
THESIS

CPS SECURITY TESTBED: REQUIREMENT ANALYSIS, PROTOTYPE DESIGN AND

PROTECTION FRAMEWORK

Submitted by

Md Rakibul Hasan Talukder

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2023

Master’s Committee:

Advisor: Indrajit Ray

Yashwant Malaiya

Leo Vijayasarathy

Copyright by Md Rakibul Hasan Talukder 2023

All Rights Reserved

ABSTRACT

CPS SECURITY TESTBED: REQUIREMENT ANALYSIS, PROTOTYPE DESIGN AND

PROTECTION FRAMEWORK

Testbeds are a practical way to perform security exercises on cyber physical systems (CPS) to

understand vulnerabilities and the progression/impact of cyber-attacks. However, it is challenging

to replicate a large CPS, such as nuclear power plant or an electrical power grid, within the con-

fines of a laboratory that would allow security experiments to be carried out. Thus, software-based

simulations are getting increasingly popular as opposed to hardware-in-the-loop based simulations

for CPS that form a critical infrastructure. Unfortunately, a software-based CPS testbed oriented

towards security-centric experiments requires a careful re-examination of requirements and archi-

tectural design different from a CPS testbed for non-security related experiments. On a security-

focused testbed there is a need to run real attack scripts for red-teaming/blue-teaming exercises,

which are, in the strictest sense of the term, malicious in nature. Thus, there is a need to protect

the testbed itself from these attack experiments that have the potential to go awry. The overall

effect of an exploit on the whole system or vulnerabilities at communication channels needs to be

particularly explored while building a simulator for a security-centric CPS. Besides, when multi-

ple experiments are conducted on the same testbed, there is a need to maintain isolation among

these experiments so that no experiment can accidentally or maliciously compromise others and

affect the fidelity of those results. Specific security experiment-related supports are essential when

designing such a testbed but integrating a software-based simulator within the testbed to provide

necessary experiment support is challenging.

In this thesis, we make three contributions. First, we present the design of an ideal testbed

based on a set of requirements and supports that we have identified, focusing specifically on secu-

rity experiment as the primary use case. Next, following these requirements analysis, we integrate

ii

a software-based simulator (Generic Pressurized Water Reactor) into a testbed design by modifying

the implementation architecture to allow the execution of attack experiments on different network-

ing architectures and protocols. Finally, we describe a novel security architecture and framework

to ensure the protection of security-related experiments on a CPS testbed.

iii

ACKNOWLEDGEMENTS

I am sincerely grateful to Dr. Indrajit Ray, my adviser, for all of his help and advice. This

thesis would not have been finished without his guidance.

I would like to thank Dr. Yashwant Malaiya to give me a chance to present my work to his Fault

Tolerant course for valuable feedback. I’m grateful that Dr. Leo Vijayasarathy agreed to serve on

my thesis committee.

I also like to express my gratitude to the doctorel student and co-author of one of our paper

Md Al Amin for his input and valuable criticism. My another co-worker at our CyberSim project,

Parker Jackim, has been very helpful taking part in brainstorming and research discussion.

My parents, my sister, my fiancee and friends helped me adjust to my new life in a foreign

country, and for their unwavering support during graduate school, I want to convey my sincere

thanks to them.

iv

DEDICATION

I would like to dedicate this thesis to Almighty God.

v

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

DEDICATION . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

Chapter 1 Introduction . 1

1.1 Need for Security Experiments on CPS 1

1.2 Necessity of a Testbed for CPS . 2

1.3 CPS Testbed Deisgn Challenges . 4

1.4 Thesis Organization . 6

Chapter 2 Background . 8

2.1 Hardware-In-Loop (HIL) . 8

2.2 Testbed Experiments . 10

2.3 Digital Twin . 10

2.4 Tuple space . 11

2.5 Process Isolation . 12

2.6 Access Control Model and Policy . 13

Chapter 3 Related Works . 14

Chapter 4 Ideal Testbed . 17

4.1 General Requirements . 17

4.2 Cybersecurity Centric Experiment Support in Testbed 20

4.3 Ideal Testbed Architecture . 23

4.3.1 Conceptual Design based on Requirement Analysis 24

4.3.2 System Level Design . 25

4.4 Barriers to Implement Ideal Testbed . 26

Chapter 5 Towards a Non-ideal Yet Practical Testbed 29

5.1 Case Study: Generic Pressurized Water Reactor Software by GSE Power

Systems Inc. 29

5.2 Architecture of Specialized Testbed . 30

5.3 Implementation of Design . 34

Chapter 6 Protection of Testbed . 40

6.1 Threat Model for CPS Testbed . 40

6.1.1 Outsider Threats . 40

6.1.2 Insider Threats . 40

6.2 Experiment Communication Model . 41

6.3 Overview of Experiment Execution on Testbed 44

vi

6.4 Inter-experiment Secure Communications 45

6.5 Testbed Tuple Space Design for Isolated Experiments 48

6.5.1 Tuple Space Manager-TSM . 48

6.5.2 Tuple Space Operation . 48

6.5.3 Tuple Space Transaction . 49

6.6 Authorization Module (AM) . 50

6.6.1 Experiment Resources and Operations 50

6.6.2 Resources and Privileges Allocation 51

6.6.3 Relationship between Control Node, Experiments, and Subjects 51

6.6.4 Object Classification . 52

6.6.5 Control Node Identification . 53

6.6.6 Security Policy . 53

Chapter 7 Conclusion . 55

7.1 Lesson Learned . 55

7.2 Future Work . 56

Bibliography . 58

Appendix A Windows Network Configuration . 63

Appendix B VMware Workstation Network Settings . 67

Appendix C GNS3 Configuration . 69

Appendix D Server-client communication code . 73

D.1 dispatcher-server.py . 73

D.2 node-client.py . 76

vii

LIST OF TABLES

4.1 Functional design based on requirements . 24

viii

LIST OF FIGURES

1.1 Number of incidents handled by U.S. ICS-CERT . 2

4.1 Functional blocks of the testbed. 23

4.2 Testbed structure. 26

5.1 Replacing memory I/O with network I/O . 31

5.2 Modification of component design to support ideal testbed requirements 33

5.3 Middleware services . 33

5.4 Network topology in GNS3 GUI . 35

5.5 Bridged network between VM and host . 37

6.1 Coordination communication. 42

6.2 Collaboration communication. 43

6.3 Inter-experiment communication flow diagram. 46

6.4 Tuple space transaction. 49

6.5 Relationship between control node, experiments, and subjects. 52

A.1 Opening hardware wizard on windows: step 1 . 63

A.2 Opening hardware wizard on windows: step 2 . 63

A.3 Manual installation of hardware: step 3 . 64

A.4 Choose network adapter as hardware: step 4 . 65

A.5 Choose manufacturer and specific network adapter: step 5 65

A.6 Find added network adapter in network settings: step 6 66

A.7 Configure the adapter with specification of protocols and IP address: step 7 66

B.1 Opening GNS3 VM settings: step 2 . 67

B.2 Adding new hardware component: step 3 . 68

B.3 Setting to ’Bridged’ mode: step 4 . 68

B.4 Selecting loopback adapter: step 5 . 68

C.1 Creating new GNS3 project: step 1 . 69

C.2 Initializing necessary virtual appliances: step 2 . 69

C.3 Using a cloud appliance to interface with the host network 70

C.4 Starting router and opening the console . 71

C.5 Showing router interfaces . 71

C.6 Showing ip address . 72

C.7 Verifying the connectivity by Pinging . 72

ix

Chapter 1

Introduction

A Cyber-Physical System (CPS) consists of many individual units or systems and often is a

critical infrastructure. Some example of such CPSs are power plants and distribution grids, gas

transmission systems, traffic control systems, water treatment and supply systems, transportation

systems, and others [1, 2]. A single security vulnerability in CPS can lead to catastrophic conse-

quences, which ultimately can cause considerable financial and business loss, human lives, suffer-

ing, and others [3, 4]. Thus, it is paramount that CPSs are free from security vulnerabilities.

1.1 Need for Security Experiments on CPS

With the advancement of modern technology in the last few decades, critical infrastructures

are also adapting new technology and tools to reduce human effort while supporting essential

services more efficiently. Mechanical or hardware parts of the systems are either getting replaced

or being maintained by software for automation. As digital components are introduced increasingly

into the system, new security vulnerabilities occur. Nowadays, almost every sophisticated cyber-

physical system consists of some major components: physical field components (motors, sensors,

valves, etc.), digital controller components (PLC, micro-controller), supervisory controller and

data acquisition system (SCADA), and networking for communication between components. As a

result, cyber attackers now have a large attack surface to plan their attacks. Therefore, testing the

system’s integrity, security, and robustness requires different supporting tools.

Malicious entities can form their strategies and routes to pave the way to take control of the

targeted component. For example, the attacker may want to take control of the input signal of the

pump of a nuclear water reactor plant. The attacker may have installed malware in the printer used

at the engineering station, which is typically far from the field components. And then, the malware

can trigger some processes to propagate through the IT network, which may lead to eventually

getting into the control network resulting in illegitimate access to the pump. Many techniques and

1

tactics exist for infiltrating a large complex CPS or Industrial Control System (ICS) like [5]. The

system behavior also may affect multiple parts of the system. Therefore, researchers and engineers

must understand how a system reacts to possible attack scenarios so that risk can be evaluated

based on experiment results. This leads us to the essential question: “How to perform security

experiments for a CPS?”

1.2 Necessity of a Testbed for CPS

The strategy, consequence, prevention, mitigation, and recovery of critical CPS (CCPS) attacks

differ from others. Moreover, attacks on critical infrastructure have been increasing since the

Stuxnet attack occurred in 2010, targeting the SCADA system and causing substantial damage

to Iran’s Nuclear Program. Figure 1.1 shows how the number of incidents has been rising since

2010 [6].

Figure 1.1: Number of incidents handled by U.S. ICS-CERT

One reason for such an increase is inadequate infrastructure or tools for evaluating the system’s

resilience by performing penetration testing, leading to a lack of understanding of the complex CPS

system. Recently, the MIT Technology Reviews reported that two Dutch researchers participated in

the ‘Pwn2Own’ championship and showed how easy it is to attack critical infrastructure. They have

2

targeted the OPC1 Unified Architecture (UA) communication protocol, widely used in industrial

control systems.(One of the two, Keupler, had previously hacked a brand-new iPhone 12.)

The report of MIT Technology Review also brings to light an important issue,

"There are immense differences between the consequences of hacking an iPhone and

breaking into critical-infrastructure software. An iPhone can be easily updated, and a

new phone is always right around the corner.On the contrary, in critical infrastructure,

some systems can last for decades. Some known security flaws can’t be fixed at all.

Operators often can’t update their technology for security fixes because taking a sys-

tem offline is out of the question. It’s not easy to turn a factory on and off again like a

light switch—or like a laptop."2

Testing a functioning CPS to find security flaws or vulnerabilities is difficult. This is because

testing on a live CPS cannot afford to make even a single inaccuracy or mistake; there is a real

risk of the testing process harming the CPS. For example, consider a security experiment where

introducing fake sensor measurements into a CPS’s control network is required to mimic an attack.

This experiment will introduce failure to the functioning modules resulting in inappropriate actions

if it is allowed to run on a live system. Unfortunately, it is impossible to halt or pause the CPS

for this reason because critical CPS provides essential services to the public. We cannot afford

to interrupt services supplied by power plants, utility (gas, water, electricity) service-providing

systems, traffic control systems, etc. Furthermore, security threats are constantly changing, so

security testing must be done on a regular basis.

CPS testbeds are thus crucial to the CPS’s security assessments [7]. The testbed environment

models the interactions and real-world behaviors of the various CPS components. This makes it

possible for engineers and researchers to find security flaws in developed systems before using

1OPC is an interoperability standard used in the industrial automation and other industries for the secure and reliable

transmission of data. It is platform agnostic and facilitates the smooth flow of information across devices from various

suppliers. The OPC Foundation is in charge of developing and maintaining this standard.

2"These hackers showed just how easy it is to target critical infrastructure" by Patrick Howell,MIT Technology review,

April 21, 2022

3

them. It also enables them to keep their expertise up to speed with new threats. However, it is

crucial to ensure that various tests conducted in the testbed environment accurately represent real-

world behavior since the testbed imitates the behaviors of existent systems. This poses several

challenges for the CPS testbed’s design.

1.3 CPS Testbed Deisgn Challenges

The CPS testbed provides an environment to conduct experiments to study the behavior of

the concerned systems. Researchers [8–11] have identified several requirements for testbeds to

conduct CPS-centric experiments:

• Fidelity, the exactness of the testbed compared to the actual system

• Repeatability, the ability of producing consistent result upon executing same experiment

again and again

• Scalability, the capability of updating the experiment setup to higher/lower number of com-

position elements (devices, protocols etc.) of a particular experiment without affecting the

architecture of the testbed

• Adaptability, quality of incorporating new experiment setup with varieties of composition

elements (devices, protocols etc.) without affecting the architecture of the testbed

• Cost-effectiveness, feasibility of the design considering the expenditure of one-time setup

and long time management.

• Measurement precision, having support of measuring quantifiable attributes of the experi-

ments as precise as possible

• Safe execution of experiments, ensuring reliability, safety and protection of the experi-

ments, their results and the executing environment.

4

These requirements form the minimum set to conduct the CPS experiments effectively. How-

ever, more is needed to fully satisfy the requirements for cyber security-related experiments—more

than those requirements are needed to ensure the security of the security-focused testbeds.

One of the major challenges of designing a testbed for critical CPS is replicating the actual

system’s physical process. Using hardware-in-loop (HIL) as part of a physical process has disad-

vantages. It is hard to support scalability and the ability to reconfigure the components while HIL is

in place. Consequently, software simulations of the physical process are becoming more practical

to fulfill the general requirements of the testbed (see details in section 4.1). Nevertheless, building

a software simulator from scratch requires domain-specific knowledge. Again, it is also challeng-

ing to access a simulator representing a critical CPS. Most of these simulators are not open source

and can contain proprietary or confidential information about real established critical infrastructure

that is of national interest. Moreover, these simulators are not initially built for cyber-attack exper-

iments and communication channels using ICS protocol are often not implemented. As a result,

communication via networking part of the system remains unexplored. As many vulnerabilities

can be hidden in the communication process, it is vital to consider and implement networking

aspects into the testbed.

When a CPS testbed is solely built for cyber-security experiments and multiple organiza-

tions/collaborators/experiments working together, the protection of the testbed itself is essential.

The testbed should ensure that one experiment can not get data from another without authorization

(intentionally or unintentionally). Also, shared hardware resources can be an attack vector or data

leakage platform.

Ensuring that one experiment process cannot go outside its run-time memory is essential for

security-centric experiments. If allowed, it can cause unintended program execution or memory

corruption of other infected experiments’ memory and processes. This would ultimately produce

erroneous results. Therefore, we must deploy individual experiments in isolated environments to

confine operations and data inside the allocated working memory area. It may require that different

components of a sizeable cyber-physical system be deployed as different experiments, and these

5

experiments may need to share specific data among them. For example, HMI and the controller

module are two different units that depend on each other and work together to reflect on specific

goals; the devices and communication protocols used in both units can be separated and deployed

as two different experiments for better analysis. Now, an attack experiment can be planned that

might need to use both experiments’ resources/data to complete a specific task. However, while

executing the attack, it is crucial that HMI and control unit both share only the specific allowed

resources/data with the authorized entity. In this scenario, ensuring safe communication to ex-

change information among the isolated components is necessary. It is impossible to provide a

communication mechanism among isolated nodes using inter-process communication (IPC).

In this thesis work, we tried to address the following key concerns regarding a CPS testbed:

1. What requirements are ideally necessary for a cyber-security centric CPS testbed?

2. How can we design a software-based ideal CPS testbed?

3. To create a functional CPS testbed in practice, what obstacles must be addressed, and how

can a viable design be developed?

4. How to implement security controls inside the testbed that can protect the testbed itself from

inside threats posed by collaborative experiments?

1.4 Thesis Organization

In Chapter 2, we present the essential concepts we have used or are inspired by. These con-

cepts are briefly explained in the scope of designing and implementing a secured CPS testbed for

red-teaming/blue-teaming. Chapter 3 mentions some research works that have been well-known

in the related domain, presenting a correlation with our work. In Chapter 4, first, we identify the

requirements and facilities needed to design a CPS testbed. They are divided into two categories:

one is for general requirements that are needed for any testbed, and the other is for testbeds that

should have essential support for appropriately performing security experiments. Then we propose

6

the architecture of an ideal testbed based on our requirement analysis. Next, we present the limi-

tations and challenges of implementing the ideal testbed. In the next Chapter 5, we provide a case

study explaining the limitations and challenges of using an industrial-level simulator that leads us

to design a practically implementable testbed. This testbed overcomes the issues we have faced in

the case study and provides a convenient way of performing experiments.

In Chapter 6, we address another challenge of protecting the testbed from insider threats: pro-

pose a novel communication design leveraging the tuple space model to provide inter-experiment

data sharing where experiment nodes are deployed in an isolated manner. The idea of classic tu-

ple space is based on the Linda Programming Model [12]. Our proposed framework ensures the

reliability of the whole system by incorporating the mechanisms of isolation of the nodes, safe

communication among experiments, and an authorization module with well-formed access control

policies. Chapter 7 draws some specific conclusions of accomplishments that we have achieved,

challenges we have faced and overcome. Finally we provide some specific direction for future

work.

7

Chapter 2

Background

In this chapter, we briefly explain some of the concepts that are used in our work. Some ideas

are used as an inspiration, few are used as engineering tools and some are used simply as an widely

known facts.

2.1 Hardware-In-Loop (HIL)

When it comes to imitating the behaviour of actual CPS in the testbed to perform testing, it is

important to have ideas about the current approaches for building a simulation environment. As

physical components are essential parts of a CPS, HIL is widely used to replicate the attributes

of the actual system. Before undertaking any design decision regarding choosing the simulation

environment, it is important to realize what facilities HIL provides and what essential supports HIL

fails to deliver:

A sort of simulation known as "hardware-in-the-loop" (HIL) simulation makes use of actual

hardware in addition to computer simulation. This makes it possible for engineers to test and val-

idate a system’s performance in a setting that is more authentic than a standard simulation.Cyber-

physical systems (CPSs) are frequently developed and tested using HIL simulation. CPSs are sys-

tems that combine computational and physical elements. They have many different uses, including

as in industry, healthcare, and transportation.

There are several approaches to utilize HIL simulation to evaluate the performance of CPSs.

It may be used, for instance, to evaluate how a CPS reacts to various inputs, such as variations in

temperature or pressure. It may also be used to assess a CPS’s resistance to various disturbances

like interference or noise.For the creation and evaluation of CPSs, HIL simulation is a useful tool.

It can aid in ensuring the security, dependability, and effectiveness of CPSs.

The following are a few advantages of employing HIL simulation for CPS testbeds:

8

Increased realism: HIL simulation gives engineers a more realistic setting in which to evaluate

CPSs than does conventional (software only) simulation. This is due to the simulation using

actual hardware resulting in more precise findings.

Early validation: HIL testing allows for the early discovery of flaws and difficulties in the de-

velopment process. Potential difficulties can be found and solved before deploying the CPS

in the field by testing it in a controlled setting. This decreases the likelihood of failure and

improves the CPS’s overall dependability.

Efficiency gain: HIL simulation can aid in making the testing process more effective. This is due

to the fact that HIL simulation can test CPSs more quickly than conventional simulation.

There are some disadvantages too:

Model Complexity: Creating precise, thorough virtual models for HIL testing may be a difficult

and time-consuming effort. Particularly for complicated Cyber-Physical Systems, building

an accurate model of the physical system needs skill, subject knowledge, and considerable

work.

Cost of Equipment: Hardware, simulators, and interfaces must be purchased in order to set up

an HIL testing environment, which can be expensive. Financial difficulties might arise from

the initial outlay needed to develop the infrastructure, particularly for smaller businesses or

research institutions.

Testing Restrictions: HIL testing is primarily concerned with a system’s hardware parts and how

they interact with the simulated environment. However, it might not completely reflect the

behavior at the system level, such as the interactions between hardware and software parts

or the influence of outside influences. To alleviate these restrictions, additional testing tech-

niques, such as software-in-the-loop (SIL) or system-level testing, would be needed.

9

2.2 Testbed Experiments

As we want to design a testbed so that we can execute security event(attacks,defense etc.) on

the imitated CPS, it is important to know what a testbed experiment does, what are the goals of an

experiment and how a security experiment is different from a regular one.

A testbed is an execution environment for testing a system before deployment in the real world.

The testbed is made up of specific hardware and software, including an operating system, a network

configuration, and the product being tested, as well as additional system and application software.

Researchers and engineers use testbeds to determine the behavior of designed systems. Cyber-

physical system (CPS) testbeds provide facilities to test a CPS’s functionalities. The testbeds pro-

vide simulated physical model functionalities of every component included in the system [13]. But

the usual testbeds do not provide cyber security testing facilities. Nowadays, every CPS contains

a number of information technology (IT) devices and applications that are vulnerable to different

vulnerabilities. A single vulnerability of a tiny IT component can lead to the whole organization’s

security system being compromised. It is important to identify and patch those vulnerabilities.

security-focused testbeds are designed and developed to provide security testing mechanisms on

different IT hardware and applications. The security-focused testbed contains facilities which per-

form different cyber security-related analyses on the components to measure security weaknesses

and strengths. Such a testbed can provide or not provide the basic functionalities of the usual

testbed. It is a design decision. But it certainly provides functionality to measure the security state

of the cyber physical system.

2.3 Digital Twin

In our thesis, we choose to use the software-based simulation environment for appropriate

reasons. First, this type of environment needs to address modeling a physical device fully in

software. Though there can be arguments on how much a software model is capable of provide

fidelity, it is not inconspicuous that the near future is shifting towards integrating digitally modeled

10

components to provide a better understanding of the product or utility. Thus, a brief idea of ’digital

twin’ is presented here:

A software replica of a real-world system or object is called a "digital twin." It is a real-time

data-driven model that aids in comprehending how the physical system or item functions as well

as how it will behave going forward [14–16]. A number of sectors, including manufacturing,

healthcare, and energy, employ digital twins.The following are some advantages of employing

digital twins:

Better decision-making: By offering information about how a physical system or product is

functioning, digital twins can aid in better decision-making. Making modifications to enhance

performance and seeing potential issues before they arise are both possible with the use of this

information.

Efficiency gains: Digital twins can contribute to efficiency gains by offering recommendations

on how to run a system or physical object more successfully. Processes and expenses can be

improved with the use of this information.

Enhanced safety: Digital twins can contribute to increased safety by offering suggestions for

safer operations of the physical system or product. Utilizing this knowledge will enable one to

spot possible dangers and put safety measures in place. Digital twins are a potent tool that may be

utilized to enhance the functionality, effectiveness, and security of real-world systems and things.

Digital twins will be much more important in a number of businesses as technology advances.

2.4 Tuple space

One of the contributions of our thesis is to design a protection framework for collaborative

experiments. Here we propose deploying experiments/components in isolated spaces in terms

of process and network memory. However, we also intend to maintain communication between

separately deployed components via a secured data transfer mechanism. In this regard, the ’tuple

space data transaction’ technique is used to provide a secure and reliable data-sharing procedure.

11

A tuple space is a parallel/distributed computing model that uses the associative memory

paradigm. It offers a collection of tuples that can be accessed concurrently. Consider two types of

processors: those that create data and those that consume it. Producers place their data in the space

as tuples, and consumers retrieve data from the space that matches a specific pattern. Tuple space

is an associative memory, which means that tuples are accessed by their content and type rather

than their address. The tuple space axiom is well-suited for context awareness. It can store context

data in tuple space and make it accessible by leveraging the Linda approach’s excellent decoupling

properties. Nonetheless, standard matching based on exact values is insufficient, particularly for

context-aware applications [17]. For this work, the Tuple Space Manager (TSM) performs data

transfer operations from source to destination tuple space. Each experiment is deployed with its

own tuple space, which can only be accessed by it and TSM. It is assumed that the TSM is secured

and trusted and does not modify or expose any tuple space contents.

2.5 Process Isolation

Process isolation is an important paradigm that is often used to enhance security of systems.In

an isolated environment, computing components can be executed where each component is sepa-

rated from the others. Even the primary component (kernel) of operating system is isolated from

the applications. Organizations can secure services by deploying numerous separate applications

on a single system. Due to the components’ concurrent execution on the same hardware, the cost

is minimal. Applications on the Linux OS or UNIX platform can run in an isolated (containerized)

environment, such as chrooted jails or application containers [18]. Applications are unable to com-

municate with or share data with other system components. Because an isolated program cannot

affect other isolated apps, this technique improves security. In this article, we apply isolation tech-

niques to ensure attack and data confinement. So that the attacks can not go beyond the experiment

run-time memory, produce unwanted results, or corrupt the memory contents of other experiments.

Before deploying an experiment as an isolated component in the testbed environment, the access

control module executed OS commands to allocate the required resources and privileges. Without

12

the required resources and privileges, an experiment node cannot perform the intended operations.

The control node determines the required resources and privileges for the experiment node and

sends them to the access control module.

2.6 Access Control Model and Policy

Access control is involved with determining the permitted activities of authenticated users and

moderating any request by a user to access a system resource. Complete access is allowed in

specific systems after the user’s successful authentication, but most systems require more sophis-

ticated and intricate control. A mechanism applying regulations specified by a security policy

enforces the access control decision. Access control policies, in particular, can be utilized, each

of which corresponds to a different set of criteria for evaluating what should and should not be

allowed and, in some respects, other ideas about what security implies [19]. This work uses access

control model and policies to resolve the approval decision when one experiment or entity asks for

access to another entities’ resources or data.

13

Chapter 3

Related Works

One of the common practices for building a testbed for CPS is using hardware in combina-

tion with software. These hardware-in-loop based testbeds [20–23] provide closest characteristics

of the real power-grids. As they have incorporated hardware devices into the testbed, real time

measurements and monitoring are supported.But one of the major challenges, discussed in [20], is

having scalability and flexibility issue for setting up the larger test environment.

In [22], the scientists put out the ISAAC architecture as a means of conducting security tests

on a testbed for smart grid systems. It is a distributed system that spans domains and mimics

data from power generation in operations. Researchers may create, test, assess, and validate com-

prehensive cyber-physical security methods for the Smart Grid and other cyber-physical systems

using the ISAAC platform. But as the testbed grows, incorporating sophisticated hardware, the

reconfiguration and maintenance cost will rise too.

The authors in [13] describe the PowerCyber testbed developed at Iowa State University.

They utilize simulation data from the Internet Scale Event and Attack Generation Environment

(ISEAGE) to characterize the system architecture of a security testbed. However, there are some

challenges they have faced when interoperability is required handling devices from different ven-

dors. In addition, because of limited hardware resources, performing realistic experimental studies

is difficult.

All the testbeds [13,20,22] mentioned above have deployed HIL to provide maximum fidelity.

But while doing that, they lost their ability to scale the experiments and be flexible and adaptive

with different setups of experiments. The idea of incorporating HIL into the testbed makes it harder

for the testbed to grow according to the needs of the continuously evolving technology. Our work

focuses on integrating software-based simulators (or any digitally developed components) into

the testbed to perform collaborative security experiments.

14

The authors present EPIC in [11], a novel cyber-physical testbed capable of assessing cyber-

attacks’ effects on the cyber and physical dimensions of networked critical infrastructures (NCIs),

such as power plants. The EPIC utilizes an Emulab-based testbed to simulate the cyber attributes

of NCIs and multiple software simulators for the physical component. Its primary strength is its

ability to support precise, meaningful, reproducible, and realistic experiments with extensive and

diverse infrastructure and services. Furthermore, attack frameworks and knowledge of cyber-attack

effects are critical components in selecting the best anomaly detection system (ADS). EPIC helps

to find the best ADS for the system. The main crunch of this work is using a network emulator

with different software-based simulator models. However, it does not provide access to the com-

munication channel where many attacks occur. Here, integrating a simulator for physical processes

depends on the targeted system’s architecture, device configuration, and extensive knowledge of

the respective domain, which can be a major bottleneck to gaining flexibility. Though [11] tried to

build an entirely software-based testbed leveraging network simulation, there is scope for provid-

ing more flexibility and adaptive feature regarding experiment scope and simulator integration.

Choosing an effective and up-to-date network simulator can be a significant decision while

using for security testing. One of the necessary requirements is being able to up-to-date virtual

images of thousands of devices. This version of the Emulab in [24] virtualizes hosts, routers,

and networks while maintaining near-total application openness, high system throughput, and ef-

ficient resource management. The critical design techniques are to use the least amount of virtu-

alization that allows applications to be transparent, exploit the hierarchy found in real computer

networks, perform optimistic automated resource allocation, and use feedback to adaptively allo-

cate resources. In addition, the entire system is highly automated, making it simple to use even

when scaled to thousands of virtual nodes. Finally, this paper identifies the numerous difficulties

that come while working to develop a practical system and describes its motivation, design, and

preliminary evaluation.

However, using Emulab has some limitations. Users can use remote clusters (servers are de-

ployed at University of Utah) via web which may not be suitable for maintaining proper autho-

15

rization and privacy of the critical system. There are ways to deploy one locally. But the process

outdated and troublesome because of legacy technology. Currently, there are some other network

simulators (Eg. GNS3,etc.) which have many in built feature like integrating with different modern

virtualization tools (VMware,VBox etc.) or remote access tool (Eg. PuTTY) or packet analyzer

(Eg. wireshark etc.) and many more.

One of the goals of our work is to protect multiple experiment configurations of different stake-

holders that is a first of its kind to the best of our knowledge. To approach this problem, we have

been inspired by the idea of inter-component secure communication via tuple space [25,26]. How-

ever, the previous work applied to a single-host Linux machine at the operating system level.

Modern operating systems like Linux can support multiple concurrent application services on a

single server instance. Furthermore, due to advancements in multi-core CPU architectures, con-

current application execution is now possible. Individual service components of such services

may run in separate, isolated environments, such as chrooted jails or application containers. They

may require regulated and secure access to system resources and the ability to collaborate and

coordinate with one another. The authors in [25, 26] propose the Linux Policy Machine as the

centralized reference monitor to provide secure inter-component communication in an isolated en-

vironment. In addition, they introduce tuple space to facilitate communication mechanisms for the

isolated components. The researchers propose communication processes for multi-user operating

systems but not for testbed environments. They support tuple space-based communication for iso-

lated processes. However, we propose a communication mechanism for the testbed environment

where multiple experiments composed of different configurations and devices owned by various

manufacturer/stakeholder organizations are deployed as one networked system.

16

Chapter 4

Ideal Testbed

An ideal cyber security testbed can ensure all the requirements to be fulfilled to conduct cy-

ber security experiments to achieve an acceptable level of research or engineering analysis of the

system’s architecture to assist in taking important security measures. Once we identify the charac-

teristics of an ideal testbed, we can design the testbed. It is known that all the ideally assumed or

theoretically designed features may not be applicable practically or in the research domain. How-

ever, having a benchmark of required support for building a cyber-security experiment-oriented

CPS testbed is essential.

4.1 General Requirements

Requirements are usually identified to fulfill the objectives of the functionality or feature. A

testbed’s main functionality is to provide a platform to perform testing as accurately as possible,

which demands many general requirements to be considered. When the testbed has to perform a

special kind of testing: cyber security related experiments, some additional requirements become

significant too. This section will explain the standard requirements for any CPS testbed. We also

present the challenges and limitations of implementing those in practical scenarios.

Fidelity This attribute measures to which degree the testbed can represent the actual system

events. A critical CPS testbed should be capable of modeling all the components, actions, re-

actions, hardware, software, and communication layers typically used in real infrastructures

as closely as possible. Depending on the methodology of implementation: hardware-based,

hardware-in-loop (HIL) based, or fully software-based, fidelity can vary. If the testbed is im-

plemented by all the actual hardware used in the physical process (sensors, actuators, etc.);

software used for digital process (HMI, SCADA, information management, etc.); protocols

practiced in Industrial Control Systems for communication (Modbus, DNP3, etc.); it will

17

present the highest level of fidelity. One of the examples of such a testbed is deployed by

Idaho National laboratory [27]. However, such a testbed’s limitation is its high deployment

and maintenance cost. Software-based testbeds can be cost-effective in this regard and can

also become highly configurable, which is another limitation of hardware-based testbeds.

Repeatability A testbed’s ability to replicate the same set of experiment sequences with the same

set of parameters and provide consistent results is important [28]. In order to accomplish

this, researchers should be able to modify the experiment’s beginning settings, control the

sequencing of the experiment, and add essential events at the appropriate timestamps [29].

For example, in a perfect CPS security testbed for critical infrastructure, the likelihood of a

threat to the system must be assessed through repeated attack-defense events.

Scalability Any system that can grow larger regarding set-ups, users, or features should always

be tested for high scalability. For example, a critical CPS or industrial control system can

have hundreds of field devices. Moreover, depending on the domain, network traffic can

also be high to achieve desired productivity in the service. The ideal testbed should have

the capability of scaling up the experiment set-up without changing the architecture or fun-

damental components of the testbed. For example, a testbed can perform experiments on a

traffic control system for a small city with fewer field devices and traffic. It is an essential

requirement that the testbed can also perform experiments in the scope of a more extensive

city traffic control system.

Flexibility A CPS testbed should be capable of performing various kinds of experiments and anal-

yses conveniently. For example, A security experiment-oriented testbed for nuclear power

plant should be able to conduct different kinds of attack experiments to find the system’s vul-

nerabilities. It should also support testing the plant’s resiliency by incorporating the plant’s

defense mechanism while attacks continue. The testbed should be able to change the exper-

iment strategies and evaluate its impact when necessary.

18

Adaptability Adaptability is a crucial aspect of any cyber physical system testbed. Such testbeds

must be designed to accommodate changes and updates in both hardware and software com-

ponents, as well as to handle variations in operating conditions and user requirements. In

order to achieve this adaptability, testbeds need to incorporate flexible architecture, modular

design, and open interfaces that allow for seamless integration of new components and sys-

tems. Additionally, the use of standardized protocols and interfaces ensures interoperability

and compatibility with other systems. With these features in place, a cyber physical system

testbed can quickly and effectively adapt to changing needs and requirements, allowing for

more efficient and effective testing and development of new technologies [30].

Cost-effectiveness A testbed is not a full-fledged real system. The purpose of the testbed is to

perform necessary experiments on relatively very low-budgeted setups than actual ones. One

of the important aspects of being cost-effective is running the emulation or simulation of the

experiments repeatedly without further expense. [31].

Measurement Accuracy The process of performing experiments in the testbed should be quan-

tifiable. The testbed should allow extracting measurements of the defined attributes in a

feasible period of time. The methodology of executing experiments on the testbed should

not affect the measurements of the targeted attributes.

Safe Execution Experiment In general, any CPS testbed should be able to perform experiments

without disrupting the environment of the testbed itself. Moreover, experiment results should

be error-free and maintain integrity. In the case of the cyber-security perspective, this re-

quirement is even more significant. A cyber security testbed has to serve two major purposes:

1) The testbed cannot allow the ongoing experiments to infiltrate the testbed’s functionality

or component. 2) The testbed should allow security experiments to execute attacks, exploit

the vulnerabilities and measure the consequences only on experiment setups or pieces of

equipment in a controlled manner.

19

Researchers must ensure that their experiments are conducted in a controlled and secure en-

vironment to prevent unauthorized access or data breaches. This may involve isolating the

testbed from external networks, using robust authentication mechanisms to limit access to

authorized personnel only, and encrypting sensitive data to prevent interception or tampering.

Additionally, researchers should follow established ethical guidelines and obtain necessary

permissions from relevant stakeholders before conducting experiments involving potentially

sensitive information or activities. Monitoring the testbed regularly and promptly respond-

ing to potential security breaches or incidents is also essential. By prioritizing security in

addition to safety, researchers can conduct experiments on a testbed for security with the

confidence that they are protecting both the experiment and any relevant stakeholders from

potential harm.

Diversity Like CPS devices/products(PLCs, RTUs, sensors, valves, motors, etc.), vulnerabilities

are also different from one product to another. Moreover, ICS protocols also vary from one

domain to another. Therefore, the ideal testbed should be able to incorporate any combi-

nation of different types of products, processes, and protocols to provide a wide range of

experiment criteria

4.2 Cybersecurity Centric Experiment Support in Testbed

There are some essential requirements for the testbed which play vital roles in providing a

secure, efficient, and effective simulation environment and preventing improper experiment re-

sults. The most common requirements, identified by researchers [8–11], are fidelity, repeatability,

scalability, flexibility, cost-effectiveness, measurement accuracy, diversity, and safe execution of

experiments. In the following, we identify some essential cyber security-focused testbed require-

ments in addition to the above-mentioned requirements. We also discuss their impact and influence

on the testbed environment for conducting cyber-security experiments in a safe manner.

Experiment virtualization:Critical cyber-physical systems like power plants work on many

computing machines that communicate with each other over a networking protocol. Hence, a

20

testbed must support this higher number of processing machines and a communication layer. How-

ever, managing such a large number of physical resources for testing is more expensive. Conse-

quently, virtualization of a large number of computing machines out of a limited number of physi-

cal resources is essential to ensure effective usage of physical resources [24]. Moreover, the testbed

requires flexibility in designing, deploying, and executing experiments. Testbeds solely established

on physical resources pose difficulties in managing and configuring the physical entities required

by the experiments. However, experiments can demand a variable number of resource allocations

at different times of the project’s lifetime. Virtualization of nodes can ease this resource update

with low manual activity.

Nodes and experiments isolation: To prevent unintended or malicious data exchange across

experiments, an isolation mechanism is required to protect the data and process of an experiment.

Assuming that each experiment has a single owner, this grants control over the nodes on which

the experiment is executed. No inter-experiment network communication is allowed unless an

authorized mechanism supports one. Moreover, parallel execution of processes (component func-

tionality) on a single node may increase the risk of unintended influence. However, initializing an

isolated container or VM per component can provide an extra layer of control and separation from

the other components’ functionality.

Secured inter-experiment communication: Each experiment deployed on the testbed may

represent a single component of an extensive system. Because separate units rely on one another to

represent the activities of the entire system, it is necessary to ensure secure communication between

the experiments. But before one experiment collaborates with another, a coordinated approval is

necessary to make the collaboration secure. Moreover, the testbed must ensure the communication

messages’ confidentiality, integrity, and availability. Violation of these three aspects of security can

compromise sensitive information or produce incorrect results. Since experiment outputs influence

the real critical CPS design, it would be vulnerable when erroneous results are considered to design

and deploy the real system.

21

Attack libraries: Users need to launch multiple attacks on different experiments based on the

deployed system components in the testbed. Support of built-in attack libraries provides accessible

interfaces to perform attack experiments. Distribution and execution of attack libraries can be

done in three ways:(i) scripts provided and run by the testbed, (ii) scripts pulled from third-party

organizations, and (iii) scripts developed by the owner. The best practice is that users don’t need

to write scripts or access third-party sources. Before adding attack scripts to the testbed, they must

be tested and evaluated correctly to ensure their intended outputs. Also, the testbed must maintain

attack script integrity once they are included in the testbed.

Monitoring module and attack analytic: An experiment owner can spawn a dedicated mon-

itoring node with predefined objectives. The monitoring module performs tasks to collect and

analyze experiment activities. An attack analytic, a part of the monitoring module, generates in-

sights for further actions with visualization and relevant reports from the collected data.

Experiment checkpoints: Sometimes it is necessary to roll back experiments to a certain exe-

cuted state so that users can review experimental decisions and reconfigure the setup. Experiment

checkpoints are necessary to recover from wrong states caused by cybersecurity experiments [32].

They also provide a quick recovery option so that experiments become fault-tolerant.

Attack confinement: Various security analyses are carried out across multiple experiments

based on the deployed system components at different nodes. But security attack experiments may

attempt to expose the component’s security flaws. Attack scripts are executed with predetermined

actions to observe their consequences on a predefined perimeter of the system. It is essential to

protect the testbed to confine an attack and its effect to prevent intentional or unintentional damage

to another experiment. So an attack can not go from one experiment run-time environment to

another without proper authorization.

Experiment data confinement: Each experiment node has a different set of data, like config-

uration and design files, experiment results, attack scripts, etc., containing sensitive information

about the system organization. Any data leakage event may compromise the sensitive information,

which can cause many unwanted consequences. Moreover, data integrity is also essential to ensure

22

that experiments generate correct results, which are considered while making design decisions in

a real critical CPS system to protect it from known and unknown security threats. However, data

integrity may also be tampered with while data is shared and processed across experiments. Hence,

the testbed needs to avoid these data leakage events where isolation can provide data confinement

services.

4.3 Ideal Testbed Architecture

After figuring out the requirements for a cyber-security centric CPS testbed, we have identi-

fied four implementation concepts which will provide the best scope to maximize the potential of

ideal requirements. The following figure illustrates the idea of combining four concepts: Simu-

lated model of physical process, virtualization of resources, network simulation, and integration of

security experiment appliances.

Figure 4.1: Functional blocks of the testbed.

23

4.3.1 Conceptual Design based on Requirement Analysis

Designing a system requires maintaining a trade-off between the requirements and necessary

features. Requirements are prioritized according to the primary goals of the system. Here, we

are building a testbed to perform cyber attack experiments on different types and scaled Cyber-

physical systems. We want to make an assumption that most of the cyber attacks are initiated and

propagated by exploiting vulnerabilities in the cyber/software/network layer. The consequences

can be visible in the physical layer. Following this assumption, we prioritize our requirements and

necessary support for the testbed in the Table 4.1:

Table 4.1: Functional design based on requirements.

Implementation Concepts Requirements & Supports

Simulated model of

physical process

Cost-effectiveness

Scalability

Flexibility

Virtualization of assets

resources

Cost-effectiveness

Isolation of experiments

Repeatability

Experiment Virtualization

Experiment Snapshot Checkpoints

Network simulator and

traffic data monitoring

Diversity

Fidelity

Measurement Accuracy

Isolation of experiments

Security tools and

framework

Safe Execution

Attack Confinement

Experiment Data Confinement

Attack Libraries

As our first and foremost goal is to provide as much flexibility and scope for penetrating the

vulnerabilities in the cyber layer, we have focused much on the diversity, reconfiguration capabil-

ity, and safe execution of the experiments. As long as we maintain the physical property as close

as to the actual system based on software-based simulation, there is a possibility of compromising

the physical process’s fidelity. Being cost-effective is one of the significant goals while imitating a

24

CPS’s characteristics because the number of hardware used in a CPS will cost a lot, even for build-

ing a testbed. However, using expensive hardware is an obstacle to achieving the high scalability

of the targeted system. Thus, software-based solutions can be very effective for the simulation and

virtualization of assets. Using a network simulator as a communication platform can effectively

gain fidelity and diversity for the actual attack surface in the cyber layer. Moreover, measuring

data can be more accessible via tracking software processes or network traffic data. Therefore,

one crucial goal for a cyber security-centric testbed is providing the necessary tools for attack ex-

periments and maintaining the three aspects of the experiment data: confidentiality, integrity, and

availability. A secure inter-experiment communication framework is also necessary to protect the

multiple experiments collaborating with each from going awry [33].

4.3.2 System Level Design

As most critical CPSs are distributed and networked, a testbed should imitate the functionali-

ties of a distributed networked system. Otherwise, the threats related to any distributed networked

system can not be explored while performing security experiments in the testbed. This is why,

in order to provide a platform for message-passing capabilities among the nodes, a network event

simulator is required. This simulator is also responsible for managing and distributing resources

among the experiment nodes. A bunch of experimental nodes together build the whole structure

of a cyber-physical system. Figure 4.2 illustrates different components of a testbed that we re-

quire. The major components are (i) testbed controller, (ii) experiment server, (iii) virtualization

of experiment nodes, (iv) experiment controller layer, and (v) experiment nodes.

The testbed controller (i) is responsible for managing resources for experiment nodes (v). It

also provides services to allocate network address spaces for the experiment nodes as required by

the experiment requirements. The controller has overall knowledge of the availability of resources,

user space, node visualization, shell management, etc. It must be installed on a machine other than

the experiment servers, allowing us to use resources in a request-response manner. This separation

25

Figure 4.2: Testbed structure.

prevents experiment nodes from manipulating the control server’s memory space. The system on

which this controller is installed is known as the testbed control server.

Experiment servers(ii) provide the computing platform for experiment nodes. A single or mul-

tiple machines combined can provide the processing capability for experiment nodes. The number

of experiments and connectivity among them is generally greater than the actual physical resources.

Therefore, an abstraction of virtual machines (iii) and networking topology are supported based on

containerization or hypervisor. One control node mapped to each owner of the experiment(s) will

reside in the experiment control layer(iv). It is responsible for maintaining a gateway to the ex-

periment space containing multiple nodes. A user, the experiment owner, can instantiate multiple

nodes for the experiment. An experiment cannot have more than one owner. Experiment nodes are

allocated resources from the experiment server(s). A hypervisor will run on the hardware of the

experiment server to provide virtualization to the nodes.

4.4 Barriers to Implement Ideal Testbed

Researchers have minimal access to resources related to infrastructure that are of national in-

terest and critical in nature. Moreover, they face many challenges to design a practical testbed

26

lacking information about real critical CPS. Here are some significant challenges we have faced

while trying to implement the design for an ideal testbed:

Unavailability of Digital Components So far, we have designed our testbed considering some

ideal situations. We have assumed there will be simulated models or digital twins [14–16]

available for each component. However, the technology of building an exact digital version

of real CPS components has yet to develop enough. However, there has been much research

recently on how to make digital/virtual/simulated versions of sophisticated components of a

complex system. This future is not so far where the real challenge will be performing security

experiments across various types of digital components, maintaining confidentiality, privacy,

and integrity. One major work of this thesis is designing a security framework for a testbed

that supports multiple experiments (can be of different organizations) sharing data with each

other. Chapter 6 presents the work on protection for the testbed.

Non-modular Simulators Many simulators for critical CPS are not modular in most cases. It is

not easy to separate each component and deploy it individually. Usually, the software repre-

sents the whole system like a monolithic program. As a result, it takes work to determine the

exact timestamps of executing a significant step (getting or setting values of state variables)

in a running simulation. Again, it is also difficult to trace the effect of experiments across

different components.

Proprietary Software/Simulator Most of the simulators for critical systems (like nuclear power

plants) are proprietary resources that contain sensitive information about special technology

which can be of national interest. Consequently, access to a simulator of this kind is con-

trolled rigorously. So, finding an open-source simulator where researchers can work on it is

not easy. Usually, these kinds of critical CPS simulators are part of the technology control

plan. Therefore, individuals must undergo special training to access and use it for research.

Inadequate Access to Simulator As these simulators are not designed keeping security testing

in mind, there is little scope for accessing different parts of the software. However, if re-

27

searchers want to design and perform attacks, the system should have the common vulner-

abilities an attacker might look for. As a result, it is essential to have enough scope for ac-

cessing and tracking different components of the simulator, communication channel, APIs,

libraries, and many more.

Integration Difficulties One of the crucial requirements of the testbed is diversity and adaptabil-

ity. For example, replacing a good PLC with a rogue one or incorporating digital versions

of various vendors’ appliances are common cases for security testing. Most simulators im-

plement only a specific set of hardware or physical process. Modifying the nature of already

implemented digital components in the simulator is challenging. For example, including a

vulnerability via integrating a customized composition needs a flexible interface for adapta-

tion.

Undermining of Communication Channel Software-based simulators can achieve the neces-

sary requirements without being too expensive. Nevertheless, most software-based simu-

lators are developed using MATLAB/SIMULINK based on mathematical models or equa-

tions. Though these simulators can match the environment of the physical process of the

actual critical CPS very well, the cyber or networking part of the system is not yet well

considered. As a result, many attributes of networks typically used in critical CPS remain

absent from the testbed scenario. However, many cyber-attacks are initiated or propagated

using vulnerabilities in the networking attributes (topology, protocols, access controls, etc.).

28

Chapter 5

Towards a Non-ideal Yet Practical Testbed

To construct a practical testbed that overcomes the challenges of an ideal testbed (described in

the preceding chapter), we first investigate available simulator software that can model the physical

process of a CPS. We intend to create a usable testbed by combining industry-level simulator tools.

We first analyze the simulator software’s constraints and then create implementation approaches to

alleviate those restrictions while maximizing the functionality that an ideal testbed should have.

5.1 Case Study: Generic Pressurized Water Reactor Software

by GSE Power Systems Inc.

We have been able to get access to a simulator for our research. This fully software based

simulator basically presents a generic pressurized water reactor. It has been developed by GSE

Power Systems, Inc3. This simulator can simulate the physical process of a water reactor. In order

to incorporate this simulator into our designed testbed, we had to modify our ideal implementation

design to support necessary requirements and facilities.

Absence of networking The simulator is a monolithic program. Components of the simulator

do not communicate with each other via any networking protocol. The software is based

on memory I/O using inter process communication. As there is no networking between the

components, it is not possible to explore the vulnerabilities related to networking using the

simulator. As the software does not give any abstraction of network I/O operations, general

Industrial Control System (ICS) networking protocols are also absent here. As a result, this

simulator needs to be integrated with a network simulator. This will allow the testbed to

perform security experiments exploiting network vulnerabilities.

3https://www.gses.com/engineering/systems-and-simulation

29

Proprietary Software This is not an open source software but a proprietary solution. Only Re-

stricted users have limited access to software via APIs. There are two backdoor APIs – GET

and SET to communicate with the simulator. These APIs can only get or set the values for

specific variables of significant components.

5.2 Architecture of Specialized Testbed

As we have specified the limitations of the simulator in the previous sections, we target to

modify the design of our ideal testbed to overcome the shortcomings of the software simulator. To

address the issue of absence of network communication module, we target to replace the memory

I/O with network I/O by creating a parallel world for the simulator using a network simulator like

GNS3.4

Network simulator is a software which helps to design, build and test networks of different

scales, typically without using any hardware. GNS3 is chosen as network simulator tool because-

• GNS3 is an open source, free software.

• No real hardware router/switch/PC are needed.

• Different kind of network topology can be created using different ISO image of router, OS

image for PC etc.

• GNS3 network can be linked to a real network.

• Different tools for packet monitoring (E.g., Wireshark) are supported.

We create a parallel world for the water reactor simulator inside the GNS3, where there will be

a node for each component of the simulator. Suppose, depending on the water level a valve door

is controlled in the water tank. For simplicity we consider only three components involved in the

example scenario: Controller (C) , water level sensor (S) and valve door actuator or motor (A). The

4https://www.gns3.com

30

Figure 5.1: Replacing memory I/O with network I/O

whole scenario can be divided into two communication. First, the controller(C) receives data from

the sensor(S), after computing the necessary actions the controller sends the action result to the

actuator(A). These two communications (1 & 2 in figure 5.1) need to be replaced with networking

abstraction.

We target to create a node for each component in the GNS3 network simulator and define a

networking path between those according to defined communication paths in the physical simulator

software. According to our example, we create C’ for C, S’ for S and A’ for A in the GNS3 network

simulator. Then we define the following networking paths

S
′ → C

′
andC

′ → A
′

which are similar to the ones in the physical simulator software. Now instead of passing data from

S to C directly, the communication 1 will take the following route:

31

1.1 : S → S
′

1.2 : S
′ → C

′

1.3 : C
′ → C

We can see in the figure 5.1 the step 1.2 is the replacement of communication no 1 where 1.2

represents the networking communication between two components. Step 1.1 and 1.3 are inter-

facing communications between the physical simulator software and the network simulator nodes.

Each node in GNS3 has only two functionalities: receive data from source and send data to desti-

nation. The backdoor APIs (GET &SET) are used to transfer data between reactor simulator entity

and network simulator node (Step 1 & step 3). This data transfer is handled via a middleware com-

ponent. To allow the necessary components and features of our previous design of ideal testbed,

our modified testbed design looks like in figure 5.2

Here GNS3 and middleware both are deployed on a host machine. The physical simulator soft-

ware resides in different machine/server. The middleware component provides necessary services

to maintain communication with the physical simulator software and the GNS3. Virtual resources,

network simulation between them and other necessary security appliances and framework are de-

ployed on GNS3. The middleware is responsible for three services(figure 5.3):

API agent service: This service makes the calls to APIs (SET & GET) to pull or push data from or

to the physical simulator software. Moreover, It also collaborates with configuration service

to create a queue of instructions so that the dispatcher server can execute them accordingly.

Communication Service: A dispatcher server and one client for each node in GNS3 together

build this service. This service provides communication channel with client nodes. The

dispatcher server takes care of three things:

1. It passes data to appropriate client node according to instructions stored in an instruc-

tion buffer.

32

Figure 5.2: Modification of component design to support ideal testbed requirements

Figure 5.3: Middleware services

33

2. It also relays data from from one client node to another.

3. The dispatcher server also passes data to API agent that needs to be returned to reactor

simulator software.

Experiment Configuration Service: This configuration service holds the information about the

identities (id, IP address, port) of the client nodes. It also has information of the type of

entities, defined paths etc. which helps create appropriate instructions.It also holds a buffer

of instructions that need to be executed by the dispatcher server. It is responsible for creating

sets of instructions (E.g, SEND SENSR_1 10.10.10.1 9999 DATA TEMP_1 100) following

communication template (<COMMAND NODE_ID DEST_ADDR DEST_PORT DATA

MSG>) according to experiment configuration.

5.3 Implementation of Design

According to our design requirement, the dispatcher server program, a component of the mid-

dleware program, will be running on the host machine and the client program on each GNS3 node

at the virtual layer. So, one of the major tasks of the implementation is configuring the network

connection between GNS3 virtual layer and the local host machine. Developing the sub compo-

nents (dispatcher server, API agent, communication protocols etc.) of the middleware component

is another implantation task. In the following, details of each implementation task are explained.

Deployment of GNS3: GNS3 is a third party open source software which allows to create net-

work topology using virtual resources. It is a network simulation software. GNS3 consists

of two software components:

1. GNS3-all-in-one software (GUI)

2. GNS3 virtual machine (VM)

The GNS3-all-in-one is the client component of GNS3, a graphical user interface (GUI).

After installing the all-in-one program on the local PC (Windows, MAC, or Linux) and it

can be used to design topology. This is what one generally sees like the figure 5.4.

34

Figure 5.4: Network topology in GNS3 GUI

Devices must be hosted and run by a server process when creating topology in GNS3 using

the all-in-one software GUI client. For the server portion of the software, there are few

options:

• Local GNS3 server

• Local GNS3 VM

• Remote GNS3 VM

On the same computer where the GNS3 all-in-one software is installed , the local GNS3

server is operated locally. For instance, if a Windows computer is used, Windows is running

processes for both the GNS3 GUI and the local GNS3 server. In our case, we are running

local GNS3 VM as a server using VMware workstation.

So, there are some prerequisites for making GNS3 work in our case. They are as follows:

1. Windows 10

2. Installing GNS35

5Documentation for installing GNS3 on windows, https://docs.gns3.com/docs/getting-started/installation/windows/

35

3. Installing VMware workstation 6

4. Installing GNS3 7

5. Import router image (C3600)8

Network Configuration: As virtual devices or assets on GNS3 need to access the host network so

that middleware dispatcher server can perform communication via TCP socket connection,

a bridged network between the GNS3 VM (Running on VMware workstation) and the host

needs to be established. In bridged networking, a physical network adapter on the host

system is connected to the virtual network adapter in the virtual machine (Figure 5.5). In our

case, GNS3 VM running on VMware is our specified virtual machines where Hall our virtual

devices are hosted. The virtual machine can connect to the host system’s LAN via the host

network adapter. With both wired and wireless host network adapters, bridged networking

is functional.Through the use of bridged networking, the virtual machine is set up to have

its own distinct identity on the network, unconnected to the host system and other network

resources. The virtual machine is a complete network participant. It can communicate with

other computers on the network as if it were a real computer on the network, and it has access

to other computers on the network.

The detail of configuring network for windows host machine and GNS3 VM can be found

in Appendix A and Appendix B. In Appendix C, the process establishing bridged network

incorporating a basic topology on GNS3 GUI has been presented.

API agent: API agent is a program which handles communication with simulator software. It

calls SET or GET API to pull or push data from or to the simulator. It is also respon-

sible for creating instructions for dispatcher server to execute according to standardized

6Official Website for installing VMware Workstation, https://www.vmware.com/products/workstation-player.html

7Documentation for installing GNS3 VM on windows, https://docs.gns3.com/docs/getting-started/setup-wizard-gns3-

vm

8Find non-official image for router C3600, https://mega.nz/folder/nJR3BTjJ#N5wZsncqDkdKyFQLELU1wQ

36

Figure 5.5: Bridged network between VM and host

format of instructions. Suppose, we want to replace S -> C using network simulation on

GNS3 (Explained in Figure 5.1). S’ -> C’ is handled in GNS3. But S -> S’ and C’ -

> C are handled by API agent using GET and SET API respectively. The definition of

GET API is get(connection_to_simulator,var_name). Here var_name can

be any variable from any component of the software simulator. According to our example

case, get(connection_to_simulator,"TEMP_1") needs to be called and value of

that specific temperature will be returned. Then API agent will create appropriate instruc-

tions for dispatcher server to dispatch. In case of sending data back to simulator (C’-> C),

the set(connection_to_simulator,var_name,value) is called. An example

instruction for S’ -> C’ may look like following:

SEND SENSR_1 10.10.10.1 9999 DATA SEND CTRL_1 10.10.10.2 9998 DATA TEMP_1 100

Dispatcher server and node client communication: The dispatcher server is a server program

running on the host machine on a specific port. It waits for socket connections with each

client node running on GNS3 to be established. Once a client connects to the dispatcher

server a separate thread is created to handle the communication. On the other hand, a client

program is running on each virtual node on GNS3. And each node sends request for estab-

lishing connection to the dispatcher server running at specific address and port.

Dispatcher Server program will have the following major functionalities:

• handle_client(client_socket, client_address): For each client, after establishing the

connection with the dispatcher server, the handle_clientmethod is being executed

37

in a thread. Getting packets from the clients and responding accordingly are handled

separately for each client.

• process_config(file_name): This method reads the config file, parse the instructions

and process the instruction accordingly. Suppose, the instruction is:

SEND SENSR_1 10.10.10.1 9999 DATA SEND CTRL_1 10.10.10.2 9998 DATA TEMP_1 100

This method will parse it considering the following template:

<COMMAND NODE_ID DEST_ADDR DEST_PORT DATA MSG>

The parsed element are following:

– COMMAND:= SEND

– NODE_ID:= SENSR_1

– DEST_ADDR:= 10.10.10.1

– DEST_PORT:= 9999

– MSG:= "SEND CTRL_1 10.10.10.2 9998 DATA TEMP_1 100"

So message "SEND CTRL_1 10.10.10.2 9998 DATA TEMP_1 100" will be

sent to node SENSR_1 that is running at ip address 10.10.10.1 and port

9999.

Client program will have the following major functionalities:

receive_messages(client_socket) This method is responsible for receiving message from

the dispatcher, parse it (if necessary) and store it in a queue for future processing.

Suppose, after receiving the following message:

SEND CTRL_1 10.10.10.2 9998 DATA TEMP_1 100

It will be stored in the queue.

send_messages(client_socket): This method is responsible for creating appropriate mes-

sage from the queue and sending it to dispatcher server. Suppose, the following content

is dequeued first:

38

SEND CTRL_1 10.10.10.2 9998 DATA TEMP_1 100

Then this message will be sent to dispatcher server. This method runs on separate

thread other than main thread or receive_message thread.

The code-snippet for dispatcher server and client node are included in Appendix D.

All the resources for implementation have been maintained in a github repository.9

9https://github.com/rafi075/csugw

39

Chapter 6

Protection of Testbed

In this chapter we address the problem of how to protect the security focused testbed from

the unpredictable events that might occur while multiple components/organization/experiments

need to collaborate with each other. Our goal is to devise a protection framework based on safe

communication between experiments deployed in isolation.

6.1 Threat Model for CPS Testbed

Before delving into our contributions, we would like to explain the threats that a security-

focused testbed must guard against. Experiments perform various attacks on different simulated

physical models of different devices in the testbed. If an attack goes beyond any experiment run-

time environment, it causes severe damage to another experiment, like modifying configuration

files, input data sets, output results, and others. The testbed threats can mainly be classified into

two groups: (i) outsider threats and (i) insider threats and are discussed in the following.

6.1.1 Outsider Threats

A testbed is vulnerable to threats that are initiated from outside of it. Malicious actors from

the outside world can exploit the testbed to compromise it and gain confidential information from

it. Outside attackers can compromise the testbed by exploiting vulnerabilities in the testbed’s

hardware and software resources. In this work, we assume the testbed is secured from outside

threats.

6.1.2 Insider Threats

Insider threats are originated within the testbed itself. Multiple experiment nodes share testbed

resources like hardware, software, attack library module, network I/O, and other essential resources

while deployed on the testbed and executed at the same time. Without any preventive mechanism,

40

an experiment can access information from another experiment by unauthorized means and can

push malicious data into another experiment’s memory space. We classify testbed insider threats

into three groups: (i) confidentiality threats, (ii) integrity threats, and (iii) availability threats.

Confidentiality threats: Critical Cyber Physical Systems (CCPS) have many critical units

to provide services. Since the testbed simulates the actual behaviors of those systems, it can hold

notable data about those critical units and proprietary information about the system organization. If

a malicious entity gains access of an experiment node, it may also obtain significant architectural

information or system vulnerabilities. This reveal of system knowledge may help the malicious

entity to plan a more sophisticated attack in the testbed. Moreover, malicious organizations can

use that information to gain business profits and defeat competitors in business market competition.

Integrity threats: An erroneous input data or process can introduce faulty results or add bias to

the experiment results. An experiment can intentionally or unintentionally violate the data integrity

of other experiments, if attack and data isolation are not maintained properly. As experiments share

the same testbed resources, if a set of attacks goes beyond a component’s memory scope, then an

erroneous evaluation may take place.

Availability threats: A malicious experiment can hold the computing resources intentionally

for indefinite time period to make the service/resources unavailable for other experiments. In this

scenario, other experiments remain in the waiting queue for log time because of resource shortage.

Our current scope of proposed method does not deal with this kind of threat.

6.2 Experiment Communication Model

Experiments are deployed as a combination of isolated nodes in the testbed. An isolated node of

an experiment cannot communicate or share any data with other experiment nodes using the inter-

process communication (IPC). But there are some scenarios where experiments need to exchange

information to complete tasks. In this section, we identify and explain two types of communication

required for our proposed security framework of communication in the testbed environment. They

are: (i) coordination communication and (ii) collaboration communication.

41

Suppose, two experiments are active at the same time on the testbed and one experiment needs

to access some data that another experiment contains. Any kind of communication that involves

two nodes from different experiment is supported by the combined execution of coordination and

collaboration communication. The coordination communication model (illustrated in figure 6.1) is

occurred first to ensure the availability of resources, approval of the communication from etc. The

actual intended communication or data sharing will not start before the coordination completes

and the approval is received. Collaboration communication (illustrated in figure 6.2) starts when

coordination is complete and nodes have received approval in the completed coordination process.

Figure 6.1: Coordination communication.

Coordination communication: A control node performs the main role in this communica-

tion model, where it sends predefined control messages to/from other experiment nodes. A control

node acts as a coordinator on behalf of a user to initiate, manage, and terminate experiments in

the testbed environment. A control node can send/receive coordination information (data access

request, broadcast request, node summary, etc.) to/from the experiments it controls or the other

42

control nodes. The control node also expects feedback if it sends messages to other control nodes

or experiments. Fig. 6.1 depicts the coordination communication model where two types of co-

ordination communication may occur: (i) control-to-control, (ii) control-to/from-experiment. In

coordination communication, no experiment data is shared. Coordination communication should

occur first if two experiments need to collaborate (share data).

Figure 6.2: Collaboration communication.

Collaboration communication: The actual data transfer, labelled as collaboration of experi-

ments, happens between two experiment nodes in this type of communication. No collaboration

occurs without executing the coordination communication beforehand. In the collaboration com-

munication, no control node is involved. The solid bi-directional arrows in Fig. 6.2 indicate this

native collaboration where experiments under the same control collaborate (data transfer) with

each other. In foreign collaboration communication (depicted in the Fig. 6.2 with dotted arrows),

experiments from one control can communicate with experiments from another control node.

43

6.3 Overview of Experiment Execution on Testbed

In this work, we provide a system design for the testbed to provide control over communication

among the experiments. Our proposed approach for inter-experiment communication leverages the

technology of tuple space in an isolated environment. We assume that the testbed already has the

facility of providing virtualization and isolation of nodes.

Experiment initialization: When an owner wants to create experiments, a control node (allocat-

ing an isolated node) is instantiated first. A secure communication channel between a user

and a control node is established to exchange necessary information. A control node is re-

sponsible for managing multiple experiment nodes for its owner. It passes a resources and

privileges allocation request containing the necessary node configuration from the owner to

the authorization module. After getting the approval, multiple isolated nodes are allocated

with a defined networking topology among them. For each initialized node, a tuple space is

initialized, which is required for future coordination or collaboration communication. Thus,

an experiment is initialized in the testbed.

Inter-experiment secure communication: When two nodes from different experiments (owned

by the same or different user) need to communicate, secure communication via tuple space

is used. A tuple space is a service that provides a dedicated memory region in the isolated

node’s local memory space to store data or remove data when required. Only a mapped

node itself and the tuple space manager (TSM) can access its memory region and perform an

action on it. All the operations with the tuple space by TSM or the node itself are assumed

to be secured. In this mechanism, two experiment nodes do not directly communicate with

each other; rather, TSM (assumed as trusted) passes information from one tuple space to

another.

Authorization of communication: It is reasonable to assume that the communication between

all the pairs of nodes from different experiments is not allowed directly. Whether commu-

nication between a pair of nodes is allowed or not is defined by the access control policy.

44

When one node needs to access information held by another one from a different experiment

space, a communication request is sent to the authorization module via the control node.

The approval decision is sent back to the control node after evaluating the predefined access

control policy. The process of approving resource allocation undergoes the same approval

procedure.

6.4 Inter-experiment Secure Communications

Three types of communication channels are notably used in the testbed to fulfill the require-

ments of communication nature. Nodes from the same experiments communicate with each other

via standard or specialized networking protocols without prior approval (called intra-experiment

communication, illustrated as a dotted line in Fig. 6.3). Communication is performed using the IP

address or hostname of the nodes.

The secured communication between the authorization module and any control node (illus-

trated as a solid arrow in Fig. 6.3) is another type of channel. The third type of communication

is between two tuple spaces. Each node (experiment or control) is mapped with a tuple space

(illustrated as a rectangular purple region attached to each node). The details of tuple space com-

munication managed by a Tuple Space Manager (TSM) are described in section 6.5. Fig. 6.3

illustrates the step-by-step process of inter-experiment communication involving different chan-

nels and related components. The steps are explained in the following:

Send data access request(DAR): The data requester node sends the request information to the

control node of its own experiment space (we call it the requester control node) first, leveraging

tuple space communication (step 1 from Fig. 6.3). The data requester does not know which node

has the specific type of data that the requester wants. It only informs its own control node about the

requirements of the specific data type. And in return, it only expects the identity of the data-holder

tuple space so that it can start communication with it. No IP address or machine address of any

node is disclosed in the whole communication process.

45

Figure 6.3: Inter-experiment communication flow diagram.

Broadcast DAR to other control nodes: After receiving the DAR, the control node looks

for the identity information of the requested data type from the past communication history that

is stored in the resource config. A resource config file is maintained at every control node to

provide necessary information about tuple space (TS) identities of experiment nodes it controls,

experiment identities, mapping information between nodes and experiments, type of data each

node holds, past communication history, TS identities of other control nodes, etc. This resource

config file is updated from time to time if any event occurs at its own experiment spaces or other

control nodes so that the config information remains consistent. Resource config files can also be

updated when any previous approval decision is changed. If any approved active tuple space is

found from the history as a data holder, no further approval is necessary. The TS id of the data

46

holder is returned to the requester (go to step 6 as illustrated in Fig. 6.3). But if there is no history

of prior approval of the same DAR, then a broadcast to all the other control nodes takes place (step

2 from Fig. 6.3). It relays the same message of DAR in this broadcasting phase.

Return data/resource availability information: After getting a broadcast DAR from any

other control node, the receiving control node will look for the availability of the data type in its

own resource config file. If there is any experiment node that holds the requested type of data, the

corresponding control node will find that information in its resource config file and return the TS

id of the data holder along with other information (experiment id, control node id, etc.) back to the

requester control node. If a receiving control node finds no data availability of the requested type,

’NOT_AVAILABLE’ is sent back (step 3 from Fig. 6.3).

Send approval request to the authorization module: Now the requester control node has the

information (node TS id, experiment id, etc.) about the data requester and data holder. Using the

secured communication channel already established between the control node and the authorization

module, an approval request is sent to the authorization module to assess whether the requested

data from the data holder can be accessed or not. (step 4 from Fig. 6.3).

Return approval decision: After receiving an approval request from a control node, the autho-

rization module intends to check if the request complies with the access control policies. Details

of the authorization module and access control can be found in section 6.6. The approval decision

is notified to the tuple space manager to update the approved_communication_list. Finally, the

approval decision is sent back to the requester control node (step 5 from Fig. 6.3).

Return TS id to requester: Before passing the approval decision to the data requester node,

the control node stores this information in the resource config file for future use. If the DAR is

approved, the TS id of the data holder node is included in the approval response message. If the

DAR is denied or data is not available, DENIED or NOT_AVAILABLE is included in the approval

response message. No further communication takes place; this flow terminates here.

47

Send data request to data holder: If the DAR is approved, the awaited communication via

tuple space takes place now. First, a data request message is passed from the requester to the holder

via tuple space manager. This message includes the holder’s TS id and data type.

Return result to data requester: In response to the data request sent by the requester, the

requested result is passed from the holder to the requester.

6.5 Testbed Tuple Space Design for Isolated Experiments

The tuple space model provides a mechanism which allows experiment nodes placed in an

isolated environment share data without using any direct communication channel. In the following,

we discuss the tuple space manager, tuple space operations, and tuple space transactions.

6.5.1 Tuple Space Manager-TSM

The TSM is a secured and trusted entity that performs data transfer operations from source tuple

space to destination tuple space. A secured entity protects data from being modified or revealed

to illegitimate subjects. Also, it does not analyze the tuple space content (called tuple) to disclose

data to other entities or to learn more about data for itself. It needs to read a tuple from the sender

tuple space and add it to the receiver tuple space. There is only one global TSM in the proposed

security-focused testbed. The TSM maintains an approved_communication_list that gets updated

by the authorization module from time to time. The list is essential to crosscheck the authorization

status of the incoming request to prevent malicious transactions.

6.5.2 Tuple Space Operation

The proposed framework supports three basic tuple space operations: (i) write, (ii) take, and

(iii) read and described in the following.

Write(tuple): This operation provides the functionality to add a tuple within the mapped tuple

space. It does not modify the tuple space contents. The sender node and the tuple space manager

48

can execute this operation. The sender node uses this to add the tuple into the tuple space it owns.

The TSM executes this operation by adding the tuple in the receiver node’s tuple space.

Take(template tuple): This operation is called to execute an associative search for a tuple that

matches the template. Once found, the tuple is deleted from the space and then returned to the

tuple space owner’s run-time memory. Only tuple space owners can use this function to remove

tuples from their tuple space. The Tuple Space Manager cannot execute this operation because

TSM does not have any rights to remove tuples from any tuple space.

Read(tuple): To read from the sender’s tuple space, the TSM executes the read operation.

This operation gets a tuple back from sender’s tuple space to TSM’s own memory space without

removing from the source tuple space.

6.5.3 Tuple Space Transaction

This section provides the illustration (depicted in Fig. 6.4) of a tuple space transaction for

communication between two isolated nodes. The tuple space manager is the main medium for

passing contents(tuple) from sender tuple space to receiver tuple space. The TSM has access to all

the tuple spaces whereas the nodes can access their respective ones.

Figure 6.4: Tuple space transaction.

49

There are two phases in communication: the request phase and the response phase. In the

request phase, the sender node sends a message to the receiver node. In the response phase, the

receiver node returns a message to the sender node. The returned response can be completely new

information or serve as an acknowledgment for the tuple that has just been received. After sending

the response message, the communication flow is terminated. Both request and response phase

execute the same transaction process to share information which are depicted in the Fig. 6.4. If a

node acts as sender in request phase then it is receiver in the response phase and vice versa.

6.6 Authorization Module (AM)

The authorization Module’s entire structure and functionalities are explored and illustrated in

this section, including the necessary examples. The resources and privilege allocation method are

discussed to construct an isolated space for each experiment.

6.6.1 Experiment Resources and Operations

We need to define the resources required and the operations performed by the experiments. The

authorization module acts as a reference monitor to control the operations of resources requested

by the nodes. An experiment needs multiple hardware and software resources with different priv-

ileges to perform operations to complete the scheduled tasks. The control node is responsible for

identifying and releasing both resources before an experiment. Some of the resources required

by the experimental nodes to complete experiments are network topology configurations, inter-

nal memory, disk space, simulated physical models, attack libraries, PLC program control code,

proprietary information, snapshots, loggers, status logs, tracers, experimental results, and others.

The experiments in this model perform three operations: (i) read operation, (i) write oper-

ation, and (i) execute operation. The read operation accesses various files and resources, such

as configuration files, input data, programs, and so on. Experiments use write operation to write

output results, modify configuration files, adjust input parameters, and so on. Finally, the execute

50

operation allows experiments to run various attack scripts, simulated physical models, and other

processes.

6.6.2 Resources and Privileges Allocation

A control node (CN) determines an experiment’s required resources and privileges. After se-

lecting the needed resources and rights, CN securely sends the list to the authorization module. In

Algorithm 1, the details of resource and privilege allocation processes are given. Both the control

node and the authorization module ensure that no experiment is given root permission or excessive

resources and rights than required. In addition, the control node can terminate an experiment node

after the simulation is completed.

Algorithm 1: Resources and privileges allocation

Input : A list of resources (R) and privileges (P), and experiment id m.

Output : IsolatedNode for the experiment m under control node i.

1 Initialization:

2 R← {R1, R2, R3,Rr},
3 P ← {P1, P2, P3,Pp};
4 CNi → AM ;

5 AM checks resources’ availability and verify resources and privileges legitimacy for the CN;

6 if resource available then

7 AM executes required OS command with R and P ;

8 IsolatedNodei,m is deployed;

9 AM returns a success message to CN with contained id;

10 else

11 AM returns an error message to CN;

12 end if

6.6.3 Relationship between Control Node, Experiments, and Subjects

The distinction between control nodes, experiments, and subjects is fundamental to the autho-

rization module of this work. The relationship between control node, experiments, and subjects is

depicted in Fig. 6.5. Usually, each node can perform three operations in the testbed, but in data

sharing, only read operation is permitted. The other two operations, write and execute, are not

allowed for data sharing.

51

Control node: Every user has one control node, which acts as a single identity in the testbed

environment. An authorized organization has only one control node but multiple control nodes.

Violation of this requirement is often the cause of security violations in the proposed system.

Experiments: Each control node may have several experiments associated with it. On the

other hand, one experiment must not be mapped to more than one control unit. Therefore, each

experiment associated with the control node gains different resources and privileges based on its

functionalities.

Subjects: A subject is a program in the system being executed. An experiment can generally

spawn several subjects, but each subject is associated with only one experiment. A subject runs

with all the privileges of its associated experiment.

Figure 6.5: Relationship between control node, experiments, and subjects.

6.6.4 Object Classification

To maintain data security and privacy, we classify objects(data) into three main categories. The

object classes are the conflict of interest class, agreement class, and open class.

Conflict of interest class: The member objects of this type of class are in a conflict of interest

and cannot be shared among their owner.

52

Agreement class: Objects labelled with this class are in an agreement and can be shared among

the agreement signing parties.

Open class: Object data tagged with open class is for all. Any control node can send requests

to get the data.

6.6.5 Control Node Identification

Each control node is labeled as a member of the conflict of interest class and the agreement

class. The authorization module considers the control node’s identity when making a data-sharing

decision where the sender and receiver are from different control nodes. Experiments or subjects

are not considered. Because experiment nodes from the same control node can share information

without regard to security or policy constraints. We avoid experiments or subjects while the access

control module approves data sharing to prevent this situation. When a control node is in a conflict

of interest class or not in the agreement class, it will not receive data from that class’s members.

6.6.6 Security Policy

In this section, we present some access control policies to ensure inter-experiment communi-

cation and testbed security and privacy. There are mainly two, native owner and foreign owner,

communication scenarios.

Native owner: In this case, we describe data sharing among various experiments when they

are all from the same control node. Every node does not need to access data from every node.

Experiment nodes must ensure data confidentiality. There are two principles when sharing data

among experiments or subjects. Both principles are noted in the following.

Principle 1: An experiment or a subject can not read data from other experiments or subjects

if it violates the confidentiality of the data.

Principle 2: An experiment or a subject can read data from other experiments or subjects if

they do not violate Principle 1.

Foreign owner: When there is a data-sharing request where the requester and data holder are

from different control nodes, in this case, data sharing can be done if there is no conflict of interest

53

among the experiments. If there is a conflict of interest, the authorization module must not approve

data sharing. The conflict of interest issue is raised when the requester and the data holder are from

the same conflict of interest class. Data sharing is also possible if there is an agreement between

the requester and the data holder. Any control node can access the open class data. A control node

puts in a request on behalf of its experiments and subjects. The authorization module depends on

the object class and requester control node identity to make the decision. In the following, there

are three principles for each type of object.

Principle 3: A control node can read an object if they are not in the same conflict of interest

class.

Principle 4: A control node can read an object if they are in the same agreement class.

Principle 5: A control node can read any object if objects are in the open class.

54

Chapter 7

Conclusion

7.1 Lesson Learned

In this thesis, our target was to design and build a security testbed for CPS to adapt to the

new trend of incorporating virtual assets and making the cyber parts accessible for experiments.

Moreover, we wanted to ensure that the components and the experiment are protected from in-

sider threats while collaborative ventures frequently occur. To accomplish these goals, firstly, we

have analyzed the requirements of two categories: general and security-focused. Then, we tried

to identify which supports need to be considered and incorporated into an ideal security-focused

testbed. Our design showed that software-based simulators or digital models of physical com-

ponents integrated with a network simulator leveraging virtualization would give a testbed the

maximum trade-off among the necessary security-focused requirements. Again, as we wanted to

build a testbed that would protect the authenticity and safe execution of the experiments owned

by different organizations, we have incorporated the idea of containerized experiments to provide

isolation.

Most of the simulators are owned by proprietary organizations and are of critical national inter-

est. As a result, one of the significant challenges of integrating a software-based simulator within

a testbed is inadequate access to simulator software. We accessed a Generic Pressurized Water

Reactor simulator fully implemented in software. Nevertheless, these simulators are not designed

to perform security experiments to exploit the vulnerabilities at the cyber layer of the system. So,

we have modified the design of our ideal testbed by integrating a network simulator called GNS3

with the software simulator of the reactor. This integration allows the creation of a parallel world

for the reactor simulator on the GNS3 platform resulting in an exploitable cyber layer that does

not compromise the functionality of the original simulator software. It can be highly scalable and

flexible when the attached simulator changes its configuration or setup or is replaced by a new one.

55

We have implemented the design of the middleware component and the applications for commu-

nication channels required for passing messages between components and in the parallel world.

To address the protection of the security testbed itself, we have designed a framework for

secure communication protocols between isolated spaces dedicated to deploying experiment com-

ponents. As sometimes multiple experiments from different organizations may need to access

each other’s resources to reflect upon a well-planned attack simulation or defense mechanism, a

four-step process has been proposed to provide a secured environment: data request, coordination,

authorization, and collaboration. Furthermore, data transfer via tuple space transaction has been

used to preserve the privacy and anonymity of the resources.

As the modern world will incorporate new devices and components into the CPS in the upcom-

ing days, a thousand combinations of devices and components will interact. Moreover, the idea of

developing digital twins for physical devices is growing increasingly. Therefore, the testbed we

design must have the capability to adapt and integrate with virtual assets or digital components. At

the same time, while testing, maintaining those assets’ privacy, integrity, and confidentiality is also

necessary. Therefore, the proposed testbed’s design and implementation architecture contribute to

the requirement analysis, developing a prototype, and designing a protection framework for a CPS

security testbed.

7.2 Future Work

One of the significant future works would be to design an attack model and deploy it on our

GNS3 platform as a module. As there are many tools (like Wireshark) we can integrate with GNS3,

it will be convenient for researchers to analyze the impact of the attack experiments. Moreover,

We can deploy a data-gathering component into the GNS3 and create a data set to characterize the

behavior of a CPS system. This can eventually help to apply different machine learning models to

predict the vulnerabilities and risk levels or recommend appropriate defense mechanisms.

Another future work can be to build a generic interface inside the middleware component for

integrating any digital twin or virtual component into the testbed. For example, we can plan for

56

including a transformer to turn a digital component into an executable or create an easily extendable

API interface to communicate with the digital twin application. More investigation is required to

choose the most effective way to do that.

57

Bibliography

[1] Jianhua Shi, Jiafu Wan, Hehua Yan, and Hui Suo. A survey of cyber-physical systems. In

2011 international conference on wireless communications and signal processing (WCSP),

pages 1–6. IEEE, 2011.

[2] Ayan Banerjee, Krishna K Venkatasubramanian, Tridib Mukherjee, and Sandeep Kumar S

Gupta. Ensuring safety, security, and sustainability of mission-critical cyber–physical sys-

tems. Proceedings of the IEEE, 100(1):283–299, 2011.

[3] Maria B Line, Inger Anne Tøndel, and Martin G Jaatun. Cyber security challenges in smart

grids. In 2011 2nd IEEE PES international conference and exhibition on innovative smart

grid technologies, pages 1–8. IEEE, 2011.

[4] Seungmin Kim, Gyunyoung Heo, Enrico Zio, Jinsoo Shin, and Jae-gu Song. Cyber attack

taxonomy for digital environment in nuclear power plants. Nuclear Engineering and Tech-

nology, 52(5):995–1001, 2020.

[5] Matrix | MITRE ATT&CK®.

[6] An Analysis of the Actual Status of Recent Cyberattacks on Critical Infrastructures : NEC

Technical Journal | NEC.

[7] Siddharth Sridhar, Adam Hahn, and Manimaran Govindarasu. Cyber–physical system secu-

rity for the electric power grid. Proceedings of the IEEE, 100(1):210–224, 2011.

[8] Abdallah A Smadi, Babatunde Tobi Ajao, Brian K Johnson, Hangtian Lei, Yacine

Chakhchoukh, and Qasem Abu Al-Haija. A comprehensive survey on cyber-physical smart

grid testbed architectures: Requirements and challenges. Electronics, 10(9):1043, 2021.

[9] Hannes Holm, Martin Karresand, Arne Vidström, and Erik Westring. A survey of industrial

control system testbeds. In Nordic Conference on Secure IT Systems, pages 11–26. Springer,

2015.

58

[10] Christos Siaterlis, Andres Perez Garcia, and Béla Genge. On the use of emulab testbeds for

scientifically rigorous experiments. IEEE Communications Surveys & Tutorials, 15(2):929–

942, 2012.

[11] Christos Siaterlis, Bela Genge, and Marc Hohenadel. Epic: A testbed for scientifically rig-

orous cyber-physical security experimentation. IEEE Transactions on Emerging Topics in

Computing, 1(2):319–330, 2013.

[12] Nicholas Carriero and David Gelernter. Linda in context. Communications of the ACM,

32(4):444–458, 1989.

[13] Aditya Ashok, Adam Hahn, and Manimaran Govindarasu. A cyber-physical security testbed

for smart grid: System architecture and studies. In Proceedings of the Seventh Annual Work-

shop on Cyber Security and Information Intelligence Research, pages 1–1, 2011.

[14] Siavash H. Khajavi, Naser Hossein Motlagh, Alireza Jaribion, Liss C. Werner, and Jan Holm-

ström. Digital twin: Vision, benefits, boundaries, and creation for buildings. IEEE Access,

7:147406–147419, 2019.

[15] Marco Bertoni and Alessandro Bertoni. Designing solutions with the product-service systems

digital twin: What is now and what is next? Computers in Industry, 138:103629, 2022.

[16] Lieven Raes, Philippe Michiels, Thomas Adolphi, Chris Tampere, Athanasios Dalianis, Susie

McAleer, and Pavel Kogut. Duet: A framework for building interoperable and trusted digital

twins of smart cities. IEEE Internet Computing, 26(3):43–50, 2022.

[17] Davide Balzarotti, Paolo Costa, and Gian Pietro Picco. The lights tuple space framework and

its customization for context-aware applications. Web Intelligence and Agent Systems: An

International Journal, 5(2):215–231, 2007.

[18] Poul-Henning Kamp and Robert NM Watson. Jails: Confining the omnipotent root. In

Proceedings of the 2nd International SANE Conference, volume 43, page 116, 2000.

59

[19] Pierangela Samarati and Sabrina Capitani de Vimercati. Access control: Policies, models,

and mechanisms. In International School on Foundations of Security Analysis and Design,

pages 137–196. Springer, 2000.

[20] Tamara Becejac, Crystal R. Eppinger, Aditya Ashok, Urmila Agrawal, and James G. O’Brien.

PRIME: a real-time cyber-physical systems testbed: from wide-area monitoring, protection,

and control prototyping to operator training and beyond. IET Cyber-Physical Systems: The-

ory & Applications, 5(2), July 2020. Institution: Pacific Northwest National Lab. (PNNL),

Richland, WA (United States) Number: PNNL-SA-145117 Publisher: Institution of Engi-

neering and Technology (IET).

[21] Mehmet Hazar Cintuglu, Osama A. Mohammed, Kemal Akkaya, and A. Selcuk Uluagac.

A survey on smart grid cyber-physical system testbeds. IEEE Communications Surveys &

Tutorials, 19(1):446–464, 2017.

[22] Ibukun A Oyewumi, Ananth A Jillepalli, Philip Richardson, Mohammad Ashrafuzzaman,

Brian K Johnson, Yacine Chakhchoukh, Michael A Haney, Frederick T Sheldon, and

Daniel Conte de Leon. Isaac: The idaho cps smart grid cybersecurity testbed. In 2019

IEEE Texas Power and Energy Conference (TPEC), pages 1–6. IEEE, 2019.

[23] Ceeman B. Vellaithurai, Saugata S. Biswas, Ren Liu, and Anurag Srivastava. Real Time

Modeling and Simulation of Cyber-Power System. In Siddhartha Kumar Khaitan, James D.

McCalley, and Chen Ching Liu, editors, Cyber Physical Systems Approach to Smart Electric

Power Grid, Power Systems, pages 43–74. Springer, Berlin, Heidelberg, 2015.

[24] Mike Hibler, Robert Ricci, Leigh Stoller, Jonathon Duerig, Shashi Guruprasad, Tim Stack,

Kirk Webb, and Jay Lepreau. Large-scale virtualization in the emulab network testbed. In

2008 USENIX Annual Technical Conference (USENIX ATC 08), 2008.

60

[25] Kirill Belyaev and Indrakshi Ray. Component-oriented access control for deployment of ap-

plication services in containerized environments. In International Conference on Cryptology

and Network Security, pages 383–399. Springer, 2016.

[26] Kirill Belyaev and Indrakshi Ray. On the formalization, design, and implementation of

component-oriented access control in lightweight virtualized server environments. computers

& security, 71:15–35, 2017.

[27] Kenneth Barnes and Briam Johnson. National SCADA Test Bed Substation Automation

Evaluation Report. Technical Report INL/EXT-09-15321, 968658, Idaho National Labora-

tory, October 2009.

[28] Z. Li and R. Kang. Strategy for reliability testing and evaluation of cyber physical systems.

In 2015 IEEE International Conference on Industrial Engineering and Engineering Manage-

ment (IEEM), pages 1001–1006, 2015.

[29] Georgia Koutsandria, Reinhard Gentz, Mahdi Jamei, Anna Scaglione, Sean Peisert, and

Chuck McParland. A real-time testbed environment for cyber-physical security on the power

grid. In Proceedings of the First ACM Workshop on Cyber-Physical Systems-Security and/or

PrivaCy, CPS-SPC ’15, page 67–78, New York, NY, USA, 2015. Association for Computing

Machinery.

[30] Joon Sub Kim, Kyeongho Kim, and Moonsu Jang. Cyber-physical battlefield platform for

large-scale cybersecurity exercises. 2019 11th International Conference on Cyber Conflict

(CyCon), 900:1–19, 2019.

[31] Hannes Holm, Martin Karresand, Arne Vidström, and Erik Westring. A survey of industrial

control system testbeds. In Sonja Buchegger and Mads Dam, editors, Secure IT Systems,

pages 11–26, Cham, 2015. Springer International Publishing.

61

[32] Anton Burtsev, Prashanth Radhakrishnan, Mike Hibler, and Jay Lepreau. Transparent check-

points of closed distributed systems in emulab. In Proceedings of the 4th ACM European

conference on Computer systems, pages 173–186, 2009.

[33] Md Rakibul Hasan Talukder, Md Al Amin, and Indrajit Ray. Protecting cyber-physical sys-

tem testbeds from red-teaming/blue-teaming experiments gone awry. In Information Secu-

rity Practice and Experience: 17th International Conference, ISPEC 2022, Taipei, Taiwan,

November 23–25, 2022, Proceedings, page 140–157, Berlin, Heidelberg, 2022. Springer-

Verlag.

62

Appendix A

Windows Network Configuration

1. Run hdwwiz.exe in Powershell or CMD (Figure A.1)

Figure A.1: Opening hardware wizard on windows: step 1

2. Click Next (Figure A.2)

Figure A.2: Opening hardware wizard on windows: step 2

3. Choose to install hardware manually then click Next (Figure A.3)

4. Choose “Network adapters”, then click Next (Figure A.4)

63

Figure A.3: Manual installation of hardware: step 3

5. Select Microsoft as the manufacturer, and choose the “KM-TEST Loopback Adapter”. Click

Next twice to install the adapter and Finish. (Figure A.5)

6. Find your new adapter in your network adapter settings (Figure A.6)

7. Right click the adapter (Figure A.7) and do the following:

(a) Select properties

(b) Find “Internet Protocol Version 4 (TCP/IPv4)

(c) Select properties

(d) Check “Use the following IP address”

(e) Input an IP address and subnet mask

(f) Click Ok to confirm settings

64

Figure A.4: Choose network adapter as hardware: step 4

Figure A.5: Choose manufacturer and specific network adapter: step 5

65

Figure A.6: Find added network adapter in network settings: step 6

Figure A.7: Configure the adapter with specification of protocols and IP address: step 7

66

Appendix B

VMware Workstation Network Settings

1. Open VMware Workstation.

2. Open the “GNS3 VM” settings. (Figure B.1)

Figure B.1: Opening GNS3 VM settings: step 2

3. Add a new hardware component and select “Network Adapter”. (Figure B.2)

4. Select “Network Adapter 3”, set it to “Bridged” mode, and click “Configure Adapters”.

(Figure B.3)

5. Select the loopback adapter we created in the previous section.(Figure B.4)

67

Figure B.2: Adding new hardware component: step 3

Figure B.3: Setting to ’Bridged’ mode: step 4

Figure B.4: Selecting loopback adapter: step 5

68

Appendix C

GNS3 Configuration

1. Create a new project and wait for both servers to be running.(Figure C.1)

Figure C.1: Creating new GNS3 project: step 1

2. Initialize a Cloud, Router, and PC. Have them run on the VM.(Figure C.2)

Figure C.2: Initializing necessary virtual appliances: step 2

3. Add a link to the cloud using the third network adapter. Then connect all the devices. The

subsequent interfaces do not matter.(Figure C.3)

4. Start the router and open a console.(Figure C.4)

5. Enter the following commands in order:

69

(a) Adding a link to the cloud

(b) Connecting all the devices

Figure C.3: Connecting all the devices via a cloud appliance that works as an interface to connect with the

host machine.

70

Figure C.4: Starting router and opening the console

Important: These commands will differ depending on the router other than specified one

here. These commands are specific to Cisco routers. If anyone would like to follow exactly

as what we have done, we are using the c3600 router which can be found in the github

project10. This is not an official image host, so reliability of using it is not ensured.

(a) show ip int br (This allows you to see the interfaces on the router. We will use

“FastEthernet0/0” like Figure C.5)

Figure C.5: Showing router interfaces

(b) conf t

(c) int fa0/0

(d) ip add 10.1.1.101 255.255.255.0 (This IP is in the range of the loopback

interface as shown by ipconfig in Figure C.6)

10Our github project csugw, https://github.com/rafi075/csugw

71

Figure C.6: Showing ip address

(e) no shut

6. Testing: Now we are able to ping this virtual router from the local computer. Thus connec-

tivity between the host and virtual router is verified. (Figure C.7)

Figure C.7: Verifying the connectivity by Pinging

72

Appendix D

Server-client communication code

D.1 dispatcher-server.py

1 import socket

2 import threading

3

4 # Define the IP address and port number that the server will listen

on→֒

5 SERVER_ADDRESS = ('127.0.0.1', 5000)

6

7 # Define a list to store all connected clients

8 clients = []

9 ins = []

10

11 # Define a function to handle incoming client connections

12 def handle_client(client_socket, client_address):

13 print(f'Client {client_address} connected')

14

15 # Add the client to the list of connected clients

16 clients.append((client_socket, client_address))

17

18 # Continuously read incoming messages from the client

19 while True:

20 data = client_socket.recv(1024).decode()

21 if not data:

22 break

73

23

24 # Parse the command and message from the incoming data

25 command, message = data.split(':', 1)

26

27 # If the command is SEND, relay the message to all other

connected clients→֒

28 if command == 'SEND':

29 for c, addr in clients:

30 if c != client_socket:

31 c.send(f'RECEIVE:{message}'.encode())

32

33 # If the command is SENDTO, find the specified client and

send the message to them→֒

34 elif command == 'SENDTO':

35 to_client_address, message = message.split(':', 1)

36 for c, addr in clients:

37 if addr == to_client_address:

38 c.send(f'RECEIVE:{message}'.encode())

39 break

40

41 # Remove the client from the list of connected clients

42 clients.remove((client_socket, client_address))

43 client_socket.close()

44 print(f'Client {client_address} disconnected')

45

46 def get_client(client_id):

47

48 conn = 0

74

49 addr = 0

50 while True:

51 if(len(clients) >= client_id):

52 conn, addr = clients[client_id - 1]

53 break

54

55 return conn,addr

56

57 def read_config():

58 # using readlines()

59 count = 0

60

61 with open("config.txt") as fp:

62 Lines = fp.readlines()

63 for line in Lines:

64 count += 1

65 print("Line{}: {}".format(count, line.strip()))

66 command,data = line.split(':',1)

67

68 if command == 'SENDTO':

69 client_id,message = data.split(':',1)

70 client_conn,addr = get_client(int(client_id))

71 if client_conn != 0 and addr != 0 :

72 print(f'Send msg {message} to Client {addr}')

73 client_conn.send(f'RECEIVE:{message}'.encode())

74 else:

75 print("client not found")

76 else:

75

77 print("Command is not recognized")

78

79

80

81 # Create a socket for the server and start listening for incoming

connections→֒

82 server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

83 server_socket.bind(SERVER_ADDRESS)

84 server_socket.listen()

85

86 print(f'Server listening on {SERVER_ADDRESS}')

87

88 threading.Thread(target=read_config).start()

89

90 # Continuously accept incoming client connections

91 while True:

92 client_socket, client_address = server_socket.accept()

93 threading.Thread(target=handle_client, args=(client_socket,

client_address)).start()→֒

D.2 node-client.py

1 import socket

2 import threading

3

4 # Define the IP address and port number of the server

5 SERVER_ADDRESS = ('127.0.0.1', 5000)

6

76

7 # Define a function to continuously read user input and send

messages to the server→֒

8 def send_messages(client_socket):

9 while True:

10 message = input()

11 client_socket.send(f'SEND:{message}'.encode())

12

13 # Define a function to continuously read incoming messages from the

server and print them to the console→֒

14 def receive_messages(client_socket):

15 while True:

16 data = client_socket.recv(1024).decode()

17 if not data:

18 break

19 command, message = data.split(':', 1)

20 if command == 'RECEIVE':

21 print(message)

22

23 # Connect to the server and start sending and receiving messages

24 client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

25 client_socket.connect(SERVER_ADDRESS)

26

27 threading.Thread(target=send_messages,

args=(client_socket,)).start()→֒

28 threading.Thread(target=receive_messages,

args=(client_socket,)).start()→֒

77

