THESIS

MODELING AND QUERYING UNCERTAIN DATA

FOR ACTIVITY RECOGNITION SYSTEMS USING POSTGRESQL

Submitted by
Kevin Burnett

Department of Computer Science

In partial fulfillment of the requirements
For the Degree of Master of Science
Colorado State University
Fort Collins, Colorado

Summer 2012

Master’s Committee:

Advisor: Bruce Draper
Co-Advisor: Indrakshi Ray

Leo Vijayasarathy

ABSTRACT

MODELING AND QUERYING UNCERTAIN DATA

FOR ACTIVITY RECOGNITION SYSTEMS USING POSTGRESQL

Activity Recognition (AR) systems interpret events in video streams by identifying actions and
objects and combining these descriptors into events. Relational databases can be used to
model AR systems by describing the entities and relationships between entities. This thesis
presents a relational data model for storing the actions and objects extracted from video
streams. Since AR is a sequential labeling task, where a system labels images from video
streams, errors will be produced because the interpretation process is not always temporally
consistent with the world. This thesis proposes a PostgreSQL function that uses the Viterbi
algorithm to temporally smooth labels over sequences of images and to identify track
windows, or sequential images that share the same actions and objects. The experiment
design tests the effects that the number of sequential images, label count, and data size has on
execution time for identifying track windows. The results from these experiments show that

label count is the dominant factor in the execution time.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION. ...cetiiiittiiiteseiiiiiteeesesittteesessiiaeeeessssseaeeeesssssssaeeessssssssseesssnssssnseessnnnns 1
CHAPTER 2 BACKGROUND.....ctttiiiiiiiiiteeeriittee e s ettt e e e s siatee e e s ssieaeeeesessabaeeesessabseeeeessnnssnaeessnnnns 4
2.0 ACHIVItY RECOGNITION ...ttt e s e e e e e e e e eeeeeeceeeee s nnnnaaaes 4

P A DT | -] o - YT PP PPPPPPP 9
2.2.1 BasiC database SErUCTUIESuuuiiiiiiiiiiiee ettt s e e e s e s bare e e s s s naaneees 9

D A 0t R =1L PSP RRPPPP 10
2.2.1.2 Relationship tYPES ..ueuiiiiiieiiiiiee ettt s a e 12
2.2.1.3 Referential INtegIitY.....ccviivriiiieie it e e 14
2.2.0.4 LOOK-UP tADIES ..eeiiiiiiieeeeeietee ettt et e s e sbae e e e s s abaeeeeeeas 15
2.2.1.5 INdEXES USING B-trEES...iiiiiiiiiiiiieiiriiieee ettt e e s e e s e sbraeeeeeas 15

2.2.2 BasiC SQL COMMANTSuiiiiiiiiiiiieeiiiiieee e essiiree e e e s sibaeeee s s siareeesssssbraeeessssaseneeesssnnns 16
2.2.2.1 Selecting data from a single table ... 17
2.2.2.2 Selecting data from multiple tables........ccccoviiiiiiiiiiiii e 18

2.2.2.3 CrOSS JOIN oot e e e e e e ettt e e e e e e e e e eete et ee e e s nnaaaaan 19
2.2.2.4 Deleting data ...cceeiieeiiieiee ettt e e e e aaaee s 20
2.2.2.5 INSEItING data...uciiiiiiiiiiiee et e e e s e e s e e e e e e s e e e e s 20
2.2.2.6 Aggregate functions and the group by clausecccccovviiiiiiiniiiiieee e, 21

2.2.2.7 WiINAOWING. ...ttt teee e e e e e e e e eaeee e e e e e e s e s eaaassberaereeeeeaaaaaaaaeeanns 22
2.2, 2 8 AT Y S ettt e ettt ettt e e et e e e e e e e et ettt e bbb e b e aeeeeeeeeeeeeteteaereranaaaaaan 23
2.2.2.9 Derived tables and SUD-QUETIESueiiiiiiiiiieeeciiteee e 24
2.2.2.10 CommMON Table EXPreSSIONS...ccciircuiiieeeieiiiiteeeeerireee e e s esirreee e s ssiraeeeesesnaraeeeeens 26
2.2.2.17 RECUISIVE QUETIES..cceieeeiiiiiiiieiniiaeaaa e e e e e e e eeeeeetetteeeesasaaaaeseeeeeeeeeeeereeeeenesnnnnannns 27
2.2.2.12 Compiled StatemMENTS ..cccoueiiiiiii i 28

P2 A 0 I B o] (o Yo o LSRR PPPPN 29
CHAPTER 3 IMIETHODS ...ttt ettt ettt e e e ettt e e e s st e e e e e e nabae e e e s s s sbbaeeeesennssaneeaeenn 30
3.1 Uncertainty in Activity RECOGNITION c....eueeeiiiieie e ee e 30
3.2 Modeling Activity Recognition dataccccoecuiiieiiiiiiiiiee e 33
30 2 0t 1Y/ (o To 11 1 o T~ ST UPP PP 33

3.3 Querying Uncertain Activity Recognition data and identifying Track Windows............... 37
3.3.1.1 Defining the Viterbi matrix in a relational tableccccooviiiiiiiniiieen 37
3.3.1.2 Calculating probabilities for the Viterbi matrixXccccoevvviiieiiinniiiiieeciieeen 38
3.3.1.2.1 Initial probabilities.......cccoeriiiiiiiieiee e 39

3.3.1.2.2 Iterative probabilitiescccuiiiiiiiiiiiiee e 42

3.3.1.3 Determining the Viterbi path........cccoueeiiini e a7
3.3.1.4 Identifying track windows from the Viterbi pathcccccecoviiiiiniiiiiiiiieen, 49

IR VY[To F=) o o o P PPPPPPP 51
3.5 EXPEIIMENT DESIGN ...ttt e e s e e e e e e e e eeeere et eeberennaaas 53
CHAPTER 4 RESULTS .ettiteieiititee ettt e ettt e e e sttt e e e s s sitta e e e e e ssbaaeaeesssssbaaaeesssnsbaeeesssnnnssneeeennn 61
CHAPTER 5 FUTURE WORKetttiiiiiiteee ittt e essitte e e s siate e e s e siaeeee e s sssbaeaeesssasbaeeesssnnnssneeeesns 67

REFERENCGES ..ottt e e e e s e s s bbb a e e e e e et e e e e e e e s e s eans 70

APPENDIX | Data DiCtiONary...ccceeueueiieieieieeee e ettt s e e e e e e e e e eereteteaeees s e e e e e eeas 71
APPENDIX 11 SOL Table definitionS. . .ceeeeieiiee ettt ettt et e et ee s et e e et e s et eesanaesennnns 76
APPENDIX 1l SQL FUNCHION DOFINITIONS ..teieieeiie ettt ettt et e et e et e e e e e s et e e sanaesennnns 80

LIST OF FIGURES

Figure 2.1 A partial sequence of video with frames and a single track highlighted. 6
Figure 2.2 High level dataflow in an Activity Recognition system.cccccvvviivieeeinniiiieee e, 7
Figure 2.3 TWO Sample primary KEYS.uuiii ittt rae e e e s s saaaees 10
Figure 2.4 Sample data showing uniqueness because of compound primary keys. 11
Figure 2.5 A simple foreign key relationship. ... 11
Figure 2.6 A one-to-one relationship between tables........occouvviiiiiiiiiiiiiiin e, 12
Figure 2.7 A one-to-many relationship between tables.cccccviveiiiiiiiiinriiii e, 12
Figure 2.8 A many-to-many relationship with three tables........cccccooviiieiiinniii e, 13
Figure 2.9 Simple tables demonstrating a referential integrity by using keys.c.cccccevunnnen. 14
Figure 2.10 The record highlighted red is an invalid record because of referential integrity. .. 14
Figure 2.11 A simple look-up table, keyword, referenced by two other tables. 15
Figure 2.12 A table with a defined primary key and another table with a foreign key referencing
L8 L=) PO UPPPPPP 18
Figure 2.13 The result of selecting from the two tables defined in the previous figure. 19
Figure 2.14 The result 0f @ CroSS-JOINuuiiiiiiiiiiie e e e e s saaeees 20
Figure 2.15 A small table containing a unique id, type, and value.cccccoevvveeiiinniiieeee e, 21
Figure 2.16 The sum of each type from the previous figure.cccccoveeeiiiiiiieeiiiniiieeee e, 22
Figure 2.17 The result of filtering the previous query to return only types with a sum larger
18 =10 107 U UPP PP 22
Figure 2.18 A table containing a unique id for each record, type, and result.cccccceeerunneen. 23
Figure 2.19 The result of a query that normalizes two groups of values.cccccoecuiiveeiinnnnnen. 23
Figure 2.20 Using the array_agg() function the values from tablel are turned into arrays of
VAIUBS FOI EADIC2. ...ttt e s e e e s s e e e e e s baaaaeeean 24
Figure 2.21 A result set where two arrays have a different sorting order.cccccoecvvvvveernnnnen. 24
Figure 2.22 An image table containing a unique id for each row, a type, and a width. 25
Figure 2.23 A table listing each image type and the difference between the average width and
the average Width By tYPe. ..o 26
Figure 2.24 A graph where the paths from root to leaf sumto 7and 9.......cccccceevvvviieeiiininnen, 27
Figure 2.25 A table where the data has a hierarchical relationship.ccccoeccveeiiiiiiiiieeiiininnen. 27
Figure 2.26 Result set produced by a sample PostgreSQL functionc.cccvveeeeivvciiieeeeeininnnen. 29

Figure 3.1 A Viterbi matrix showing the probabilities (V) for a set of states (k) over a sequence
of frames and the label used to calculate the maximum state transition (s). The Viterbi

Path is NiGhIINTEM. ...cooiiieeiiee e e e 32
Figure 3.2 Tables used to store known labels and relevant data.cccccoevivieeeiiniiiieeee e, 34
Figure 3.3 Tables used to store objects identified while processing video.cccccvveviernnnnenn. 35
Figure 3.4 A data model for storing data generated from an Activity Recognition system. 36
Figure 3.5 The Viterbi matrix represented as a relational table..........ccccoovviiiiiiiniiiiiiei e, 38
Figure 3.6 The label with the highest confidence score for a given frame........ccccecvvveviinnnnnen. 40
Figure 3.7 The result from step 2 in calculating the initial probabilities.ccccevuriieeiinnnnnen. 40
Figure 3.8 The result from step 3 in calculating the initial probabilities.cccccovriieiiinnnnnen. 41

Figure 3.9 The final result set when calculating the initial probabilities.ccccevviieeiinnnnnen. 42

Figure 3.10 The label with the highest confidence score for a given frame........cccccovvvveennnnnen. 43
Figure 3.11 A portion of a result set from step 2 containing labels, transition labels, and the
transition and probabilities for the previous step.cccccvvvciiiiiiiiiiiiie e 44
Figure 3.12 The result set for step 3 that contains the transition labels and an array of the
MOSE TIKEIY [QDEIS. ..evveeeieee e e e e e e baae s 45
Figure 3.13 The result set for step 4 that contains the frame, observed label, transition label,
aNd MaX Probability.uueieiiiiiiee e e e s e 45
Figure 3.14 The result set for step 5 that contains the final values that will be added to the V
L= o] 1T PP UPP PRI 46
Figure 3.15 A table showing the values of a Viterbi matrix with 5 labels and 4 observations. .. 48
Figure 3.16 The Viterbi path for a track containing 13 frames and assigned labels.................. 49
Figure 3.17 A result set that contains groups of sequential frames with the same label_id. The
column delta is calculated by subtracting row_number from frame_id.cccccceeennnn. 50
Figure 3.18 A result set containing track windows identified from a Viterbi path..................... 51
Figure 3.19 Random conditional probabilities with a weighted diagonal.c.ccoccvvvviiinnnnnen. 52
Figure 3.20 Random transition probabilities with a weighted diagonal...........cccccovviiiiiinnnnnen. 52
Figure 3.21 The results of validating the Viterbi implementation. Observation codes used to
indicate labels: C=car, P=person, T=tree, G=ground, O=0ther.........ccccceereeiiiiiiiriiiiccccnnnns 53
Figure 3.22 A graph showing the time complexity of the Viterbi algorithm for 0 to 3,200 frames
LV A RS T =1 o 1= PRSPPI 54
Figure 3.23 A graph showing the time complexity of the Viterbi algorithm for 0 to 3,200 frames
WIth O TaDIS. ..eeeeiiieiiie e e e e s st e e e e s s r e e e e s e st raaaeeean 55
Figure 3.24 The tables populated by an AR system from video sequences with the size for each
[Tolo] o IR PP PPPP 56
Figure 3.25 Step 1 of the experiment design where synthetic data is generated to control the
(o -1 = Y 4D PSP PUPURSUPTPPPPN 56
Figure 3.26 A table showing the different source counts and how many database records and
Ao 1 = Y 2D PP PPPPP 57
Figure 3.27 Step 2 of the experiment design where synthetic data is generated to control the
] o 1] I ol YU o X F RO PPPP 58
Figure 3.28 Step 3 of the experiment design used to identify track windows and record the
performance INFOrMatioN.coo i 59
Figure 3.29 Parameters used in the first 2 iterations of experiments.........ccccccevvvvciveeeeiincnnnnen. 60
Figure 4.1 Experiment results where each sub-plot shows the experiments run for a single data
SIZ e ettt ettt e e eeeeeeeeee e ettt et ea—e e eeteeeeeeeeettttretaenn e e e eeeas 62
Figure 4.2 Experiment results averaged over all data Sizes.........ccccevvuieiiiiiiiiniiieinieceeeeee 63
Figure 4.3 Experiment results averaged over all data sizes where label countis 2 and 5.......... 64
Figure 4.4 Experiment results with the both axes scaled as a polynomial.........ccccccvvieviinnnnnen. 65
Figure 4.5 The number of labels and track lengths that can be processed in 1 second............. 66

Vi

CHAPTER 1 INTRODUCTION

The number of video streams being captured by digital devices is growing at a very fast rate.
These video streams contain large amounts of data because every minute of video recorded at
30 frames a second contains 1,800 images. Despite the data size, devices such as tablets, PCs,
mobile phones, and digital cameras have all made it very easy to capture video streams for
many different applications including surveillance for military, public, and private security.

One field of research focusing on interpreting events in video surveillance is Activity
Recognition (AR). AR requires identifying actions and objects in video streams and then
combining these descriptors into events, or interactions between actions and objects. Current
research in this field has been focused on shorter duration videos (see [1]) while efforts to
extract activities from more complex surveillance scenarios have been less successful (see [2]).
These complex scenarios involve multiple cameras and long duration video streams that will
result in larger amounts of data being generated for analysis. This data can grow to a size larger
than available system memory and will require techniques for managing data in memory and
on disk.

Relational database provide an efficient way for storing and processing very large
amounts of data. This field of research models real-world problems by describing the entities
and relationships between entities. These descriptions are then used to create relational
database tables and establish rules between tables for modeling the constraints within data.

This thesis provides a baseline implementation for managing and querying AR data.

To design a data model for AR systems, all entities and relationships between entities
must first be defined. This thesis defines the actions and objects identified by an AR system as
frames and collections of relating frames as tracks. Then, descriptions of actions and objects
used to identify frames are defined as labels. Track windows are defined as sequential frames
within a single track that share the same label. Given these objects, a relational data model is
proposed to store data extracted from video streams by an AR system and to provide
referential integrity within the data.

Some of the data described by the data model is label information. These labels are
important because AR is a sequential labeling task where a system labels images from a video
stream. The challenge is the interpretation process produces errors that are not consistent with
the world, which is temporally consistent. Temporal smoothing over time can be used to
minimize the uncertainty in the labeling noise. In AR, labels are applied to every frame of videos
recorded at 30 frames/sec. Since appearance and actions persist in the real world for longer
than 1/30th of a second, consecutive frames are likely to share similar labels. Therefore, the
goal of dealing with label noise is to temporally smooth the sequenced labels using the Viterbi
Algorithm. This thesis proposes an SQL function for PostgreSQL [3] that uses the Viterbi
algorithm to temporally smooth labels over a sequence of frames. Track windows are then
identified from the temporally smooth labels.

From the proposed data model and process for identifying track windows, the
experiment design is intended to establish a performance baseline using PostgreSQL. The
variables track length, label count, and data size are used to determine the execution time of

identifying track windows. The first two variables, track length and label count, are taken from

the time complexity of the Viterbi algorithm. This time complexity is described by the function
0(tS?) where t is the track length and S is the number of labels within the AR system. The third
variable, data size, describes that number of records in tables containing data extracted by the
AR system. This variable is intended to test the performance of retrieving data from tables as
the number of records increase. These experiments are run on a range of variables including
eight track lengths, six label counts, and eight data sizes where each experiment is repeated
twenty times to minimize noise.

The results from these tests show that label count is the dominant factor in identifying
track windows when using PostgreSQL. Based on these results, several areas for future research
are presented. These areas include managing uncertainty in observations, identifying complex
events, using arrays when identifying track windows to improve execution time, and processing

data using streaming databases.

CHAPTER 2 BACKGROUND

This chapter provides background explaining the basics of Activity Recognition and modeling

and querying data using PostgreSQL.

2.1 Activity Recognition

Activity Recognition (AR) systems interpret events in video streams. This requires identifying
actions and objects in video streams and then combining these descriptors into events, or
interactions between actions and objects. AR systems must also distinguish the important from
unimportant events. Although AR is still a laboratory research topic there are many applications
including military surveillance, public safety, and private security.

Up to now research in AR has focused on labeling actions in short video clips (see [1]) so
the computer vision techniques necessary for identifying objects and actions can be refined.
Efforts to extract activities from longer duration videos in more complex surveillance scenarios
have been less successful (see [2]) but as AR technology matures more challenges will emerge
from managing continuous streams of uncertain data in real time. This thesis will focus on data
management challenges that AR will face on long or continuous video streams.

One challenge is the volume of data. A 2-minute video, recorded at 30 frames per
second, contains 3,600 images. Some of these frames, if not all of them, will be used to identify
objects and actions resulting in additional data for the system to manage. Managing the decay
of data is also important for AR systems because they are likely to run in conditions where disk
and memory sizes are constrained but video length is unconstrained. Another challenge is the

bursty nature of the data. In a continuous video stream there can be long periods that result in

4

very little activity in the AR system. However, when something happens in the field of view, the
AR system will react by generating and processing data until the target of interest disappears.
Issues in dealing with large volumes of streaming data are closely related to the field of
streaming databases.

Another data management challenge for AR systems is uncertain information, which is
the focus of this thesis. Images in videos can be considered observations but inferences about
scene content extracted from videos are necessarily uncertain. This includes, but is not limited
to, inferences about objects and actions.

One research program that is actively focusing on the challenges of an Activity
Recognition system is a series of 13 groups participating in the Mind’s Eye DARPA research
program. The Mind’s Eye program is working towards developing “the capability to learn
generally applicable and generative representations of action between objects in a scene
directly from visual inputs, and then reason over those learned representations” [4]. These
groups are implementing varying AR systems that focus on a set of video clips and goals
provided by DARPA. Even though there are 13 groups with many different approaches each
group is still faced with the same fundamental data management tasks, including the
management of uncertain data.

This paper defines a set of terms used to describe concepts that are common to AR
systems. One of the basic structures is the area of interest that a system identifies within an
image from a video sequence. Each area of interest will be referred to as a frame. Figure 2.1

contains images from a video sequence where the frames have been highlighted. Once a series

of relating frames have been identified then they are grouped together into a collection

referred to as a track, which has also been highlighted in Figure 2.1.

Frame

Track

Figure 2.1 A partial sequence of video with frames and a single track highlighted.

The high-level data flow of track and frame information within an AR system can be

seen in Figure 2.2.

Action
Recognition

Track, Frame

Action Label

Event

Input Source —Video Track, Frame .
Reasoning

Appearance Label

Appearance

Track, Frame o
Recognition

Figure 2.2 High level dataflow in an Activity Recognition system.

Each large circle represents a process within the system while the lines between circles
represent high-level data elements that are passed between processes. From the diagram, the
first stage in the system is referred to as Early Vision with input for this stage coming from a
video stream. This stage is responsible for detecting frames in individual images and extracting
descriptors for each frame. To achieve this, the Early Vision stage contains motion and person
detection components. Even though these two identification processes are very different, they
both produce frames with descriptors. The Early Vision stage is also responsible for maintaining
track information because each frame that is detected must be associated with a track. From
the early vision stage, all relevant track and frame information is then sent to the Action
Recognition and Appearance Recognition stages. The Action Recognition stage is responsible
for finding the best label for the motion (running, sitting, standing, etc.) identified in the early
vision system while the Appearance Recognition system is responsible for find the best label for
objects (person, tree, car, etc.) identified in the track. The Event Reasoning stage is then broken

7

into two steps. The first step identifies sequential frames within a single track that share the
same label. These frames are referred to as track windows. The second step then analyzes the

labels associated with track windows to find more complex events.

2.2 Databases

This section provides background for relational databases explaining the basic structures used
when modeling data. Further information regarding this can be found in [5]. This section also
provides basic SQL commands used when querying data in PostgreSQL and further information
regarding these commands can be found at [3]. However, readers familiar with PostgreSQL, or

similar relational database systems, can skip this section.

2.2.1 Basic database structures

Relational databases model real-world enterprises or applications. Applications can often be
described using entities and relationships among these entities. Entities are real-world objects
that can be distinguished from other objects. Every entity is described using a set of attributes,
each of which has a domain. These entity sets are collections of objects of the same type. Each
entity set is represented in the form of a table, where each row corresponds to a record
belonging to a unique entity and each column signifies an attribute.

Entity sets are connected to each other using relations. We can have various forms of
relationships: one-to-one, one-to-many, and many-to-many. Collections of relations of the
same type form relationship sets. Relationship sets are also represented in the form of tables,
where each row signifies a record corresponding to a unique relation and each column denotes
an attribute of the relation.

In short, entity sets and relationship sets in an application is represented in the form of

tables. The columns of the table and their domains form the structure of the table and these

elements are referred to as the schema. The rows of the table correspond to the
entities/relations that exist in any given point of time and is referred to as instance.

In order to capture real-world constraints, restrictions in the form of predicates are
placed on data objects. These predicates, referred to as integrity constraints, must be satisfied
by the values of data objects. Relational databases support various types of integrity constraints

including primary keys and foreign key, which we discuss below.

2.2.1.1 Keys

We discuss two types of keys: primary and foreign. A primary key is a set of one or more
attributes (columns) used to uniquely identify a record within a table. Note that the database
will prevent the insertion of two records having the same primary key. In Figure 2.3 tablel
describes a schema in which the primary key is defined on a single column, col1, while table2

gives a schema where the primary key is defined on two columns, col/1 and col2.

tablel table2
PK | coll PK | coll
PK | col2
description
description

Figure 2.3 Two sample primary keys.

Figure 2.4 is sample data from a table, where the schema is defined in table2 shown in

Figure 2.3. For this data both col/1 and co/2 are required to uniquely identify every row.

10

primary key

coll col2 description

1 1 Red
1 2 Red
3 8 Red
4 2 Red

Figure 2.4 Sample data showing uniqueness
because of compound primary keys.

If only col1 was defined as the primary key then the first two rows would be in conflict
with each other because they would have the same value in col1 and there would be no way to
distinguish between these two rows. It is also important to note that all records in this table can
have the same value in description because columns defined as the primary key are the only
columns required to uniquely identify a record. Other columns in the table can contain any
values.

The other key type is a foreign key. These keys build on the concept of a primary key
because a foreign key in one table (child) refers to a primary key from another table (parent).
This relationship guarantees that a record in the child table will have a unique record in the
parent table. Even though a primary key is guaranteed to be unique a foreign key is not unique
unless the constraint is explicitly set up to enforce uniqueness. In most cases a child table will
contain many records that refer to a single record in the parent table. In Figure 2.5 table3 has a

foreign key defined that refers to the primary key from table2.

table2 table3
PK | coll PK |id
PK | col2 <—
FK1 | coll
description FK1 | col2
name

Figure 2.5 A simple foreign key relationship.

11

Any record added in table3 will require valid values for coll and col2 that refer to a

record in table2 but any number of records with a valid foreign key can be created.

2.2.1.2 Relationship types

With primary and foreign keys different relationship types can be established between entities.

The first relationship type is referred to as one-to-one and can be seen in Figure 2.6.

tablel table2

PK [id —— PK,FK1 id

Figure 2.6 A one-to-one relationship
between tables.

The primary key defined in tablel is also the foreign and primary key defined in table2.
This means that every record in table2 is unique and has a single matching record in tablel. This
relationship is not bidirectional so a record in tablel does not guarantee a matching record in
table2.

The next type of relationship is a one-to-many and was mentioned in the previous
section. Figure 2.7 is an example of this type with a foreign key in table2 referencing the

primary key from tablel.

tablel table2
PK [id —
description FK1 |id

Figure 2.7 A one-to-many relationship
between tables.

12

This relationship is often used to model hierarchical data because every record that
exists in table2 must contain a value that refers back to a record in tablel. The final type of
relationship is a many-to-many. This relationship is used to model situations where many
records from one table can refer to many records from another table. The only way to model
this relationship is by deriving a relationship table between the two base tables. Figure 2.8 is an
example of this relationship with tablel and table3 being the base tables and table2 being the

relationship table.

tablel e table3

. PK,FK1 |i .
PK | idl '« PK,FK2 |i PK | id2

o
=

R |
v

Figure 2.8 A many-to-many relationship with three tables.

Both tablel1 and table3 have primary keys defined and table2 has a primary key defined
that is the composite of the primary keys from table1 and table2. Any record in tablel can refer
to any number of records from table3 and any record in table3 can refer to any number of
records from tablel. This relationship type can also be thought of as a bidirectional one-to-

many relationship.

13

2.2.1.3 Referential Integrity

Defining primary and foreign keys is important because they are used to enforce constraints
that ensure referential integrity in data. Referential integrity is achieved when every attribute
of a table exists as a value of another attribute in the same or different table. Figure 2.9 shows

two tables with referential integrity through the primary and foreign key relationship.

tablel table2
PK |id «
FK1 |id
value

Figure 2.9 Simple tables demonstrating
a referential integrity by using keys.

Figure 2.10 contains potential data for the tables defined in the previous figure.

tablel table2
id (pk) id (fk) value
1 1 a
2 1 b
4 c

Figure 2.10 The record highlighted red is an invalid
record because of referential integrity.

The first two records from table2, with an id of 1, contain valid foreign keys that refer
back to a record from tablel. The third record, with an id of 4, contains a reference to a record
that does not exist in table1 and is invalid because of referential integrity. This record cannot

exist in a table where referential integrity has been defined.

14

2.2.1.4 Look-up tables
Using the notion of foreign keys, we can also build look-up tables that keep lists of discrete
values consistent within a database. In Figure 2.11 tablel and table2 refer to values from the

table keyword, a lookup table.

tablel
FK1 | key_id > keyword
PK |key id
table2 - description
FK1 | key_id

Figure 2.11 A simple look-up table, keyword, referenced by two
other tables.

It would be possible for tablel and table2 to contain their own keyword column but this
can lead to inconsistent values between tables. To enforce consistency a list of acceptable

values can be defined in the database and references used in place of values.

2.2.1.5 Indexes using B-trees

Indexes are very common database structures used for fast data access. These structures allow
data to be organized differently than a table so access with the structure is more efficient when
conditions specified by a query match the structure. These structures also contain references

back to the originating table so any additional data specified by a query and not stored in the

15

index can be easily retrieved. However, the tradeoff is a database server must manage index
data in addition to table data.

One type of index is a B-tree index that makes use of a self-balancing search tree known
as a B-tree. These indexes are commonly used in databases because they allow fast access of
ordered numeric values. The time complexity of a B-tree index for inserting, deleting, and
retrieving values is O(logyn), where b is the branching factor of the tree and n is the number
of elements in the index. In PostgreSQL, and many other database systems, any primary key
defined for a table will have a B-tree index implicitly created to allow fast data access when the

primary key is used in queries

2.2.2 Basic SQL commands

Relational databases use a common language for querying data that is referred to as Structured
Query Language (SQL). SQL is based on relational algebra and used for querying and
manipulating data as well as managing a relational database. This section provides information
about queries that retrieve, delete, and insert data and complex ways of structuring queries
using derived tables, common table expressions, and recursive queries. This section also
describes techniques used for performing calculations across rows from a result set and using
arrays in result sets. Finally, this section will introduce compiled statements in the PostgreSQL

RDBMS and for-loops that can only be used in a compiled statement.

16

2.2.2.1 Selecting data from a single table

A select statement is a type of query used to retrieve data from a relational table. These
statements are made up of five basic parts.

select t.id,

t.description

from tablel t

where t.id > 2

and t.id < 4

order by t.id asc,

t.description desc

limit 1;

The first part, select, is followed by a list of columns that will be returned when the
statement is run. Instead of listing individual columns a ‘*’ can be used to return all columns
from the tables used in the query. The next part, from, contains the list of tables from data will
be retrieved. In this example tablel is aliased with the letter t. Sometimes aliases are required if
a query references multiple tables containing the same column name but typically aliases are
used for convenience and clarity. The next part, where, is an optional clause that limits the
result set to records that meet the criteria specified. If a where clause is not present then all
data from the table is returned. In the previous statement two criteria are used to limit the
result set to records where id is larger than 2 and smaller than 4. Next, order by, is used to sort
the result set by the columns specified. Each column can also have a sort order specified that is

independent of the other columns specified. Finally, the limit 1 statement can be used at the

end of a select to limit the query to returning only the number of rows specified.

17

2.2.2.2 Selecting data from multiple tables

Selecting data from multiple tables is very similar to selecting data from a single table except
the from clause contains a list of tables. There are two different forms of selecting data from
multiple tables available in SQL and both forms can produce the same result. The first form uses
a list of tables separated by commas.

select tl.id,
tl.coll,
t2.id,
t2.col2,
t2.col3
from tablel t1,
table2 t2
where tl.id = t2.id;

The from clause in this statement contains tablel and table2, defined in Figure 2.12, for

the select clause to retrieve values from.

tablel table2
id (pk) coll id (fk) col2 col3
0 a 0 aa aaa
1 b 1 bb bbb
2 C 1 cC ccc

Figure 2.12 A table with a defined primary key and another table with a foreign key
referencing the first.

The where clause has a constraint limiting the records returned from tablel to only
records where the column id has a matching column and record in table2. The results from this

guery can be seen in Figure 2.13.

18

tl.id tl.coll t2.id t2.col2 t3.col3
0 a 0 aa aaa
1 b 1 bb bbb
1 b 1 cc ccc

Figure 2.13 The result of selecting from the two tables defined
in the previous figure.

The second form of selecting data from multiple tables uses a join statement instead of
the list of tables from the previous form.
select tl.id,
tl.coll,
t2.id,
t2.col2,
t2.col3
from tablel t1
join table2 t2 on
t2.id = tl.id;
Each join listed in the from clause includes the table and additional constraints used to

define how the tables are related. As stated above, this form can produce the same result as
listing the tables in the from clause but can be more convenient because it allows constraints to
be syntactically located next to the table reference instead of all constraints being grouped

together in a where clause.

2.2.2.3 Cross Join
A cross-join occurs when data is retrieved from two tables without using constraints. A sample

cross-join query follows.

select tl.id,
t2.id

from tablel t1,
table2 t2;

In this query every id from table2 will be returned for every id in tablel. The result of

running this query on data from Figure 2.12 can be seen in Figure 2.14.

19

tl.id t2.id
0 0
0 1
0 1
1 0
1 1
1 1
2 0
2 1
2 1

Figure 2.14 The result of a cross-join

2.2.2.4 Deleting data

Deleting data from a table is very similar to retrieving data. A sample delete statement follows.

delete
from tablel
where id > 10;

The from clause in this query indicates which table the data will be deleted from. Similar

to retrieving data, the where clause lists all constraints needed to identify the subset of data

that will be deleted. If the where clause is omitted then all data from the table are deleted.

2.2.2.5 Inserting data

Inserting data into a table makes use of an insert statement.

insert into tablel(id, coll)
values(3, ‘d’');

In this query the clause insert lists the table name and columns where the data will be

inserted and the clause values lists the data elements that will be inserted into the table.

Another way of using the insert statement is to combine it with a select statement.

20

insert into tablel(id, coll)
select 3, coll
from tablel;

In this query the insert statement lists the table name and columns where data will be
inserted but uses a select statement to provide data instead of a values clause. The advantage

of this approach is many records can be inserted into a table with a single statement.

2.2.2.6 Aggregate functions and the group by clause

Aggregate functions are used to perform operations on a id type value
0 0 10

column of values in a set of related rows. A sample 1 0 15
- 2 1 10

statement that sums the value column in Figure 2.15 3 . c

follows. Figure 2.15 A small table
containing a unique id, type,
select sum(value) and value.

from tablel;

It is often very helpful to use aggregate functions on subsets of rows using an optional
group by clause that groups like-values from multiple records together then collapses them into
a single record. Aggregate functions can be performed on columns within these groups.

select type, sum(value)

from tablel

group by type;

This statement makes use of group by and an aggregate function to group all values

from tablel based on the type column then sums the value column for each group. The results

of this query can be seen in Figure 2.16.

21

type sum
0 25
1 15

Figure 2.16 The sum of each
type from the previous figure.

The having clause can be used with group by to filter the results of a query based on an
aggregate function. By applying a having clause the results of the previous query can be filtered
to return only records with a sum larger than 20 and the results are shown in Figure 2.17.

select type,
sum(value)

from tablel

group by type

having sum(value)>20;

type sum

0 25

Figure 2.17 The result of filtering
the previous query to return only
types with a sum larger than 20.

2.2.2.7 Windowing
Windowing allows aggregate functions to be performed without collapsing the relating rows.

select id,
result / sum(result)
over (partition by type)
from tablel;

This query uses a windowing function to scale two groups of records from the table in

Figure 2.18 to a value between 0 and 1.

22

id type result
0 1 1
1 1 3
2 2 2
3 2 4

Figure 2.18 A table containing a
unique id for each record, type,
and result.

The aggregate function sum() requires the over and partition by statements to define
which column to group the records by. Once the window has been defined the value of result /

sum(result) can be calculated for every row and the result set can be seen in Figure 2.19.

id normalized
0 0.25

1 0.75

2 0.3333

3 0.6666

Figure 2.19 The result of a query that
normalizes two groups of values.

2.2.2.8 Arrays

PostgreSQL provides functionality for defining variable length multidimensional arrays within a
column of a table. Functions for using and managing arrays of data within a query are also
provided. One function, array_agg, is an aggregate function that creates an array from a

column of values.

select id,

array_agg(value) as value
from table
group by id;

In Figure 2.20 tablel contains a series of rows that can be converted into arrays that can
be seen in table2.

23

tablel table2

id value id value

0 a 0 {a}

1 a 1 {a,b,c}
1 b 2 {d,e}

1 C

2 d

2 e

Figure 2.20 Using the array_agg() function the values from
tablel are turned into arrays of values for table2.

The array_agg() function also allows each array to be sorted independently.

select id,
array_agg(value order by value asc) as asc,
array_ agg(value order by value desc) as desc
from table
group by id;

This query returns two arrays per row where each array is sorted in a different direction.

This query produces the result set seen in Figure 2.21.

id asc desc
0 {a} {a}

1 {a,b,c} {c,b,a}
2 {d,e} {e,d}

Figure 2.21 A result set where two arrays
have a different sorting order.

2.2.2.9 Derived tables and sub-queries
Derived tables and sub-queries are used to retrieve sets of data that can be treated as a table

within another query. An example follows.

select i.id,
i.type,
i.width
from image i
where i.width > (select avg(il.width)
from image il);

24

If this query were run on data from Figure 2.22 the result set would contain all images

with a width larger than the average width.

id type width
0 1 1000
1 1 1400
2 2 2000
3 2 1900

Figure 2.22 An image table containing a unique
id for each row, a type, and a width.

This query is not possible without knowing the average width first so a sub-query is used
in the where clause to calculate the average width of all images. It is also possible to retrieve
images that have a width larger than the average width for each type. A query can be written
using a derived table to find the average width for each image type then filter the results of the
table with the average width. An example query using a derived table follows.

select i.id,
i.type,
i.width
from image i,
(select il.type,
avg(il.width) as avg
from image il
group by il.type) as t
where i.type = t.type
and i.width > t.avg;

In this query the where clause maps the type of each image record to the type returned

by the derived table. The final result set is filtered to return only records where the image width

is greater than the average width of the same type.

25

2.2.2.10 Common Table Expressions

Similar to derived queries are Common Table Expressions (CTE). These queries use the with
statement to define auxiliary statements for use in other queries. Each auxiliary statement can
be thought of as defining a table that only exists for the duration of that query.

with average width as (
select avg(i.width) as avg
from image i

) s

average width by type as (
select il.type,
avg(il.width) as avg
from image il
group by il.type

)

select a.type,
a.avg,
b.avg,
a.avg - b.avg as diff

from average width by type a,
average width b;

In this query the first CTE, average_width, retrieves the average width of all images and
the second CTE, average_width_by_type, retrieves the average width of images by type. The
finally select statement then use the two CTEs to return a result set that lists the difference in
average width and average width by type. Running this query on the image table in Figure 2.22

produces the result set in Figure 2.23.

average .

type . average difference
1 1200 1575 -375
2 1950 1575 375

Figure 2.23 A table listing each image type and the
difference between the average width and the average
width by type.

26

2.2.2.11 Recursive queries

The with recursive statement can be used to define a query that Q
iteratively builds on the result of a base query. Figure 2.24 is a graph

where the sum from root to leaf is 1+2+4=7and 1+3+5=9. Figure 2.25

shows the graph translated into a relational table where each record e °

Figure 2.24 A graph
where the paths from
root to leaf sumto 7

contains an id of the current and parent node.

and 9.
id parent isLeaf
1 0 0
2 1 0
3 1 0
4 2 1
5 3 1

Figure 2.25 A table where the data has
a hierarchical relationship.

with recursive results(sum, id, isLeaf) as (
-- base
select t.id as sum,
t.id,
t.isLeaf
from graph t
where t.parent = 0

union all

-- iterative
select r.sum + t.id as sum,
t.id,
t.isLeaf
from results r
join graph t on
t.parent = r.id
)
select *
from results
where isLeaf = 1;

27

This query is a recursive query that sums the values from root to leaf. In it the base and
iterative queries have been marked using comments. The base query returns the id, sum, and
isLeaf from the root node. The isLeaf is used to indicate whether a node is a leaf node. Every
iteration after the initial statement has access to the result set from the previous iteration
through the variable results. This variable is defined at the top of the with recursive statement
and behaves like a table. Once the iterative query is unable to return more results the recursion

stops and the final select statement is run returning the final result set.

2.2.2.12 Compiled statements
Many relational databases allow queries to be stored as compiled statements instead of relying
on the query to be compiled execution time. In PostgreSQL these compiled statements are
referred to as functions and the following is a sample function.
create function test(in int)
returns table(value int) as $$
declare p value alias FOR $1;
begin
return query
select p value + 1;
end

$$ LANGUAGE plpgsql;

This function takes in one argument and sets up an alias for the argument called
p_value. The function returns a table data type containing the single element p_value, which is
an integer data type. The statement return query inside of the function indicates that the result
of this query is returned by the function and the columns listed by the select statement must

match the columns defined in the returns table statement near the top of the function.

28

select * from test(l);

This query executes the previous function and produces the result set seen in Figure 2.26.

value

2
Figure 2.26 Result set produced
by a sample PostgreSQL function

2.2.2.13 For-loops

A for-loop is a basic programming concept that is available in almost every programming
language. In PostgreSQL for-loops are available but must be used inside of a function because
they rely on variables, which are only available in compiled statements. A simple for loop

follows.

FOR rec IN
select t.id
from tablel t
order by t.id
LOOP
select rec.id;
END LOOP;

This loop requires a variable rec that is defined as record type in the declare statement
of a function. The first statement in the for-loop retrieves a result set containing the column id
from tablel. The loop will iterate through every row returned by the initial query and all

columns are available inside of the for-loop through the variable rec.

29

CHAPTER 3 METHODS

This chapter describes labeling uncertainty in Activity Recognition (AR) and a method for
minimizing the uncertainty of these labels using the Viterbi algorithm. A method for modeling
AR data is presented and a method for querying uncertain AR data and identifying track

window is also presented.

3.1 Uncertainty in Activity Recognition

As discussed in section 2.1, Activity Recognition is a sequential labeling task where a system
labels images from a video sequence. The challenge is that the interpretation process produces
errors that can be thought of as labeling noise. Since the world is temporally consistent,
smoothing over time can be used to minimize uncertainty in the labeling noise.

One example project that deals with labeling noise is Mind’s Eye. In this project
appearance and action labels are applied to every frame of videos recorded at 30 frames/sec.
Since appearance and actions persist in the real world for longer than 1/30™ of a second
consecutive frames are likely to share similar labels. Therefore, the goal of dealing with label
noise is to temporally smooth the sequenced labels using the Viterbi Algorithm (for an
introduction see [6]). Similar uses of the Viterbi algorithm in another project can be seen at [7].

The Viterbi algorithm is based on a Hidden Markov Model (HMM) (for an introduction
see [8]). A Markov Model contains a set of discrete states, S, and transition probabilities, a. This
model is used to predict the state of a system at time t using only the previous state at t-1. In an
HMM the states are unobserved (hidden) but there is an observation associated with each time

step and the probability of any observation given at a time, P(o,|s), is known.

30

Since the number of sequences is polynomial, the Viterbi algorithm is used to find the
most likely sequence of states sy, ..., S; given a set of observations o4, ..., 0;. This algorithm is a
dynamic programming algorithm with a time complexity of O(tS?). Formally it computes
arg max,, s P(S1,..,S¢-1] 01, ..., 0¢—1) using the following equations.
Vo,s = aP(o¢|s) * mg Equation 3.1

Vis = aP(0;]s) x maxes(ars * Vi_1x) Equation 3.2

These equations are used to populate a matrix of values, V, where each column, t,
contains the probabilities calculated during a single time step of the algorithm. Every row s in
the matrix contains the most likely path ending in s for a given time step t. Calculating the first
column of probabilities for the matrix V uses Equation 3.1. In this equation the probability of
the observation given the state, P(o;|s), is multiplied by the initial probability for each state,
. Each additional step of the algorithm is calculated using Equation 3.2. This equation
multiplies the probability of the observation given the state, P(o;|s), by the maximum
transition probability, maxyes(ay s * Vi—1). The maximum transition probability is determined
by multiplying each possible state from the previous time step by the probability of
transitioning from the previous state to the current state then selecting the highest probability.

Once the probabilities in the matrix V have been calculated then the most likely path
ending at time T can be found using the following equations.

Il = arg max;es(Vr, D) Equation 3.3
li_1 =ptr_k(l;,t) Equation 3.4

The last state in the path is determined using Equation 3.3. Finding this state involves

retrieving the state s with the highest probability at time T. In Equation 3.4 the state for t-1 is

31

determined using the function ptr_k(l,t) that returns the state k used when calculating the

maximum transition probability at time t-1 where [is the state from the most likely path at time

t.
\ Frames \

0 i\ 2 3 4 5

s |k wlk v |k vi|lk vi|lk vk Vv
Car(C) | C 0.\1\C o.ozlf\ C 0.004 \T 0.018}\C 0.011 \C 0.003
Person(P) | P 0.1 \P 0.025 \P 0.004 |T 0.109|P 0.423|P 0.815
Tree(T)|T 06T 09 |T 0981|T 0.836|T 0541 |T 0.173
Ground(G) |G 0.1|G 0.025|G 0.004|T 0.018|G 0.011|G 0.003
Other (0) |0 0.1|0 0.025|0 0.004|T 0.018 |0 0.011 |0 0.003
Tree Tree Tree Person Person Person

Observations

Figure 3.1 A Viterbi matrix showing the probabilities (V) for a set of states (k) over a
sequence of frames and the label used to calculate the maximum state transition (s).
The Viterbi path is highlighted.

Figure 3.1 shows a Viterbi matrix that has been calculated over a series of six frames
from a video. In this example the system is trying to find the sequence of labels (hidden states)
given a sequence of observed labels (observations). In this matrix the likelihood of a label
transitioning to itself is 0.92 and to any other label is 0.02. The likelihood of a label given the
same label being observed is 0.6 and for any other label is 0.1. The initial probability for every
label is 0.2 and each column is scaled so its sum is 1. The final label for the Viterbi path is the
label at time T=5 associated with the largest probability in column V. The 5™ label is the

transition label s used at time 7=5 where k is equal to the 6™ label in the Viterbi path. To finish

32

populating the Viterbi path each label s at time t is traced back to k at time t-1 to retrieve the
labels at time t-1. In this example the sequence of labels is Tree, Tree, Tree, Person, Person and

Person.

3.2 Modeling Activity Recognition data

This section presents a data model that is capable of managing data for an Activity Recognition
system based on the analysis from section 2.1. This section focuses on the relationships
between entities in the data model. A complete description of every data element within the
data model can be found in APPENDIX |. The SQL for creating the tables is available in

APPENDIXII.

3.2.1.1 Modeling

The model used to represent data from a vision system can be broken into pieces by looking at
groups of tables and relationships between groups. These groups are tables relating to the

defined labels and tables modeling information extracted from streaming videos.

33

(0]
PK,FK1 | in_label_i
PK,FK2 t_label_i
probability 4; label

label type
PK |label_id —vP

———Pp{ PK | label_type_id

FK1 | label_type_id
description description

T 4; probability

PK,FK1 | in_label id
PK,FK2 | out label id

probability

Figure 3.2 Tables used to store known labels and relevant data.

The first grouping of tables, seen in Figure 3.2, maintains a set of labels used by the
system along with information necessary for the labels. The table label_type is a look-up table
that contains different categories of labels that can be applied by the system. A record should
exist in this table for each type of label that the system supports. Examples label types are
action and appearance. The table label, also a look-up table, contains a complete list of labels
with each label maintaining a foreign key to label type. Similar to label type, each label
supported by the system should have a record in label. Examples labels are car, person, run, or
jump. The tables T and O, in Figure 3.2, contain matrices of probabilities described in the Viterbi
algorithm in section 3.1. The primary key defined for these tables is a composite key of
label_ids from the label table. This allows each matrix to contain an NxN matrix where N is the

total number of labels in the system.

34

track
source
PK,FK1 | source id
PK |source id |qg——F— pK track_id
name
frame
PK,FK1 |source id
PK,FK1 | track id
frame_label PK frame id
PK,FK1 | source id locaction x
PK,FK1 | track id .
R location_y
PK,FK1 | frame id .
T width
PK,FK2 | label id .
- height
) confidence score
confidence score
track
backtrace
person
motion

Figure 3.3 Tables used to store objects identified while
processing video.

The next group of tables contains schemas for data generated by the Activity
Recognition system. This group of tables can be seen in Figure 3.3. The table source contains a
unique id and name for every registered source of data. If a system has multiple input videos
then there will be a single record per video in this table. The table track contains a single record
for every track identified by the system for a given video source. Each track record contains a
reference to the video, or source, where the track was defined. The table frame contains a
single record for every frame identified with each record containing a reference to the track
and source where the frame was identified. The compound key in frame guarantees that each
frame is unique to a single source and track and no frame can belong to two tracks or sources

at the same time. Finally, the table frame_label contains a single record for every instance of a

35

label that has been applied to a frame. This table represents a many-to-many relationship
between frame and label because the primary key is defined as a composite of the primary keys
from frame and label. In Figure 3.4 a complete data model is shown with the addition of a new

table, track_window.

track source
PK,FK1 | source_id |}l PK | source_id
PK track_id
name
frame_label frame track_window
PK,FK1 | source_id PK,FK1 | source_id PK,FK1,FK2 | source_id
PK,FK1 | track_id PK,FK1 | track_id PKFKLFK2 | track id
PK,FK1 | frame_id PK frame_id € Pkt start_frame_id
PK,FK2 |label_id ’
locaction_x
Hon. € FK2 d_frame_id
confidence_score location_y K3 IG;nbe_l rizme_l
T P> width -
- - height
PK,FK1 m-m-'—d' confidence_score
PK,FK2 | out_label_id I label track
- backtrace
probability Y PK |label id person
motion
FK1 | label_type_id
(o] —T> description
robabilit
PK,FK1 |in_label_id ——> P v
PK,FK2 label_i +
probability el gy
PK | label_type_id
description

Figure 3.4 A data model for storing data generated from an Activity Recognition system.

This table represents a many-to-many relationship between frame and label with a new
column, track_window_id, to keep adjoining track windows unique. The data for track_window
are generated from the procedures discussed in section 3.1. Finally, PostgreSQL will also create

a B-tree index for every table in Figure 3.4 based on the primary key. These indexes are very

36

important because they allow data to be retrieved from the table faster when a primary key is

used.

3.3 Querying Uncertain Activity Recognition data and identifying Track Windows
This section describes a PostgreSQL function for querying uncertain label data using the Viteribi
algorithm and identifying track windows. The method proposed in this section is different from
similar work available at [9], which also uses the Viterbi algorithm in PostgreSQL but is
implemented for identifying fields within textual addresses. The experiments for [9] are tested
on addresses with at most 27 hidden states and fewer than 50 observations. The method
proposed in this section is designed for up to 4 times the number of hidden states and 64 times
the number of observations. The full SQL function for identifying track windows is available in
APPENDIX IIl. This function has been broken into the following sections:

* Defining the Viterbi matrix in a relational table

* Calculating probabilities for the Viterbi matrix

* Determining the Viterbi path

* Identifying track windows

3.3.1.1 Defining the Viterbi matrix in a relational table
In Activity Recognition systems every element of the Viterbi matrix is defined by a frame,
observed label (observation), and transition label (hidden state). For the Viterbi matrix to be

stored in a relational database it must be converted to a table where every row represents one

37

cell of the matrix. This table can be seen in Figure 3.5 where the columns frame_id, label_id,

and transition_label_id are used to uniquely identify every row, or single cell from the matrix.

PK | frame_i
PK | label_i

PK | transition_label_id

probability
max_label

Figure 3.5 The Viterbi matrix
represented as a relational table.

It is also possible to uniquely identify rows using frame_id and transition_label_id since
only the observation with the highest confidence score is used with this implementation. The
column probability contains all calculated probabilities and the column max_label contains the
label used to calculate the most likely transition label, which is needed when determining the

Viterbi path.

3.3.1.2 Calculating probabilities for the Viterbi matrix

Calculating the Viterbi matrix requires calculating the initial probabilities for the first frame then
calculating the iterative probabilities on each sequential frame. This is accomplished using a
compiled statement in PostgreSQL. Before the matrix is populated all previous results are
deleted from the table V by using the following statement.

delete
from V;

The compiled statement then calculates the initial probabilities and iterates through

each additional frame using a for-loop to calculate the successive probabilities.

38

3.3.1.2.1 Initial probabilities

The initial probabilities of the Viterbi matrix are calculated using the equation Vs = aP(0;|s) *
g, described in section 3.1. This equation can be broken into four steps. In this section
p_label_type_id, p_source_id, p_track_id and p_first_frame_id refer to variables defined in the

PostgreSQL function.

1. The first step is retrieving the frame_id (t) and observed label with the highest
confidence score (o;), referred to as label _id, from the first frame in the track. To
accomplish this all observed labels for a frame are retrieved from frame_label then
filtered on the table label to restrict the observations to only the label type needed. The
result set is then sorted by confidence _score in descending order and the statement
limit 1 is used to restrict the query to returning only the label with the highest
confidence score.

select fl.frame id,

fl.label id
from frame label fl

join label 1 on

l.label id = fl.label id

and l.label type id = p label type id
where fl.source_id = p_source_ id
and fl.track id = p track id
and fl.frame id = p first frame id
order by fl.confidence score desc
limit 1

A sample result set for this query can be seen in Figure 3.6.

39

frame_id label_id
0 2
Figure 3.6 The label with the highest
confidence score for a given frame.

2. A CTE is then used to cross-join the results from the previous step, referred to as
top_label, with the table label to produce a result set containing a row for every
transition_label_id (s) with an associated initial_probability (mg). In this query the
transition_label_id represents the possible hidden labels for the observed label.

select tl.frame id,
tl.label id,
l.label id as transition label id,
l.probability as initial probability
from top_label tl
join label 1 on
l.label type id = p_label type id
A sample result set for this query can be seen in Figure 3.7 where the unique key for the

result set is frame_id, label_id, and transition_label_id or frame_id and

transition_label_id.

frame_id label_id transition_label_id m't'al.—.
probability
: 2 0 0.2
: 2 1 0.2
: 2 2 0.2
: 2 3 0.2
: 2 4 0.2

Figure 3.7 The result from step 2 in calculating the initial probabilities.

3. The query from the previous step is then extended to include the conditional

probabilities for the term P(o0,|s) by mapping label_id (o:), and transition_label_id (s)

40

from the previous step to in_label id and out _label id on the table O, the table
containing the conditional probabilities.

select tl.frame id,
tl.label id,
l.label id as transition label id,
l.probability as initial probability,
o.probability as conditional probability
from top_label tl
join label 1 on
l.label type id = p_label type id
join O o on
o.in label id = tl.label id
and o.out label id = l.label id;

A sample result set for this query can be seen in Figure 3.8.

: . " : initial conditional
frame_id label_id transition_label_id srelsE sy el
0 2 0 0.2 0.1
0 2 1 0.2 0.1
0 2 2 0.2 0.6
0 2 3 0.2 0.1
0 2 4 0.2 0.1

Figure 3.8 The result from step 3 in calculating the initial probabilities.

The query from the previous step is extended to include calculating then scaling the
probabilities (a). This approach normalizes the probabilities using a window function
that is defined over frame_id and label_id so the aggregate function sum() can be used
to divide every element in the window by the sum.

select tl.frame id,
tl.label id,
l.label id as transition label id,
1l.probability*o.probability
/sum(l.probability*o.probability)
over (partition by tl.frame id, tl.label id)
as probability,

41

tl.label id as max_label
from top_label tl
join label 1 on
l.label type id = p label type id
join O o on
o.in label id = tl.label id
and o.out_label id = l.label id;

A final result set for the initial probabilities can be seen in Figure 3.9.

frame_id label_id trglzr_?g— probability max_label
0 2 0 0.1 0
0 2 1 0.1 1
0 2 2 0.6 2
0 2 3 0.1 3
0 2 4 0.1 4

Figure 3.9 The final result set when calculating the initial probabilities.

3.3.1.2.2 Iterative probabilities

The equation Vg = aP(o.|s) * maxyes(aps * Vi—1y) is used to calculate the iterative
probabilities for every step where t>0 and is described in section 3.1. This query is broken into
the steps that follow. In this section frame_rec.frame_id, p_label_type_id, p_source_id, and

p_track_id refer to variables used in the PostgreSQL function.

1. Similar to the initial probabilities, the first step is retrieving the frame_id (t) and
observed label_id (0;) with the highest confidence score from the current frame in the
track. This is done using the query defined in step 1 of section 3.3.1.2.1.

select fl.frame id,
fl.label id
from frame label fl
join label 1 on
l.label id = fl.label id

42

and l.label type id = p label type id
where fl.source id = p source_ id
and fl.track id = p track id
and fl.frame id = frame rec.frame id
order by fl.confidence score desc
limit 1

A sample result set for this query can be seen in Figure 3.10.

frame_id label_id
1 2
Figure 3.10 The label with the highest
confidence score for a given frame.

The second step begins the process of calculating maxges(agyk * Vi—15). The following
query retrieves transition_probability (ay ;) from the table T then filters the result set on
the table label so only the appropriate types are retrieved. The probabilities calculated

during the previous iteration are then retrieved from the table V.

select t.in label id as transition label id,
t.out_label id as label id,
t.probability as transition probability,
v.probability

from T t
join label 1 on

l.label id = t.out label id
and l.label type id = p label type id
join V v on
v.frame id = frame rec.frame id - 1
and v.transition label id =
t.out_label id

A portion of the result set from the previous query can be seen in Figure 3.11.

43

transition . transition N
abel jd '2Ped o obabiliy ProPaRility
0 0 0.92 01
0 1 0.02 0.1
0 2 0.02 0.6
0 3 0.02 0.1
0 4 0.02 0.1
1 0 0.02 0.1
1 1 0.92 0.1
1 2 0.02 0.6
1 3 0.02 0.1
1 4 0.02 0.1

Figure 3.11 A portion of a result set from step 2 containing labels,
transition labels, and the transition and probabilities for the
previous step.

The next step extends the previous query by multiplying the transition_probability and
the probability from the previous iteration. The aggregate function array_agg() is then
used to invert the columns label_id and probability for every transition_label_id into
arrays and sort each array in descending order by probability.

select t.in label id as transition label id,
array agg(t.out label id
order by t.probability*v.probability
desc, t.out label id desc)
as max label,
array agg(t.probability*v.probability
order by t.probability*v.probability desc,
t.out label id desc)
as max probability
from T t
join label 1 on
l.label id = t.out label id
and l.label type id = p label type id
join V v on
v.frame id = frame rec.frame id - 1
and v.transition label id =
t.out_label id
group by t.in label id

A sample result set from the previous query can be seen in Figure 3.12.

44

tr; rlls:jg— max_label max_probability
0 {0,2,4,3,1} {0.092,0.012,0.002,0.002,0.002}
1 {1,2,4,3,0} {0.092,0.012,0.002,0.002,0.002}
2 {2,4,3,1,0} {0.552,0.002,0.002,0.002,0.002}
3 {3,2,4,1,0} {0.092,0.012,0.002,0.002,0.002}
4 {4,2,3,1,0} {0.092,0.012,0.002,0.002,0.002}

Figure 3.12 The result set for step 3 that contains the transition labels and an
array of the most likely labels.

4. The next step uses a cross-join with the CTE defined in step 1, top_label, and the CTE
defined in step 2 and 3, max, to produce the results seen in Figure 3.13.

select tl.frame id,
tl.label id,
m.transition_ label id,
m.max_probability[1l],
m.max_ label[1]

from max m,
top_label tl

. : transition max
frame_id label_id label_id ssraleErsley max_label
1 2 0 0.092 0
1 2 1 0.092 1
1 2 2 0.552 2
1 2 3 0.092 3
1 2 4 0.092 4

Figure 3.13 The result set for step 4 that contains the frame, observed label,
transition label, and max probability.

Only the first element in max.max_probability and max.max_label are needed because

they are the highest probability and the label used to produce the highest probability.

5. The last step extends the previous query to retrieve the conditional probabilities for

P(o¢|s) from the table O. To normalize the probabilities a window function is defined

45

over frame_id and label_id then the aggregate function sum() is used to divide every
element in the window by the sum.

select tl.frame id,
tl.label id,
m.transition_ label id,
m.max _probability[l]*o.probability/
sum(m.max probability[1l]*o.probability)
over(partition by tl.frame id, tl.label id)
as probability,
m.max label[1l]
from max m
join top label tl on
tl.frame id = frame rec.frame id
join O o on
o.in label id = tl.label id
and o.out label id =
m.transition label 1id;

A sample result set for this query can be seen in Figure 3.14.

frame_id label_id tr; 22?_0'3— probability max_label
1 2 0 0.025 0
1 2 1 0.025 1
1 2 2 0.9 2
1 2 3 0.025 3
1 2 4 0.025 4
Figure 3.14 The result set for step 5 that contains the final values that will be
added to
the V table.

This process of calculating iterative probabilities will continue until all frames for a given
track have been processed. Each successive step inserts the calculated probabilities into the

table V so the next step can refer to them.

46

3.3.1.3 Determining the Viterbi path

Once the values in the table have been populated the Viterbi path is determined using a
recursive query. The base case for this query retrieves the frame_id and transition_label_id
with the highest probability for the last frame. The iterative case then back tracks through the
matrix by retrieving the max_label starting with the last frame and iteratively stepping back
through all the frames where the frame_id is greater than the first frame. While backtracking,
the query picks the max_label where the transition_label_id from frame_id-1 is equal to the
max_label from the current frame_id.

with recursive path(frame id, label id) as (

-- base case

select *

from (select v.frame id,

v.transition label id as y

from V v
order by v.frame id desc, v.probability desc
limit 1) as t

union all

-- iterative case
select v.frame id - 1, v.y
from path p
join V v on
v.frame id = p.frame id
and v.transition label id = p.label id
where v.frame id > p first frame
)
select p source_id, p track id, *
from path
order by frame id asc;

An example of this process can be seen in Figure 3.15.

47

frame_id label _id max_label tr; ZS:TL?S_ probability
0 2 0 0 0.1
0 2 1 1 0.1
0 2 2 2 0.6
2 3 3 0.1
- 2 4 4 0.1
0 0 0.025
1 2 1 1 0.025
1 2 2 2 0.9
2 3 3 0.025
2 4 4 0.025
0 0 0.004545
2 2 1 1 0.004545
2 2 2 2 0.9818
2 3 3 0.004545
2 4 4 0.0/OA'S{
\2\2 0 .003571
3 2 2 1 0.003571
3 2 2 2 € 0.985714
3 2 2 3 0.003571
3 2 2 4 0.003571

Figure 3.15 A table showing the values of a Viterbi matrix with 5 labels
and 4 observations.

The first step is finding the transition_label_id with the highest probability for the last
frame. In this case the transition_label _id is 2 and becomes the fourth label in the Viterbi Path.
The third label in the Viterbi path is the max_label used to calculate the maximum probability
for the last frame, and is also 2. This max_label is then mapped to transition_label_id at
frame_id=2 where the max_label 2 is retrieved and becomes the second label in the Viterbi
path. This max_label is then mapped to transition_label _id at frame_id=1 where the max_label
2 is retrieved and becomes the first label in the Viterbi path. The labels form the Viterbi path 2,

2,2,and 2.

48

3.3.1.4 Identifying track windows from the Viterbi path

As described in section 2.1, a track window represents a sequence of frames with a minimum
length and an associated label. Figure 3.16 is a sample Viterbi path containing 13 frames with

assigned labels.

frame_id label_id
1 0
2 0
3 0
4 0
5 0
6 1
7 1
8 1
9 1
10 1
11 0
12 0
13 0

Figure 3.16 The Viterbi path for a
track containing 13 frames and
assigned labels.

Identifying the track windows from this path requires reordering the rows by label_id
and frame_id also in ascending order. Each row in the result set is then assigned a sequential
number using a windowing function and row_number(), a PostgreSQL function. Subtracting the
column row_number from frame_id produces delta, a column used to identify breaks in
sequential values from the frame_id column.

select label id,

frame id,
frame id - row number() over block as delta

from viterbi path(p_source id,p track id,p label type id)
window block as (order by label id, frame id)

49

In this query the function viterbi_path(), described in sections 3.3.1.1 through 3.3.1.3,

returns a Viterbi path as seen in Figure 3.16 and the final results can be seen in Figure 3.17.

label_id frame_id row_number delta
0 1 1 0
0 2 2 0
0 3 3 0
0 4 4 0
0 5 5 0
0 11 6 5
0 12 7 5
0 13 8 5
1 6 9 -3
1 7 10 -3
1 8 11 -3
1 9 12 -3
1 10 13 -3

Figure 3.17 A result set that contains groups of sequential frames
with the same label_id. The column delta is calculated by subtracting
row_number from frame_id.

Frame sequences without breaks and with the same label_id are then identified using a
group by statement on the columns label_id and delta. The aggregate function min() is used to
find the first frame in the track window and max() is used to find the last frame. A having
count() statement is added to eliminate any track windows that do not have the minimum
number of frames.

select p source_ id,
p_track_id,
min(frame id) as starting frame,
max(frame id) as ending frame,
label id

from indexed

group by delta, label id

having count(*) > 5;

50

Figure 3.18 shows the final track windows where each window has an assigned label and

a minimum length of 5 frames.

label id count starting frame_ id ending_frame_id
0 5 1 5
1 5 6 10
Figure 3.18 A result set containing track windows identified
from a Viterbi path.

3.4 Validation

This implementation of the Viterbi Algorithm was validated to ensure that the most likely path
ending at a specific time is accurate. The validation approach makes use of random probabilities
when calculating the Viterbi matrix to test if the most likely path given a sequence of
observations is the same between two implementations. This was achieved by comparing the
Viterbi path produced in this SQL implementation to the Viterbi path produced by HMM [10],
an R package. Since the Viterbi algorithm is not a data driven algorithm, every execution should
result in the same steps being run.

To set up a test problem for the Viterbi algorithm, random values are used in the
conditional and transitional probability matrices as defined in section 3.1. The initial label
probabilities are set to 0.2, so all labels are equally likely at the start.

The conditional probability matrix, seen in Figure 3.19, is populated with random
numbers between 0.0 and 0.2 except along the diagonal that is populated with random

numbers between 0.5 and 0.8.

51

Car Person Tree Ground Other
Car | 0.59975282 0.01251331 0.09832217 0.12250234 0.08200585
Person | 0.09896095 0.60523803 0.05020365 0.05687197 0.10025856
Tree | 0.08632004 0.02160860 0.62859541 0.02773431 0.12876164
Ground | 0.10819279 0.18003182 0.13287816 0.67304644 0.04993648
Other | 0.10677339 0.18060824 0.09000060 0.11984494 0.63903747

Figure 3.19 Random conditional probabilities with a weighted diagonal.

The weighted diagonal makes it more likely that the most likely path ending in a
label is the same as the observation. Each column of values is then scaled so the sum is
1. The transition probability matrix, seen in Figure 3.20, is populated with random

numbers between 0.0 and 0.1 except along the diagonal that is populated with random

numbers between 0.7 and 0.9.

Car Person Tree Ground Other
Car | 0.76195336 0.08603335 0.07551986 0.05056656 0.08408195
Person | 0.08339646 0.79717807 0.03667554 0.05368556 0.03012794
Tree | 0.03927030 0.03116862 0.82558244 0.01916948 0.05059379
Ground | 0.05483164 0.05438947 0.05078917 0.85084066 0.03730599
Other | 0.06054823 0.03123049 0.01143300 0.02573775 0.79789033

Figure 3.20 Random transition probabilities with a weighted diagonal

The weighted diagonal makes it more likely that a label will remain the same between

time steps. Each column of values is then scaled so the sum is 1.

52

Frame| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Observationf O O O T T O O O O O O G G G G
R-HMM| O O O O O O O O O O O G G G @
SQL-Thesis| O O O O O O O O O O O G G G @G

Frame| 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Observation
R—HMM
SQL-Thesis| G O O O O O O O O O O O o o o

()
(@)
(@)
(@)
(@)
(@)
(@)
(@)
(@)
(@)
(@)
(@)
(@)
(@)
(@)

0]
@)
@)
@)
@)
@)
@)
@)
@)
@)
@)
@)
@)
@)
@)

Frame| 31 32 33 34 35 36 37
Observaton| O P P P P P P
R-HMM O P P P P P P
SQL-Thesisf O P P P P P P

Figure 3.21 The results of validating the Viterbi implementation. Observation codes used
to indicate labels: C=car, P=person, T=tree, G=ground, O=other.

The initial probabilities, conditional probability matrix, and transitional probability
matrix are then used to calculate the Viterbi path using HMM and this SQL implementation.
Figure 3.21 shows the results of this process over 37 sequential frames. The observations were
purposely selected so frames 4 and 5 are temporally smoothed while frames 12-16 and 32-
37 transition to different labels. There are no differences in the Viterbi paths produced by the

HMM and this SQL implementation of the Viterbi algorithm.

3.5 Experiment Design

The experiment design is intended to establish a performance baseline for identifying track
windows over varying track lengths and data sizes. These tests include data retrieval,

calculating the Viterbi matrix, determining the Viterbi path, and identifying track windows.

53

To the bet of our knowledge this is the first implementation of identifying track windows for
video sequences using PostgreSQL, a mature open-source database. Even though this software
is flexible for users and efficient at data management, it is also very complicated. The
dependency of identifying track windows on PostgreSQL makes it necessary to understand the
performance and what variables contribute to the performance. To understand this
dependency we analyze three variables: track length, number of labels, and data size.

The track length and number of labels are defined in the time complexity analysis of the
Viterbi algorithm. Even though this analysis does not include many implementation costs, like
data retrieval, it does provide the best possible growth curve for the SQL implementation. The
time complexity of the Viterbi algorithm is described by the function O(tS?) where t is the
track length and S is the number of labels within the AR system. To demonstrate the time

complexity, Figure 3.22 shows the complexity of the Viterbi Algorithm with 5 labels.

14000
12000
210000
=
2
2 8000
g
(=]
S 6000
£
£ 4000
2000
0

25 50 100 200 400 800 1600 3200
Track length

Figure 3.22 A graph showing the time complexity of the Viterbi algorithm for 0
to 3,200 frames with 5 labels.

54

As the track length grows it quickly becomes a larger factor than the label cost (5% = 25),
which remains constant. When the track length is 3,200 the time complexity reaches 12,800

(5% * 3,200).

25000000
20000000
15000000

10000000

Time Complexity

5000000

25 50 100 200 400 800 1600 3200
Track length

Figure 3.23 A graph showing the time complexity of the Viterbi algorithm for 0 to 3,200 frames
with 80 labels.

Adding to the previous analysis, Figure 3.23 shows the time complexity of the Viterbi
Algorithm when the system contains 80 labels. In this graph the label cost (80°=6,400) is a much
larger factor than the track length in the overall time complexity. With a track length of 3,200
the time complexity reaches 20,480,000 (80° * 3,200) and is much larger than the time
complexity in Figure 3.22. Based on this analysis, label count is expected to have a greater
effect on performance than track length, since label count is polynomial and track length is

linear. The third variable used in the experiment design is data size and refers to the combined

55

record counts for the tables listed in Figure 3.24, which store data extracted from video

sequences.
Table name Record size
source 259 bytes

track 8 bytes

frame 40 bytes

frame_label 24 bytes

Figure 3.24 The tables populated by an AR
system from video sequences with the size
for each record.

This variable is used in the experiment design to see if an increase in data size will affect
the performance of identifying track windows. The experiment implementation is broken into
steps based on the three variables previously discussed: track length, label count, and data size.

Step 1, shown in Figure 3.25, is used to control the data size.

set source_counts to [1,2,4,8,16,32,64,128]

for each source_count in source_counts
rebuild_tables(source_count)

run step 2 of the experiment design

Figure 3.25 Step 1 of the experiment design where synthetic data is generated to
control the data size.

In this step the variable source_count is doubled in every iteration and synthetic data is
generated for the tables listed in Figure 3.24 based on source_count. In Figure 3.26 the
relationship between source_count and data size is shown, where the column “source_count”

refers to the number of rows generated for the table source.

56

tracks frames labels data size
source_count)

- per source per track per frame (in GB)
1 400 3200 2 0.10
2 400 3200 2 0.21
4 400 3200 2 0.42
8 400 3200 2 0.84
16 400 3200 2 1.68
32 400 3200 2 3.36
64 400 3200 2 6.71
128 400 3200 2 13.43

Figure 3.26 A table showing the different source counts and how many database

records and raw data size.

The columns “tracks per source”, “frames per track”, and “labels per frame” indicate
how many child records are generated per parent record. The last column, “data size,” is
calculated by multiplying the number of records for each table by their respective record size,
listed in Figure 3.24. This column only shows the size of the data generated and not the actual
database size. Once synthetic data has been generated then step 2 generates sets of labels for
each data size generated in step 1. This step, shown in Figure 3.27, uses the variable
label_count to control the number of labels generated. For each label_count, the data in tables

O (conditional probabilities), T (transition probabilities), and label (initial probabilities) are

repopulated.

57

set label counts to [2,5,10,20,40,80]

for each label_count in label_counts

delete data from O
delete data from T
delete data from label

fori=0 to label_count
set label[i] to 1.0/label_count

for j =0 to label_count
if i==j then
set O[i][j] to 0.92
set OJi][j] to 0.6
else
set O[i][j] to 0.4/(label_count-1)
set T[i][j] to 0.08/(label_count-1)

run step 3 of experiment design

Figure 3.27 Step 2 of the experiment design where synthetic data is generated to control
the label count.

The first label count used in this step is 2 because it is the smallest number of labels
where the hidden labels can differ from the observed labels. In step 3, shown in Figure 3.28, a

series of experiments are run for each set of labels generated.

58

set frame_counts to [25,50,100,200,400,800,1600,3200]
set track_increment to O, track_count to 400
set source_incrementto 0

for iteration = 1 to 20
for each frame_count in frame_counts
set source_id to source_increment % source_count
set track_id to track_increment % track_count

identify_track_window(source_id, track_id, frame_count);

set source_increment to source_increment+1

set track_increment to track_increment+ track_count/4+1

Figure 3.28 Step 3 of the experiment design used to identify track windows and record
the performance information.

This step runs each experiment 20 times to minimize noise then uses the variable
frame_count to control the number of frames processed by the Viterbi algorithm. For each
frame_count an experiment is run that includes retrieving data, calculating the Viterbi matrix,
determining the Viterbi path, and identifying track windows. This process is accomplished in the
function identify_track_window() and described in section 3.3.

The function identify_track_window() takes in three parameters, source_id, track_id,
and frame_count. The parameter values for source_id and track _id are calculated to minimize
the database’s ability to retrieved cached data for experiments. Two example iterations of

parameters can be seen in Figure 3.29.

59

iteration | source_id track_id frame_count

1 0 0 25
1 1 101 50
1 2 202 100
1 3 303 200
1 0 4 400
1 1 105 800
1 2 206 1600
1 3 307 3200
2 0 8 25
2 1 109 50
2 2 210 100
2 3 311 200
2 0 12 400
2 1 113 800
2 2 214 1600
2 3 315 3200

Figure 3.29 Parameters used in the first 2 iterations of
experiments.

In this example the columns “source_id” and “track_id” indicate which data set will be
used for identifying track windows and “frame_count” indicates how many frames will be

processed.

60

CHAPTER 4 RESULTS

This chapter presents experiment results and discusses how variables factor into the execution
time of each experiment. Then, based on the experiment results, | present a series of equations
that model the execution time of identifying track windows and present some conclusions for
this work.

The experiment design is intended to establish a performance baseline for identifying
track windows using PostgreSQL. The variables track length, label count, and data size are used
to determine the execution time of identifying track windows. These experiments are run on a
range of variables including eight track lengths, six label counts, and eight data sizes where each
experiment is repeated twenty times to minimize noise. The results from the experiments are

shown in Figure 4.1 where each sub-plot shows the runtime for a set of experiments.

61

90
80
70
60
50
40
30
20
10

0.10 GB -
/
/

=4=17 labels |

=li=5 |abels || 0.21 GB ﬁ_
=10 labels

=>&=20 labels /
=340 labels /

=080 labels

90
80
70
60
50
40
30
20
10

0.42 GB /g
/
Va

a84GB‘___;;‘
/
/

90
80
70
60
50
40
30
20
10

Execution time (seconds)

90
80
70
60
50
40
30
20
10

6.71 GB —} 13.43 GB _,;
/ /
=< e
Pra P
25 50 100 200 400 800 1600 3200 25 50 100 200 400 800 1600 3200

Track length

Figure 4.1 Experiment results where each sub-plot shows the experiments run for
a single data size.

62

These experiments test a series of label counts and track lengths for a given data size,
with the data size shown on each subplot. The runtimes in all eight of these subplots look very
similar indicating that data size has little effect on the execution time when compared to other

factors. To simplify the previous graph, results for all data sizes are averaged together in Figure

4.2.

90
—gso .
5 o -2
5 40 = *—10 §
_g 30 =20 g
2 20 =40 3
& 10 *-80

o

25 50 100 200 400 800 1600 3200
Track length

Figure 4.2 Experiment results averaged over all data sizes.

This figure plots the execution time of all the experiments for a given label count and
track length. In this figure it is possible to see the effect that label count and track length have
on identifying track windows by comparing the execution times. For experiments where 2
labels are used, the difference in execution times at track lengths of 25 and 3,200 is 1.095
seconds. For experiments where 80 labels are used, the difference between execution times at
track lengths of 25 and 3,200 is 83.29 seconds and is a much greater change than when

compared to the same change for 2 labels. Given these differences, the label count is the

63

dominant factor. One issue suppressed in the previous graph because of scale is an anomaly

seen in the execution times for experiments with 2 and 5 labels, shown in Figure 4.3.

2.5
m
'g 2
o
(8)
8
— 1.5 -
()]
£ Y, B
£ 1 2o
=] ~#=5 2
=
3 3
2 0.5
(V]

0

25 50 100 200 400 800 1600 3200
Track length

Figure 4.3 Experiment results averaged over all data sizes where label count is 2 and 5.

In this figure, the execution times for experiments using 2 labels has an anomaly
between track lengths 800 and 1600 where the execution time briefly drops then starts
climbing up again. This same anomaly appears in the execution times for experiments using 5
labels between track lengths 400 and 800. However, as the label counts get larger the anomaly
disappears from the results indicating that the processing required by larger label counts hides
the brief performance gain. Unfortunately not enough information is available from PostgreSQL
to understand what is happening to cause this anomaly. Extending the analysis of experiment

runtimes, Figure 4.4 rescales the runtime axis from Figure 4.2 to grow as a polynomial.

64

¢ 2labels (y =0.0003x + 0.2332) @ 5 labels (y = 0.0006x + 0.2203)
A 10 labels (y = 0.0015x + 0.1939) X 20 labels (y = 0.0049x + 0.1545)
X 40 labels (y = 0.0084x + 0.1387) © 80 labels (y =0.0262x + 0.0803)
128
-
-

=« 32

E <

S

0 o

2 8

)

g

L

=

o 2

2 -

§ &

§
gé (/
M 0.5 -
0.125 1 % T T T
25 100 400 1600
Track length

Figure 4.4 Experiment results with the both axes scaled as a polynomial.

The same data points are present in this graph but the lines between points are based
on a linear regression of each label count. In this graph the regression lines for label counts 2, 5,
and 10 all appear non-linear for smaller track lengths where the regression line does not
intersect with the data points. However, label counts 20, 40, and 80 all appear linear because
their regression lines cross the data points. The execution time of identifying track windows is

considered to be linear given the results from the graph.

65

Finally, given the previous analysis and the linear regression models from Figure 4.4, a
model has been created to show the number of labels and track lengths that can be processed
in 1 second when identifying track windows. This model, shown in Figure 4.5, indicates that as

the label count increases the length of tracks that can be processed will decrease.

2556.00
1299.50

1600
=
=]
=T]
=

9 400
-z
[S]
(1]
et

= 100

25

2 5 10 20 40 80
Label Count

Figure 4.5 The number of labels and track lengths that can be processed in 1 second.

If video enters an Activity Recognition system at 30fps then it is possible that the system
will process each frame. If this happens then 1 second will potentially process only 1.17 seconds
of video (35.10 frames / 30 frames/sec) for a system using 80 labels, but will process 85.2
seconds of video (2,556.00 frames / 30 frames/sec) for systems using only 2 labels. Identifying
track windows is only a small part of the process in Activity Recognition systems. For this
implementation to be useful, the number of labels must carefully be set so tracks can be
processed at a fast enough rate for the system to analyze the video in real time. If the number
of labels is too large then the overhead of identifying track windows will prevent real time

analysis.

66

CHAPTER 5 FUTURE WORK

Based on the previous chapter, the main factors in the execution time of identifying track
windows using PostgreSQL are label count (polynomial growth) and track length (linear
growth). In comparison the effect that data size (amount of data stored in the database) has on
the execution time is minimal. This indicates that the cost of data management is negligible
when compared to the other costs of identifying track windows. These performance factors are
very important when designing an Activity Recognition (AR) system that is intended to analyze
video streams in real-time with the purpose of identifying complex events from objects and
actions.

There are several areas of future research for using PostgreSQL in an AR system. These
areas include managing uncertainty in observations, identifying complex events, using arrays
when identifying track windows to improve execution time, and processing data using
streaming databases.

The first area for future research involves dealing with uncertainty in the observation
data. This implementation of identifying track windows only makes use of an observed label
with the highest probability for every frame, even though multiple observations may be stored
for every frame (described in section 3.2). One extension to this implementation is to calculate
the Viterbi matrix for every observation associated with a frame to find the most likely path
ending at a frame across all observations. This would increase the complexity of the Viterbi

algorithm to 0(tS?3), making it even more dependent on the label size.

67

Beyond uncertainty, finding complex and meaningful events from track windows is
another area for future research. A simple example of a complex event is a track window
labeled as ‘run’ followed by another track window labeled as ‘stand’ that could be interpreted
as a complex event called ‘stop.” To find these complex events another relational table would
be required listing all possible combinations of labels that make up a complex event. Once track
windows are identified, for a given track, then the associated labels could be filtered against
this table to find the matching pairs of label that make up the complex events.

The next area for future research is making use of arrays for storing probabilities when
calculating the Viterbi matrix. To achieve this, the relational table V is inverted so each row
contains an array of values for a given frame_id and label_id. Then the SQL implementation of
the Viterbi algorithm is altered to produce an array of probabilities for every step instead of
individual rows for each probability. Currently the relational table V uses frame_id, label_id,
and transition_label_id as the primary key (section 3.3.1.1). This means that an additional 12
bytes of data is stored in the table for every element of the matrix. An example Viterbi matrix
calculated for 80 labels over 100 frames would require 96,000 bytes (12 * 80 * 100) of data to
store the necessary primary keys. By inverting the relational table V, each column of
probabilities can be stored in an array with frame_id and label_id as the primary key and would
require only 8 bytes per column. This would reduce the data size required for the primary key in
the previous example to 800 bytes (8 * 100). In the last chapter our experiments showed that
the cost of retrieving data from disk has little effect on the overall cost of identifying track
windows. However, once data has been retrieved, PostgreSQL is limited to processing data that

can fit into buffers, or blocks of pooled memory managed by PostgreSQL. By using arrays to

68

store probabilities, identifying track windows will require fewer buffers and lessen the cost of
managing buffers.

The last identified area for future research is utilizing streaming databases, a current
research topic with several implementations [11] [12] [13]. These databases often handle data
as either transient or persistent. Transient data is streamed through the database system and
not physically written to disk while persistent data is written to tables and then persisted to
disk. These systems allow SQL-like queries to be written that remain open and continuously
filter data based on a set of criteria specified. Activity Recognition systems would be ideal
systems to make use of streaming databases since data extracted from video streams could be
fed into the streaming database and queries would be written to filter important data, like track

windows.

69

REFERENCES

[1] R Poppe, "A survey on vision-based human action recognition," in Image and Vision
Computing, 28(6)., 2010, pp. 976-990.

[2] M. S. Ryoo, C. C. Chen, J. K. Aggarwal, and A. Roy-Chowdhury, "An Overview of Contest on
Semantic Description of Human Activities (SDHA) 2010," in Proceedings ICPR, 2010.

[3] PostgreSQL Global Development Group. PostgreSQL. [Online]. http://www.postgresql.org/

[4] DARPA. Mind's Eye. [Online].
http://www.darpa.mil/Our_Work/120/Programs/Minds_Eye.aspx

[5] Raghu Ramakrishnan and Johannes Gehrke, Database Management Systems.: McGraw-Hill
Science/Engineering/Math, 2002.

[6] GD Forney, "The Viterbi algorithm," Proceedings of the IEEE 61, pp. 268-278, March 1973.

[7] J. M. SIskind and Q. Morris, "A Maximum-Likilihood Approach to Visual Event
Classification," in European Conference on Computer Vision, 2006.

[8] L. Rabiner and B. Juang, "An introduction to hidden Markov models," ASSP Magazine, IEEE,
vol. 3, no. 1, pp. 4-16, 1986.

[9] Daisy Zhe Wang, E. Michelakis, M.J. Franklin, M. Garofalakis, and J.M. Hellerstein,
"Probabilistic declarative information extraction," in Data Engineering (ICDE), 2010 IEEE
26th International Conference on, Long Beach, CA, 2010.

[10] Lin Himmelmann. HMM. [Online]. http://cran.r-
project.org/web/packages/HMM/index.html

[11] A Arasu et al., "STREAM: The Stanford Data Stream Management System," Stanford
InfoLab Publication Server, March 2012.

[12] D Carney et al., "Monitoring Streams: A New Class of Data Management Applications," in
28th International Conference on Very Large Data Bases, Hong Kong, China, 2002.

[13] Sirish Chandrasekaran et al., "TelegraphCQ: Continuous Dataflow Processing for an
Uncertain World," in CIDR, 2003.

70

APPENDIX | Data Dictionary

71

Description: This table represents a point of interest that was detected and extracted by an
Activity Recognition system. The origin of a how a frame was detected is represented by 4
flags: track, backtrace, motion, or person.

Primary Key: source_id, track_id, frame_id

Column Type Description

source_id Integer Relates a single frame record to a source record.

track_id Integer Relates a single frame record to a track record.

frame_id Integer A unique integer that represents a single frame record in
a track.

location_x Integer The x pixel position where a frame was detected.

location_y Integer The y pixel position where a frame was detected.

width Integer The width of this frame.

height Integer The height of this frame.

confidence_score | Double A quality score describing the frame.

person Boolean A value indicating if the frame tuple was identified by a
person detector or not.

motion Boolean A value indicating if this frame was identified by a motion
detector or not.

track Boolean A value indicating if this frame was identified by the
system while comparing the new frame to a previous
frame.

ba