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ABSTRACT

ANALYSIS OF STRUCTURED DATA AND BIG DATA

WITH APPLICATION TO NEUROSCIENCE

Neuroscience research leads to a remarkable set of statistical challenges, many of them due to

the complexity of the brain, its intricate structure and dynamical, non-linear, often non-stationary

behavior. The challenge of modeling brain functions is magnified by the quantity and inhomo-

geneity of data produced by scientific studies. Here we show how to take advantage of advances

in distributed and parallel computing to mitigate memory and processor constraints and develop

models of neural components and neural dynamics.

First we consider the problem of function estimation and selection in time-series functional

dynamical models. Our motivating application is on the point-process spiking activities recorded

from the brain, which poses major computational challenges for modeling even moderately com-

plex brain functionality. We present a big data approach to the identification of sparse nonlinear

dynamical systems using generalized Volterra kernels and their approximation using B-spline basis

functions. The performance of the proposed method is demonstrated in experimental studies.

We also consider a set of unlabeled tree objects with topological and geometric properties.

For each data object, two curve representations are developed to characterize its topological and

geometric aspects. We further define the notions of topological and geometric medians as well

as quantiles based on both representations. In addition, we take a novel approach to define the

Pareto medians and quantiles through a multi-objective optimization problem. In particular,

we study two different objective functions which measure the topological variation and geometric

variation respectively. Analytical solutions are provided for topological and geometric medians and
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quantiles, and in general, for Pareto medians and quantiles the genetic algorithm is implemented.

The proposed methods are applied to analyze a data set of pyramidal neurons.
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CHAPTER 1

Introduction

1.1 Background

Statistical analysis has been an integral part of neuroscience ever since the discovery of the

stochastic nature of neural responses. Scientists were using electrodes to detect neural action

potentials, also referred to as neural spikes, in the brains of animals as early as the 1950s. At

the time, the dominating theories of neural activity were deterministic, but experiments showed

variability in the response when the stimulus was held constant, and random spikes in the absence

of any stimuli. See Stein [1965] for a theoretical analysis of that variability, and Harrison et al.

[2013] for a recent review of statistical modeling of variability and its counterpart synchrony,

detected in various parts of the nervous system.

Neuroscience research generates a great deal of public interest, from the dynamics of learning

and memory formation to the recognition and diagnosis of brain diseases like autism, depression

and Alzheimer’s disease. These and many other goals were behind the recent BRAIN initia-

tive (Brain Research through Advancing Innovative Neurotechnologies), a governmental program

funding and encouraging interdisciplinary effort to provide measurable progress in brain science.

Statistics plays an important part in that effort, which was clearly and eloquently discussed in

an ASA white paper [ASA, 2014]. The primary statistical tasks will naturally include building

models and quantifying uncertainty. Challenges are numerous, especially with regard to account-

ing for complex, structured data, spatio-temporal effects, missing or incomplete data, variations

between species, genders, brain regions, etc. Because of the sheer quantity of data produced

by neuroscience research, the analysis often enters the realm of big data, where many classical

methods become impractical due to memory or time constraints; see Fan et al. [2014] for a recent

review of big data challenges in statistics.
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The brain is a source of big data due to its massive structure comprised of billions of neural

cells and trillions of connections, but in reality, the brain’s structure is not static. In fact, it is

continuously evolving with changes driven by complex dynamic behavior. The behavior and the

structure, two important aspects of the brain, are interconnected with one impacting the other.

So far we are lacking sufficient quantities of data that would combine these characteristics, but

the potential for future research is enormous.

The dynamic aspects of the brain include the exchange of electric signals (action potentials)

between neural cells. Neurons typically consist of a soma, an axon and one or more types of

dendrites; see Figure 3.1 for an example of a neuron and its components. Dendritic structures

of neurons are responsible for receiving signals from other cells, whereas an axon carries the

signal outside of the cell. The history of a single neuron’s firings is often encoded as a spike

train. Analysis of neural spike trains is at the core of much contemporary neuroscience research.

Researchers model output neural spikes based on the inputs to understand the behavior of neurons

in various regions of the brain, e.g., a frequently modeled brain region is the hippocampus, an

area involved in learning and memory formation. The dependency between inputs and outputs

is non-linear, temporal, and often non-stationary. In fact, the spatio-temporal patterns of neural

firings are believed to be a part of information encoding in the brain.

There are many approaches to the analysis of spike trains, each with numerous examples in

the literature, e.g., Bayesian analysis [Archer et al., 2013], firing intensity estimation with a Cox

proportional hazard model [Brown et al., 2002, Plesser and Gerstner, 2000], Artificial Neural

Networks based model [Maass, 1997], and a logistic model with generalized Volterra kernels [Song

et al., 2007, 2013]. Each model has been useful in answering important research questions, but

each also comes with challenges and shortcomings. One of the major challenges is dimensionality.

Usually, output neural spikes depend not just on current but also past input observations, and

system memory is large relative to the duration of a spike. These assumptions, together with
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complex interactions between inputs, can lead to the estimation of thousands of parameters even

for a system with a relatively small number of inputs. One of the contributions of this dissertation

is presenting a strategy for fitting sparse dynamical models to neural data using appropriate

optimization methods, approximations, and parallel computing.

The brain can be viewed as a complex network with a small world architecture. The connec-

tions between cells are not observed directly, but can be modeled based on the analysis of spike

train firings. A cell’s propensity to form these connections has also been of interest to scientists.

The more complex the dendritic structure, the more signals a cell can potentially receive and pro-

cess [Mel, 1999]. As early as the nineteenth century, scientists observed a correlation between the

diversity of neural dendritic structures and the complexity of the entire organism; see Ramón y

Cajal [1995] for a detailed study of the nervous systems of vertebrates. The heterogeneity of

dendritic structures has also been associated with learning capabilities. Some early methods to

estimate the density of dendritic arborizations included the counting of dendritic segments and

the calculation of a fractal dimension [Fiala and Harris, 1999]. Dendritic structures can be mod-

eled as trees, often as binary trees. Trees are complex, extremely non-Euclidean structures, and

classical statistical tools are often not sufficient to describe and quantify them. Due to the het-

erogeneity encountered in the real biological tree-structured data, it is often desirable to compare

not just the mean structures of samples, but also objects representing different quantiles, e.g.,

10th or 90th, of the corresponding distributions. For such comparisons to be possible, a notion

of a quantile of tree-structured data is required. A space of complex data lacks a natural order,

just like multivariate and functional data. In the analysis of multivariate and functional data,

the simplicial depth [Liu, 1990] and norm minimization [Serfling, 2002, Walter, 2011] have been

applied to define analogs of the order statistic. The analysis of tree objects has been, until the

last decade, focused on classification trees [Banks and Constantine, 1998, Phillips and Warnow,

1996] and phylogenetic trees [Billera et al., 2001, Nye et al., 2011]. For such tree objects, a mean
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and a median tree are of particular interest, and popular approaches were built on the notion of

the Fréchet median [Fréchet, 1948]. Only recently, with advances in medical imaging technologies,

biological tree-structured data have become available to statistical analysis. In a study motivated

by the analysis of the structure of brain arteries, Wang and Marron [2007] provided the first

attempt to define a median of a set of trees with both topological and geometric properties. The

approaches in that and many other papers [Aydın et al., 2009, Wang et al., 2012] were based on

labeling of tree nodes for correspondence between branches. Such nodal correspondence may be

natural in some applications. For instance, nodes in classification trees and edges in phylogenetic

trees are uniquely identified. This is not always the case in biological data, as with plant roots,

brain arteries and dendritic arborizations. Various choices of correspondence can potentially lead

to different research conclusions, and artificially imposed labeling may result in biased estimates.

For example, Skwerer et al. [2014] observed that labeling in trees serving as a model of human

brain arteries can lead to a degenerate, star-tree median. For trees where labeling is not natural,

it can be beneficial to consider quantiles that do not depend on assigned labels. The analysis of

unlabeled tree-structured data has not been addressed before now and is a major contribution of

this dissertation.

1.2 Scope

In this dissertation, we develop statistical models motivated by two data sets originating from

neuroscience research, specifically, a large set of dynamic data consisting of spike trains recorded

in animal studies, and a set of complex, structured objects extracted from digital reconstructions

of neurons. Both data sets pose a big data challenge.

In Chapter 2, we propose a numerical implementation of sparse functional dynamical models

with a large data set. Our motivating example comes in the form of spike train data collected from

the hippocampus of a rodent. The data consists of 90-minute recordings of activities from eight
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hippocampal neural clusters, and our goal is to develop a Multiple-Input Single-Output (MISO)

system, which models an output neuron as a function of its current and past inputs. Our work

builds on ideas proposed by Song et al. [2007, 2013], and it employs a probit model with a Volterra

series. A Volterra series is a generic solution to nonlinear differential equations, and, similar to

a Taylor series expansion, approximates a function with a desired accuracy on a compact set.

Unfortunately, for most large data sets, only the first order model is computationally feasible,

even if the model fit is not considered adequate. This is in part due to the massively large number

of parameters in the model. Our contribution is a feasible and efficient computational strategy

to fit second- and higher-order Volterra models using the maximum likelihood principle and its

regularized analog. Our proposed strategy uses a smaller memory footprint and makes model fit

feasible on a multi-core computer without paying a penalty for distributed computations.

In Chapter 3, we focus our attention on complex, non-Euclidean data, specifically tree-

structured data, that can be characterized as highly heterogeneous. Most work in the literature

focuses on the topological properties of trees based on pre-selected labeling systems. Here, we take

both topological and geometric attributes of trees into account, and intend to develop statistical

tools for unlabeled trees. Our goal is to define quantiles of such objects, which can be potentially

used for comparison between samples of tree-structured data. In particular, we develop a con-

cept of a quantile of tree-structured objects through a multi-objective optimization problem. We

include criteria that quantify topological and geometric variations as objective functions in the

optimization problem. We also develop a methodology to identify empirical quantiles for a sample

of tree-structured data. Identification of empirical quantiles is a high-dimensional, combinatorial

optimization problem. Such a problem can often be solved efficiently with a genetic algorithm,

which has been shown to exhibit an implicit parallelism; see Goldberg [1989]. In Chapter 4, we

discuss in details the genetic algorithm used in estimating empirical quantiles of unlabeled tree

objects.
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Finally, in Chapter 5, we discuss future work in the direction of one-sample and two-sample

hypothesis testing of unlabeled tree-structured data, based on mixtures of topological tree distri-

butions and simulations.
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CHAPTER 2

Sparse Functional Dynamical Models1

2.1 Introduction

Dynamical system is time-dependent, i.e., its output is determined not only by its current

input, but also its past inputs. Its complexity is often enhanced by the nonlinear interactions

within its internal structure, in such a way that the resulting system is different from the sum of

their parts. It has been shown that despite their complex nature, dynamical systems can often be

described with a few low order ordinary differential equations; see Fuchs [2013] for a more recent

review.

The first documented study of a nonlinear dynamical system involved two interacting species,

predators and prey, and was conducted independently by Volterra and Lotka in the 1910s and

1920s. The interaction was modeled through nonlinear differential equations [Volterra, 1930].

The Volterra series has been demonstrated to be a general solution to such nonlinear differential

equation [Flake, 1963, Karmakar, 1979, Volterra, 1930]. It represents the output of the system as

a series of convolutions of its inputs and is often referred to as a Taylor series with memory, or a

nonparametric representation of a nonlinear system. For a system with a single input x(t) and a

single output y(t), the series can be expressed in the following form

y(t) = κ0 +

∞∑
p=1

∫ ∞
−∞
· · ·
∫ ∞
−∞

κp(τ1, . . . , τp)x(t− τ1) · · ·x(t− τp)dτ1 · · · dτp (2.1)

where κp is known as the p-th order Volterra kernel. In practice, all Volterra kernels have to be

estimated in the process of system identification.

The Volterra theory of analytic functions was advanced by Wiener in the applications to elec-

tronic communications in the 1920s [Wiener, 1958], which resulted in a Wiener theory of nonlinear

1This Chapter is based on the early draft of paper ”Sparse Functional Dynamic Models - A Big Data Approach.”
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systems. The key idea of the Wiener series was to orthogonalize the Volterra functionals, and thus

facilitate model estimation. By the 1950s both the Volterra and Wiener models became accepted

and widely-used methods of the analysis of complex dynamical systems with finite memory and

time-invariance. Just like the Taylor series for nonlinear functions, the Volterra/Wiener series

can suffer from convergence issues, but in 1910, Fréchet showed that the Weierstrass theorem can

be extended to Volterra functions, essentially proving that any Volterra/Wiener system can be

approximated on a compact set with a desired accuracy [Fréchet et al., 1936].

The nonlinear dynamical systems have been identified in areas as diverse as social science,

natural science and engineering. In economics and psychology the system dynamics are related

to human behavior and interactions. Engineering processes, although usually described by a set

of known rules or laws, can exhibit unknown nonlinearities, especially under abnormal circum-

stances, e.g., in control systems. The systems analyzed by Wiener and Schetzen [Schetzen, 1981,

Wiener, 1958] considered inputs like voltage, current, velocity, stress, temperature. A network

monitoring system is concerned with traffic characteristics: volume, temporal and spatial pat-

terns of messages, etc. Nonlinear interactions between inputs are modeled to describe and detect

system failures, network intrusions, resource misuse, etc [Cannady, 1998, Debar et al., 1992].

Biological systems present a much greater challenge, since the rules governing their behavior

are unknown or only partially understood. They are frequently modeled as black-boxes or gray-

boxes with multiple inputs and multiple outputs. There are abundant examples of applying

the Volterra or Wiener functional expansion in modeling physiological functions: cardiovascular,

respiratory, renal [Marmarelis, 1993], functions of auditory peripherals and visual cortex [Wray

and Green, 1994], human pupillary control, medical imaging [Korenberg and Hunter, 1996] and

many more.

The particularly challenging examples of biological systems come from neuroscience, with the

human brain considered to be the most complex nonlinear dynamical system of all. It is also a
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good illustration of a system composed of subcomponents, in which understanding the function-

ality of simplest building blocks is not enough to understand and model the entire system. The

behavior of neurons, each one consisting of a soma, an axon, and dendrites, has been fairly well

understood at the individual level. Existing parametric models (e.g., Hodgkin-Huxley, Fitzhugh-

Nugamo, Hindmarsh-Rose), consisting of sets of differential equations, can successfully describe

the nonlinear dynamics of the membrane voltage at single neuron level [Fuchs, 2013]. However,

these models cannot easily scale up to the level of neural ensembles, which are groups of intercon-

nected and functionally similar neurons, due to numerous unknown biological mechanisms and

processes within the neuronal networks. On the other hand, nonlinear dynamical model in the

form of the Volterra/Wiener series, models the neural ensembles directly from their input/output

data. It does not rely on the complete knowledge of the system and thus provides an appealing

approach for modeling large-scale, complex nervous systems.

Specifically in this paper, we model the nonlinear dynamics of neural ensembles using spiking

activities. Spikes, also termed action potentials, are brief electrical pulses generated in the soma

and propagating along axons. Neurons receive spike inputs from other neurons through synapses

and then transform these inputs into their spike outputs. This input-output transformation is

determined by numerous mechanism/processes such as short-term synaptic plasticity, dendritic/-

somatic integration, neuron morphology, and voltage-dependent ionic channels. Since spikes have

stereotypical shapes, they can be simplified as point-process signals carrying information with the

timings of the pulses. It is widely accepted that, in the brain, information is encoded in the spatio-

temporal patterns of spikes. Thus, characterization of the point-process input-output properties

of neurons using spiking activities is a crucial step for understanding how the neurons, as well

as the neuronal networks, transmit and process information; see Song et al. [2007, 2013]. Within

a neural ensemble, this procedure is essentially the identification of the functional connectivity

between neurons.
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In the previous studies (Song et al., 2007, 2009), Volterra kernel models were combined with

generalized linear models to characterize the input-output properties of neurons. To facilitate

model estimation, Volterra kernels are expanded with basis functions, e.g., Laguerre basis or B-

spline basis. Model coefficients are estimated with a penalized likelihood method (Song et al.,

2013). However, this model estimation imposes major computational challenge. The first-order

Volterra series has been shown to be inadequate to capture the system dynamics [Song et al., 2007].

The second-order series, with even a moderate number of inputs and basis functions, requires an

estimation of thousands of parameters. A large number of observations is critical, to account for

sparsity in the inputs and to avoid over-smoothing of the basis functions; see Marmarelis [1993]

and remarks by Korenberg and Hunter [1996].

With a large n and a large p, the system identification faces a big data challenge, which is

characterized by both hardware and software issues; see Fan et al. [2014] for a recent review.

The data may not fit in the memory of a single computer, and some statistical methods, if

they can be adjusted to accommodate distributed data and computing, just take too long to

be computationally feasible. As a result, none of the cited papers was successful in providing a

viable and reproducible method of regularized estimation of Volterra kernels of higher orders. A

regularization is key to achieve a functional sparsity at both local and global levels, necessitated

by the sparsity in neural connectivity [Tu et al., 2012]. Song et al. [2013] provided a nice study of

sparsity by comparing the effects of Laguerre basis and B-spline basis. Both types are adequate in

representing the global sparsity, but only the B-spline basis successfully model the local sparsity.

It is worth mentioning that, to achieve sparsity, Song et al. [2009] used the forward step-wise

model selection and Song et al. [2013] implemented regularization based method, e.g., LASSO

[Tibshirani, 1996].

Aside from the nonparametric modeling using Volterra kernels, other approaches are also

available though they are not considered in this paper:
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• Cascade or block structure modeling [Korenberg and Hunter, 1986]

• Basis representation of orthogonalized Wiener kernels [Marmarelis, 1993].

• Artificial neural networks (ANN) [Wray and Green, 1994], the authors show a correspon-

dence between the Volterra kernel model and a neural network. Recurrent neural networks

are a competing approach to the analysis of the nonlinear dynamical systems, and can

perform both a knowledge based, and a black-box type system identification.

In this paper we address the aforementioned computational challenges by applying big data

techniques to perform a system identification using a sparse basis expansion of the Volterra kernels

of a second or higher order. The rest of this paper is organized as follows. Section 2.2 contains

an overview of the map-reduce technique. Section 2.3 presents our proposed dynamical Multiple

Input Single Output (MISO) model. Section 2.4 describes the computational issues and Section 3.2

covers the analysis of real data.

2.2 Map-reduce and Big Data

2.2.1 Computational Complexity Analysis

Given the disparity between our perception of time and the small scale of inter-neural com-

munication, the analysis of brain functions is bound to face computational challenges. A short

15 minute recording of brain activity in an animal performing stimuli-induced actions can lead to

close to a million observations if broken into 1 millisecond (ms) intervals, a timeframe in which a

neural spike can be detected. The number of the input connections doesn’t have to be large (in

fact the neural network is believed to exhibit a small-world architecture: few direct connections,

but only a few steps away from any other neuron [He, 2005]), but due to complex interactions

between inputs, even a small number of them can lead to thousands of parameters in the model.

A design matrix for the first-order Volterra system with several inputs and one second system
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memory requires just close to 2 GB of storage, but for the second-order system that number grows

to over 200 GB, and involves close to thirty thousand parameters. Many matrix operations are

“embarrassingly parallel”, so an infrastructure is needed to divide the matrix into chunks that

can fit in the memory of a single computer, execute tasks in parallel and assemble the results.

The division of tasks and reassembly of results are the foundation of the map-reduce approach

[Dean and Ghemawat, 2008], an algorithmic concept that can be implemented on a single multi-

core system or in a cluster of servers. There exists a variety of multicore programming options,

depending on the platform and the language of choice. The most common cluster implementa-

tions come from Apache Software Foundation projects, i.e., Hadoop and Spark, and are briefly

described in the next section. Although 200 GB may not be considered big data by practitioners

dealing with terabytes or more, it is still enough to cause computational issues in the statistical

analysis that requires hundreds (and sometimes thousands) of such large matrix operations. Just

the generation of a 200 GB matrix took five hours of a single-threaded processing (which could

be parallelized). We found two viable computational approaches to the analysis we describe in

details in the following sections. The first approach relies on placing the large matrix on the

distributed file system, and using the distributed map-reduce framework, e.g., Hadoop or Spark,

to perform computations. The cluster should be large enough to offset the penalty of creating

and accessing the matrix, and of distributed computing. Without such a large cluster, one can

still find a feasible in-memory approach. As will be explained in the following sections, one can

fit a higher-order Volterra model with only a first-order model matrix physically existing, and

generating higher order data on demand, when performing matrix vector operations. Such ap-

proach allowed us to use map-reduce on a single multicore server with very good results, which

are detailed in Table 2.1. Gains from such approach can be measured in days of computations

relative to a small distributed cluster.
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2.2.2 A Brief Review of Map-Reduce

The idea of map-reduce originated at Google [Dean and Ghemawat, 2008] where its original

purpose was to accommodate large matrices in data analysis. The matrix and associated computa-

tions would be distributed across multiple servers configured into a cluster. Apache Hadoop is an

open source implementation of a distributed data storage (DFS) and the map-reduce algorithm.

It provides a necessary infrastructure to distribute the data across servers, and an application

programming interface (API) for processing chunks of data and assembling the results. The con-

cept of map-reduce was adopted in the industry largely due to the availability of the Apache

implementation and the option to “lease” a Hadoop cluster from Amazon Web Services. Cur-

rently Apache Hadoop is one of the most popular platforms for the statistical analysis of big data,

including both supervised and unsupervised learning. A competing map-reduce implementation

comes from another Apache project, Spark, and is considered to be a better solution for statistical

analysis based on iterative large matrix operations, e.g., Iteratively Re-weighted Least Square or

Conjugate Gradient described in Section 2.4.

Figure 2.1 depicts the architecture of a generic map-reduce cluster. A client submits a job to

the master node, with clearly specified tasks for a mapper and a reducer as well as the location

and format of the input data. The master node starts a sufficient number of mappers to execute

the job, passing each one a chunk of the input data. The functionality of mappers and reducers is

application specific; in fact, the mappers and reducers can perform any tasks, bound only by the

format of their input and output. In general, the mapper performs grouping, sorting or filtering

functions, and the reducer calculates the summary of the data. Each mapper processes a chunk of

data, independent from other mappers, with the results returned in the form of <name,value>

pairs, also referred to as keys. A mapper can produce any number of keys as a result, recognizing

that all keys with the same name will be processed by one reducer. A few examples of matrix
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vector operations in map-reduce framework are provided in Section 2.2.3. Hadoop mappers and

reducers are stateless, and this can become a limitation in an analysis that requires many iterative

map-reduce operations. To solve this, Spark allows to execute many mappers and reducers in

whichever order, and maintains a context between them. Mappers and reducers can also run

within the same process in different threads or on different cores of a multicore server. Many

big data applications, including classification and clustering, can benefit from map-reduce based

computations, whether in a distributed environment or on a multi-core platform [Chu et al., 2007].

Figure 2.1: Map-Reduce architecture with mappers and reducers running on one or multiple
servers.

2.2.3 Matrix processing

In classical statistical analysis, e.g., linear models and generalized linear models, one typically

needs to calculate Xβ, XTWy, XTWX, for a design matrix X, a response vector y, a parameter

vector β and a weight matrix W . All these operations can be performed using the map-reduce

technique with a matrix X stored in a distributed file system. For better illustration, we consider

three toy examples as depicted in Figures 2.2-2.4.
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Figure 2.2: Mapper and reducer functionality for XT y.

In Figure 2.2, we consider the application of the map-reduce technique to matrix multiplication

of a matrix and a column vector, say XT y. Here, X is an n × p matrix with n >> p, and y is

a n × 1 vector. In particular, a mapper receives a subset of rows of X, multiplies them by a

corresponding subset of elements of a vector y and creates a resulting vector of size p. A reducer

adds all output vectors created by the mappers together to produce the desired vector.

Figure 2.3 illustrates another widely used matrix operation in statistics. In order to compute

XTX for a matrix X with large n, a mapper receives a subset of rows of X and creates a resulting

square matrix of size p× p. A reducer adds all matrices created by mappers. When p is small the

resulting p× p matrix is easily invertible in memory.

Figure 2.3: Mapper and reducer functionality for XTX.
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As indicated by Figures 2.2 and 2.3, the weights can be easily incorporated into the procedures

to produceXTWy andXTWX. In fact, when n is large and p is small, the implementation of map-

reduce technique is rather straightforward. However, for a large p, it becomes quite complicated.

In this paper, within the scope of a large design matrix X of dimension n × p, two detailed

categories can be identified

(i) p is moderately large so that p×p square matrix is not easily invertible, but fits in memory;

(ii) p is extremely large, and p× p matrix does not fit in memory.

The category (ii) is more problematic, and may require alternative methods to circumvent matrix

inversion; see Section 2.4.2 for further discussion. In the dataset under analysis, the response

vector fits in-memory, so the operations XT y and Xβ can be easily performed using the map-

reduce technique, but it is the XTWX that can be a source of computational challenges. The

size of the parameters vector for the first-order Volterra model belongs to the category (i), but for

the second-order and higher, it is in the category (ii). As will become evident in later sections, in

many statistical problems the matrix XTWX is only used in a matrix-vector product XTWXβ,

so the large p× p matrix XTWX does not need to be created at all. The matrix-vector product

can be calculated as a single operation in the map-reduce framework. The simplified case with

identity weights is visualized in Figure 2.4.

Figure 2.4: Mapper and reducer functionality for XTXβ.
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2.3 Multiple-Input and Single-Output Model

2.3.1 Volterra Model

The output of a neuron or neural ensemble consists of a series of spikes, and it is convenient to

model it in terms of a probability or a rate of action potentials. Let y(t) be the output signal and

let x1(t), . . . , xd(t) (0 ≤ t ≤ T ) be d binary input signals indicating the times at which the spikes

occurred in a T seconds interval. In particular, both input and output signals are recorded at a

fixed sampling frequency; that is, for each signal, observations are obtained at t = δ, 2δ, . . . , nδ

and T = nδ, where δ is the length of a sampling time interval. At time t, if a spike is observed,

then 1 is recorded and 0 otherwise. Although the neural membrane potential is a continuous

function, identification of a spike is outside of the scope of this paper, and we will not make any

assumptions about the duration of a spike.

Let x(t) = (x1(t), . . . , xd(t))
T be the vector of input signals. The conditional probability of

the action potential of the output signal, given the history of the input and output signals, can

be written as

θ(t) = P (y(t) = 1|H(t)),

where H(t) = (xT (t),xT (t − δ), . . . ,xT (t −mδ), y(t − δ), . . . , y(t −mδ))T . Here M = mδ is the

length of the system memory. An intuitive approach is to use the generalized functional additive

model with an appropriate link function. There are two common choices: logit and probit link

functions. In this paper, we will use the probit link for illustration purpose.

In Song et al. [2007], the authors proposed a discrete generalized Volterra model. The idea is

to discretize each kernel function and represent it as a vector of coefficients. For simplicity, we
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present their second-order model

Φ−1(θ(t)) = κ0 +
d∑
i=1

m∑
k=0

κ
(1)
i (k)xi(t− kδ)

+
d∑

i1=1

d∑
i2=1

m∑
k1=0

m∑
k2=0

κ
(2)
i1,i2

(k1, k2)xi1(t− k1δ)xi2(t− k2δ)

+
m+1∑
k=1

h(k)y(t− kδ)

(2.2)

where κ0, κ
(1)
i (k), κ

(2)
i1,i2

(k1, k2) are coefficients of the zeroth order, first-order and second-order

feedforward kernels, and h(k) are the coefficients of the feedback kernel. These authors imple-

mented likelihood based estimation procedure. The drawback is that the numbers of parameters

and observations are very large, which makes computation intractable and unstable. For instance,

in our motivating example, the sampling time interval δ is 1 millisecond and the memory length

M is one second, and thus, the total number of parameter is the order of 106. In addition, T is

about 90 minutes and the total number of observations is over five million for each signal. This

is a high dimensional and large sample size problem.

To circumvent this problem, Tu et al. [2012] considered a nonparametric approach for model

fitting of (2.2) with only the zeroth order and first-order feedforward kernels. In particular, the

authors assumed that κ
(1)
i (k) take values from a smooth coefficient function. For the convenience

of notation, such function is denoted by ϕ
(1)
i (·) and κ

(1)
i (k) = ϕ

(1)
i (kδ). These authors proposed

to use B-splines to approximate all smooth coefficient functions of the first-order which greatly

reduced the number of parameters. However, for the second and higher order models the number

of parameters still creates a computational challenge, and so does the large sample size. Here

our interest centers on computational aspects of handling the large n and the large p using the

aforementioned map-reduce technique.
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Next we will generalize model (2.2) by including the interactions between the input signals.

To simplify our notation, let xd+1(t) = y(t− δ), and we have

Φ−1(θ(t)) = κ0 +
d+1∑
i=1

m∑
k=0

κ
(1)
i (k)xi(t− kδ)

+
d∑

i1=1

d∑
i2=1

m∑
k1=0

m∑
k2=0

κ
(2)
i1,i2

(k1, k2)xi1(t− k1δ)xi2(t− k2δ).

(2.3)

Following the approach by Tu et al. [2012], let ϕi(τ) and ϕi1,i2(τ1, τ2) be the smooth first-order

and second-order kernel functions. Thus, (2.3) can be expressed as

Φ−1(θ(t)) = κ0 +

d+1∑
i=1

∫ M

0
ϕ
(1)
i (τ)dNxi(t− τ)

+
d∑

i1=1

d∑
i2=1

∫ M

0

∫ M

0
ϕ
(2)
i1,i2

(τ1, τ2)dNxi1
(t− τ1)dNxi2

(t− τ2),

(2.4)

where Nxi is a counting measure based on the signal xi(t). Our proposed model architecture can

be summarized in a diagram as depicted in Figure 2.5.

Assuming sufficient smoothness, all kernel functions can be approximated with basis functions.

Laguerre and B-spline representations are two popular choices. Song et al. [2013] compared both

basis functions and suggested that B-splines provide a better approximation when characterizing

local sparsity.

2.3.2 Kernel Functions and Basis Functions

B-splines, as described in detail in Schumaker [1980] and de Boor [2001], are piecewise polyno-

mial curves and are commonly used for smoothing purpose thanks to their flexibility (where the

desired degree of smoothness can be achieved by the appropriate choice of order and placement of

knots) and the availability of computationally stable, inexpensive algorithms. LetB1(τ), . . . , BJ(τ)

be a sequence of B-spline basis functions with certain degrees, say b, and fixed interior knots on

[0,M ].
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Figure 2.5: Second-order Volterra model with d inputs and one output. Inputs are convoluted
with ϕ functionals of first- and second-order. The history of output y is treated as an additional
input.

The kernel functions in (2.4) have the following approximation in terms of B-spline basis

ϕ
(1)
i (τ) ≈

J∑
j=1

α
(i)
j Bj(τ) (2.5)

ϕ
(2)
i1,i2

(τ1, τ2) ≈
J∑

j1=1

J∑
j2=1

α
(i1,i2)
j1,j2

Bj1,j2(τ1, τ2) (2.6)

where Bj1,j2(τ1, τ2) = Bj1(τ1)Bj2(τ2) is the product of two one-dimensional B-spline basis func-

tions. Plugging both approximations (2.5) and (2.6) into (2.3) yields the following approximation

for Φ−1(θ(t))

Φ−1(θ(t)) = α0 +
d+1∑
i=1

J∑
j=1

α
(i)
j

∫ M

0
Bj(τ)dNxi(t− τ)

+

d∑
i1=1

d∑
i2=1

J∑
j1=1

J∑
j2=1

α
(i1,i2)
j1,j2

∫ M

0

∫ M

0
Bj1,j2(τ1, τ2)dNxi1

(t− τ1)dNxi2
(t− τ2)

(2.7)
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where α0 = κ0. We further write

ξ
(i)
j (t) =

∫ M

0
Bj(τ)dNxi(t− τ)

ξ
(i1,i2)
j1,j2

(t) =

∫ M

0

∫ M

0
Bj1,j2(τ1, τ2)dNxi1

(t− τ1)dNxi2
(t− τ2).

Consequently, (2.7) can be written as

Φ−1(θ(t)) = α0 +X(t)Tα (2.8)

where X(t) = (ξ
(1)
1 (t), ..., ξ

(1)
J (t), ..., ξ

(d+1)
J (t), ξ

(1,1)
1,1 (t), ..., ξ

(d,d)
J,J (t))T is a row vector and α is vec-

tor of the corresponding coefficients of X(t). Furthermore, X(t) can be decomposed into two

subvectors, namely X1(t) and X2(t), where

X1(t) = (ξ
(1)
1 (t), . . . , ξ

(1)
J (t), . . . , ξ

(d+1)
J (t))T , X2(t) = (ξ

(1,1)
1,1 (t), . . . , ξ

(d,d)
J,J (t))T .

Note that X1(t) and X2(t) correspond to the first-order and second-order kernels respectively.

2.3.3 Likelihood and Parameter Estimation

In this section, we consider likelihood based approach for parameter estimation in (2.7). For

the ease of our notation, all input signals are considered as fixed. For the binary output signal

y(t), observations are recorded at t = δ, 2δ, . . . , nδ. Here, under conditional independence, the

likelihood function of y = (y((m+ 1)δ), . . . , y(nδ))T given y(δ), . . . , y(mδ) can be written as

L(y|y(δ), . . . , y(mδ)) =

n∏
s=m+1

P (y(sδ) = 1|y((s− 1)δ), . . . , y((s−m)δ))

=

n∏
s=m+1

θ(sδ)y(sδ)(1− θ(sδ))1−y(sδ), (2.9)

where θ(sδ) = Φ(α0 +X(sδ)Tα). Note that the likelihood function is a function of θ(t) and, as

a consequence of (2.8), is also a function of the unknown parameters α0 and α. In addition, the

log-likelihood function takes a form

l(α0,α) =

n∑
s=m+1

y(sδ) log(θ(sδ)) + (1− y(sδ)) log(1− θ(sδ)) (2.10)
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The maximum likelihood estimators are denoted by (α̂MLE
0 , α̂MLE). Maximizing the log-likelihood

function with respect to the unknown parameters is a well studied convex optimization problem

with an iterative solution based on the Taylor series approximation of (2.10) or equivalently, the

Newton-Raphson method or Fisher scoring [Givens and Hoeting, 2012]. It is worth mentioning

that, unlike the logistic regression, these two methods are not equivalent for the probit link. In

fact, Newton-Raphson method provides a faster convergence but requires the calculation of the

Hessian matrix at each step (compared to the Fisher information). More details are given in

Section 2.4.2.

2.3.4 Functional Sparsity and Neural Connectivity

In neural network, the neural connectivity is believed to be sparse in nature [Berger et al.,

2005, Song et al., 2007]. In Tu et al. [2012], the authors defined two different types of sparsity. In

particular, given multiple input neurons, only a small subset of these may have any relevance to

the signal recorded from the output neuron. This property is referred to as global sparsity, and it

should lead to the estimation of functionals ϕi corresponding to irrelevant inputs as zero. Among

the inputs that show relevance to the output signal, the impact will be limited in time, and the

duration of the effect is often of interest. Outside of the interval in question, the functional will

also be zero, which is referred to as local sparsity.

The classic maximum likelihood estimator (MLE) does not guarantee either sparsity, so a pe-

nalized approach enforcing it is preferable. For parametric regression models, penalized approach

has been widely studied and gained its popularity due to simultaneous parameter estimation and

variable selection. Commonly used penalty functions include LASSO [Tibshirani, 1996] and SCAD

[Fan and Li, 2001], group LASSO [Yuan and Lin, 2006] and group bridge [Huang et al., 2009]. In

Wang and Kai [2014], the authors considered the problem of detecting functional sparsity for uni-

variate, nonparametric regression models, and examined the performance of penalized approach
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Figure 2.6: Top: A sequence of 13 cubic B-spline basis functions with 9 equally-spaced interior
knots on the interval [0,1]. Bottom: An illustration of a function with local sparsity on interval
[0,0.2]. There are 10 subintervals corresponding to 10 groups. On each subinterval, there are 4
basis functions coefficients taking positive values. For instance, to identify the sparsity of the
function on [0, 0.1], all four basis functions (dashed line type) need to have coefficients zero.

with aforementioned penalty functions. In addition, these authors incorporated the group bridge

penalty with an intuitive grouping method for estimating functions with global or local sparsities.

For demonstration purpose, consider the function, shown as thick, solid line type in the bottom

panel of Figure 2.6. Note that, except for some singletons, this function is zero on [0, 0.2]. In the

top panel, a collection of cubic B-spline basis function with 9 equally-spaced interior knots are

depicted. Approximating with these cubic B-spline basis functions, for sparsity on [0, 0.1], it is

expected that the estimates for the coefficients of four basis functions, shown as dashed line type,

are zero. Hence, it is natural to treat these four coefficients as a group. In general, for B-spline

basis functions with degree b, each group consists of b+ 1 coefficients.

In this paper, we adopt the grouping idea suggested by Wang and Kai [2014]. In fact, for the

i-th first-order kernel ϕ
(1)
i (τ) in (2.7), its coefficients of B-spline approximation in (2.5) can be

assigned to J − b overlapping groups,

{α(i)
1 , . . . , α

(i)
b+1}, {α

(i)
2 , . . . , α

(i)
b+2} . . . , {α

(i)
J−b, . . . , α

(i)
J }.
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Similarly, for the second-order kernel ϕ
(2)
i1,i2

(τ1, τ2), the grouping becomes rather complicated. Over

each small rectangle, spanned by two adjacent knots on τ1 and τ2, the sparsity can be determined

by (b+ 1)2 coefficients. To be more specific, its coefficients of B-spline approximation in (2.6) can

be assigned to (J − b)2 overlapping groups,
α
(i1,i2)
1,1 . . . α

(i1,i2)
1,b+1

...
. . .

...

α
(i1,i2)
b+1,1 . . . α

(i1,i2)
b+1,b+1

 , . . . ,


α
(i1,i2)
J−b,J−b . . . α

(i1,i2)
J−b,J

...
. . .

...

α
(i1,i2)
J,J−b . . . α

(i1,i2)
J,J


For our convenience, we write the group penalty as

P
(γ)
λ (α) = λ

G∑
g=1

|αAg |
γ ,

where G is the total number of groups and γ ∈ (0, 1) is a constant. Here αA1 , . . . ,αAG
represent

the groups of coefficients as defined above.

Finally, the penalized log-likelihood criterion can be expressed as

l(α0,α)− P (γ)
λ (α) (2.11)

The penalized MLE is defined as the maximizer of this criterion. The computational aspects are

covered in Section 2.4.4.

2.4 Computational Aspects with Big Data

2.4.1 Design Matrix

Write θ = (θ((m+ 1)δ), . . . , θ(nδ))T . From (2.8), θ can be expressed as

Φ−1(θ) = α0 + Xα (2.12)

where the vector-valued function Φ−1 is defined by applying Φ−1 entry-wise. Here, X is the design

matrix and can be written as X = (X((m+ 1)δ), . . . ,X(nδ))T .

24



The design matrix X can be represented as [X1,X2], where X1 and X2, based on X1(t)

and X2(t), correspond to the parameters of the first-order kernels and the second-order kernels

respectively. The elements of the matrix X1 can be calculated as

ξ
(i)
j (t) =

∫ M

0
Bj(τ)dNxi(t− τ) =

∑
tik∈[t,t−M)

Bj(t− tik) (2.13)

for t = (m + 1)δ, . . . , nδ, j = 1, . . . , J and i = 1, . . . , d + 1. Here, tik are timestamps such that

input xi is taking value 1. The elements of the matrix X2 are derived using the formula

ξ
(i1,i2)
j1,j2

(t) =

∫ M

0

∫ M

0
Bj1,j2(τ1, τ2)dNxi1(t− τ1)dNxi2(t− τ2) = ξi1j1(t) ∗ ξi2j2(t) (2.14)

Note that, the 2-dimensional B-spline basis functions are tensor products of the 1-dimensional

linear basis. Consequently, the rows of X2 can be efficiently calculated as the Kronecker products

of the rows of X1. This observation is rather important for big data computation; in fact, the

matrix X2 does not have to physically exist, which largely alleviates storage and computational

challenges in further calculations.

2.4.2 Maximum Likelihood Estimation with Conjugate Gradient

The iteratively reweighted least squares (IRLS) is a well established algorithm for finding a

maximum likelihood estimate of a generalized linear model (2.12); see McCullagh and Nelder

[1989] for more details. This iterative approach is based on the Taylor expansion of the log-

likelihood function using either observed or expected information. At the (k + 1)-st step, one

finds the estimate of α, say α(k+1), based on the previously calculated α(k) by minimizing

‖W
1
2
k (z(k) − α0 −Xα)‖

2

2
. Here, z(k) is a current response vector and Wk is a matrix of weights

depending on α(k). In fact, Wk is a diagonal matrix with elements w
(k)
j ,

w
(k)
j = φ(α

(k)
0 + XT

j α
(k))2/(θ

(k)
j (1− θ(k)j )), (2.15)

and z(k) is a vector with elements z
(k)
j defined as

z
(k)
j = α

(k)
0 + XT

j α
(k) + (yj − θ(k)j )/φ(α

(k)
0 + XT

j α
(k)), (2.16)
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where XT
j is the j-th row of X, θ

(k)
j = Φ(α0 +XT

j α
(k)), and φ,Φ are the density and distribution

functions of standard normal respectively. Moreover, the minimization problem above has a closed

form solution,

(α
(k+1)
0 , (α(k+1))T )T = (ZTWkZ)−1ZTWkz

(k), where Z = [1,X]. In practice, for a moderately

large matrix X, the closed form solution at every iteration can be calculated using a map-reduce

framework as described in Section 2.2.3. However, the operation of matrix inversion is not feasible

with a massively large matrix X. An alternative solution is to use the conjugate gradient method.

Conjugate gradient is an effective optimization method developed for solving quadratic op-

timization problems of the type: min
x

1
2x

THx − xT b, but used also for more general nonlinear

optimization. It is based on the notion of conjugate vectors, say d1, ..., dp such that dTi Hdj = 0,

for i 6= j. The conjugate vectors are linearly independent and span the Euclidean space Rp. The

solution of the quadratic optimization problem can then be expressed as a linear combination

of these vectors. The coefficients of that representation can be obtained iteratively in p steps.

The conjugate gradient method has been successfully applied to classification in the big data

context due to its scalable computational complexity; see Komarek [2004]. In fact, the number of

operations for a convex quadratic problem is estimated to be O(p). The implementation, which

details can be found, among others, in Antoniou and Lu [2007], requires approximately p matrix-

vector multiplications. To carry out the IRLS algorithm, at the (k+ 1)-st step, the minimization

problem can be expressed in terms of H = 2ZTWkZ and b = 2ZTWkz
(k), where Wk and z(k)

are defined as in (2.15) and (2.16). Note that, in big data computation, the matrix H is never

present in memory since it is only used in a matrix-vector multiplication, which is computable in

a map-reduce framework; see Section 2.2.3. The vector b is of size p× 1 and it can be computed

with map-reduce and stored in memory.

It is worth mentioning that conjugate gradient method is also flexible when additional linear

constraints are present. For instance, in model (2.4), it is reasonable to assume that ϕ
(1)
i (M) =
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ϕ
(1)
i (mδ) = 0 for all first-order kernels. This can be effectively written as linear equality constraints

in terms of the vector of coefficients. As pointed out by Antoniou and Lu [2007], the equality

constraints result in the problem of dimension reduction, and the reduced parameter vector can

be estimated following the same iterative procedure.

2.4.3 Penalized Maximum Likelihood Estimation

The MLE obtained using IRLS in Section 2.4.2 does not provide any sparsity. One way to

enforce sparsity of the identified model is to consider minimizing the penalized log-likelihood

as expressed in (2.11). The minimization problem poses computational challenge since it is non-

convex. A popular approach is to approximate the log-likelihood function by a quadratic function.

Let l0(α) = l(α̂MLE
0 ,α) be the likelihood function after plugging-in α̂MLE

0 . The approximation of

l0(α) can be obtained via a Taylor series expansion at the maximum likelihood estimation α̂MLE ;

that is,

l0(α) ≈ l0(α̂MLE) +
1

2
(α− α̂MLE)TO2l0(α̂

MLE)(α− α̂MLE)

where O2l0(α̂
MLE) = −ZTWZ is the Hessian of the likelihood function evaluated at the α̂MLE ,

Z = [1,X] and W is a diagonal weight matrix. This quadratic approximation can be expressed

as

l0(α) ≈ l0(α̂MLE)− 1

2
‖W

1
2 (z −Xα)‖

2

2 (2.17)

where z = Xα̂MLE . Thus, the penalized criterion (2.11) can be expressed as

argmin
α

1

2
‖W

1
2 (z −Xα)‖

2

2 + P
(γ)
λ (α). (2.18)

In the special case of γ = 1, the penalty is essentially the LASSO penalty [Tibshirani, 1996]. For

γ ∈ (0, 1), the optimization problem is non-convex, and Huang et al. [2009] provided an iterative

solution that can be summarized as follows

1. For a given λn, calculate τn = λ
1/1−γ
n γγ/1−γ(1− γ)
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2. For s = 1, 2, . . ., until convergence, compute

α(s) = argmin
α

1
2‖W

1
2 (z −Xα)‖

2

2 +
G∑
g=1

(ζ
(s)
g )1−1/γ

∑
i:αi∈Ag

|αi|

where

ζ
(s)
g = cg(

1−γ
τnγ

)γ
∑

i:αi∈Ag

|α(s−1)
i |γ , for g = 1, .., G

Note that each stage of the iterative procedure can be reduced to the minimization of a

quadratic form with L1 penalty applied to the coefficients α. For small data set, it can be

efficiently solved by the LARS algorithm [Efron et al., 2004]. However, in the big data context,

this algorithm may not be adaptable. Finding the solution to such a problem applicable to a large

data set is the subject of the next section.

It is important to mention that the group bridge penalty described above can encounter

stability issues in calculations [Percival et al., 2012]. An alternative approach is to use the SCAD

penalty [Fan and Li, 2001], which can be written as

pλ(|αj |) ≈ pλ(|α̂MLE |) + p
′
λ(|α̂MLE |)(|αj | − |α̂MLE |) (2.19)

An analog of (2.11), equipped with SCAD penalty, can be expressed as

1

2
‖W

1
2 (z −Xα)‖

2

2 +
G∑
g=1

pλ(‖αAg‖1).

Zou and Li [2008] proposed a one-step estimation procedure, which is based on a linear approxi-

mation of the penalty function. Thus, (2.19) can be written as a standard LASSO problem; that

is,

1

2
‖W

1
2 (z −Xα)‖

2

2 +

G∑
g=1

ηg‖αAg‖1,

where ηg = p′(‖α̂(MLE)
Ag

‖1).

As will be seen in Section 3.2, in our application, the estimates using the group bridge penalty

and the SCAD penalty are comparable.
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2.4.4 L1 Regularization via Coordinate Descent Algorithm

As outlined in Section 2.4.3, parameter estimation with the group bridge penalty and SCAD

penalty can be reduced to the LASSO problem. LASSO has an efficient implementation using

a variation of the LARS algorithm [Efron et al., 2004], which is not well tuned for operating on

the design matrix of high dimension. Another implementation was suggested by Friedman et al.

[2007] and Friedman et al. [2010]. The elastic-net penalty, of which LASSO is a special case, can

be computed by a coordinate descent and soft thresholding. The algorithm is applicable to linear

models, or generalized linear models, in which case it can be integrated with the IRLS steps.

The idea of soft thresholding was proposed by Donoho and Johnstone [1995], and it was

designed to recover a signal in the noisy environment by providing an adaptable threshold. This

approach is motivated by a simple optimization problem

min
t

1

2
(t− t0)2 + λ|t|,

where λ > 0 and t0 is a fixed constant. The solution can be written as tmin = S(t0, λ) ≡

sign(t0)(|t0| − λ)+. This observation motivated the gradient descent algorithm for the LASSO

solution; see Friedman et al. [2010] for more details. In particular, starting from any given

parameter values, one parameter is updated using the soft thresholding. The detailed algorithm

is described in Friedman et al. [2010]. When implementing this algorithm, matrix-vector products

are necessary and can be carried out efficiently under the map-reduce framework.

2.4.5 Tuning Parameters

The performance of parameter estimation relies on the choice of λ and γ. Here, the parameter

γ is fixed at 0.5 following recommendations in Huang et al. [2009]. The common procedure

for selecting λ is to proceed with model identification for multiple values of the coefficient and

choose one according to a selected criterion, e.g., the Akaike’s Information Criterion [AIC; Akaike,
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1973], the Schwarz’ Bayesian Criterion [BIC; Schwarz, 1978], or, especially for larger models, the

extended BIC [EBIC; Chen and Chen, 2008]. Such criterion-based methods are suitable for the

selection in the first-order model, but more problematic for the second-order model, or for any

large data in general. The selection of λ for the second-order model requires multiple identification

efforts, but time cost, a major concern for big data analytics, does not allow an exhaustive search.

In this paper, for the second-order model, we suggest to search for the tunning parameter among

the predetermined increasing sequence of candidates starting from the value selected for the first-

order model.

2.5 Data Analysis

2.5.1 Analysis of Neural Spikes

The data analyzed in this section comes from a public repository crcns.org and consists of

neural recordings performed on a rat exposed to a maze; for details see Mizuseki et al. [2009a,b].

The data set contains timestamps of neural spikes (action potentials) recorded in eight neuron

cells within a 90 minute timeframe. A portion of the data set, recorded over three seconds, is

shown in Figure 2.7. All neurons come from CA1 region of hippocampus. We consider seven of

them as inputs and one as output.

For each neuron, it is assumed that one observation, either 0 or 1, is recorded every δ = 1

millisecond (ms), which yields over five million observations. In addition, the memory length is

chosen to be M = 400 milliseconds. Based on earlier studies [e.g., Song et al., 2013], the memory

length is generally less than 1 second. In our data analysis, results from M = 400 and M = 1000

are very similar. For illustration purpose, we present only the results with M = 400 milliseconds.

All the observations are used to fit the first- and second-order models described in the following

subsections.
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Figure 2.7: Three-second recording (out of 90 minutes) of seven inputs x1, . . . , x7 (top rows) and
output y (bottom row).

2.5.2 First-Order Model

In this section we model the probability of neural spikes as a GLM defined in (2.8) with a

matrix Z = [1 X1] and its elements defined in (2.13). Even though the number of observations

n is over five million, the matrix X1 can be computed and stored in memory for all calculations.

Here we assume that ϕ(mδ) = 0. We also consider a constraint ϕ(0) = 0 because the impact of

the input spike is expected to have a positive delay. However, the delay might not be detectable

in the data if the sampling rate is not high enough, in which case the value of the ϕ(0) may

correspond to the maximum value of the functional. In fact, this turns out to be the case for all

seven input neurons. Figures 2.8 and 2.9 show the results of the first-order model fit, with the

MLE estimate depicted with a solid line, and three different penalized fits including group bridge

(dashed), group SCAD (dotted) and LASSO (dash-dotted). The zoom-in view in each image

shows the differences in sparsity estimation for all four models. The group bridge fit exhibits local

sparsity in four out of seven neurons. The group SCAD and LASSO fits do not achieve the local

sparsity in the examined range. The group bridge estimate was calculated with λn = 40 selected

using the EBIC criterion. The group bridge fit has a lower EBIC value than those of the group

SCAD fit and LASSO fit.
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Figure 2.8: Maximum likelihood estimation (solid) and penalized maximum likelihood estimation
using a group bridge penalty (dashed), SCAD (dotted) and LASSO (dash-dotted) of ϕ functionals
in the first-order model corresponding to the input neurons: x1, x2, x4, x6. The estimates are
comparable, and only a zoom-in view highlights differences in sparsity estimation.
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Figure 2.9: Maximum likelihood estimation (solid) and penalized maximum likelihood estimation
using a group bridge penalty (dashed), SCAD (dotted) and LASSO (dash-dotted) of ϕ functionals
in the first-order model corresponding to the input neurons: x3, x5, x7. No sparsity is detected.
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Figure 2.10: Maximum likelihood estimation (solid) and a group bridge estimation (dashed) of a
ϕ functional in the first-order model corresponding to the output neuron. Local sparsity is not
detected.

Figure 2.10 depicts the maximum likelihood and a group bridge estimation of the kernel

corresponding to the feedback kernel. The negative value at 0 confirms the expected inhibitory

effect of a recent spike on the probability of the immediate succeeding firing. The positive value

close to 0 could be an indication of a clustering effect in neural spikes, which can also be observed

in Figure 2.7. Local sparsity is not detected by any estimator.
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2.5.3 Second-Order Model

In this section we model the probability of neural spikes as a GLM defined in (2.8) with a

matrix Z = [1 X1 X2] and its elements defined in (2.14). Only the matrix X1 is computed,

and the matrix X2 is created dynamically to perform necessary matrix operations, as explained

in previous sections. Due to time constraints we compute only two estimates, the maximum

likelihood estimate and the penalized maximum likelihood estimate using the group bridge penalty.

Recall that this penalty function outperforms others in the first-order analysis based on the EBIC

criterion.

In Figure 2.11, the functional estimates of the first-order kernels ϕ
(1)
i are very close to the

first-order counterparts as depicted in Figures 2.8-2.10. Note that the local sparsity in the second-

order model is more pronounced. The estimated interaction components, i.e., the second-order

kernels, are presented in Figure 2.12. Only four second-order kernels are shown, ϕ11, ϕ37, ϕ57 and

ϕ67. The remaining kernels exhibit global sparsity, which suggests no interaction exists between

corresponding input neurons or within the same input neurons at different time lags.

Table 2.1: Performance results for the second-order model with map-reduce for different hardware
configurations: a multicore server with 1, 4, 8, 24, 40 cores, a hadoop cluster with 4 servers and
a spark cluster running on top of the hadoop distributed file system (HDFS). The tests are
performed for the first-order matrix with dimensions n = 106, p1 = 120. The dimensions of
the second-order matrix are n = 106, p2 = 7380. The operations listed in the first column are
the only big data operations used in our proposed method. The last three columns show the
approximate number of big data operations per method used in this paper: Conjugate Gradient
(CG), Iteratively Reweighted Least Squares (IRLS) and Coordinate Descent (CD).

multicore [s] hadoop [s] spark [s] method [count]

1 4 8 24 40 4 4 CG IRLS CD

XT y 58.47 16.34 9.6 7.75 3.55 220 130 0 50 50p2
Xα 50.8 14.8 8.91 6.89 3.22 210 106 0 50 0
XTWXα 98.31 26.39 14.71 10.12 5.11 280 188 p2/8 6p2 0

To examine the computational performance in big data context, we implement our proposed

method in different hardware environments. Computing times for second-order model fit are
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presented in Table 2.1. The results are rather unfavorable for the Hadoop cluster. This may

partially be due to the fact that the performance test was conducted in R, which is not a very

efficient computing platform. The Spark test uses Python, which is known to be more efficient at

matrix operations, but even those results cannot match the in-memory multicore operations, which

are executed using R and C. As the results make clear, the penalty for distributing data across

multiple servers is very severe. The computational cost of recreating the data (e.g., recreating

the matrix columns that constitute a Kronecker product of the existing columns) is much smaller

than the cost of distributed communication. It should be noted, however, that the clusters we

used are very small, larger clusters will drive the performance numbers down. On the other hand,

multicore servers with 250 and more cores are becoming available, and that should make the

in-memory identification of second- and higher-order models faster or feasible.

36



Figure 2.11: Maximum likelihood estimation (solid) and a group bridge estimation (dashed) of ϕ
functionals in the second-order model corresponding to the input neurons x1, x3, x4, x5, x6, x7.
Local sparsity visible for the penalized version in all neurons, the start of sparsity is marked with
an arrow. Neuron x2 exhibits global sparsity.
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Figure 2.12: Penalized estimation of interaction components in the second-order model. Only
non-zero components are displayed.
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2.5.4 Model Validation

Model validation for neuron spike train data in functional dynamical settings is a challenging

task and is still an area of active research. Brown et al. [2002] proposed to use a time-rescaling

theorem to evaluate a goodness-of-fit of a neural spike model. The method relies on the intensity

function for continuous time. The intensity function, integrated between two adjacent observed

output spikes, is assumed to follow an exponential distribution with a unit rate. Thus, after

an appropriate transformation to a uniform distribution, the Kolmogorov-Smirnov (KS) test can

be used to test the goodness-of-fit. Haslinger et al. [2010] focused on a discretized model for

neuron spikes, a more practical approach that is characterized by dividing time variable into short

intervals or bins, and encoding a spike train as a binary sequence of 0’s and 1’s, corresponding

to whether a spike was observed in a given bin. Those authors pointed out that the KS test in

Brown et al. [2002] may exhibit biases for discretized approach. The biases are caused by physical

and numerical constraints. For instance, neural spikes are not instantaneous events, and in fact

are believed to last about 1 millisecond. In addition, the bin length creates a lower bound on

the inter-spike interval. For the discretization approach, the distribution of data is geometric

rather than exponential, and the exponential approximation may not be valid for large firing

probabilities. Haslinger et al. [2010] further suggested an improved rescaling of estimated firing

probabilities for bias correction. In our analysis, we adopt the discrete time rescaling theorem

[Haslinger et al., 2010]. The resulting KS plot is shown in Figure 2.13. It can be seen that the

overall model fit is satisfactory. Small bias is visible for low probabilities, which is expected due to

the discretization of the time interval and the dependence on the spike history. This phenomenon

was previously reported in Haslinger et al. [2010]. In fact, for the KS plot generated from the

true model, such biases are also visible.
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Figure 2.13: KS plot for rescaled firing probabilities against a reference distribution (uniform).
Rescaled firing probabilities are depicted with a thick dashed line, reference uniform distribution
with a dotted line, and a 95% confidence interval with a thin solid line. Small bias is visible for
low probabilities, more evident in the zoom-in subplot.
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CHAPTER 3

Pareto Quantiles of Unlabeled Tree Objects1

3.1 Introduction

When studying functional aspects of the brain, the hippocampus region is of particular interest.

It is associated with long term memory and learning, and it is highly sensitive to pathological

changes (e.g., disease, brain injuries). There is an ongoing effort to understand the dynamic

behavior of hippocampal neuron cells, specifically their connectivity and firing activity (also known

as spike trains). The information transmission between two regions of hippocampus, CA3 (input)

and CA1 (output), has been extensively modeled in an effort to develop, among others, a neural

prosthesis [?]. Less is known about the topological aspects of neurons in these two regions.

Pyramidal neurons from the hippocampus typically consist of a soma, an axon and two types of

dendrites (see Figure 3.1). The tree-like dendritic structures, also referred to as arborizations, are

commonly associated with the functional complexity of the brain. The current “synaptotropic

hypothesis”, as stated in Cline and Haas [2008], describes the growth of dendritic branches as

“dynamic and exploratory”. The branches can live for as short as 10 minutes, as they “sample

the environment to detect the appropriate cells” [Cline and Haas, 2008]. This dynamic process

cannot be directly observed, and the data available for analysis only provide one snapshot in the

lifetime of a neuron. However, given a set of static reconstructions of neural cells at different

stages of maturity, our goal is to characterize the process governing the growth.

In statistical modeling, each neuron can be regarded as a data object, a complex entity that

is generally outside the scope of classical statistics. The class of data objects can include images,

trees, graphs, and often curves; see Marron and Alonso [2014] for a recent review of objects

1This Chapter is based on the early draft of paper ”Pareto Quantiles of Unlabeled Tree Objects.”
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Figure 3.1: Graphical display of a pyramidal neuron cell, named after its pyramid-like shape. All
arborizations grow out of the soma, which is depicted in black. Other components include the
axon shown in grey, apical dendrites shown in magenta and basal dendrites shown in green (two
shades of green are used to depict two disjoint arborizations). The basal dendrites often form a
forest of several disjoint binary trees. The axon is ignored in our analysis.

and related statistical methods. The term Object Oriented Data Analysis, a class of tools for

the analysis of complex data objects, was introduced to statistics by Wang and Marron [2007].

Since then, there has been a great deal of research to extend traditional statistical methods, e.g.,

regression and principal component analysis, to the space of complex data objects [Chang et al.,

2011, Shen et al., 2014, Wang et al., 2012].

In classical statistics, descriptive measures, such as mean and deviation from the mean, have

been widely used to describe and summarize information from data. But those statistics may not

be sufficient to highlight the characteristics of complex data objects. For instance, in neuroscience,

neurons from different brain regions exhibit topological “heterogeneity”. The multitude of shapes,

sizes and branching patterns observed in neural cells, calls for a more comprehensive depiction of

the population distribution. For a univariate random variable, a comprehensive characterization

can be established through a quantile function, which provides an intuitive, probabilistic way to
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measure centrality, dispersion, skewness, and the tail behavior of the distribution. In particular,

the quantile function is defined through the cumulative distribution function. However, the defini-

tion of quantiles becomes non-trivial for a multivariate random vector due to the lack of a natural

order in high-dimensional space. Liu [1990] introduced the notion of simplicial depth and showed

that it can be used as an analog of multivariate order statistics. Serfling [2002] provided a survey

of different approaches to multivariate quantile definitions and useful criteria for their evaluation.

The most notable methods are based on depth function and norm minimization. Functional data

provide even more challenges, because standard approaches for a finite-dimension do not translate

well to a functional space. Walter [2011] offered a thorough study of the properties of functional

quantiles and their empirical analogs backed up by a case study of financial data. In that study,

the author employed point-wise quantiles which are biased estimators of population quantiles, but

they are consistent under some weak conditions.

The challenges increase even more for complex data objects, such as tree data, which can

be characterized as extremely non-Euclidean; see Wang and Marron [2007]. There have been

previous attempts to define a median of a population of such objects. Some examples come from

the work on classification trees [Banks and Constantine, 1998, Phillips and Warnow, 1996]. The

tree-structured data objects discussed in these papers are of a binary form, and their nodes can be

uniquely labeled for correspondence between trees. The median tree is thus defined as a majority

tree, i.e., a tree consisting of nodes found in the majority of trees in the set. Node labels are

important and natural for classification trees, or phylogenetic trees [Billera et al., 2001], but for

some tree-structured objects, e.g., brain arteries, neural dendrites, there is no established labeling

scheme. The labeling of nodes can be crucial in answering many important research questions,

but different labeling choices could lead to different results; see Aydın et al. [2009] for a discussion

on thickness correspondence and descendant correspondence between brain artery systems. Node
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labeling may also create a potential bias when estimating the density of branches. This point will

be demonstrated in Section 3.4.

In this paper we propose a novel approach to evaluate quantiles of tree objects that does not

rely on labeling of nodes or edges. We base our approach on a stochastic process view of a tree,

which can be interpreted as a birth and death process. The connection between a tree and a

stochastic process has been examined before. For instance, Harris [1952] studied curves generated

by the depth-first traversal of trees. Such curves were instrumental in producing asymptotic

results, e.g., related to a convergence of a stochastic process, but are not very well suited for

comparing trees [Shen et al., 2014].

As noted by Wang and Marron [2007], a tree-structured data object can have both topological

and geometric attributes. Topological attributes can be described generally as branching patterns,

e.g., the number of nodes at any specific level. Geometric attributes could include distances

between nodes, radiuses of edges, or angles between edges. In this paper we focus our attention

on the length of edges. Here, we propose two functional representations of each tree-structured

object encompassing its topological and geometric properties respectively. We define a quantile of

tree objects by taking both properties into account; in particular, the quantile can be formulated

as a solution of a multi-objective optimization problem. We also find empirical quantiles of tree

distributions using a genetic algorithm.

This paper is organized as follows. In Section 3.2, we introduce two new functional represen-

tations for each unlabeled tree-structured object, which summarize the topological and geometric

properties. In Section 3.3.1, we define a topological and a geometric median tree as a solution

to the optimization problem. In Section 3.3.2 we introduce a novel notion of Pareto median tree

object as a solution to the multi-objective optimization problem. Next, in Section 3.3.3 we extend

this idea to define Pareto quantiles of tree objects. Section 3.4 provides a case study of a set of
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neurons using our proposed methods. Finally, in Section 3.5, we examine our proposed method

through a simulation study.

3.2 Data Object and its Curve Representation

3.2.1 Data

In this paper, our motivating example is a set of neuron cells from the brains of rodents. The

original dataset consists of digital reconstructions of neurons obtained from an online inventory

site neuromorpho.org [Ascoli et al., 2007] which includes more than 8000 neurons from various

brain regions. For details on the data and data collection process, see Pyapali et al. [1998], Pyapali

and Turner [1994, 1996]. Our primary interest centers on pyramidal neurons from two areas of

hippocampus, regions CA1 and CA3. Here a set of n = 187 pyramidal neurons, including 119 and

68 from CA1 and CA3 regions respectively, is used. It is known that neurons from CA3 region

receive input signals from other cells in the brain, while neurons from CA1 region form the output

from the hippocampus.

In Figure 3.2, each subplot depicts a pyramidal neuron which has three major components,

apical dendrites (colored in magenta), basal dendrites (colored in green), and a soma (colored in

black) in between. The soma can be a single point or a line, and it is very small compared with

apical and basal dendrites. In addition, the top row of Figure 3.2 shows three neurons from CA1,

and the bottom row shows three neurons from CA3. From all six subplots, the basal dendrites

seem to be shorter than the apical dendrites; whereas the difference in branching of both groups

of neurons is apparent. In particular, the initial segments of apical and basal dendrites are shorter

for CA1 neurons than those of CA3 neurons, and basal structures of CA3 neurons are larger than

those in CA1 neurons.

In Section 3.2.2, we will discuss a tree representation of dendritic structures and further

propose two new curve representations in Section 3.2.3.
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Figure 3.2: Graphical display of six neurons. Top row: three neurons from CA1 region of hip-
pocampus; Bottom row: three neurons from CA3 region of hippocampus. In each subplot, apical
dendrites are shown in magenta and basal dendrites are shown in green.

3.2.2 Graph as a Data Object

In mathematical graph theory, a tree is a simple graph with a set of nodes and edges, and

there is a unique sequence of edges between any two nodes. A forest is a collection of trees.

For any tree, the root is a specific node which can be designated based on the application. The

level of a node is the number of edges of the path to the root node. For any two adjacent nodes

connected by an edge, the node that is closer to the root node is called a parent node, and the

other node is a child node. The node with no children is called a leaf node or a terminal node.

For a tree object, if each node has at most two children, namely left child and right child, it is

called a binary tree, and, if it has exactly two children, it is called a full binary tree.

In many scientific applications, binary trees have been used to model tree-structured objects.

For instance, Wang and Marron [2007] proposed to use binary trees to represent human brain

blood vessel systems. In our study, as can be seen in Figure 3.1, the apical dendrites emerge
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from the apex of a soma, and branch like a single tree. Basal dendrites are somewhat different;

in general, several dendritic trees grow out of the base of a soma, and form the basal dendrites.

Here we model the apical dendrites as a binary tree and the basal dendrites as a forest of binary

trees. In this paper, the term “forest” is referring to a disjoint union of binary trees.

We use a similar procedure, as discussed in Wang and Marron [2007], to construct a (binary)

tree-structured data object for the apical dendrites. In particular, each dendrite segment between

any two adjacent splits is denoted by a node. The initial dendrite segment till the first split

point is the root node of the tree-structured object. Two nodes are connected by an edge if

one dendrite segment branches off the other segment. The tree constructed in this way is a

full binary tree. It is also worth mentioning that the resulting tree characterizes the topological

property of the apical dendrites. More information about each dendrite segment (i.e., node) is

also available including the thickness of the dendrite segment and the 3-dimensional coordinates

of voxels along the dendrite. As suggested by Wang and Marron [2007], such information is the

geometric property of a node, i.e., nodal attribute. For simplicity, we only consider the length of

the dendrite segment as the nodal attribute, which is the basis of the functional representation

established in the next section. We note for completeness that such binary trees with edge-lengths

are known in the literature as binary Galton-Watson trees [Pitman, 2006] and their combinatorial

and asymptotic properties have been extensively studied.

For the basal dendrites, each dendritic component can be represented as a tree-structured

object using the aforementioned procedure. Consequently, the entire basal dendrites become a

disjoint union of such binary trees, and indeed form a forest.

The procedure for constructing each binary tree is straightforward, but ambiguity may arise

when identifying the left and right child nodes. Most recent work on tree-structured objects

focused on sets of labeled trees. The term “labeled tree” is referring to a tree in which each node

has a well specified label. In practice, as suggested by Aydın et al. [2009] and followed by Wang
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et al. [2012], two approaches can be considered to establish labeling system, namely, thickness

correspondence and descendant correspondence. In the first approach, at each split point, the

thicker dendrite segment is denoted as the left child node of its parent node. As a contrast, in the

second approach, the dendrite segment with more subsequent segments is denoted as the left child

node. In Figure 3.3, a graphical comparison between two types of correspondence is provided. In

panel (A), a synthetic tree is shown, and the corresponding dyadic tree representations using the

thickness correspondence and descendant correspondence are shown in panel (B) and panel (C)

respectively. The numbers associated with both trees are the level-order indices; see Wang and

Marron [2007] for more details. It can be seen that, for the same tree, two types of correspondence

Figure 3.3: (A) Graphical illustration of a synthetic tree; (B) Dyadic representation using thickness
correspondence; (C) Dyadic representation using descendant correspondence; (D) Harris path for
the tree in (B); (E) Harris path for the tree in (C).

may result in quite different tree-structured objects with different labeling. Most existing methods

for analyzing tree-structured data may reach different conclusions. In this paper, our main focus

is a set of unlabeled trees or forests which has not been tackled before.

48



3.2.3 Curve Representations for Unlabeled Trees and Forests

For labeled binary trees, dyadic tree representation provides an intuitive way to visualize the

topological property; see Figure 3.3. In practice, such representation is not suitable to depict a

sample of tree-structured objects due to space limitation. In probability literature, tree-structured

objects are usually modeled as branching processes. Harris [1952] established a correspondence,

called Harris correspondence, between trees and random walks. For example, for the tree shown

in panel (C) of Figure 3.3, a Harris path to visit all seven nodes is

1 → 2 → 4 → 8 → 4 → 9 → 4 → 2 → 5 → 2 → 1 → 3 → 1

Note that this path is a depth-first search path of all nodes. It can be further illustrated as a curve.

In particular, the number of steps required to visit each node along the Harris path is shown as

the horizontal axis, and the level of the node is shown as the vertical axis. Two random walks are

depicted in panel (D) and panel (E) of Figure 3.3. Note that, for the same tree-structured object,

thickness correspondence and descendant correspondence may result in quite different random

walks. Recently, Shen et al. [2014] used descendant correspondence to pre-process each tree and

then obtained a corresponding Harris path.

The Harris path provides insightful information regarding the topological property of a single

tree-structured object. The alignment issue arises when comparing Harris paths obtained from a

set of trees. In Shen et al. [2014], the authors proposed a modified Harris path (a.k.a. Dyck path)

to overcome this problem. In particular, they introduced a pre-specified (tree) parameter which

controls the depth of search. The effect of such parameter remains unclear. Shen et al. [2014]

further proposed a branch length representation. Each node is represented by the branch number

and the length of the segment. The authors have conducted principal component analysis on the

set of Dyck paths and the set of branch length curves, and certain important scientific findings

have been reported. The success of their approach relies on the descendant correspondence and
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the corresponding labeling system of binary trees. However, we might reach different conclusions

using the same data and different types of correspondence. This issue becomes even more serious

when the data objects are forests. When comparing two forests with different numbers of tree

components, a well-defined order is usually not available. To circumvent this problem, we propose

a new tree/forest representation which is independent of the choice of correspondence and the

labeling system. Moreover, certain nodal attribute, e.g., the length of each segment, can also be

incorporated in this new representation.

For a tree, we introduce a function g(x), x ∈ [0,∞) defined as the number of distinct points

at distance x from the root. An illustrative example is given in the panel (C) of Figure 3.4.

Such function g(x) provides a geometric curve representation of a tree-structured object. Note

that g(x) is a piecewise constant function with g(0) = 0 and g(∞) = 0. In particular, g(x) is

left continuous on (0,∞). One can also notice that the number of jumps in the range (0,∞)

represents the number of nodes in the tree, a positive jump corresponds to an internal node, a

negative jump corresponds to a leaf. It is worth mentioning that, for the tree with topology only,

we can also obtain its topological curve representation, denoted here by `(x), by assuming all

segments have length equal to 1; see panel (B) of Figure 3.4. Here, the number of nodes in the

tree can be retrieved as
∑∞

i=1 `(i), which is always an odd number. An equivalent definition of the

curve representation is the number of intersections of a ball with “radius” x and the tree itself. In

contrast to Harris path, the tree curve mimics the breadth-first search algorithm in graph theory

in the sense that we would like to count the number of branches at any given radius x.

In general, for a forest with k distinct trees, the curve representation is defined as the sum of

g(1)(x), . . . , g(k)(x), where g(i)(x) is the curve representation associated with the ith tree.

In our study, we will represent both apical and basal dendrites using tree curves. For our

convenience, we will display a joint tree curve for both apical and basal dendrites. Specifically,

we show a tree curve for the apical dendrites and the mirror-view of a tree curve for the basal
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Figure 3.4: An example of tree (left) and its curve representations (right): the topological curve
(B), the geometric curve (C).

dendrites in one plot. An example of joint tree curves is given in Figure 3.5. Here the raw data is

depicted in the upper panel, the corresponding (joint) geometric and topological tree curves are

depicted in the middle and the bottom panels.

3.2.4 Equivalence Classes of Topology and Geometry

For each tree or forest, the geometric tree curve provides a functional representation which, in

fact, is not a one-to-one mapping from the space of binary trees or forests to the space of (piecewise

constant) functions. In Figure 3.4, given a tree curve g(x) in panel (C), we can reconstruct a tree;

however, such reconstruction is generally not unique. Two trees, say t1 and t2, are geometrically

equivalent if they have the same geometric tree curve, and hence can be written as t1
G∼ t2. The

geometric equivalence class of tree t is the set of trees that are equivalent to t and is denoted by

[t]G. Analogously, we define the topological equivalence class of a tree t, and denote it by [t]T.

All trees in [t]G and [t]T have the same number of nodes, which equals to 2mt + 1, including mt

internal nodes and mt + 1 leaves.
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Figure 3.5: A graphical display of a joint geometric tree curve (middle) and topological (bottom)
for the corresponding neuron object (top) with apical dendrites (colored in magenta) and basal
dendrites (colored in green).

Next, we will define an operation, called implant, for trees and forests. In particular, for any

tree (or forest) t, an implant of t is defined by swapping any two subtrees at the same distance

from the root. Note that, for topological equivalence, the level plays a role of a distance. It can

be seen that two trees (forests) are equivalent if and only if one tree (forest) can be obtained by

a sequence of implant operations from the other. Thus, there is not a unique tree reconstruction

from a tree curve, or even from geometric and topological curves combined. In this paper, we

often reconstruct a tree with the procedure as described in Section 3.5.3.
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3.3 Methodology

3.3.1 Median Trees and L1 Distance

The notion of median tree has been previously studied by Phillips and Warnow [1996], Banks

and Constantine [1998] and Wang and Marron [2007]. In Phillips and Warnow [1996] and Banks

and Constantine [1998], the authors developed median trees for a set of classification trees. Wang

and Marron [2007] took a first step to consider a set of tree-structured objects motivated by

medical imaging analysis. In particular, for a sample of binary trees, t1, . . . , tn, the authors

proposed a (topological) median as the minimizer tree of

min
t

n∑
i=1

dI(t, ti), (3.1)

where dI is the integer tree metric, defined in (3.1) of Wang and Marron [2007], for labeled binary

trees. This notion of center point in tree space can be viewed as a special case of Fréchet median

[Wang et al., 2012]. For general metric space, Fréchet [1948] proposed to define the center point,

namely, Fréchet median, as the minimizer of (3.1) for any given metric.

In Section 3.2.3, two curve representations, topological and geometric tree curves, have been

proposed for unlabeled trees. Consequently, an intuitive idea to measure the distance between

two unlabeled trees is to use the L1 metric between the corresponding curves. Note that each

equivalence class has a unique curve representation. Thus, the L1 metric between tree curves in

fact provides a distance between equivalence classes of trees.

First, we will consider topological tree curves. For any two trees s and t with topological tree

curves `s(x) and `t(x), the distance between the equivalence classes [s]T and [t]T is defined as

d([s]T, [t]T) = ||`s(x)− `t(x)||1 ≡
∫ ∞
0
|`s(x)− `t(x)|dx. (3.2)

Theorem 1 establishes the connection between the L1 distance in (3.2) and the integer tree metric

of Wang and Marron [2007].
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Theorem 1. For any two trees s and t, we have

d([s]T, [t]T) = min
s′∈[s]T,t′∈[t]T

dI(s
′, t′). (3.3)

From now on, let {t1, . . . , tn} be a random sample of trees, and let `i(x) be the topological curve

representation of ti. Similar to (3.1), we can formulate the median tree through an optimization

problem described as

min
`(x)

n∑
i=1

||`(x)− `i(x)||1, (3.4)

where `(x) runs over the collection of topological curves.

If we relax the constraint in (3.4) and consider all possible functions `(x), the solution is the

pointwise median function, i.e., m0(x) = median{`1(x), . . . , `n(x)}. When n is odd, such pointwise

median function is always unique. When n is even, the pointwise median function may not be

unique for some x, and m0(x) takes the smallest value to break the tie. In Theorem 2, we will

prove that such pointwise median function m0(x) corresponds to an equivalence class in which all

elements are called the topological median trees.

Theorem 2. Assume that {t1, . . . , tn} is a sample of trees with finite levels. Let `i(x) be the

topological curve representation of ti. The pointwise median m0(x) corresponds to an equivalence

class of trees, and hence is the minimizer of (3.4).

Our primary interest is a sample of trees with nodal attributes, e.g., the lengths of dendritic

segments. In literature, for trees with nodal attributes, Wang and Marron [2007] proposed a

median-mean tree, whose topology is determined by the topological median and nodal attributes

can be obtained by averaging corresponding nodal attributes. For a set of unlabeled trees, their

notion of “median-mean” cannot be generalized. In this paper, enlightened by (3.4), for a sample

of trees t1, . . . , tn with geometric tree curves g1(x), . . . , gn(x) respectively, the geometric median

tree can be defined through

argmin
g(x)

n∑
i=1

‖gi(x)− g(x)‖1, (3.5)
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where g(x) runs over all possible geometric tree curves. Similar to Theorem 2, we will show that

the pointwise median, denoted as m1(x), is a geometric tree curve.

Theorem 3. A pointwise geometric median of a finite sample of piecewise constant functions

gi(x) represents a valid tree class.

Figure 3.6: A graphical display of the topological median (lower-left panel) and geometric median
(lower-right panel) of a sample of three tree-structured objects (top row). The number associated
with each branch segment is the segment length, and is referred to as a geometric attribute. Here
both median trees have the same topological structure with three branch segments.

To better illustrate the topological and geometric median trees, we will consider two examples,

as shown in Figures 3.6 and 3.7. In each figure, a sample of three tree-structured objects are

depicted in the top row (panels A-C). In Figure 3.6, three trees have the same topological structure,

including one root segment and two offspring segments among which one is relatively longer than

the other one. The topological and geometric median trees are displayed in the lower-left and

lower-right panels. It can be seen that the topological median also has the same topology as all

three trees. From the geometric median tree, it can be seen that two offspring segments have

unequal length. In Figure 3.7, trees A and B have the same topology, and tree C has more
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Figure 3.7: A graphical display of the topological median and geometric median of a sample of
three tree-structured objects. Topological Median is the same as shown in Figure 3.6.

segments than the other two trees. Surprisingly, the topological median and geometric median

have different tree structures. The reason is that the topological median only characterizes the

centrality of topological properties, while the geometric median tree is influenced by the length

of segments.

In the next section, we will introduce a new notion of median, called Pareto median, which

will take both topological and geometric information into consideration.

3.3.2 Pareto Median Trees — A Multi-Objective Approach

We continue to let {t1, . . . , tn} be a random sample of trees. Let `i(x) and gi(x) be the

topological and geometric curve representations of a tree ti, respectively.

In Figure 3.8, a sample of 21 trees is depicted. All trees have the same simple topology, a trunk

and two branches, and randomly-generated geometric attributes. The topological and geometric

median trees are shown in panels (B) and (C). It can be seen that the geometric median has a

more complex topological structure than the topological median. The complexity of the geometric
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Figure 3.8: (A) Graphical display of a sample of 21 simulated trees with the same topology and
different geometric attributes; (B) Topological median tree; (C) Geometric median tree.

median reflects the diversity of geometric attributes of the tree set. By contrast, the topological

median is the manifestation of the topological homogeneity of the data. Preferably, we would like

to find a median tree that takes into account both topological and geometric attributes together.

In other words, we would like to find a tree to minimize both (3.4) and (3.5) simultaneously, which,

in fact, is a multi-objective optimization problem. Mathematically, it can be formulated as

min
t

(Tn(t), Gn(t)) (3.6)

where t runs over the space of binary trees,

Tn(t) =
n∑
i=1

||`t(x)− `i(x)||1 and Gn(t) =

n∑
i=1

||gt(x)− gi(x)||1

Here, `t(x) and gt(x) are the topological and geometric tree curves of t, respectively.

In multi-objective optimization, there is no guarantee of the existence of a solution which

minimizes both Tn(t) and Gn(t). An alternative is the Pareto optimum; see Coello et al. [2007]

for a formal definition. Pareto set contains all feasible solutions such that there is no other solution
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that improves one of the criteria without worsening another. In other words, a Pareto optimal

set is a set of feasible solutions which are not dominated by any other solution.

In our problem considered here, for any two trees s and s′, s′ is dominated by s if Tn(s) ≤ Tn(s′)

and Gn(s) ≤ Gn(s′), and at least one inequality is strict. In addition, a tree is Pareto optimal

or Pareto median tree, if it is not dominated by any other trees. Let P be the collection of

all Pareto median trees. There are two trivial Pareto median trees, namely topological Pareto

median and geometric Pareto median. For the topological Pareto median, we minimize Gn(t)

among the subclass of trees whose topological tree curves minimize Tn(t). On the other hand, for

the geometric Pareto median, we minimize Tn(t) among the subclass of minimizer trees of Gn(t).

If a common solution exists, it is called an ideal tree.

Recall that, in Section 3.3.1, the topological median tree and the geometric median tree are

defined by minimizing Tn(t) and Gn(t) respectively. It is worth mentioning that the geometric

median and the geometric Pareto median have the same geometric curve; however, in terms of

topology, the former is less restrictive than the latter. This is due to the fact that the geometric

Pareto median minimizes Tn within a subclass of trees possessing the same geometric tree curve.

Similarly, the topological median and the topological Pareto median have the same topology, but

the former can have any geometric properties or attributes, and the latter has the geometry that

minimizes Gn in a subclass of trees possessing the same topological curve.

For the example in Figure 3.8, there are four elements in the Pareto optimal set. All four

Pareto median trees are shown in Figure 3.9. In particular, the first tree is the geometric Pareto

median, and the last tree is the topological Pareto median. In addition, for each Pareto median

tree, the corresponding values of Tn and Gn are depicted as a point in Figure 3.9. In this example,

there is a unique tree corresponding to each pair of Tn and Gn, but it is not the case in general.

The geometric Pareto median can be found efficiently using convex optimization techniques;

see Antoniou and Lu [2007]. However, the number of topologies grows with the number of nodes
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Figure 3.9: A graphical display of the Tn-values (horizontal axis) and Gn-values (vertical axis)
for all Pareto median trees. The solutions form a Pareto front. In particular, the tree objects
corresponding to those values are shown in panels (A)-(D).

in the tree. Finding an optimal topology can be viewed as a combinatorial problem of high

dimension, which can be efficiently solved using genetic algorithm. In general, computation of

a multi-objective optimization problem (3.6) can be very complicated. However, as will be seen

in Section 3.3.4, after appropriate modification, genetic algorithm can be used to find all Pareto

solutions.

It is worth mentioning that, in the literature, a widely-used approach to multi-objective op-

timization is the weighted-sum method [Coello et al., 2007]. Specifically, consider the following

optimization problem, for 0 < λ < 1,

min
t
λTn(t) + (1− λ)Gn(t) (3.7)

This criterion is a linear combination of the Tn and Gn. It is expected that its solution will take

both topology and geometric information into consideration. Moreover, note that the solutions

of (3.7) are Pareto optimal of (3.6), hence are Pareto median trees. For a known λ, (3.7) is a

single-objective optimization problem, which can be efficiently solved using the standard genetic
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algorithm. In addition, a range of λ may correspond to a single Pareto optimal solution. This

can be observed in Figure 3.9, where for each of four Pareto trees, the corresponding range of

parameter λ is specified. In particular, the topological Pareto median corresponds to the largest

λ, and the geometric Pareto median corresponds to the smallest λ. However, the multi-objective

optimization in (3.6) is not equivalent to the single-objective optimization in (3.7); that is, for

some Pareto optimal trees, there is no corresponding λ such that (3.7) holds. In literature, given

a preselected λ, the weighted sum method is often referred to as an a priori method, in contrast

to the a posteriori method that finds many Pareto solutions, and selects the best solution after

the search is completed [Coello et al., 2007]. In this paper, our computational approach will yield

all or most of the Pareto solutions.

3.3.3 Pareto Quantiles of Unlabeled Trees

In this section, we will extend the notion of Pareto median trees to Pareto quantile trees. To

motivate our discussion, we fist consider a random variable X. Finding the sample quantile of X,

based on a random sample {X1, . . . , Xn}, can be formulated as an optimization problem

argmin
x

n∑
i=1

ρτ (Xi − x),

where ρτ (z) = z(τ − I(z < 0)) and τ ∈ (0, 1). See Koenker and Hallock [2001] for more details.

Here, we consider a set of random tree objects rather than random variables. Enlightened

by the problem above, we can generalize the formulation in (3.6) and define the Pareto quantiles

through a multi-objective optimization problem; that is,

min
t

(T τn (t), Gτn(t)) (3.8)

where

T τn (t) =

n∑
i=1

∫
X

ρτ (`i(x)− `t(x))dx and Gτn(t) =

n∑
i=1

∫
X

ρτ (gi(x)− gt(x))dx.
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In the special case of τ = 0.5, this problem is equivalent to (3.6), and yields the Pareto median

trees.

Similar to a topological and geometric median, we first minimize T τn (t) and Gτn(t) individually,

to obtain topological and geometric quantiles. The analogs of Theorems 2 and 3 also hold, and

are stated as follows. Both theorems play essential roles in the identification of Pareto quantiles.

Theorem 4. Assume that {t1, . . . , tn} is a sample of trees with finite levels. Let `i(x) be the

topological curve representation of ti. The pointwise topological quantile of `i(x) represents a

valid tree.

Theorem 5. A pointwise geometric quantile of a finite sample of piecewise constant functions

gi(x) represents a valid tree.

In general, for a sample of forests, it can be shown that a pointwise quantile represents a

valid forest. Next, same as (3.6), the existence of the minimizer of (3.8) is not guarenteed. Here,

we intend to find the Pareto optimal set for (3.8). Each element in this Pareto optimal set is

called a 100τ -th Pareto quantile. Using the similar idea of the topological and geometric Pareto

medians, there are two trivial elements in the Pareto optimal set of (3.8), namely, topological

Pareto quantile and geometric Pareto quantile. For illustration, the Pareto optimal sets for the

25th and 75th quantiles for the example from Figure 3.8 are depicted in Figure 3.10. Both sets

consist of just two solutions, the geometric Pareto quantile and the topological Pareto quantile.

Note that, for this toy example, all solutions can be obtained using the weighted sum method, in

a similar fashion as defined in (3.7).

3.3.4 Genetic Algorithm

The genetic algorithm provides a useful tool to solve combinatorial problems that do not have

an analytic solution. By imitating the mechanism of a genetic selection acting on chromosomes
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Figure 3.10: Top row: Pareto set for the 25th quantile; bottom row: Pareto set for the 75th
quantile. Trees A and C are geometric Pareto quantiles, and trees B and D are topological Pareto
quantiles.

and genes, the algorithm finds the fittest elements in the population. The interpretation of fit-

ness depends on the optimization goal. In single-objective optimization, there is generally one

best element. In multi-objective optimization, there is a set of best elements defined through

non-dominance as discussed in Section 3.3.2. The algorithm starts with an initial population of

trees, designed to provide sufficient genetic diversity for the natural selection to work, and cre-

ates new individuals stochastically via random cross-overs and mutations applied to the fittest

(and occasionally less fit) elements of the previous generation. Theoretical results regarding the

convergence of genetic algorithm are based on the schema theory [Goldberg, 1989]. The practical

advice on the algorithm design is available in Sivanandam and Deepa [2007]. In general, the ge-

netic algorithm performs better than a random search, and it does so by exploiting accumulated

information about the features that improve overall capabilities of the organisms.

The implementation of the genetic algorithm to our multi-objective optimization problems is

non-trivial and poses a significant challenge. It requires some important elements of the design,

including the encoding of the population of geometric tree curves as chromosome-like strings, and

62



the definition of cross-over and mutation over those tree curves. Note that a mutation could create,

delete or move a single branch, and a cross-over might merge two subtrees from two parents. The

algorithm can also operate on geometric curves representing forests without significant changes.

In Section 3.3.2, for a known λ, we consider a single-objective optimization problem (3.7)

instead of a multi-objective optimization problem (3.6). From a practical viewpoint, there is

no additional complexity in designing a multi-objective algorithm compared to a single-objective

algorithm, except for a potentially very large set of optimal solutions. For the toy example in

Figure 3.8, the genetic algorithm finds the entire Pareto set of median trees (Figure 3.9) as well as

25th and 75th quantile trees (Figure 3.10). For the real data, the problem is much more complex.

Figure 3.11 shows a collection of solutions found in a single run of the algorithm.

Figure 3.11: A graphical display of the Pareto set for the median of apical dendritic trees from
CA1. The solutions form a Pareto front. The geometric Pareto median (A) and topological
Pareto median (D) as well as two other Pareto medians, (B) and (C), are highlighted. All four
are depicted in Figure 3.14. Here both axes are shown in log-scale.

3.4 Real Data Analysis

In this section, our proposed methods are applied to a set of pyramidal neurons as described

in Section 3.2.1. This data set consists of 119 digital reconstructions of neurons from CA1 and
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68 from CA3 of the hippocampus. In general, each neuron consists of approximately 3, 000

interconnected voxels, and each voxel is associated with a type (soma, axon, basal dendrite, apical

dendrite) and a radius (not used in this study). The first step of the analysis involves the extraction

of the tree object for both dendritic structures of every neuron. The geometric properties of each

branch can be extracted in multiple ways. Ascoli and Krichmar [2000] provided a comprehensive

survey of studies of the relationship between branch length, branch radius at bifurcation points

and branching angles. The authors pointed out that approximating a branch length by a straight

line between the bifurcation points leads to a much smaller tree. An alternative approach is to

approximate the branch length by summing the distances between voxels in each branch, which

could potentially lead to a larger tree. Here, we take the latter approach. The topological and

geometric curve representations can be constructed based on the digitally reconstructed neurons.

Figure 3.12 shows both geometric (left column) and topological (right column) curve represen-

tations for all neurons in CA1 (top row) and CA3 (bottom row) regions. In each panel, joint tree

curves, as defined in Section 3.2.3, are depicted. It can be observed that neurons from the CA3

region have a much more developed basal section (left portions of the tree curves) than neurons

from CA1. The apical sections of neurons from both regions differ substantially. In panels (A)

and (C), the geometric apical tree curves from CA1 (the right portions of the curves) are longer

than the ones form CA3. Specifically, many CA1 tree curves are longer than 1000 (micrometers),

whereas most CA3 tree curves are less than that. In addition, the largest branch counts for tree

curves from CA1, on y-axis, are bigger than the branch counts for tree curves from CA3. The

topological curves of the apical trees, in panels (B) and (D), indicate that apical trees from CA1

are taller than those from CA3. In fact, many CA1 curves reach levels 30 or higher, while all

apical trees from CA3 end before level 20.
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Figure 3.12: (A) Joint geometric curves for all neurons from CA1 region; (B) Joint topological
curves for all neurons from CA1 region; (C) Joint geometric curves for all neurons from CA3
region; (D) Joint topological curves for all neurons from CA3 region.

For each choice of τ , we implement the genetic algorithm, as discussed in Section 3.3.4, to

obtain quantiles of apical and basal dendritic trees. For instance, in Figure 3.11, the Pareto set

for the median apical dendritic trees is depicted. Each element in the Pareto set will correspond

to a Pareto median tree. In particular, the topological Pareto median and geometric Pareto

median are highlighted in Figure 3.11, their corresponding tree representations are included in

Figure 3.13.

Recall that each Pareto solution consists of two curves, a topological curve and a geometric

curve, and for each pair, a tree can be reconstructed following the procedure outlined in Sec-

tion 3.5.3. The geometric curves corresponding to both Pareto medians, in panels (B) and (F) of

Figure 3.13, are very similar. The topological curves, in panels (A) and (E), reveal some topo-
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Figure 3.13: Graphical display of topological and geometric tree curves, as well as corresponding
tree objects, for geometric Pareto median (top row) and topological Pareto median (bottom row).
(A) topological tree curves for geometric Pareto median from CA1 (solid) and CA3 (dashed);
(B) geometric curves for geometric Pareto median from CA1 (solid) and CA3 (dashed); (C) tree
object corresponding to CA1 geometric Pareto median; (D) tree object corresponding to CA3
geometric Pareto median; (E) topological tree curves for topological Pareto median from CA1
(solid) and CA3 (dashed); (F) geometric curves for topological Pareto median from CA1 (solid)
and CA3 (dashed); (G) tree object corresponding to CA1 topological Pareto median; (H) tree
object corresponding to CA3 topological Pareto median.

logical differences between Pareto medians; in particular, around level 10, the geometric Pareto

median tree tends to have more branches than the topological Pareto median.

In panel (B), the joint curves for geometric Pareto median trees from CA1 (solid line) and CA3

(dashed line) are compared. It can be seen that, for neurons from CA1 and CA3 regions, apical

dendrites are longer than basal dendrites, but basal dendrites have higher branching maxima

than apical dendrites. Furthermore, the median basal dendrites from both regions are of the same

overall length, but basal dendrites from CA3 have substantially more branches in the middle

section. In fact, the maximal number of branches for both basal dendrites occurs roughly at the

same distance from the root. However, for apical dendrites, different lessons are learned. The

median geometric curves, positive portions in panel (B), are closer in maximum branch count
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(y-axis) but not in tree height (x-axis). The CA1 median tree is slightly longer, and the maximal

numbers of branches for both apical dendrites are aligned at the same distance. Panels (C) and

(D) contain simplified depictions of geometric Pareto median trees from CA1 and CA3.

In panel (E), the topological Pareto median curves from CA1 (solid line) and CA3 (dashed

line) are compared. The basal topological median trees have the same height (x-axis), but CA3

maxima are larger than CA1 maxima. In fact, the median basal dendrites for both CA1 and

CA3 regions are forests with three and four trees respectively. In contrast, the apical dendrites

differ considerably in topology. The CA3 apical median tree is much shorter, and it reaches

the maximum number of branches at about level 5, and from there, the number drops steeply.

The CA1 median tree exhibits a different growth pattern. The branch maximum is lower than

that of CA3, but the number diminishes slowly, which results in a much higher tree. Panels (G)

and (H) contain simplified depictions of topological Pareto median trees from CA1 and CA3.

Figure 3.13 shows just two members of the Pareto optimal set, the geometric Pareto median and

the topological Pareto median. Figure 3.14 shows two additional reconstructed Pareto median

trees from region CA1. All trees are indeed similar.

Figure 3.14: Pareto median trees from CA1, including the geometric Pareto median (panel A),
the topological Pareto median (panel D), and two other Pareto median trees (panels B and C).
The Tn and Gn values for those four median trees are highlighted in Figure 3.11.

As a comparison, we consider two alternative methods for obtaining the median tree based

on node labeling using descendant correspondence [Shen et al., 2014]. In Figure 3.15, three
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Figure 3.15: Topology for the median apical dendrite from CA1: pointwise true value (solid line)
and two labeled methods (dotted and dashed lines). Overall numbers of branches are shown in
brackets. Labeled methods underestimate the number of dendritic segments.

different topological medians for apical dendritic trees from CA1 region are depicted, including

our proposed method (solid line), BLR (dotted line) and modified Harris paths (dashed line). The

plot shows the number of dendritic branches (y-axis) at each level (x-axis) and the overall number

of branches. It can be seen that both BLR and modified Harris paths for labeled trees yield trees

with fewer dendritic segments, which essentially underestimates the topological complexity.

Next we implement our proposed method to compute both topological and geometric Pareto

quantiles. Fgure 3.16 shows the 10th Pareto quantiles of neurons from CA1 and CA3 regions.

The 10th quantile trees are much smaller and simpler, but they exhibit some characteristics that

we observed in the median trees. In particular, the basal trees are shorter than apical trees, and

have higher branching maxima. In addition, the basal trees from CA1 and CA3 are similar, both

in geometry (panels B and F) and topology (panels A and E), but the basal trees from CA3

have slightly larger branching maxima than CA1 basal trees. The apical quantiles reveal more

conspicuous differences between CA1 and CA3 regions. In geometry, depicted in panel (B and F),

the apical tree from CA1 is slightly more complex than the apical tree from CA3; specifically it

is longer and has more branches at all distances. In topology, depicted in panels (A) and (E), the
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Figure 3.16: Graphical display of topological and geometric tree curves, as well as corresponding
tree objects, for geometric 10th Pareto quantile (top row) and topological 10th Pareto quantile
(bottom row). (A) topological tree curves for geometric 10th Pareto quantile from CA1 (solid) and
CA3 (dashed); (B) geometric curves for geometric 10th Pareto quantile from CA1 (solid) and CA3
(dashed); (C) tree object corresponding to CA1 geometric 10th Pareto quantile; (D) tree object
corresponding to CA3 geometric 10th Pareto quantile; (E) topological tree curves for topological
10th Pareto quantile from CA1 (solid) and CA3 (dashed); (F) geometric curves for topological
10th Pareto quantile from CA1 (solid) and CA3 (dashed); (G) tree object corresponding to CA1
topological 10th Pareto quantile; (H) tree object corresponding to CA3 topological 10th Pareto
quantile.

branching pattern of CA1 apical trees is different from that of CA3 apical trees. Although apical

trees from CA1 have more branches at any distance from the root, as shown in geometric curves

in (B) and (F), these branches are distributed differently, and more of them are at higher levels

of trees, and fewer at lower levels. The simplified depictions of corresponding trees, in panels (G)

and (H), confirm these observations.

These characteristics are even more pronounced in the 90th quantile trees; see Figure 3.17.

Comparing the 90th quantile to lower quantiles, one can observe that CA1 apical trees gained most

branches further from the root and on higher levels, while CA3 apical trees gain most branches
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closer to the root and on lower levels. In contrast, basal 90th quantile trees grew more in width

(higher branching maxima) than in length or depth.

Figure 3.17: Graphical display of topological and geometric tree curves, as well as corresponding
tree objects, for geometric 90th Pareto quantile (top row) and topological 90th Pareto quantile
(bottom row). (A) topological tree curves for geometric 90th Pareto quantile from CA1 (solid) and
CA3 (dashed); (B) geometric curves for geometric 90th Pareto quantile from CA1 (solid) and CA3
(dashed); (C) tree object corresponding to CA1 geometric 90th Pareto quantile; (D) tree object
corresponding to CA3 geometric 90th Pareto quantile; (E) topological tree curves for topological
90th Pareto quantile from CA1 (solid) and CA3 (dashed); (F) geometric curves for topological
90th Pareto quantile from CA1 (solid) and CA3 (dashed); (G) tree object corresponding to CA1
topological 90th Pareto quantile; (H) tree object corresponding to CA3 topological 90th Pareto
quantile.

To summarize, the geometric and topological differences between dendritic trees from CA1

and CA3 regions can be observed by analyzing the 10th, 50th, and 90th Pareto quantiles of both

regions. The basal dendrites from both regions are very similar geometrically and topologically,

from very small and simple trees to larger and more complex trees. The basal trees from CA3

appear to be forests with more component trees than basal forests from CA1. The apical parts

reveal bigger differences between two regions. Apical trees from CA1 region are slightly longer

than the trees form CA3 region, and they exhibit a different branching pattern than apical trees
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form CA3. The apical trees from CA1 have fewer branches at lower levels, and more branches at

higher levels, and topologically, they form much taller trees.

3.5 Simulation Study

In this section we conduct simulation study to demonstrate the performance of our proposed

method. To begin with, we focus on the probabilistic framework under which the arborizations

are generated from stochastic processes. In Section 3.5.1, we first propose a stochastic generative

model to simulate geometric properties of trees. In Section 3.5.2, based on the simulated geometry,

we further develop a probabilistic framework to generate tree topology.

3.5.1 Neuron geometry

An intuitive choice of simulating geometric curve g(x) from Section 3.2.3 is the age-dependent

branching process, which represents the number of distinct tree branches at a distance x from the

root; see Bellman and Harris [1952] for details. In general, age-dependent branching processes

are not Markovian, and it can be further assumed that the distribution function of the length of

every branch and the probability to produce offsprings are independent. Those authors further

assumed homogeneity of the process, which is questionable for modeling neuron growth. In this

paper, under our model settings, lengths of branches change as a function of x, the distance from

the root.

Recall that each geometric curve is characterized by a set of discontinuity points (i.e., jump

points), and the sign of each jump, either positive or negative. Correspondingly, our proposed

simulation scheme includes two steps, generating a sequence of discontinuity points from a Cox

process and, at each point, generating a sign of the jump from a generalized linear model. The

Cox process is a doubly stochastic Poisson process with a random rate function, denoted here by

Λ(x). We outline the algorithm as follows.
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1. Generate a sufficiently large number of realizations from Λ(x), and calculate the maximum

λmax.

2. Set x0 = 0, x∗ = 0, and N = 1.

3. At step i, i = 1, . . . ,

(a) Generate W as an exponential random variable with rate λmax and set x∗ = x∗ +W .

(b) Simulate a random variable U from the standard uniform distribution.

(c) Accept point x∗ if U < λi/λmax, where λi is a realization from Λ(x∗). If x∗ is accepted,

set xi = x∗, otherwise go back to (a).

(d) At point xi, simulate a Bernoulli random variable Z with probability p(xi), where

p(xi) = Φ(ψ(xi)). Here, Φ is the normal distribution function, and ψ is a smooth

function. If Z = 1, there is a positive jump at xi, and set g(xi) = g(xi−1) + 1 and

N = N + 1, otherwise there is a negative jump, and set g(xi) = g(xi−1) − 1 and

N = N − 1.

(e) Stop, if N = 0

Here, steps (3a)-(3c) essentially generate realization from a Cox process; see Burnecki et al.

[2004] for detailed discussion on simulation of Cox processes. At each iteration, N represents

the number of distinct branches, and the generation stops when N reaches zero. As a result,

our algorithm yields observations from a randomly stopped Cox process; see Silvestrov [2006] for

more information on stopped stochastic processes.

Our proposed simulation algorithm relies on two important components, including the distri-

bution of the random rate function Λ(x) and the probability function p(x), or equivalently ψ(x).

To mimic the set of observed neuron trees, as described in Section 3.2.1, we take a heuristic

approach and estimate both components from the real data. Let Y (x) denote the total number
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of jump points up to a distance x from the root. Conditioning on Λ(x), Y (x) has a Poisson

distribution with rate xΛ(x). Assuming that Λ(x) follows a Gamma distribution, Γ(φ, θ(x)/φ),

we have

Y (x) ∼ Negative-binomial(mean = xθ(x),dispersion = φ), (3.9)

where θ(x) is a positive smooth function and can be expressed as θ(x) = exp(α(x)) for some

smooth function α(x), which provides a flexible shape for the mean structure. In addition, α(x)

can be approximated by a set of orthogonal polynomial basis functions with a vector of coefficients

denoted by β. Estimation of coefficients is quite challenging, which is partially due to the fact

that Y (x)’s are dependent between different x’s. For simplicity, we randomly sample one Y from

each neuron tree, which results in a sample of independent observations. Moreover, parameter

estimation of model (3.9) requires an alternating sequence of two steps, including an Iteratively

Reweighted Least Squares (IRLS) procedure to estimate β and a pseudo-likelihood maximization

procedure to estimate parameter φ [Carroll and Ruppert, 1988, Ruppert et al., 2003]. The left

panel of Figure 3.18 depicts the estimated functions θ(x) for apical dendrites (solid line) and basal

dendrites (dashed line). It can be seen that the point processes generating the apical and basal

dendrites are inhomogeneous stochastic processes with the mean rate diminishing as the distance

from the root increases.

Similarly, ψ(x) can also be approximated by a set of basis functions. The parameter estimation

can be conducted using the IRLS procedure. The estimated probability functions for apical

dendrites and basal dendrites are depicted in the right panel of Figure 3.18. Note that both

functions dimini sh with the distance from the root.

3.5.2 Neuron topology

In the previous section, we propose a probabilistic scheme to simulate geometric tree curves.

Recall that trees with the same geometric curve or from the same geometric equivalence class may
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Figure 3.18: Left: Estimated mean rate functions for length of branches in two types of dendrites
from CA1 using Negative-binomial model. Right: Estimated probability function of the branch
bifurcation for two types of dendrites from CA1. (Solid line: apical dendrites; Dashed line: basal
dendrites).

not have the same topology. Next, we focus on the simulation scheme of topological tree curve

for a given geometric tree curve.

For a tree with m splits (i.e., internal nodes) and m+1 leaf nodes, its corresponding geometric

curve has m positive, excluding the origin, and m+ 1 negative jumps. On the other hand, for a

binary tree with m internal nodes, the total number of possible topologies was studied in the con-

text of Conditioned Binary Galton-Watson trees [Pitman, 2006]. Without considering topological

equivalence, there are Cm full binary trees with m internal nodes, where Cm =
(
2m
m

)
/(m+1) is the

Catalan number. The number of different equivalence classes, denoted by Tm, is much smaller.

For comparison, Table 3.1 contains a list of first 10 Catalan numbers Cm and corresponding Tm.

Table 3.1: Comparison of Cm and Tm for m = 1, . . . , 10. Here, Cm represents the Catalan number,
and Tm represents the number of topological equivalence classes.

m 1 2 3 4 5 6 7 8 9 10
Cm 1 2 5 14 42 132 429 1430 4862 16796
Tm 1 1 2 3 5 9 16 28 50 89
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To simulate a topological tree curve for a given m, one possible approach is to assume that

each of Cm topologies is equally likely. A method to generate such “uniformly distributed” tree

topologies is available; see Mäkinen [1999] for a review of tree encodings and context-free grammars

applied to simulation of full binary trees. Consequently, a topological tree curve can be produced.

Our proposed simulation scheme of the geometric and topological tree curves raises an impor-

tant question regarding the existence of a tree objects; that is, is there a tree object given any

pair of geometric and topological curves with the same number of internal nodes? Unfortunately,

the answer is negative, and a counter-example is shown in Figure 3.19. Here, a geometric tree

curve and a topological tree curve are displayed in panels (A) and (C) respectively. Notice that

each curve corresponds to a tree with three internal nodes and four leaf nodes. The topological

curve suggests that the tree is a complete binary tree with three levels (levels 0, 1 and 2), and

all leaf nodes are on level two. An example tree is shown in panel (D). However, the geometric

curve has a negative jump at 5.5, which suggests that there is a leaf at level one. Thus, both tree

curves are not compatible. In addition, it is worth mentioning that the geometric curve in panel

(A) corresponds to an equivalence class with unique topology. A depiction is shown in panel (B).

For a given geometric curve, certain topologies among those Cm possibilities are not feasible.

On the other hand, there is at least one topology that is feasible. To demonstrate the existence of

such solution, we give a short introduction to tree traversal or sequentialization. A tree traversal

of a full binary tree refers to visiting every node of a tree in a systematic way. In the example in

panel (C) of Figure 3.3, the tree can be traversed depth-first, where nodes are visited in the order

1, 2, 4, 8, 9, 5, 3 or breadth-first, where nodes are visited in the order 1, 2, 3, 4, 5, 8, 9. If the labelling

only identifies internal nodes as a “1”, and leaves as a “0”, both traversals will produce binary

strings, “1110000”, and ”1101000” respectively. This 0-1 encoding of a tree is also known as Zach’s

encoding and is used to generate binary trees at random from a context free grammar [Mäkinen,

1999]. Notably, any geometric curve can be mapped one-to-one to such a tree sequentialization.
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We simply represent a positive jump as a “1”, and a negative jump as a “0”. The resulting binary

string has exactly m occurrences of “1” and m+ 1 occurrences of “0”. By interpreting this string

as a trace of either a depth-first or a breadth-first tree traversal, we can generate at least one

feasible topology.

Figure 3.19: An example of incompatible geometric (A) and topological (C) curves with the same
number of internal nodes m = 3. Tree in panel (B) has the geometric tree curve (A), and tree in
panel (D) has the topological tree curve (C).

In practice, we consider the approach based on rejection sampling to generate tree topol-

ogy. The rejection sampling of tree topologies is based on the uniform sampling of conditioned

binary trees [Mäkinen, 1999]. Each of Cm trees is generated with equal probability, but infeasi-

ble topologies are rejected. Consequently, feasible tree topologies are generated with a uniform

probability.

76



3.5.3 Tree Reconstruction

In Sections 3.5.1 and 3.5.2, we study the simulation for geometric and topological curves

respectively. Here we focus on the reconstruction of a tree object corresponding to these two

curves.

Let g(x) be a geometric curve with discontinuity points 0 = x0 < x1 < · · · < x2m+1. At each

point, the jump size is denoted by zj = g(xj) − g(xj−1) for j = 1, . . . , 2m + 1. Note that zj is

either 1 or −1. Let `(x) be a feasible topological curve with m internal nodes. The algorithm

below outlines the procedure to construct a tree-structured object.

1. Create the root node of the tree at level 0.

2. Create two child nodes of the root at level 1 if `(2) = 2. If `(2) = 0, stop.

3. At level i,

(a) Randomly draw `(i)/2 nodes from nodes at level i− 1.

(b) Mark the selected nodes as internal nodes and the remaining nodes as leaves.

(c) For each internal node at level i− 1, create two child nodes at level i

4. Mark all nodes on the last level as leaves

5. Assign x1 as the nodal attribute of the root, and mark the root as visited

6. Repeat, for j = 2, . . . , 2m+ 1,

(a) if zj > zj−1, randomly select an internal node with a visited parent among nodes closest

to the leaves, and assign distance xj to the selected node, mark it as visited.

(b) if zj < zj−1, randomly select a leaf node with a visited parent, and assign distance xj

to the selected node, mark it as visited.
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Our proposed algorithm consists of two stages, creation of a tree topology based on the topo-

logical curve (Steps 1-4) and assignment of lengths to edges based on the geometric curve (Steps

5-6). A combination of geometric and topological properties does not describe a unique tree, so

nodes are selected at random in both stages. Examples of simulated dendritic trees are shown in

Figure 3.20.

Figure 3.20: A sample of simulated neuron objects. The angles between branches are chosen for
improved visibility.

3.5.4 Simulation Results

A simulation study with 100 repetitions is conducted. For each repetition, a sample of n = 200

tree objects is generated using the algorithms outlined in the previous sections. The sample

topological and geometric Pareto quantiles are calculated based on our proposed methods.

In Figure 3.21, the pointwise 95% confidence intervals for both topological (left panel) and

geometric (right panel) Pareto medians are depicted. In each panel, the population Pareto median

is shown as thick black line, which is computed using Monte Carlo simulation based on 1000 trees.

It can be seen that the population Pareto medians are within the 95% confidence intervals. Similar

lessons are also learned for other Pareto quantiles; see Figures 3.22 and 3.23.
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Figure 3.21: Topological (left) and geometric (right) pareto population median (black) and sample
95% confidence intervals (grey). The population medians are within the 95% confidence interval.

Figure 3.22: (A) 10th, (B) 25th, (C) 75th and (D) 90th topological Pareto population quantiles
(black) and sample 95% confidence intervals (grey). The population quantile is within the 95%
confidence interval.
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Figure 3.23: (A) 10th, (B) 25th, (C) 75th and (D) 90th geometric Pareto population quantiles
(black) and sample 95% confidence intervals (grey). The population quantile is within the 95%
confidence interval.
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3.6 Proofs

3.6.1 Proof of Theorem 1

Lemma 1. Let s be a full binary tree with a topological curve `s(x). Let Ai = {2i, . . . , 2i +

`s(i)− 1}. Then the union of all Ai’s, denoted by A = ∪iAi, is the level-order index set of a tree

in the topological equivalence class of s. This tree is called the left-shifted modification of s.

Proof of Lemma 1. First, we can see that 1 ∈ A0 ⊂ A. For any i > 1, consider an element

2k ∈ Ai, i.e., 2i ≤ 2k ≤ 2i + `s(i)− 1. Thus, by the fact that `s(i) ≤ 2`s(i− 1), we have

2i−1 ≤ k ≤ 2i−1 + `s(i)/2− 1/2 ≤ 2i−1 + `s(i)/2− 1 ≤ 2i−1 + `s(i− 1)− 1.

Similarly, consider an element 2k + 1 ∈ Ai, we have 2i−1 ≤ k + 1/2 ≤ 2i−1 + `s(i)/2− 1/2, and

2i−1 ≤ k ≤ 2i−1 + `s(i)/2− 1 ≤ 2i−1 + `s(i− 1)− 1.

That is, k ∈ Ai−1 and A corresponds to a binary tree, say s′.

Next, we will prove that s′ is a full binary tree. Consider a node with the level-order index 2k

at level i, such that 2i ≤ 2k ≤ 2i + `s(i) − 1. Note that, for a full binary tree s, `s(i) is an even

number for i > 1, and thus, 2i + `s(i)− 1 is an odd number. Consequently, 2k+ 1 ≤ 2i + `s(i)− 1,

i.e., 2k + 1 ∈ Ai.

Finally, it can be seen that s and s′ have the same number of nodes at each level. Thus, they

have the same topological tree curve, and s′ ∈ [s]T.

Proof of Theorem 1. For any two full binary trees s and t, let `s(x) and `t(x) be the cor-

responding topological tree curves. Let hs and ht denote the maximum levels of s and t, and

h = max(hs, ht).
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Recall that both `s(x) and `t(x) are piecewise constant functions. By (3.2), we have

d([s]T, [t]T) = ||`s(x)− `t(x)||1 ≡
∫ ∞
0
|`s(x)− `t(x)|dx =

h∑
i=0

|`s(i)− `t(i)|. (3.10)

In the last summation, |`s(i)− `t(i)| quantifies the difference in the number of nodes at level i.

On the other hand, the integer tree metric dI [Wang and Marron, 2007] is defined as the

symmetric difference between the level-order index sets of two trees. In addition, it can be

written as a summation of level-wise differences [Wang, 2003]. That is, for any s′ ∈ [s]T and

t′ ∈ [t]T, dI(s
′, t′) =

h∑
i=0

di(s
′, t′), where di(s

′, t′) is a pseudo-metric and counts the number of

different nodes with labels, at level i, in one tree but not the other. It can be seen that di(s
′, t′) ≥

|`s′(i)− `t′(i)| = |`s(i)− `t(i)|. Combining with (3.10), we have dI(s
′, t′) ≥ d([s]T, [t]T)

Next, we will prove that the equality is attainable for some trees. By Lemma 1, for trees

s and t, there exists s′ and t′ which are the left-shifted modifications of s and t respectively.

At level i, both s′ and t′ have nodes with consecutive indices starting from 2i. Thus, we have

di(s
′, t′) = |`s′(i)− `t′(i)| = |`s(i)− `t(i)|, which completes the proof.

3.6.2 Proof of Theorem 2

Lemma 2. A function `(x), x ∈ [0,∞), is a topological tree representation of a full binary tree if

the following conditions hold

(a) `(0) = 0 and `(1) = 1.

(b) `(x) is a piecewise constant function, and there exist a positive integer M and a sequence

of positive integers c1, · · · , cM such that `(x) = ck for x ∈ (k − 1, k] and k = 1, . . . ,M . In

addition, `(x) = 0 for x > M .

(c) For any k > 1, ck is an even number and ck ≤ 2ck−1.
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Lemma 2 is a direct consequence of the tree reconstruction method described in Section 3.5.3.

In addition, condition (b) suggests that `(x) has a finite support, and there exists a positive

integer M such that `(x) > 0 for x ∈ (0,M ] and `(x) = 0 for x ∈ (M,∞). Next, we will prove

Theorem 2.

Proof of Theorem 2. We will prove that m0(x) satisfies all conditions listed in Lemma 2. Con-

dition (a) is straightforward. Note that `i(0) = 0 and `i(1) = 1 for i = 1, . . . , n. Thus, we have

m0(0) = 0 and m0(1) = 1.

Next, we will prove that (b) is satisfied. Note that `i(x) = 1 for x ∈ (0, 1]. Therefore, we have

m0(x) = 1 for x ∈ (0, 1]. Let k be any integer and k > 1. For each interval (k − 1, k], `i(x) takes

constant even numbers for all i. Thus, m0(x) is a piecewise constant function. In fact, when the

median is unique, m0(x) is clearly an even number. On the other hand, when the median is not

unique, we take the minimum to break the tie, which also yields an even number.

Let k0 > 0 be a positive integer such that m0(k0) > 0 and m0(k0 + 1)=0. Clearly, m0(x) is

zero for all x ∈ (k0, k0 + 1]. By the property of median, it can be seen that there are at least

dn/2e tree curves `i(x) such that `i(x) = 0 for all x > k0. This implies that m0(x) = 0 for all

x > k0, and condition (b) is satisfied.

Finally, we will prove (c) by showing that m0(k) ≤ 2m0(k − 1) for any integer k > 1. Note

that m0(k−1) is the pointwise median at k−1. Thus, there are at least dn/2e elements less than

or equal to m0(k − 1) at k − 1. Without loss of generality, we denote these elements as `πj (x),

j = 1, . . . , dn/2e, and `πj (k − 1) ≤ m0(k − 1). Each element `πj (x) is a valid topological curve

satisfying condition (c), therefore `πj (k) ≤ 2`πj (k − 1). Thus there are at least dn/2e elements

`πj (x) such that, at k, `πj (k) ≤ 2m0(k − 1), which implies that m0(k) ≤ 2m0(k − 1). This

completes the proof.

83



3.6.3 Proof of Theorem 3

Lemma 3. A function g(x), x ∈ [0,∞), is a geometric tree representation of a full binary tree if

the following conditions hold

(a) g(0) = 0.

(b) g(x) is a piecewise constant function, and there exist a positive integer m, a sequence of real

numbers 0 = x0 < x1 < · · · < x2m+1 and a sequence of positive integers c1, . . . , c2m+1 such

that g(x) = ck for x ∈ (xk−1, xk]. In addition, g(x) = 0 for x > x2m+1.

(c) c1 = 1 and, for any k = 2, . . . , 2m+ 1, |ck − ck−1| = 1.

Similar to Lemma 2, Lemma 3 is a direct consequence of the tree reconstruction method

described in Section 3.5.3. In addition, condition (b) suggests that g(x) has a finite support.

Next, we will prove Theorem 3.

Proof of Theorem 3. We will prove that m1(x) satisfies all conditions listed in Lemma 3. First,

note that gi(0) = 0 for i = 1, . . . , n. Thus, we have m1(0) = 0.

For each i, gi(x) has a finite, odd number of jump points on (0,∞), denoted by Ai =

{x(i)1 , x
(i)
2 , . . .}, and is a constant function on each interval (x

(i)
k−1, x

(i)
k ], for k = 1, 2, . . . , |Ai| where

x
(i)
0 = 0. Let A denote the collection of all distinct jump points of all geometric curves and

A = ∪iAi. In addition, denote elements in A as x′1 < · · · < x′K where K = |A| is the total

number of distinct jump points. Clearly, m1(x) is a constant on (x′k−1, x
′
k] for k = 1, . . . ,K, and

also takes integer values. Next, all geometric tree curves have finite support. Consequently, the

pointwise median m1(x) also has finite support. Let x′k and x′k+1 be two adjacent jump points

with m1(x
′
k) > 0 and m1(x

′
k+1) = 0. It can be seen that m1(x) is zero for all x ∈ (x′k, x

′
k+1]. By

the property of median, it can be shown that there are at least dn/2e tree curves gi(x) such that
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gi(x) = 0 for all x > x′k. This implies that m1(x) = 0 for all x > x′k. Before proving that the

number of jump points is an odd number, we will first prove condition (c).

We will prove (c) by first showing that m1(x
′
k)−m1(x

′
k−1) ∈ {−1, 0, 1} for any two adjacent

points x′k−1, x
′
k, where k = 2, . . . ,K. Note that m1(x

′
k−1) is the pointwise median at x′k−1, thus

there exist dn/2e elements less than or equal to m1(x
′
k−1) at x′k−1, and n − dn/2e + 1 elements

greater or equal than m1(x
′
k−1). Without loss of generality, we denote those elements as gπj (x) and

gπj (x
′
k−1) ≤ m1(x

′
k−1) for j = 1, . . . , dn/2e and gπj (x

′
k−1) ≥ m1(x

′
k−1) for j = dn/2e, . . . , n. Each

element gπj (x) is a valid geometric curve satisfying condition (c), so |gπj (x′k) − gπj (x′k−1)| = 1

if x′k ∈ Aπj and 0 otherwise. Thus, at x′k, there are at least dn/2e elements gπj (x) such that

gπj (x
′
k) ≤ m1(x

′
k−1)+1, and at least n−dn/2e+1 elements gπj (x) such that gπj (x

′
k) ≥ m1(x

′
k−1)−1,

which implies that |m1(x
′
k)−m1(x

′
k−1)| ≤ 1.

Finally, we select points x′k such that m1(x
′
k) 6= m1(x

′
k−1) and denote them as x1, . . . , xM .

Note that |m1(xk) − m1(xk−1)| = 1, and {xk}Mk=1 are jump points of m1(x). It remains to be

shown that m1(x1) = 1 and M is an odd number such that M = 2m+ 1 for some m.

Recall that x
(i)
1 is the first jump point for gi(x), and gi(x

(i)
1 ) = 1, for i = 1, . . . , n. Let y1 be

such a point that y1 = max{x(i)1 : at least dn/2e of g(x
(i)
1 ) = 1}. Clearly, the pointwise median at

y1 is 1. In addition, y1 is a jump point, and m1(x) = 1 for x ∈ (0, y1]. Thus, we have x1 = y1.

Similarly, m1(xM ) = 1. By noting that the jump sizes are either 1 or −1, we can see that M is

an odd number, which completes the proof.

3.6.4 Proof of Theorem 4

Proof of Theorem 4. Let q0(x) be the pointwise 100τ -th quantile for the set of topological

curves `1(x), . . . , `n(x). We will prove that q0(x) satisfies all conditions listed in Lemma 2. Con-

dition (a) is straightforward. In fact, note that `i(0) = 0 and `i(1) = 1 for i = 1, . . . , n. Thus, we

have q0(0) = 0 and q0(1) = 1.
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Next, we will prove that (b) is satisfied. Note that `i(x) = 1 for x ∈ (0, 1]. Therefore, we have

q0(x) = 1 for x ∈ (0, 1]. Let k be any integer, and k > 1. For each interval (k − 1, k], `i(x) takes

constant even numbers for all i. Thus, q0(x) is a piecewise constant function. In fact, when the

quantile is unique, q0(x) is clearly an even number. On the other hand, when the quantile is not

unique, we take the minimum to break the tie, which also yields an even number.

Let k0 > 0 be a positive integer such that q0(k0) > 0 and q0(k0 + 1)=0. Clearly, q0(x) is zero

for all x ∈ (k0, k0 + 1]. By the property of a quantile, it can be seen that there are at least dnτe

tree curves `i(x) such that `i(x) = 0 for all x > k0. This implies that q0(x) = 0 for all x > k0,

and condition (b) is satisfied.

Finally, we will prove (c) by showing that q0(k) ≤ 2q0(k − 1) for integer k > 1. Note that

q0(k − 1) is the pointwise quantile at k − 1. Thus, there are dnτe elements less than or equal to

q0(k−1) at k−1. Without loss of generality, we denote these elements as `πj (x) and `πj (k−1) ≤

q0(k − 1) for j = 1, . . . , dnτe . Each element `πj (x) is a valid topological curve satisfying the

condition (c), therefore `πj (k) ≤ 2`πj (k − 1). Thus there are at least dnτe elements `πj (x) such

that at k, `πj (k) ≤ 2q0(k−1), which implies that q0(k) ≤ 2q0(k−1). This completes the proof.

3.6.5 Proof of Theorem 5

Proof of Theorem 5. Let q1(x) be the pointwise 100τ -th quantile for the set of geometric curves

g1(x), . . . , gn(x) We will prove that q1(x) satisfies all conditions listed in Lemma 3. First, note

that gi(0) = 0 for i = 1, . . . , n, thus we have q1(0) = 0.

For each i, gi(x) has a finite, odd number of jump points, denoted by Ai = {x(i)1 , x
(i)
2 , . . .}, and

is a constant function on each interval (x
(i)
k−1, x

(i)
k ], for k = 1, 2, . . . , |Ai| where x

(i)
0 = x0. Let A

denote the collection of all distinct jump points of all geometric curves and A = ∪iAi. In addition,

denote elements in A as x′1 < · · · < x′K where K = |A|. Clearly, q1(x) is a constant function on

(x′k−1, x
′
k] for k = 1, . . . ,K, and also takes integer values. Next, all geometric tree curves have
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finite support. Consequently, the 100τ -th quantile q1(x) also has finite support. Let x′k and x′k+1

be two adjacent jump points with q1(x
′
k) > 0 and q1(x

′
k+1) = 0. It can be seen that q1(x) is zero

for all x ∈ (x′k, x
′
k+1]. By the property of the quantile, it can be shown that there are at least dnτe

tree curves gi(x) such that gi(x) = 0 for all x > x′k. This implies that q1(x) = 0 for all x > x′k.

Before proving that the number of jump points is an odd number, we will first prove condition

(c).

We will prove (c) by first showing that q1(x
′
k) − q1(x

′
k−1) ∈ {−1, 0, 1} for any two points

x′k−1, x
′
k, where k = 2, . . . ,K. Note that q1(x

′
k−1) is the τ -th pointwise quantile at x′k−1, thus

there are dnτe elements less than or equal to q1(x
′
k−1) at x′k−1, and n−dnτe+ 1 elements greater

or equal than q1(x
′
k−1). Without loss of generality, we denote those elements as gπj (x) and

gπj (x
′
k−1) ≤ q1(x

′
k−1) for j = 1, . . . , dnτe and gπj (x

′
k−1) ≥ q1(x

′
k−1) for j = dnτe, . . . , n. Each

element gπj (x) is a valid geometric curve satisfying condition (c), so |gπj (x′k) − gπj (x′k−1)| = 1

if x′k ∈ Aπj and 0 otherwise. Thus, there are at least dnτe elements gπj (x) such that gπj (x
′
k) ≤

q1(x
′
k−1) + 1, and at least n− dnτe+ 1 elements gπj (x) such that gπj (x

′
k) ≥ q1(x

′
k−1)− 1, which

implies that |q1(x′k)− q1(x′k−1)| ≤ 1.

Finally, we select points x′k such that q1(x
′
k) 6= q1(x

′
k−1) and denote them as x1, . . . , xM . Note

that |q1(xk) − q1(xk−1)| = 1 and {xk}Mk=1 are jump points of q1(x). It remains to be shown that

q1(x1) = 1 and M is an odd number such that M = 2m+ 1 for some m.

Recall that x
(i)
1 is the first jump point for gi(x), and gi(x

(i)
1 ) = 1, for i = 1, . . . , n. Let y1

be such a point that y1 = max{x(i)1 : at least dnτe of g(x
(i)
1 ) = 1}. Clearly, the τ -th quantile at

y1 is 1. In addition, y1 is a jump point, and m1(x) = 1 for x ∈ (0, y1]. Thus we have x1 = y1.

Similarly, q1(xM ) = 1. By noting that the jump sizes are either 1 or −1, we can see that M is an

odd number, which completes the proof.
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CHAPTER 4

Genetic Algorithm for Tree-Structured Data

4.1 Introduction

The idea of genetic algorithm is built on the theoretical work of Holland [1973], who used the

principles of natural selection to solve combinatorial optimization problems. The algorithm mimics

the genetic setup in an iterative fashion, with chromosomes, represented as strings of symbols, and

genes, which are parts of chromosomes. Starting from a random set of chromosomes, and rating

them according to the stated optimization goal, the algorithm follows the rules of natural selection

to find the best solution, or its close approximation. At each iteration, the algorithm operates

on a set of chromosomes, also referred to as individuals in the current generation. The algorithm

selects chromosomes from this set to create a new generation of chromosomes. The individuals

with the highest rating, a.k.a. the fittest, have the largest probability to be selected to participate

in the reproductive operations. The rules of selection and its adaptation to tree optimization are

described in Section 4.4. There are two reproductive operations, a cross-over and a mutation.

Cross-over is a technique that creates a new chromosome from two parent chromosomes by taking

pieces of information from each parent. A mutation is a random change in a gene. Reproductive

operations for tree objects are described in Section 4.5. A new generation of chromosomes can

replace the old one entirely, or the best elements from the old one are retained. This is known

as a replacement strategy. The process is repeated a preconfigured number of times, or till some

specific optimization goals are reaches.

The symbols used in the chromosomes are application specific. In some examples, like model

selection with a large number of predictors, binary encoding, in which chromosomes are repre-

sented as strings of 0’s and 1’s, works well; see Givens and Hoeting [2012]. More complex encodings
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are often necessary, e.g., quadruple (as in the original DNA encoding), octal or hexadecimal, and

the corresponding reproductive operations have to be redefined accordingly. The encoding for

tree objects is explained in Section 4.3.

In general, each application of the algorithm needs to address the following: encoding (Sec-

tion 4.3), selection (Section 4.4), definition of cross-over and mutation (Section 4.5), and replace-

ment (Section 4.6). See Sivanandam and Deepa [2007] for additional details.

4.2 Genetic Algorithm for Tree Objects

Our goal is to solve a constrained multi-objective optimization problem (3.6) in the space of

trees. The genetic algorithm is applied to geometric curves which can be naturally encoded as

chromosomes; see Section 4.3 for details.

Every chromosome is scored according to the objective functions, Gτn and T τn representing

the geometric and topological scores respectively. For each objective function, the minimizing

solution is known and can be found in linear time as a direct consequence of Theorems 4 and 5.

In general, these two solutions do not correspond to a single tree. In fact, they often correspond

to trees with different number of nodes. The goal of the algorithm is, in simplified terms, starting

from the best geometry (a Gτn-minimizer), to apply random changes, so the resulting geometry is

compatible with the best topology (a T τn -minimizer). By operating on a set of chromosomes in each

generation, the genetic algorithm executes multiple searches concurrently. By iteratively executing

the selection process, the algorithm finds all (or many of) Pareto solutions. The constraint, namely

each solution has to represent a valid tree, is enforced through the design of the reproductive

operations, rather than through penalty scoring.

4.3 Encoding

Recall that, for a geometric tree curve, say gi(x), Ai = {x(i)1 , x
(i),...
2 } denotes its set of jump

points over (0,∞). Let A be the union of all jump points in the sample, i.e., A = ∪iAi. Let
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x1 < x2 < · · · < xK be the ordered elements of A. Thus, for a curve gi(x), a gene in the position

k represents the value of gi(x) for x ∈ (xk, xk+1]. For instance, in Figure 4.1, simple trees depicted

in Figure 3.7 can be encoded as strings of digits. Note that there are 11 jump points for this

sample.

Figure 4.1: Chromosome-like encoding for trees in the toy example from Figure 3.7.

In our real application, with such simple encoding, a neural tree can be represented as a

chromosome consisting of over 10,000 genes, and cannot be efficiently processed by the genetic

algorithm. Thus, a compressed encoding is preferable. Here, a simple compression mechanism is

employed, in which the consecutive identical symbols are compressed to a pair consisting of the

symbol and its count. An example is given in Figure 4.2. The straightforward correspondence

between a gene position and a jump point is lost, but the computations gain in efficiency.

Figure 4.2: An example of a compressed chromosome for an apical tree. There are 40 genes in
this chromosome. The longest chromosome in the sample has 150 genes.

4.4 Selection

The purpose of selection has been explained in Section 4.1. The selection procedure consists

of two steps: scoring and fitness evaluation, repeated in each iteration of the genetic algorithm.

The score evaluates the objective functions for a given geometry encoded as a chromosome.

In the case of the multi-objective optimization, the score is multi-dimensional, and it consists
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of a geometric score Gτn and a topological score T τn , as defined in (3.8). For a given geometry,

finding the best topology and its corresponding topological score are relatively expensive. To

mitigate the computational burden, we use a topological proxy score instead, which is defined

as the difference in the number of nodes between the tree with a given geometry and the tree

with the best topology (which is known as a consequence of Theorem 4). A a result, we obtain

a sequence of geometric curves, i.e., chromosomes. Each of those geometric curves will lead to a

Pareto solution. For each chromosome, the best topological curve can be found as described in

Section 4.7. Details of proxy scoring are explained in Sivanandam and Deepa [2007].

The fitness evaluation is the other important step in selection, and it is not synonymous

with score. At each iteration, the separate fitness evaluation allows the application of a different

“selection pressure” to choose the candidate chromosomes for reproduction from the chromosomes

available in the current generation. The candidate chromosomes at each iteration can get a

reproductive probability based on the score or the rank. In general, the chromosomes with better

scores or ranks will be assigned with higher probabilities. The relative magnitude of probabilities

between chromosomes defines high or low selection pressure. It is common to use the number

of dominating chromosomes in the current generation as a rank, i.e., all elements in the current

Pareto set get a rank 0. The probability to be selected for reproduction is inversely proportional

to the rank. Here, we chose the fitness evaluation based on ranking.

4.5 Reproduction and Feasibility

The literature on constrained optimization discusses two common approaches to feasibility.

One is to include non-feasible solutions, with some penalty built into the scoring function, and

the other is to maintain feasibility through reproductive operations. In our case the non-feasible

solutions have to be excluded, or they would quickly dominate the population. To accomplish
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this, mutation and cross-over operations, introduced in Section 4.1, have to be designed carefully

to produce only valid trees (chromosomes).

A mutation is defined as a change of one symbol in tree encoding by 1 or −1, with some

small probability e.g., 0.01, provided that the change does not invalidate the tree. The goal of a

mutation is to make a substantial change in the tree, i.e., modifying a branch, adding a branch

or deleting a branch. The mutations are depicted and explained in Figure 4.3. Panel (A) shows a

mutation that moves a single node, thus changing the length of a branch. This mutation affects

only the geometric score Gτn. Panel (B) depicts a mutation that creates a new branch by adding

one internal node and one leaf. Panel (C) shows a mutation that delets of a branch by removing

one internal node and one leaf. Mutations (B) and (C) affect both a topological score and a

geometric score.

Cross-overs are applied to two selected individuals (parents). A single position is randomly

drawn, which divides each parent into two parts. Next, two individuals (children) are created by

merging the opposite pieces of the parents. If merging would create an invalid tree, the closest

valid position is found. The result of a cross-over is harder to predict than that of a mutation,

but it will likely create (child) chromosomes with different number of nodes than in the parents.

Cross-overs can lead to larger changes than incremental single-gene modifications induced by

mutations.
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Figure 4.3: Three types of mutations. The center element in the left-most box (marked in grey)
is selected for a mutation. The numbers above the arrow are randomly selected, in the range
determined by the symbol count. Panel (A): a mutation modifies a branch by moving a node;
panel (B): a mutation adds a branch; panel (C): a mutation deletes a branch. Mutations in panels
(A) and (B) have two subtypes and each is selected with an equal probability. The probabilities
of applying (A), (B) or (C) can be equal or configurable.
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4.6 Replacement

The replacement strategies define how long individuals can live, through one generation or

forever. There are two commonly used strategies, generational update and steady state. The

generational update replaces either the entire generation, referred to as (λ, µ) strategy, or allows

elites to survive, referred to as (λ+µ) strategy. The steady state strategy inserts new individuals

into one “steady” generation, by replacing, most commonly, the weakest individuals. In our

settings, the generational update with elites provided the fastest convergence.

4.7 The best topology for a geometry

It is not difficult to generate a random topology for a given geometry. To generate the best

topology, we choose to generate a large number of random topologies, and select the best one,

i.e., the one minimizing the topological distance T τn as defined in (3.8).

To generate a random topology, we use the Zach’s encoding for the geometric curve, encoding

a jump up as a 1, and a jump down as a 0. Recall that, from this encoding, we can obtain

information such as internal nodes or leaf nodes. We process the symbols from the encoding of

the geometric curve from left to right by placing them, with equal probability, in the nodes of

a binary tree. A topological binary tree can be stored in an array using level-order indexing as

indices in the array. The root is stored at the position 1, and children of any node with index k

are stored in the positions 2k and 2k + 1. Some consideration is needed to generate full binary

trees.
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CHAPTER 5

Future Work

Complex data objects, specifically tree-structured data objects, are frequently encountered in

nature. Examples include plant roots, blood vessels and neural cells. With advances in medical

and biological imaging technologies, such data are becoming ubiquitous, and increasingly are

elements of statistical analysis. What is often of interest to scientists is the description and the

quantification of differences between samples of complex objects. The differences may lie in factors

such as species, age, gender, treatment or disease. In many practical problems, the purpose of the

study is to find abnormalities in the sample, or estimate how often abnormalities are encountered.

The tree-structured data are extremely non-Euclidean, and many classical statistical methods

cannot be used for such purpose. Some statistical methods, e.g., kernel based methods, have

been adapted to operate on non-Euclidean objects based on a pre-selected distance metric. Thus,

a suitable choice of distance between tree-structured objects is essential to statistical inference

in the domain of object-oriented data. For instance, equipped with the Hamming distance (i.e.,

integer tree metric), a nonparametric smoothing technique and principal component analysis of

trees have been developed; see Wang and Marron [2007], Aydın et al. [2009], Chang et al. [2011]

and Wang et al. [2012]. Similarly, a weighted Hamming distance has been applied to hypothesis

testing in the space of protein classification trees [Balding et al., 2009, Busch et al., 2009].

The distance metric introduced and applied in these papers is based on topological properties of

trees and a node labeling scheme. The node labeling in the context of trees provides a systematic

approach to uniquely identify a node in a tree. Such designation can be straightforward for

phylogenetic and classification trees, but in many cases relies on the notion of correspondence

between branches [Aydın et al., 2009]. A different choice of correspondence, e.g., thickness of

branches or number of descendants, could potentially lead to different research conclusions. In
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our future work, motivated by the study of dendritic structures of neurons from two regions of the

hippocampus, CA1 and CA3, we will extend the framework developed in Chapter 3, and devise

analytical tools, invariant to node assignment, to test statistical hypotheses related to complex

objects.

Hypothesis testing in the space of trees requires a probability measure on that space. For

instance, Banks and Constantine [1998] introduced a probability measure on the space of finite

graphs, with two parameters analogous to the centrality and scale of the exponential family

distribution. A similar idea was followed by Wang et al. [2012], who introduced a probability

measure on the space of trees and successfully simulated trees to demonstrate their proposed

method.

In literature, two other tree distributions have been widely used, including a uniform tree

distribution [Arnold and Sleep, 1980, Flajolet and Odlyzko, 1982], and a distribution of binary

search trees [Devroye, 1986, 1987]. Both distributions describe a population of binary trees with

a fixed number of nodes. For trees with m internal nodes, the uniform distribution assigns each

full binary tree with an equal probability. It is known that the number of such trees is described

by the mth Catalan number Cm [Harris, 1952]. Asymptotic properties associated with heights

of uniformly distributed trees have been studied by Flajolet et al. [1993], Flajolet and Odlyzko

[1982]. A distribution of binary search trees is often considered in the context of sorting and

searching applications in computer science. The asymptotic results [Devroye, 1986, 1987] can be

used to estimate an average stack size for algorithmic executions, or to detect anomalies in the

data. The binary search trees are not full binary trees, but we consider a one-to-one mapping

to the space of full binary trees. We refer to this new distribution as a leaf-uniform based on its

construction method.

In our future work, we plan to consider both one-sample and two-sample hypothesis testing

problems in the space of full binary trees. For one-sample testing, we examine two reference
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distributions, including a uniform and a leaf-uniform distribution. As indicated earlier, these dis-

tributions are characterized by a fixed number of nodes, and yet most biological tree-structured

data come in many different sizes. We plan to investigate a novel mixture distribution, whose

components are from the uniform or leaf-uniform distributions. This new distribution provides

great opportunities for further methodological development, e.g., parameter estimation. In addi-

tion, we will derive a test statistic and obtain its distribution based on simulations. An example

of a relevant test statistic is the tree height, which is a univariate statistic. There are many tests

available to compare the mean, the variance and the distributions of heights, against those com-

ing from a reference distribution, e.g., t-test and Kolmogorov-Smirnov test, Multiple-Response

Permutation Procedure (MRPP). In some cases, for large trees, certain asymptotic results from

probabilistic literature may be applicable. The simulation based one-sample testing will rely on

the availability and effectiveness of sampling methods for trees. The uniform and leaf-uniform

distributions can be efficiently sampled, as a result of work by Arnold and Sleep [1980], Mairson

[1994], Mäkinen [1999] and many others. Similarly, for two-sample hypothesis testing, we will also

consider test statistics based on tree heights, using tests mentioned in the context of one-sample

testing.
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Mäkinen, E. (1999). Generating random binary treesa survey. Information Sciences, 115(1):123–

136.

Marmarelis, V. Z. (1993). Identification of nonlinear biological systems using Laguerre expansions

of kernels. Annals of biomedical engineering, 21(6):573–589.

Marron, J. S. and Alonso, A. M. (2014). Overview of object oriented data analysis. Biometrical

Journal.

McCullagh, P. and Nelder, J. (1989). An outline of generalized linear models. In Generalized

linear models, pages 21–47. Springer.

Mel, B. W. (1999). Why have dendrites? a computational perspective.

103



Mizuseki, K., Sirota, A., Pastalkova, E., and Buzsáki, G. (2009a). Theta oscillations provide
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