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ABSTRACT

Estimation of raindrop size distribution over large spatial and temporal scales has been a long-standing goal
of polarimetric radar. Algorithms to estimate the parameters of a gamma raindrop size distribution model from
polarimetric radar observations of reflectivity, differential reflectivity, and specific differential phase are devel-
oped. Differential reflectivity is the most closely related measurement to a parameter of the drop size distribution,
namely, the drop median diameter (D0). The estimator for D0 as well as other parameters are evaluated in the
presence of radar measurement errors. It is shown that the drop median diameter can be estimated to an accuracy
of 10%, whereas the equivalent intercept parameter can be estimated to an accuracy of 6% in the logarithmic
scale. The estimators for the raindrop size distribution parameters are also evaluated using disdrometer data
based simulations. The disdrometer based evaluations confirm the accuracy of the algorithms developed herein.

1. Introduction

Ever since the introduction of differential reflectivity
(Zdr) measurement, one of the long standing goals of
polarimetric radar has been the estimation of the rain-
drop size distribution (DSD). Seliga and Bringi (1976)
showed that Zdr, for an exponential DSD, is directly
related to the median volume diameter (D0). Careful
intercomparisons between radar measurements of Zdr

and D0 derived from surface disdrometers and airborne
imaging probes have shown that D0 can be estimated
to an accuracy of about 10%–15% (see, for example,
Aydin et al. 1987; Bringi et al. 1998). A general gamma
distribution model was suggested by Ulbrich (1983) to
characterize the natural variation of the DSD. The non-
spherical shape of raindrops results in anisotropic prop-
agation of electromagnetic waves, with a difference in
the propagation constant at horizontal and vertical po-
larization states. The specific differential propagation
phase (Kdp) is a forward scatter measurement (Seliga
and Bringi 1978; Sachidananda and Zrnić 1987) where-
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as the radar reflectivity (Zh) and Zdr are backscatter mea-
surements. The weighting of the DSD by Zdr and Kdp is
controlled by the variation of mean raindrop shape with
size. A combination of the three radar measurements
(Zh, Zdr, and Kdp) can be utilized to estimate the DSD,
specifically the parameters of a parametric form of the
DSD such as the gamma DSD. This paper presents al-
gorithms for the estimation of parameters of a gamma
DSD from polarimetric radar measurements. The paper
is organized as follows. Section 2 describes the raindrop
size distribution and its parameters, whereas section 3
describes the shape of raindrops and its implication for
polarimetric radar measurements. Estimators of the DSD
parameters are presented in section 4, and the impact
of measurement errors on the estimates are discussed in
section 5. Validation of the algorithms using disdrometer
data are presented in section 6. Important results of this
paper are summarized in section 7.

2. Raindrop size distribution

The raindrop size distribution describes the proba-
bility density distribution function of raindrop sizes. In
practice, the normalized histogram of raindrop sizes
(normalized with respect to the total number of observed
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raindrops) converges to the probability density function
of raindrop sizes. A gamma distribution model can ad-
equately describe many of the natural variations in the
shape of the raindrop size distribution (Ulbrich 1983).
The gamma raindrop size distribution can be expressed
as,

23 21N(D) 5 n f (D) (m mm ),c D (1)

where N(D) is the number of raindrops per unit volume
per unit size interval (D to D 1 DD), nc is the number
concentration, and f D(D) is the probability density
function (pdf ). When f D(D) is of the gamma form it is
given by

m11L
2LD mf (D) 5 e D , m . 21, (2)D G(m 1 1)

where L and m are the parameters of the gamma pdf.
Any other gamma form such as the one introduced by
Ulbrich (1983),

m 2LDN(D) 5 N D e ,0 (3)

can be derived from this fundamental notion of raindrop
size distribution. It must be noted that any function used
to describe N(D) when integrated over D must yield the
total number concentration, to qualify as a DSD func-
tion. This property is a direct consequence of the fun-
damental result that any probability density function
must integrate to unity. When m 5 0, the gamma DSD
reduces to the exponential form as N(D) 5 ncLe2LD.
The relation between D0, m, and L is given by (Ulbrich
1983)

LD ù 3.67 1 m,0 (4)

where D0 is the drop median diameter defined as
D `0 1

3 3D N(D) dD 5 D N(D) dD. (5a)E E20 0

Similarly, a mass-weighted mean diameter Dm can be
defined as

4E(D )
D 5 , (5b)m 3E(D )

where E stands for the expected value. Using (4), f D(D),
the gamma pdf described by (2), can be written in terms
of D0 and m as

mm11(3.67 1 m) D
2[(3.671m)(D /D )]0f (D) 5 e . (6)D 1 2G(m 1 1)D D0 0

The above form makes the normalized diameter (D/D0)
as the variable rather than D. Several measurables such
as water content (W) and rainfall rate (R) can be ex-
pressed in terms of the DSD as

p
3W 5 r n E(D ), and (7)w c6

p
3R 5 n E [y(D)D ], (8a)c6

where R is the still-air rainfall rate and y(D) is the terminal
velocity of raindrops (Gunn and Kinzer 1949). The con-
ventional unit of rainfall rate is millimeters per hour. Con-
verting to this unit, rainfall rate is expressed as

23 3 21R 5 0.6p 3 10 n E [y(D)D ] (mm h ), (8b)c

where nc is in cubic millimeters, y(D) in millimeters
per second, and D in millimeters.

In order to compare the pdf of D [or, f D(D)] in the
presence of varying water contents, the concept of scal-
ing the DSD has been used by several authors (Sekhon
and Srivastava 1971; Willis 1984; Testud et al. 2000).
The corresponding form of N(D) can be expressed as

mD D
N(D) 5 N f (m) exp 2(3.67 1 m) , (9)w 1 2 [ ]D D0 0

where Nw is the scaled version of N0 defined in (3):

N0 mN 5 D , and (10a)w 0f (m)
m146 (3.67 1 m)

f (m) 5 · , (10b)
4(3.67) G(m 1 4)

with f (0) 5 1 and f (m) is a unitless function of m. One
interpretation of Nw is that it is the intercept of an equiv-
alent exponential distribution with the same water con-
tent and D0 as the gamma DSD (Bringi and Chandra-
sekar 2001). Thus Nw, D0, and m form the three param-
eters of the gamma DSD.

3. Raindrop shape and implication for
polarimetric radar measurements

The equilibrium shape of raindrops is determined by
a balance of hydrostatic, surface tension, and aerody-
namic forces. The commonly used model for raindrops
assumes oblate spheroidal shapes, with the axis ratio b/
a, where b and a are the semiminor and the semimajor
axis lengths, respectively. Pruppacher and Beard (1970)
give a simple model for the axis ratio (r) based on a
linear fit to wind tunnel data as

r 5 1.03 2 0.062D; 1 # D # 9 mm. (11)

Rotating linear polarization data in heavy rain (Hen-
dry et al. 1987) has indicated that raindrops fall with
the mean orientation of their symmetry axis in the ver-
tical direction. The large swing in the crosspolar power
in their data implies a high degree of orientation of drops
with the standard deviation of canting angles estimated
to be around 68 assuming a Gaussian model. It is rea-
sonable to assume that the standard deviation of canting
angles is in the range 58–108 (Bringi and Chandrasekar
2001).

a. Differential reflectivity

The differential reflectivity can be written as (Seliga
and Bringi 1976)
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E [s (D)]hh10 log 5 10 log (j ), (12)10 10 drE [s (D)]yy

where the symbol E represents expectation and shh and
syy are the cross sections at horizontal and vertical po-
larizations, respectively.

Seliga and Bringi (1976) showed that for an expo-
nential distribution and axis ratio given by (11), Zdr can
be expressed as a function of the median volume di-
ameter D0. This microphysical link between a radar
measurement and a parameter of the DSD is important.
More fundamentally, may be related to the reflec-21j dr

tivity factor–weighted mean of r7/3 (Jameson 1985). For
a more general gamma form, an approximate power-law
fit can be derived assuming 21 # m # 5, 0.5 , D0 ,
2.5 mm, and Nw chosen to be consistent with thunder-
storm rain rates. Using the fit recommended by And-
sager et al. (1999) for the Beard and Chuang (1987)
equilibrium shapes, power-law fits to D0 and Dm can be
derived as

0.485D 5 1.619(Z ) (mm), (13a)0 dr

0.467D 5 1.529(Z ) (mm), (13b)m dr

where Zdr is in decibels and the fits are valid at S-band
frequency (near 3 GHz; Bringi and Chandrasekar 2001).

b. Specific differential phase

The relation between specific differential phase (Kdp)
and the water content and raindrop axis ratio was de-
scribed by Jameson (1985). Following Bringi and Chan-
drasekar (2001) a simple approach based on Rayleigh–
Gans scattering is described here to derive this relation.

The specific differential phase can be expressed as

2p
21K 5 Re[E( f 2 f )] (deg km ), (14)dp h yk0

where k0 is the free space propagation constant, and f h,
f y are the forward scatter amplitudes at horizontal and
vertical polarization, respectively. For Rayleigh–Gans
scattering, (14) reduces to

 pk e 2 10 r 3K 5 Re E D dp  12 1
 1 1 (1 2 l )(e 2 1) z r2 

e 2 1 r 2 dD , (15a) 1 1 l (e 2 1)z r  
 

where er is the dielectric constant and the depolarizing
factor lz is given by

21 1 f 1
21l 5 (1 2 tan f ), and (15b)z 2f f

1
2f 5 2 1. (15c)

2r

The above expectation can be substantially simplified
by recognizing that

 e 2 1 e 2 1r r Re 2
 1 1 1 l (e 2 1)z r1 1 (1 2 l )(e 2 1) z r2 

ù c(1 2 r), (16)

where c is approximately constant varying between 3.3
and 4.2 with r from 1 to 0.5. This range of c is valid
for er of water at microwave frequencies in the range
3–30 GHz. Substituting (16) in (15a) results in

pk c0 3K 5 D (1 2 r)N(D) dD (17a)dp E12

p c p
35 3 r D (1 2 r)N(D) dD (17b)E wl r 6w

3pcW E(rD )
5 1 2 , (17c)

3[ ]lr E(D )w

where W is the rainwater content, rw is the water density,
E stands for expectation over the DSD, and l is the
wavelength. The ratio of expectations in (17c) can be
defined as the mass-weighted mean axis ratio . Inrm

terms of conventional units for W in grams per cubic
meters, rw 5 1 g cm23, and l in meters, (17c) can be
reduced to

180
23 21K 5 3 10 cW(1 2 r ) (deg km ), (18)dp m1 2l

where c ù 3.75 is both dimensionless and independent
of wavelength. This result links the specific differential
phase with parameters of the DSD (Jameson 1985). If
the equilibrium axis ratio model given in (11) is used
in (18) then Kdp is given by

180
23 21K 5 3 10 cW(0.062)D (deg km ). (19)dp m1 2l

Thus, Kdp is related to the product of Dm and water
content. Though the above result was obtained using
the Rayleigh–Gans approximation, it is valid up to 13
GHz (Bringi and Chandrasekar 2001).

c. Mean raindrop shape derived from polarimetric
radar measurements

Field studies of Tokay and Beard (1996) indicate that
raindrops from 1 to 4 mm oscillate. Andsager et al.
(1999) show that oscillations result in an upward shift
of the mean axis ratio versus diameter curve, specially
in the 1- to 4-mm range. Gorgucci et al. (2000) assumed
a simple linear model for axis ratio versus size of the
form

r 5 1 2 bD (20)
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and derived radar-based estimators of b. They also
showed that b decreases slightly with increasing re-
flectivity (or, on the average, the axis ratio is smaller
than the equilibrium axis ratio) perhaps indicating rain-
drop oscillations.

It was shown in section 3a that is related to the21j dr

reflectivity weighted axis ratio. Similar dependence on
Kdp can be derived from (18). Let p(r) be the probability
density function of the axis ratio for a given diameter.
The expression for Kdp can be generalized as (Bringi
and Chandrasekar 2001)

2pc*
3K 5 D N(D) (1 2 r)p(r) dr dD (21)dp E Ek0

2pc*
35 D N(D)[1 2 E(r)] dD, (22)Ek0

where E(r) is the mean value of r, and c* is a constant.
The functional dependence of E(r) versus D may be
modeled as in (20). Using the linear model in (20),
Gorgucci et al. (2000) showed the variations of Zdr and
Kdp with respect to b, and in turn derived an estimator
for b based on polarimetric radar measurements. This
can be used subsequently in algorithms relating Zdr and
Kdp to the parameters of the DSD, which gives rise to
a methodology for estimating the gamma DSD param-
eters based on radar measurements.

4. Estimators of the gamma DSD parameters

Seliga and Bringi (1976) showed that for an expo-
nential distribution, the two parameters of the DSD,
namely Nw and D0, can be estimated using Zdr and Zh.
They used a two-step procedure where they estimated
D0 using an equilibrium raindrop shape model and sub-
sequently used that in the expression for Zh to estimate
Nw. This procedure can essentially be applied for a gam-
ma DSD, and generalized to account for raindrop os-
cillations using the linear model in (20). The procedure
for estimating the gamma DSD parameters is as follows:
first, estimate b using the algorithm described by Gor-
gucci et al. (2000) and, subsequently, estimate D0, Nw,
and m, recognizing the right b value.

a. Estimation of D0

It was noted in section 3a that D0 can be estimated
from Zdr as a simple power-law expression (13a). This
parameterization was based on the Beard and Chuang
(1987) equilibrium axis ratios and essentially corre-
sponds to a fixed equivalent b. Gorgucci et al. (1994)
obtained approximate parameterizations for Zh and Zy

of the form
ahD0Z 5 c g (m)N , (23a)h h h 01 23.67 1 m

ayD0Z 5 c g (m)N , (23b)y y y 01 23.67 1 m

where ch, cy , gh(m), gy (m), ah, and ay are constants that
depend on h and y polarizations. From the above and
with some modest algebra, it can be shown that a pa-
rameterization for D0 can be pursued of the form

b cˆ 1 1D 5 a Z (j ) ,0 1 h dr (24)

where jdr 5 10 is the differential reflectivity in linear0.1Zdr

scale, and Zh is the reflectivity factor at horizontal po-
larization (in mm6 m23). Though the above parameter-
ization form was obtained from the approximation in
(23), the coefficients in (24) can be derived from the
simulation of gamma DSDs directly as follows. Once
the gamma DSD is given in the form in (9), it is straight-
forward to compute radar parameters such as Zh, Zdr,
and Kdp. The mean axis ratio versus D relation is mod-
eled by (20). Under these conditions and at a temper-
ature of 208, Zh, Zdr, and Kdp are computed for widely
varying DSD by randomly varying Nw, D0, and m over
the following ranges:

3 5 21 2310 # N # 10 (mm m ), (25a)w

0.5 # D # 3.5 (mm), (25b)0

21 # m # 5, (25c)

with the constraint R , 300 mm h21. While D0 and m
are varied randomly over their respective ranges,
log10Nw is randomly varied over its range. This range
falls within the range of parameters suggested by Ul-
brich (1983). Once Zh, Zdr, and Kdp values are simulated,
a nonlinear regression analysis is performed to estimate
the coefficients a1, b1, c1. Though these coefficients are
accurate for a single b, c1 changes significantly with b.
Figure 1 shows the plot of the coefficients a1, b1, c1 as
a function of b to demonstrate the sensitivity. This var-
iation of c1 with b can be further parameterized by fitting
power-law expressions. These coefficients are (valid for
S band)

a 5 0.56, (26a)1

b 5 0.064, (26b)1

21.42c 5 0.024b . (26c)1

In summary, D0 can be estimated by first estimating b
using the approach of Gorgucci et al. (2000) as

20.365 0.380 0.965 21b 5 2.08Z K j (mm ), (27)h dp dr

and then using coefficients (26) in (24). For the equi-
librium axis ratios (24) reduces to

0.064 1.245D̂ 5 0.56 Z j (mm),0 h dr (28a)

whereas, when b 5 0.0475 (typical for tropical rain,
discussed in section 6),

0.064 1.817D̂ 5 0.56 Z j (mm).0 h dr (28b)

Simulations can also be utilized to evaluate the per-
formance of the estimator of D0 in (24). Figure 2a shows
a scatterplot of D̂0 versus true D0, for widely varying
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FIG. 1. The coefficients a1, b1, c1 of D0(Zh, Zdr) algorithm given by
(24) as a function of b.

FIG. 2. (a) Scatterplot of D0(Zh, Zdr) vs the true value of D0 for widely varying DSD. (b) Normalized standard deviation (NSD) in the
estimates of D0 as a function of the true value of D0.

b, and gamma DSD parameters as given by (25). Quan-
titative analysis of the scatter gives a correlation coef-
ficient of 0.963. It can be seen from Fig. 2a that D0 is
estimated fairly well with negligible bias over a wide
range. Figure 2b shows the normalized standard devi-
ation (NSD) of D̂0 as a function of D0, where NSD is
defined as

1/2ˆ ˆ[var(D )] SD(D )0 0NSD 5 5 , (29)
D D0 0

where SD indicates standard deviation. Figure 2b shows
that D0 can be estimated to an accuracy of about 10%
when D0 . 1 mm. A similar estimate of D0 can be
derived using Kdp and Zdr as

b cˆ 2 2D 5 a K (j ) (mm),0 2 dp dr (30)

where

20.34a 5 0.41b , (31a)2

b 5 0.076, (31b)2

20.97c 5 0.097b . (31c)2

This estimator is similar to the estimator in (24) except
that Kdp estimates are difficult to obtain at low rain rates.
On the other hand, this estimator is immune to variations
in absolute calibration of the radar system. Error anal-
ysis of the estimator given by (30) yields a correlation
coefficient of 0.963. The normalized standard deviation
of the estimate of D0 given (30) is also shown in Fig.
2b. It can be seen that in the absence of any measurement
errors these two estimates are comparable. For equilib-
rium axis ratios this estimator for D0 reduces to

0.076 1.439D̂ 5 1.055 K j (mm),0 dp dr (32a)

whereas, for tropical rain with b ù 0.0475 (discussed
in section 6),

0.076 1.864D̂ 5 1.155 K j (mm).0 dp dr (32b)
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FIG. 3. (a) Scatterplot of log10Nw(Zh, Zdr) vs the true value of the log10Nw for widely varying DSD. (b) Normalized standard deviation in
the estimates of log10Nw, as a function of log10Nw.

b. Estimation of Nw

Once D0 is estimated, Nw can be easily estimated
using one of the moments of the DSD such as Zh or
Kdp. For example, it was shown in (19) that Kdp is pro-
portional to the product of W and Dm (or approximately
D0); Zh can be written in terms of the gamma DSD
parameters as (see also Ulbrich and Atlas 1998)

Zh 75 F (m)D , (33a)z 0Nw

where

f (m)G(7 1 m)
F (m) 5 . (33b)z 71m(3.67 1 m)

For an exponential distribution (m 5 0),
7Z (3.67) Zh h 21 23N 5 5 12.45 (mm m ). (33c)w 7 7D 6! D0 0

Thus it can be seen that Nw can be estimated in terms
of D0. However, the estimate of D0 can be obtained in
terms of Zh and Zdr (or Kdp and Zdr). Therefore, a direct
estimate of Nw can be pursued of the form

b c3 3log (N ) 5 a Z j .10 w 3 h dr (34)

The variability of a3, b3, c3 can be parameterized in
terms of b as

a 5 3.29, (35a)3

b 5 0.058, (35b)3

21.389c 5 20.023b . (35c)3

In summary, the estimator for Nw is obtained as follows.
Using Zh, Zdr, and Kdp, first estimate b as given in (27).
Subsequently, calculate the coefficients in (35) and use
in (34) to estimate Nw. Figure 3a shows a scatterplot of
log10N̂w versus true log10Nw, where log10N̂w is estimated
using (34). It can be seen from Fig. 3a that log10N̂w is
estimated fairly well. Quantitative analysis of the scatter
yields a correlation coefficient of 0.831. Figure 3b
shows the normalized standard deviation of log10Nw as
a function of log10Nw. It can be seen, from Fig. 3b, that
log10Nw is estimated to a normalized standard deviation
of better than 7% when log10Nw . 3.5. Note that due
to the wide variability of Nw, log10Nw is the preferred
scale of comparison (similar to dB scale for reflectivity).
For equilibrium axis ratios, (34) reduces to

0.058 21.094ˆlog N 5 3.29 Z j ,10 w h dr (36a)

whereas for tropical rain with b ù 0.0475 (discussed
in section 6)

0.058 21.585log N 5 3.29 Z j .10 w h dr (36b)

Similarly, another estimate of Nw can be derived using
Kdp and Zdr as

b c4 4log N 5 a K (j ) .10 w 4 dp dr (37)

This variability of a4, b4, c4 can be parameterized in
terms of b as

a 5 5.99, (37a)4

0.26b 5 0.133b , (37b)4

21.16c 5 20.042b . (37c)4

For equilibrium axis ratios, (37) reduces to
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FIG. 4. (a) Scatterplot of the estimates of m, using Eq. (39) (under the assumption that D0 is known), vs m. (b) Standard deviation in the
estimates of m (under the assumption that D0 is known), as a function of m.

0.065 21.057ˆlog N 5 5.99K j , (38a)10 w dp dr

whereas for tropical rain (b ù 0.0475)
0.06 21.44ˆlog N 5 5.99K j .10 w dp dr (38b)

The normalized standard deviation in the estimate of
log10Nw given by (37) is also shown in Fig. 3b. It can
be seen from Fig. 3b that the two estimators for log10Nw

are comparable in the absence of the measurement er-
rors.

c. Parameterization of m

The parameter m describes the overall shape of the
distribution. Once D0 is estimated, m can be estimated
from the following parameterization, which was con-
structed empirically as

b5a D5 0 d5m̂ 5 2 c (j ) . (39)5 dr(j 2 1)dr

The variability of a5, b5, c5, and d5 can be parameterized
in terms of b as

1.89a 5 200b , (40a)5

0.039b 5 2.23b , (40b)5

20.046c 5 3.16b , (40c)5

20.355d 5 0.374b ; (40d)5

D0 calculated from either (24) or (30) can be utilized
in (39) to estimate m. Figure 4a shows the scatterplot
of given by (39) versus m under the assumption thatm̂
D0 is known. The results of Fig. 4a indicate that m can

be parameterized of the form given by (39) (though it
appears complicated). Figure 4b shows the correspond-
ing standard deviation in the estimate of , which ism̂
about 0.3. However, in practice D0 has to be estimated
using (24) or (30), using Zh, Zdr, and Kdp. Estimating
m under such conditions will result in higher error than
that projected by Fig. 4b. Estimating m accurately under
practical conditions, especially in the presence of mea-
surement errors is very difficult using the procedures
discussed here.

5. Impact of measurement error on the estimates
of D0 and Nw

Estimators of D0 given by (24) and (30) as well as
Nw given by (34) and (37) use measurements of Zh, Zdr,
and Kdp. Any error in the measurement of these three
parameters will directly translate into errors in the es-
timates of D0 and Nw. The three measurements Zh, Zdr,
and Kdp have completely different error structures.

The Zh is based on absolute power measurement and
has a typical accuracy of 1 dB. The Zdr is a relative
power measurement that can be estimated to an accuracy
of about 0.2 dB. The slope of the range profile of the
differential propagation phase Fdp is Kdp, which can be
estimated to an accuracy of a few degrees. The subse-
quent estimate of Kdp depends on the procedure used to
compute the range derivative of Fdp such as a simple
finite-difference scheme or a least squares fit. Using a
least squares estimate of the Fdp profile, the standard
deviation of Kdp can be expressed as (Gorgucci et al.
1999)
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FIG. 5. Normalized standard deviation in the estimates of D0 as a
function of D0 in the presence of radar measurement errors.

FIG. 6. Normalized standard deviation in the estimates of log10Nw as
a function of log10Nw in the presence of radar measurement errors.

s(F ) Ndps(K ) 5 Ï3 , (41)dp !NDr (N 2 1)(N 1 1)

where Dr is the range resolution of the Fdp estimate and
N is the number of range samples along the path. For
a typical 150-m range spacing, and with 2.58 accuracy
of Fdp, Kdp can be estimated over a path of 3 km, with
a standard error of 0.328 km21.

The measurement errors of Zh, Zdr, and Kdp are nearly
independent. In the following, simulations are used to
quantify the error structure of the estimates of D0 and
Nw. The simulation is done as follows. For each gamma
DSD the corresponding Zh, Zdr, and Kdp are computed.
The random measurement errors are simulated using the
procedure described in Chandrasekar et al. (1986). The
principal parameters of the simulation are as follows:
1) wavelength l 5 11 cm; 2) pulse repetition time (PRT)
1 5 ms; 3) number of sample pairs used in the estimates
is 64; 4) Doppler velocity spectrum width sy 5 2 m
s21; 5) copolar correlation between horizontally and ver-
tically polarized signals rhy 5 0.99; 6) range sample
spacing is 150 m; and 7) Kdp is estimated as a least
squares fit over a path consisting of 50 range samples.
Subsequently, estimates of D0 and Nw are obtained using
the simulated measurements of Zh, Zdr, and Kdp. There
are some practical issues associated with the estimation
of D0 and Nw from radar measurements (or simulated
radar measurements). At low rain rates, Kdp is small,
and in the presence of measurement errors, Kdp estimates
could be very small (fluctuating around zero). Under
this condition (say, when Kdp , 0.2 deg km21), (27)
cannot be used to estimate b. Therefore, when Kdp is
small the following procedure is adopted: whenever K̂dp

, 0.28 km21 the equilibrium model for axis ratios are

assumed and (28a) and (36a) are used for estimating D0

and Nw, respectively. It can be noted that (13a) also
could be used for estimating D0, followed by either
(33c) or (36b) for Nw. In light rain all these algorithms
provide similar results for estimates of Nw and D0.

The normalized standard deviation in the estimates
of D0 and Nw including the effect of measurement error
are evaluated and shown in Figs. 5 and 6, respectively.
Figure 5 shows the NSD in the estimates of D0 given
by (24) and (30). Comparing Fig. 5 to Fig. 2b it can be
seen that in general, there is about a 10% increase in
the NSD of D0 estimate, computed from (24), due to
measurement error. The NSD of D0 estimate from (30)
gets worse for smaller D0 primarily due to the error in
Kdp. The NSD of the Nw estimates, given by (34) and
(37) in the presence of measurement errors, are shown
in Fig. 6. Again comparing these to the NSD compu-
tations without measurement error (Fig. 3b), a 4% to
16% increase is noted depending on the value of Nw.
For an Nw value of 8000 mm21 m23 the NSD of log10Nw

is about 12% in the presence of measurement errors.
Once again the estimate of log10Nw from (37) has higher
standard deviation when Nw , 20 000 mm21 m23. Thus,
D0 and Nw can be estimated fairly well from radar mea-
surements at least for convective rainfall with R $ 5–
10 mm h21. These errors can be further reduced using
other techniques such as spatial averaging whenever
possible, which may be especially useful for stratiform
rain. The following section presents evaluation of the
algorithms developed here using disdrometer observa-
tions.

6. Evaluation of the algorithms using disdrometer
data

The algorithms developed in this paper to estimate
D0 and Nw are applied to data collected with a J–W
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FIG. 7. (a) Scatterplot of the estimate of D0 computed from simulations of Zh, Zdr, and Kdp, vs the direct estimate of D0 for DSD obtained
from a disdrometer located near Darwin, Australia. There are 2159 two-min DSD samples from the disdrometer. (b) Normalized standard
deviation in the estimate of D0, computed from simulations of Zh, Zdr, and Kdp, vs the direct estimate of D0 for DSD obtained from a
disdrometer located near Darwin, Australia.

impact disdrometer (Joss and Waldvogel 1967) during
a rainfall season (covering about 3 months) from Dar-
win, Australia. This dataset was collected by the Bureau
of Meteorology Research Center (BMRC) and includes
a variety of rainfall types from a tropical regime with
rain rates between 1 and 150 mm h21. The disdrometer
data consists of measurements of N(D) in discrete in-
tervals of DD at 30-s intervals, which are subsequently
averaged over 2 min. While several methods are avail-
able to fit the measured N(D) to a gamma form (e.g.,
Willis 1984), the method used here is based on Bringi
and Chandrasekar (2001). First, Dm is estimated using
the definition in (5b), that is, as a ratio of the fourth to
third moments of the measured N(D). Next the water
content W is estimated from the definition in (7). The
parameter Nw in (9) is then calculated as the intercept
of the equivalent exponential DSD that has the same W
and Dm as the measured N(D), as

4 34 10 W
21 23N 5 (mm m ) (42)w 41 2pr Dw m

(where W is in g cm23, Dm is in mm, and the water
density rw is in g cm23). Finally, the parameter m is
estimated by minimizing the absolute deviation between
observed log10N(D) and that given by (9). Here, D0 is
estimated from Dm as (Ulbrich 1983)

(3.67 1 m)
D 5 D . (43)0 m (4 1 m)

Once the set of (Nw, D0, m) parameters are obtained,

the radar observables Zh, Zdr, and Kdp are simulated
based on the following assumptions:

1) axis ratio versus D relation based on the fit proposed
by Andsager et al. (1999) for D up to 4 mm; beyond
4 mm, the equilibrium axis ratios of Beard and
Chuang (1987) are used;

2) Gaussian canting angle distribution with mean of 08
and standard deviation 108; and

3) truncation of the gamma DSD at Dmax 5 3.5 Dm [see
Ulbrich and Atlas (1998) for a discussion of the drop
truncation of the DSD].

The simulated set of radar observables (Zh, Zdr, and
Kdp) when used in (27) gives an ‘‘effective’’ b of 0.0475
(for comparison, the equilibrium b is 0.062).

Note that the algorithms for D0 and Nw are constructed
to be insensitive to the actual value of b, so that the
details of the assumptions used in simulating the set of
radar observables are not of particular relevance, and
this fact is indeed the power of the proposed D0 and Nw

algorithms in (24), (30), (34), and (37). In order to
evaluate these algorithms using disdrometer mea-
surements, the simulated values of Zh , Zdr , and Kdp

are used in (24), (34), and (39) to calculate D̂ 0 , N̂w ,
and , which are then compared against D 0 , Nw , andm̂
m estimated by gamma fits to the set of measured
N(D ). Once again, to be consistent when Kdp , 0.28
km21, the estimates are computed using the practical
approximation discussed in section 5. Figure 7a shows
the D0 comparisons while Fig. 7b shows the NSD. Note
that the D̂0 algorithm can retrieve the ‘‘true’’ D0 quite
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FIG. 8. (a) Scatterplot of log10Nw(Zh, Zdr), vs the direct estimate of log10Nw for DSD obtained from a disdrometer located near Darwin,
Australia. (b) Normalized standard deviation of log10Nw(Zh, Zdr), vs the direct estimate of log10Nw for DSD obtained from a disdrometer
located near Darwin, Australia.

FIG. 9. (a) Scatterplot of the estimates of m, vs the direct estimate of m for DSD obtained from a disdrometer located near Darwin, Australia.
(b) Standard deviation in the estimates of m as a function of the direct estimate of m for DSD obtained from a disdrometer located near
Darwin, Australia.

accurately (NSD , 7%) especially for D0 . 1 mm. As
expected the D0 estimates get very accurate for higher
values. The log10(Nw) comparison are shown in Fig. 8a,
while Fig. 8b shows the NSD. The scatter in Fig. 8a
shows that the accuracy in the retrieval of log10Nw is

quite high (,5%) for Nw . 1000 mm21 m23 (for ref-
erence, the Marshall–Palmer value for Nw is 8000 mm21

m23). Figure 9a shows the m comparison, while Fig. 9b
shows the corresponding standard deviation. The results
of Fig. 9 show that it is difficult to retrieve m with any
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reasonable accuracy with the current algorithms, though
it may be possible to distinguish between certain ranges
of m, for example, m 5 0 as opposed to m . 5, which
may be sufficient in practice.

7. Summary and conclusions

One of the long-standing goals of polarimetric radar
has been the estimation of the parameters of the raindrop
size distribution. Estimators for the parameters of a
three-parameter gamma model, namely D0, Nw, and m,
are developed in this paper based on the radar obser-
vations Zh, Zdr, and Kdp. The behavior of the three radar
observations Zh, Zdr, and Kdp are influenced by the un-
derlying DSD, and the mean shape of raindrops. Re-
flectivity Zdr is proportional to the reflectivity-weighted
axis ratio, whereas Kdp is proportional to the volume-
weighted deviation of the axis ratio from unity. In ad-
dition, reflectivity is proportional to the sixth moment
of the DSD, with corresponding variability due to po-
larization. Thus, the different polarimetric radar obser-
vations weight the DSD differently. It should be noted
that the DSD estimates computed here correspond to
radar measurements from the radar resolution volume.
Among the three measurements (Zh, Zdr, and Kdp), Zdr

is the most closely related to a parameter of the DSD,
namely D0. Gorgucci et al. (2000) described a procedure
to estimate the mean shape–size relation of raindrops
based on a simple linear model. Therefore, after the
prevailing shape–size relation is established, Zdr can be
used to estimate D0 directly. This concept is imple-
mented in this paper as an algorithm to estimate D0

from Zh, Zdr, and Kdp. Statistical analysis of the estimator
of D0 indicates that it can be estimated to an accuracy
of 10% when D0 is 2 mm (and similar accuracies at the
other D0 values). Once D0 is estimated, other measure-
ments such as Zh or Kdp can be used to estimate Nw, to
a normalized standard deviation of about 6.5% when
Nw 5 8000 mm21 m23, and similar order at the other
values. The estimation of m is not easy because of the
least influence of this parameter on the three measure-
ments Zh, Zdr, and Kdp. Therefore, the parametric esti-
mates of m derived are not as accurate. Measurement
errors in Zh, Zdr, and Kdp play a key role in the final
accuracy of DSD estimates. Reflectivities Zh and Zdr are
based on backscatter power measurement whereas Kdp

is a forward scatter phase measurement. In addition, Zdr

is a differential power measurement between two cor-
related signals, and can be measured accurately. This
high degree of accuracy in Zdr translates to high accuracy
in D0. However, to estimate the prevailing mean shape–
size relation, Kdp is needed that is relatively noisy at
low rainrates. A hybrid approach is implemented in this
paper such that when Kdp # 0.2 deg km21 the equilib-
rium shape model is used to estimate D0. This procedure
yields estimates of D0 to an accuracy of the order of
15%. Similarly, log10Nw can be estimated in the presence
of measurement error to an accuracy of 15% when Nw

5 8000 mm21 m23. This accuracy deteriorates to about
20% when Nw is of the order 1000 mm21 m23 but im-
proves to 10% if Nw is of the order 40 000 mm21 m23.
At low rainrates the best estimate of D0 or Nw is still
the original estimates by Seliga and Bringi (1976). At
low rainrates accurate estimates of Zdr can be obtained
by doing sufficient areal averaging, which can then be
used in (13a) to estimate D0 and a subsequent expo-
nential distribution algorithm given by (33c) to estimate
Nw. In the presence of measurement error, m is difficult
to estimate using the procedure described here in a
meaningful manner. However, it may be possible to dis-
tinguish between m ø 0 versus m . 5, which may be
sufficient in practice. The algorithms developed here
were applied to one rainy season of disdrometer data
collected in Darwin, Australia. The disdrometer analysis
indicates that the algorithms work fairly well for the
estimation of D0 and Nw. In summary, the algorithms
presented in this paper can be used to estimate the pa-
rameters of the raindrop size distribution, from polari-
metric radar data at a frequency near 3 GHz (S band).
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