MEAN WIND FORCES ON PARABOLIC-TROUGH SOLAR COLLECTORS

by

J. A. Peterka*

J. M. Sinou**

and

J. E. Cermak***

Engineering Sciences

MAR 1 8 1980

Branch Library

for

Sandia Laboratories Albuquerque, New Mexico 87115

Sandia Purchase Order 13-2412 (10/6/78)

Fluid Mechanics and Wind Engineering Program Fluid Dynamics and Diffusion Laboratory Department of Civil Engineering Colorado State University Fort Collins, Colorado 80523

July 1979

* Associate Professor

****** Research Associate

*** Professor-in-charge, Fluid Mechanics and Wind Engineering Program

CER79-80JAP-JMS-JEC4

TABLE OF CONTENTS

Section		Page
List of Tables List of Figures List of Symbols	• • • • • • • •	ii iv v
1. INTRODUCTION	••••	1
2. EXPERIMENTAL CONFIGURATION	• • • • • • • •	4
<pre>2.1 Wind Tunnel 2.2 Flow Simulation 2.3 The Model</pre>	· • • • • • • • • •	4 4 5
3. INSTRUMENTATION	, 	8
 3.1 Velocity Profiles 3.2 Flow Visualization 3.3 Force and Moment Measurement 3.4 Force and Moment Coefficients 	· • • • • • • • • •	8 9 9 10
4. TEST RESULTS		13
 4.1 Single Collector Loads 4.2 Array Field Loads 4.3 Smoke Visualization of Fence Effect 4.4 Calculation of Full-Scale Loads 	, .	13 14 18 19
5. CONCLUSIONS		22
REFERENCES		23
FIGURES		24
TABLES		75

LIST OF TABLES

<u>Table</u>		<u>Pa</u>
1	Motion picture scene guide	. 76
2	Velocity and turbulence intensity profile	. 77
3	Determination of θ_{max} for configurations 1-4	. 78
4	Effect of height HCL on single collector loads at $\theta = 0$, $\psi = 0$ for configurations 1-4	. 79
5	Effect of height HCL on single collector loads at θ_{max} , $\psi = 0$ for configurations 1-4	. 80
6	Matrix of single collector loads at HCL/C = K _I (configurations 1-4)	. 81
7	Loads for various gap spacings for configuration 5	. 85
8	Data for establishment of row spacing R (configuration 9)	. 86
9	Loads on array fields (configurations 5-9)	. 87
10	Effect of fences on array field loads	. 90
11	Effect of berms on array field loads	. 93
12	Loads with a torque tube on collector 1	. 95
13	Effect of θ on pitching moment coefficients (configurations 1-4)	. 96
14	Effect of height HCL on single collector pitching moment coefficients at $\theta = 0$ and $\psi = 0$ (configurations 1-4)	. 97
15	Effect of height HCL on single collector pitching moment coefficients at $\theta = \theta$ and $\psi = 0$ (configurations 1-4)	. 98
16	Matrix of single collector pitching moment coefficients at HCL/C = K _I (configurations 1-4)	. 99
17	Pitching moment coefficients for various gap spacings (configuration 5)	.103
18	Pitching moment coefficients for establishment of row spacing R (configuration 9)	.104
19	Pitching moment coefficients for array fields (configurations 5-9)	.105

LIST OF TABLES

Table		Page
20	Effects of fences and berms on array fields, pitching moment coefficients	. 108
21	Pitching moment coefficients with a torque tube (configuration 1)	. 109

LIST OF FIGURES

Figure		Page
1	Meteorological wind tunnel	. 25
2	Collector shapes for configurations 1-4	. 26
3	Collector mounted on force balance	. 28
4	Collector and force balance mount	. 29
5	Coordinate System	. 30
6a	Collector in arrays for configurations 5-9	. 32
6b	Berm arrangement	. 33
7	Array field in the wind tunnel	. 34
8	Approach velocity and turbulence profile	. 35
9	Determination of θ_{max} (configurations 1-4)	. 36
10	Effect of height on coefficients at $\theta = 0$, $\psi = 0$ (configurations 1-4)	. 38
11	Effect of height on lift at θ_{max} , $\psi = 0$ (configurations 1-4)	. 41
12	Variation of single collector loads with pitch angle for $HCL/C=K_{I}$, $\psi = 0$ (configurations 1-4)	. 42
13	Variation of single collector loads with yaw angle for HCL/C=K _I , (configurations 1-4)	. 48
14	Effect of the rim angle, ϕ on collector loads	. 58
15	Effect of gap width on loads for configuration 5	. 61
16	Effect of row spacing on collector loads (configuration 9)	. 63
17	Influence of array field configuration and fences on collector loads	. 66
18	Effect of torque tube on collector 1 loads	. 70
19	Effect of applying correction to collector 1	. 72
20	Smoke visualization of upwind barriers	. 73

LIST OF SYMBOLS

A	constant
В	subscript, referenced to the base of foundation or a constant
С	aperture width of the collector (see Figure 5)
d _F	parabolic focal distance
d _G	distance between the center of gravity G and the pivot point
E	voltage
F	subscript referenced to the focal point F
F	total force applied to the collector in the x-z plane
F _x	lateral force, positive along the x axis (see Figure 5)
FH	fence height
F _L	lift force, positive along the z axis (see Figure 5)
FS	fence distance upwind of lead collector
F _{xP}	lateral force coefficient
FzP	lift force coefficient
G	gap width (see Figure 6)
G	subscript referenced to the center of gravity of the trough G
Н	distance between the collector pivot point and the force balance axis (see Figure 4)
HCL	distance between the collector pivot point and the floor (see Figure 4)
ĸ _I	selected ratio HCL/C to run configurations 1-4
L	collector length
M'xP	rolling moment about x _P axis
M _{xP}	rolling moment coefficient
M'yB	pitching moment about y _B axis
M _{yB}	pitching moment coefficient about y _B axis
M'yF	pitching moment about y _F axis

LIST OF SYMBOLS

^M yF	pitching moment coefficient about $\mathbf{y}_{\mathbf{F}}$ axis
M'yG	pitching moment about y _G axis
M _y g	pitching moment coefficient about y _G axis
M'yP	pitching moment about y _p axis
^M yP	pitching moment coefficient about y _P axis
M'zP	yawing moment about z axis
M _{zP}	yawing moment coefficient about z axis
n	constant
Р	pivot point reference location
q _c	tunnel dynamic pressure at collector pivot point height HCL
ď	tunnel dynamic pressure at the top of the boundary layer (45 inches high)
R	row spacing
S	projected area of the collector, S=LC
U	velocity
U _{Ho}	wind speed at H _o height
x_p, y_p, z_p	coordinate system at pivot point (see Figure 5)
x _B , y _B , z _B	coordinate system at base of foundation (see Figure 5)
θ	pitch angle or elevation angle (see Figure 5)
θ _{max}	pitch angle where the maximum lift occurs
ν	kinematic viscosity
ρ	air density
φ	parabolic rim angle (see Figure 2)
ψ	yaw angle or azimuth angle (see Figure 5)
η, ξ	coordinate system for definition of collector shape

vi

1. INTRODUCTION

Structures such as parabolic trough solar collectors are being considered for power plant thermal sources. A significant factor influencing the economic viability of these collectors is the magnitude of the wind load and the resulting structural requirements. The shape of the collector, its height above the ground, the collector pitch angle, the number and arrangement of collectors in an array and the direction of the wind are several parameters which can modify the loads applied to the collector. Since an analytical or a numerical approach cannot be considered for such a complicated geometry, a simulation in a wind tunnel in which the atmospheric boundary layer is modeled was conducted at the request of Sandia Laboratories (1).

The purpose of this study was to investigate characteristics of mean wind loads produced by airflow in and around several configurations of parabolic trough solar collectors with and without a wind fence. Four basic parabolic shapes were investigated as single units and one shape was studied as part of several array fields. One 1:25 scale model of each parabolic shape was constructed for mounting on a force balance to measure two forces and three moments. The effects of several dominant variables were investigated in this study: wind-azimuth (or yaw), trough elevation (or pitch) angle, array field configuration, and protective wind fence characteristics. All measurements were made in a boundary-layer flow developed by the meteorological wind tunnel at the Fluid Dynamics and Diffusion Laboratory of Colorado State University.

The primary consideration in modeling wind forces on structures in a wind tunnel is that the wind characteristics in the tunnel simulate natural boundary-layer winds at the actual site. In general, this requires that the vertical distribution of mean velocity and turbulence in the wind-tunnel boundary layer match those at the site and that the Reynolds numbers of the model and the prototype be equal. In addition, the small-scale model must be geometrically similar to its prototype. A detailed discussion of these requirements and their implementation in the wind-tunnel environment can be found in references 2, 3, and 4.

The construction of a 1:25 scale model of the prototype structure and its immediate surroundings (in this case, a flat, open area), submerged in a turbulent boundary layer of the meteorological wind tunnel shown in Figure 1, satisfies all the above criteria except those of equal Reynolds numbers and similarity of turbulence intensity and scale.

In the Reynolds number $\frac{UD}{v}$, v is the same for both the tunnel and the full-scale structure. Because of this, the wind-tunnel air speed, U, would have to be 25 times the full-scale value if the model and prototype Reynolds numbers are to be equal. Testing at such high wind speeds is not feasible. However, for Reynolds numbers larger than 2×10^4 for sharp-edged structures where the flow separation point is fixed, there is no significant change in the values of aerodynamic coefficients as the Reynolds number increases. For flows over curved surfaces, the velocity required for Reynolds number independence ranges from below 10^5 to nearly 10^6 depending on surface roughness of the curved surface and turbulence structure in the approach flow. Since typical Reynolds number values are 10^6-10^7 for high-wind, full-scale flow and about 7 x 10^4 for wind-tunnel flows, acceptable flow similarity is achieved without equality of Reynolds numbers for cases where flow

separation is fixed at the edge of the parabolic collector. For cases where flow separation could be on the smooth curvature of the back of the collector, a small Reynolds number dependence may be included in the simulation. Because of the large turbulence intensity in the approach flow, Reynolds number dependence is expected to be quite small.

At a model scale of 1:25, the larger scales of turbulence in the atmospheric boundary layer are not simulated in the wind-tunnel flow. However, because the flow about the parabolic trough approximates the flow about a flat plate at elevation angles near to zero degrees and because the integral scale of the turbulence in the wind tunnel was 2 to 3 times the largest dimension of the model collector, the influence of the scale of turbulence was not expected to be significant (5). Evidence exists which demonstrates some influence of turbulence intensity on drag of flat plates (5,6,7). Because the turbulence intensity difference between the current simulation and a simulation with complete similarity of turbulent structure is not large, the effects due to turbulence intensity should be small (a few percent at most). For cases where an upstream collector disturbs the approach flow, turbulence characteristics are dominated by the wake characteristics of the upstream object and possible differences due to turbulence intensity should further decrease.

2. EXPERIMENTAL CONFIGURATION

2.1 Wind Tunnel

The study was conducted in the meteorological wind tunnel of the Fluid Dynamics and Diffusion Laboratory at Colorado State University. This low-speed, closed-circuit wind tunnel (Figure 1) is characterized by a long (96 ft) slightly diverging test section, 6 ft-8 in. wide (at the turntable) and 6 ft high to develop an appropriate atmospheric boundary layer simulation. The ceiling is adjustable to avoid a pressure gradient along the test section. This facility is driven by a 400 HP variable pitch propeller with velocity varying continuously from 0.5 fps up to 100 fps. The turntable where the tests were conducted (6½ ft diameter) was located near the downstream end of the test section. The ambient temperature was controlled at 24°C.

2.2 Flow Simulation

The purpose of the study was to evaluate loads on collectors in an atmospheric boundary layer developed over an open flat area, characterized by a $\frac{1}{7}$ th power law. Since it was impossible to model the complete boundary layer, the simulation was conducted in a 45 in. deep boundary layer, whose mean velocity power law exponent was 0.15. Tests were run with a velocity at 45 in. of about 80 fps. The velocity and turbulence profiles are shown in Figure 8 and tabulated in Table 2.

The shape of the boundary layer was obtained by means of selected roughness on the wind-tunnel floor upstream of the model. Forty feet of test section length were covered with 1 in. cubes followed by a 40 ft length of pegboard with 0.25 in. diameter pegs projecting 0.5 in. above a pegboard base. In addition to the floor roughness, four triangular spires extending from the floor to the ceiling were installed at the test section entrance in order to get a thicker boundary layer than would otherwise be obtained.

2.3 The Model

The prototype of the solar collector was a 6 ft wide and 22.5 ft long parabolic shaped unit mounted end-to-end in rows. In order to fit the dimensions of the turntable, the 1:25 scale was chosen. The models were built of brass.

Four different shapes of parabolic collectors were constructed varying the rim angle ϕ (Figure 2). The parabolic shape was defined by the equation:

$$\eta^2 = 4 F\xi$$

where the rim angle ϕ is related to the aperture C:

$$F = \frac{C}{4} \left(\frac{1}{\tan \phi} + \frac{1}{\sin \phi} \right)$$

The set of four collectors, called the metric units, were each able to be mounted on the force balance as shown in Figures 3 and 4. Their height and elevation angle could be varied manually. The force balance was fixed to the wind-tunnel turntable so that measured forces and moments were referred to a coordinate system fixed with respect to the turntable. The coordinate system used is shown in Figure 5. A further explanation of the chosen coordinate system and nonmenclature would be beneficial. It is common practice to refer to the three components of force resolved in the wind axis system as drag, cross-wind, and lift forces and to the components resolved in the body axis system as axial, side, and normal forces. This is logical due to the fact that at zero yaw angle and zero pitch angle, most aerodynamic shapes (airplanes, rockets, etc.) have their "axis" aligned with the wind. However, since the "axis" of a solar collector trough is normal to the wind at zero azimuth angle, it was felt that referring to an "axial" force could be misleading. Therefore, "lateral" force will be used to designate that component of force acting lateral to the axis of the collector trough and "longitudinal" force that component acting along (parallel to) the axis of the trough (see Figure 5). Lift force will still be that component perpendicular to the ground (i.e., that force tending to "lift" the collector off its foundation).

Elevation angles of the collector could be set to 1 degree while azimuth positioning using the turntable was accurate to about 0.2 degrees. The four metric collectors, each mounted alone in the wind tunnel were called configurations 1-4 (Figure 2).

Five configurations of collector arrays were used in the study. Each was composed of different combinations of rows with each row being formed by three aligned collectors similar to the collector configuration 1 ($\phi = 90^{\circ}$) (Figure 6). The largest array, configuration 9, could be set on the turntable, such that a rotation of the turntable moved the entire array, and the relative position of the metric collector referred to the others remained unchanged. A view of the array field in the wind tunnel is shown in Figure 7.

A study of the effects of wind barriers on collector loads was conducted by using 4 fences made of perforated sheet metal, punched with 0.375 in. diameter holes, which provided a 23 percent porosity. The heights of these fences were 1, 2, 3 and 4 inches. Two 2 in. fences were used, one with a 23 percent porosity and a modified one with 18 percent porosity. The fences were tried at several distances in front of the collector arrays.

Three solid berms of heights 1, 2, and 3 in. were used to determine the influence on loads of earth berms upwind. The 1 in. berm had a linear slope with a base width of 2 in. (Figure 6b). The 2 in. berm was composed of the 1 in. berm with a trapezoidal shape of 1 in. height and base width of 4 in. placed below it. The 3 in. berm was formed by inserting a 1 in. high section between the two portions of the 2 in. berm (Figure 6b).

Since the possibility of controlling the pitch angle of the fullscale prototype with a 1 ft diameter torque tube was under consideration, the effects produced by a 0.5 in. diameter "torque tube" attached to the back of the collector were measured.

3. INSTRUMENTATION

3.1 Velocity Profiles

To determine the approach boundary-layer characteristics, velocity and turbulence intensity profiles were measured over the turntable with no collector in place. These tests were performed with $U_{\infty} = 80$ fps at the top of the boundary layer 45 in. above the floor.

Data were obtained with a single horizontal 0.001 in. platinum hotfilm probe. A vertical traverse controlled directly by an on-line computer supported the probe. The output from a Thermo-System, Inc. constant temperature anemometer was directed to a data acquisition system consisting of a Hewlett Packard 21 MX minicomputer, disk, card reader, and printer and including a Preston Scientific analog-to-digital converter, Digi-Data digital tape drive and Tektronix plotter. Data were acquired and processed under software control.

Calibration of the hot-wire anemometer was performed using a Thermo-Systems calibrator (Model 1125). The calibration data were fit to a variable exponent King's Law relationship of the form:

$$E^2 = A + BU^n$$

where E is the hot-wire output voltage, U the velocity and A, B, and n are coefficients selected to fit the data. The above relationship was used to determine the mean velocity at measurement points using the measured mean voltage. The fluctuating velocity in the form $U_{\rm rms}$ (root-mean-square velocity) was obtained from:

$$U_{\rm rms} = \frac{2 E E_{\rm rms}}{B n U^{\rm n-1}}$$

where E_{rms} is the root-mean-square voltage output from the anemometer. For interpretation turbulence measurements were divided by the mean velocity at the height of the measurement. This result is the turbulence intensity $U_{\rm rms}/U$.

3.2 Flow Visualization

It is useful to observe flow patterns about the collectors to determine how loads are applied to the collectors or how an upstream fence deflects flow over the collectors to decrease loads. Titanium oxide smoke was released from sources within and upstream of the array field and a motion picture record was obtained of the flow patterns. This movie shows the separation around a collector, the turbulent and low velocity flow within the array field, and the effect of an upwind fence. An outline of the content of the movie is given in Table 1.

3.3 Force and Moment Measurement

Forces and moments applied to each metric unit were measured with a six component INCA strain gage balance. Only five of the six components (two forces and three moments) were measured. Each collector was fixed to the balance as shown in Figures 2 and 3. The balance was, in turn, attached to the turntable. In this way, forces and moments were measured with respect to a coordinate system referred to the collector and not to the flow direction.

The strain-gage bridges of the force balance were monitored by Honeywell Acudata 118 Gage Control/Amplifier Units, which provided excitation to the bridge and amplified the bridge output. The signals were filtered by a 100 Hz low pass filter and amplified by a d.c. amplifier before being processed by the on-line data acquisition system described previously. Zeros and data were recorded for 3 minutes with a 100 Hz sample rate.

Calibration of the force balance was performed before and after the study. Forces and moments were applied to the balance by dead weights hung from a knife edge ring. The balance had a linear response on each channel. Interactions between channels were small and were accounted for in the calibration. A check of the calibration was performed by applying known loads to a collector on the force balance in place in the wind tunnel. By using the calibration matrix, the loads were recovered within 3 percent.

3.4 Force and Moment Coefficients

Forces and moments measured on the collectors were converted into nondimensional coefficients to permit ease of scaling to full-scale forces and moments. The definitions for force and moment coefficients follow. Moments were transferred from the balance center of action to either the X_p , Y_p , Z_p axes at the collector pivot point or to the X_B , Y_B , Z_B axes at ground level. The <u>lateral force</u> coefficient is:

$$F_{xP} = \frac{F_x}{q_c S}$$

where F_x is the lateral force, q_c is the dynamic pressure $0.5\rho U^2$ in the approach flow at the height HCL (height of the collector pivot) above the floor, and S = LC is a characteristic area of the collector. The lift force coefficient is

$$F_{zP} = \frac{F_L}{q_c S}$$

where F_{T_i} is the lift force.

The <u>rolling moment</u> coefficient is the moment coefficient about the X_{p} axis

$$M_{xP} = \frac{M_{xP}}{q_{c} S C}$$

where \texttt{M}_{xP}^{\prime} is the dimensional moment about the \texttt{X}_{p} axis.

The <u>yawing</u> <u>moment</u> coefficient is the moment coefficient about the Z axis

$$M_{zP} = \frac{M'_{z}}{q_{c} SC}$$

where M'_z is the dimensional moment about the Z axis.

The pitching moment coefficient was calculated for the moment $M_{\rm yP}'$ about the $Y_{\rm p}$ axis through the pivot point

$$M_{yP} = \frac{M'_{yP}}{q_{c} S C}$$

or for the moment M' $_{\mbox{vB}}$ about the $\mbox{Y}_{\mbox{B}}$ axis at ground level

$$M_{yB} = \frac{M'yB}{q_c S C}$$

Values of L, C, S and standard height HCL for each collector are outlined below:

COLLECTOR NUMBER =	1	2	3	4
Rim Angle	90°	40°	65°	120°
Aperture C (inches)	2.80	2.92	2.94	3.00
Length L (inches)	10.8	10.8	10.8	10.8
Surface S (inches ²)	30.24	31.54	31.75	32.4
Standard Height of Collector Centerline ref. to the floor, HCL (inches)	2.10	1.99	2.06	2.55
$HCL/C = K_{I}$	0.75	0.68	0.70	0.85
Focal length d _F	0.70	2.01	1.15	0.43
Center of gravity position d_{G}	0.26	0.09	0.16	0.52

For tests in which the height HCL of the collector above the ground was varied, q_c for force and moment coefficient calculations was based on the velocity at the actual HCL used for the test.

Pitching moment coefficients with respect to the center of gravity G and to the focal point F of the collector trough were calculated. The notations are referred to Figure 5b. The force acting on the collector with the $X_p - Z_p$ plane is

$$\|\vec{F}\| = \sqrt{F_x^2 + F_L^2}$$
$$\frac{F_x}{\|\vec{F}\|} = \cos \alpha$$
$$\frac{F_L}{\|\vec{F}\|} = \sin \alpha$$

The pitching moment around the focal point F will be

$$M'_{yF} = M'_{yP} - ||\vec{F}|| d_{\sigma F}$$

= $M'_{yP} - ||\vec{F}|| d_{F} \sin (\alpha + \theta)$
= $M'_{yP} - ||\vec{F}|| d_{F} (\sin \alpha \cos \theta + \sin \theta \cos \alpha)$
= $M'_{yP} - (F_{L} d_{F} \cos \theta + F_{x} d_{F} \sin \theta)$

Using the same development, the pitching moment around G is:

$$M'_{yG} = M'_{yP} - (F_L d_G \cos \theta + F_x d_G \sin \theta)$$

in terms of coefficients:

$$M_{yF} = \frac{M'_{yF}}{q_c SC} \qquad M_{yG} = \frac{M'_{yG}}{q_c SC}$$

4. TEST RESULTS

4.1 Single Collector Loads

The four different shapes of collectors, model configurations 1-4 with varying rim angle, were tested alone to determine the effect of collector shape and to establish a baseline for comparison with array field tests. The first step was to determine at a height HCL/C \geq 1 and for approach azimuth $\psi = 0$, the pitch angle θ_{max} for which the lift was maximum. These data are shown in Figure 9 for the four collectors and are tabulated in Table 3. At this value of θ_{max} and at $\theta = 0$, the height of the centerline of each collector HCL was varied. These data are tabulated in Tables 4 and 5. Selected portions of these data where loads were larger are presented in Figures 10 and 11. The effect of collector height above ground is not dramatic in coefficient form with the most rapid changes in coefficients occurring for small spacing from the ground. Pitching moment about the ground level was most influenced by height effects as would be expected.

In order to determine the effects of pitch angle θ and yaw angle ψ on the loads, a standard height of collector was selected (HCL/C = 0.75, 0.68, 0.70 and 0.80 for collector configurations 1-4) and load measurements were obtained for a matrix of pitch and yaw angles. Yaw angle ψ (approach wind direction) ranged from -15° to +60° while pitch angle θ ranged from -135° to +180°. The results of these tests are listed in Table 6. Selected portions of the data are plotted in Figures 12 and 13. Several comments regarding these data can be made. The force coefficients are relatively insensitive to collector shape for $\psi = 0$ (Figure 12a, b). Pitching moment depends somewhat on collector shape (Figure 12c, d), but trends to increasing or decreasing load with curvature of collector are mixed. Yawing moments for varying pitch at $\psi = 0$ (Figure 12e) were near zero as expected. Rolling moments for the same conditions (Figure 12f) should be zero, but showed moment coefficients from zero to 0.5 depending on pitch angle. Test loading during balance calibration did not show this behavior in rolling moment--the cause of these moments remains unexplained. It is doubtful that they arise from small imperfections in model shape. Lateral and lift forces became more dependent on collector shape at different yaw angles (Figures 13a, b, e, f). An explicit display of the effect of rim angle is shown in Figure 14.

The coefficients obtained in the case of one collector only could be compared with the drag coefficient of a flat plate or a cylinder.

In Table 6a (configuration 1)

 $F_{xP} = 1.42$ at $0 = 0^{\circ}$ $F_{xP} = 1.06$ at $0 = 180^{\circ}$

The drag coefficient for a flat plate with the length greater than the width is

 $C_D = 1.2$ if the plate is of finite length to width ratio. In our case, we have an intermediate case where the boundary can have some effects.

At our range of Reynolds number, the drag on an infinite length cylinder is about 1.2 far from the ground and decreases somewhat for finite length cylinders to about 0.8 for length to diameter ratios similar to the L/C ratio of the collector used for this study.

4.2 Array Field Loads

Configuration 5 was formed by adding two collectors identical in shape to collector 1 as shown in Figure 6. The gap spacing G between the center metric collector and the two outer collectors was varied in configuration 5 to find the optimum spacing to be used for load measurements on configurations 5-9. With the standard legs shown in Figure 4, it was not possible to obtain a gap spacing less than G/C = 0.54. Alternate legs were constructed which allowed a smaller G/C. Cardboard taped to this modified collector permitted gaps as small as G/C = 0.06 to be obtained. These data are shown in Table 7. The data for both sets of legs are shown in Figure 15. The discontinuity between the two collector types was probably due to the influence of the modified leg geometry. Very little influence of gap spacing on loads can be observed. A gap width of 0.54 was selected for the standard gap width for the subsequent collection of load data on configurations 5-9.

In order to establish row spacing R for the collector array field studies (see Figure 6), row spacing values of R/C = 2.0, 2.5, and 3.0 in configuration 9 were used for selected data acquisition. These data are presented in Table 8. On the basis of these data in conjunction with evaluation by the sponsor of space required for collector access, a row spacing of R/C = 2.25 was selected for all further data collection on the array field. Figure 16 shows selected data from Table 8 and data from further tests on configuration 9 (Table 9) at a row spacing of R/C = 2.25.

To determine the origin of the peak in the lift coefficient at R/C = 2.25, $\theta = \theta_{max}$ shown in Figure 16b, a smoke visualization study was conducted. The flow patterns were highly variable with time; however the essential characteristics of the flow could be observed and are shown in Figure 16c. High velocity flow was observed just above the collectors for all three row spacings, R/C = 2.0, 2.25, 2.5. In

addition, a tendency was observed for the high velocity flow to remain attached to the curved rear surface and to be pulled downward intermittently under the trailing collector. This tendency was observed to be stronger at R/C = 2.25 than for either R/C = 2.0 or R/C = 2.5. For R/C = 2.0, less quantity of high velocity flow was observed to pass under the edge of the trailing collector while for R/C = 2.5, the percentage of time when high velocity flow passed under the edge of the trailing collector was reduced as compared to the case at R/C = 2.25. This may indicate that short-duration lift loads at R/C = 2.5 could be much higher than the mean and comparable to shortduration lift loads at R/C = 2.25. With torque tubes attached to the collectors, no high velocity flow was permitted underneath the collectors--a distinct improvement over the case without torque tubes.

A matrix of conditions varying wind azimuth ψ and pitch angle θ were used to obtain loads on configurations 5-9 using a gap G/C = 0.54 and row spacing R/C = 2.25. These data are tabulated in Table 9. While obtaining data on the various configurations, fences and berms of various heights were placed in front of the first row of the array at varying distances. Table 10 shows the fence heights FH/C and placements FS/C, collector pitch angle, collector configuration and force and moment data. For some cases, a 0.5 in. torque tube was attached to the back of the collector to determine its influence on the loads. Table 11 shows conditions for the study of effects of an upwind berm. Except for Runs 300 and 302, all data on the influence of fences or berms were obtained with $\psi = 0$. The influence of array field configuration and fences on selected loads is shown in Figure 17. These data indicate that loads

drop dramatically with either a single collector upstream or with a fence upstream. The influence of fence height is shown in Figure 17d.

The loads with a torque tube attached to a single collector (configuration 1) were determined for a range of pitch angles at $\psi = 0$. These data are shown in Table 12. A comparison of single collector loads with and without the torque tube is shown in Figure 18. The torque tube had some effect on the loads. The torque tube on a single collector decreased the lift at $\pm \theta_{max}$ and at $\theta = \pm 90^{\circ}$ but increased slightly the lateral force and the overturning moment M_{yB} . Increases in lateral force and overturning moment occurred at smaller values of the coefficients. Furthermore, it has been seen that in an array field, the torque tube creates a blockage on the first row, protecting the following row. Then the flow between two collector rows becomes stagnant. The presence of the torque tube showed moderate effects on array field loads (Table 10).

Moments about the focal point, F, and center of gravity, G, are compared with moments about points P and B in Tables 13 to 21. Because variation of these moments with various independent variables (θ , for example) includes other variables as well (height of point F or G), these data were not plotted. In many cases, differences in moments between P, F and G are small.

Because of flow leakage into the force balance compartment during the initial stages of testing, small errors were introduced into the data. This problem was discovered and corrected after data on the first four configurations were obtained. A correction to the data was devised by rerunning some data on configurations 1 and 4 and calculating correction factors. Figure 19 gives an example of the correction

showing the original data uncorrected, the original data with the correction factor applied, and the rerun data with the leakage problem fixed. This factor is based on force and moments evaluated upon the force balance action point which is different from the pivot P. The correction appeared to work well. All data reported herein are corrected where corrections were required.

4.3 Smoke Visualization of Fence Effect

The previous section showed the dramatic decrease in loads which occurs when an upwind collector or wind fence is included. Figure 20 shows flow visualization photographs which help to explain why this occurs. Figure 20a shows flow sweeping onto the lead collector without benefit of a wind fence. The collector sees the full effect of the wind. Figure 20b shows the low velocity, separated flow regime behind the lead collector which provides protection to downstream rows from the full force of the wind. In Figure 20c, a low fence of height FH/C = 0.36 is shown. This fence does not provide significant protection; the wind flow is deflected upward somewhat, but still impinges on the lead collector. Figure 20d shows a porous fence of FH/C = 0.71. Here the low velocity region behind the fence is just higher than the collector, even though the fence height is smaller than the collector height. As shown in Figure 17d, this height fence provides almost maximum decrease in lift or lateral force for zero or negative pitch angles. For positive pitch angles, a slightly higher fence may be required to provide maximum load decreases, since the top of the collector would be at a higher elevation.

4.4 Calculation of Full-Scale Loads

The force and moment coefficients presented in this report can be used to determine corresponding forces and moments on full-scale collectors of the same geometry and field array configuration in an open-country environment. This is possible because the force and moment coefficients are constants as long as the Reynolds number is sufficiently high (see Chapter 1). Full-scale forces and moments can be determined by multiplying the coefficients by values of q_c , S and C appropriate to the full-scale environment as demonstrated below by an example.

Consider a single exposed collector 6 ft wide and 22.5 ft long (C = 6 ft, L = 22.5 ft) at sea level exposed to a quasi steady wind U_{30} of 30 mph at 30 ft elevation in an open country environment (0.14 exponent power law profile for mean velocity). The shape of this collector is assumed to be similar to configuration 1 (ϕ = 90°), with a height of the centerline such that: HCL/C = 0.75. It is desired to calculate the lateral force F in the X direction and the pitching moment M'_{yP} about the rotation point of the collector from the force coefficient F_{xP} and moment coefficient M_{yP} for zero pitch angle (θ = 0) and zero wind angle (ψ = 0).

From the equations for force and moment coefficients (section 3.4)

$$F_{x} = q_{c}S F_{xP}$$
$$F_{L} = q_{c}S F_{zP}$$
$$M'_{yP} = q_{c}S C M_{yP}$$

From Table 6, for configuration 1, wind azimuth = 0, pitch angle = 0:

$$F_{xP} = 1.42$$

 $F_{zP} = 0.39$
 $M_{yP} = -0.14$

From the collector size:

L = 22.5 ft, C = 6 ft
S = LC =
$$(22.5 \text{ ft})(6 \text{ ft}) = 135 \text{ ft}^2$$

HCL = 0.75 C = 0.75 (6 ft) = 4.5 ft

To determine q_c :

$$q_c = 0.5 \rho U_{HCL}^2$$

 $(q_c = 0.00256 U_{HCL}^2$ if U_{HCL} is in mph and q_c is in pounds per square foot, see ref. 8)

Using a mean velocity profile with a 0.14 power law,

$$U_{\text{HCL}} = U_{30} \left(\frac{\text{HCL}}{30 \text{ ft}} \right)^{.14}$$
$$= 30 \text{ mph} \left(\frac{4.5 \text{ ft}}{30 \text{ ft}} \right)^{.14} = 23.0 \text{ mph}$$

Thus $q_c = 0.00256 (23.0)^2 = 1.35 \text{ psf}$,

The forces then become

$$F_x = q_c S F_{xP} = (1.35)(135)(1.42)$$
 $F_L = (1.35)(135) 0.39$

$$F_x = 260 \text{ lb}$$
 $F_L = 70 \text{ lb}$

$$M'_{yP} = q_c S CM_{yP} = (1.35)(135)(6.0)(-0.14)$$

$$M'_{yP} = -150 \text{ lb ft}$$

The moment arm of the force from the pivot point is:

$$\Delta z_{\rm T} = \frac{\left|\frac{M'_{\rm yP}}{\vec{F}}\right|}{\vec{F}}$$

ere $\|\vec{F}\| = \sqrt{F_{\rm D}^2 + F_{\rm L}^2}$
 $= \sqrt{260^2 + 70^2}$
 $= 270 \ 1b$
 $\Delta z_{\rm T} = \frac{150 \ 1b \ ft}{270 \ 1b} = 0.56 \ ft$

whe

5. CONCLUSIONS

Wind forces acting on parabolic trough solar collectors were modeled in a boundary-layer wind tunnel in which atmospheric winds were simulated. Wind loads were measured on four collectors with different rim angles. Loads were also obtained on several array field configurations including wind fences.

The following conclusions can be drawn:

- Maximum lift on a single collector occurs for negative pitch angles (collector pointed downward) and occurs at different pitch angles for different rim angles.
- 2. Maximum lateral force on a single collector occurs for wind directly into a collector at zero pitch angle.
- 3. Maxima in pitching moments on a single collector tended to occur at more than one pitch angle.
- Collectors downwind of other collectors showed large decreases in wind load.
- 5. Wind loads on a collector in an array field directly exposed to winds decreased dramatically with inclusion of an appropriately designed fence upwind.
- Gap spacing between collectors in a row did not affect collector loads significantly.
- 7. Row spacing in an array field had a slight influence on collector loads especially at the pitch angle which gives maximum lift.

REFERENCES

- McBride, D. P., Static Force Tests on Parabolic Trough Solar Collectors, <u>Pretest Information Report No. 395</u>, Sandia Laboratories, Albuquerque, New Mexico.
- 2. Cermak, J. E., Aerodynamics of Buildings, <u>Annual Review of Fluid</u> <u>Mechanics</u>, Vol. 8, 1976.
- 3. Cermak, J. E., Laboratory Simulation of the Atmospheric Boundary Layer, <u>AIAA J1.</u>, Vol. 9, September 1971.
- Cermak, J. E., Applications of Fluid Mechanics to Wind Engineering, A Freeman Scholar Lecture, <u>ASME J1</u>. of <u>Fluids</u> <u>Engineering</u>, Vol. 97, No. 1, March 1975.
- 5. Bearman, P. W., Turbulence Effects on Bluff Body Mean Flow, <u>Third</u> <u>U.S. National Conference on Wind Engineering Research</u>, pp. 265-272, 1978.
- 6. Bearman, P. W., An Investigation of the Forces on Flat Plates Normal to a Turbulent Flow, <u>J1</u>. <u>Fluid Mechanics</u>, Vol. 46, pp. 177-198, 1971.
- Nakamura, Y. and Tomonari, Y., The Effect of Turbulence on the Drag of Rectangular Prisms, <u>Transactions Japan Society of Aeronautical</u> and <u>Space Science</u>, Vol. 19, pp. 81-86, 1976.
- 8. American National Standards Institute, <u>American National Standard</u> <u>Building Code Requirements for Minimum Design Loads in Buildings</u> <u>and Other Structures</u>, ANSI Standard A58.1, 1972.

FIGURES

Figure 1. Meteorological wind tunnel.

Figure 2a. Collector shapes for configurations 1-4.

COLLECTOR SHAPES

Collector 1

Figure 3. Collector mounted on force balance.

Figure 4. Collector and force balance mount.

Figure 5a. Coordinate system.

ALL INDIVIDUAL TROUGHS TO HAVE SAME GEOMETRY AS MODEL 1

Figure 6a. Collector in arrays for configurations 5-9.

Figure 7. Array field in the wind tunnel.

Figure 8. Approach velocity and turbulence profile.

Figure 9a. Determination of θ_{max} (configurations 1-4).

Figure 9b. Determination of θ_{max} (configurations 1-4).

Figure 10a. Effect of height on coefficients at $\theta = 0$, $\psi = 0$ (configurations 1-4).

Figure 10b. Effect of height on coefficients at $\theta = 0$, $\psi = 0$ (configurations 1-4).

 $[\]psi = 0$ (configurations 1-4).

Figure 11. Effect of height on lift at θ_{max} , $\psi = 0$ (configurations 1-4).

Figure 12b. Variation of single collector loads with pitch angle for HCL/C=K_I, $\psi = 0$ (configurations 1-4).

Figure 12c. Variation of single collector loads with pitch angle for HCL/C=K_I, $\psi = 0$ (configurations 1-4).

Figure 12d. Variation of single collector loads with pitch angle for HCL/C=K_T, $\psi = 0$ (configurations 1-4).

Figure 12e. Variation of single collector loads with pitch angle for HCL/C=K_I, $\psi = 0$ (configurations 1-4).

Figure 12f. Variation of single collector loads with pitch angle for HCL/C=K_I, $\psi = 0$ (configurations 1-4).

THETA = 0 DEG, HCL/C = KI

Figure 13b. Variation of single collector loads with yaw angle for $HCL/C=K_{I}$, (configurations 1-4).

THETA = 180 DEG,

HCL/C = KI

Figure 13c. Variation of single collector loads with yaw angle for $HCL/C=K_{I}$, (configurations 1-4).

Figure 13d. Variation of single collector loads with yaw angle for $HCL/C=K_T$, (configurations 1-4).

Figure 13e. Variation of single collector loads with yaw angle for $HCL/C=K_{T}$, (configurations 1-4).

THETA = - THETA-MAX, HCL/C = KI

Figure 13f. Variation of single collector loads with yaw angle for $HCL/C=K_T$, (configurations 1-4).

THETA = THETA-MAX, HCL/C = KI

Figure 13g. Variation of single collector loads with yaw angle for $HCL/C=K_T$, (configurations 1-4).

THETA = - THETA-MAX, HCL/C = KI

Figure 13h. Variation of single collector loads with yaw angle for $HCL/C=K_T$, (configurations 1-4).

THETA = THETA-MAX, HCL/C = KI

Figure 131. Variation of single collector loads with yaw angle for $HCL/C=K_{I}$, (configurations 1-4).

Figure 13j. Variation of single collector loads with yaw angle for $HCL/C=K_{I}$, (configurations 1-4).

Figure 14a. Effect on the rim angle ϕ on collector loads.

Figure 14b. Effect on the rim angle ϕ on collector loads.

Figure 15a. Effect of gap width on loads for configuration 5.

Figure 15b. Effect of gap width on loads for configuration 5.

Figure 16a. Effect of row spacing on collector loads (configuration 9).

(configuration 9).

Figure 16c. Effect of the row spacing upon the flow pattern.

Figure 17a. Influence of array field configuration and fences on collector loads.

fences on collector loads.

Figure 17c. Influence of array field configuration and fences on collector loads.

Figure 17d. Influence of array field configuration and fences on collector loads.

Figure 18a. Effect of torque tube on collector 1 loads.

Figure 18b. Effect of torque tube on collector 1 loads.

Figure 19. Effect of applying correction to collector 1.

(a)

(b)

Figure 20. Smoke visualization of upwind barriers.

(a)

(b)

Figure 20. Smoke visualization of upwind barriers.

(c)

(d)

Figure 20 (continued).

(d)

TABLES

75

RUN #	WIND DIRECTION	CONFIGURATION	РІТСН	FENCE	BERM
1	General prese	itation of the array	and the	wind tunnel	
2	0	9	0	3-in. fence	no
3	30	9	0	3-in. fence	no
4	0	9	0	no	2-in. berm
5	0	6	0	no	no
6	0	6	0	l-in. fence	no
7	0	6	0	2-in. fence	no
8	0	6	0	3-in. fence	no
9	0	6	-60	2-in. fence	no
10	0	6	120	2-in. fence	no

Table 1. MOTION PICTURE SCENE GUIDE

Table 2. VELOCITY AND TURBULENCE INTENSITY PROFILE

EXPONEN	T = .1546	5	UMA	X = 80.53
DATA Point	HEIGHT IN	UMEAH FPS	U-RMS FPS	TURB INT Percent
123 45678901234567890123	59892110011001010013654039 122334456789020000000999	531306666131735575240173 344522555899001447759255890 014477592558900 1447759255890 0 1447759255890 0	64337297542212889956753 93887777766667656655333 	96165872297765830111587 0895553372297765830111587 211111111111111

Table 3. DETERMINATION OF $\boldsymbol{\Theta}_{\text{max}}$ FOR CONFIGURATIONS 1-4

	DATA FOR THE SANDIA PARABOLI				BOLIC CO	DLLECTOR	FORCE	ORCE AND MOMENT COEFFICIENTS				FILE-NAME: MOPIN1		
CONFIG	CNFIGURATION 1 C = 2.80 L = 10.80 IM						INCHES	DETERMIN	NATION	OF THETA	MAX,COL	L#1		
PITCH	HCL/C	FXP	FZP	MXP	MYP	NZP	PITCH	HCL/C	FXP	FZP	NXP	MYP	nzp	
-15. -30. -45. -50. -55.	1.03 1.03 1.03 1.03 1.03	1.57 1.29 1.04 .99 .80	. 936 . 977 1 . 337 1 . 45 1 . 65	2232477	- 311 - 3414 - 222	- 135 - 199 - 117 - 117 - 113	- 60 - 655 - 775 - 795 - 1055 - 120	1.03 1.03 1.03 1.03 1.03 1.03 1.03	74 592 411 378 49	89762281 897662281	431 435 127 103	03 03 32 32 32	-,08 07 04 04 10 05 02	
	D	ATA FOR	THE SAND	IA PARAE	30LIC C0	ILLECTOR	FORCE	AND MONE	ENT COE	FFICIENTS	6	FILE-	NAME: NDPIM2	
CONFIG	URATION	2	C =	2.92		L = 10.80	INCHES	DETERMIN	NATION	OF THETA	MAX,COL	L#2		
PITCH	HCL/C	FXP	FZP	MXP	MYP	MZP	PITCH	HCL/C	FXP	FZP	NXP	NYP	MZP	
-15. -30. -45. -60.	99 99 99 99	1.56 1.43 1.43 .89 .75 .65	.03 .51 .86 1.20 1.55 1.62	.03 .137 .229 .422 .36	- 24 - 21 - 05 - 07 - 11	- 15 - 01 - 01 - 11 - 01	70. 75. 80. 95. 90. 105.	. 999 . 999 . 999 . 999 . 999 . 999	. 50 . 355 . 237 . 10 . 25	1 .79 1 .54 1 .28 16	.359 .437 .201	- 03 - 03 - 07 - 22	03 03 06 03 11 .02	
	D	ATA FOR	THE SAND	IA PARAE	30LIC C0	LLECTOR	FORCE	AND MONI	ENT COE	FFICIENT	5	FILE~	NAME: NDPIN3	
CONFIG	URATION	3	C =	2.94		L = 10.80	INCHES	DETERMIN	NATION	OF THETA	MAX,COL	L#3		
PITCH	HCL/C	FXP	FZP	MXP	NYP	NZP	PITCH	HCL/C	FXP	FZP	NXP	NYP	NZP	
0, -15, -30, -45, -60,	. 78 . 98 . 98 . 98 . 98	1.55 1.46 1.18 .94 .75	. 03 . 51 . 85 1. 20 1. 61	. 033 . 123 . 235		15 17 05 11	-65. -70. -75. -90. -105.	98 98 98 98 98 98 98	61 51 29 17 27	1 82 1 88 1 81 1 67 1 25 1 4	.39 .49 .49 .49 .49 .49	02 14 04 07 14 27	10 13 02 09 09 03 07	
	D	ATA FOR	THE SAND	IA PARA	BOLIC CO	LLECTOR	FORCE	AND MONI	ENT COE	FFICIENT	3	FILE-	NANE: MOPIN4	
CONFIG	URATION	4	C =	3.00		L = 10.80	INCHES	DETERNI	NATION	OF THETA	MAX, COL	L#4		
PITCH	HCL/C	FXP	FZP	MXP	HYP	NZP	PITCH	HCL/C	FXP	FZP	NXP	NYP	MZP	
-15. -30.	.96	1.61	- 10	.04	35	- 03	-55. -60. -70	.96 .96 .96	72	1.17 1.17 96	.28	11 17	02 08	

78

Table 4. EFFECT OF HEIGHT HCL ON SINGLE COLLECTOR LOADS AT

 $\theta = 0, \psi = 0$ FOR CONFIGURATIONS 1-4

	DATA FOR THE SANDIA PARABOLIC COLLECTOR							FORCE AND MOMENT COEFFICIENTS FILE-NAME: MDCDM					NAME: MOCOMI	
CONFIG	NFIGURATION 1 C = 2.80 L = 10.80 Inch						INCHES		HEIGHT	EFFECT A	T THETR	=0/COLL#1		
PITCH	HCL/C	FXP	FZP	MXP	MYP	MZP		PITCH	HCL/C	FXP	FZP	MXP	MYP	MZP
0. 0. 0. 0.	67 71 80 89	1.48 1.40 1.53 1.48	10 02 10	.09 .04 04 .09	55 25 34 14	- 05 - 01 - 13 - 13		0 . 0 . 0 . 0 .	1.03 1.25 1.61 1.96	1.52 1.48 1.50 1.54	103 033 03	- 03	21 07 20 49	08 01 02 11
	D	ATA FOR	THE SAND	IA PARA	BOLIC CO	DLLECTOR		FORCE	AND MOP	IENT COEF	FICIENT	5	FILE-	NAHE: MOCDM2
CONFIG	URATION	2	C =	2.92		L = 10.80]	INCHES		HEIGHT	EFFECT A	T THETA	=0,COLL#2	2	
PITCH	HCL/C	FXP	FZP	MXP	MYP	MZP		PITCH	HCL/C	FXP	FZP	MXP	MYP	MZP
0. 0. 0. 0.	. 64 . 68 . 77 . 86	1.37 1.40 1.46 1.45	. 10 . 02 . 02 . 02	- 10 - 19 .03 .03	18 05 20 15	- 12 - 15 - 01 - 05		0. 0. 0.	99 1.20 1.54 1.88	1 56 1 45 1 40 1 48	03 03 09 03	.03 .03 .07 .12	24 19 14 45	- 15 - 05 - 07 - 10
	D	ATA FOR	THE SAND	IA PARA	BOLIC C	OLLECTOR		FORCE	AND MOP	IENT COEF	FICIENT	9	FILE-	NANE: MDCDN3
CONFIG	URATION	3	C =	2.94		L = 10.80 1	INCHES		HEIGHT	EFFECT A	T THETA	=0,COLL#3	5	
PITCH	HCL/C	FXP	FZP	MXP	MYP	NZP		PITCH	HCL/C	FXP	FZP	MXP	MYP	MZP
0. 0. 0.	.64 .68 .77 .85	1.31 1.45 1.45 1.51	. 18 . 02 . 02 . 03	. 15 . 04 . 03 . 03	- 17 - 26 - 10 - 18	08 20 01 09		0 . 0 . 0 .	98 1 19 1 53 1 87	1.50 1.56 1.43 1.46	03 16 03	13	- 29 - 29 - 18 - 29	- 02 - 11 - 10 - 10
	Ð	ATA FOR	THE SAND	IA PARA	BOLIC C	OLLECTOR		FORCE	AND MO	IENT COEF	FICIENT	s	FILE-	NANE: MDCDN4
CONFIG	URATION	4	C =	3.00		L = 10.80	INCHES		HEIGHT	EFFECT A	T THETA	=0,COLL#4	4	
PITCH	HCL/C	FXP	FZP	MXP	MYP	NZP		PITCH	HCL/C	FXP	FZP	MXP	MYP	MZP
0. 0. 0. 0.	. 63 . 67 . 75 . 83	1.34 1.37 1.52 1.57	.10 .10 11 19	03 .08 .05 .10	18 24 49 35	00 04 09 06		0. 0. 0. 0.	.96 1.17 1.50 1.83	1.61 1.62 1.62 1.56	- 10 03 03	.04 .11 .10 .22	35 25 27 32	03 .01 .00 02

79

Table 5. EFFECT OF HEIGHT HCL ON SINGLE COLLECTOR LOADS AT

 θ_{max} , $\psi = 0$ FOR CONFIGURATIONS 1-4

	DATA FOR THE SANDIA PARABOLIC COLLECTOR						FORCE AND MOMENT COEFFICIENTS FILE-NAME: MDCL						NANE: MOCLN1
CONFIG	NFIGURATION 1 C = 2.80 L = 10.80 INC						CHES	HEIGHT	EFFECT	AT THETA	MAX/COL	L#1	
PITCH	HCL/C	FXP	FZP	MXP	NYP	NZP	PITCH	HCL/C	FXP	FZP	MXP	NYP	MZP
-65. -65. -65.	.67 .71 .80 .89	. 46 . 45 . 50 . 47	1.75 1.64 1.82 1.79	. 34 . 29 . 56 . 48	02 12 03	04 - 08 - 00 - 11	-65 -65 -65	1.03 1.25 1.61 1.96	. 53 . 52 . 52 . 57	1.90 1.95 1.92 2.00	.43 .48 .44 .48	.05 .13 .11 .00	03 14 .04 10
	D	ATA FOR	THE SAN	DIA PARA	BOLIC C	OLLECTOR	FORCE	AND MOM	ENT COE	FFICIENTS	6	FILE-	NANE: MDCLM2
CONFIG	URATION	2	C =	2.92		L = 10.80 IN	CHES	HEIGHT	AT THET	A MAX/COL	L#2		
PITCH	HCL/C	FXP	FZP	MXP	MYP	NZP	PITCH	HCL/C	FXP	FZP	MXP	MYP	NZP
-75. -75. -75. -75.	. 64 . 68 . 77 . 86	. 33 . 32 . 31 . 36	1.76 1.73 1.74 1.68	. 37 . 37 . 42 . 39	.14 .13 .19 .04	.12 .00 10 .07	- 75 . - 75 . - 75 . - 75 . - 75 .	.99 1.03 1.20 1.54 1.88	34 39 32 40 33	1.68 1.735 1.655 1.67	31 36 35 40 36	.07 .01 .16 07 .15	03 16 12 17 04
	Ð	ATA FOR	THE SAN	DIA PARA	BOLIC C	OLLECTOR	FORCE	AND MOM	ENT COE	FFICIENT	S	FILE-	NANE: MDCLH3
CONFIG	URATION	3	C =	2.94		L = 10.80 IN	CHES	HEIGHT	EFFECT	AT THETA	MAX, COL	L#3	
PITCH	HCL/C	FXP	FZP	MXP	MYP	MZP	PITCH	HCL/C	FXP	FZP	MXP	NYP	MZP
-70. -70. -70. -70.	. 64 . 68 . 77 . 85	. 66 . 71 . 69 . 78	1.43 1.49 1.58 1.54	27 32 40 38	13 07 05 15	- 02 - 17 - 05 - 12	-70. -70. -70. -70.	.98 1.19 1.53 1.87	.75 .76 .80 .93	1.61 1.65 1.77 1.61	.46 .41 .54 .38	08 11 16 16	11 04 09 06
	D	ATA FOR	THE SAN	DIA PARA	BOLIC (OLLECTOR	FORCE	AND MOM	ENT COE	FFICIENT	S	FILE-	NAME: MDCLM4
CONFIGURATION 4 $C = 3.00$ L = 10.80 I					CHES	HEIGHT	EFFECT	AT THETA	MAX, COL	.L#4			
PITCH	HCL/C	FXP	FZP	MXP	MYP	NZP	PITCH	HCL/C	FXP	FZP	NXP	NYP	MZP
-55. -55.	.83 96	. 62 . 66	. 79 1.17	. 24 . 28	10 .00	. 03 . 01	-55. -55. -55.	1.17 1.50 1.33	.74 .86 .35	1.49 1.62 1.58	.31 .52 .45	02 16 07	.05 .02 01

Table 6a. MATRIX OF SINGLE COLLECTOR LOADS AT $HCL/C = K_{I}$ (CONFIGURATION 1)

DATA FOR THE SANDIA PARABOLIC COLLECTOR						FORCE AND MOMENT COEFFICIENTS FILE-NAME:					NAME: MDCOL1	
CONFIGURATI	0 N 1	C =	2.80	L = 10	.80 INCHES	5	ONE	SINGLE	COLLECTOR, R	IN ANGLE:	90	
WIND PITCH AZIM. ANGLE	FXP	FΖ₽	MXP	1YP M28		UIND Azin.	PITC Angl	E E	(P F2P	MEP	HYP	MZP
$\begin{array}{c} 0 & -155 \\ -156 \\ 0 & -156 \\ 0 & -156 \\ 0 & -156 \\ 0 & -156 \\ 0 & -166$	4355i22685078154416189051502418350 4355i22685078154416189051502418350 11 11 11 11 11 11 11 11 11 11 11 11 11	705446678237159023943256695618684 -111111111111111111111111111111111111		1 1 0			666677799138 668 113344666677799138			v91783735449716622366148955234933 	1921395304825758692675210443104222	971095080204224384583193041079450

	DATA FOR	THE SAND	IA PARAE	OLIC	COLLECTOR	FORCE AND MO	MENT COE	FFICIENT	S	FILE-	NANE: MDCOL2
CONFIGURATI	DN 2	C =	2.92		L = 10.80 INCHE	S ONE SI	NGLE COL	LECTORIR	IM ANGLE	=40	
WIND PITCH Azim, Angle	FXP	FZP	MXP	MYP	MZP	WIND PITCH Azim. Angle	FXP	FZP	NXP	NYP	NZP
$\begin{array}{c} 0 \\ 0 \\ -15 \\ 0 \\ 0 \\ -15 \\ 0 \\ 0 \\ 0 \\ -15 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	395504135796190609485649195728 4230381672201792323242231323020 11111111111111111111111111111	226775510072027332134717663120 	133883916348755864698829450214	632648187611513620342420480475 2110220201111011012010102202010 1		$\begin{array}{c} 30 & 45 & 00 \\ 300 & -60 & 00 \\ 300 & -75 & 00 \\ 300 & -75 & 00 \\ 300 & -90 & 50 \\ 300 & -135 & 00 \\ 300 & -135 & 00 \\ 300 & -135 & 00 \\ 455 & -75 & 00 \\ 455 & -75 & 00 \\ 455 & -155 & 00 \\ 455 & -155 & 00 \\ 600 & -155 & 00 \\ 600 & -455 & 00 \\ 600 & -455 & 00 \\ 600 & -90 & 00 \\ 600 & -90 & 00 \\ 600 & -135 & 00 \\ 600 & -90 & 00 \\ 600 & -135 & 00 \\$	1 06825097266222764793554304 1 068220097266222764793554304 1 066220972662227664793554304 1 06706	632261269952590610457682551562 57764053224952590610457682551562	129433387289443792297930669130 07050320511403230505050404021055		

Table 6b. MATRIX OF SINGLE COLLECTOR LOADS AT HCL/C = K_{I} (CONFIGURATION 2)

Table 6c. MATRIX OF SINGLE COLLECTOR LOADS AT $HCL/C = K_{I}$ (CONFIGURATION 3)

	DATA FOR	THE SAND	IA PARABOLIC	COLLECTOR	FORCE AND MOM	F 1	FILE-NAME: MDCOL3		
CONFIGURATI	ON 3	C =	2.94	L = 10.80 INCHE	ONE SIN	IGLE COLLECTOR, RIM	ANGLE=65		
WIND PITCH AZIM. ANGLE	FXP	FZP	MXP NYP	NZP	WIND PITCH Azim Angle	FXP FZP	NXP NYI	P MZP	
$\begin{array}{c} 0 & 0 & 0 \\ -15 & 0 & 0 \\ 0 & -15 & 0 & 0 \\ 0 & -33 & 5 & 0 & 0 \\ 0 & -45 & 0 & 0 \\ 0 & -45 & 0 & 0 \\ 0 & -45 & 0 & 0 \\ 0 & -45 & 0 & 0 \\ 0 & -77 & 5 & 0 & 0 \\ 0 & -77 & 5 & 0 & 0 \\ 0 & -77 & 5 & 0 & 0 \\ 0 & -77 & 5 & 0 & 0 \\ 0 & -77 & 5 & 0 & 0 \\ 0 & -77 & 5 & 0 & 0 \\ 0 & -77 & 5 & 0 & 0 \\ 0 & -77 & 5 & 0 & 0 \\ 0 & -77 & 5 & 0 & 0 \\ 0 & -77 & 5 & 0 & 0 \\ 0 & -77 & 5 & 0 & 0 \\ 0 & -135 & 0 & 0 & 0 \\ 0 & -135 & 0 & 0 & 0 \\ 0 & -135 & 0 & 0 & 0 \\ 0 & -135 & 0 & 0 & 0 \\ 0 & -135 & -77 & 0 & 0 & 0 \\ 0 & -135 & -77 & 0 & 0 & 0 \\ 0 & -135 & -77 & 0 & 0 & 0 \\ 0 & -135 & -77 & 0 & 0 & 0 \\ 0 & -135 & -77 & 0 & 0 & 0 \\ 0 & -135 & -77 & 0 & 0 & 0 \\ 0 & -135 & -77 & 0 & 0 & 0 \\ 0 & -135 & -77 & 0 & 0 & 0 \\ 0 & -135 & 0 & 0 & 0 \\ 0 & -155 & 0 & 0 \\ 0 & 0$	434138297339924778837017467259770728 434138168352411681445224462333322290	4095664685643437716298555860005166 - 11.089337162985558600051601 - 11.08937716298555860005160 - 1.1.003366	19667:112373508389042208302720837350 1234 - 1234 - 1234 - 1234 - 1234 - 1234 - 1234 - 1234 - 1234 - 1234 - 12208389 - 1220837350 - 1220837350 - 1220837350 - 1220837350 - 1220837350 - 111202083300 - 120837350 - 120837350 - 120837350 - 120837350 - 120808300 - 120808300 - 120808300 - 120808300 - 120808300 - 120808300 - 120808300 - 120808300 - 120808300 - 120808300 - 120808300 - 12080830 -	$ \begin{array}{c} - & 06 \\ - & 04 \\ - & 024 \\ - & 012 \\ - & 001 \\ - & 001 \\ - & 005 \\ - & 005 \\ - & 006 \\ - & 009 \\ - & 000 \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	020 020 020 0	6931 	

Table 6d. MATRIX OF SINGLE COLLECTOR LOADS AT HCL/C = K_{I} (CONFIGURATION 4)

DATA FOR THE SANDIA PARABOLIC COLLECTOR					FORCE AND MOM		FILE-NAME: MDCOL4				
CONFIGURATIO	N 4	C =	3.00		L = 10.80 INCHE	5 ONE SIN	IGLE COL	LECTORIRIM	ANGLE	=120	
WIND PITCH Azim, Angle	FXP	FZP	MXP	MYP	MZP	WIND PITCH Azim. Angle	FXP	FZP	MXP	MYP	NZP
$\begin{array}{c} 0 & -15 & 000 \\ 0 & -15 & 000 \\ 0 & -15 & 000 \\ 0 & -35 & 000 \\ 0 & -55 & 000 \\ 0 & -55 & 000 \\ 0 & -55 & 000 \\ 0 & -55 & 000 \\ 0 & -55 & 000 \\ 0 & -75 & 000 \\ 0 & -75 & 000 \\ 0 & -135 & 000 \\ 0 & -135 & 000 \\ 0 & -135 & 000 \\ 0 & -135 & 000 \\ 0 & -135 & 000 \\ 0 & -135 & 000 \\ 0 & -135 & 000 \\ 0 & -135 & 000 \\ 0 & -135 & 000 \\ 0 & -135 & 000 \\ 0 & -135 & 000 \\ 0 & -135 & 000 \\ 0 & -135 & 000 \\ 0 & -155 & -555 & 000 \\ 0 & -155 & -555 & 000 \\ 0 & -155 & -555 & 000 \\ 0 & -155 & -555 & 000 \\ 0 & -155 & -555 & 000 \\ 0 & -155 & -555 & 000 \\ 0 & -155 & -555 & 000 \\ 0 & -155 & -555 & 000 \\ 0 & -155 & -555 & 000 \\ 0 & -155 & -555 & 000 \\ 0 & -155 & -555 & 000 \\ 0 & -155 & -555 & 000 \\ 0 & -455 & $	5203305552748755999486516623017041	833015833613717973448933733525564 162172928269068823723732732721628	454811008774990478616798898605414	6666962463384564367680028616969055 322131301203142431301120123221503	$\begin{array}{c} - & 09 \\ - & 011 \\ - & 004 \\ - & 0016 \\ - & 005 \\$	$\begin{array}{c} 330\\ -55\\ 000\\ -55\\ 000\\ -55\\ 000\\ -66\\ 55\\ 000\\ -9\\ 135\\ 000\\ -9\\ 135\\ 000\\ -9\\ 135\\ 000\\ -9\\ 135\\ 000\\ -9\\ 135\\ 000\\ -9\\ 135\\ 000\\ -9\\ 135\\ 000\\ -9\\ 135\\ 000\\ -9\\ 135\\ 000\\ -9\\ 135\\ 000\\ -9\\ 155\\ 000\\ -9\\ 155\\ 000\\ -9\\ 155\\ 000\\ -9\\ 155\\ 000\\ -9\\ 155\\ 000\\ -9\\ 155\\ 000\\ -9\\ 135\\ 000\\ 000\\ -9\\ 135\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 0$	1 606756085408134519862951368977588121	1-1-1- - 1- - 1- - 1- - 1- - 1- - 1- -	331101602242762110641059841121369 	624232584896594114745355234452435 0110314242021022130302211103182412	272226188297779260073647180236340 232324331315152355453424232223256

Table 7. LOADS FOR VARIOUS GAP SPACINGS FOR CONFIGURATION 5

	ł	DATA FOR	THE SAN	BOLIC CO	LLECTOR	FORCE	AND MOM	IENT COEF	FICIENTS		FILE-	HAME: MD1	8 0 0	
CONFIG	URATIO	N 5	= 3	2.80		L = 10.80 IN	ICHES	GAP STU	DY, ONE (OLLECTOR	RO₩			
PITCH	G/C	FXP	FZP	MXP	MYP	MZP	PITCH	G7 C	FXP	FZP	MXP	MYP	MZP	
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	7197531940617		2372214149755	680768 154 0590	0346929045098 			7-197531940617 1-1-1-1-22233	3430681167856	2.0618734 0.09934 1.990188845 1.990188845	54577262646030 54574455554445	04 022 004 - 05 05 05 159 112 11	147 006 006 000 000 000 001 001 003	
		DATA FOR	THE SAN	DIA PARA	BOLIC CO	ILLECTOR	FORCE	AND MOR	1ENT COE	FFICIENTS		FILE-	NAME: MDG	AP 2
CONFIG	URATIO	N 5	C =	2.80		L = 10.80 II	NCHES	GAP STU	JDY JONE	COLLECTOR	ROW	, ALTERNAT	E LEGS	
PITCH	G/C	FXP	FZP	MXP	MYP	MZP	PITCH	G/C	FXP	FZP	MXP	NYP	MZP	
0. 0. 0. 0. 0. 0. 0. 0. 0.	¢1187641975	1.503 545 1.445 1.445 1.544 1.544 1.544 146	23	208 - 1261 - 114 - 1267 - 207 - 208 - 207 - 207		- 14 - 01 - 106 - 083 - 083 - 083 - 083 - 083 - 084 - 084 - 084 - 084 - 084 - 085		01187641975	1441864987 55544384987	8:62006244	34443964190 33333334	- 0023 0023 0011 002 0011 0023 0011 0011	- 07 - 06 - 07 - 10 - 04 - 02 - 08 - 08 - 08 - 08 - 08	

Table 8. DATA FOR ESTABLISHMENT OF ROW SPACING R (CONFIGURATION 9)

DATA FOR THE SANDIA PARABOLIC COLLECTOR Configuration 9 C = 2.80 L = 10.80 inche						INCHES	FORCE AND MOM Row Stu	ENT COE Dy, Row	S =2.0+C	FILE-NAME: MDR2.0		
WIND PITCH	FXP	FZP	MXP	MYP	NZP		WIND PITCH Azim, angle	FXP	FZP	NXP	H Y P	NZP
0. 0.00 0. 0.00 060.00 065.00	. 04 . 05 . 29 . 25	11 11 .36 .43	19 15 06 04	05 06 .04 .03	06 07 11 07		1560.00 1565.00 3060.00 3065.00	. 28 . 25 . 29 . 29	30 30 32 37	- 00 - 07 03 12	09 03 09 15	08 05 16 18
	DATA FOR	THE SAN	DIA PARA	BOLIC C	DLLECTOR		FORCE AND MOM	ENT COE	FFICIENT	5	FILE-	NAME: MDR2.5

CONFI	CONFIGURATION 9		C = 2.80			L = 10.80 INCHES			RUW STUDY, RUW SPHCING=2.3+C					
WIND AZIM.	PITCH Angle	FXP	FZP	MXP	ИЧР	NZP	WIND Azim.	PITCH Angle	FXP	FZP	NXP	NYP	MZP	
0. 0	0.00	.15	08 .40	- 08 - 23	- 19 - 18	- 19 - 16	150 300	60.00 60.00	. 35 . 40	. 37 . 42	13	19 20	- 27	

	DATA FOR	THE SAN	DIA PARA	BOLIC	COLLECTOR	FORCE	AND MOM	ENT COE	FFICIENT	5	FILE-	NAME: MDR3.0
CONFIGURATIO	DN 9	C =	2.80		L = 10.80 IN	CHES	ROW STU	DY, ROW	SPACING=	3.0+C		
WIND PITCH Azim. Angle	FXP	FZP	MXP	MYI	P NZP	UIND Azim.	PITCH Angle	FXP	FZP	NXP	NYP	NZP
0. 0.00 060.00	. 17 . 48	09 .57	- 01	- : 1 - : 2	5 - 16 - 12	15 - 30 -	60.00 60.00	. 35 . 44	. 53 . 49	. 1 3 . 1 7	- 04 - 23	18 18

86

Table 9a. LOADS ON ARRAY FIELDS (CONFIGURATIONS 5-9)

ſ	ATA FOR	THE SAN	DIA PARA	BOLIC CO	LLECTOR		FORCE AND MOM	9	FILE-	NANE: MDBROW		
CONFIGURATION	18	E =	2.80		L = 10.80 I	NCHES	FOUR CO	LLECTOR	ROWS / RZ	C=2.25		
WIND PITCH AZIM, ANGLE	FXP	FZP	MXP	MYP	MZP		WIND PITCH Azin. Angle	FXP	FZP	MXP	MYP	NZP
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10671866277594	2260 - 43361 - 59218 -	0143026567834 1126567834		- 10 - 220 - 17 - 14 - 12 - 11 - 11 - 01 - 01 - 06 - 10		$\begin{array}{c} 0 & 1 & 2 & 0 & 0 \\ 0 & -1 & 3 & 5 & 0 \\ 0 & 1 & 3 & 5 & 0 \\ 1 & 5 & -6 & 0 & 0 \\ 1 & 5 & -6 & 0 & 0 \\ 1 & 5 & -6 & 0 & 0 \\ 1 & 5 & 1 & 8 & 0 & 0 \\ 1 & 5 & 1 & 8 & 0 & 0 \\ 3 & 0 & -6 & 0 & 0 \\ 3 & 0 & -6 & 0 & 0 \\ 3 & 0 & -6 & 0 & 0 \\ 3 & 0 & -6 & 0 & 0 \\ 3 & 0 & -6 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	5185009 52009 4190970 2320	788671832993	1200704130624	11 	- 08 000 - 04 - 04 - 06 - 07 - 07 - 07 - 07 - 07 - 07 - 07 - 07
1	DATA FOR	THE SAN	DIA PARA	BOLIC CO	LLECTOR		FORCE AND NOM	ENT COE	FFICIENT	s	FILE-	NAME: MD9ROW
CONFIGURATIO	9	C =	2.80		L = 10.80 I	NCHES	SIX COL	LECTOR	ROWS, R/	C=2.25		
WIND PITCH Azim, Angle	FXP	FZP	MXP	NYP	NZP		WIND PITCH Azim Angle	FXP	FZP	MXP	NYP	MZP
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	211612279304220		10 11 128 089 195 2035 - 2035 - 219	- 3073 - 2221 - 4080 - 3408 - 1 3405	17 20 11 26 .01 16 01 08 14 07 10		$\begin{array}{c} 0 & 1 & 2 & 0 & 0 \\ 0 & -1 & 3 & 5 & 0 \\ 0 & 1 & 3 & 5 & 0 & 0 \\ 1 & 5 & 0 & 0 & 0 & 0 \\ 1 & 5 & -6 & 0 & 0 & 0 \\ 1 & 5 & 1 & 8 & 0 & 0 & 0 \\ 1 & 5 & 1 & 8 & 0 & 0 & 0 \\ 3 & 0 & -6 & 0 & 0 & 0 \\ 3 & 0 & -6 & 0 & 0 & 0 \\ 3 & 0 & -6 & 0 & 0 & 0 \\ 3 & 0 & -6 & 0 & 0 & 0 \\ 3 & 0 & -6 & 0 & 0 & 0 \\ 3 & 0 & -6 & 0 & 0 & 0 \\ 3 & 0 & -6 & 0 & 0 & 0 \\ 3 & 0 & -6 & 0 & 0 & 0 \\ 3 & 0 & -6 & 0 & 0 & 0 \\ 3 & 0 & -6 & 0 & 0 & 0 \\ 3 & 0 & -6 & 0 & 0 & 0 \\ 3 & 0 & -6 & 0 & 0 & 0 \\ 3 & 0 & -6 & 0 & 0 & 0 \\ 3 & 0 & -6 & 0 & 0 & 0 \\ 3 & 0 & -6 & 0 & 0 & 0 \\ \end{array}$	3111708407420	308298215467 	11 099 2219 224 2305 2405 16		- 05 - 13 - 20 - 27 - 01 - 21 - 20 - 14 - 23 - 067 - 18

Table 9b. LOADS ON ARRAY FIELDS (CONFIGURATIONS 5-9)

DA	THE SAND	BOLIC CO	LLECTOR	FORCE AND	MOMENT CO	FILE-NAME: MD6RD					
CONFIGURATION	6	C =	2.80	1	L = 10.80 INCH	IES TWO	COLLECTOR	ROWS/R/C	=2.25		
WIND PITCH Azim. Angle	FXP	FZP	MXP	NYP	NZP	WIND PIT Azim. And	CH FXP	FZP	NXP	MYP	MZP
$\begin{array}{c} 0 & 0 & 0 \\ 0 & -30 & 00 \\ 0 & 30 & 00 \\ 0 & -45 & 00 \\ 0 & -60 & 00 \\ 0 & -60 & 00 \\ 0 & -60 & 00 \\ 0 & -75 & 00 \\ 0 & -75 & 00 \\ 0 & -75 & 00 \\ 0 & -75 & 00 \\ 0 & -75 & 00 \\ 0 & -75 & 00 \\ 0 & -120 & 0 \end{array}$	1.783922882285142	.31 1.14 70 1.48 1.60 1.60 1.62 -1.79 1.66 .69 .56	293 242 394 203 111 271 271 271 271 271 271 271 271 271	107354 - 1054 - 100066826838 - 100066838	15 .08 .01 .13 01 02 04 04 04 01	$\begin{array}{c} 0 & 120 \\ 0 & -135 \\ 0 & 135 \\ 0 & 180 \\ 15 & -60 \\ 15 & -60 \\ 15 & -60 \\ 15 & 180 \\ 30 & -6$	0 62 0 99 0 1 0 57 0 57 0 98 0 1 0 1 0 57 0 57 0 98 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	24 410 537 1.655 1.666 -1.734 1.568 1.564 52	1837 2237 338 1157 533 14	37 - 401 - 107 - 107 - 222 - 224 - 022 - 022	06 002 05 - 022 - 15 - 27 - 27 - 25 - 40

DATA FOR THE SANDIA PARABOLIC COLLECTOR

FORCE AND MOMENT COEFFICIENTS

FILE-NAME: MD7ROW

CONFIGURATION	7	= 3	2.80		L = 10.80 INCHES	5	THREE	COLLECTOR	ROWS,	R/C=2.25		
WIND PITCH Azim. Angle	FXP	FZP	MXP	NYP	NZP	WIND AZIM.	PITCH Angle	FXP	FZP	NXP	NYP	MZP
$\begin{array}{c} 0 & 0 & 0 \\ 0 & -30 & 00 \\ 0 & 30 & 00 \\ 0 & -45 & 00 \\ 0 & -45 & 00 \\ 0 & -65 & 00 \\ 0 & -60 & 00 \\ 0 & -60 & 00 \\ 0 & -75 & 00 \\ 0 & -75 & 00 \\ 0 & -95 & 00 \\ 0 &$	111135334121	27 36 423 99 01 1.02 78 40	0983637814 1237814 114977		- 04 - 07 - 05 - 05 - 14 - 06 - 16 - 09 - 02	0 1 0 1 15 1 15 1 15 1 30 1 30 1 30 1	$\begin{array}{c} 20.00\\ 135.0\\ 35.00\\ 60$	5128534526345 41244526345	43229030243811 	12 20 17 13 223 17 223 - 34 00	$\begin{array}{c} 0 \\ - 26 \\ - 246 \\ - 226 \\ - 126 \\ - 126 \\ - 126 \\ - 126 \\ - 118 \\ - 030 \\ - 118 \\ - 17 \end{array}$	- 02 - 000 - 10 - 11 - 276 - 11 - 268 - 11 - 14 - 18

	DATA FOR	THE SAN	DIA PARAE	BOLIC C	OLLECTOR	FORCE AND MON	IENT COE	FFICIENT	5	FILE-	NAME: MDEDIT
CONFIGURATI	DN 5	C =	2.80		L = 10.80 INC	IES ONE ROW	OF THE	REE COLLES	CTORS/G/	C=.536	
WIND PITCH AZIM. ANGLE	FXP	FZP	MXP	MYP	MZP	WIND PITCH Azim. Angle	FXP	FZP	MXP	MYP	MZP
$\begin{array}{c} 0 & -30 & 00 \\ 0 & -30 & 00 \\ 0 & -45 & 00 \\ 0 & -45 & 00 \\ 0 & -60 & 00 \\ 0 & -75 & 00 \\ 0 & -75 & 00 \\ 0 & -75 & 00 \\ 0 & -75 & 00 \\ 0 & -120 & 0 \\ 0 & -1235 & 00 \\ 0 & -135 & 00 \\ 0 & -135 & 00 \\ 0 & -135 & 00 \\ 0 & -155 & -60 & 00 \\ 155 & -60 & 000 \\ 155 & -60 & 000 \\ 155 & -60 & 000 \\ 155 & -60 & 000 \\ 155 & -60 & 000 \\ 155 & -60 & 000 \\ 30 & -30 & 000 \\ 30 & -455 & 000 \\ 30 & -455 & 000 \\ 30 & -455 & 000 \\ 30 & -450 & 000 \\ 30 & -450 & 000 \\ 30 & -450 & 000 \\ 30 & -450 & 000 \\ 30 & -450 & 000 \\ 30 & -450 & 000 \\ 30 & -450 & 000 \\ 30 & -450 & 000 \\ 30 & -450 & 000 \\ 30 & -450 & 000 \\ 30 & -450 & 000 \\ 30 & -450 & 000 \\ 30 & -450 & 000 \\ 30 & -60 & 0$	954722741925958319463411603601	12 935 1.955 1.955 1.955 1.955 1.955 1.955 1.955 1.955 1.955 1.955 1.955 1.955 1.957 1.957 1.9555 1.9555 1.9555 1.9555 1.9555 1.9555 1.9555 1.9555 1.9555	170612401444244413065380816518	563359663451819287546871557463 12303230012315021031112220202020	- 03 - 114 - 110 - 1002 - 1005 - 1132 - 1132 - 1132 - 1132 - 1132 - 1132 - 1134 - 1132 - 1134 - 1132 - 1134 - 114 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37775097689888701012292820580591	114198644106224711511462706199 - 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	295432128462374248712694358851 230311514285101312021110201030		- 182 - 1189 - 1189 - 1130 - 1111 - 110 - 11

Table 9c. LOADS ON ARRAY FIELDS (CONFIGURATIONS 5-9)

Table 10a, FENCE STUDY

File: MDFNCE

RUN #	FENCE HEIGHT FH/C	SPACE BETWEEN THE FENCE AND FIRST COLL. ROW FS/C	P ITCH ANGLE	CONFIGURATION WITH OR WITHOUT TORQUE TUBE
270	1.43	2	180	V without
271	1.43	2	120	V without
272	1.43	2	0	V without
273	1.43	2	-60	V without
274	0.71	3	0	V without
275	0.71	3	-60	V without
276	0.71	3	0	VI without
277	0.71	3	-60	VI without
278	0.71 alt fe	nce 3	0	VI without
279	0.71 alt fe	nce 3	-60	VI without
280	1.07	3	0	VI without
281	1.07	3	-60	VI without
282	1.43	3	0	VI without
283	1.43	3	-60	VI without
284	0.36	3	0	VI with
285	0.36	3	-60	VI with
286	0.36	3	-60	VI without
287	0.36	3	0	VI without
288	0.71 alt fe	nce 3	-60	VI with
289	0.71 alt fe	nce 3	0	VI with
290	1.07	3	120	VI with

RUN #	FENCE HEIGHT FH/C	SPACE BETWEEN THE FENCE AND FIRST COLL. ROW FS/C	P I TCH ANGLE	CONFIGURATION WITH OR WITHOUT TORQUE TUBE
291	1.07	3	180	VI with
292	1.07	3	180	VI without
293	1.07	3	120	VI without
294	1.07	5	0	VI without
295	1.07	5	-60	VI without
296	1.07	3	0	VII without
297	1.07	3	-60	VII without
298	1.07	3	-60	IX without
299	1.07	3	0	IX without
300	1.07	3	0	IX without $(\psi=3)$

Table 10c. EFFECT OF FENCES ON ARRAY FIELD LOADS

	DATA	FOR THE	SANDIA	PARABOL	IC COLLECTOR	FO	RCE AND	MOMENT	COEFFICIE	NTS	FILE-NAME: MDFNCE
			C = 2	. 80	L = 10.80	INCHES	FEN	CE STUDY			
RUN #	FXP	FZP	MXP	MYP	MZP	RUN #	FXP	FZP	NXP	MYP	MZP
270	. 20	. 25	. 24	32	12	281	04	. 28	. 17	. 14	02
271	. 18	. 22	. 13	31	13	282	. 10	. 24	. 1 9	05	04
272	. 27	. 20	. 14	23	05	283	. 07	. 22	. 1 1	12	12
273	. 08	. 33	. 12	01	04	284	1.10	. 41	. 38	19	~.07
274	. 36	27	. 17	03	08	285	. 23	. 29	. 17	02	03
275	.06	. 28	. 28	12	11	286	. 07	.50	. 25	. 06	07
276	.26	. 32	. 32	. 16	01	287	1.03	. 27	.00	05	. 03
277	. 14	. 16	. 14	30	29	268	. 09	. 20	. 1 8	21	14
278	. 33	. 29	. 23	09	11	289	. 37	. 25	. 08	15	14
279	. 01	. 23	. 15	04	05	290	. 09	. 35	. 5 1	04	12
280	. 1 1	. 18	. 15	03	05	291	. 06	. 20	. 22	02	09
	567	6 FOR TH	SANDIA	PARABOL	IE COLLECTOR	FC	RCE AND	MOMENT	COEFFICIE	NTS	FILE-NAME: MDFNC1

	DATA	FUR THE	SHHDIH	PHRHOUL.	IC COLLECION	1000							
			C = 2	. 80	L = 10.	80 INCHES	HES FENCE STUDY						
RUN #	FXP	FZP	NXP	NYP	HZP	RUN .	FXP	FZP	MXP	NYP	MZP		
292	. 19	. 34	. 22	29	10	296	. 14	. 29	. 26	35	11		
293	. 26	. 35	. 19	46	20	297	. 05	. 29	.20	15	05		
294	. 17	. 34	. 30	30	11	298	. 17	. 41	. 26	25	16		
295	. 05	. 24	. 14	13	15	299	. 13	. 28	. 1 9	09	07		
						300	. 23	.40	. 33	13	14		

RUN #	BERM HEIGHT FH/C	SPACE BETWEEN THE BERM AND FIRST COLL. ROW FS/C	PITCH ANGLE	CONFIGURATION
301	1.07	3	0	IX
302	1.07	3	0	IX (ψ=30°)
303	1.07	3	0	VI
304	1.07	3	-60	VI
305	0.71	3	-60	VI
306	0.71	3	0	VI
307	0.36	3	0	VI
308	0.36	3	-60	VI
309	0.36	2	-60	VI

	DATA	FOR THE	E SANDIA C = 2	PARABULI .80	C COLLECTOR L = 10.89	FOR Inches	CE AND BERM	MOMENT C Study	OEFFICIE	NTS	FILE-NAME: MDBERM
RUN	FXP	FZP	MXP	NYP	MZP	RUN #	FXP	FZP	MXP	NYP	MZP
301	. 23	. 49	. 26	17	14	305	. 01	. 36	. 2 1	15	06
302	. 14	. 40	. 16	. 07	10	306	. 24	.51	. 1 2	06	07
303	05	. 50	. 09	17	10	307	1.13	. 47	. 07	32	18
304	. 16	. 57	. 20	36	16	308	. 27	.71	. 26	22	- 10
						309	. 32	.77	. 1 8	34	17

Table 11b. EFFECT OF BERMS ON ARRAY FIELD LOADS

94

Table	12.	LOADS	WITH	A	TORQUE	TUBE	ON	COLLECTOR	1
10010	****	10.000							

		DATA FOR	THE SANDIA PA		PARABOLIC COLLECTOR		
	-	C :	= 2.80		L = 10.	80 INCHES	
WIND	PITCH	FXP	FZP	MXP	MYP	MZP	
0 0 0	-30 -30 -60	1.39 .92 1.50 .55	.41 1.10 59 1.36	. 30 . 16 . 26 . 11	02 08 25 00	- 06 - 08 - 09 - 03	

FORCE AND MOMENT COEFFICIENTS Torque tube effects,coll#1 alone

WIND	PITCH	FXP	FZP	MXP	MYP	MZP
0 0 0	- 90 - 90 - 1 20	.78 .53 .59 .74	- 18 21 1.16 .46	- 01 18 - 02	- 27 - 15 - 41	- 11 .00 - 06 - 06

FILE-NAME: MDTOR1

Table 13. EFFECT OF θ ON PITCHING MOMENT COEFFICIENTS (CONFIGURATIONS 1-4)

.

CONFIG C = 2 Determ	URATION .80 Ination	1 FIL L = 10 OF THET	E NAME;N Bo A Max,Co	DPIM1 LL#1		CONFIG C = 2 Determ)RATION .92 [Nation	2 FIL L = 10.3 DF THET	E NAME;M Bo A Max,CO	DPIM2 LL#2	
PITCH Angle	HCL/C	ΗYP	MYB	MYF	MYG	PITCH Angle	HCL/C	NYP	MYB	MYF	MYG
	1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033		1.30 1.12 995 849 651 41 37 .14 .18	323 339 124 125 146 155 16 216 216		0. -130. -4605. -665. -775. -885. -905. -1005.	99999999999999999999999999999999999999	- 24 - 213 - 006 - 011 - 105 - 007 - 005 - 002	1 1 1 2 2 3 3 5 1 0 2 3 3 3 5 1 0 2 3 3 3 3 5 1 0 2 3 3 3 1 0 2 3 1 0 2 3 1 0 2 3 1 0 2 3 1 0 2 3 1 0 2	26 16 116 002 002 003 008	- 24 - 2035 - 00825 - 00855 - 008555 - 008555 - 008555 - 008555 - 008555 - 008555 - 0085555 - 0085555 - 0085555 - 00855555 - 00855555 - 008555555 - 00855555 - 0085555555 - 00855555555555555555555555555555555555
CONFIC C = 2	FURATION 2.94	3 FIL L = 10.	E NAME;M 80 A Max.CO	IDPIM3		CONFIG C = 3 Determ	URATION .00 INATION	4 FIL L = 10. Of thet	E NAME;H 80 A Max/Co	IDPIM4	
PITCH	HCL/C	NYP	МҮВ	MYF	M Y G	PITCH Angle	HCL/C	NYP	MYB	MYF	ИYG
	99888888888888888888888888888888888888		1 28 1 107 985 536 301 202 - 00		- 24 - 339 - 108 - 0055 - 1057 - 0057 - 1057 - 125	-150. -305. -455. -555. -600. -775. -90.5	96 96 96 96 96 96 96 96 96 96 96	$\begin{array}{c} - & 35 \\ - & 20 \\ - & 31 \\ - & 00 \\ - & 11 \\ - & 17 \\ - & 17 \\ - & 25 \\ - & 39 \\ - & 39 \end{array}$	1 . 19 1 . 17 . 89 . 759 . 557 . 476 . 13 . 13	- 39 - 19 - 116 - 116 - 117 - 120 - 29	33 132 122 16 137 14 200 307

Table 14. EFFECT OF HEIGHT HCL ON SINGLE COLLECTOR PITCHING MOMENT COEFFICIENTS AT $\theta = 0$, $\psi = 0$ (CONFIGURATIONS 1-4)

CONFIG	CONFIGURATION 1 FILE NAME: NDCDM1						CONFIGURATION 2 FILE NAME; NDCDM2				
C = 2	. 80	L = 10.	80			C = 2	. 92	80	0		
HEIGHT EFFECT AT THETA=0,COLL#1						HEIGHT	EFFECT	F AT THETA=0,COLL#2			
PITCH Angle	HCL/C	MYP	MYB	MYF	MYG	PITCH Angle	HCL/C	MYP	NYB	MYF	MYG
0. 0. 0. 0. 0. 0.	. 67 . 71 . 80 . 89 1 . 03 1 . 25 1 . 25 1 . 61 1 . 96	55 34 207 249	.44 .759 1.18 1.36 1.77 2.21 2.54			0 . 0 . 0 . 0 . 0 . 0 . 0 .	. 64 . 6776 	18 20 125 14 14 14	.70 .91 .92 1.10 1.30 1.55 2.01 2.33	25 07 22 26 21 20 47	18 205 125 129 14 145

CONFIGURATION	3	FTIF	NOMES	MDCDM3
CONLIGNUMITON		FILC		

C = 2.94 L = 10.80

HEIGHT EFFECT AT THETA=0,COLL#3

PITCH Angle	HCL/C	NYP	MYB	MYF	MYG	
0 . 0 . 0 . 0 . 0 . 0 .	64 677 958 1.537 1.97		.73 1.01 1.11 1.57 2.01 2.45	24 119 335 30 30	18 19 29 29 29 29	

CONFIGURATION 4 FILE NAME HOCOM4

C = 3.00 L = 10.80

HEIGHT EFFECT AT THETA=0,COLL#4

PITCH Angle	HCL/C	MYP	MYB	NYF	MYG
0. 0. 0. 0. 0.	6675 66753 997 1.583		.667 .665 .959 1.163 2.54		

Table 15. EFFECT OF HEIGHT HCL ON SINGLE COLLECTION PITCHING MOMENT COEFFICIENTS AT $\theta = \theta_{max}$, $\psi = 0$ (CONFIGURATIONS 1-4)

CONFIG	CONFIGURATION 1 FILE NAME ; NOCLM1						CONFIGURATION 2 FILE NAME > NDCLM2				
C = 2.80 L = 10.80						C = 2.92 L = 10.80					
HEIGHT EFFECT AT THETA MAX,COLL#1						HEIGHT EFFECT AT THETA MAX,COLL#2					
PITCH Angle	HCL/C	NYP	MYB	MYF	MYG	PITCH Angle	HCL/C	NYP	MYB	MYF	MYG
	67 78893 1.269 1.69	02 12 07 05 13 11	33 443 49 59 78 94 1.12	- 07 05 - 05 - 01 - 03 - 04 03 - 08	01 .009 .004 .02 .099 .088 03	- 775 - 775 - 775 - 775 - 775 - 775	. 648 . 687 . 993 1 . 254 1 . 588	14 13 19 07 01 167 -	353442547	- 05 - 03 - 03 - 03 - 03 - 03 - 03 - 10 - 10	.139 .037 .016 14

CONFIG	URATION	3 FILE	NAME H	DCLM3		CONFIGURATION 4 FILE NAME>MDCLM4 C = 3.00 L = 10.80				
C = 2	. 94	L = 10.8	0							
HEIGHT EFFECT AT THETA HAX,COLL#3						HIEGHT EFFECT AT THETA MAX,COLL#4				
PITCH Angle	HCL/C	NYP	MYB	MYF	MYG	PITCH HCL/C Angle	NYP	ИЧВ	MYF	MYG
-70. -70. -70. -70. -70. -70. -70. -70.	687 999 1.587 1.587	13 07 15 15 16 16	.30 .41 .51 .79 1.06 1.39	- 07 - 01 - 00 - 07 - 02 - 06 - 11 - 07	12 04 14 14 15 15	-5583 -5596 -55. 1.17 -55. 1.50 -55. 1.83	10 .002 16 07	. 42 . 64 . 95 1 . 13 1 . 50	09 02 05 19 10	09 02 06 20 10

Table 16a. MATRIX OF SINGLE COLLECTOR PITCHING MOMENT COEFFICIENTS AT HCL/C = K_{I} (CONFIGURATION 1)

CONFIGURATION	1 FILE NAME	MDCDL1	
C = 2.80	L = 10.80		
	LICOTAD DIN ON	1.5=90	
one stadet ov			
WIND PITCH	MYP MYB	NYF NYG	
AZIM ANGLE			
0, 0,00	- 14 .93	2417	
0. 15.00	- 18 . 91	- 26 - 21	
0. ~30.00	- 22 .84	- 30 - 25	
045.00	- 11 .58	- 21 - 15	
060.00	.12 .56	.00 .08	
065.00	- 19 .44	.00 .06	
0. 65.00	- 12 .46	2015	
0. 75.00	.09 .48	01 .06	
0, -90,00 0, 90,00	3004	2127	
0. ~135.00	- 31 .03	- 16 - 26	
0. 180.00	- 14 .65	- 06 - 11	
-15. 0.00 -15. -65.00	- 16 .92	2519	
-15. 65.00	- 26 .33	3429	
15. 180.00	- 17 .92	2520	
15 -65.00	.05 .44	04 .02	
15. 180.00	- 19 .63	- 12 - 17	
3015,00	- 12 .88	2216	
30, 15,00 30 -30 00	- 20 .86	2723	
30. 30.00	- 23 77	- 26	
30. 45.00	- 32 .57	3935	
3060.00 30. 60.00	- 12 . 43	.08 .15	
3065.00	- 01 .38	- 08 - 03	
3075.00	09 .19	0909	
30. 75.00	- 13 .06	04 .02	
30. 90.00	20 43	12 17	
30, 135.00	- 24 - 16	.05 .07	
30.180.00 45 0.00	- 22 58	1519	
4565.00	- 47 - 03	- 54 - 50	
45, 180.00	- 28 55	- 22 - 26	
60. 0.00 60 -15 00	- 16 .58	- 22 - 18	
60. 15.00	- 52 32	5854	
60. 30.00	- 27 .41	- 32 - 29	
6045.00 60 45.00	- 22 .25	06 .01	
60, -60.00	01 .25	0601	
80, 80,00 60, -65.00	- 10 .22	02 .02	
60, <u>65</u> .00	04 .22	0906	
60. 75.00	01 .18	0502	
6090.00 60. 90.00	2007	1518 01 .02	
60135.00	12 .13	0309	
60. 180.00	- 12 .50	- 05 - 09	
	T		
---	--	--	---
CONFIGURATION	2 FILE NAME H	DCDL2	
C = 2.92	L = 10.80		
ONE SINGLE CO	LLECTOR, RIN ANGL	E=40	
WIND PITCH AZIM ANGLE	4¥Þ 4¥8	NYF	NYG
0 -155.000 0 -155.000	- 13 - 13 - 12 - 11 - 12 - 12 - 12 - 11 - 11 - 11 - 12 - 12	813774304295816751555142862709758683909487578394318277012581 	74375727862=50463544332056=58376390354=55=465352070=0000101

Table 16b. MATRIX OF SINGLE COLLECTOR PITCHING MOMENT COEFFICIENTS AT HCL/C = K_{τ} (CONFIGURATION 2)

Table 16c. MATRIX OF SINGLE COLLECTOR PITCHING MOMENT COEFFICIENTS AT HCL/C = K_{I} (CONFIGURATION 3)

> CONFIGURATION 3 FILE NAME > MDCOL3 C = 2.94 L = 10.80

ONE SINGLE COLLECTOR, RIM ANGLE=65

WIND AZIM	PITCH Angle	MYP	MYB	NYF	MYG
00000000000000000000000000000000000000		96671123735085890202222372677693155045524809704254654540608	262158291076320980772325666301388150324678996049872920480834609188	5988647.05-3057.23337.27457.749683-1997.78403751390644-18390060-100267.28 3222-315-1205-10-010305235727457.749683-1997.78403751390644-18390060-100200-000-000-00-00-00-00-00-00-00-00-00	1889931418469907660479024914888984448089844808898400000000000000

Table 16d.	MATRIX OF SINGLE	E COLLECTOR PITCHING MOME	NT COEFFICIENTS
	AT HCL/C = K_{I}	(CONFIGURATION 4)	

FILE NAME ; NDCOL4 CONFIGURATION 4 L = 10.80 C = 3.00 OHE SINGLE COLLECTOR, RIM ANGLE=120 WIND AZIM PITCH ANGLE MYP MY8 NYF MYG 6707756190566002111184009378037405789065748170900688386689806757373817070996 90177958493917070159586048539908768574817080068838688886757373817070996 1 1 1 1 1 1 1 9-9(88889) 8-9(8889) 8-9(889) 8-9(8889) 8-9(8889) 8-9(8889) 8-9(889) 8-9(8889) 8-9(8889) 8-9(89) 8-9(89) 8-9(89) 8-9(89) 8-9(89) 8-9(89) 8-۰.

Table 17. PITCHING MOMENT COEFFICIENTS FOR VARIOUS GAP SPACINGS (CONFIGURATION 5)

Table 18. PITCHING MOMENT COEFFICIENTS FOR ESTABLISHMENT OF ROW SPACING R (CONFIGURATION 9)

CONFIGURATION 9 FILE NAME: MDR2.0 C = 2.80 L = 10.80 RDH STUDY, RDW SPACING=2.0*C WIND PITCH MYP MYB MYF MYG AZIM AHGLE 0.000 -.05 -.02 -.02 -.04 0.000 -.06 -.03 -.03 -.05 0.60.00 .04 .25 .06 .04 15. -60.00 -.09 .12 -.07 -.08 15. -60.00 -.09 .12 -.07 -.08 15. -65.00 -.09 .12 -.07 -.08 15. -65.00 -.09 .12 -.07 -.08 15. -65.00 -.09 .12 -.07 -.08 15. -65.00 -.09 .12 -.07 -.08 15. -65.00 -.09 .12 -.07 -.08 15. -65.00 -.09 .12 -.07 -.08

CONFIGURATION	9 FIL	E NAME:N	DR2.5	
C = 2.80	L = 10.	80		
ROW STUDY, ROW	SPACING	*2.5*C		
WIND PITCH Azim Angle	MYP	NYB	NYF	MYG
0, 0,00 0, -60,00 15, -60,00 30, -60,00	- 19 - 18 - 19 - 20	-,08 .13 .07 .09	- 17 - 14 - 16 - 17	- 18 - 17 - 18 - 19

CONFIGURATIO	N 9 FIL	E HANE M	DR3.0	
C = 2.80	L = 10.	80		
RON STUDY, RO	N SPACING	=3.0+C		
WIND PITCH Azim Angle	NYP	M Y 9	NYF	MYG
0, 0.00 0, -60.00 15, -60.00 30, -60.00	15 20 04 23	02 .16 .22 .19	13 16 03 20	- 14 - 19 - 04 - 22

Table 19a. PITCHING MOMENT COEFFICIENTS FOR ARRAY FIELDS (CONFIGURATION 5)

C)	NF	1	GUI	R	A	r :	1() N	5				F	1	L	E	1	N	A	Ħ	E	1	H D	E	D	I	T					
C	,	R		2.1	8	0				L		3		1	Q	•	8	0															
01	11	E	R	0 W		01		1	r H	E	E		C	0	L	L	E	C	T	D	R	S .	,	G/	C	3	•	5	36				
		I N Z I	DM		P	1 N	[(]		ł			Ħ	Y	P					1	M	Y	8					M	Y	F		•	1 Y	G
					334466779922338 668 668 334466779922338 668 334466779922338								12303230012315021031112220202020001120302413101211011010101010101	563359663451819287546871557163864586789921067080971360363597					1 1 -		07977732404070870537064698877442304061866325432212101010100030	550715673893063038537619257119729304523819086552913112425389						1340414010120302203110312030309010110202403101312011110010101	800929053770591011928909981905862906471654368303043207020175			1N305N3001NN140N103111NNN0N0N000011N050N403101N1N01100010101	67.65868661277565294777581669470867752346838197191061279252496

((CONFIGUR	ATIONS	6-7)		
CONFI	GURATION	6 FIL	E HANE'N	DGROW	
C =	2.80	L = 10.1	BQ		
TWO C	OLLECTOR	ROWS,R/	C=2.25		
WIND Azim	PITCH Angle	ŃΥΡ	NYB	NYF	MYG
000000000000000000000000000000000000000	$\begin{array}{c} 0 \\ -300 \\ -450 \\ -600 \\ -600 \\ -755 \\ -990 \\ -990 \\ -1355 \\ -990 \\ -1355 \\ -990 \\ -1355 \\ -990 \\ -1355 \\ -600 \\ -$		1.21978280555673250023124284 		
CONFI	GURATION	7 FIL	E NAMEIN	D7R0W	
C =	2.80	L = 10.	80		
THREE	COLLECT	OR ROWS,	R/C=2.25		
"IND AZIM	PITCH Angle	NYP	MYB	NYF	NYG
00000000000000000000000000000000000000	$\begin{array}{c} 0 \\ -30 \\ -45 \\ -60 \\ -77 \\ -99 \\ -99 \\ -99 \\ -122 \\ 55 \\ -60 \\ -99 \\ -122 \\ 55 \\ -99 \\ -99 \\ -122 \\ -99 \\ -122 \\ -99 \\ -99 \\ -122 \\ -99 \\ -99 \\ -122 \\ -99$	306004072788064663518047		056485942218782645217129	529235366554233393772074 2020235366554233393772074

Table 19b. PITCHING MOMENT COEFFICIENTS FOR ARRAY FIELDS (CONFIGURATIONS 6-7)

Table 19c.PITCHING MOMENT COEFFICIENTS FOR ARRAY FIELDS
(CONFIGURATIONS 8-9)

CONFIGURATION	8 FILE	NAME > MC	880¥	
C = 2.80 FOUR COLLECTOR	L = 10.8 R RNWS/R/	0 C=2.25		
WIND PITCH Azim Angle	MYP	MY8	MYF	MYG
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	333532685306104912484865 			656753888133384742767982 222231012112103002101011
CONFIGURATION	9 FILE	NAME I ND	9 R O W	
C = 2.80	L = 10.8	0		
SIX COLLECTOR	ROWS,R/C	=2.25		
WIND PITCH Azim Angle	NYP	MYB	NYF	MYG
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	573218021405980582903590		40314 40304956 4020120186220597222264 402010141403132036	756247223223860301276418

Table 20.	EFFECTS OF	FENCES	AND	BERMS	ON	ARRAY	FIELDS,	PITCHING
	MOMENT COE	FFICIEN	rs					

			FILE	NAME : NDF	NCE
C = 2.8	0 L	. =	10.80)	
FENCE ST	UDY				
RUN#	NYP	M	YB	NYF	MYG
0123456789012345678901 77777777888888888889999 200000000000000000000000	21331326094345292651542	-	1100203210012735234323		91526330254373322571740 23220011310010120002100 11111111111111

FILE NAME > NDFNC1

C = 2. Fence s	80 L TUDY	= 10.80)	
RUN	MYP	HYB	NYF	NYG
234567890 222222222222222222222222222222222222				463 434 314 166 166 166 166

FILE NANE HDBERN

¢	*	2.80	L = 10.80		
8 E	RM	STUDY			
RU	N#	NYP	MYB	NYF	NYG
	3003456789 300456789	176 135 355 322 322	007 - 224 - 1123 - 532 - 10	949099456 	

Table 21. PITCHING MOMENT COEFFICIENTS WITH A TORQUE TUBE (CONFIGURATION 1)

 $\begin{array}{c} \text{CDNFIGURATION 1} & \text{FILE NAME; NDTOR1} \\ \text{C} = 2.80 & \text{L} = 10.80 \\ \text{TORQUE TUBE EFFECTS, COLL#1 ALONE} \\ \\ \text{WIND PITCH MYP MYB MYF MYG} \\ \text{AZIM ANGLE} \\ \hline \begin{array}{c} 0. & 0.00 & -.02 & 1.02 & -.12 & -.06 \\ 0. & -30.00 & .08 & .77 & -.05 & .03 \\ 0. & 30.00 & -.25 & .87 & -.31 & -.27 \\ 0. & -60.00 & -.00 & .41 & -.05 & .02 \\ 0. & 60.00 & .06 & .65 & -.08 & .01 \\ 0. & -90.00 & -.27 & .13 & -.13 & -.22 \\ 0. & 90.00 & .15 & .60 & .01 & .10 \\ 0. & -120.00 & -.01 & .70 & -.16 & -.07 \\ \end{array}$