 5-D Rana and Schwefel functions are listed in Table 6.1.

For each function, CHC-10 and CHC-20 visit significantly more basins of attraction and have sig

nificantly higher mobility than either local search (LS-10 and LS-20) or CMA-ES (CMA-200 and

CMA-500). LS-10 had significantly higher mobility and visited more basins than the 20-bit local

search. On the Rana Function, CMA-500's higher mobility was significant when compared with

CMA-200. There were no other statistical significant patterns found between the algorithms.

110

CHC-10

CHC-20

LS-10

LS-20

CMA-200

CMA-500

Rana

Mobility

6,667.6

5,423.1

995.3

4.72

277.6

712.3

Basins

52.2

48.4

6.47

1.87

10.9

8.43

Schwefel

Mobility

8,702.9

6,632.8

2,530.9

169.0

492.9

348.8

Basins

23.1

15.5

6.17

1.4

2.43

3.1

Table 6.1: Average mobility and number of basins visited per trial after 25,000 evaluations on the
Rana and Schwefel 5D functions.

Best known

CHC-10

CHC-20

LS-10

LS-20

CMA-200

CMA-500

Rana Fitness

-2,651

-2,411.9

-2,370.9

-2,010.6

-1,614.1

-1,991.0

-2,085.5

Schwefel Fitness

-2,371

-2,334.4

-2,274.9

-2,015.0

-1,790.4

-1,906.2

-1,884.0

Table 6.2: Average fitness per trial after 25,000 evaluations on the Rana and Schwefel 5D functions.

C CHC-10
• CHC-20
L LS-10
• LS-20
M CMA-200
• CMA-500

R-squared = 0.935

C,
C C C
«;•• •

c

cc
C '

c .
-c

L» M L
• LM L

~*A: L
• m **mu
H

0 2000

• L

L

4000 6000

(a) Schwefel

C CHC-10
• CHC-20
L LS-10
• LS-20
M CMA-200
• CMA-500

R-squared = 0.542

MM
,M M

c c • £ : • • • * "

LCLLV

c c

• * • c * c c

(b) Rana

Figure 6.8: The number of basins visited (local optima) vs. Mobility on the Schwefel and Rana 5D
test. Algorithms that visit more local optima tend to have a higher mobility and vice versa.

I l l

In five dimensions we noticed a high correlation between the number of basins visited and the

mobility. Intuitively, this makes sense. Algorithms that visit more local optima will tend to have

higher mobility and vice versa. Figure 6.8 shows the number of basins vs. the mobility on the

Schwefel five dimension test. The Schwefel test has a strong correlation of 0.94. The correlation on

the Rana five dimension test was 0.55.

In higher dimensions, performing modified local search from each of the threshold points be

comes extremely computationally intensive. The primary problem here is that the modified local

search simply takes too long to converge from the sub-threshold points to the local optima we wish

to count.

This requires us to calculate the mobility metric discussed in the previous section without ex

plicitly knowing to which basin of attraction each sub-threshold point belongs. We did this by

constructing a minimal spanning tree of all the sub-threshold points. In other words, all the sub

threshold points will now be included as nodes of the minimal spanning tree. The mobility metric is

different from the previous mobility metric in several ways. Most importantly, the nodes of the tree

are no longer local optima, but rather sub-threshold points. As a result, the edges that join them will

be included in the mobility measurement. This mobility metric is still the sum of the edge lengths

in the tree, but will now include the edges between points that lie in the same basin. This means the

mobility measure will be slightly inflated because points within the same local optima will now add

to the mobility metric. Comparing Figure 6.6 with Figure 6.9 graphically explains this difference.

In ten dimensions, we calculated each algorithms mobility after 10,000 and 50,000 evaluations.

The ten dimensional results for both the Rana and Schwefel functions are listed in Table 6.3. After

10,000 evaluations, CHC-10 and CHC-20 had significantly higher mobility than the other algo

rithms on both the Rana and Schwefel functions. Similarly, local search (LS-10 and LS-20) had

higher mobility than CMA-ES (CMA-200 and CMA-500). After 50,000 evaluations, CHC-10 still

exhibits significantly higher mobility than all the other algorithms on the Schwefel function. How

ever, the difference between CHC (CHC-10 and CHC-20) and CMA-ES (CMA-200 and CMA-500)

on Rana after 50,000 evaluations was not significant. All four algorithms outperformed local search

(LS-10 and LS-20) on both functions after 50,000 evaluations.

112

Figure 6.9: A minimal spanning tree of all the sub-threshold points on the Rana function. The
minimal spanning tree in Figure 6.6 was constructed using the same sub-threshold points as a staring
position for local search.

6.2.4 Mobility and Performance

Is mobility a good measure of global search performance? To answer this question we looked at the

correlation between average fitness and mobility for each trial. Figure 6.10 shows the general trend

for all six tests. Notice that algorithms with higher mobility tend to have more effective solutions.

There is one exception to this observation. Some trials have no mobility, but vary in solution

quality. In other words, each graph in figure 6.10 has trials that have a large range of fitness values,

CHC-10

CHC-20

LS-10

LS-20

CMA-200

CMA-500

Rana

10K

23,793.1

21,068.3

9,819.6

3,709.0

255.7

48.1

50K

21,316.8

24,951.0

835.5

0.0

28,249.0

32,475.9

Schwefel

10K

19,179.7

19,433.4

11,512.6

3,330.5

45.8

0.0

50K

65,009.2

49,907.7

2,137.4

1,609.4

20,973.0

43,249.8

Table 6.3: Average mobility after 10,000 and 50,000 evaluations on the Rana and Schwefel 10D
functions.

113

>
•

•
1

•

9
• t

1* ^L
F • " « • " " • [L L

M •

Fitness v s . Mobil i ty

* • • b c ' c S'
* G

• % c c#c c ' J
c c c «

C CHC-10
• CHC-20
L LS-10
• LS-20
M CMA-200
• CMA-500

R-squared = 0.514

C

C

••
.. c • <m

C c *
• c

•#c c c

C" - .

(a) Rana 5D 25K

Fi tness v s . Mobil i ty

--• Threshold =-2221

c

• L
•
M
•

CHC-10
CHC-20
LS-10
LS-20
CMA-200
CMA-500

R-squared = 0,569

LL C ' • - . . * C

, . . . " L % L > *
• L L L q, . t . . .

" t • ,

(c) Rana 10D 10K

• Fitness vs. Mobility
•
•
"

!

t CC • . . ^ M

c« : cc* 0 •

• c c • c
• c • c

c.V • - o c .

• . c

C

• L

M
•

R-squared

•

CHC-10
CHC-20
LS-10
LS-20
CMA-200
CMA-500

0.343

•

•

•

•

M

I
1*
KK-*
V.V "L ,
. Lf

• "

1* L

M L

L

L

Fitness

L
L L

, L L

' , I- L

L»

L

L L
L

vs. Mobility C CHC-10
• CHC-20
L LS-10
• LS-20
M CMA-200
• CMA-500

^ R-squared = 0.684

• • * . • * < c

* V •
• cr* c» c c "•-. c c » » c
• • M * ««: «x: c » c '--.f COD c cc

2000 40OO 6000 B0O0 10000

(b) Schwefel 5D 25K

Fi tness v s . Mobi l i ty

Threshold = - 2 5 1 1 - -

C

• L
•
M
•

CHC-10
CHC-20
LS-10
LS-20
CMA-200
CMA-500

" • L L t . c

L L

~is c
L. . . J-N C

• " * - • • „

• . e &?

0 5000 10000 15000 20000 25000 30000 ' -35000

(d) Schwefel 10D 10K

> "̂SK*

Fitness v s . Mobi l i ty

Threshold = -3,125

c

• I
•
M
•

CHC-10
CHC-20
LS-10
LS-20
CMA-200
CMA-500

M MX«t
R-sqtiared = 0.575

. c c 0

•C C ftp1-,

cc • • c.
• 'c2

(e) Rana lOD50K

Oe+00 2e+04 4e+04 6&+04 8e+04 1e+05

(f) Schwefel 10D 50K

Figure 6.10: Mean Fitness vs. Mobility. In each case, there is some correlation that indicates more
fit trials had high mobility. Intuitively, we would expect algorithms that explore more to find better
solutions.

114

Best Known

CHC-10

CHC-20

LS-10

LS-20

CMA-200

CMA-500

Rana

10K

-4,933.0

-3,184.2

-3,319.0

-3,011.8

-2,822.2

-2,253.4

-2,124.5

50K

-4,933.0

-4,177.8

-4,313.3

-3,382.5

-2,958.3

-3,574.0

-3,757.2

Schwefel

10K

-4,556.9

-3,411.6

-3,523.5

-3,143.2

-2,749.3

-2,159.3

-1,989.3

50K

-4,556.9

-4,038.7

-4,013.1

-3,464.0

-3,083.7

-3,285.3

-3,386.3

Table 6.4: Average fitness after 10,000 and 50,000 evaluations on the Rana and Schwefel 10D
functions.

yet have zero mobility. These are the "stacked" points in the leftmost position of the graphs.

There are two reasons why trials could have low mobility and a large range of fitness values.

Recall that both of the mobility metrics defined in this paper only include points below a given

threshold value, which is computed based on competing fitness values among all trials, across all

algorithms. In order for a trial to have mobility, it must have some points below the threshold. So,

trials that have no mobility and poor fitness simply did not visit below threshold basins of attraction.

Notice that many of the low mobility points lie above the fitness threshold.

On the other hand, some algorithms tend to have low mobility and rather effective solutions.

This is most pronounced in Local search (LS-10 and LS-20) after 50,000 evaluation in 10 dimen

sions (figures 6.10(e) and 6.10(f))- One explanation for this is that local search visited a few good

basins of attraction that were probably relatively close together and failed to explore other below

threshold areas of the search space. This could happen, for example, on a long ridge where local

search creeps toward good solutions. In this case, local search uses many evaluations exploring only

a small part of the space.

6.2.5 Discussion

In ten dimensions, local search is significantly more mobile during the 10,000 evaluation measure

ment, but falls off the map entirely after 50,000 evaluations. At the same time, CMA-ES has more

mobility after 50,000 evaluations. Longer running snapshots have higher thresholds. As algorithms

115

begin to converge, densely populated sub-threshold distributions lower the threshold. So, early on in

the search, the distribution of CMA-ES is still quite large and unfocused. Local search, on the other

hand, has already focused in on several local optima. Eventually, CMA-ES starts to form a compact

(and densely populated) distribution that focuses in on one or more local optima. This effectively

lowers the threshold to a point that nearly excludes local search. Notice that CHC remains fairly

consistent in during the 10,000 and 50,000 evaluation mobility snapshots.

In all but the Rana ten dimensional, 50,000 evaluations, test, CHC had significantly higher mo

bility. Why does CHC, on average, tend to visit more of the search space? Perhaps some of the

answer lies in CHC's distribution. CHC's crossover operator HUX, or Half Uniform Crossover,

exchanges half the non-matching bits. One consequence of this, according to Eschelman, is that

children are always maximum Hamming distance from their two parents [32]. This highly disrup

tive operator tends to spread search out. It is possible that the distributed nature of CHC's child

distribution, at least to some degree, accounts for its high mobility.

Restarts also help algorithms with stale distributions explore new parts of the search space. Cat

aclysmic mutation, for example, forces CHC to look in other parts of the search space once the

population begins to converge. In the five dimensional tests, the lower precision search was signif

icantly more mobile than its high precision counterpart in every case. This held in ten dimensions

for the 10,000 evaluations tests, where local search actually had some mobility. The high precision

local search has twice as many neighbors in each step, which quickly burns up valuable evaluation

calls. And all of the neighbors are within the low precision neighborhood, which, in terms of explo

ration, adds nothing to the search. Furthermore, the small step size allows the high precision search

to creep on ridges where the low precision search gets stuck and is forced to restart.

As we increase dimensionality, the trend between mobility and algorithm performance weakens.

One reason for this may be that Euclidean distances in high dimensional space render our mobility

metric less precise than in five and ten dimensions. We have also noticed that as we increase di

mensionality, the difference in algorithm performance becomes less noticeable on high-dispersion

functions. In chapter 3 we noticed that there was no significant difference in algorithm performance

on the rotated versions of the 20-dimensional Rana and Schwefel functions. If there is a trend that

exists in higher dimensional space between mobility and performance, we have not been able to

116

detect it experimentally.

6.3 Dispersion and CMA-ES

We know that CMA-ES tends to exploit one region at a time because it is primarily employing local

search heuristics. This means it must rely in restarts to increase its mobility. Hansen and Kern [41]

studied CMA-ES on multimodal functions and state that, "If the local optima can be interpreted as

a perturbations of an underlying unimodal function, then larger populations can detect this global

topology". Furthermore, they continue, "A strong asymmetry of the underlying function jeopardizes

a successful detection and can lead to failure". In other words, the performance of CMA-ES is

greatly impacted by the underlying structure. We proposal that dispersion is one way to quantify

and identify functions with underlying unimodal surfaces that CMA-ES will do well on. We also

predict that "asymmetric" functions will tend to have higher dispersion.

The distribution used by CMA-ES is initially isotropic. As a result, the initial value of a is criti

cal for exploration. Hansen and Ostermeier suggest that the quality of solutions found by CMA-ES

using a small initial step-size are often determined by the location of the starting point [43]. Hansen

and Kern further emphasize that small initial step-sizes can have a considerable impact on the per

formance of CMA-ES[41]; they set the UQ between 20% and 40% of the length of the constrained

region of the search space. Auger and Hansen also test CMA-ES on multimodal functions and set

ero = 50% of the constrained region [7]. Hansen etal. summarizes that "A larger step-size improves

the global search performance of a local search procedure" [43]. In this section, we use an initial

step-size suggested by Auger and Hansen which is a0 = (U — L)/2, where L and U are the lower

and upper bounds of the constrained search space.

As discussed in chapter 3, each test function is usually bound constrained. As implemented

here, the test functions have a boundary penalty to insure that a solution is in the feasible region.

This method, described by Hansen et al. [41], is the standard way of handling boundary conditions

when testing CMA-ES on multimodal functions [41; 7]. The penalty is proportional to the number

of parameters that fall outside the boundary. Therefore, the penalty for a point where one parameter

is outside the feasible region is less than a point where all the parameters are outside the feasible

region.

117

Hansen and Kern [41] summarize that a larger population size considerably improves the per

formance of CMA-ES on all problems with one notable exception, the Griewank function. Here,

they found that a larger population performed better in lower dimensions, but a smaller population

was more effective in higher dimensions. In chapter 3, we already discussed one reason this is

true: the Griewank function actually gets easier as dimensionality increases [109]. We can also use

dispersion to explain this apparent anomaly. In low dimensions (e.g. two), the dispersion of the

Griewank function is much higher than the sphere function. However, referring back to Figure 6.3,

we can see that the dispersion of Griewank and the sphere are nearly indistinguishable. This is not a

shortcoming of our dispersion metric, but rather an indication of how smooth the high dimensional

Griewank actually is.

In order to understand the relationship between function dispersion and the performance of

CMA-ES, we ran CMA-ES with several different population sizes on some of the benchmark test

functions described earlier. Our hypothesis is that CMA-ES will perform relatively well on the test

functions that we categorized as low dispersion and will be less effective on the high dispersion

functions.

Figure 6.11 shows the convergence of CMA-ES on six of the test functions. In every case, we

used restarts to ensure that each instance of CMA-ES ran for exactly 200,000 evaluations. The

population size was varied using A = 50,100,250, and 500. On all the high dispersion functions,

the larger values of A produced the most effective solutions. However, none of these represent

solutions that are close to the optimal. This is consistent with the observations made by Hansen

et al. [41]; when the underlying problem structure is less predicable, the performance of CMA-ES

suffers. CMA-ES was much more successful on the low dispersion functions. The Schaffer and

Bohachevsky were easily solved for all values of A. On Rastrigin's function, CMA-ES was more

successful with larger values of A, but was able to get relatively close to the optimal solution even for

small population sizes. Referring back at Figure 6.3, we can see that dispersion gives a reasonable

prediction of how well CMA-ES will perform on multimodal surfaces.

In the conclusion of their paper, Hansen and Kern suggest starting with a small population and

increasing its value with each restart of CMA-ES [41]. Auger and Hansen have implemented this

strategy, which they refer to as IPOPCMA-ES, where the population doubles each time a restart

118

Figure 6.11: The median fitness vs. number of evaluations (xlOOO) for CMA-ES on several 20D
benchmark test functions. The larger population size is the most effective on the high dispersion
functions, which includes Schwefel, F101, and Rana. This is also true for the low dispersion and
highly multimodal Rastrigin function. The low dispersion Shaffer and Bohachevsky functions are
easily solved for all values of A.

119

occurs [7]. Starting with the default population size of A = 4 + 3 • log{n), each restart was initialized

with a population size twice that of the previous instance. For example, in 20 dimensions, the

population sequence would be 12,24,48,96,193, 348,.... The authors assert that this essentially

makes CMA-ES parameter-free because the population size does not need to be tuned for each

problem [7].

Looking at the convergence graphs for the Shaffer and Bohachevsky functions in Figure 6.11, it

is not too surprising that this type of strategy would perform well on these functions where smaller

population sizes are equally effective, and therefore, preferred because they have a faster rate of

convergence. But when the test suite contains mostly unimodal and low dispersion multimodal

functions, this average behavior can be misleading. On high dispersion functions, incrementally

increasing the population size incurs dramatic increase in convergence time. For example, Hansen

et al. found that CMA-ES used over 250,000 evaluations in order to solve the 10 dimensional

Schwefel function. Similarly, Auger and Hansen found that when they increased the maximum

number of evaluations from 300,000 to 900,000 the performance of the 30 dimensional Rastrigin

function greatly increased.

One conclusion here is that on high dispersion functions, where larger values of A are likely

to be the most effective, IPOPCMA will require an unrealistic number of evaluations just to start

using a more effective value for A. While this efficiency may be satisfactory on some problems, it

infeasible for others.

6.3.1 Understanding Rate of Convergence

On high dispersion functions, the performance of CMA-ES can sometimes be quite poor; the solu

tions are less effective when compared to other functions and there is a noticeable increase in the

overall efficiency. Intuitively, it makes sense that finding the global optimum of a high dimension,

high dispersion function is difficult. There are simply too may "funnels" that can trap even the most

effective search algorithm. On low dispersion functions, like Rastrigin's, every starting position is

in the only (and optimal) funnel.

Although we can reason why CMA-ES is less effective, there does not appear to be an easy

explanation as to why it is also less efficient in terms of convergence. Figure 6.12 shows the nor-

120

Ackley Rastrigin Schwefel Rana

150

Figure 6.12: Scaled fitness vs. number of evaluations (xlOOO) for select functions.

malized mean convergence of CMA-ES with a population size of A = 500 on four 20 dimensional

benchmark test functions: Ackley, Rastrigin, Schwefel, and the Rana function. Notice that for the

high dispersion Rana and Schwefel functions, it takes well over 100,000 evaluations to converge.

Although A = 500 seems too large for a 20 dimension problem, we have already seen that the best

solutions on high dispersion functions are likely to be discovered with larger populations.

One reason the convergence is slow is that CMA-ES tends to "waste" evaluations on points that

are infeasible, even on low dispersion functions like Rastrigin and Ackley. A points is infeasible if

any parameter falls outside the bounds of the search space. Since CMA-ES is more effective using

larger initial a values, most of the points in the initial population will fall outside the constrained

boundary on high dimensional problems. These evaluations are not wasted in the sense that they

are not useful, but they cannot offer any improvement and can, therefore, be seen as inefficient. On

average, over 10% of the 200,000 evaluations used on the 20D Rana and Schwefel functions were

infeasible. This is almost three times higher than that of the low dispersion functions we tested. This

means that CMA-ES requires almost 20,000 evaluations just to find the boundaries of the problem.

With a large initial step size (a), all of the initial sample points are outside the boundary of

the feasible region. This is confusing because the sample distribution should at least create some

points near the center of the mean, which is chosen in the feasible region. To make sense of this,

consider the following. We created 500 Gaussian distributed points around the origin with a step

size of a = 1. This simulates the initial population that CMA-ES generates around a random

121

Figure 6.13: As the dimensionality increases, the variance of the Gaussian distribution becomes
more constant.

starting point. If we look at any 2D slice of the data, we see that some points are close to the mean

while other are more distant. Unfortunately, (and surprisingly) as the dimensionality increase, the

distance between the mean and the closest point becomes very similar to that of the mean and the

most distant point. To visualize this, we computed the Euclidean distance from the mean to every

point sampled. We plotted the polar coordinates of this distance and a random angle. Figure 6.13

shows that as the dimensionality increases, the variance of the distribution becomes more constant

and larger. This means that higher dimension will tend to sample hyperspheres rather than Gaussian

distributions [9].

One enticing potential remedy to this problem is to simply re-sample each infeasible point until

it becomes feasible. But Figure 6.13 also shows that in high dimensions, sampling a point in the

feasible space using a large a is too improbable to be a practical solution. Unfortunately, decreasing

a will also decrease the effectiveness of CMA-ES.

A high percentage of infeasible offspring does not sufficiently account for the inefficient behav

ior of CMA-ES on high dispersion functions because this also occurs on low dispersion functions.

Recall that CMA-ES uses a distinct global step size, a, to appropriately scale its covariance ma

trix distribution. Hansen and Ostermier state that this is necessary for two reasons [43]. First, the

learning rate on the covariance matrix is too slow. Second, the optimal step length cannot be approx

imated well by the covariance matrix alone. This is why the actual sample population created by

the distribution defined by the covariance matrix is rescaled based on the current step size, a. When

search is making progress, the evolution path is longer than expected, and a grows. On the sphere

function, for example, a will increase as CMA-ES approaches the minima during exploration. Once

122

the algorithm begins to exploit a local optima, the evolution path is likely to be smaller, and a will

shrink. This creates a region of higher density during exploitation.

We looked at the values of a as a function of time on the standard test functions described earlier.

The step-size adaptation on the low dispersion functions behaved much like that of the sphere. This

is not too surprising because we know that the underlying global structure is unimodal. However, we

found that on the higher dispersion functions, the step-size grew rather large, on average between

two and three times its initial value. At the same time, the actual distribution of offspring was

decreasing. This has two important implications. First, the distribution of the covariance matrix

is responsible for the decrease in actual sample distribution. This is a concern because Hansen et

al. asserts that the distribution defined by the covariance matrix is sub-optimal in value and often

too slow [43]. Second, if a is steadily increasing, the cumulative path length is remaining above

its expected length. This implies that the adaptive cumulation heuristic cannot decide when to stop

exploring.

6.4 Summary

In this chapter, we have defined a new metric, function dispersion that distinguishes a function

based on its global structure. On low dispersion functions, the best regions of the search space

become more localized as the sample size increases (threshold decreases). The opposite is true for

high dispersions functions; as the sample size increases, the best regions of the search space tend to

become more disperse.

Mobility measures algorithm dispersion, which is the quality and dispersion of the local optima

visited during search. As with our function dispersion metric, defining thresholds creates basins of

attraction that are close to local optima in terms of fitness. Additionally, it focuses our study on

only the best local optima. High precision local search provides a reliable way of clustering points

in the same basin of attraction in low dimensions. The minimal spanning tree metric, mobility,

is highly correlated with the number of optima found in a search. In high dimensions, estimating

mobility gives a reliable measure of algorithm dispersion—the spread of local optima visited during

search. In either case, algorithms with higher mobility tend to have more effective solutions in low

dimensions.

123

In higher dimensions, this trend is difficult to capture. Some researchers have noticed that

CMA-ES is inefficient and ineffective on multimodal functions where the underlying structure of

the problem is unpredictable. Dispersion is one way of quantifying global structure. This allows us

use dispersion to predict how efficient and effective CMA-ES will be.

We have identified two reasons why CMA-ES is less efficient on high dispersion functions.

First, many of the initial offspring are not in the feasible region. CMA-ES can waste up to 20% of

its evaluations simply finding the boundaries of the problem. This is really a constraint handling

problem, yet it is not clear how to address this issue in order to improve the efficiency of CMA-ES.

Second, and probably more serious, we found that the step size adaptation mechanism does not

work as expected on high dispersion functions. Instead, the distribution defined by the covariance

matrix is primarily responsible for the decrease in the actual distributions that creates the offspring.

Detecting function dispersion is a logical step towards creating algorithms that work well on

a variety of functions. Looking at how the multiple instances interact is one promising way of

identifying the dispersion of the function during search. If the instances are getting close, then

increasing the population of a single instance and terminating others may be an effective strategy.

124

Chapter 7

Double Trouble: How Funnel Landscape
Characteristics Impact Search

We have already seen that many artificial test functions have a "big valley" topology, where a de

crease in fitness implies that, on average, search is getting closer to the global optimum. Although

the search space is highly multi-modal, the local optima are structured such that there exists a global

trend toward the best solution. The underlying global structure of this type of problem is roughly

unimodal.

While low dispersion landscapes may be common, there also exist several real-world appli

cations that do not have a unimodal underlying global structure. Wales [99] suggests that many

optimization problems in computational biology are difficult because local optima often form in

distinct, spatially separate clusters within the search space. Problems of this type have multiple

funnels, resulting in a landscape that has a less predictable underlying global structure. Further

more, the most difficult problems arise when the optimal configuration is "hidden" in a funnel that

is proportionally smaller than the other funnels in the search space.

Researchers have found that the most effective search strategy for these difficult instances is to

quickly sample the bottom of as many funnels as possible. Algorithms such as basin-hopping [100;

101] and local optima smoothing [2] are able to explore a particular funnel by descending down a

sequence of local optima to the bottom of a funnel. By comparing the best solutions in each funnel,

they increase their chance of finding the best overall configuration.

We have found that evolutionary algorithms do not perform well on applications where the op

timal funnel is proportionally smaller than other funnels in the search space. This is partly because

125

many evolutionary algorithms initially explore the search space and then exploit the promising re

gions (or region) identified during the exploration process. Intuitively, this makes sense: if an

algorithm does not sample the entire search space first, its overall effectiveness may be largely de

termined by where it is initialized. The assumption here is that exploration, using a limited number

of samples, can distinguish between different regions of the search space based on average effec

tiveness. This simple model has proven to be an effective strategy on the standard set of artificial

test functions described in chapter 3.

The way that global structure impacts search is not well understood, partly because, as the

previous chapter shows, many of the test functions used for evaluation have single-funnel, low

dispersion landscapes. There are also a few high dispersion test functions that have multiple funnels,

but the number of funnels increases with dimensionality. This creates a gap in our ability to evaluate

global structure. That is, either we have a single funnel or we have a complex surface that often

contains several funnels. This makes it difficult to understand search behavior in high dimensions.

We have several objectives in this chapter. First, we describe the Lennard-Jones cluster problem

and discuss the algorithms that can locate the global optimum on these problems. Then we empiri

cally show that CMA-ES, CHC, and Local Search do not perform well on this application when the

optimal funnel occupies a small proportion of the search space.

Second, we describe a method for creating landscapes that contain exactly two funnels, regard

less of the problem size. The characteristics of these double-funnel problems, such as funnel size

and depth are adjustable. Then we empirically examine how the characteristics of this landscape

impact CHC and CMA-ES. We find that both algorithms have an extremely low probability of suc

cess when the global optimum is located in a proportionally smaller funnel. Our results suggest that

the exploration process is more biased toward the relative size of the funnels and not their overall

quality.

Finally, we observe from this that too much exploration can hinder search in high dimensions.

We reduce the amount of exploration in CSA-ES by using a variable population size. This strategy

results in a performance gain on the double-funnel functions that are the most difficult for CMA-

ES and CHC. One counter-intuitive result of this research is that limiting the degree to which an

algorithm explores the search space can actually improve its global search performance.

126

7.1 Background and Motivation

There are several characteristics that make real-world optimization problems difficult. The degree

to which an algorithm will perform well on an application partly depends on how well the algorithm

can deal with the features that make the problem difficult. For example, the Rastrigin function

represents a classic single-funnel (or "big valley") landscape. It is comprised of a cosine term and a

quadratic sphere; the sphere gives the function its global structure and the cosine term creates local

optima.

N N

/Rastrigin = ^ ^ + 1 0 ^ (1 ~ C O s (2 7 T X j))

1=1 1 = 1

= global structure + local optima

There are at least two ways to deal with the large number of local optima (« 10^) that make this

problem difficult [50]. The first is to exploit the problem's separability, which we have discussed

can reduce problem difficulty to N one-dimensional lines searches. The other strategy is to exploit

the problem's global structure. Like Basin-Hopping [100] and Local Optima Smoothing [2], CMA-

ES avoids getting trapped in local optima by exploiting an underlying structure. The main question

we are exploring in this chapter is: how does this underlying structure impact evolutionary search?

In this section, we describe the Lennard-Jones optimization problem and discuss why re

searchers believe some instances of this problem are difficult. Then we describe how these problems

are best solved and compare this with the results of several evolutionary algorithms.

7.1.1 Lennard-Jones Clusters

Researchers within the computational chemistry community have started to pay attention to how

global structure affects problem difficulty [51]. Much of their attention has been devoted to studying

Lennard-Jones clusters, which are a class of configuration optimization problems where the goal is

to find the spatial positions for a set of atoms that has the smallest potential energy. The potential

energy of the system is based on the distance between all the molecules of the cluster. The Lennard-

Jones potential is

127

where rij is the Euclidean distance between the centers of atoms i and j , and N is the number of

atoms in the cluster. For simplicity, e = a — 1. This potential results in molecular clusters with

compact geometries [27].

The energy surface of the Lennard-Jones potential is highly multimodal and the number of local

optima increases with problem size. This means that multiple restarts of local search will become

a less effective global optimization strategy as the number of the atoms in the cluster increases.

Fortunately, the local optima are not randomly distributed in the search space; some Lennard-Jones

instances also have a convex global structure, or single funnel, where there exists a monotonically

descending sequences of successively adjacent local minima [25].

Any algorithm that can avoid getting trapped by local optima should be able to find the global

optima. From this perspective, finding the best solution for larger problems should be more difficult

because the dimensionality is greater and there are more local optima. However, there are several

Lennard-Jones instances where finding the optimal configuration of a small cluster requires signifi

cantly more effort than finding the global solution for clusters with a greater number of atoms. For

example, the optimal configuration of the N — 38 atom Lennard-Jones problem is more difficult

to find than the global optima of other instances as high as N = 60 atoms, despite the fact that

the N = 38 has considerably fewer local optima and object parameters. One explanation for this

discrepancy in difficulty is that the N = 38 atom instance has a less predictable underlying global

structure and that the best configuration exists in a funnel that occupies a smaller proportion of the

search space. Assuming that a search algorithm has the ability to move between local optima, the

underlying global structure of a problem may have a greater impact on problem difficulty than the

number of local optima [77].

Figure 7.1 shows a cartoon of the 38-atom problem. The optimal solution has a much different

configuration than the next best local optima, meaning that they are distant from each other in

Euclidean space. There is also a high fitness barrier that divides the two solutions, creating a double-

funnel landscape. The funnel containing the optimal solution is proportionally smaller than the

sub-optimal funnel.

128

Figure 7.1: A cartoon of the 38-atom Lennard-Jones Cluster instance. The optimal configuration
(left) is distant from the second best solution in the search space (right). Moving from the right
configuration to the optimal would require traveling over a large fitness barrier.

7.1.2 Basin Hopping

The basin hopping [100; 101] algorithm was motivated by two simple observations. First, and most

general, escaping local optima is difficult because the fitness of an uphill step is greater than the

fitness of the local optima. One solution to this well-known observation is to sometimes accept a

non-improving move, an idea first proposed by Metropolis [65]. Second, gradient-based search is

ineffective on funnel landscapes because they have a large number of local optima. However, since

the local optima are clustered together such that there exists a monotonic sequence of decreasing

adjacent local optima that eventually reach the bottom of the funnel, hopping between these adjacent

local optima is one way of exploiting this global structure.

Basin hopping is a point-based method, where new candidate solutions are created by randomly

perturbing the current solution based on a step-size. After each step, the fitness of the two points

are compared. If the new point offers improvement or equal fitness, the step is accepted. If the new

point is less effective, then the non-improving move is sometimes accepted based the relative fitness

of each point. This type of search method is often referred to as a Monte Carlo strategy.

The value assigned to each candidate solution is not based on their location in space, but rather

the value of the local optima that is obtained by applying local minimization. Figure 7.2 displays

the plateau surface that results from this implicit transformation. Each point is assigned the value of

the local optimum that exists in the same basin of attraction. One consequence of this is that there

129

Figure 7.2: The transformation of the fitness function used by Basin Hopping. The fitness of each
point in the search space is not based on its location, f(x), but rather the value found by local
minimization from that point, m(x).

are no fitness barriers between local optima. An uphill step on f(x) constitutes a plateau step on the

transformed surface, m(x). A downhill step on m{x) implies that search has found an improving

local optima. This also means that the Metropolis criteria is used to accept non-improving moves

is actually accepting non-improving local optima. This combination of Monte Carlo search plus

fitness transformation has been successful in locating the optimal solutions to many problems that

have a predictable underlying global structure (e.g. single-funnel).

The step-size adaptation is simple: if the current trial point is accepted, the step-size is increased

and decreased otherwise. If a uniform distribution is used to displace each coordinate when perturb

ing the best solution, then the resulting step-sizes are on the order of those found by Wales and Doye

[100]. However, we found that if a Gaussian distribution is used, then the adapted step-size values

are about half that of the values obtained using a uniform distribution.

Leary [51; 52] introduced a greedy basin hopping algorithm with a constant step-size, which

he called "Monotonic Basin Hopping", or MBH. He found the resulting algorithm could locate

the difficult global optimum on problems where the original version failed. Essentially, MBH is a

basin hopping algorithm that only accepts improving moves. Leary also fixed the step-size value

to a = 0.21. Leary comments that "this parameter can be adaptively adjusted as the algorithm

proceeds", but no adaption mechanisms was proposed. In our experience, the high selective pressure

of the greedy algorithm causes the step-size to quickly converge to zero when using the original

basin hopping adaptation scheme.

130

20 30 40 50 60 70 80

Number of Atoms

Figure 7.3: The probability of success based on 1000 trials of MBH. Each trial took exactly 1000
steps. This is a replication of Figure 3 produced by Leary using our implementation of MBH.

Figure 7.3 shows the probability that MBH succeeds on each instance of Lennard-Jones from

N = 20 — 80 atoms. The probabilities are based on 1000 trials. This is a replication of Figure 3

produced by Leary [51]. MBH finds the optimal solution to the N = 38 atom test problem 80/1000

trials. This is slightly lower than that of the original BH algorithm, which successfully locates the

optimal solution around 160 times in 1000 trials. For the N — 75 test problem, MBH find the

optimal solution only twice in 1000 trials. BH never finds the optimal for this instance.

There are two reasons why MBH could fail to find the global optimum: It could have entered the

wrong funnel, or it could have used all of its allocated trials before finding the correct configuration.

The optimization community is starting to realize that funnel size is an important characteristic in

problem difficulty. On the N = 38 atom instance, it is estimated that the optimal funnel occupies

about 10% of the entire search space.

7.1.3 Evolutionary Algorithm Performance

We ran CMA-ES, CHC, and local search on select Lennard-Jones cluster problems. CMA-ES and

local search used random restarts. CHC used its soft restart mechanism. Each algorithm was run for

30 trials, where each trial was allocated 500, 000 evaluations. For CMA-ES, we used two population

sizes: A = 200 and A = 500. CHC and local search each used 10- and 20-bits of precision. As in

131

•? -

7 -

£
1

j
-2

0

10 Atoms

, __, i

:

- - — ' • — r - - " " ' v ' " , m w ' " s M - - - " ' • — - - ' • • " " '

;

15 Atoms

20 Atoms

38 Atoms

CMA-500 CHC-10 CHC-20 LS-10 LS-20

Figure 7.4: Evolutionary algorithms on select Lennard-Jones cluster problems. The dashed line is
the optimal objective function value. Notice that none of the algorithms solved the 20- or 38-atom
problems.

previous chapters, each algorithm is differentiated based on its parameters: CMA-200, CMA-500,

CHC-10, CHC-20, LS-10, and LS-20. Four problems were considered: 10, 15, 20, and 38 atoms.

Box-plots of the objective function values for the best solution found during each trial, and for each

algorithm, are displayed in Figure 7.4. CMA-ES using a population size of 500 was always more

effective than CMA-ES using A = 200. For clarity, we omit the CMA-200 results.

CHC is the most consistent and effective on the 10-atom problem. On all other problem in

stances (15, 20, and 38 atoms), CMA-ES finds the best solutions when compared with local search

and CHC. Unfortunately, none of the 30 trials used by CMA-ES find the optimal solution for either

the 20- or 38-atom problem. The concern here is that the dimensionality is too large and more

evaluations are needed to sample the optimal funnel.

132

1 1 1

k-250 CMA-750 CMA-1000

Figure 7.5: Increasing the population size and the number of evaluations results in a more effective
search with CMA-ES. However, even with the increased number of evaluations, CMA-ES still does
not find the optimal solution for the 38—atom Lennard-Jones problem.

We ran CMA-ES again on the 15- and 38-atom problem, this time allocating 100 trials and

allowing each trial to run for 2.5e6 evaluations (5x longer). We also ran CMA-ES with A = 250,

500, and 1000. Figure 7.5 shows our results. On the 15-atom instance, CMA-ES consistently finds

the optimal solution. This is a positive result because this problem has a single funnel. Notice

that the smaller population size of A = 250 gets trapped more often in sub-optimal configurations.

This is consistent with our expectations of CMA-ES on multimodal, single-funnel functions. Larger

populations are also more effective on the 38-atom instance. However, none of the trials found the

best configuration for this problem. We conjecture that the large initial step-size recommended for

multimodal surfaces tends to pull CMA-ES into the larger, yet sub-optimal, funnel. The remainder

of this chapter explores this hypothesis.

7.2 Creating Double-Funnel Landscapes

We have already seen that high dispersion test functions have a multi-funnel global structure. For

example, the Schwefel, Rana, and Whitley 1109] functions all have several funnels. Aside from

their complexity in higher dimensions, these test functions also have the optimal solutions on, or

near, the boundary of the search space. This means that an algorithm's performance may largely

depend on how the boundary conditions are handled. We propose two test functions where the best

solutions are not on the boundary of the search space and that only contain two funnels, regardless

133

CMA-250 CMA-750

of the problem size. The relative size and depth of each funnel is also adjustable, making it possible

to understand how funnel characteristics impact search.

In this section, we describe two double-funnel test problems. First, we create a simple surface

comprised of two quadratic spheres. Then, we take this simple surface and add local optima to it.

This creates a multi-funnel surface similar to Rastrigin's function.

7.2.1 The Double-Sphere

The landscape structure of our simple double-sphere test function is the minimum of two quadratic

functions, where each sphere creates a single funnel in the search space. The placement of each

sphere is critical because the barrier that divides them will be inconsequential if they are too close.

We also want the relative barrier between each funnel to scale with dimensionality. This means that

the distances between the center of each funnel should also increase as dimensionality increases.

To address these concerns, we place each quadratic sphere along the positive diagonal of the

search space, which is bounded on the interval [—5, 5]. The optimal sphere is located in the middle

of the positive quadrant of the search space, at /ii = 2.5 in each dimension. The sub-optimal sphere

is centered at /J,2 = —2.5 across all dimensions. The distance between each funnel increases pro

portionally with dimensionality, and this construction creates an underlying surface that is globally

non-separable.

Lennard-Jones double-funnel problems are difficult when 1) the sub-optimal funnels is nearly as

deep as the optima funnel, and 2) the basin of attraction to the optimal funnel is small. For example,

the optimal funnel for the 38-atom Lennard-Jones problem is believed to be about 10% of the size

of the sub-optimal funnel and the best solution in the sub-optimal funnel differs from the global

optima by only about small degree [27]. We estimate that the depths of the funnels differ by about

8% with respect to the minimum barrier that divides them.

We simulate this by increasing the height of the sub-optimal funnel by a value of d. That way,

the value of the optimal funnel is unchanged. In order to change the relative size of each funnel, we

scaled the sub-optimal funnel by a constant factor, denoted s. This way, the optimal funnel retains

it shape regardless of scaling, and therefore, has a more consistent level of difficulty. Multiplying

the sub-optimal funnel by a number greater than one will create a more narrow sub-optimal funnel.

134

The opposite is true when s is less than one. The overall form of our multi-funnel sphere function

is:

(N N \

Y^(xi - Mi)2, d- N + s -y~](xi -M2)2 1
i=l i=l /

In order to make s the primary control characteristic for the size of each basin of attraction, we

shifted the mean of the sub-optimal sphere such that the barrier between them, which is the point at

which they intersect, is always located at the origin of the search space. This configuration requires the mean of the sub-optimal sphere to be /j,2 == — \J{p\ — d)/s. This places some limitations on

our choices of d and s. As d approaches n\, the problem becomes unimodal. If s is too small, we

push \ii outside the bounds of the search space.

By shifting fi2, we also know the minimum barrier height between the two spheres will occur

at the origin of the search space and that it will have a value of /dOubie-sphere(0) = N • JJL\. The sub-

optimal sphere always has an optimal objective function value of /double_sphere (/I2) = d • N and the

optimal sphere has an objective function value of zero. The objective function difference between

the minimum barrier height and the optimal funnel is x0 — N • n\. The objective function difference

between the sub-optimal funnel and the minimum barrier height is x\ = N{-n\ — d). When we

compute the percent difference between XQ and x\, which is

% difference = —-̂ ;-,

0z?-0.5d)'

we confirm that the barrier height that divides the two funnels is independent of N, and that it only

depends on the height parameter of the sub-optimal sphere, d. For values of d = 1,2,3, and 4, the

sub-optimal funnel is PS 17%, 38%, 63%, and 94% different, in terms of objective function value,

from the minimum height that divides the two funnels. A value of d — 1 does not seems unrealistic

when comparing this number to the percent difference estimated for the 38-atom Lennard-Jones

instance (8%).

The values for s and d control the relative size and depth of the sub-optimal funnel. The leftmost

graph in Figure 7.6 is a diagonal slice showing how the different values of d impact the depth of

the sub-optimal funnel. The middle and right-most contour plots illustrate the impact of s. The two

funnels are the same size in the middle graph (e.g. s = 1.0), but the right-most graph creates a

larger sub-optimal funnel (white) using s = 0.7.

135

Figure 7.6: The impact of d and s on the double-sphere function. Increasing d creates more distinc
tion between the funnels (left). When s = 0 (middle), the two funnels are the same size. Decreasing
s creates a larger sub-optimal funnel (right).

7.2.2 The Double-Rastrigin

We wanted a double-funnel test problem with properties similar to Rastrigin's function because it

would isolate global structure as the main difference impacting problem difficulty on a problem

that is well-understood. We create a double-funnel version of Rastrigin's function by adding local

optima to the double-sphere function. We translate the cosine term used in Rastrigin's function by

pi so that the minimum of the local optima component is centered at the bottom of the optimal

funnel. The local optima function is:

N

h(x) = 10 ̂ (1 - cos 2n(xi - pi))

The overall form of the double-Rastrigin function is the sum of the double-sphere, which gives the

problem its global structure, and the local optima, h(x).

/double-RastriginV^V /doub l e -Sphe re^J ~T liyX J

One-dimensional diagonal slices of both Rastrigin's original function and our new double-

funnel Rastrigin function are displayed in Figure 7.7. The local optima term is bounded between

[0, 207V], since the cosine function can generate values between [—1,1]. On average, it adds 10JV

to each to the value of the double-sphere. If we assume that the average barrier height is now

N(p1 + 10), then the percent difference between the minimum barrier height and each local optima

changes to:

d
% difference =

((/if + 10) - 0.5d)

136

Figure 7.7: Diagonal slices of Rastrigin's function (left) and a double-Rastrigin (right) instance with
d = 3 and s = 1.

7.3 Understanding the Impact of Global Structure

In this section, we explore how the characteristics of the double-sphere, which we measure in terms

of s and d, impact search. We compare CMA-ES, CHC, and a simple evolution strategy, Cumulative

Step-length Adaptation (CSA-ES) [73], which is the CMA-ES algorithm without the covariance

matrix update. This algorithm is similar to self-adaptation discussed in chapter 2 except that it uses

non-local information to adapt the global step-size.

We measure performance in terms of success rate, which we denote as ui, and define as the

probability that an algorithm will converge to the global optimum. In each experiment, we estimate

ui by running 1000 trials of each algorithm and counting the number of instances that find the global

optimum.

Our results show that population-based methods are vulnerable to the size of each funnel, as

controlled by s, when the depth of the two funnels are relatively close. That is, there exists some

funnel characteristics where the exploration process will misguide search into the biggest funnel,

not the deepest.

This section is organized in the following way. First, we measure the performance of local

search in order to get a rough estimate of the size of each basin of attraction over a range of s and d

values. Then we investigate how CMA-ES and CHC perform on the double-sphere. Although this

problem only has two local optima, we still find both algorithms can fail even when the size of the

optimal basin of attraction is fairly large. Finally, we discuss why this is important from a global

optimization perspective by evaluating CMA-ES and CSA-ES on the double-Rastrigin function.

137

7.3.1 Local Search Properties of the Double-Sphere

As a baseline perspective on the relative size of each basin of attraction, we use the success rate of a

local search method, where the probability of finding the global solution is proportional to the size

of the basin of attraction to the optimum. However, we don't actually need to search; we simply

assign a random point within the domain of the problem to the global solution if:

N N

i= i i=i

We start by considering the double-sphere with dimension N = 30. We vary s between [0.2,1.4]

by increments of 0.1, and evaluate different sub-optimal depths of d = 1,2, and 3.

When we estimate CJ for local search, we find a positive and approximately linear relationship

between u>LS and s. That is, as we decrease s, we also decrease the probability of finding the global

optimum using local search. This makes sense because a small s value increases the size of the

sub-optimal funnel, making the optimal funnel proportionally smaller (e.g. the basin of attraction

to the optimum is smaller). Figure 7.8(a) shows the relationship between 0LS and s. This linear

relationship changes by a small amount as we vary d. Notice that when s = 1, each funnel occupies

« 50% of the search space (black dot).

We use this estimate of the size of each basin of attraction as a baseline for interpreting our

results. That is, instead of graphing CJ for each algorithm as a function of s, we plot the CJ values

as a function of CJLS, the estimate size of basin of attraction to the global optimum. This makes it

easier to observe when the evolutionary search is under- or over-performing with respect to what

we would expect from local search.

For example, Figure 7.8(b) shows the success rates of CMA-ES using the default population

size of A = 14 (for N = 30). Since CMA-ES is always above the gray 45 deg line, we can observe

that the success rates for CMA-ES are greater than that of local search. However, there is still a

strong linear relationship between CJ and the size of the optimal funnel. When the depth of the

sub-optimal funnel is closer to the optimal (d = 1), the success rates for CMA-ES more closely

match those of local search.

138

1
0.2

1 1 1

0.4 0.6 0.8

S

(a) Local Search

i

1.0

i

1.2

i

1.4 20 40

(b) CMA-ES A = 14

Figure 7.8: Properties of the double-sphere: Figure 7.8(a) shows the success rate of local search as
a function of s. There is an approximately linear relationship between the size of the optimal funnel
and the success rate for local search, LULS. Notice that the depth of the sub-optimal funnel does not
greatly impact u)LS. Figure 7.8(b) shows the success rate for CMA-ES using the default population
size as a function of u)LS. The success rates for CMA-ES are greater than that of local search, but
still strongly tied to the size of the optimal funnel (« cDLS).

7.3.2 Global Search Properties of the Double-Sphere

Most evolutionary algorithms perform better on multimodal surfaces when they use a larger popu

lation size. This is especially true for CMA-ES [41; 50] and CSA-ES [50]. CHC is probably the

exception, as it was designed to use smaller populations [103].

In this section, we would like to understand how the double-sphere impacts global search. In

the next section we will consider a range of population sizes for CSA-ES and CMA-ES, but for

now, we fix the population size of CMA-ES to A = 500 and A = 1000. For CHC we use the default

of population size of 50 and consider 10- and 20- bits of precision. Our results did not change

dramatically with increased population sizes for CHC. A maximum of 100, 000 evaluations were

allocated and no random restarts were used (expect for the soft-restarts used by CHC). We discuss

the role of restarts in the next section.

We observe a similar probability distribution for each algorithm. Instead of a linear trend, as

observed for the local search methods in Figures 7.8(a) and 7.8(b), the distribution is bent, or pulled,

139

o
r

o _
CO

to ^

o _

o _

°

d=\
d = 2

- - - d = 3

;'

(

(

I ' !

• • ' ' " " ' '

^ . • * —•

I I

' "•'' /
' ' /

/ /
/ /
/ /
/ /

.' /
' /
' /
.' /
' /

' - /

CMA-ES A =

1 1

1000

(a) CMA-ES with A = 500 (left) and A = 1000 (right)

d=l
d = 2

- - - d = 3

t 1

, ' i
/ / , /

' ! /

i i /
I i

i 1 y''
i / --
/ l."

CHC 10-bits

1 1

d=l
d = 2

--- d = 3

, . - • '

1

-' X.

i i

! !
: i : r

y ! I

i f I

i J

^
i

/ / /
' / /

' ' /
' / ''''' ' 1

' 1
i f

CHC 20-bits

1

(b) CHC with 10-bits (left) and 20-bits (right)

Figure 7.9: CMA-ES and CHC on the double-sphere: The probability of success as a function of
the size of the basin of attraction to the optimal funnel, as estimated with local search (<iLS). The
gray line indicates the success probability of local search. For each algorithm, the trend is similar;
when the optimal funnel is relatively large, the success rates for evolutionary algorithms are high.
When the relative size of the optimal funnel is low, evolutionary search is more likely to fail.

140

into a sigmoid. When the optimal funnel is proportionally larger than the sub-optimal funnel (using

local search as an estimate), success rates are extremely high. However, when the optimal funnel is

proportionally smaller, the success rates for CMA-ES and CHC drop dramatically. Figures 7.9(a)

and 7.9(b) show the probability of success for CMA-ES and CHC as a function of the basin of

attraction size for the double-sphere function.

Consider the extreme cases. When the relative size of the optimal funnel is « 70%, evolutionary

search is highly successful (u> « 100%). This means that when local search finds the optimal

solution « 70% of the time, CMA-ES and CHC will almost always find the optimal solution. On

the other hand, when the relative size of the optimal funnel is only « 10%, CMA-ES and CHC fail

to find the global optimum. This is true for all the d values we considered.

As we increase d, we increase the relative depth of the sub-optimal and optimal funnel. Figures

7.9(a) and 7.9(b) show that larger values of d shift the u distribution to the left, meaning that a

smaller s value, and therefore, a smaller basin of attraction to the global optimal, is required to

observe failure. In other words, the hardest problems for CHC and CMA-ES are those where the

depths of the two funnels are close (d = 1) and the basin of attraction to the optimal funnel is

comparatively small (s is small).

The black dots in Figures 7.8(a) and 7.8(b) represents a success rate of 10% for each algorithm

when d — 1. This means that CMA-ES will succeed less than 10% of the time even when the

relative size of the optimal funnel is sa 33% for A = 500 and A = 1000. A similar problem occurs

with CHC. Even when the basin of attraction to the global optima is « 35%, the success rate for

CHC is about 10%. In general, when local search finds the optimal solution fa 1/3 of the time, the

evolutionary algorithms we tested are likely to fail when the depths of the two funnels are relatively

close.

The key observation we make in this section is this: when the depths of two funnels are close

(e.g. d = 1, about 17% different from the barrier that divides them), the global search parameter

settings employed by the evolutionary algorithms we tested are likely to cause failure, even when the

optimal basin of attraction is relatively large, « 30%. As we increase the depth of the sub-optimal

funnel, evolutionary search is more successful.

141

7.3.3 Implications for Global Search: Double-Rastrigin

Considering that CMA-ES using the default population size has probabilities of success that are

similar to, or even better than, that of local search, why should we care about the bias of larger

populations? The main reason this matters is that if an algorithm cannot cope with the simple

structure of the double-sphere, it will also not be successful on more complex multimodal surfaces,

like the double-Rastrigin, where the double-sphere dictates the underlying global structure.

We consider three 30-dimensional functions: Rastrigin, double-sphere, and double-Rastrigin.

For the double-sphere and the double-Rastrigin, we created instances that are intentionally difficult

for CMA-ES by choosing d = 1 and s = 0.7, which corresponds to an LJLS PS 30%. We only

consider CSA-ES and CMA-ES because they have strong termination criteria and can solve the

30-dimensional Rastrigin function with large populations. This simplifies the interpretation of our

results.

The leftmost graph in Figure 7.10 shows the estimated success rates for the ES algorithms,

without restarts, on Rastrigin's function as the population varies from [100,1000] by increments of

100. We have also included the default population size of A = 14. These results are consistent with

previously reported success rates [41; 50]. The noticeable trend is that larger populations are more

able to exploit the underlying sphere structure of the Rastrigin function and locate the best solution.

Smaller population sizes tend to get stuck in one of the many local optima. For example, CMA-ES

with a population of A = 14 never finds the global solution. Using a population size of A = 100,

CMA-ES only finds the optimal about 10 out of 1000 times.

As we vary the population size for the ES algorithms on the double-sphere, we find the opposite

is true. High success rates are realized with low population sizes, but larger values of A cause CSA-

ES and CMA-ES to exhibit extremely low success rates. The right-most graph in Figure 7.10 shows

these results.

This presents an interesting trade-off for the double-Rastrigin function: find a population size

that balances the difficult characteristics of both the modality of the Rastrigin function and the

structure of the double-sphere. Unfortunately, this balance is disappointing. When we run both

algorithms on the double-Rastrigin function, we find that the success rates are lower than 3%, re

gardless of population size. This is because the success rates for the double-Rastrigin function can

142

T 1 1 1 n n 1 1 i 1 r
0 200 400 600 800 1000 0 200 400 600 800 1000

A A

Figure 7.10: Increasing the population size (A) increases the probability that each evolution strategy
will find the optimal solution on Rastrigin's' function (left), but decreases the probability of success
on the double-Sphere function.

be decomposed into the success rates of its components. That is, the probability that an algorithm

will be successful on the double-Rastrigin is approximately the joint probability that it is successful

on the Rastrigin function and the probability that it will succeed on the double-sphere.

This is also an incomplete picture because the results presented so far have not used random

restarts. From a practical point of view, restarts can increase performance because the success

probabilities will add. That is, each restart represents an independent event. So, we are not just

forced to find a population that balances the characteristics of both the Rastrigin and double-sphere

function, we also need to account for the general observation that smaller populations will use fewer

evaluations and restart more often.

When we include restarts and allow each algorithm to use le7 evaluations, we still observe low

success rates. Figure 7.11 shows the success rates for CSA-ES (left) and CMA-ES (right) on the

double-Rastrigin problem as a function of population size with (solid line) and without (dashed line)

restarts. The dashed lines in each case show the low probabilities that either algorithm will converge

without using restarts (e.g. to < 3%). With restarts, CSA obtains higher success rates because it is

not adapting a covariance matrix and, as a result, is using few evaluations [50].

The main observation we make is that, even if we find a population size that balances trade-

143

Figure 7.11: The success rates for CSA-ES (left) and CMA-ES (right) with and without restarts on
the double-Rastrigin problem as a function of population size A.

off between modality, global structure, and restarts, we still notice low success rates on a problem

where the global basin of attraction is still 30% of the search space. For example, CSA-ES peaks at

a> « 11% with a population of A = 400. CMA-ES operating with A = 300 yields an expected best

of CJ « 5%.

The results of this section reinforce the notion that an algorithm's success or failure largely de

pends on its ability to cope with the features of a function. A population size suitable for Rastrigin's

function is a poor choice for the double-sphere and vise-versa.

There are algorithm configurations that would appear to perform well on both, but that would

ultimate perform poorly on the double-Rastrigin. For example, in the previous chapter we dis

cussed IPOPCMA-ES [7], which is a variation of CMA-ES that uses an increased population size

after each restart. Since it begins with the default population size, we would expect a success

rate on the double-sphere that is proportional to the size of the optimal funnel. Given enough

restarts, IPOPCMA-ES would also be successful on the Rastrigin function. However, on the double-

Rastrigin function, its performance would be unsatisfactory because no single restart is using a

population size that addresses modality and global structure at the same time.

144

7.4 Limiting Exploration with Dynamic Populations in CSA-ES

Metropolis-type local search algorithms, such as basin-hopping and local optima smoothing, are

effective because they do not explore the entire search space, but rather exploits a single funnel

at a time. By quickly comparing the best solution in each funnel, they are more adept to solving

multi-funnel problems. This seems to indicate that the best global search methods for multi-funnel

problems explore and exploit on a local, not global, level.

On the double-sphere function, larger populations in CSA-ES (and CMA-ES) tend to pull the

mean towards the funnel with the most samples. When the funnels are close in depth, a larger

sub-optimal funnel is more likely to have more samples. Smaller populations are less vulnerable

to this because less information being sampled. On the double-Rastrigin, we need the best of both

worlds: a small population size to drop into a funnel without being pulled towards a larger basin

of attraction, and then a large population size to exploit the underlying structure of that particular

funnel.

As a proof of concept, we implemented CSA-ES with a dynamic population size that increased

as the global step-size decreased. A decrease in step-size indicates a higher level of exploitation.

When search is first exploring, it is utilizing a small population size. As it begins to exploit a

promising region, increasing the population size will help exploit the underlying funnel structure.

The algorithm is identical to CSA-ES in every way except at the end of each generation, we compute

a new population size based on a function of the global step-size a, the initial step-size OQ, and an

upper bound of the population size, AMAX.

A = AMAX I 1 I

V^o J

We ensure that A never falls below the default population size, Â = 14, or exceeds the maximum

AMAX> which is an input parameter.

We ran this strategy, which we denote D-CSA-ES, on the 30-dimensional Rastrigin, double-

sphere, and double-Rastrigin functions for the same values of A used in the previous section, except

that D-CSA-ES interprets this value as AMAX • The resulting search strategy is less effective on the

Rastrigin function, but operates at a consistent level on the double-sphere function that is propor

tional to the size of the optimal funnel, regardless of the population size. The left graph in Figure
145

o
o

o
00

O
<D

O

o CM

o

d= 1
rf=2

- - - d = 3

- ^

• • ' / ^

1 1 1 1

D-CSA
D-CSA predicted
D-CSA with restarts

200 400 1000

Figure 7.12: D-CSA-ES on the double-sphere (left) and on the double-Rastrigin (right). The rela
tionship between success rate and the size of the optimal funnel remains linear. This results in a
much higher success rate on the double-Rastrigin function.

7.12 shows D-CSA-ES on the double-sphere as a function of optimal funnel size for d = 1,2, and

3. The most striking feature is the approximately linear relationship between the size of the opti

mal funnel and the success rate of D-CSA-ES. This resembles the relationship of CMA-ES using

a default population size on the double-sphere, but with a setting for A that is more appropriate for

global optimization.

This figure also highlights one drawback to this method; the effectiveness of exploiting one fun

nel at a time, as measured in terms of success rate, is proportional to the size of the optimal funnel.

This means that on double-sphere function instances, where the optimal funnel is proportionally

larger than the sub-optimal funnel, algorithms like CMA-ES and CHC will achieve higher success

rates than D-CSA-ES.

What does this mean for the double-Rastrigin function? The right graph in Figure 7.12 show

D-CSA-ES on the double-Rastrigin function for s = 0.7 and d = 1 as a function of population size.

Without restarts (dash), D-CSA-ES has a success rate the is about 10 times higher than either CMA-

ES or CSA-ES. When D-CSA-ES runs with restarts (solid line) until le7 evaluations, it success rates

are as high as « 60%.

The dotted line in this graph represents the predicted performance obtained by multiplying the <2>

146

from Rastrigin with to from the double-sphere. The prediction is very close to the empirical results

and reinforces the notion that successful search must cope with both modality and global structure.

7.5 Summary

Global structure can clearly impact the performance of evolutionary optimization. When the optimal

funnel is proportionally smaller, the success rates for CHC and CMA-ES decrease dramatically on

the double-sphere, especially when the depths of the two funnels are close. Exploration is not able

to distinguish between funnel quality, and is pulled into the larger funnel. We believe these results

generalize to other algorithms.

This presents a problem for CMA-ES and CSA-ES on the double-Rastrigin function because,

although larger population sizes are necessary to exploit the underlying structure of the Rastrigin,

they are also more bias towards funnel size. The population size that is best for Rastrigin is the least

effective on the double-sphere. A compromise that works on both is disappointing.

By dynamically adapting the population size, D-CSA-ES is less biased toward funnel size while

exploring the search space. However, as it descends into a particular funnel, and it begins to exploit

the search space, increasing the population size aids D-CSA-ES in detecting the underlying structure

of the funnel and avoiding local optima. This results in a strategy whose success rate is dependent

on funnel size; when the optimal funnel is large, the success rates for D-CSA-ES are not a good

as CHC or CMA-ES. But when the optimal funnel is small, D-CSA-ES will still find the global

solution with a probability proportional to relative funnel size. The highs are not as high, but the

lows are still acceptable.

This is the first step toward understanding how global structure impacts search. Future work

should implement a dynamic population size in CMA-ES, and see if that is effective with the more

complex distribution used in CMA-ES. This may result in a search method capable of finding the

best solutions to the Lennard-Jones instances where the optimum is hidden in a funnel that is rela

tively small when compared to the search space.

Exploring the search space to gain a global perspective before exploiting a particular region may

be an effective strategy for "big valley", single-funnel problems. But on multi-funnel landscapes,

the effectiveness of exploration comes into question as a global search strategy. This work supports

147

an ongoing awareness that, if an algorithm is going to be successful, then it must be able to deal

with the features in the landscape.

148

Chapter 8

Conclusion

This research is primarily concerned with evolutionary parameter optimization and its relationship

with ridges and global structure. In the process of understanding how these features impact search,

we have applied several algorithms from different domains on a variety of test functions and realistic

applications.

The algorithm selection used here is broad. When appropriate, we have compared the Co-

variance Matrix Adaptation Evolution Strategy (CMA-ES) and the CHC genetic algorithm with

direct-search algorithms, like Generalized Pattern Search (GPS) and Mesh Adaptive Direct Search

(MADS), and local search, as well as with gradient-based methods, such as the BFGS quasi-Newton

method and the conjugate-gradient method. In some instances, we have compared evolutionary

search with specialized algorithms such as the Levenberg-Marquardt, Salomon's optimize and re

fine, and basin hopping. We also included two new algorithms: tube search and a variable population

size Cumulative Step-length Adaptation Evolution Strategy (CSA-ES). This relatively large base of

strategies increases the confidence we have in our results because we are more certain that we are

comparing the most effective and efficient strategies.

The test functions considered were also diverse. We rotated the standard set of benchmark

problems in order to increase the degree to which the parameters interact. We also introduced some

new test functions. In chapter 3, we presented two modified Griewangk functions, where the difficult

scales with problem size, and also describe a realistic version of the "static corrections" problem

from geophysics. Chapter 7 introduces a class of double-funnel landscapes.

Real applications have also played a vital role. Motivation for studying ridges and global struc

ture is partly due to the temperature retrieval problem and difficulty Lennard-Jones cluster instances.

149

These real applications add meaning and integrity to our conclusions. In fact, using these real ap

plications as a basis for studying ridges and global structure is a significant contribution in this

dissertation.

When we compare this diverse selection of algorithms on these difficult test problems, we dis

cover that no single algorithm is best. This result is widely accepted within the optimization com

munity. For example, Lewis et al. reason that, "... since nonlinear optimization problems come

in all forms, there is no one-size-fits-all algorithm that can successfully solve all problems" [54].

Our research extends this notion by observing that algorithm differences can be directly related to

problem features.

We have observed that ridges and global structure are two features that have largely been ig

nored by much of the evolutionary algorithm community. Yet these features clearly have an impact

on search. We conclude our results from two perspectives. First, we recap how these two features

impact some of the general-purpose evolutionary algorithms we have discussed. Then we summa

rize how the most efficient and effective methods find competitive solutions on applications and

test functions where ridges and certain types of global structure exist. We close this chapter with a

summary of implications.

8.1 Evolutionary Search and Feature Interaction

We revisit what we have learned about how evolutionary parameter optimization interacts with

ridges and global structure.

8.1.1 Ridges

One of the main conclusions we observe with respect to ridge functions is that, unless an algorithm's

heuristics intentionally addresses the ridge problem, it is likely to behave inefficiently or fail on ridge

problems. This is not unique to evolutionary search. Simple methods from other domains, like

steepest-descent and local search, are often also less efficient, and sometimes fail, on ridge surfaces.

Algorithms that do address the ridge problem seem to incur additional complexity in order to gain

overall efficiency. For example, both CMA-ES and quasi-Newton methods are more complex, but

overall, these algorithms are more robust, efficient, and effective on ridge functions.

150

Algorithms that fail do so in different ways. A bias search direction, such as those used by

local search and GPS, will behave inefficiently or fail on ridges when their search direction is not

aligned with the ridge axis. But an unbiased search direction is not the solution. Algorithms like the

Self-Adaptive Evolution Strategy and MADS are also inefficient on ridges.

The local search described in this paper creates a fixed neighborhood of search directions by

changing only one variable at a time. This representation creates false local optima on ridges that are

not aligned with the coordinate axis. Increasing the precision generally increases the effectiveness,

but comes with a high cost: Adding 1 -bit of precision increase the number of steps search will take

by n (number of dimensions). Changing the search direction helps increase efficiency, but getting

the right direction adds complexity and is difficult as the number of parameters increase.

Self-adaptation samples points in an unbiased way. On smooth ridge functions, self-adaptation

will continue to decrease its step-size until it removes the bias toward selecting smaller step-size

values. On the sharp ridge function, this inherent bias cannot be removed, and the step-size will

continually decrease until the strategy fails. This explains why the performance of self-adaptation

is poor on ridge functions.

The current impression of self-adaptation within the evolutionary optimization community is

this: given the shortcomings of correlated mutations and the lack of robustness when adapting

individual step-sizes, the only safe way to self-adapt is with a single strategy parameter—the global

step-size a. But on ridge functions, self-adaptation creates a o that is too small, causing this strategy

to behave inefficiently. All of these remarks seem to indicate that the self-adaptation, on any level,

does not work.

Our research seems to support the opposite; self-adaptation works as expected. Using a small

step-size, the selected individuals will tend to have distributions that are more likely to explore better

regions of the search space on the ridge function. A large step-size is less likely to "explore" better

regions of the search space because of the inherent bias that comes with ridge functions.

Successful algorithms on ridge functions use a rotated representation. However, a Principal

Components Analysis on a localized sample of best points can create a direction of maximum

variance that is orthogonal to the gradient. This occurs when the neighborhood around the sample

is approximately linear. In this instance, the direction created by PCA is a poor choice. Figure 8.1

151

Figure 8.1: Learning rotations with PCA: The left-most graph shows a distribution (dashed line)
defined by using a Principal Components Analysis on the best points (black dots) of an isotropic
sample (black and gray dots). When the localized sample is on the ridge, using a Principal Compo
nents Analysis on the best points is an effective method for computing a rotation. However, when
the localized sample is not on the ridge (middle figure), PCA can create a direction of maximum
variance orthogonal to the gradient. Here the distribution (dashed line) is shrinking in a direction
that is less effective. This is why CMA-ES uses the "steps" to the best points and not the points
themselves (right-most figure). Here the distribution (dashed line) is computed using the mean of
the sample, not the mean of the best points, as is the case in the middle graph.

shows a simple example of this problem. This is why CMA-ES uses the "steps" to the best points

and not the best points themselves when using a "rank-,14" update. If path information is used, the

rotation acts as a kind of "momentum" term that keeps the search moving in its current direction.

In effect, PCA exploits information about variance, whereas methods like Gram-Schmidt uses path

information.

From a practical point of view, our understanding of ridges explains why many well-known evo

lutionary algorithms and local search methods perform poorly on the temperature retrieval problem.

We know there are ridges in the search space and that most algorithms cannot move efficiently along

this feature. The rotated representation used by CMA-ES overcomes many of the problems associ

ated with adapting rotational parameters and has a clear advantage on the temperature problem.

8.1.2 Global Structure

Our dispersion metric distinguishes functions based on their global structure. It is a more concrete

way of describing the underlying structure of a problem than other vague descriptions. Dispersion

also does not have the unrealistic requirement that the best local optima of the search space be

enumerated, as is the case with disconnectivity graphs, barrier trees, and Locatelli's method. On low

152

dispersion functions, the best regions of the search space become more localized as the threshold

decreases. The opposite is true for high dispersions functions; as the threshold decreases, the best

regions of the search space tend to become more disperse.

Mobility measures the quality and dispersion of the local optima visited during search. Denning

a threshold serves two purposes: It creates a basin of attraction that is close to local optima in terms

of fitness, and it focuses our research on only the best local optima. We found that algorithms with

higher mobility, such as CHC, tend to have more effective solutions in low dimensions. This trend

is difficult to capture in higher dimensional space (e.g. greater than ten).

Our dispersion metric predicts how efficient and effective CMA-ES will be on a given function.

We find that on low dispersion functions, CMA-ES performs as expected because the underlying

structure is convex, like the sphere function. We have identified two reasons why CMA-ES is

less efficient on high dispersion functions. The most serious issue is that the step size adaptation

mechanism used by CMA-ES, called cumulation, does not work as expected when the best regions

of a function are disperse. The primary force that decreases the offspring distribution comes from

the slow collapse of the covariance matrix. We also noticed that CMA-ES can waste up to 20% of

its evaluations simply finding the boundaries of the problem on high dispersion functions. It is not

clear how to address this constraint handling problem.

One of the problems with the high dispersion benchmark test functions is that the number of

funnels increase with dimensionality and there is no way to control the size of each funnel. The new

class of double-funnel test functions presented in chapter 7 keeps the number of funnels constant

(two) as the problem size increases, and also allows the relative characteristics of the sub-optimal

funnel, such as depth and size, to change.

We use several instances of these double-funnel test problems to challenge the heuristic belief

that exploring the search space first, to gain a global perspective, is an effective way to identify the

best regions of the search space. We find that when the global optimum is located in a funnel that

is proportionally smaller in the search space, and sub-optimal funnel is relatively close in objective

function value, the success rates for CHC and CMA-ES are extremely low.

We observe that exploring the search space first, before exploiting a particular region may be an

effective strategy on some problems, especially those with a single-funnel or big valley topology.

153

But our results suggest that in high dimensions, the effectiveness of this philosophy comes into

question as a general purpose global optimization technique.

8.2 Specialized Algorithms

Throughout this dissertation, we have showed that algorithms exploiting problem-specific knowl

edge tend to find more effective and efficient solutions. Here we summarize the specialized al

gorithms that performed well on ridge surfaces and problems that exhibit a certain type of global

structure.

8.2.1 Ridges: Searching for Temperature Profiles

On the temperature problem, Salomon's optimize and refine method and our tube search strategy

produce approximate solutions quickly by exploiting the physical continuity of the expected tem

perature profiles. One drawback here is that the temperature profiles found are imprecise. If we

restrict ourselves to direct search methods, two choices emerge; either retrieve a quick and dirty so

lution using a strategy that exploits continuity or spend more time finding an effective temperature

profile using an evolutionary algorithm like CMA-ES.

The temperature problem we tested has a gradient and the objective function is modeled as a

nonlinear least-squares function. We know that when gradient information is available, the using it

will likely result in a more efficient and effective search, especially on low-modality problems where

restarts are a reasonable global search strategy. The performances of the BFGS and conjugate-

gradient algorithm were unsatisfying. On the one hand, the Levenberg-Marquardt algorithm was

incredibly fast. The difference is that the Levenberg-Marquardt exploits the Hessian structure of

the objective function, whereas the other gradient-based methods do not. On temperature retrieval

problems, where derivative information is available and the objective function can be stated as a

least-squares problem, the Levenberg-Marquardt is clearly the best choice.

8.2.2 Global Structure: Funnel Characteristics

The basin hopping strategy is effective because it does not explore the entire search space, but rather

exploits a single funnel at a time. It quickly descends to competitive regions with in each funnel

154

as a way of comparing multiple funnels. This indicates that exploiting on a local level is actually a

better global search strategy on multi-funnel test functions.

When we dynamically adjust the population size of CSA-ES, we limit its ability to explore.

Counter-intuitively, we find that this is a much more effective global search method on some of

the difficult double-funnel test functions. Limiting the amount of exploration actually improves its

global search performance. This is because the probability of success for D-CSA-ES on a double-

funnel landscape is proportional to the size of the optimal funnel. Multiple restarts increase its

probability of find the optimal solution because the overall probability is the sum of each indepen

dent search.

Comparing funnels has some limitations. The effectiveness of exploring funnels is limited to

problems that contain relatively few funnels. That is, algorithms such as basin hopping and D-

CSA-ES must rely on several restarts in order to compare the best solutions that exist within each

funnel.

8.3 Implications

The evolutionary optimization and direct search communities have still not developed a clear under

standing of how different algorithms exploit different types of problem features. And while most

researchers agree that every algorithm has a special niche where it will perform the best, an algo

rithm's strengths and weaknesses are rarely reported, especially how they relate to problem features.

Historically, it seems that evolutionary search was concerned primarily with modality. This

makes sense because gradient-based local search algorithms get stuck in local optima and using

restarts as a global search strategy is often not effective. The evolutionary search community found

a niche and developed population-based algorithms that seemed to avoid getting trapped in local

optima and find more globally competitive solutions on multimodal surfaces. It wasn't until the mid

1990's that researchers really started to realize that separability was also a concern.

This work brings light to the fact that ridges and global structure are also features that impact

search. Like modality and separability, we should also pay attention to these features and implement

strategies that directly address the difficulties they pose. This will likely change how new heuristics

are created and result in more diversity among algorithms. As algorithms become more specialized

155

in one domain, we should see a greater variance in overall performance.

Inspiration for new ideas in search still frequently come from a natural metaphor. But we have

seen that algorithms that address ridges or global structure are very intentional with respect to these

features. For example, CMA-ES was created with the scale and separability in mind. The name

"basin hopping" suggests that this algorithm was specifically designed for problems that have fun

nels. As new methods emerge, the overall role that evolutionary algorithms play in the global

optimization community will expand. In the process, we will learn more about how certain features,

that make optimization difficult for search, interact with our heuristic ideas.

156

REFERENCES

[1] D. H. Ackley. A connectionist machine for Genetic Hillclimbing. Kluwer Academic Pub
lishers, 1987.

[2] B. Addis, M. Locatelli, and F. Schoen. Local optima smoothing for global optimization.
2003.

[3] D. Arnold and H.-G. Beyer. A comparison of evolution strategies with other direct search
methods in the presence of noise. Computational Optimization and Applications, 24(1):135—
159,2003.

[4] D. Arnold and H.-G. Beyer. Performance Analysis of Evolutionary Optimization with Cu
mulative Step Length Adaptation. IEEE Transactions on Automatic Control, 49(4):617-622,
April 2004.

[5] D. V. Arnold and H.-G. Beyer. Evolution Strategies with Cumulative Step-length Adaptation
on the Noisy Parabolic Ridge, 2006.

[6] C. Audet and J. J. Dennis. Mesh adaptive direct search algorithms for constrained optimiza
tion. CAAM Technical Report TR04-02, Rice University, Texas., 2004., 2004.

[7] A. Auger and N. Hansen. A restart cma evolution strategy with increasing population size.
In Proceedings of IEEE Congress of Evolutionary Computation, 2005.

[8] T. Back. Evolutonary Algorithms in Theory and Practice. Oxford University Press, New
York, 1996.

[9] T. Back. Personal communication, 2006.

[10] T. Back and H.-P. Schwefel. An overview of evolutionary algorithms for parameter optimiza
tion. Evolutionary Computation, 1, 1993.

[11] S. Baluja and R. Caruana. Removing the genetics from the standard genetic algorithm. In
A. Prieditis and S. Russel, editors, The Int. Conf. on Machine Learning 1995, pages 38-46,
San Mateo, CA, 1995. Morgan Kaufmann Publishers.

[12] U. Bartling and H. Muhlenbein. Optimization of large scale parcel distribution systems by
the breeder genetic algorithm (bga). In ICG A, pages 473-480, 1997.

[13] T. Bartz-Beielstein. Experimental Research in Evolutionary Computation. Springer, 2006.

[14] H.-G. Beyer. On the Performance of (1, A)-Evolution Strategies for the Ridge Function Class.
IEEE Transactions on Evolutionary Computation, 5(3):218-235, 2001.

157

[15] H.-G. Beyer and H.-P. Schwefel. Evolution strategies - A comprehensive introduction. Nat
ural Computing: an international journal, 1(1):3—52, May 2002.

[16] K. Boese, A. Kahng, and S. Muddu. A new adaptive multi-start technique for combinatorial
global optimizations. Operations Research Letters, 16, 1994.

[17] I. O. Bohachevsky, M. E. Johnson, and M. L. Stein. Generalized Simulated Annealing for
Function Optimization. Technometrics, 28:209-217,1986.

[18] G. E. P. Box and K. B. Wilson. On the experimental attainment of optimal conditions. Jour
nal of the Royal Statistical Society, 13, 1951.

[19] R. P. Brent. Algorithms for Minimization Without Derivatives. Prentice-Hall, New Jersey,
2002.

[20] Broyden. The convergence of a class of double-rank minimization algorithms. Journal of
the Institute of Mathematics and Its Applications, 6:76-90, 1970.

[21] G. Couture, C. Audet, J. Dennis, and M. Abramson. Nomad software package, 2007.

[22] W. Davidon. Variable Metric method for minimization. SI AM Journal Optimization, 1:1-17,
1959.

[23] L. Davis. Bit-Climbing, Representational Bias, and Test Suite Design, pages 18-23. Morgan
Kaufmann, 1991.

[24] K. DeJong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD
thesis, University of Michigan, Ann Arbor, 1975.

[25] J. Doye, R. Leary, M. Locatelli, and F. Schoen. Global Optimization of Morse Clusters by
Potential Energy Transforms. INFORMS Journal on Computing, 16(4):371-379, 2004.

[26] J. Doye, M. Miller, and D. Wales. Evolution of the Potential Energy Surface with Size for
Lennard-Jones Clusters. Journal of Chemical Physics, 111:8417, 1999.

[27] J. P. Doye. Physical perspectives on the global optimization of atomic clusters. In Chapter
in forthcoming Kluwer book Global optimization - select case studies, 2006.

[28] J. P. Doye, M. A. Miller, and D. J. Wales. The double-funnel energy landscape of the 38-atom
Lennard-Jones cluster. Journal of Chemical Physics, 110(14), April 1999.

[29] A. E. Eiben and T. Back. Empirical Investigation of Multiparent Recombination Operators
in Evolution Strategies. Evolutionary Computation, 5(3):347-365, 1997.

[30] R. Englen, A. Denning, K. Gurney, and G. Stephens. Global Observations of the Carbon Bud
get: I. Expected Satellite Capabilities for Emission Spectroscopy in the EOS and NPOESS
Eras. Journal of Geophysical Research, 106:20,055-20,068, 2001.

[31] L. Eshelman and D. Schaffer. Real-coded genetic algorithms and interval schemata. In
Foundations of Genetic Algorithms, 1993.

[32] L. J. Eshelman. The CHC Adaptive Search Algorithm: How to Have Safe Search When
Engaging in Nontraditional Genetic Recombination. In FOGA, 1991.

158

[33] C. Flamm, I. L. Hofacker, P. F. Stadler, and M. T. Wolfinger. Barrier Trees of Degenerate
Landscapes. Z. Phys. Chem., 216:155-173, 2002.

[34] Fletcher. A new approach to variable metric algorithms. Computer Journal, 13:317-322,
1970.

[35] R. Fletcher and C. Reeves. Function minimization by conjugate gradients. Computer Jour
nal, 7:194-154, 1964.

[36] L. Fogel, A. Owens, and M. Walsh. Artificial Intellegence Through Simulated Evolution.
John Wiley, 1966.

[37] Goldfarb. A family of variable metric updates derived by variational means. Mathematics of
Computation, 24:23-26, 1970.

[38] J. Hallam and A. Priigel-Bennett. Large Barrier Trees for Studying Search. IEEE Trans.
Evolutionary Computation, 9(4):385-397, 2005.

[39] N. Hansen. Invariance, Self-adaptation and Correlated Mutations in Evolution Strategies. In
Proceedings of Parallel Problem Solving from Nature, pages 355-364, 2000.

[40] N. Hansen. An Analysis of Mutative a-Self-Adaptation on Linear Fitness Functions. Evolu
tionary Computation, Accepted.

[41] N. Hansen and S. Kern. Evaluating the CMA Evolution Strategy on Multimodal Test Func
tions. In PPSN. Springer, 2004.

[42] N. Hansen, S. Miiller, and P. Koumoutsakos. Reducing the time complexity of the derandom-
ized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary Compu
tation, 11(1):1-18, 2003.

[43] N. Hansen and A. Ostermeier. Completely Derandomized Self-Adaptation in Evolution
Strategies. Evolutionary Computation, 9(2):159-195, 2001.

[44] M. Herdy. Reproductive Isolation as Strategy Parameter in Hierarchically Organized Evo
lution Strategies. In Proceedings of Parallel Problem Solving from Nature, pages 207-217,
1992.

[45] J. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann
Arbor, 1975.

[46] R. Hooke and T. Veeves. Direct search solution of numerical and statistical problems. Jour
nal of the Association for Computing Machinery, 8:212-229, 1961.

[47] K. hsin Liang, X. Yao, and C. Newton. Adapting Self-adaptive Parameters in Evolutionary
Algorithms. Applied Intelligence, 15:171-180,2001.

[48] T. C. Hu, V. Klee, and D. Larman. Optimization of globally convex functions. SI AM Journal
on Control and Optimization, 27(5), 1989.

[49] S. Kazadi. Conjugate schema and basis representation of crossover and mutation. Evolution
ary Computation, 6(2), 1998.

159

[50] S. Kern, S. Muller, N. Hansen, D. Buche, J. Ocenasek, and P. Koumoustakos. Learning Prob
ability Distributions in Continous Evolutinary Algorithms—a Comparative Review. Natural
Computing, 3:77-112, 2004.

[51] R. H. Leary. Global Optimization on Funneling Landscapes. Journal of Global Optimiza
tion, 18,2000.

[52] R. H. Leary and J. P. K. Doye. Tetrahedral global minimum for the 98-atom lennard-jones
cluster. Phys. Rev. E, 60(6):R6320-R6322, Dec 1999.

[53] K. Levenberg. A method for the solution of certain problems in least squares. Quarterly of
Applied Mathematics, 2:164-168, 1944.

[54] R. Lewis, V. Torczon, and M. Trosset. Direct Search Methods: Then and Now. Journal of
Computational and Applied Mathematics, 124, 2000.

[55] M. Locatelli. On the multilevel structure of global optimization problems. Computational
Optimization and Applications, 30, 2005.

[56] M. Lunacek and D. Whitley. Function dispersion and the CMA Evolution Strategy. In
Proceedings of GECCO, 2006.

[57] M. Lunacek and D. Whitley. Searching for Balance: Understanding the Behavior of Self-
adaptation on Ridge Functions. In Proceedings ofPPSN, 2006.

[58] M. Lunacek, D. Whitley, P. Gabriel, and G. Stephens. Applying Search Algorithms to the
Temperature Inversion Problem. In Proceedings of GECCO, 2004.

[59] M. Lunacek, D. Whitley, and J. Knight. Measuring Mobility and the Performance of Global
Search Algorithms. In Proceedings of GECCO, 2005.

[60] M. Lunacek, D. Whitley, and A. Sutton. The impact of global structure on search. In Sub
mitted, 2008.

[61] D. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. SIAM
Journal of Applied Mathematics, 11:431-441, 1963.

[62] K. Mathias, J. D. Schaffer, L. J. Eschelman, and M. Mani. The Effects of Control Parameters
and Restarts on Search Stagnation in Evolutionary Programming. In PPSN, 1998.

[63] K. Mathias, D. Whitley, T. Kusuma, and C. Stork. An Empirical Evaluation of Genetic Al
gorithms on Noisy Objective Functions. In S. K. Pal, editor, Genetic Algorithms for Pattern
Recognition, pages 65-86. CRC Press, 1996.

[64] R. McClatchey, R. Senn, J. Feldy, S. Voltz, and J. Garing. Optical properties of the atmo
sphere. Technical Report TR-354, AFCRL, 1971.

[65] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Journal of
Chemical Physics, 21:1087-1953, 1953.

[66] H. Muhlenbein and D. Schlierkamp-Voosen. Predictive Models for the Breeder Genetic Al
gorithm. Evolutionary Computation, 1(1):25—49, 1993.

160

[67] H. Miihlenbein, M. Shomisch, and J. Born. The parallel genetic algorithm in combinatorial
optimization. Parrallel Computing, 7:65-85, 1988.

[68] S. Nash and A. Sofer. Linear and Nonlinear Programming. McGraw-Hill, 1996.

[69] J. A. Nelder and R. Mead. A Simplex Method for Function Minimization. Computer Jour-
nal, 7:308-313, 1965.

[70] K. Ohkura, Y. Matsumura, and K. Ueda. Robust Evolution Strategies. Applied Intelligence,
15:153-169,2001.

[71] I. Ono and S. Kobayashi. A real-coded Genetic algorithm for Function Optimization Using
Unimodal Normal Distributioin Crossover. In International Conference on Genetic Algo
rithms, pages 246-253, 1997.

[72] A. Ostermeier, A. Gawelczyk, and N. Hansen. A derandomized approach to self-adaptation
of evolution strategies. Evolutionary Computation, 2(4):369-380, 1994.

[73] A. Ostermeier, A. Gawelczyk, and N. Hansen. Step-Size Adaptation Based on Non-local use
of Selection Information. In PPSN, pages 189-198. Springer, 1994.

[74] A. I. Oyman, H. Beyer, and H. Schwefel. Where Elitists Start Limping Evolution Strategies
at Ridge Functions. In A. E. Eiben, T. B'ack, M. Schoenauer, and H.-R Schwefel, editors,
Parallel Problem Solving from Nature - PPSN V, pages 34-43, Berlin, 1998. Springer.

[75] A. I. Oyman and H.-G. Beyer. Analysis of the (fi/p, A)-ES on the Parabolic Ridge. Evolu
tionary Computation, 8(3):267-289, 2000.

[76] A. I. Oyman, H.-G. Beyer, and H.-R Schwefel. Analysis of the (1, A)-ES on the Parabolic
Ridge. Evolutionary Computation, 8(3):249-265, 2000.

[77] P. M. Pardalos and F. Schoen. Recent Advances and Trends in Global Optimization: Deter
ministic and Stochastic Methods. In CAPD, 2004.

[78] M. Pelikan, D. E. Goldberg, and E. Cantu-Paz. Linkage problem, distribution estimation,
and Bayesian networks. Technical Report 98013, Urbana, IL, 1998.

[79] M. Powell. An efficient Method for Finding the Minimum of a Function of Several Variable
Without Calculating Derivatives. The Computer Journal, 7:155-162, 1964.

[80] L. Rastrigin. Extremal control systems. In Theoretical Foundations of Engineering Cyber
netics Series, 1914.

[81] H. Rosenbrock. An Automatic Method for Finding the Greatest or Least value of a Function.
Computer Journal, 3:175-184, 1960.

[82] G. Rudolph. On correlated mutations in evolution strategies. In R. Manner and B. Man-
derick, editors, Parallel Problem Solving from Nature 2 (Proc. 2nd Int. Conf. on Parallel
Problem Solving from Nature, Brussels 1992), pages 105-114, Amsterdam, 1992. Elsevier.

[83] R. Salomon. Re-evaluating Genetic Algorithm Performance Under Coordinate Rotation of
Benchmark Functions: A Survey of Some Theoretical and Practical Aspects of Genetic Al
gorithms. BioSystems, 39:263-278, 1996.

161

[84] R. Salomon. Applying Evolutionary Algorithms to Real-World-Inspired Problems with
Physical Smoothness Constraints. In P. J. Angeline, Z. Michalewicz, M. Schoenauer, X. Yao,
and A. Zalzala, editors, Proceedings of the Congress on Evolutionary Computation, vol
ume 2, pages 921-928, Mayflower Hotel, Washington D.C., USA, 6-9 1999. IEEE Press.

[85] R. Salomon. The curse of High Dimensional Search Spaces: Observing Premature Conver
gence in Unimodal Funcitons. In Proceedings of the Congress on Evolutionary Computation,
pages 918-923. IEEE Press, 2004.

[86] D. Schaffer, R. Caruana, L. Eschelman, and R. Das. A study of control parameters affecting
online performance of genetic algorithms for function optimization. In Third international
conference on Genetic algorithms, 1989.

[87] D. Schuurmans and F. Southey. Local search characteristics of incomplete SAT procedures.
Artificial Intelligence, 132(2): 121-150, 2001.

[88] H.-P. Schwefel. Evolution and Optimum Seeking. John Wiley & Sons, Inc., 1995.

[89] Shanno. Conditioning of quasi-newton methods for function minimization. Mathematics of
Computation, 24:647-656, 1970.

[90] J. R. Shewchuk. An introduction to conjugate gradient method without the agonizing pain.
1994.

[91] A. Sokolov, D. Whitley, and M. Lunacek. Alternative Implementations of the Griewank
Function. In Preceedings ofGECCO, 2005.

[92] W. Spendly, G. Hext, and R. Himsworth. Sequential Application of Simplex Designs in
Optimization and Evolutionary Operation. Technometrics, 4:441—461, 1962.

[93] R. Storn and K. Price. Differential evolution - a simple and efficient adaptive scheme for
global optimization over continuous spaces. Journal of Global Optimization, 11:341 - 359,
1997.

[94] G. Syswerda. Simulated Crossover in Genetic Algorithms, pages 239-255. Morgan Kauf-
mann, 1993.

[95] V. J. Torczon. Multi-Directional Search: A Direct Search Algorithm for Parallel Machines.
PhD thesis, Houston, TX, USA, 1989.

[96] V. J. Torczon. On the convergence of pattern search algorithms. SIAM J. Optimization,
7:1-25, 1993.

[97] V. J. Torczon and M. Trosset. From evolutionary operation to parallel direct search: Pattern
search algorithms for numerical optimization. Computing Science and Statistics, 29:396-
401, 1998.

[98] H.-M. Voigt. On some difficulties in local evolutionary search. In IEEE, 1999.

[99] D. J. Wales. Energy Landscapes and Properties of Biomolecules. Physical Biology, 2005.

[100] D. J. Wales and J. P. Doye. Global Optimization by Basin-Hopping and the Lowest Energy
Structures of Lennard-Jones Clusters Containing up to 110 Atoms. Journal of Chemical
Physics, 101(28), April 1997.

162

[101] D. J. Wales and H. A. Scheraga. Global optimization of clusters, crystals, and biomolecules.
Science, 285(27), August 1999.

[102] D. Whitley, L. Barbulescu, and J. Watson. Local Search and High Precision Gray Codes. In
Foundations of Genetic Algorithms FOGA-6. Morgan Kaufmann, 2001.

[103] D. Whitley, R. Beveridge, C. Graves, and K. Mathias. Test Driving Three 1995 Genetic
Algorithms: New Test Functions and Geometric Matching. Journal of Heuristics, 1995.

[104] D. Whitley, K. Bush, and J. Rowe. Subthreshold-seeking behavior and robust local search.
In Proceedings ofGECCO, 2004.

[105] D. Whitley, M. Lunacek, and J. Knight. Ruffled by Ridges: How Evolutionary Algorithms
can fail. In Proceedings ofGECCO, 2004.

[106] D. Whitley, M. Lunacek, and A. Sokolov. Comparing the Niches of CMA-ES, CHC and
Pattern Search Using Diverse Benchmarks. In Submitted, 2006.

[107] D. Whitley, K. Mathias, S. Rana, and J. Dzubera. Building better test functions. In L. Eshel-
man, editor, Proceedings of the Sixth International Conference on Genetic Algorithms, pages
239-246, San Francisco, CA, 1995. Morgan Kaufmann.

[108] D. Whitley and S. Rana. Representation, search, and genetic algorithms. In 14th National
Conference on Artificial Intelligence (AAAI-97), 1997.

[109] D. Whitley, S. B. Rana, J. Dzubera, and K. E. Mathias. Evaluating Evolutionary Algorithms.
Artificial Intelligence, 85(l-2):245-276, 1996.

[110] A.Wright. Genetic algorithms for real parameter optimization. In Foundations of Genetic
Algorithms, 1991.

[I l l] D. Wyatt and H. Lipson. Finding building blocks through eigenstructure adaptation. In
GECCO, 2003.

[112] W. Zangwill. Minimizing a Functon without Calculating Derivatives. The Computer Jour
nal, 10:293-296, 1967.

163

